
3.23 Lecture 4 
 

It’s easy to look at solutions and understand, but the question is whether I would have 
gotten the solution.  The hard part is making an abstraction and turning it into math.  
Solutions can be 3 - 4 lines.  There are many different solutions. 
 
Today we review ideal gases.  Thermodynamics is applied to ideal gases. 
 
Expansion in tire 
 
Consider the reversible adiabatic expansion of air in a tire.  There is expansion across the 
valve.  The pressure is higher outside.  It is an irreversible expansion. 
 
The constraint imposed is that the expansion is adiabatic.  Consider applying work to a 
gas in an insulated cylinder.  The temperature can change, but Q = 0. 
 

 
Relate this condition to variables we want to study.  From the 1st law, dU = δW + δQ 
 

nCVdT = -pdV 
 

The differential equation explains the process.  Do mathematical manipulations to obtain 
the expression below 

 
(T2 / T1)Cp/R = P2 / P1 

 
Expansion across the valve (Joule-Thompson expansion) 
 
A problem with the expansion across the valve is that the path is not described.  The 
differential is path dependent. 
 



 
 

The possibility of turbulence and other factors means that the integration is not 
permissible. 
 
A strategy when there are changes of state that can’t be tracked is to move up a level.  
Look at work and heat flows at a higher level.  Move boundaries up and look at flow 
across larger boundaries. 
 
Take the valve as a whole as the system.  It is known what happens to the valve.  Stuff 
comes in at a pressure and leaves at a certain pressure.  The valve is neither giving or 
receiving work.  Stuff is flowing in and out.  Work is being delivered across the 
boundary.  There is a pressure pushing the gas in.  This is flow work.  There are mass 
terms in flow work.  The valve gains and loses energy associated with stuff coming in 
and out. 
 
Is there a heat flow?  There is a temperature gradient but we need more data.  Assume 
that there is no heat flow.  The temperature of the air in the tire is changing, so there 
would be heat flow.  Solve the limiting case where there is no heat flow. 
 

∆Uvalve = δW + δQ +  Uinδin – Uoutδout + PinVinδM – PoutVoutδM 
 
The terms Uinδin and Uoutδout are related to the flow of gas in and out. Assume that the 
same amount of gas flows in and out.  There is work pushing the gas in and out. 
 
The last two terms are related to enthalpy.  The input volume is displaced, and there is a 
pressure by which it is moved. 
 
At steady state, ∆Uvalve = 0.  At any time there is the same energy.  This allows us to 
relate the energy of the system entering and leaving.  All properties of the valve are 
removed and the temperatures are related. 
 

Uin+ PinVin = Uout+ PoutVout
Uin - Uout = PinVin - PoutUout

∆U = RTin - RTin 
CV∆T = -R∆T 

∆T = 0 



There are two expansions: the adiabatic expansion in the tire and the expansion across the 
valve.  In the tire, the expanding gas loses energy and the temperature lowers.  In the case 
of valve, there is no loss of energy and no ∆T. 
 
In an adiabatic reversible process, work is released to the environment and there is no 
change in entropy.  In an adiabatic irreversible process, some energy leaves the system, 
and there is a change in entropy. 
 
The change in entropy is not zero.  The change in internal energy is zero and the 
temperature is zero. 
 
Why is the valve process irreversible?  There is no way of giving off work to the 
environment.  When a volume element is enclosed by a balloon, work can be released to 
the environment. In a valve, the volume can’t be displaced.  The work done by the 
expanding gas stays in the valve 
 
Plug in the following values to find temperature T2. 
 
  T1 = 300K 
  P1 = 345 atm 
  T2 = 300 ( 1 / 4.45 ) 8.314 / 33 = 206 K 
  T2  = - 67º C 
 
The temperature is not nearly this cold.  There are irreversibilities, such as heat being 
picked up from the valve. 
 
Consider an enormous mass of gas expanding.  There is nothing next to it to give off 
heat.  Wet air, saturated with moisture, rises at it goes over the mountain.  As it expands, 
there is nothing to give heat off to.  The temperature drops and rain falls out.  As the air 
crosses into Eastern Washington, the air compresses again.  Eastern Washington is a 
desert.  This is an explanation why Utah and Nevada are so dry.  All the moisture left.  
When two saturated air masses with different temperature mix, there is always rain.  This 
is why the world survives. 
 

 

 
 

 



Enthalpy 
 
This is introduced for convenience.  This is a derivative property of materials.  There is 
energy in bringing matter into a system.  There is energy associated with flowing mass. 
 

H = U + PV 
 

Calculate heat flows under constant pressure.  Look at Q under constant P. 
 

dU = δQ + δW 
dU = δQ – pdV 
δQ = dU + pdV 

 
Enthalpy is a state function. 

