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Abstract

Networks are essential modeling tools in engineering, business, and public policy
research. They can represent physical connections, such as manufacturing processes.
They can be relationships among people, such as patient treatment in healthcare.
They can also represent abstract interactions, such as the biological reaction between a
certain vaccine and a certain virus. In this work, we bring several seemingly disparate
problems under the same modeling framework, and show their thematic coherence via
the angle of dynamic optimization on networks.

Our research problems are drawn from business risk management, public health
security, and public policy on vaccine selection. A common theme is the integra-
tive design of (1) strategic resource placement on a network, and (2) operational
deployment of such resources. We outline the research questions, challenges, and
contributions as follows.

Modern automotive manufacturing networks are complex and global, comprising
tens of thousands of parts and thousands of plants and suppliers. Such interconnection
leaves the network vulnerable to disruptive events. A good risk mitigation decision
support system should be data-driven, interpretable, and computational efficient. We
devise such a tool via a linear optimization model, and integrate the model into the
native information technology system at Ford Motor Company.

In public security, policymakers face decisions regarding the placement of medical
resources and training of healthcare personnel, to minimize the social and economic
impact of potential large scale bio-terrorism attacks. Such decisions have to inte-
grate the strategic positioning of medical inventories, understanding of adversary’s
behavior, and operational decisions that involve the deployment and dispensing of
medicines. We formulate a dynamic robust optimization model that addresses this
decision question, apply a tractable solution heuristic, and prove theoretical guaran-
tees of the heuristic’s performance. Our model is calibrated with publicly available
data to generate insights on how the policymakers should balance investment between
medical inventory and personnel training.

The World Health Organization and regional public health authorities decide on
the influenza (flu) vaccine type ahead of flu season every year. Vaccine effectiveness
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has been limited by the long lead time of vaccine production – during the production
period, flu viruses may evolve and vaccines may become less effective. New vaccine
technologies, with much shorter production lead times, have gone through clinical tri-
als in recent years. We analyze the question of optimal vaccine selection under both
fast and slow production technologies. We formulate the problem as a dynamic dis-
tributionally robust optimization model. Exploiting the network structure and using
tools from discrete convex analysis, we prove some structural properties, which leads
to informative comparative statics and tractable solution methods. With publicly
available data, we quantify the societal benefit of current and future vaccine produc-
tion technologies. We also explore the reduction in disease burden if WHO expand
vaccine portfolio to include more than one vaccine strain per virus subtype.

In each of the applications, our main contributions are four-fold. First, we de-
velop mathematical models that capture the decision process. Second, we provide
computational technology that can efficiently process these models and generate so-
lutions. Third, we develop theoretical tools that guarantee the performance of these
computational technology. Last, we calibrate our models with real data to generate
quantitative and implementable insights.

Thesis Supervisor: David Simchi-Levi
Title: Professor of Engineering Systems

Doctoral Committee Member: Stephen C. Graves
Title: Abraham J. Siegel Professor of Management

Doctoral Committee Member: Nikolaos Trichakis
Title: Zenon Zannetos (1955) Career Development Professor
Associate Professor of Operations Management
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Chapter 1

Introduction

1.1 Network Design and Resource Allocation

1.1.1 Motivation

In automotive manufacturing, firms are exposed to a variety of low-probability, high-

impact risks that can disrupt their operations and supply chains. These risks are

difficult to predict and quantify; therefore, they are difficult to manage. As a result,

managers may suboptimally deploy countermeasures, leaving their firms exposed to

some risks, while wasting resources to mitigate other risks that would not cause

significant damage. For example, Ford Motor Company has a global footprint of more

than 50 plants. These plants turn billions of parts into millions of cars and trucks every

year. A lengthy disruption in the complex supply and assembly network could lead

to significant repercussions at Ford and in the automotive industry: during the 2011

Thailand floods, disruption at Ford’s second-tier suppliers idled global production for

one of its most profitable product lines. At Ford, how could supply chain managers

utilize existing information technology infrastructure to consolidate data and provide

analytical decisions to prepare against such high impact disruptions?

