

DZone, Inc. | www.dzone.com

By Michael James

ABOUT SCRUM

S
cr

u
m

w
w

w
.d

zo
n

e.
co

m

G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#50

Scrum

Scrum is a simple management framework for incremental
product development using one or more cross-functional, self-
organizing teams of about seven people each.

Scrum teams use fixed length iterations, called Sprints, typically
two weeks or 30 days long. They attempt to build a potentially
shippable (properly tested) product increment every iteration.

An Alternative to Waterfall
Scrum’s incremental, iterative approach trades the traditional
phases of “waterfall” development for the ability to develop a
subset of high-business value features first, incorporating user
feedback sooner.

Figure 1: Traditional “waterfall” development assumes perfect understanding of
requirements at outset.

Project

Start

Iteration 1

QA / Acceptance

Testing

Design &

Analysis

Implementation & Developer Testing

Evaluation /

Prioritization

Detailed

Requirements

(Deployment)

Iteration

Detail

Iteration 2 Iteration 3 Iteration 4

Project

End

Figure 2: Scrum blends all development activities into every iteration, adapting to
discovered realities at fixed intervals.

Scrum has been used for a variety of products, but has initially
been most popular for software products using object-oriented
technologies. It is particularly suited to high risk endeavors
where traditional efficiency concerns are secondary to the
ability to deliver the right product, or any product, by the
required date.

A Disruptive Framework to Transform Organizations
The reality checks forced by the short feedback loops are
intended to expose dysfunction at the individual, team, and
organizational level. Rather than modify Scrum to mask these
dysfunctions, organizations are encouraged to challenge these

SCRUM ROLES

Product Owner
The Product Owner is the single individual responsible for
return on investment (ROI) of the product development
effort. The Product Owner owns the product vision, constantly
re-prioritizes the Product Backlog, and revises release plan
expectations. The Product Owner is the final arbiter of
requirements questions, including which items are considered
“done” at the Sprint Review Meeting.

Scrum Development Team
The Team is a self-organizing/-managing group of about seven
(give or take two) individuals. While the Team may contain
specialists, collectively it is cross-functional, containing the
range of skills (including testing) which were traditionally
found in different departments. The Team is given autonomy
regarding how to achieve the commitments they’re held
responsible for between the Sprint Planning and Sprint Review
meetings.

A Scrum Development Team is most likely to succeed when
members are co-located in a team room.

Requirements
Analysis

Design

Code

Integration

Test

Deploy

constraints and transform themselves.

Scrum is a framework, not a defined process or methodology.
Scrum provides a simple structure of roles, meetings, rules,
and artifacts1. Scrum teams are responsible for creating and
adapting their processes within this framework. Scrum’s
management practices are similar to those of eXtreme
Programming (XP), but, unlike XP, Scrum does not prescribe
specific engineering practices.

Danube Technologies, Inc.
www.danube.com
+1.503.248.0800

CONTENTS INCLUDE:
n	 About Scrum
n	 Scrum Roles
n	 Scrum Meetings
n	 Scrum Artifacts
n	 Scaling
n	 Related Practices and more...

DZone, Inc. | www.dzone.com

2
Scrum

SCRUM MEETINGS

All Scrum Meetings are facilitated by the ScrumMaster, though
he has no decision-making authority at these meetings.

Sprint Planning

Meeting

Daily Scrum

Sprint Review

Meeting

Sprint

Retrospective

Meeting

Backlog

Refinement

Meeting

Figure 3: Scrum Meetings

Sprint Planning Meeting
Part 1: At the beginning of each iteration, the Product Owner
and Team negotiate which Product Backlog Items the Team
will attempt this Sprint. The Product Owner is responsible for
declaring which items are the most important to the business,
and the Team is responsible for committing to the amount of
work they feel they can accomplish without accruing technical
debt.

Part 2: The Team decomposes the selected Product Backlog
Items into an initial list of Sprint Tasks and makes a final
commitment to do the work. The Product Owner’s full
attendance is often not necessary during Part 2. The maximum
time for planning a 30-day Sprint is 8 hours.

Daily Scrum
Every day, at the same time and place, the Scrum Development
Team members spend 15 minutes reporting to each other.
Each team member reports to the rest of the team what he did
the previous day, what he will do today, and what impediments
he has.

The team will typically examine the current Sprint Task list,
Sprint Burndown Chart, and impediments list.

The Product Owner’s attendance is often not necessary at the
Daily Scrum and may actually impede team self-organization.

