
3.23 Lecture 8 
 

 Last time the first and second law was joined and there was a statement of 
variations in internal energy. 
 

dU = T dS + Sum[yi  dXi] 
 
The internal energy is related to the entropy variation and work terms.  Intensive 
variables are partial derivatives and relate to equations of state. 
 

T = (δU/δS)Xi
Yi =  (δU/δXi)S, Xj≠i

 
Forces are derivatives of energy with respect to displacement. 
 
Equilibrium for isolated systems 
 
The expression dS > 0 can be turned into an equilibrium condition.  Write the variational 
in terms of internal degrees of freedom.  This puts a condition on variables and what you 
get out is that the extensive variable has to be distributed.  The conjugate intensive has to 
be homogeneous.  For example, when charge can move, the potential of the conductor 
has to be the same everywhere.  When the extensive variable flows independently, its 
conjugate intensive is homogeneous.  The mass is extensive and it is the chemical 
potential that is homogeneous at equilibrium.  The chemical potential is a derivative of 
energy. 
 

µi = (δU/δNi) 
 
When there is a couple of flow of variables, the amount of exchange could be linearly 
related. 
 

dXi = -dXII 
 
This leads to a less restrictive condition.  A linear combination of YI and YII is the same 
everywhere at equilibrium. 
 
A couple of flow of variables is easy to implement practically.  Move charged ions across 
a barrier.  The transfer of charge is related to mass flow.  It is the conjugates, chemical 
potential and electrical potential that need to be homogeneous, but not mass or charge. 
 
When charge and heat flow are coupled, it is not the temperature that is homogeneous but 
the combination of temperature and potential.  There are thermoelectric effects, and a 
device can be constructed wherein there is an electric potential under a temperature 
gradient. 
 
 



Energy minimum principle 
 
There has been a discussion involving the entropy maximization principle.  Find 
equilibrium by finding the point of maximum entropy.  The complement to this is the 
energy minimum principle.  Equilibrium can also be achieved by minimizing energy at 
constant entropy; this results in the same state as achieved by maximizing entropy.  There 
is a proof in Callen (p. 132 – 35) 
 
Suppose in a state that S is a maximum for a given value of U = U1.  Suppose that U1 is 
not minimal for that value of S.  What is the implication? 
 
If energy is not a minimum, energy can be extracted while keeping entropy the same.  
Perform work and expel energy somewhere.  That work can be converted into heat and 
fed into the system, resulting in a state with energy, U.  A state with higher entropy was 
produced, which means that the entropy S was not maximal. 
 

 
Look at this graphically.  There is a handout.  Look at the convexity and the derivatives 
δU/δS 
 
We’ve derived equilibrium under discrete conditions but this can be generalized to a 
continuum.  Equilibrium conditions can still be applied to inhomogeneous systems. 
 

 
Define properties and local variables in this region of space. 
 

S = S / V 
U = U / V 
Xi = Xi / V 

 
Find the minimum energy of system and maximum entropy.  The total entropy is 
obtained by integrating 
 

Stot = Intregrate[S(r),r] 
 
Under the constraint of conserved extensive variables, the integral of extensive variable 
densities is equal to a constant. 



 
Xi = Intregrate[Xi (r),r] 

 
Kinetics 
 
Look at how a system gets to its final state by taking the gradient of the expression.  Take 
the gradient of the entropy function.  Look at how fast go up or down the path, and go up 
path of maximum entropy.  The study of kinetics helps show that the system follows the 
steepest path.  From the expression of Stotal, the diffusion equations could be derived.  For 
instance, make the concentration go up the path as fast as possible. 
 
Equilibrium under general conditions 
 
The surroundings are the complement of the system.   
 

 
 
How do extensive quantities change during the evolution of a system?  Consider a system 
that is neither closed nor does it satisfy the conditions of energy or entropy.  Look at a 
larger boundary to satisfy conditions of entropy.  Distill this to the equilibrium condition. 
 