In public health, medical resource prepositioning and allocation are crucial in

preparing against low-probability and high-impact health emergencies. For example,

to defend against bio-terrorism attacks, policymakers face intertwining decisions that

15



involve inventory prepositioning, dispensing capacity, predicting attacker’s move, and

resource allocation. In order to be prepared to deliver adequate medication in a timely

manner in response to a bioattack, medical countermeasures (MCM) inventories need

to be positioned across the country. Some inventories can be stored in central locations

to take advantage of pooling effects, while others need to be positioned near densely

populated areas in order to improve deployment responsiveness. At the same time,

training of emergency healthcare personnel is also critical, to help with the dispensing

of medical resources such as antibiotics and vaccines. Where and how much MCM

inventory should then be prepositioned in order to cost-effectively defend against

bioattacks? How much dispensing capacity should be installed at target areas? These

are the questions that require the integration of multiple facets of the medical supply

chains.

Influenza (flu) vaccine preparation is another resource-intensive activity that pub-

lic health policymakers address. In contrast to the low-probability emergency events,

influenza epidemic happens every year – October to May in the northern hemisphere,

and May to October in the southern hemisphere. Globally, influenza-related respira-

tory diseases lead to hundreds of thousands of deaths each year. In the United States,

the Centers for Disease Control and Prevention (CDC) estimates that influenza causes

millions of illnesses and tens of thousands of deaths annually. Influenza viruses evolve

continuously, and vaccine strains are selected annually by the World Health Organi-

zation (WHO) – along with each country’s own public health agency such as the

CDC in the United States – to match them. Due to long production lead time of

the traditional egg-based vaccine manufacturing technology, vaccine strains have to

be selected at least half a year before the upcoming epidemic season, resulting in low

vaccine effectiveness. In 2013 and 2016, the Food and Drug Administration in the

United States approved new vaccine manufacturing technologies, with significantly

shorter production lead times. With the arrival of new vaccine manufacturing tech-

nologies, how should the WHO and CDC select vaccine strains and plan productions

to reduce disease burden?
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1.1.2 Problem Description and Research Objective

Our goal in this thesis is to address the three above mentioned problems in a unified

way. We provide analytical tools that can give quantitative and structural answers

to these questions. New theories are developed to address the novel problems, for

both model tractability and comparative statics. Drawn from seemingly disparate

applications, these questions can in fact be modeled under one analytical decision

framework. We point out three key ingredients for the framework.

First, these questions all deal with decisions on networks. For the case of Ford

manufacturing, the network is the inbound supply and manufacturing network that

connect components, facilities, and final products. Nodes represent parts, suppliers,

products, and manufacturing processes that transform several parts into a larger com-

ponent. Arcs represent the potential resource allocation pathways in this assembly

network. In the medical countermeasure supply chain, the network nodes comprise

medical stockpiles, dispensing facilities, and neighborhoods of potential populations

under protection. Arcs are the shipment routes and allocation capabilities. For the

case of vaccine selection and production, the network is more abstract. In this case,

nodes represent the vaccine candidates and potential types of epidemic viruses. Arcs

are used to carry the efficacy of using one type of vaccine to one type of virus.

Throughout the thesis, we use (𝑉,𝐸) (or its variations) to represent a network com-

prising node set 𝑉 and arc set 𝐸.

Second, these questions all deal with multiple levels of decision making. More

specifically, there are a set strategic decisions 𝑥 and a set of operational decisions

𝑦. For the case of supply chain risk management at Ford, strategic decisions refer

to the network inventory positioning decisions prior to any disruption events, and

operational decisions refer to the parts allocation and production decisions if the

network is disrupted. Public health planning for biodefense also naturally separates

into decisions that preposition inventories at various locations and regularly train

healthcare volunteers, and decisions that govern the mobilization of resources and

people if an attack happens. For the application in influenza vaccine preparation,
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strategic decisions are made months ahead of the flu season to fix the types of vaccines

to be produced, and start manufacturing process that has long lead times. The

operational decisions are the ramping up of fast production process during the flu

season, and administration of vaccines to population susceptible to influenza.

