
3.23 Lecture 2 
 

The book will be on reserve in the library.  The class members do not need to study in 
depth all of chapter 1 – 4. 
 
Equation of state 
 
The equations of state that define a relationship between variables are not part of the 
framework of thermodynamics.  The equation of state of an ideal gas is below.  Other 
equations may contain electrical or magnetic constants. 
 

pV = nRT 
 

First law 
 
The first law involves the conservation of energy, and this can be a difficult concept.  
Track energy flows in and out. 
 

 
The balance of fluxes in and out is labeled ∆E and is expressed as Ein – Eout.  Taking a 
time derivative δ∆Esys / dt = δ∆Ein / dt – δ∆Eout / dt.  The flux of energy in is δEin / dt, and 
the flux of energy out is δEout / dt.  Below is a mass conservation relation. 
 

∆(m/v) / dt = -div(Jm) 
 

What does the divergence mean?  It is the difference of flux at x and x + dx 
 

 
The expression of mass conservation is the same idea as in the 1st law. 



 
δ(E/v) / dt = -div(JE) 

 
Energy of a system 
 
What is ∆Esys?  How can a system change its energy?  It can change kinetic energy, 
gravitational energy, potential, or internal energy.  The energy of a system is defined 
below. 
 

∆Esys = ∆EKE + ∆EPE + ∆U 
 

For stationary systems, the ∆EKE is zero, and the potential and kinetic energy can be 
lumped together with the internal energy.  The internal energy involves all energy that is 
internal to the system.  For instance, the gas in the car and the charge in the battery 
contribute to the internal energy.  Some energy gets stored in microscopic degrees of 
freedom.  A physicist is concerned with how internal energy is stored.  Kinetic energy 
and potential energy is stored in bonds at the microscopic level. 
 
Variables describe the state of a system.  A key concept is that the internal energy is 
defined by the state of the system.  There can’t be multiple values of energy associated 
with a given state. 
 
Energy flows 
 
Work, heat, and matter are associated with energy flows.  The flow of energy by work 
and heat flow is not necessarily associated with matter.  The flow of matter is a trivial 
energy flow.  An example is joining systems, such as putting fuel in a car. 
 
Work 
 
Work is the transfer of energy by a “displacement” under a “force.”  Below are different 
types of work. 
 
 Mechanical  Force times displacement 
 Electrical  Electric field times charge 
 Magnetic  Applied field times change in magnetization 
 
The infinitesimal displacement vector is dr.  Electric work involves displacing charge, 
dq, over a potential.  Magnetic work results from the change in magnetization under an 
applied field.  Quantities are per volume in electromagnetism.  Work can also result from 
the flow of matter (µi, dNi).  The chemical potential is µi, , and dNi is the change in mole 
number. 
 
In general, work results from the displacement of an extensive quantity.  The force is 
labeled “Y”, and the response is “dX”. The units of the product of the pair of variables are 



expressed as energy (J, cal, eV, …).  The conjugate pair is a term of (X, Y).  For instance, 
F is conjugate to r. 
 
Stress Strain Tensor 
 
A material can be described with a stress strain vector 
 

ε = (ε11, ε22, ε33, ε12, ε13, ε23)   
σ = (σ 11, σ22, σ33, σ12, σ13, σ23)   

 
The normal stress terms are σ 11, σ22,and  σ33, and the shear stress terms are σ12, σ13,and σ23. 
The elastic deformation is given by the dot product of stress and strain. 
 

V σ dε 
 

Where dε is the strain density multiplied by volume for correct units. 
 
Hydrostatic Pressure 
 

σ11 =  σ22 =  σ33 = -P 
σ12 =  σ13 =  σ23 = 0 

 
The convention is a negative sign when the pressure pushes on things.  The amount of 
work is given in the expression below. 
 

dW = -PVd(ε11 +  ε22 +  ε33) 
dW = -PdV 

 
The amount of work done under hydrostatic pressure is equal to –PdV. 
 
Deforming a volume is a form of doing work on a material.  When pushing, dw is 
positive, and energy is flowing into the system.  It is possible to either absorb energy or 
give energy to surroundings.  The total work is found by integrating the above 
expression. 
 
There needs to be information known about the material.  The functions p(V) and σ(ε) are 
needed. 
 
Isothermal compressibility and compliance 
 

βT = - 1 / V (δV/ δP)T 
 
The quantity is normalized to be intensive, and the negative sign is there to ensure that βT 
is positive. 
 
In non-hydrostatic situations, there is an elastic constant called compliance. 



 
Cjkl = dεij / dσkl

 
The above equations can be thought of as equations of state.  They can be functions of the 
material itself.  For instance, the elastic constants can change with temperature. 
 
Dielectric Work 
 
Apply an electric field to a dielectric (not a conductor) 
 

 
 

dW = εdq 
dW = εoVEdE + VEdP 

 
As a potential is applied, an electric field is set up.  Work results from moving charge 
from one side to another. 
 
The permittivity is εo.  When applying a potential across the dielectric, there are two ways 
to transfer energy.  Energy is stored in the dielectric, and there is no material constant 
 

εoVEdE 
 
There is also energy through polarization.  This is a material dependent quantity.  There 
is energy in the material. 
 

VEdP 
 
In electromagnetism, the field quantity is in terms of volume. 
 

