
3.23 Lecture 11 
 
 
Look at Maxwell relations to find volumetric expansion 
 

(δV / δT)P =- (δS / δP)T
(δV / δT)P =- (δS / δV)T (δV / δP)T

 
The volumetric expansion is then 
 

αv = βT(δS/ δV)T
 
The sign depends on whether the entropy goes up with volume.  The entropy is a measure 
of disorder.  It is related to the number of accessible macroscopic states.  As the volume 
increases, the number of accessible states increases.  Consider a particle in a box.  The 
energy is related to 1 / L2.  In a large container, a system with a given energy fluctuates 
over more energy levels.  Physically there is entropy from vibrations, and bonds stretch. 
 
In the case of negative thermal expansion, the entropy goes down with volume.  Polymers 
are a classic case of that.  There are lots of ways to arrange a polymer in a small volume, 
and there is only one state when the polymer is completely stretched. 
 

 
 
There can be a negative thermal expansion with other materials.  The material with the 
largest negative thermal expansion is ZrW2O.  The property of the material discussed last 
lecture was magnetic based, and that property would be lost at high temperature.   
 
Polyhedra solids can show negative thermal expansion.  There is a network of polyhedra 
that are connected at vertices.  They can rotate and take up entropy.  Below is a picture of 
a wheel that can rotate.  Pump in excitation to rotate the wheel and stretch it out.  The 
entropy increases when the volume decreases, so the derivative is negative.  We see this 
same effect in polyhedra solids. 
 



 
 

Adiabatic demagnetization 
 
It’s not possible to get down to 0 K.  An object can’t get colder than anything by 
exchanging heat; the object must release work.  Adiabatic demagnetization relies on the 
following expression being true. 
 

(δS / δH)T, P < 0 
δS / δH)T, P = (δM / δT)H < 0 

 
The entropy decreases when there is an applied field.  There is less disorder with the 
alignment of spins.  A way to lower the temperature is to exchange entropy between 
magnetic degrees of freedom and vibrational degrees of freedom.  Apply a field 
isothermally and a system releases heat.  Isolate the system, turn off the field, and the 
system evolves back to H = 0.  (There was an example shown on the projector).  Put the 
material in a cold environment and do the experiment adiabatically, either insulated or 
fast. 

 

 
 



Open systems 
 

dU = TdS – pdV + Sum[µi dNi] 
 
There is a new intensive variable, which is µ 
 

µi = (δU / δNi)S,V,Nj≠i 

 
Legendre transforms (one-component systems) 
 
It is possible to make a Legendre transform of any function 
 
  Hill function   L(S, U, µ) =U - µN  

Ray function   R(S, P, µ) =H – µN 
Granol Function J  J(T, V, µ) =F – µN 
Guggenheim   Z(T, P, µ) =G – µN (uniquely zero) 

 
Gibbs  - Duhem 
 

U = TS –PV + Sum[µi Ni] 
 

dU = TdS + SdT – pdV –VdP + Sum[µi dNi] + Sum[Ni dµi] 
 
The differentials with extensive variables must sum to zero. 
 

SdT –VdP + Sum[Ni dµi] = 0 
 
There is a relationship among the extensive parameters.  The extensive variables tell 
about system size, while the three intensive variables provide slightly less information. 
 
At this point we are done with the formal structure of thermodynamics.  There is material 
about stability that could be studied.  
 
Summarize what’s in mathematical structure – conceptual review 
 

1) Identify work terms 
 
How does the system exchange energy with the environment?  A key term is dU.  It is 
related to a set of differentials, but it can be tough to know. 
 

2) Write down the relevant thermodynamic potential for equilibration 
3) Know how to define equilibrium 
4) Understand properties that characterize a system 
5) Be able to relate properties to each other 

 
Relate the heat capacities and compressibilities under different conditions. 



 
Phase transitions and how to characterize 
 
This involves understanding what state matter takes on.  Find the states that are the 
lowest free energy.  This may change with conditions, such as temperature and pressure.  
Changing T, P changes the equilibrium and the states. 
 
Look at how G changes with T and P. 
 

dG = -SdT + VdP 
-S =( δG / δT)P
V =( δG / δP)T

 
The first derivative of S is related to heat capacity 
 

 
δ2G / δT2 = -( δS / δT ) 
δ2G / δT2 = -CP / T 

 

 
 
Look at derivatives related to compressibility 
 

δ2G / δP2 = -( δV / δP ) 
δ2G / δT2 = -VβT  

 



 
 

Callen goes through a systematic way of looking at phase diagrams 
 
The solid state and liquid state are a function of G.  Find out where each is stable.  Find 
the point of intersection.  This is the phase boundary. 
 