The third ingredient of the framework is uncertainty modeling. On a high level, we

include random vector 𝜉 and its governing set Γ. The first two applications deal with

low-probability events, for which it is difficult to create probability measures from

historical data. The third application of influenza vaccine planning has the flavor

of probabilistic decision making. In all three cases, the uncertainty realizes between

strategic decision and operational decision epochs. This makes the overall problem

into a so-called multi-stage decision problem.

The framework is anchored on a cost function 𝑓(𝑥, 𝑦, 𝜉) (e.g., manufacturing cost,

disruption loss, healthcare disease burden, economic cost, or combinations of them),

subject to constraints that naturally arise from the network setting (e.g., flow con-

servation, capacity limits):

min
𝑥∈𝑋

max
𝜇∈Γ

E𝜉∼𝜇[ min
𝑦∈𝑌

𝑓(𝑥, 𝑦, 𝜉)] (1.1a)

subject to Network constraints. (1.1b)

The choice of uncertainty modeling max𝜇∈Γ E𝜉∼𝜇 follows from the distributionally

robust optimization literature, which has received intensive attention from both the

operations research and computer science communities due to its modeling flexibility

and computational tractability. For our modeling purpose, we note that it is a frame-

work that generalizes the stochastic programming approach (letting Γ be a singleton

set) and classical robust optimization approach (setting Γ to include Dirac delta func-

tions on the support). This flexibilitiy gives us a unified view of worst-case approach

in a low-information setting and probabilistic approach in a high-information setting.

Throughout this thesis, formulation (1.1) manifests into different instances, which are

increasingly more general as we progress from the beginning to the end of the thesis.
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1.2 Literature Review

We first review papers in the optimization literature that focus on the modeling and

optimization theory related to problem formulation (1.1). We then review different

streams of literature related to our three applications: Supply Chain Risk Management

for Ford manufacturing network design; Resource Allocation for Military Applications,

Biodefense, and Inventory Prepositioning for the biodefense supply chain design; and

Vaccine Selection for the influenza vaccine strain selection and production problem.

Robust Network Flow. Atamtürk and Zhang [12] study the computational com-

plexity of two-stage robust network flow under budgeted uncertainty sets and find it

to be intractable in general. For a tree structure, they use a dynamic programming

(DP) approach to show that it can be solved in polynomial time. Unfortunately, their

DP approach is not suitable for our problem. Being developed within a constructive

proof to show that robust tree network flow problems are polynomially solvable, the

DP approach breaks down and cannot be applied for general, non-tree network flow

problems. Furthermore, it is also tailored to deal only with uncapacitated network

flow problems and it is unclear if it can be applied to tackle dispensing capacity is-

sues. From a practical standpoint, because the SNS network need not be a tree, and

because dispensing capacity is a major concern [142], the DP approach by Atamtürk

and Zhang cannot be applied to tackle the SNS design problem we study in our

work. They also provided a cutting plane algorithm that can be applied to solve

general (capacitated) networks, but this exact solution algorithm has no polynomial

time guarantee and is not practical for large instances, e.g., the ones we solved in

Section 3.6. Our goal is different. Instead of focusing on computational complexity,

we study a tractable solution method for general networks involving a rich set of de-

cisions (inventory, capacity, shipment, and dispensing over time), and provide strong

theoretical and numerical backing for its performance. Our solution method enables

us to apply it to a practically relevant policy design problem, demonstrated in a case

study involving millions of nodes and considering important practical decisions and

constraints.
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Affinely Adjustable Robust Optimization. An introduction to this topic is in-

cluded in Ben-tal et al. [17]. There have only been a handful of results that show

AARC heuristics to be optimal under special circumstances [9, 20, 21, 72]. Our work

contributes to this stream by providing an optimality proof under a new context.

Bertsimas et al. [21] studies one-dimensional problems, e.g., inventory problems that

involve a single stocking level, while in Delage and Ardestani-Jaafari’s work [9], the

authors deal with newsvendor type problems under demand uncertainty. We differ

from these papers by studying multidimensional problems, i.e., shipment decisions in

a supply chain network. The papers by Iancu et al. [72] and Bertsimas et al. [20]

deal with families of problems, where for AARC optimality (or “good” performance)

they require the uncertainty sets to be lattices, or possess a “symmetric” structure. In

our model, in order to preclude overly conservative solutions, we rely on simplex-type

budget constraints that invalidate both the lattice and the symmetric structures. Put

differently, we prove optimality for a problem that is according to [20] in some sense

the “least conducive” to the AARC optimality conditions set forth in the literature

so far.

Supply Chain Risk Management. We follow two streams of research in our work

for the supply chain risk management. The first area of scholarship pertains to

supply chain network modeling and optimization, which broadly consider the optimal

network structure under steady state operations [48, 65] or under the possibility of

a disruption [140, 116, 95]. Closely related is research that evaluates coordination

strategies between buyers and suppliers in the presence of disruption risk [149, 38,

150]. Less attention has been given to evaluating the impact of a disruption based

on the optimal response of an existing network once that disruption has occurred.

A recent exception is [128], which evaluates response strategies that minimize the

service-level impact when disruption occurs on a multiechelon network for a random

duration. Another is [94], which evaluates the interaction between the supplier and

buyer response strategies under a random-duration disruption.

We make three important contributions to this literature. First, we develop our

model for practical applications using large-scale supply chain data from Ford. Sec-
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ond, we evaluate the optimal contingency plans for settings in which the disruption

duration is either known exactly or described by an uncertainty set. Finally, our model

quantifies the disruption exposure across all the nodes in the company’s supply chain

based on company-level performance impacts.

The second stream of research seek to classify operational disruptions and quantify

their impact. Scholars and practitioners generally agree that operational disruptions

materially and negatively impact company performance on average [129, 70, 160].

There is less agreement, however, on how we should classify and forecast such dis-

ruptions [82, 144, 156, 141]. Researchers are only beginning to understand which

disruptions have the greatest impact on firm performance. Answering this research

question is important because it informs firms on which disruptions warrant miti-

gation investments. [41] propose that supply chain density, complexity, and node

criticality contribute to the severity of disruptions. [144] theorizes that a firm’s vulner-

ability to disruption depends on its supply chain strategies, including postponement

strategies and inventory placement. [23] identify that a firm’s organizational integra-

tion practices are associated with the firm’s ability to mitigate the consequences of

disruptions. [82] provide evidence that changes to risk-assessment and risk-mitigation

practices reduce the impact of disruptions in the chemical industry.

Our research generally aligns with concepts applied in other disciplines, including

estimating maximum foreseeable loss (i.e., the maximum loss if all safeguards in a

system break) in the insurance industry and conducting failure analysis (i.e., assessing

the structural resilience when a critical member of a system is removed) in structural

design. Until now, however, the field of operational risk management has not given

these principles much attention.

Resource Allocation for Military Applications. For many military defense prob-

lems, such as ours, stochastic and priority-list approaches are inappropriate for cap-

turing the strategic interaction between intelligent defender and attacker [4, 63, 102].

Therefore, it is desirable to use a sequential game approach, such as DAD. A main

challenge for this approach is tractability. In the past decade, there has been concen-

trated and valuable effort in developing scalable solution approaches, especially for
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the interdiction type of problems [4, 6, 13, 28, 79, 88]. Atkinson [13] and Lazzaro

[88] show that the state-of-the-art algorithms can solve networks with thousands of

nodes. Alderson et al. [6] mentions that for the significantly simpler bilevel games,

problems with thousands of nodes can be readily solved by decomposition algorithms

with commercial solvers.

