
Draft: Integration Coordination
A manual for Departmental Software Platforms and Services (DSPS)

Infrastructure Software Development and Architecture (ISDA), IS&T, MIT

Document Summary
This manual describes policies and recommendations regarding the management of application
platforms by DSPS in ISDA. This will include the management of all assets required to
reproduce and run server applications, such as source code, configuration, and procedures for
release to production support.

This document is used to instruct work and audit service levels.

Table of Contents
Draft: Integration Coordination...1

Document Summary...1
Revision History..1

Incident and Problem Management..3
When in Doubt, Email isda-support@mit.edu..3
Support for Internal IS&T Technical Teams...3
Issue Response Playbook...3

Change Management...6
Requesting a Planned Production Change...6
Pipeline Planning..6
Complete Contact List...6
Request-Tracker Queues...6

Release Management...7
Release Schedules..7
Release Workflow ...7
System Access Rules...7
Application-Server Installation Standards...8
Source Control Management...8

Configuration Management ...11
Definitive Software Libraries (DSL)..11
Installation Guidelines..11
Versioning Radmind Loadsets...12

Service Continuity and Availability...14
Bibliography..15

Revision History
11/05/08 Steve Landry Added Problem-Resolution

1

and triage process. Added
configuration-managment
versioning.

10/30/08 Steve Landry Updated configuration
management information.

10/06/08 Steve Landry Added information on support
requests, email and ACL, RT
queues.

09/07/08 Steve Landry Changed installation
procedures. Added Pipeline
process information.

08/29/08 Steve Landry Additions about managing
acess-control lists

08/25/08 Steve Landry Source-Control policies

2

Incident and Problem Management
This section tells you how to get application-management support from ISDA for problems
with production services.

When in Doubt, Email isda-support@mit.edu
Customers external to IS&T should use isda-support@mit.edu to ask for help. Business-
support personnel in ISDA receive these messages and track them in the Request Tracker (RT)
queue ISDA::Customer-Support.

When a customer’s problem requires technical resolution, the support ticket must be
transferred or copied by ISDA customer support to the RT queue ISDA::ProductionDefect.
The business-support person must also email map-support@mit.edu. This process should
remain invisible to the external customer.

Support for Internal IS&T Technical Teams
IS&T staff who know they specifically require technical support for systems managed by DSPS
can submit requests directly to map-support@mit.edu. DSPS tracks production problems in
the RT queue ISDA::ProductionDefect.

Issue Response Playbook
DSPS team members should consult this playbook every time they participate in problem-
resolution activity on behalf of ISDA.

Issue Definition

1. Our primary point of contact for support issues is the map-support@mit.edu mailing
list. All system integrators in DSPS monitor this mailing list and the
ISDA::ProductionDefect queue in RT.

1. DSPS team members translate map-support emails into into RT tickets manually,
in order to establish some clarity around the issue.

2. If someone makes a support request through another channel, we email the issue
to map-support and file it in RT or Jira.

3. Automated responses from monitoring software come through to map-
support@mit.edu, where they can be monitored and forwarded to the RT queue
if necessary.

2. All team members in an systems integration role who are on the floor must meet to discuss
the issue. A person is selected to lead the resolution.

1. If possible, include non-DSPS staff in the discussion who are assigned to, or
conversant with, the system in question.

3

3. The Tech Lead responds to the initiators of the message, alerting those parties that
resolution is underway.

4. The Tech Lead must define the type of issue and then proceed accordingly.
1. Urgent Response: A system, whether that is a whole server or a particular

application, is unresponsive.
2. Bug Report: An application is not doing the right thing in some particular case,

but it is not generally broken; a system is not down.
3. Both kinds of issues are priority #1. It is acceptable for all other responsibilities

to be on hold until resolution (system down) or handoff (bug report).

Urgent Response (Problem Resolution)

1. For an unresponsive component, the team responsible for operating the system should
attempt a restart of the server, application, or component evidencing the problem.1

1. Someone familiar with the system must check to see if restart procedures
occurred and if that temporarily resolved the problem.

2. Notification: preliminary problem description (and resolution, if applicable) sent to
Recipient List:

1. initiator of problem ticket, isda-pipeline@mit.edu, isda-integrators@mit.edu,
map-support@mit.edu, and, if any end-user applications could have been
affected, computing-help@mit.edu.

3. The Tech Lead must triage the process of determining causality of the issue with staff
familiar with the system.

4. SCRUM: No resolution work should proceed until SCRUM is performed with available
resources to discuss process and possible resolutions.