Topics that require additional discussion may be handled as
optional sidebars after every team member has reported. It’s a
common practice to stand at this meeting to create a sense of
urgency, so it’s sometimes called the “standup meeting.”

Reporting to an entire team, rather than to a boss, is one of
the new habits Scrum team members learn.

Sprint Review Meeting
At the end of each Sprint execution, the Team demonstrates
the actual working product increment they built to the Product
Owner and other stakeholders. The Product Owner declares
which committed items will be considered “done” according
to the previously negotiated agreement. Incomplete items
are returned to the Product Backlog as candidates for future
Sprints. Feedback from stakeholders is converted to new
Product Backlog Items.

The Sprint Review Meeting is an opportunity to inspect and
adapt the product as it emerges and iteratively refine the
understanding of the requirements. New products, particularly
software products, are hard to visualize in a vacuum. Many
customers need to be able to react to a piece of functioning
software to discover what they actually want.

Sprint Retrospective
At the end of every Sprint, the team meets to reflect on its own
process. They inspect their own behavior and take action to
adapt it for future Sprints. This meeting provides an inspect-
and-adapt mechanism for the team’s process.

Techniques ScrumMasters can use to facilitate retrospectives3
include silent writing, timelines, satisfaction histograms, and
many others. Common topics include: “What went well?”;
“What could be improved?”; “What did we learn?”; “What still
puzzles us?”; “What actions will we take?”

As with the Daily Scrum, the team may choose to invite the
Product Owner. Candid communication will help the team
gain common understanding of multiple perspectives and
come up with actions that will take the team to the next level.

Backlog Refinement Meeting
The team estimates the effort of items in the Product Backlog
so the Product Owner can prioritize them before the next
Sprint Planning Meeting. Large, vague items are split and
clarified. New stories might be written by a subset of the team,
in conjunction with the Product Owner and other stakeholders,
before involving the entire team in estimation.

This meeting lacks an official name, thus may also be called
“Backlog Maintenance,” “Backlog Grooming,” “Backlog
Estimation Meeting,” etc.

ScrumMaster
The ScrumMaster facilitates the Scrum process, keeps the
Scrum artifacts visible, facilitates Team self-organization
(keeping it in the “zone”), helps resolve impediments (at the
team level and organizational level), shields the team from
interference, and advocates improved engineering practices2.

The ScrumMaster does these things (and more) without any
authority on the Team. The ScrumMaster does not make
business decisions or technical decisions, does not commit to
work on behalf of the Team, etc.

DZone, Inc. | www.dzone.com

3
Scrum

Product Backlog Item

Product Backlog Item

Product Backlog Item

Product Backlog Item

Product Backlog Item

Product Backlog Item

Product Backlog Item

Product Backlog Item

Product Backlog Item

Product Backlog Item

Product Backlog Item

Product Backlog Item

Product Backlog Item

High Priority

Low Priority

----------------------- Release Backlog

Product Increment
selected during
Sprint Planning
Meeting

Figure 4: Product Backlog

Product Backlog
 • Force-ranked list of desired functionality
 • Visible to all stakeholders
 • Any stakeholder (including team) can add items
 • Constantly re-prioritized by Product Owner
 • Items at top are more granular than items at bottom
 • Maintained during Backlog Refinement Meeting

Product Backlog Item (PBI)
 • Specifies the WHAT, not the HOW, of a customer-
 centric feature.
 • Often written in “User Story” form
 • Has acceptance criteria (and/or product-wide
 definition of “done”) to prevent technical debt
 • Effort is estimated by Team, ideally in relative units
 (e.g. story points)
 • Business value is estimated by Product Owner

Product Backlog Item

Sprint Task

Sprint Task

Sprint Task

Sprint Task

Sprint Task

Figure 5: Each PBI represents a customer-centric feature, usually requiring
several tasks to achieve definition of done.

Figure 6: Large PBIs (often called “epics”) split into thin vertical feature
slices (“stories”), not horizontal implementation phases, when they rise
toward the top of the Product Backlog.

Figure 7: The Sprint Backlog is often represented on an “information
radiator” such as a physical task board.

Sprint Backlog
 • Committed PBIs negotiated between Team and
 Product Owner during Sprint Planning Meeting
 • Scope Commitment is fixed during Sprint Execution
 • Initial tasks created by Team during Sprint Planning
 Meeting, and expected to change during Sprint
 Execution
 • Visible to Team (primarily)
 • Referenced during Daily Scrum Meeting

Figure 8: The Sprint Backlog may also be represented electronically in a
collaboration tool such as ScrumWorks® Pro. This tool’s electronic task
board mimics the cards of a physical task board.

SCRUM ARTIFACTS

Cut/paste rich
text and graphics

Cut/
paste
plain
text

Cut/
paste

rich text

database
schema

+ Task

+ Task

+ Task

+ Task

+ Task

+ Task

Done

Done

Done

Done

Done

Done

Add SVN revision numbe...
Estimate: 2

Web Client log in with...
Estimate: 1

Add new SWP fields to ...
Done when:
- customer number
- indicate SW edition
- form fields which generate the file
Estimate: 2

Add support "link" to ...
to hardcoded page with customer
number in the url
Estimate: 1

Display # of Licensed ...
Swing client 'About' page
Estimate: 2

Downgrade from SW Pro ...
and re-upgrade from a previous
Pro upgrade.
Estimate: 6

PBIs Tasks / Status

Not Started 7 Tasks Impeded 0 Tasks 9 Tasks 57 TasksIn Progress Done

Fix It

Hrs: 0 Kevin Hobbs

Do It

Hrs: 0 Zoltan Szugyi

Do It

Hrs: 0 Victor Szalvay

Do It

Hrs: 0 Kevin Hobbs

Test throughly

Hrs: 0 Kelly Louie

Do It

Hrs: 0 Eric Barendt

Installer should downg...

Hrs: 0 Eric Barendt

Did we remove columns ...

Hrs: 0 Eric Barendt

Add customer number, e...

Hrs: 0 Eric Barendt

Update license generators

Hrs: 0 Eric Barendt

Nice error messages

Hrs: 0 Eric Barendt

Inform user when SWBas...

Hrs: 0 Eric Barendt

DZone, Inc. | www.dzone.com

4
Scrum

Sprint Task
 • Specifies “how” to achieve the PBIs’ “what”
 • About one day or less of work
 • Remainig effort re-estimated daily, typically in hours
 • Task point person volunteers to see that it gets done,
 but commitment is owned by entire team and
 collaboration is expected

Figure 9: Sprint Burndown Chart

Sprint Burndown Chart
 • Total remaining team task hours within one Sprint
 • Re-estimated daily, thus may go up before going
 down
 • Intended to facilitate team self-organization, not a
 management report
 • Fancy variations, such as itemizing by point person,
 tend to reduce effectiveness at encouraging
 collaboration

Figure 10: A Release Burndown Chart variation popularized by Mike Cohn4.
The red line tracks PBIs completed over time (velocity), while the blue line
tracks new PBIs added (new scope discovery). The intersection projects
release completion date from empirical data5.

Product/Release Burndown Chart
 • Tracks remaining Product Backlog effort from one
 Sprint to the next
 • May use relative units such as “Story Points” for Y axis
 • Depicts empirical trends, introducing reality check to
 Product Owner’s release plan

SCALING

Scrum addresses uncertain requirements and technology
risks by grouping people from multiple disciplines into one
team, ideally in one team room, to maximize communication
bandwidth, visibility, and trust.

When requirements are uncertain and technology risks are
high, adding too many people makes things worse.

Traditional practices of grouping people by specialty or
architectural component can also make things worse. Typical

Figure 11: Communicaton pathways increase exponentially with team size

User Interface Layer

Business Logic Layer

Persistence Layer

Team 1

informal
working
group

Team 2 Team 3

Figure 12: Cross-functional teams organized around related features.

RELATED PRACTICES

Scrum is a general management framework coinciding with
the agile movement in software development, which is partly
inspired by Lean manufacturing approaches such as the Toyota
Production System. Scrum has been popularized by people
like Ken Schwaber, organizations like the Scrum Alliance, and
companies like Danube Technologies, Inc.

Unlike eXtreme Programming (XP), Scrum does not prescribe
specific engineering practices.

Rather than get all aspects of a component working first, a
feature team focuses on thin user-centric slices of functionality
that cut through multiple architectural layers or physical
components.

Since multiple feature teams risk stepping on each other’s
work, it’s wise to get practices of continuous integration
(with robust test coverage enforced through a product-wide
definition of “done”) established by one feature team before
adding other teams.

Multiple teams coordinate with each other in a variety of ways,
including sending delegates to each other’s meetings or to
central “Scrum of Scrums” meetings. Individuals working on
particular components may form informal working groups with
their counterparts on other feature teams. They are primarily
responsible to their feature teams, however.

Organizations seeking to scale Scrum are advised to pursue
training, coaching, and to examine previous case studies.

problems include messy team interdependencies, late
discovery of integration risks (being “90% done 50% of the
time”), and poor alignment of effort with business value.

A more successful approach has been fully cross-functional
“feature teams,” able to operate at all layers of the
architecture, and across components if necessary6.

250

200

150

100

50

0
24-Jul 26-Jul 28-Jul 30-Jul 1-Aug 3-Aug 5-Aug 7-Aug 9-Aug 11-Aug 13-Aug

Effort Remaining Backlog w/ unestimated items Velocity Trendline Work Added/Removed Trendline New Baseline

Acme Rocket Sled Enhanced Product Burndown
Projected completion in 1 - 5 sprints

0

E
ffo

rt
 u

ni
ts

: s
to

ry
 p

oi
nt

s

400

300

200

100

-100

-200

-300

-400

-500

Sprint -- Average Velocity: 47.36 story points/sprint
1 2 3 4 5 6 7 8 9 10 11 (12) (13) (14) (15) (16) (17)

7/
5/

06

7/
21

/0
6

8/
14

/0
6

8/
29

/0
6

9/
14

/0
6

9/
29

/0
6

10
/1

7/
06

11
/2

/0
6

11
/1

9/
06

12
/4

/0
6

12
/1

8/
06

1/
1/

07

DZone, Inc. | www.dzone.com

5
Scrum

Figure 13: The green line represents the general goal of agile methods.
Doing Scrum properly entails incrementally improving the definition of
“done” to prevent technical debt. 7

WHEN IS SCRUM APPROPRIATE?

Defined Processes vs. an Empirical Framework
Teams applying Scrum rigorously (as intended by this author)
may find themselves questioning traditional “best practices.”

The expectation of a working product demonstrated early and
often, combined with frequent retrospection, leads teams to
challenge assumptions from respected sources such as the
Project Management Institute’s Project Management Book of
Knowledge (PMBOK®) Guide, existing waterfall habits, and
more prescriptive processes for iterative development such as
IBM’s Rational Unified Process (RUP). Scrum teams may even
question agile practices such as eXtreme Programming (XP).

Robust “done”

Waterfall

Weak “done”

=Technical
 debt

Time

R
u
n
n
in

g
 (

a
n
d
 T

e
s
te

d
)

F
e
a
tu

re
s

Scrum focuses on incrementally improving the definition
of “done” (particularly around testing) before work is
demonstrated. This can motivate the team to adopt
engineering practices associated with XP and now proven to
reduce technical debt: Continuous Integration (continuous
automated testing), Test Driven Development (TDD), constant
refactoring, pair programming, frequent checkins, etc.

1

C
h
ao
tic

P
red
ictab
le

A
n
arch
y

Requirements

T
e
c
h
n
o
lo

g
y

known

k
n
o
w
n

u
n
k
n
o
w
n

unknown

It is typical to adopt the defined (theoretical)
modeling approach when the underlying
mechanisms by which a process operates are
reasonably well understood.

When the process
is too complicated
for the defined
approach, the
empirical
approach is the
appropriate
choice.

Figure 14: Scrum is intended for the green space labeled as “Chaotic”
above. 8 9

The disruption of introducing Scrum is not always advisable
when defined processes could meet the needs. Ken Schwaber
has said, “If waterfall suits current needs, continue using
it.” Consider whether the underlying mechanisms are well
understood. Scrum was not originally intended for repeatable
types of production and services.

Scrum is intended for the kinds of work defined processes have
often failed to manage: uncertain requirements combined
with unpredictable technology implementation risks. These
conditions usually exist during new product development.

Challenges and Opportunities of Team Self-Organization
This author has seen self-organizing teams radically outperform
larger, more experienced, traditionally managed teams. Family-
sized groups naturally self-organize when they are committed
to clear, short-term goals, all members can gauge the
group’s progress, and all members can observe each other’s
contribution.

Psychologist Bruce Tuckman describes stages of group
development as “forming, storming, norming, performing.”10
Optimal self-organization takes time, introducing a reasonable
risk the team will perform worse during early iterations than it
might have as a traditionally managed working group.

Research suggests heterogeneous teams outperform
homogeneous teams when doing complex work, and they
experience more conflict11. Disagreements are to be expected
on a motivated team -- team performance will be determined
by how well the team handles these conflicts.