Our work in the biodefense supply chain design differs from the existing DAD

papers in two ways. First, we deal with problem sizes on the order of millions of

nodes and present for them scalable approximate solution approaches backed by per-

formance guarantees. Such drastic increase in problem size would render existing

decomposition-based solution approaches insufficient. To deal with high dimension-

ality, we use the AARC heuristic from RO and contribute back to the theoretical RO

literature by proving a novel performance guarantee of AARC (see related discussion

below). Second, we provide an integrated modeling of cost, health deprivation, and

antibiotic efficacy over time for our application. This in part requires a precise analy-

sis of time-expanded multi-commodity network flow, and how the AARC heuristic is

analytically suited for it. We consider these insights to be generalizable since multi-

commodity network flow models are considered essential primitives for DAD problems

[5].

Another set of military operations research papers, such as [18, 69, 122, 163],

also study Stackelberg game problems. For example, Berman and Gavious [18] study

the defender-attacker problem as a min-max facility location problem. Zhuang and

Bier [163] study the difference between random and fully strategic attackers. While

they focus on equilibrium analysis, our paper formulates and solves a large-scale,

high-fidelity prescriptive model to support decisions.

Biodefense. Existing biodefense literature does not focus on the interaction between

defender and attacker. It generally assumes an abundance of MCM inventories and

exogenous demand scenarios [24, 40, 71, 80, 81, 89, 90, 91, 93, 157]. They study, for

example, the optimal number and layout of points of dispense [71, 89, 90, 91, 93],

the effectiveness of predetermined, exogenous inventory levels on the treatment of

patients after bioattacks and influenza outbreaks [24, 80, 81], and a small number of
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response strategies for airborne anthrax attacks [40, 157]. Taking MCM supply for

granted and assuming attack scenarios to be known is limiting, because in practice,

MCMs are shipped from different locations with different lead times (from hours to

days) and shipment sizes, resulting in time-dependent flows, and terrorists’ decisions

are unknown in advance. In contrast, we take an integrated approach and study the

entire supply chain within the DAD framework.

Inventory Prepositioning. Beyond the biodefense literature, other streams have

studied prepositioning problems, including humanitarian logistics [30, 31, 47] and

manufacturing [131, 133]. The latter two papers provide a decision support tool to

evaluate performance under disruptive risks for a given inventory configuration and a

given disruption scenario. Unlike the descriptive nature of these models, ours derives

prescriptive suggestions that incorporate two stages of decision making.

Uichanco [152] and Simchi-Levi et al. [135] study inventory prepositioning to

hedge against capacity disruption and demand uncertainties. Uichanco provides a

solution method that scales with the number of vertices in the polytope describing the

network structure. Such a method would lead to an intractable formulation in our case

because a national biodefense network typically comprises millions of nodes and edges.

In contrast, we provide a tractable model that can deal with problems of the size faced

by U.S. policymakers. By incorporating dispensing capacity optimization, our model

is more general too. In [135], the authors also focus on providing an exact solution

method. Not surprisingly, this leads to an intractable formulation too, namely an

LP with an exponential number of constraints. They propose a constraint generation

algorithm, which they find to work well in practice for bi-partite graphs involving

200 nodes. Their constraint generation algorithm still involves the solution of mixed-

integer linear programs in its subroutines. Such approaches could not possibly be

employed to tackle networks with millions of nodes, like ours. In contrast, our focus

is to provide tractable and scalable (polynomial-time) algorithms, which require the

solution only of linear optimization problems. Although not being exact for general

network topologies, we back our approach with optimality guarantees as discussed

above.
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Vaccine Selection. The influenza vaccine selection problem is not entirely new to the

operations community. This current work is most closely related to that of Wu, Wein,

and Perelson (2005) [161]. The authors addressed the vaccine strain selection problem

in a multi-year case, focusing on the year-by-year antigenic drift and cancellation effect

between multiple vaccinations. They modeled the vaccine effectiveness by quantifying

the similarity between vaccine strains and circulating virus strains with a theoretical

biology model. Other influenza vaccine research have focused on various aspects of

the vaccine lifecycle. For example, Lee et al. (2016) studied the vaccine effectiveness

prediction problem with machine learning methods [92]. Özaltın et al. (2011) focused

on the problem of optimal timings of the strain selection and production decisions

within one influenza season [115]. Cho (2009) studied the yield uncertainty of vaccine

production [37]. Teytelman and Larson (2013) studied vaccine allocation policies,

considering regional differences in influenza timings [146]. Several papers also studied

supply chain coordination and competition problems among vaccine manufacturers

or between manufacturers and policymakers [35, 36, 42, 43, 84, 114].

1.3 Contribution and Organization of the Thesis

In a three-year research engagement with Ford Motor Company, we addressed the

practical need of supply chain risk mitigation by developing a novel risk-exposure

model that assesses the impact of a disruption originating anywhere in a firm’s sup-

ply chain. Our approach defers the need for a company to estimate the probability

associated with any specific disruption risk until after it has learned the effect such

a disruption will have on its operations. As a result, the company can make more

informed decisions about where to focus its limited risk-management resources. We

demonstrate how Ford applied this model to identify previously unrecognized risk

exposures, evaluate predisruption risk-mitigation actions, and develop optimal post-

disruption contingency plans, including circumstances in which the duration of the

disruption is unknown.

For biodefense supply chain design, we formulated the problem as a two-stage
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robust optimization model, and applied a tractable solution heuristic to the problem.

We prove that the heuristic is actually optimal in important cases of the problem, and

use extensive computational studies to demonstrate its near-optimal performance in

general settings. One key feature of this solution heuristic is its ability to solve network

design problems with millions of nodes, which is at least two orders of magnitude

larger than what is normally used in the literature. This high-performance solution

technology enables us to calibrate the model with publicly available data to work

through a high fidelity case study. Our integrated framework enables us to derive

prescriptive recommendations to the CDC. For example, we find that if CDC wanted

to ensure 85% survivability for attacks that simultaneously affected (any) two states,

each with at most two cities being attacked, with a detection time of under 48 hours,

then the minimum required annual inventory and dispensing capacity budget would

be about $210 million; for survivability target of 92%, the budget would increase to

$553 million. This increasing marginal cost phenomenon, along with other cost/policy

implications, can be explored quantitatively within our model.

In the vaccine selection problem, we incorporate different production technologies

in the vaccine selection and production problem to address the arrival of new vac-

cine manufacturing technologies in the past few years. To analyze this problem, we

bring together several technical tools from a few areas – theoretical biology, discrete

convex analysis, and distributionally robust optimization – to create a vehicle for our

model and theory. The model and theory are general, and can be used to analyze

other network newsvendor type and facility location type of problems as mentioned in

the literature review. For example, we show tractability of our model under popular

choices of ambiguity sets, such as those defined by Wasserstein distance, or consis-

tent with a set of marginal distributions. We also provide comparative statics on

the problem, providing structural insights into the policy and technology decisions

involving vaccine selection and production. We show that the newly FDA-approved

manufacturing technologies have the potential to impact vaccine policies well beyond

increasing vaccine availability. In particular, we show that selecting more than one

vaccine strain for each virus subtype is complementary to adding a fast production
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Figure 1-1: Models in the thesis and their relationship. Each box represents one
model. Each arc points from a less general model to a more general model. Descrip-
tions in the brackets show how exactly this particular model is a specific implemen-
tation of formulation (1.1).

technology, and sometimes has a much higher potential in reducing disease burden.

As a result, the policymakers should re-examine the current practice of selecting just

one vaccine strain per subtype per flu season, because the benefit may outweigh the

cost of selecting an additional strain.

Main models in the content chapters of the thesis are roughly in increasing order

of generality (Figure 1-1). Our theoretical contributions cover tractability and opti-

mality results on all models. Furthermore, we also develop algorithms and theoretical

characterizations to highlight the behavior of some of these models.
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Chapter 2

Mitigating Manufacturing Risk

2.1 Ford Manufacturing Supply Chain

Many companies face considerable operational and supply chain risks that can mate-

rially impact company performance. Given the complexity and scope of Ford Motor

Company’s operations, this is certainly its situation. Ford maintains over 50 plants

worldwide, which annually utilize 35 billion parts to produce six million cars and

trucks. It has up to 10 tiers of suppliers between itself and its raw materials. Its

Tier 1 suppliers number 1,400 companies across 4,400 manufacturing sites. A lengthy

disruption anywhere in this extended supply chain can have significant financial reper-

cussions for Ford. A disruption to one of its second-tier suppliers during the 2011

Thailand floods elevated the importance of this issue. As a result of this disruption,

Ford idled global production for one of its most profitable product lines.

Ford is one of many companies exposed to such disruptions. For example, the

2011 flooding in Thailand led Intel to cut its quarterly revenue target by $1 billion

[147]. Driven in part by greater global trade and the adoption of lean operating prin-

ciples, many companies now operate with globally dispersed manufacturing facilities

and extended supply chains. Normal accident theory holds that because major dis-

ruptions are an inherent property of such complex and tightly coupled systems, they

should be considered unavoidable or normal [118]. It falls to operations and sup-

ply chain managers to navigate this new normal. Traditional operational-disruption
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risk-assessment methods oblige firms to identify the probability and magnitude of dis-

ruption risks early in the analysis process [124, 83]; however, managers face a number

of challenges in implementing such a solution. First, it is difficult and often impossi-

ble for managers to accurately estimate the likelihood of low-probability, high-impact

disruptive events [14, 143]. Second, managers tend to misallocate resources when

facing low-probability events [77, 76], ignore risks regardless of their potential signif-

icance [97], and distrust or disregard precise probability estimates [85, 97]. This can

lead to inaction; [99] found that most firms do little to proactively prepare for such

low-probability, high-impact disruptive events.

In this paper, we apply a new model, proposed by Simchi-Levi in March 2012

[62] and described in [132], for analyzing operational-disruption risk and detail the

development and implementation of this model at Ford. Throughout the paper, we

share the primary results of our analysis using masked versions of Ford’s operational

and supply chain data.

Limitations of the Legacy Risk-Analysis Approach

For many companies, even those that have world-class operations and supply chain

management systems, proactively managing high-impact, low-probability disruption

risks is challenging. One obstacle to conducting a more insightful analysis of disrup-

tion risks is that operational disruptions are both difficult to predict and have a highly

uncertain impact on performance. In Ford’s case, the scale and dynamic nature of its

supply chain further complicate this problem. These factors increase both the num-

ber of disruption scenarios to consider and the frequency at which we should evaluate

those scenarios. A second obstacle is data availability, particularly on suppliers at

lower tiers within the supply chain. Supply chain transparency is a challenge for the

entire automotive industry. Suppliers to the industry have historically been reluctant

to provide the automobile manufacturers with detailed information about their sup-

pliers and their suppliers’ suppliers. As a result, although manufacturers typically

have good information on Tier 1 suppliers (i.e., companies that supply directly to the

manufacturer), they have considerably less information on lower-tier suppliers in the
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supply chain.