1. Tech Lead is project manager for duration of issue resolution. Tech Lead is final
arbiter for delegation of tasks, priorities, and timing.

5. Notification: If resolution is lengthy, Tech Lead will update Recipient List at least once
per day of status of resolution.

6. Post Mortem: Tech Lead reviews response with DSPS manager. If emergency response
offers the opportunity for improvement of process, Tech Lead calls a post-mortem with
parties who participated in the resolution.

Bug Reports-Handoff (Change Management)

1. Tech Lead notifies a team leader or manager responsible for each tier of the system
affected.

1. Tech Lead collects information from managers on which mail lists to send
notification of issue. This is the Recipient List for this issue. Note it in the ticket.

1 This playbook was designed in house and it is not backed up by research into industry-standard practices. Of
note, current thinking on catching fragile parts of the system dictates that the operator should not
automatically restart a service before determining causality.

4

2. Tech Lead and managers determine staff members responsible for issue. This is
the Team.

2. Tech Lead sends message to Recipient List notifying them of the issue.

3. Contact the Team and do preliminary troubleshooting to determine the nature of the
issue and, therefore, the staff responsible to remedy the issue.

4. Transfer ticket information to system of record for the issue resolvers.

5. Notify the Recipient List of the transfer and the managers now responsible for the issue.

5

Change Management

Requesting a Planned Production Change
Please send deployment requests to map-support@mit.edu. DSPS will track production
deployments in the RT queue ISDA::ProductionDeploy. These should have gone through the
pipeline-planning process (see below).

Pipeline Planning
ISDA processes change requests through the ISDA Pipeline Planning process. ISDA
management chooses the members of this group. All tasks related to new systems
implementations, enhancement, or long-term issue resolution come through this group. You
can reach this group at isda-pipeline@mit.edu.

RT tickets or full Daptiv project will be created to manage work internally.

Complete Contact List
isda-support@mit.edu: Primary list for customers outside of IS&T to request help and
support.

map-support: List to submit requests for support directly to DSPS by internal IS&T teams.
We manually create tickets for these requests into the appropriate ISDA support queue.

amit-auto-deploy@mit.edu: Email sent to AMIT via the ISDA::ProductionDeploy queue or
tickets forwarded from ISDA::Customer-Support.

amit-auto-defect@mit.edu: Email sent to AMIT via the ISDA::ProductionDefect queue or
tickets forwarded from ISDA::Customer-Support.

amit@mit.edu: Master member list for the Application Management and Integration Team,
used for internal team email and access-controls. This list will always be an accurate
representation of the system integrators currently in DSPS.

Request-Tracker Queues
ISDA::Customer-Support: ISDA’s general customer-support queue.

ISDA::Admin: Work orders for any non-production application or system-integration work by
AMIT.

ISDA::ProductionDefect: Specifically and only for tracking triage, troubleshooting, and
resolution of problems with production enterprise services.

ISDA::ProductionDeploy: Specifically and only for tracking deployments to production
enterprise services.

6

Release Management
You can request a release through map-support@mit.edu. See Change Management, above.

All systems are prepared as if they will be rolled out to data-center operations for production
support. The reality is that DSPS supports some of its own production systems but formal
release to Operations of all ISDA enterprise services is our ideal end state. Discipline in release
management is guided by this principle.

Release Schedules
Productive Systems (staging or production): Release is variable. ISDA project coordinators
negotiate a release window by coordinating with Pipeline, the project team, and the operational
team responsible for the given system. This holds for systems defined as either “staging” or
“production.”

Non-Productive Systems (prototype, development, test): Systems are installed in such a
way that implementation teams should have full access to system configurations they need to
modify. This is not accomplished by full root or full admin access. If permissions are not
sufficient, coordinate change requests through Pipeline.

Release Workflow
1. All services have four tiers: DEV, TEST, STAGE, PROD. Temporary prototype

environments are available upon request.

2. Each tier of the service might have more than one machine in its topology to distribute
load or for redundancy, but there are four “tiers” of release workflow regardless of
service topology.

3. Development teams cannot access “stage” systems directly. A release must be bundled
and tested for clean installation or patch onto staging by DSPS system integrators
using standardized configurations whenever possible.

4. DSPS vets the installation for operational soundness. A successful installation or patch
onto a staging environment results in a set of radmind loadsets used to release the
service to production.

1. This assures that a service can be rolled out to data-center operators and that those
operators always have access to a last-known-good build of the service.

