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MAP

• MIT Application Platform: 

– Software stacks: JEE (SASH), PHP (Zend), MySQL

with associated toolkits

– APIs, documentation, reference implementations 

to access MIT infrastructure services

• Developer Tools:

– Tools used by developers to create and manage 

code and processes



Vision

• Provide software stacks, APIs, toolkits, 
documentation and developer tools in order 
to:

① Lower the cost of SW development at MIT

② Produce better quality software

③ Rapidly develop SW in response to changing needs

④ Improve consistency and predictability

• Foster a developer community that is actively 
sharing tools, reusable code, and best practices



Goals

• Developers can build new applications from a toolkit 
of parts, rather than build all the components 
themselves every time

• Developers can integrate with IS&T’s infrastructure 
services through appropriate interfaces

• SW projects have state of the art tools to facilitate 
best practices

• Social computing & organizational infrastructure is in 
place to foster developer community across MIT

• MAP Working Group, Steering Committee are 
actively setting priorities and guiding development



Value to the Community

• Consistency of development practices and 
tools improves predictability

• Re-use of code and components improves 
efficiency of development cycle

• More uniform user experience

• Easier to integrate new developers, new 3rd

party packages

• MAP is community-driven, and therefore 
should meets its needs



Trends/Drivers

• MIT’s software infrastructure was very advanced 
15 years ago – now it needs updating

• Big SW projects that take forever to deliver are 
the past – needs and technology change too fast

• Student VISION will have a big impact on IS&T

• Service-oriented Architecture 

• Rich Internet Apps

• Small applications proliferate in DLCs across MIT, 
represent possible liabilities (security, 
confidentiality)



Current State: Stacks

• Assets:
– SASH stack for Java

– Working on a Zend/Drupal stack for PHP

– JQuery for AJAX

– MySQL cluster underway

• Gaps:
– Many developers unaware of supported options, just use the quickest 

and easiest thing

– DLCs have small, one-person projects using the latest technology, at 
odds with more conservative supported stacks



Current State: APIs

• Assets:
– SOAP services with WSDL 

• Gaps:
– incomplete library of reference implementations and 

documentation for integration with our infrastructure



Current State: Dev Tools

• Assets:
– Source control (SVN)

– Build Dependency management (Maven) underway

– Continuous Integration (Bamboo) underway

– IDE (MyEclipse) – site license available

– Code browser (OpenGrok for Kerberos team)

– Issue management (Jira)

• Gaps:
– Code analysis 

– Load and stress testing tools

– Automated functional testing tools



End State: Stacks

– Stacks for Java, PHP

– Shared MySQL cluster

– MAP working group, steering committee help define 
priorities for new stacks in response to community 
needs

– Stacks used by Student Vision, other IS&T 
development projects

– Small one-person DLC projects use “the stacks” vs. 
non-scalable, one-off solutions



End State: APIs

• SOAP and REST APIs to MIT infrastructure 

services

• Complete set of reference implementations 

and libraries to access MIT infrastructure from 

Java and PHP

• Kuali-compatible implementations as required 

for Student Vision



End State: Dev Tools

• Many MIT teams working in a comparable way 

re: source code management, continuous 

integration, best practices, testing

• Standards based so new developers, 

consultants able to come up to speed more 

quickly, less unique learning required



Approach to Execution

• Stacks: 
– Prefer open source, widely accepted standards with paid support 

when possible

• APIs:
– Top priority: Integrate identity services with JEE, PHP stacks
– Take Kuali into consideration as it unfolds

• Tools:
– Use best of breed dev tools; open source when possible, but 

commercial is acceptable
– Use them ourselves, make others want them
– Research, prototype, test, then turn over operation to OIS

• MAP working group, steering committee help set on-going 
priorities as work develops
– Need to engage “non-committed developers” in DLCs as well
– Need to “sponsor” MAP contributors to incentive organizations
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Dependencies/Assumptions

• JEE remains the major development stack, growing use 
of PHP

• Kuali will be driving Student Vision, and Student Vision 
will be driving a lot of new software development

• SAIS is our biggest customer, but isolated developers in 
DLCs are very important to engage

• Tools will keep evolving, we will never be “done”

• MAP Working Group, Steering Committee is our 
governance structure

• Standard tools & practices make it easier to ramp up 
developers, work with 3rd party packages & projects



Risks of Not Doing

• Individual development projects cost more, 

take longer, re-invent the wheel over and over

• Standards are not adopted, little re-use or 

compatibility

• Liability if rogue DLC developer compromises 

confidentiality thru local apps

• Harder to find 3rd party developers who have 

the skills



Risks of Doing

• It takes longer to build infrastructure, vs. just “go do it” 
on projects

• Wasted effort because developers don't use it

• Partners in the community must build these tools and 
make sure they work, will other bosses provide the 
resources?

• Developers like to argue about tools and techniques; 
not always easy to get agreement

• Standards are always evolving, need to develop an 
iterative approach to providing these tools

• Need a “de-support” strategy as tools evolve



Benefits restatement

Who doesn’t want

• Better

• Cheaper

• Faster?