Make the environment large.  If the environment is large, the flow of energy does not 
modulate the temperature of the surroundings. 
 
Write down the first law for the surroundings 
 

∆U* = T* ∆S* + Sum[Yi
*  ∆Xi

*] 
 
This is a bad start.  All the variables are variables of the surroundings.  We need 
evolution laws of the system.  Turn this expression into variables of the system 
 

∆U* = - ∆U
∆U* + ∆U = 0 

 
The sum of the two entropy changes increases 

 
∆S* + ∆S ≥  0 

 
The extensive variables are conserved. 
 

∆U - T* ∆S* + Sum[Yi
*  ∆Xi

*] ≤ 0 



 
This statement is rarely in textbooks.  We want the allowed evolution in terms of changes 
in extensive variables 
 
The system plus the surroundings has to come to internal equilibrium.  Under thermal and 
force equilibrium, the following statements are true. 
 

T* = T 
Yi

* = Y 
 
There is internal equilibrium while the system as a whole still evolves 
 

∆U - T ∆S + Sum[Yi  ∆Xi] ≤ 0 
 

Example of a simple system 
 

dU - T dS + p dV = 0 
 
Weakness of derivation 
 
The statement that ∆Xi

* =- ∆Xi is true for most extensive variables that we know, such as 
the transfer of mass.   In the reaction A + B  AB, there is still a conserved relation.  But 
the magnetic field is problematic.  Electric charge and magnetic field are not 
independent.  One can’t change the magnetic field without changing the current.  It is not 
resolved whether the dipole moment is conserved, but the result derived above still 
works.  An idea is to work with vector potential and derive electrical and magnetic 
behavior, but we are not doing electromagnetism. 
 
Specific conditions 
 

1) isolated system 
 

dU = dV = 0  dS ≥ 0 
 
This last expression is related to the second law. 
 

2) mechanical system 
 
Entropy doesn’t change.  There are no work interaction forces and no displacements at 
equilibrium.  Define energy as a potential, and minimize the energy. 
 

dU ≤ 0 
 



 
3) Isentropic isobaric 

 
Work is exchanged with the environment. 
 

dU – pdV ≤ 0 
 
This is done under constant pressure.  Enthalpy is defined as 
 

H = U + PV 
 
Energy and work terms produce enthalpy. 
 

4) Isothermal and isobaric ( U = constant) 
 
There are no work exchanges and no work flows with the environment.   
 

dU – TdS ≤ 0 
 
At constant temperature, the expression below is true. 
 

d(U – TS) ≤ 0 
 

5) Isothermal and isobaric 
 

dU – TdS + pdV ≤ 0 
d(U – TS + pV) ≤ 0 

 
This is the Gibbs free energy. 
 
 
What does this mean? 
 
The enthalpy and other functions are thermodynamic potentials.  They are functions that 
are minimized or maximized. 
 
 



Simple example made more complicated 
 

 
 
The ball is in a gravitational field, and there is an upward force on the ball.  The force is  
–kx and the point of zero force is x.  We know how to solve equilibrium. 
 

Usys = -mgx 
 
Write the generalize evolution.  We do not need to minimize the energy of the system but 
rather some other property exchanging with the environment.  Write a combination or 
apply previous equation. 
 

dUsys – T* dS + Yi
*  dXi ≤ 0 

dUsys = -mgdx 
 
There are no entropy exchanges, and the force is –kx.  The displacement is dx.  The 
following expression is true. 
 

-mgdx + kxdx ≤ 0 
 
The variation is kdx 
 

(kx – mg)dx ≤ 0 
 
Equilibrium is achieved when the force of gravity balances the force of the spring. 
 

mg =  kx 
 
Everything should fit in the thermodynamic framework. 
 
Enthalpy 
 

H = U + PV 
 
The system changes volume.  Look for the combination of low energy states and low 
volume states.  At a low volume, the system cannot do much work. 
 