System Access Rules
Constraints on system access are designed to force a hand-off of installation and configuration,
in order to evaluate installation procedures as operationally sound prior to release to data-
center operators. We call this “vetting the run book.”

7

● Only System Integrators in DSPS and System Operators in OIS have root access to any
server. Only Only System Integrators in DSPS and System Operators in OIS have
interactive shell access to “staging” or “production” systems.

● System integrators perform all configurations and deployments to any staging
environment in order to derive a reproducible build process for rollout to production
systems managed by OIS.

● Application administrators responsible for provisioning can have access to web-
administration consoles in production environments for their products.

● All developers can have shell access to prototype, development, and test machines as
users other than root.

● All developers can have access to any machine they support as the “logs” user, which
will allow them read-only access to certain parts of the system.

We create standard system-level users on every machine: db, logs, repos, and www.

● Server applications run as these users, and not as root, for security reasons.
● Developers can use these accounts to access machines, since they cannot have root

access.

The purpose of each account is as follows:

● "db" for MySQL or other database installations
● "logs" is to give developers read access to logs on staging or production servers.
● "repos" for Alfresco and other CMS installation
● "www" for Apache, Tomcat, and all other web-application server components

Application-Server Installation Standards
DSPS supports a menu of standard application-server components. We can redeploy these
packages in any combination to provide a new project with a standardized platform upon which
to build.

General Java Application Servers PHP Application Servers

VMware
Red Hat Enterprise Linux 5.x
Apache 2.2.x
MySQL 5.x
OpenSSL
Shibboleth

Development Environments
Only: sFTP

Java Runtime Environment,
Java Development Kit,
versions 1.6.x
SASHServer (SourceLabs
Tomcat, based on 5.5.x)
Tomcat 5.5.x

PHP 5.2.x
PEAR

Source Control Management
We assume the use of Subversion as provided by IS&T via the enterprise installation at
svn.mit.edu. This rules will update as the capabilities of that system change. DSPS only has

8

rules for tagging test releases and branching production releases. We do not plan to burden
development teams with comprehensive source-control standard operating procedures.

Access Control, Separate ACL from Email

Our Subversion installation is integrated with Moira; access control lists are stored created in
Moira. Subversion’s ability to send email notifications is also stored in Moira.

 1. Always use a separate Moira lists for repository access control versus email notification.

 a) Do not define the ACL as usable as an email list.

 b) Do not define the email list as usable for access control.

 c) The ACL can be the same as one used to control access to AFS lockers, remember that
this list’s membership should not spread past the project team or people to whom they
report.

 d) This email list is separate and discrete from human-to-human mail lists for projects. Not
everyone on a project needs to be alerted about source-control updates. This is optional.

Directory Structure

Conceptual [product]/[service]/[versioning]/[component]

Pseudo [svn repos]/[top-level]/”trunk,” “tags,” or “branches”/[IDE Project or deployable unit]

Product: The arch, meta-project, brand, or other executive concept. This should not be a team
or organizational unit.

Service: That which is useful, runs, or operates as a whole, a conceptual piece of an overall
product that you are likely to manage as a coherent project.

Versioning: The standard SVN directories of “trunk,” “tags,” or “branches” denoting the
primary version-control function of SVN.

Component: A collection of code that compiles as a single deployable unit (a war file, tarball),
that which functions well as an IDE project, or both.

Example

We’ll use a fictionalized multicomponent web service as an example.

MitWebServices

GroupManager

trunk

GroupManagerWS

GroupManagerService

9

GroupManagerJNI

GroupManagerJMX

tags

Release- 0.1.1-20101104

Release- 0.2.0-20101104

branches

JohnDoesPrototype

PROD-0.1.1-20101104

CommonWsLibs

AnotherService

SomeoneElsesRepos

By this strategy, you end up with a GroupManager source tree where the web service,
underlying libraries, and instrumentation code are all managed and versioned together even
thought they have different deployment paths.

You alse end up with a top-level repository that is used to manage the whole “product,” which
can be vague but a meaningful categorization when projects change hands.

The content of the GroupManager sub-tree contains only that which is local to operating that
particular service, but shared or dependent within that service. CommonWSLibs are tools
shared and common to the overall MITWebServices product, like AnotherService.

Tagging for Release

Under “tags,” Version Capture

“Release”-[version number]-yyyymmdd

We do not specify any particular scheme for version numbers. Products, projects, and
technology are too varied.

When you are done unit testing and prepared to move a service to a test system, tag that
service directory as a “Release,” including your local version number and date.

