
MAP Roadmap

v0.6

2 July 2008



MAP

• MIT Application Platform: 

– Software stacks: JEE (SASH), PHP (Zend), MySQL

with associated toolkits

– APIs, documentation, reference implementations 

to access MIT infrastructure services

• Developer Tools:

– Tools used by developers to create and manage 

code and processes



Vision

• Provide software stacks, APIs, toolkits, 
documentation and developer tools in order 
to:

① Lower the cost of SW development at MIT

② Produce better quality software

③ Rapidly develop SW in response to changing needs

④ Improve consistency and predictability

• Foster a developer community that is actively 
sharing tools, reusable code, and best practices



Goals

• Developers can build new applications from a toolkit 
of parts, rather than build all the components 
themselves every time

• Developers can integrate with IS&T’s infrastructure 
services through appropriate interfaces

• SW projects have state of the art tools to facilitate 
best practices

• Social computing & organizational infrastructure is in 
place to foster developer community across MIT

• MAP Working Group, Steering Committee are 
actively setting priorities and guiding development



Value to the Community

• Consistency of development practices and 
tools improves predictability

• Re-use of code and components improves 
efficiency of development cycle

• More uniform user experience

• Easier to integrate new developers, new 3rd

party packages

• MAP is community-driven, and therefore 
should meets its needs



Trends/Drivers

• MIT’s software infrastructure was very advanced 
15 years ago – now it needs updating

• Big SW projects that take forever to deliver are 
the past – needs and technology change too fast

• Student VISION will have a big impact on IS&T

• Service-oriented Architecture 

• Rich Internet Apps

• Small applications proliferate in DLCs across MIT, 
represent possible liabilities (security, 
confidentiality)



Current State: Stacks

• Assets:
– SASH stack for Java

– Working on a Zend/Drupal stack for PHP

– JQuery for AJAX

– MySQL cluster underway

• Gaps:
– Many developers unaware of supported options, just use the quickest 

and easiest thing

– DLCs have small, one-person projects using the latest technology, at 
odds with more conservative supported stacks



Current State: APIs

• Assets:
– SOAP services with WSDL 

• Gaps:
– incomplete library of reference implementations and 

documentation for integration with our infrastructure



Current State: Dev Tools

• Assets:
– Source control (SVN)

– Build Dependency management (Maven) underway

– Continuous Integration (Bamboo) underway

– IDE (MyEclipse) – site license available

– Code browser (OpenGrok for Kerberos team)

– Issue management (Jira)

• Gaps:
– Code analysis 

– Load and stress testing tools

– Automated functional testing tools



End State: Stacks

– Stacks for Java, PHP

– Shared MySQL cluster

– MAP working group, steering committee help define 
priorities for new stacks in response to community 
needs

– Stacks used by Student Vision, other IS&T 
development projects

– Small one-person DLC projects use “the stacks” vs. 
non-scalable, one-off solutions



End State: APIs

• SOAP and REST APIs to MIT infrastructure 

services

• Complete set of reference implementations 

and libraries to access MIT infrastructure from 

Java and PHP

• Kuali-compatible implementations as required 

for Student Vision



End State: Dev Tools

• Many MIT teams working in a comparable way 

re: source code management, continuous 

integration, best practices, testing

• Standards based so new developers, 

consultants able to come up to speed more 

quickly, less unique learning required



Approach to Execution

• Stacks: 
– Prefer open source, widely accepted standards with paid support 

when possible

• APIs:
– Top priority: Integrate identity services with JEE, PHP stacks
– Take Kuali into consideration as it unfolds

• Tools:
– Use best of breed dev tools; open source when possible, but 

commercial is acceptable
– Use them ourselves, make others want them
– Research, prototype, test, then turn over operation to OIS

• MAP working group, steering committee help set on-going 
priorities as work develops
– Need to engage “non-committed developers” in DLCs as well
– Need to “sponsor” MAP contributors to incentive organizations



Conceptual Architecture

Dev Tools

•IDE

•Src code mgmt

•Build and 

Dependency 

mgmt

•Continuous 

Integration

•Code browsing

•Code analysis

•Issue 

management

•Performance 

testing Language 

Stack

JEE

Language 

Stack PHP

APIs APIs

Toolkits Toolkits

MIT 

infrastructure 

services



Dependencies/Assumptions

• JEE remains the major development stack, growing use 
of PHP

• Kuali will be driving Student Vision, and Student Vision 
will be driving a lot of new software development

• SAIS is our biggest customer, but isolated developers in 
DLCs are very important to engage

• Tools will keep evolving, we will never be “done”

• MAP Working Group, Steering Committee is our 
governance structure

• Standard tools & practices make it easier to ramp up 
developers, work with 3rd party packages & projects



Risks of Not Doing

• Individual development projects cost more, 

take longer, re-invent the wheel over and over

• Standards are not adopted, little re-use or 

compatibility

• Liability if rogue DLC developer compromises 

confidentiality thru local apps

• Harder to find 3rd party developers who have 

the skills



Risks of Doing

• It takes longer to build infrastructure, vs. just “go do it” 
on projects

• Wasted effort because developers don't use it

• Partners in the community must build these tools and 
make sure they work, will other bosses provide the 
resources?

• Developers like to argue about tools and techniques; 
not always easy to get agreement

• Standards are always evolving, need to develop an 
iterative approach to providing these tools

• Need a “de-support” strategy as tools evolve



Benefits restatement

Who doesn’t want

• Better

• Cheaper

• Faster?


