Data Analysis and Fitting: Review

Ashton S. Reimer

Center for Geospace Studies SRI International

July 2021

Questions:

- What does "fitted data" mean?
- What are the key concepts and techniques we need to fit data?
- How do we go from voltage samples to N_e , T_e , T_i , V_{los} ?
- How do I work with and interpret IS Radar data products?

Topics Covered

Data Modeling:

• Forward Model and Inverse Problems

- $\langle E_s(t)E_s^*(t-\tau)\rangle = f(N_e, T_e, T_i, V_{los}, W_{t\tau}) + e$
- $f(N_e, T_e, T_i, V_{los})$ is constructed with IS Radar Theory and Measurement Ambiguity
- Inverse problem: solving for N_e , T_e , T_i , V_{los} given the data

Fitting:

- Least-Squares
 - can be used to solve inverse problems
 - if $e = \langle E_s(t)E_s^*(t-\tau) \rangle f(N_e, T_e, T_i, V_{los})$ are Gaussian random variables
 - then, the "best-fit" of $p = N_e$, T_e , T_i , V_{los} minimizes the "chi-squared": $\chi^2(p) = [y f(p)]^T \Sigma_e^{-1} [y f(p)]$
 - this is equivalent to maximizing the likelihood function

IS Radar Inverse Problem

Compare measurements and modeled measurements

Given:

$$\chi^{2}(\mathbf{p}) = \left[\mathbf{y} - f(\mathbf{p})\right]^{T} \Sigma_{\mathbf{e}}^{-1} \left[\mathbf{y} - f(\mathbf{p})\right]$$

Error Propagation:

• $\Sigma_{\hat{p}_{LS}} = \left[\mathsf{J}^T \Sigma_e^{-1} \mathsf{J} \right]^{-1}$, but only valid when

- e are Gaussian and f(p) is linear, or
- e are Gaussian and f(p) non-linear, but can be accurately approximated by a linear model in the region around p
- $\Sigma_{\hat{p}_{LS}}$ is used to construct confidence intervals (error bars)

Goodness of Fit:

- compute reduced chi-squared: $\chi^2_{
 u}=\chi^2/(m-n+1)$
 - $\chi^2_{\nu} \approx 1$: a good fit
 - $\chi^2_{
 u} << 1$: an "over fit"
 - $\chi^2_{\nu} >> 1$: a poor fit

Summary of IS Radar data products:

