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Chi-Squared

We can use least-squares to solve inverse problems:

χ2(p) = [y − f (p)]T Σe
−1 [y − f (p)]

where p̂LS are the “best-fit” model parameters, those that minimizes χ2(p)

Great! But:

What are the errors in the fitted
parameters p̂LS?

Is the fit meaningful? Does the
model accurately reproduce the
measurements?
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Error Propagation (e.g. Linear Least-Squares)

For a linear forward model:

y = f (p) + e f (p) = Hp

The Least-Squares solution is:

p̂LS =
[

HTΣ−1
e H

]

−1

HTΣ−1
e y

Given that jointly Gaussian random variables have the following property:

Y = AX ⇒ ΣY = AΣXA
T

it can be shown that:

Σp̂LS
=

[

HTΣ−1
e H

]

−1
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Error Propagation (e.g. Nonlinear Least Squares)

For a non-linear forward model, guess a pi , linearize, and step towards
minimum:

y = f (p) + e f (pi +∆p) ≈ f (pi ) + Ji∆p Ji =
∂f

∂pi

J is known as the Jacobian:
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J is M × N (tall and skinny)

Non-linear fitting process:

iterate until pi+1 = p̂LS: that which
minimizes χ2

The covariance of p̂LS is:

Σp̂LS
=

[

JTΣ−1
e J

]

−1

Note the similarity to the linear case!
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Error Propagation

The covariance of the fitted parameters is the covariance of the input data
propagated through the least-squares operation:

Σp̂LS
=

[

JTΣ−1
e J

]

−1

“Error bars” for fitted parameters:

Assumption: measurement errors are Gaussian distributed with
covariance Σe , denoted N (0,Σe)

The “errors” in the fitted parameters are related to confidence
intervals

Confidence intervals are constructed from Σp̂LS

Σp̂LS
may look reasonable, even if the fit is meaningless
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Constructing Confidence Intervals: From Fitted Covariance

Error bars, δpm, for a fitted parameter can be constructed from the
covariance Σp̂LS

and a ∆χ2:

δpm = ±
√

∆χ2
√

Σmm

The value of ∆χ2 selects the “significance level”:

∆χ2 is found in lookup tables calculated from the CDF of the χ2

distribution

Single parameter fit, N = 1:

a 68% significance: ∆χ2 = 1
a 95.4% significance: ∆χ2 = 4

Two parameter fit, N = 2:

a 68% significance: ∆χ2 = 2.3
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Challenges With Constructing Confidence Intervals
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Validity of Confidence Intervals

Only quantitatively valid when:

measurement errors are Gaussian, and

the model f (p) is linear in for all p, or
measurement errors are small enough that f (p) can be accurate
approximated by a linear model in the region around p

Otherwise, alternative fitting methods are required: Monte Carlo,
Bayesian, etc.
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Goodness of Fit

How do we know if the fit is even meaningful? The standard goodness of
fit test involves computing the “reduced chi-squared”:

χ2
ν = χ2/(m − n + 1)

Then, typically:

χ2
ν ≈ 1: a good fit

χ2
ν << 1: an “over fit”

χ2
ν >> 1: a poor fit

The χ2
ν could also be slightly larger or smaller than 1 depending on how

accurately one is able to estimate the input measurement errors.
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Summary

Now we can answer the question: Are the fitted parameters meaningful?

What is the uncertainty in the fitted parameters?

Error bars correspond to confidence intervals (CI)
CIs are constructed from covariance of the fitted parameters
For a 68% CI, interpretation is: “If we could hypothetically make and
infinite set of new measurements and fit each of those, 68% of the
time the ’true’ value of the parameter would lie within the CI.”

Is the fit good?

Compute the reduced chi-squared
χ2
ν
≈ 1: usually means the model accurately represents the data

All of this error analysis depends on the assumption that
measurement errors are Gaussian distributed with covariance Σe such
that (ym − fm)/σm are N (0, 1)
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