Radar Statistics: Lag-Product Estimation

Roger H. Varney

¹Dept. of Atmospheric and Oceanic Sciences University of California, Los Angeles

July, 2023

Covariance Matrix of Voltages

 $\begin{array}{c} V_0 \ V_1 \ V_2 \ V_3 \ V_4 \ V_5 \ V_6 \\ \text{Covariance matrix of voltages has a} \\ \text{particular form} \end{array}$

- Zero for samples more than a pulse length apart.
- conjugate symmetric.
- Lag-product array is the subset of interest.

Lag-Product Array:

$$\begin{split} L_{\ell}^{i} &\equiv \left\langle V_{i-\left\lfloor \frac{\ell}{2} \right\rfloor}^{*} V_{i+\left\lfloor \frac{\ell}{2} \right\rfloor + (\ell \mod 2)} \right\rangle \\ L_{0}^{i} &= \left\langle V_{i}^{*} V_{i} \right\rangle \\ L_{1}^{i} &= \left\langle V_{i}^{*} V_{i+1} \right\rangle \\ L_{2}^{i} &= \left\langle V_{i-1}^{*} V_{i+1} \right\rangle \\ L_{3}^{i} &= \left\langle V_{i-1}^{*} V_{i+2} \right\rangle \\ \text{etc.} \end{split}$$

Interpretation

- *i* is a "range" index
- $\bullet \ \ell$ is the lag index
- Sometimes called the "radar ACF" at range *i* and lag ℓ

This definition

$$L^{i}_{\ell} \equiv \left\langle V^{*}_{i-\left\lfloor \frac{\ell}{2} \right\rfloor} V_{i+\left\lfloor \frac{\ell}{2} \right\rfloor + (\ell \bmod 2)} \right\rangle$$

refers to the *expected value* of the products of samples.

Can be estimated by taking products samples and averaging over many pulses

$$\hat{L}^{i}_{\ell} = \frac{1}{K} \sum_{k=0}^{K-1} V^{*}_{i-\left\lfloor \frac{\ell}{2} \right\rfloor} V_{i+\left\lfloor \frac{\ell}{2} \right\rfloor + (\ell \bmod 2)}$$

By virtue of the central limit theorem, these estimators will be Gaussian random variables with variances that decrease as 1/K (error decreases as $1/\sqrt{K}$).

LPA Estimator from 1 Pulse

Note the Noise ACF has been subtracted before plotting.

LPA Estimator from 16 Pulses

Note the Noise ACF has been subtracted before plotting.

LPA Estimator from 256 Pulses

Note the Noise ACF has been subtracted before plotting.

LPA Estimator from 4096 Pulses

Note the Noise ACF has been subtracted before plotting.

Goal: Map ionospheric physical parameters to the LPA the radar is expected to measure

$$N_e(r), T_e(r), T_i(r), u_{\text{los}}(r) \xrightarrow{\text{Forward Model}} L^i_\ell$$

Components of forward model:

- Physics portion (ISR theory)
- Ingineering portion (Ambiguity function theory)
- Olise background

Physics Portion

ISR theory gives the PSD and ACF of the received voltages as a function of N_e , T_e , T_i , and u_{los} in the overlap volume.

Radar Statistics

Engineering Portion

Information smeared in range over the dark overlap regions.

Measured lag-products:

$$\langle V^*(t_{s1}) V(t_{s2}) \rangle = \int d\tau dr A(r,\tau) W_{t_{s1},t_{s2}}(\tau,r)$$

The measured lag-product is the ACF from the physics portion $A(r, \tau)$ blurred by the **range-lag ambiguity function** $W_{t_{s1},t_{s2}}(\tau,r)$

The ambiguity function is a function of the transmit waveform s(t) and the receiver impulse response h(t)

$$W_{t_s}(t,r) \equiv s\left(t - \frac{2r}{c}\right)h^*(t_s - t)$$
$$W_{t_{s1},t_{s2}}(\tau,r) = \int dt W_{ts2}(t + \tau,r) W_{ts1}^*(t,r)$$

$$\langle V^{*}(t_{s1}) V(t_{s2}) \rangle = \int d\tau dr A(r,\tau) W_{t_{s1},t_{s2}}(\tau,r) + R_{N}(t_{s2}-t_{s1})$$

Measured elements of the LPA are determined by

- Physics of the ionosphere (unknown)
- Engineering details of radar experiment (known)
- ACF of external noise (estimate from long ranges)

Goal of fitting is to go backwards from measurements to parameters determining the physics of the ionosphere.