Hemholtz 
 

F = U – TS 



 
The term TS represents the energy in the thermal environment.  It represents the potential 
to remove energy. 
 
Potentials 
 
          Under constant 
   U    S, V 
   H = U + PV   S, P 
   F = U – TS   T, V  
   G = U – TS + PV  T, P 
 
The function U is a natural function of extensive variables only. 
 
Differentials 
 
It’s important to be comfortable with differentials 
 
 

H = U + PV 
dH = dU + PdV + VdP 

dU = TdS – PdV 
dH = TdS + VdP 

 
The variation in H is written in terms of variations of S and P. 
 
 

F = U – TS 
dF = dU – TdS – SdT 

dU = TdS – pdV 
dF = -SdT – pdV 

 
The variations in F is written in terms of variations of T and V. 
 

G = U + PV – TS 
dG = SdT + PdV 
dG = -SdT + VdP 

 
The function G is written in terms of T and P.  What about U, S, and V?  In a simple 
system there is a need for two variables to describe the system.  Pressure and temperature 
are partial derivatives of U.  Plug these in to get a function of S and V.   
 
Everything can be a function of everything, but unless one sticks with the natural 
variables, there is a loss of information. 
 
 



Legedre Transformations 
 
This is a good way to go from functions of extensive variables to conjugate variables.  (p. 
137 Callen) 
 

f(extensive)  f’(intensive) 
f(Xi)  f(Yi) 

 
Write in conjugate intensive in the Legendre transform of U.  Legendre transforms 
involve subtracting a conjugate pair 
 

U(S, Xi) – Yi Xi 
 

Do this for multiple conjugate pairs and combine Legendre transforms. 
 

f(S, Xj≠I, Yi)  f(S, Sum[X], Sum[Y]) 
 

An example of a Legendre transform is to go from a function of S and U to a function of 
T and V.   
 
If all one wanted were a function of different variables, why not solve the equation of 
state and plug in?  The Legendre transform is the only way to preserve all the 
information.  Consider the graph below of internal energy, a function of extensive 
variables. 
 

 
 
It’s easy to go from U(x) to U’(Y), where Y is the conjugate to X, but it is impossible to go 
from U’(Y) to U(x). 
 

Y = δU / δX 
 
Solve Y(x) for X and to create X(y).  Plug this expression into the function U(x) to find 
U’(Y).  This is conceptually no problem, but there is a loss of information.  When going 



from U’(Y) to U(x), there is a need to solve an equation of δU / δX, for U = U’(δU / δX).  
When solving the differential equation, there is an unknown integration constant.  When 
working with multivariable equations, there could be an unknown function that results.  
The difficulty of transforming the function from U’(Y) to U(x) is shown graphically. 
 

 
 
All these curves are translated and show the same relation of slope as a function of x.  
The relation of the local derivative and U is the same.  They are translated by an 
integration constant. 
 

U(Y) = U’(δU / δX) 
 

How do you transform without losing information? 
 
It’s possible to transform functions and write anything in terms of anything, but there 
may be a loss of information.  Knowing the value of the intercept of the function 
preserves information.  It specifies the curve.  The slope of the curve is δU / δX.  Multiply 
by X to get the Legendre transform. 
 

U – (δU / δX) X = U – Y X 
 

 
 
 



Summary 
 

1) The Legendre transform gives new function with some extensive variables 
replaced by intensive variables 

2) If the energy is known as a function of extensive variables, everything is known.  
A function that has underwent a Legendre transformation contains the same 
information as the original function.   

3) Different potential functions are minimized.  The list of constraints is imposed by 
the environment, and the potential is in terms of natural variables.  Internal 
variations are possible when there is an exchange with the environment.  In the 
case of internal energy, there are variations of S and V.  A way to optimize U is to 
write internal variations of the system that keep the total entropy and volume 
constant. 

 
U(S, V) 

dU = TdS – pdV 


