# Millstone Hill experiment choices ISR School 2022 

## 67 meter zenith antenna 46 meter fully steerable antenna



Geodetic Latitude: $42.61^{\circ}$
Geodetic Longitude: $288.51^{\circ}$
(WGS-84)

## Experiment Type A: Rapid Regional

Vertical profiles [zenith; 2 minutes], fixed pointing to the northwest [MISA; 2 minutes]

Fixed: Azimuth -45 deg / Elevation 45 deg
E, F region ionosphere
F2 peak high accuracy Langmuir mode electron density available (Daytime only)

Experiment cycle time $=\sim 4.5$ minutes



## Plus



Zenith: 2 minutes
MISA northwest: 2 minutes

## Things to see with Experiment Type A



- Mid-latitude dynamics
- Nighttime [e-] behavior
- Sunrise, sunset effects
- Mid latitude traveling ionospheric disturbances
- Plasma line F2 peak variations [NB: DAYTIME ONLY]
- Ion line F region altitude variations
- Altitude variations in peak height
- Relation to ion velocity dynamics
- High time resolution mid-latitude spatial gradients in scalar parameters at two points
- [e-], Te, Ti
- What scale sizes?
- E region ionospheric profiles (using zenith data) and how they differ from F region profiles


## Experiment Type B: Regional Vector

Vertical profiles [zenith], regional measurements [45 deg elevation]

Azimuths $=[-25,-70]$ deg
E, F region ionosphere
F2 peak high accuracy Langmuir mode electron density available
(NB: daytime only)
Experiment cycle time $=\sim 13$ minutes


Plus


## Things to see with Experiment Type B



- Mid-latitude vector ion velocities
- How good are they with two positions separated by only 45 deg?
- E vs F region vector ion velocities
- Comparison to neutral winds
- Millstone Hill has an on-site Fabry-Perot interferometer, measuring winds directly at night. .
- Relation between ion drifts and F region density variations
- Ion line profiles
- Plasma line F2 peak parameters [NB: DAYTIME ONLY]
- Careful: lower [e-] = noisier velocities


## Experiment Type C: Limited Wide Reach NW Scan

Vertical profiles [zenith; 3 min ]
+
CW, CCW azimuth scans [MISA; ~6.5 min / scan]:
6 Deg Elevation
-25 to -70 deg Azimuth
'Windshield Wiper' mode (CW, then CCW, then CW..)

Zenith profiles taken at end of each scan
E, F region ionosphere local to Millstone and wide reach F region structure

Local F2 peak high accuracy Langmuir mode electron density available (Daytime only)

Experiment cycle time $=\sim 20$ minutes



## Things to see with Experiment Type C



- Local vs. wide field conditions to the NW
- Millstone vertical is farther away from high latitude boundaries
- Quiet vs. disturbed time behavior
- Sub-auroral polarization stream (SAPS)
- Disturbance time
- High velocity
- At equatorward boundary of high latitude convection pattern
- Storm-enhanced density (SED)
- Disturbance time
- Enhanced [e-]
- At equatorward boundary of high latitude convection pattern
- Spatial gradients in [e-], etc.
- Scale size range?
- Amplitude?
- How does it relate to geophysical boundaries?


## Experiment Time Windows Available

Millstone Hill will be running continuously
Start: 10 LT 2022-07-18
Stop: >08 LT 2022-07-19

## Procedure:

- Each student group selects one 2-hour block
- First come first serve for a particular block
- When a student group is not running an experiment, radar defaults to a 'background mode' (Type A) and continues operations


## Available Blocks: (UT = LT + 4 hours)

- 16-18 LT
- 00-02 LT
- 18-20 LT
- 02-04 LT
- 20-22 LT
- 04-06 LT
- 22-24 LT • 06-08 LT