“Bad apple theory” suggests a single negative individual
(“withholding effort from the group, expressing negative
affect, or violating important interpersonal norms”12) can
disproportionately reduce performance of an entire group.
Such individuals are rare, but their impact is magnified by a
team’s reluctance to remove them. This can be partly mitigated
by giving teams greater influence over who joins them.

Other individuals who underperform in a boss/worker situation
(due to being under-challenged or micromanaged) will shine
on a Scrum team.

Self-organization is hampered by conditions such as
geographic distribution, boss/worker dynamics, part-time
team members, and interruptions unrelated to sprint goals.
Most teams will benefit from a full-time ScrumMaster, whose
responsibilities include helping mitigate these kinds of
impediments.

Scrum is mainly an oral tradition conveyed through Certified
ScrumMaster (CSM) courses. These are typically two-day
events led by trainers who have been vetted by the Scrum
Alliance13. The CSM credential does not prove proficiency.
It is intended as a stepping stone toward Certified Scrum
Practitioner (CSP), an indication of at least one year of
experience doing Scrum. The Scrum Alliance also certifies
Scrum Product Owners, coaches, and trainers.

SCRUM EDUCATION AND CERTIFICATES

Design Patterns

By Jason McDonald

CONTENTS INCLUDE:

n	 Chain of Responsibility

n	 Command

n	 Interpreter

n	 Iterator

n	 Mediator

n	 Observer

n	 Template Method and more...

DZone, Inc. | w
ww.dzone.com

D
es

ig
n

Pa
tt

er
ns

 w

w
w

.d
zo

ne
.c

om

 G
et

 M
o

re
 R

ef
ca

rz
!

V
is

it
 r

ef
ca

rd
z.

co
m

#8

Brought to you by...

Inspired

by the

GoF

Bestseller

This Design Patterns refcard provides a quick reference to the

original 23 Gang of Four (GoF) design patterns, as listed in

the book Design Patterns: Elements of Reusable Object-

Oriented Software. Each pattern includes class diagrams,

explanation, usage information, and a real world example.

Chain of Responsibility
, continued

Object Scope: Deals with object relationships that can

be changed at runtime.

Class S
cope: Deals with class relationships that can be

changed at compile time.

C Abstract Factory

S Adapter

S Bridge

C Builder

B Chain of

Responsibility

B Command

S Composite

S Decorator

S Facade

C Factory Method

S Flyweight

B Interpreter

B Iterator

B Mediator

B Memento

C Prototype

S Proxy

B Observer

C Singleton

B State

B Strategy

B Template Method

B Visito
r

ABOUT DESIGN PATTERNS

Creational Patterns: U
sed to construct objects such

that they can be decoupled from their im
plementing

system.

Structural Patterns: U
sed to form large object

structures between many disparate objects.

Behavioral Patterns: U
sed to manage algorithms,

relationships, and responsibilitie
s between objects.

CHAIN OF RESPONSIBILITY

 O
bject Behavioral

COMMAND

 O

bject Behavioral

successor

Client

<<interface>>

Handler

+handlerequest()

ConcreteHandler 1

+handlerequest()

ConcreteHandler 2

+handlerequest()

Purpose
Gives more than one object an opportunity to handle a request by linking

receiving objects together.

Use

When

n
	Multiple objects may handle a request and the handler doesn’t have to

 be a specific object.

n
	A set of objects should be able to handle a request with the handler

 determined at runtime.

n
	A request not being handled is an acceptable potential outcome.

Example
Exception handling in some languages implements this pattern. When an

exception is thrown in a method the runtime checks to see if th
e method

has a mechanism to handle the exception or if it
 should be passed up the

call stack. When passed up the call stack the process repeats until code to

handle the exception is encountered or until th
ere are no more parent

objects to hand the request to.

Receiver

Invoker

Command

+execute()

Client
ConcreteCommand

+execute()

Purpose
Encapsulates a request allowing it to

 be treated as an object. This allows

the request to be handled in traditionally object based relationships such

as queuing and callbacks.

Use

When

n
	You need callback functionality.

n
	Requests need to be handled at variant tim

es or in variant orders.

n
	A history of requests is needed.

n
	The invoker should be decoupled from the object handling the invocation.

