Basic Radar 3.2: Statistical Properties ISR Power Estimates

Roger H. Varney
${ }^{1}$ Center for Geospace Studies
SRI International

July, 2020

Statistical Properties of ISR Voltages

ISR signals are complex-valued, zero-mean, random phase, Gaussian random vaiables with variances related to their power P :

$$
\begin{aligned}
V & =V_{R}+j V_{l} \\
E\left\{V_{R}\right\} & =E\left\{V_{l}\right\}=0 \\
E\left\{V_{R}^{2}\right\} & =E\left\{V_{I}^{2}\right\}=\frac{1}{2} P \quad E\left\{V_{R} V_{l}\right\}=0 \\
E\left\{|V|^{2}\right\} & =E\left\{V_{R}^{2}+V_{l}^{2}\right\}=P \\
E\left\{V_{R}^{4}\right\} & =E\left\{V_{l}^{4}\right\}=\frac{3}{4} P^{2} \quad E\left\{V_{R}^{2} V_{I}^{2}\right\}=E\left\{V_{R}^{2}\right\} E\left\{V_{l}^{2}\right\}=\frac{1}{4} P^{2} \\
\operatorname{Var}\left\{|V|^{2}\right\} & =E\left\{\left(|V|^{2}\right)^{2}\right\}-\left(E\left\{|V|^{2}\right\}\right)^{2} \\
& =E\left\{V_{R}^{4}+V_{I}^{4}+2 V_{R}^{2} V_{I}^{2}\right\}-\left(E\left\{V_{R}^{2}+V_{I}^{2}\right\}\right)^{2} \\
& =2 P^{2}-P^{2}=P^{2}
\end{aligned}
$$

Signal and Noise Components Are Both Gaussian

Both the ionospheric signal and noise contributions to the received voltages are individually Gaussian random variables.

$$
\begin{aligned}
V & =V_{S}+V_{N} \\
E\left\{V_{S} V_{N}^{*}\right\} & =0 \\
E\left\{\left|V_{S}\right|^{2}\right\} & =S \\
E\left\{\left|V_{N}\right|^{2}\right\} & =N \\
E\left\{|V|^{2}\right\} & =S+N=P
\end{aligned}
$$

This is unlike other types of radar problems where the signals are treated as deterministic quantities.

Power Estimation

Given K voltage samples with unknown signal power S, a known noise power N, and total power $P=S+N$, an estimate of the signal power is:

$$
\hat{S}=\frac{1}{K} \sum_{n=0}^{K-1}\left|V_{n}\right|^{2}-N
$$

Expected Value: $E\{\hat{S}\}=\frac{1}{K} \sum_{n=0}^{K-1} E\left\{\left|V_{n}\right|^{2}\right\}-N=P-N=S$ Variance (Invoke the Central Limit Theorem):
$\operatorname{Var}\{\hat{S}\}=\operatorname{Var}\left\{\frac{1}{K} \sum_{n=0}^{K-1}\left|V_{n}\right|^{2}\right\}=\frac{1}{K} \operatorname{Var}\left\{\left|V_{n}\right|^{2}\right\}=\frac{1}{K} P^{2}=\frac{1}{K}(S+N)^{2}$
Relative Error:

$$
\frac{\sqrt{\operatorname{Var}\{\hat{S}\}}}{S}=\frac{1}{\sqrt{K}} \frac{S+N}{S}=\frac{1}{\sqrt{K}}\left(1+\frac{1}{S / N}\right)
$$

Statistical Uncertainty and SNR are Different Concepts

For $S N R=0.25$:

$$
\begin{aligned}
& K=256 \rightarrow \text { Relative Error }=31.25 \% \\
& K=2560 \rightarrow \text { Relative Error }=9.88 \%
\end{aligned}
$$

Required Integration Times

- At
$S N R=-3 \mathrm{~dB}$, 20\% error requires $K=225$.
- If the inter-pulse period is 5 ms , 225 pulses takes 1.125 s .
- If you cycle between 25 beams, 225 pulses in all beams takes 28.125 s.

Problem with Short IPP: Range Aliasing

Exploiting Frequency Diversity

Pulses close together produce range aliasing problems:

Change frequencies every other pulse:

The RISR 3-frequency ImagingLP experiments:
Range

Time

Power Estimation Summary

- In ISR, both the signal and noise portions of the voltages are Gaussian random variables.
- The SNR is the ratio of the power in the signal and noise portions of the voltage.
- What actually matters for detectability is the relative error of our estimate of signal power, which depends on both SNR and the number of samples averaged together.

$$
\frac{\sqrt{\operatorname{Var}\{\hat{S}\}}}{S}=\frac{1}{\sqrt{K}}\left(1+\frac{1}{S / N}\right)
$$

- Some amount of averaging is always necessary, even in the SNR $\rightarrow \infty$ limit.
- For $S N R>1$ it is more worthwhile to increase the effective number of samples than to keep increasing SNR further.