Under “branches,” Production Support

Once the tagged release is approved for production deployment, branch it to a production release
in the form:

“PROD”-[version number]-yyyymmdd

Again, discrete version numbers are up to the project team. Leave them out of the name if you
are not using them or tracking by date.

10

Configuration Management

Definitive Software Libraries (DSL)
DSPS tracks configurations of application-server components and configuration information
about our systems in several ways.

amit-dsl AFS Locker

● The amit-dsl AFS locker contains DSPS archives of application installers, deployable
components, reusable integration scripts, and other known good builds of application
code.

● These archives correspond to the standard set of supported application server
components listed in Release Management, above, plus supporting code for integration
into the MIT data center environments.

● The locker also contains a protected archive visible only to DSPS where we keep
licenses, system information, and other protected information about our software.

● The Athena File System is a service provided by OIS. It is replicated and backed up.

Radmind Server, Nebula

● The radmind tool is used to capture software installations with their localized
installation properties and configuration information as loadsets.

● Reusable loadsets (repeatable builds) correspond to reference archives stored in the
amit-dsl locker.

● Instance loadsets correspond to locally developed code or custom configurations of
reusable components.

● The radmind server is a service provided by OIS. It is replicated across datacenters.

Run Books

Run-book documentation for any given system is stored in the ISDA wiki on wikis.mit.edu.

Installation Guidelines
● /usr/local is our preferred location for software installations.

○ Where we use standard packages (RPM), installed software stays in its default
location.

○ Where a particular product encourages a different installation location, we will go
by the project’s recommendation unless experience teaches us otherwise.

11

● /usr/local/src is where we keep packages that were installed locally on the system.

● /usr/local/etc is where we keep properties files and other configuration information for
locally-built applications.

● RPM based installations must use the package that comes with the operating system in
question so as not to corrupt the system’s installation database.

○ When our needs dictate a package newer than the one provided by the OS, we will
produce our own build managed via our own DSL procedures.

Versioning Radmind Loadsets
The easiest way to explain this is with an example. Here is how we versioned Apache:

was-apache-cfg-dev

was-apache-cfg-stable

was-apache-cfg-stale

was-apache-bin-rhel5-current.T (symlink to latest stable build)

was-apache-bin-rhel5-001.001.T (concatenated node builds)

was-apache-bin-rhel5-001.001 (corresponding directory to *.T file)

was-apache-bin-rhel5-001.001-node1.T

was-apache-bin-rhel5-001.001-node1.T (corresponding directory to *.T file)

was-apache-bin-rhel5-001.001-node2.T

was-apache-bin-rhel5-001.001-node1.T (corresponding directory to *.T file)

Component Family was = web application server

Component apache, jdk, php, sashserver

Loadset Type bin, cfg, neg Binary, configuration, or
negative loadset.

OS Compatibility rhel4, rhel5

Versions for “cfg” loadsets dev, stable, stale

Versions for “bin” loadsets xxx.xxx, current (symlink only) The first set of numbers
iterates for major reconfigs,
the second for minor changes
that can be done without
recapturing the loadsets from
a prototype rebuild.

Versions for nodes node A node is a point on the
directory tree. Node build
numbers correspond to what
the build number will be for
the concatenated loadset of

12

all node builds.

13

Service Continuity and Availability
[TBD: This section will include standard system topologies, backup and replication patterns, and other

concerns, most of which are in practice in ISDA today. ed.]

14

Bibliography
Behr, Kevin, Gene Kim, and George Spafford. The Visible Ops Handbook, Implementing ITIL

in 4 Practical and Auditable Steps. Revised 1st Edition. Eugene, OR: ITPI, 2007.
Disaboto, Michael. ITIL Service Management Processes, Third Time’s the Charm. Midvale,

UT: Burton Group, 2007.

15

	Draft: Integration Coordination
	Document Summary
	Revision History

	Incident and Problem Management
	When in Doubt, Email isda-support@mit.edu
	Support for Internal IS&T Technical Teams
	Issue Response Playbook

	Change Management
	Requesting a Planned Production Change
	Pipeline Planning
	Complete Contact List
	Request-Tracker Queues

	Release Management
	Release Schedules
	Release Workflow
	System Access Rules
	Application-Server Installation Standards
	Source Control Management

	Configuration Management
	Definitive Software Libraries (DSL)
	Installation Guidelines
	Versioning Radmind Loadsets

	Service Continuity and Availability
	Bibliography