Example
Job queues are widely used to facilitate the asynchronous processing

of algorithms. By utilizing the command pattern the functionality to be

executed can be given to a job queue for processing without any need

for the queue to have knowledge of the actual implementation it is

invoking. The command object that is enqueued implements its particular

algorithm within the confines of the interface the queue is expecting.

Upcoming Titles
RichFaces
Agile Software Development
BIRT
JSF 2.0
Adobe AIR
BPM&BPMN
Flex 3 Components

Most Popular
Spring Configuration
jQuery Selectors
Windows Powershell
Dependency Injection with EJB 3
Netbeans IDE JavaEditor
Getting Started with Eclipse
Very First Steps in Flex

“Exactly what busy developers need:
simple, short, and to the point.”

James Ward, Adobe Systems

Download Now

Refcardz.com

Professional Cheat Sheets You Can Trust

DZone, Inc.
1251 NW Maynard
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com

Sponsorship Opportunities
sales@dzone.com

Copyright © 2009 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical,
photocopying, or otherwise, without prior written permission of the publisher. Reference:

Version 1.0

$7
.9

5

DZone communities deliver over 4 million pages each month to

more than 2 million software developers, architects and decision

makers. DZone offers something for everyone, including news,

tutorials, cheatsheets, blogs, feature articles, source code and more.

“DZone is a developer’s dream,” says PC Magazine.

6
Scrum

RECOMMENDED CLASSABOUT THE AUTHOR

Danube’s ScrumMaster
Certification Course
The best way to get started
with Scrum is through hands-
on experience in a Danube

ScrumCORE CSM course. Taught by Michael James and other experts
with deep experience working in Scrum environments, Danube’s two-
day course covers the fundamental principles, mechanics, and values
of Scrum through a combination of simulated sprint activities and
examples of real projects.

Michael James, Danube Technologies, Inc.
Michael is a software process mentor, team coach,
and Scrum trainer with a focus on the engineering
practices (TDD, refactoring, continuous integration,
pair programming) that allow agile project
management practices. He is also a recovering
“software architect” who still loves good design.

Many other articles from Michael can be found at
 http://danube.com/blog/michaeljames

Danube Technologies, Inc. is a Scrum consulting and tools company.
Danube hosts hundreds of Certified ScrumMaster courses yearly around the
world. To find out more about ScrumMaster Certification see http://danube.
com/courses. Danube produces ScrumWorks Pro, the first commercial
tool designed specifically for Scrum. With more than 105,000 active users
worldwide, ScrumWorks is used by more than half of the Fortune 100 and
boasts the largest market share of any agile management tool. Learn more
at http://danube.com/scrumworks

REFERENCES

 • 1 Agile Project Management with Scrum, Schwaber, Microsoft Press,

 2004. See Appendix A “Rules.”

 • 2 http://danube.com/blog/michaeljames/a_scrummasters_checklist

 • 3 Agile Retrospectives: Making Good Teams Great, Derby/Larsen,

 Pragmatic Bookshelf, 2006

 • 4 Agile Estimating and Planning, Cohn, Prentice Hall PTR, 2005.

 • 5 Example generated by ScrumWorks® Basic, a free tool.

 • 6 Scaling Lean & Agile Development: Thinking and Organizational Tools
 for Large-Scale Scrum, Larman/Vodde, Addison-Wesley Professional,

 2008.

 • 7 Graph inspired by Ron Jeffries lecture at

 http://www.infoq.com/news/2006/12/jeffries-running-tested-features

 • 8 Extensively modified version of a graph in Strategic Management
 and Organizational Dynamics, Stacey, 1993, referenced in Agile

 Software Development with Scrum, Schwaber/Beedle, 2001.

 • 9 Quote is from Process Dynamics, Modeling, and Control, Ogunnaike,

 Oxford University Press, 1992.

 • 10 “Developmental Sequence in Small Groups.” Psychological Bulletin,

 63 (6): 384-99 Tuckman, referenced by Schwaber.

 • 11 Group Genius: The Creative Power of Collaboration, Sawyer, Basic

 Books, 2007.

 • 12 “How, when, and why bad apples spoil the barrel: Negative group
 members and dysfunctional groups.” Research in Organizational
 Behavior, Volume 27, 181–230, Felps/Mitchell/Byington, 2006.

 • 13 Scrum training/coaching also available from http://danube.com/

ISBN-13: 978-1-934238-53-0
ISBN-10: 1-934238-53-8

9 781934 238530

50795

For more information, visit:
http://www.danube.com/courses/csm.htm