Р = VP 
 

Magnetic Work 
 
The applied field is и and the induction is B.  The induced magnetization is M and is 
stored in the material 
 

B = µoи + µoM 



dW = иVdB 
dW = µoиd(VM) 

 
The quantity M’ is an extensive quantity. 
 
Exact differential 
 
An exact differential is denoted by the symbol d.  An exact differential does not depend 
on path.  For instance, it would not matter how P is related to V. 
 

Int[-PdV, 1, 2] 
Int[µoиd(VM), 1, 2] 

 
Inexact differential 
 
An inexact differential is associated with a path dependent integral.  This integral is 
undefined without path specification. 
 
Example – compress ideal gas 
 

 
 

Compress the volume by 1 / 2. 
 

dW = - Integrate[-PdV] 
P = nRT / V 

dW = - nRT Inegratet[dV / V, V, V/2] 
dW = -nRT[ln V / 2 – ln V] 

dW = RTln2 
 

At 298 K, this is equal to 1,717 J.  Imagine an alternate path. 
 



 
 

W = -Po(V/2 – V) + 0 
W = Po V / 2 
W = RT / 2 

 
At 298 K, this is equal to 1,239 J. 
 
The integral is path dependent.  It is necessary to specify what happens to T as the system 
traverses a path. 
 
What makes a differential exact? 
 
A differential is exact when it is the differential of some function.  The expression of 
force times displacement is an exact differential if the force is a differential of a function. 
 

F = grad[φ(r)] 
 

The vector F is a gradient.  Below are expressions of the force in 2-D. 
 

Fx = δφ/δx 
Fy = δφ/δy 

 
Get the function when integrating the differential 
 

Integrate[δx] = Integrate[δφ] 
= Integrate[(δφ/δx)dx +(δφ/δy)dy 

= φ(x, y) 
 

Integrate the work flow to get the function back. 
 
Imagine moving an object through a landscape of different height.  The height of the 
room is given as a function, h(x, y), and a contour plot is below. 
 



 
 

Imagine an infinitesimally slow process where acceleration is not a concern.  Internal 
energy is conserved.  Energy is absorbed as the object moves downhill; work is done on 
the object.  As the object goes uphill, internal energy is released to the environment.  
Calculate the work done on the system as it moves through the landscape.  The gradient 
is needed. 
 

Pot E = mgh(x, y) 
∆Usys = W 

= Int[ F dr, 1, 2] 
 

The force is the gradient in the potential energy field. 
 

F = - grad[Efield] 
 

Integrate the gradient of the field 
 

F = -Integrate[grad[Efield]dr, 1, 2] 
∆U = -[E2 – E1] 
∆U = - mg(h2 – h1) 

 
Always check the sign after finding the answer.  Positive work comes from going down 
hill.  There is a benefit from the field, and the internal energy has increased.   
 
A conservative force is involved.  The result of integrating in a loop is zero.  Energy is 
conserved as the object goes through the loop.  The value of the function is the same at 
the start and at the end. 
 
How does the differential become inexact? 
 
A mechanical example can show how a differential becomes inexact. 
 
Missing forces can cause a differential to become inexact.  Imagine a 2-D landscape 
 



 
 
There are no work terms as the object travels up along the far left of the landscape and to 
the right along the top.  Missing a force term makes the differential inexact. 
 
An inexact differential is δW.  If the differential is of a function, but there is a missing 
part, (in the case above, y) then the function is not regained upon differentiation.  The 
energy exchange is missing flow. 
 
Consider the differential below 
 

dU = δW + δQ 
 

This is an exact differential.  Integrate around the loop and the same energy is returned. 
 
Heat Flow 
 
It is hard to measure heat flow.  People working with heat flow didn’t know it was energy 
flow, not mass flow.  Experimentally verifying this is not trivial.  Joule and Kelvin were 
involved, and Joule designed the paddle experiment. 
 
Work and Heat 
 
Work and heat are descriptions of flow of energy.  Heat and work are ways to exchange 
energy.  Look at the water balance of a lake.  There are different flows, but the water that 
is the lake is considered water and not named by what is was before entering the lake.  
For instance, there is no distinction between stream water and rain water. 
 
First Law 
 
The first law is written below 
 

dU = δW + δQ 
dU = δW + Sum[Yi, dXi] 



 
Types of processes 
 
Consider three types of processes 
 

1) Discontinuous 
2) Continuous, quasi-static, irreversible 
3) Continuous, quasi-static, reversible 

 
1) In a discontinuous process, a state function cannot be defined.  The process is 
discontinuous in thermodynamic quantities.  Consider an explosion. 
 

 
 
2) A continuous process is slow enough that variables are defined.  Consider mixing B 
into a solution of A and B.  The solution is homogeneous after every drop is added.  The 
system is not in equilibrium with what is driving the change.  When adding salt to water, 
the salt is only at equilibrium with the solution when the solution is at the solubility limit.  
The system in this case is not in equilibrium with the environment along the path. 
 

 
 



3) In the third type of process, the system is in equilibrium with the environment along 
the path from 1 to 2. 
 
There are subtleties in the classification scheme.  As problems are worked, it is apparent 
that a division is distinguishable only with drawn boundaries.  The type of process is 
dependent on where the process is drawn.  For the system, there is no difference between 
state 2 and 3.  The same set of points are traversed.  There is a difference in the 
environment.  In the second process type, there is more energy dissipated to the 
environment. 
  
 

 
 
 
 

 
 

 