At constant pressure, change the temperature and plot the energy.  When changing 
phases, there can be a discontinuity in volume.  For instance, water expands when 
freezing. There is also a discontinuity of δG / δT.  The value of entropy is different on 
both sides.  The discontinuity is related to the latent heat. 
 

∆H = T ∆S 
 

 
Higher entropy means that there is a greater slope downward.  The liquid state is at a 
higher energy initially, and it intersects the solid curve.  The vapor is associated with 
higher entropy than the liquid, and the vapor curve is steeper than the liquid curve.  The 
point of intersection is the boiling point.  There are metastable points.  When heating a 
solid very fast, for instance, it is possible to reach a metastable point. 
 



The point of intersection in some materials is before the intersection of the liquid and 
solid curve, and this is the point of sublimation.   When there is an applied pressure, the 
points of intersection move with respect to each other. 
 

 
 
The curves are not linear, but the difference of curves can be approximated as such.  
Linearize the free energy difference between liquid and water. 
 

∆G = ∆H – T∆S 
 
Both ∆H and ∆S are functions of T.  The expression is linearized when we say ∆H and ∆S 
are not a function of T.  At room temperature, look at where ∆G =0.  Below is data taken 
from 293 K.  Extrapolate the boiling point of water by linearizing. 
 

∆H = 44.17 kJ / mol 
∆S = 119.5 J / mol K 

TB = ∆H / ∆S 
TB = 37ºK 

 
Differences are fairly linear, and what is we are saying is that ∆H is not a function of 
temperature. 
 

∆H ≠ f(T) 
∆S ≠ f(T) 
∆CP = 0 

 
The heat capacities of vapor and liquid are approximated as the same. 
 

(δ∆H/δT)P = ∆CP 

 
Entropy falls out 
 

(δ∆S/δT)P = ∆CP / T 



 
The heat capacities do not swing by orders of magnitude.  This is a point where 
linearizing is useful.  Usually one knows ∆Hm, which is the latent heat.  This occurs at the 
transition where ∆G = 0.  If  ∆H is known, than ∆S can be found. 

 
∆H = TPT ∆SPT 

 
The energy difference is given by the expression below 
 

∆G = Gβ - Gα
 
where ∆G(T) = ∆H – T∆S.  The terms ∆H and ∆S are constant and taken at the phase 
transition. 
 

∆G(T) = ∆HPT (1 – T / TPT) 
 
Often need free energy difference between two phases.  Linearize free energy differences.  
This works up to about 100º away from the phase transition. 
 
Classification of phase transition 
 
When the nth derivative of TD potential is discontinuous, the transition is called an nth 
order phase transition. 
 
The extensive variables are discontinuous in first-order phase transitions.  These are 
physical changes that are impossible to miss.  This is the case in the 1st order phase 
transitions.   
 

 
 
Second-order phase transitions are continuous in the first-order.  There is no ∆S or ∆V.  
What is discontinuous in a second-order phase transition?  There is a discontinuity in ∆CP 
and ∆βT. 
 



When looking at data from a real experiment, finding the differences between a first 
order phase transition and second order transition is difficult.  The second-order phase 
transition can be the point where thermodynamics fails.  There can be a logarithmic 
singularity on a heat capacity curve.  Macroscopic fluctuations become macroscopic in 
size.  Usually, there is no relationship between the interactions of two elements in the 
bulk material. 

 
 

There is linearity when things do not interact.  When there is an interaction, there is 
quadratic behavior.  In a second order phase transition, the fluctuations become 
macroscopic in size.  Extensivity is not true.  Typical second-order transitions are 
magnetic (curie point, ferroelectric transitions).  For a transition to be possibly 2nd order, 
conditions must be satisfied.  There is a symmetry classification scheme. 
 
The glass transition temperature is a point where degrees of freedom are frozen. 
 
Plot stable phase as a function of intensive variables 
 
Below is a picture of a phase diagram.  Phase boundaries are where the free energy 
surface interact.  This is where the properties are discontinuous.  Discontinuities occur at 
one point. 
 

 
 
Below is a plot in partly extensive variables.  When plotting versus extensive variables, a 
discontinuity appears. 
 



 
 
In two-phase phase diagrams, there is a nonexistence region.  There are certain 
combinations that are not allowed.     
 

 
 
Discontinuities can collapse if the phase diagram is a plot versus intensive variables 


