
MAP Roadmap

v0.5

1 July 2008



MAP

• MIT Application Platform: 

– Software stacks: JEE (SASH), PHP (Zend), MySQL 

with associated toolkits

– APIs to MIT infrastructure services

• Developer Tools:

– Tools used by developers to create and manage 

code and processes



Vision

• Provide software stacks, APIs, toolkits and 
developer tools in order to:

① Lower the cost of SW development at MIT

② Produce better quality software

③ Rapidly develop SW in response to changing needs

④ Improve consistency and predictability

• Foster a developer community that is actively 
sharing tools, reusable code, and best practices

– Requires buy-in from developers and managers



Goals

• Developers can build new applications from a toolkit 
of parts, rather than build all the components 
themselves every time

• Developers can integrate with IS&T’s infrastructure 
services through appropriate interfaces

• SW projects have state of the art tools to facilitate 
best practices

• Infrastructure is in place to foster developer 
community

• MAP Working Group, Steering Committee are 
actively setting priorities and guiding development



Value to the Community

• Consistency of development practices and 

tools improves predictability

• Re-use of code and components improves 

efficiency of development cycle

• More uniform user experience

• MAP is community-driven, and therefore 

meets its needs



Trends/Drivers

• MIT’s software infrastructure was very 
advanced 15 years ago – now it needs 
replacing

• Big SW projects that take forever to deliver are 
the past – needs and technology change too 
fast

• Student VISION is the meteorite on its way

• Service-oriented Architecture 

• Rich Internet Apps



Current State: Stacks

• Assets:
– SASH stack for Java

– Working on a Zend/Drupal stack for PHP

– JQuery for AJAX

– MySQL cluster underway

• Gaps:
– Largely determined by MAP working group, steering committee in 

response to ongoing and new work

• Concern: How do we respond to the changing world? (i.e. new 
stacks as needs change)



Current State: APIs

• Assets:
– SOAP services with WSDL

• Gaps:
– incomplete library of reference implementations and 

documentation for integration with our web services



Current State: Dev Tools

• Assets:

– Source control (SVN)

– Build Dependency management (Maven)

– Continuous Integration (Bamboo)

– IDE (MyEclipse)

– Code browser (OpenGrok for Kerberos team,FishEye)

– Issue management (Jira)

• Gaps:

– Code analysis 

– Load and stress testing tools



End State: Stacks

– Stacks for Java, PHP

– Shared MySQL cluster

– MAP working group, steering committee help define 
priorities for new stacks in response to community 
needs

– Stacks used by Student Vision, other SAIS 
development projects, non IS&T developers



End State: APIs

• SOAP and REST APIs to MIT infrastructure 

services

• Complete set of reference implementations 

and libraries to access MIT infrastructure from 

Java and PHP

• Implementations as required for Student 

Vision



End State: Dev Tools

• Many MIT teams working in a comparable way 

re: source code management, continuous 

integration, best practices, testing



Approach to Execution

• Stacks: 
– Prefer open source with paid support when possible

• APIs:
– Integrate identity services with JEE, PHP stacks

– Take Kuali into consideration as it unfolds

• Tools:
– Use best of breed dev tools; open source when possible, but 

commercial is acceptable

– Use them ourselves, make others want them

– Research, prototype, test, then turn over operation to OIS

• MAP working group, steering committee help set on-
going priorities as work develops



Conceptual Architecture

Dev Tools

•IDE

•Src code mgmt

•Build and 

Dependency 

mgmt

•Continuous 

Integration

•Code browsing

•Code analysis

•Issue 

management

•Performance 

testing Language 

Stack

JEE

Language 

Stack PHP

APIs APIs

Toolkits Toolkits

MIT 

infrastructure 

services



Dependencies/Assumptions

• JEE remains the major development stack, 
growing use of PHP

• SAIS is our biggest customer

• Kuali will be driving Student Vision, and Student 
Vision will be driving a lot of new software 
development

• Tools will keep evolving, we will never be “done”

• MAP Working Group, Steering Committee is our 
governance structure



Risks of Not Doing

• Individual development projects cost more, 

take longer, re-invent the wheel over and over

• Standards are not adopted, little re-use or 

compatibility



Risks of Doing

• It takes longer to build infrastructure, vs. just “go 
do it” on projects

• Wasted effort because developers don't use it

• Partners in the community must build these tools 
and make sure they work, will other bosses 
provide the resources?

• Developers like to argue about tools and 
techniques; not always easy to get agreement

• Standards are immature and always changing, 
need to develop an iterative approach to 
providing these tools, which takes resources



Benefits restatement

• Who doesn’t want better, cheaper, faster?


