
3.23 Lecture 10 
 
Last time we looked at the formal structure of Maxwell relations. 
 

(δX / δY)conj(x) = +/-(δconj(y) / δconj(x))y 
 
In order to find the sign, look at the potential from which the relation can be derived.  
This can be done for simple systems with multiple work terms.  Below is an example 
with a magnetic work term. 
 

dU = TdS – pdV + µoHdM 
 

G* = U – TS +PV - µoHdM 
 

dG* = -SdT +VdP - µoMdH 
 
With three differentials, there are six Maxwell relations.  Below is a Maxwell relation.  
There is the same structure as in previous relations but with an extra variable constant. 
 

(δS / δP)T, H = -(δV / δT)P, H
 
Below is a Maxwell relation with the change in magnetization with respect to 
temperature. 
 

(δµoM / δT)H, P = -(δS / δH)T,P 

 
From this relation, we see that the entropy is affected by a magnetic field and that this is 
measurable through δµoM / δT. 
 
Physical problem 
 
Figure out the derivatives and use Maxwell relations.  We know how to calculate the 
change in entropy at constant pressure.  The expression can be written down 
instantaneously.  Calculating the change in entropy with a pressure change is convoluted 
 

dS = δQ / T 
dS = Cp dT / T 

 
(δS / δP)T = -(δV / δT)P

 
Evaluate the following expression. 
 

V = nRT / P 
(δV / δT)P = nR / P 
(δS / δP)T = -nR / P

 



Write the general change of state 
 

dS = (δS / δT)P dT +  (δS / δP)T dP 
= nCP dT / T – nR dP / P 

 
This is true for an ideal gas and could be useful for any material.  From the 
thermodynamic expression, it is possible to learn about other properties. 
 
Useful relations 
 

(δf / δx)y = 1 / (δf / δx)y 
 

(δf / δx)y = (δf / δu)y (δu / δx)y 

 
(δf / δx)y (δx / δy)f (δy / δf)x = -1 

 
Variations with different things being kept constant 
 
Pull on a material adiabatically.  If there is an instantaneous response, there is not time 
for heat exchange.  If the material is pulled adiabatically in the elastic region, does the 
temperature increase or decrease? 
 

 
 

A first step is to put the question in mathematical form.  Look at the temperature change 
with force. 
 

(δT / δF)S= (δl / δS)F
 
This is at constant entropy due to the conditions of no heat flow and a reversible process.  
Can this be transformed by a Maxwell relation?  Yes, it is the derivative of something 
with the conjugate constant.  We need to know what to do with (δl / δS)F 

 
With S constant, it is possible to transform into derivatives of S.  Heat capacity is given in 
terms of δS / δT.  Useful expressions are of the form δS / δ(force) 
 

(δS / δP)T = -(δV / δT)P
(δS / δH) = (δM / δT)

 



In this case, transform between variables of what is being held constant using the 
expression below. 
 

(δf / δx)y (δx / δy)f (δy / δf)x = -1 
 
 

(δT / δF)S = (δS / δF)T  /  (δS / δT)F 
 
The top form is a derivative in terms of force, which is good.  Maxwell relations can be 
used.  The bottom term is the heat capacity under constant force. 
 

(δS / δT)F  = CF / T 
(δS / δF)T = +/-(δl / δT)F 

 
The term (δl / δT)F is the linear thermal expansion.  To find the sign look at the state 
function with F and T variables. 
 

F* = U – TS – Fl 
dF = SdT – ldF 

 
(δl / δT) = (δS / δF) 

 
The term of thermal expansion is positive or negative depending on the material. 
 

∆T = A l αL T ∆σ / CF 

 
It’s possible to turn CF into a known heat capacity.  In solids, this does not very much.  
Plug in a value of 25 J / mol K for CF, 7 10-6 m3 / mol for Al, and 12 10-6 for αL. 
 
What is the physical explanation for why the temperature decreases?  The entropy of the 
system goes up with the application of a force. 
 

(δS / δF)T = (δl / δT)F > 0 
 
At constant entropy, the system responds by lowering the temperature.  There is an 
entropy exchange.  This is where all the physics is. 
 