 
H = U + PV 

dH = dU + pdV + VdP 
dU = δQ – pdV 
dH = δQ + pdV 
(dH)P = (δQ)P 

 
The condition of constant pressure makes dH exact.  The change of enthalpy at constant 
pressure is equal to heat flow.  It is important to know the assumptions.  An assumption is 
that there is only pdV work with not other terms and there is constant pressure.  The 
equations are not true if these assumptions are not true.  Enthalpy is used frequently and 
is tabulated. 
 
For elements in their steady state at 298 K and P = 1 atm, H = 0.  This is just convention.  
In compounds, the energy is given by the formation enthalpy from elements at 298 K, 1 
atm. 
 
Measure heat flow at 298 K, 1 atm.  This would help get ∆H formation of CO2.  When 
finding values, only the end pressure and beginning pressure need to be the same. 
 

C + O2  CO2
 
There is an enormous number of sources of data (google, Kubaschewskit, NIST.gov) 
 
Integrating enthalpy 
 
Enthalpy varies with temperature, and the function H(T) needs to be integrated with 
temperature.   

 
(dH)P = (δQ)P 

(dH)P = nCP(dT)P
 



Divide by (dT)P to get the partial differential. 
 

(dH / dT)P = CP 
 
The slope is the heat capacity. 
 
Graph of Enthalpy 
 

 
 

Enthalpy of phase transitions 
 

 
 

H = U + PV 
∆H = ∆U – ∆PV 

 
Heat has to be put in to do phase transformations.  There are two sources of energy flows.  
A lot of energy is absorbed in bond breaking.  The internal energy term is ∆U.  An extra 
term in macroscopic thermodynamics is p∆V.  Boundaries of the system are displaced. 
 
Estimate p∆V 
 
Imagine a solid to solid transformation.  The molar volume is V, and a good estimate per 
mole for metals is 10 cc.  What is a reasonable value of ∆V? Solids don’t change 
dramatically.  One cubic centimeter per mole is a good estimate 



 
p∆V = 105 Pa (1 atm) 10-6 m3 / mol 

p∆V = 0.1 J / mol 
 

The change in internal energy is on the scale of kJ.  Bonds are on the scale of kJ.  When 
does p∆V become large?  Geologists study systems with large P.  The term p∆V matters 
in the transition from liquid to vapor.  The change in volume is very large. 
 
Heats of phase transformation 
 
Below are empirical rules that work for metals 
 
   ∆Hm (J) = 9 Tm(K)  Richard’s rule 

∆Hevap (J) = 90 Tevap(K) Trouton’s rule 
 
The expressions are in terms of J / mol.  The difference of magnitude between Richard’s 
rule and Trouton’s rule is a statement of entropy.  The entropy (∆Hm / T) is rather 
constant across the periodic table.  Below are typical values of energy associated with 
transitions. 
 
   1 kJ  solid-solid 
   10 kJ  melting 
   100’s kJ evaporation 
 
With stronger bonding, such as in the case of ZrO2, the magnitude of the enthalpy of 
phase transformation is higher.  Enthalpy is useful in calculations of heat and is 
associated with flowing matter.  This is practical in mechanical engineering 
 
Machine 
 
Below is a schematic of a machine 

 
Below is a description of the energy flow in a machine.  The change in internal energy for 
the machine is zero at steady state. 
 

∆Umachine = Q + W + Hin - Hout 



Q + W = Hout - Hin 

 
This last expression is used in almost anything.  In mechanical engineering, this is used to 
describe the energy flow in a refrigerator. 
 
Change of state of a material in terms of thermodynamic equations 
 
Look at the changes of state of a material in terms of the thermodynamic equations.  
Below is an expression relating the input of heat to the change of enthalpy associated 
with evaporating water at constant pressure. 
 

Q = Hfinal - Hinitial 
Q = ∆Hevaporation 

 
The term Hfinal is associated with the final state (vapor) and the term Hinitial is associated 
with the initial state (liquid) 
 
Change of state of a material in terms of a process 
 
Look at evaporation as a process.  Below is a picture of an evaporator. 
 

 
The equation relating work and heat flow to change in enthalpy is  
 

Q + W = Hout - Hin 
 

The work term is zero 
 

Q = Hvapor – Hliquid 

 
There are a variety of types of problems involving simple enthalpy calculations, heat 
capacity, and reaction enthalpy.  The definition of boundaries involve some level of 
abstraction. 
 
 
 



 
2nd law of thermodynamics 
 
This is a very pragmatic law.  It involves the conversion of heat to work.  It was 
developed in the pumping of water out of mines.  It’s a pragmatic law because we know 
how to burn.   
 
In the case of the light bulb, is there more heat or light created?  Ninety percent of the 
work goes to heat.  The system must conserve energy.  The reverse process is allowed but 
does not happen. 
 
 

 
 
Consider the transfer of heat from a hot body to a cool body. 
 

 
QH = -QC 

QH + QC = 0 
-(QH) + (-QC) = 0 

 
The first law is satisfied if the heat flow were to flow in the other direction.  The total 
energy is conserved. 
 
Consider a party boat.   
 



 
 

 
 

 
This boat satisfies the first law but not the second law