General strategies of how to do derivative 
 

1) Bring potentials to numerator 
 
Substitute in differentials.  The following differential was used in the problem with the 
bicycle tire. 
 

(δP / δT)H 
 



Bring thermodynamic variable to the numerator. 
(δT / δP)H = -(δH / δP)T / (δH / δT)P 

(δT / δP)H = -( T (δS / δP)T + V) / (T (δS / δP)T ) 
 
Expressions from the differential form of the equation of a simple system are used to 
change terms in the above expression 
 

dH = TdS + VdP 
 

2) Bring S to the numerator and convert to heat capacity (δS / δT) or eliminate 
Maxwell relations (δS / δY) 

 
The expression of (δS / δT)P can be converted to heat capacity.  Use a Maxwell relation 
when there is a derivative of entropy with respect to an intensive force. 
 

T (δS / δT)P = CP 
(δS / δP)T = - (δV / δT)P 

(δS / δP)T  = -V αv 

 
(δT / δP)H = V (T αv – 1) / CP 

 
Prove that this is zero for an ideal gas.  Write out (δU / δT) and see that all the terms 
cancel, resulting in zero. 
 
After these two sets of substitutions, one is usually close to the end 
 

3) Volumes in variables 
 
Bring V or any extensive quantity to the numerator.  Get the expression into derivatives 
of T and P. 
 

4) Convert heat capacities 
 
The expression of CF can be turned into a term of CP plus energy.  For solids we don’t 
see much difference.  Bring extensive quantities to numerator.  Turn into derivatives of 
extensive variables with respect to intensive.  Usually get far with conversions. 
 
Proof that (δU / δV)T = 0 for an ideal gas 
 
This is in the definition of an ideal gas. Substitute what dU is and take derivative. 
 

dU = TdS – pdV 
 

dU / dV = T(dS / dV)T – P 
 

Evaluate (dP / dT)V  for an ideal gas 



 
P = nRT / V 

(dP / dT)V = nR / V 
 

TnR / V – P = 0 
 
The energy of an ideal gas does not depend on volume. 
 
U as a function of T, P 
 
Write in terms of any variable. 
 

dU = (δU / δT)P dT + (δU / δP)T dP 
 
Get derivatives of U with respect to T and P.  Put in differentials of dU. 

 
(δU / δP)T = ((TdS – pdV) / dP)T 

(δU / δP) = T(dS / dP)T – p (dV / dP)T 
 

The term dS / dP can be turned into a derivative of volume with respect to temperature.  
The compressibility, βV, is a property and given by (dV / dP)T. 
 

(δU / δP) = -T(dV / dT)P + βV 
(dV / dT)P = Vαv 

(dU / dT) = CP - pVαv 
dU = (Cp - pVαv) dT + V(RP - Tαv)dP 

 
This is how the internal energy changes with temperature and pressure.  It depends on 
intensive variables. 
 
Useful relation that can be used to convert heat capacities 
 

f(x, y) 
 (δx / δf)z = (δx / δf)y + (δx / δy)f (δy / δf)z 

 
This is used to transform what is being kept constant.  The last two terms are a correction 
factor.  This relation can be used to convert heat capacities. 
 

Cp - Cv = T (δS / δT)p - T (δS / δT)v 
Cp - Cv = (δS / δV)T (δV / δT)p 

 
The thermal expansion term is (δV / δT)p and (δS / δV)T can be converted into (δS / δP) 
 
Write in terms of intensive variables with the chain rule 
 

(δS / δV)T (δV / δT)p = Vαv
2 / βT 



 
The thermal expansion term is squared, which means that the sign doesn’t matter.  The 
greater quantity is always CP. 
 
Is a material stiffer under adiabatic or isothermal compression? 
 
Data is usually from isothermal experiments.  There are difference between a material 
being shock compressed, which as adiabatic, isentropic compression, or slowly 
compressed.  A key is to evaluate the difference (δU / δP)S and δU / δP)T.  Work out the 
following expression on our own. 
 

1/V[βS - βT] 
1/V[(δU / δP)S - δU / δP)T] 

 
Consider elongation with grain boundaries 
 
Pull a material and the force varies with length.  The relevant term to evaluate is (δF / 
δl)N.  If the material is an alloy, there may be segregation. If one pulls slowly and there is 
fast diffusion, the elastic constant may not be properly weighted.  Material can 
reequilibrate at the grain boundary.  Transition between (δF / δl)N and (δF / δl)µi with 
math shown here. 
 

 
What kind of properties characterize a material? 

From second derivatives of G(T, P), there are three properties. 

 
(δ2G / δT2) = -δS / δT 
(δ2G / δT2) = -CP / T 

 
(δ2G / δP2) = δV / δP 

(δ2G / δP2) = VβT 
 



(δ2G / δT δP) = δV / δT 
(δ2G / δT δP) = δS / δP 

(δ2G / δT δP) = Vαv 

 
Look at the second derivatives schematically. 
 

 T P 
T -CP / T Vαv 
P Vαv VβT 

 
 

Extend this to more terms 
 
Magnetic work 
 

dU = TdS – pdV + µoHdM 
 
The units of µo are lumped into H and the term dM contains volume. 
 

G = U – TS + PV – HM 
dG = -SdT + VdP – MdH 

 
 T P H 

T -CP,H / T Vαv  
P Vαv VβT  
H    

 
There are a few new properties.  The matrix will be symmetric due to Maxwell relations. 
 

(δ2G / δT δH) = -(δS / δH)T,P 
(δ2G / δT δH) = -(δM / δT)H,P 

 
There is not a classic name of this last term, but there are models to study this, such as M 
~ C/T.  More relations are below. 
 

(δ2G / δP δH) = -(δM / δP)H, T 
(δ2G / δP δH) = -(δV / δH)P, T 

 
This relates how volume changes with an applied field.  The definition of this effect of 
magnetostriction is complicated for solids. 
 

λ = 1 / V (δU / δH)P, T 
(δ2G / δH2) =  -(δM / δH) 

(δ2G / δH2) = -χ 
 
The susceptibility, χ, describes how the magnetization changes with the applied field. 



 
 

 T P H 
T -CP,H / T Vαv (δM / δT) 
P Vαv VβT Vλ 
H (δM / δT) Vλ - χ 

 
These are properties needed to fully characterize the material.  Below is a listing of 
properties along the diagonal. 
 
   -CP,H / T  thermodynamics, heat flow 
   VβT   elasticity  
   χ   magnetism, susceptibility 
 
The properties in the bottom row and in the right column relate to the intersection 
between fields 
 
   λ   how magnetic field and elasticity interact 
   (δM / δT)  magnetism and temperature 
   Vλ 
 
A formulism has been built that incorporates everything.  The property matrix shows this 
best. 
 
Looking at the term (δM / δT)H 
 
The term (δM / δT)H is negative, is a property, and is something known. 
 

 1 / V(δU / δM)T = (δM / δT)H 
 
Use a chain rule and Maxwell relation 
 

(δU / δM) = (δU / δH)T (δH / δM)T 
 
The term (δU / δH)T is a magnetostriction term and is equal to Vλ.  The term (δH / δM)T 
includes an extensive and intensive variable.  It is a diagonal term and is equal to 1 / χ. 
 

αH = αM + λ / χ (δM / δT)H 
 
Look at the sign of terms and what they represent. 
 
  αH  magnetized 
  αM  unmagnetized 
  χ  > 0 
  (δM / δT)H < 0 
  λ  magnestriction, either positive or negative 



 
The correction term can be negative and the overall thermal expansion can be zero.  It is 
often the case that the applied field is constant, such as the case when it is zero. 
 
There is a particular material which at 30 % nickel demonstrates zero thermal expansion.  
The material is dimensionally stable around room temperature and is used in 
measurement tools and pendulums of clocks.   
 
What is the physics behind this zero thermal expansion material?  When raising the 
temperature, there is a counter force.  When raising the temperature, M goes down.  
There are two competing effects that can balance: megnetostriction and the decrease of 
magnetization with temperature.  
 
 