Given these limitations, legacy risk-management processes often focus on tracking

the status of only a handful of suppliers and part numbers. These tend to be suppliers

that provide major assembly components and represent a large portion of the total

component costs. Many large manufacturers recognize that material exposures are

likely to be hidden among the suppliers who are not included in this regular review

process. Because of the difficulties in predicting disruptions, the data limitations, and

the size of their supply chains, companies often cannot identify where these exposures

are, much less quantify their impact. For example, managers at Ford estimate that

conducting a traditional risk analysis for all of Ford’s more-than-4,000 Tier 1 supplier

sites would likely take two or three years, at which time the analysis would be obsolete.

2.2 Data

The major data columns collected in the analysis include:

1. Total annual part volume (part / supplier / Ford factory / car model)

2. Number of parts per vehicle (part / car model)

3. Production volume (Ford factory / car model)

4. TTR (part / supplier)

5. Profit margin (car model)

6. Part-to-subcomponent mapping (part)

7. Inventory (part)

TTR is the number of days that a supplier estimates it requires to return to full

production after a major disruption. Ford collected TTR for two types of disruptions-

one in which the supplier’s production facility is lost and another in which both the

supplier’s production facility and tooling are lost. Part-to-subcomponent mapping
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Figure 2-1: Overview of the bill-of-materials network with 74680 nodes and 97479
edges. Each node is a part or component in the manufacturing process, and edges
represent the assembly requirements.

identifies how a part from a second- or third-tier supplier maps to a part or subcom-

ponent in the tier above. Inventory measures the number of parts at the supplier

site, in transit or at the Ford site. For second- or third-tier parts, this includes the

number of parts held at those echelons.

Overall, data on bill-of-materials and potential disruption durations are collected

for assemblies occuring in North America (Figures 2-1 and 2-2.
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Figure 2-2: Zooming into Figure 2-1: bill-of-materials corresponding to three assem-
blies, with 8172 nodes and 11678 edges.
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2.3 Model and Theory

Recognizing that managers have limited ability to predict low-probability, high-impact

risks or collect detailed data on lower levels of their supply chain, our approach, ini-

tially described in [132], advocates integrating a vulnerability-based analysis into

supply chain risk assessments. In such an analysis, the focus is on understanding

the impact of a disruption, regardless of its source. This defers the need to estimate

the probability associated with any specific risk and collect detailed information from

sub-tier suppliers until after Ford has determined the impact a disruption will have on

its operations. At that point, Ford can make a more informed decision about where to

focus its limited risk-assessment resources. Our approach suits the goal of analyzing

supply chain disruptions because the impact of a disruption often does not depend

on the cause of the disruption but rather on its duration. In addition, the potential

mitigation actions that a company can practically employ in response to a supply

chain disruption are often the same regardless of the specific causes of the disruption.

Finally, our approach implicitly recognizes that supply chains are in a continuous

state of flux. In the face of such constant change, maintaining up-to-date predictions

of the likelihood of specific risks is nontrivial; however, given that a disruption does

occur, estimating a firm’s vulnerability is more tractable.

2.3.1 Time-To-Recover Model

The model considers the supply chain as a graph representing the movements of

supplier parts from each supplier facility to each of a firm’s facilities and product

lines. A node, also referred to as a stage, in the graph is equivalent to a part or

manufacturing process at a particular supplier or Ford facility. Inputs to the model

include operational and (or) financial measures (e.g., unit profitability) and in-transit

and on-site inventory levels for each node. Our model incorporates the time-to-recover

(TTR) of each node in the supply chain network, which represents the time it takes

for a node to recover to full functionality after a disruption [98, 132]. This value can

be unique at each node in the firm’s supply chain.

32



The model iterates over each node in the graph, disrupting the node for the dura-

tion of its TTR and calculating the corresponding impact on the firm’s performance.

It determines the performance impact assuming the firm responds optimally to the

disruption scenarios, where the model simulates the optimal responses by solving an

associated linear optimization problem. The model can accommodate different per-

formance measures as the objective for this optimization, including minimizing the

lost units of production, lost sales, or lost profit margin. For each disruption scenario,

the model searches on how to reallocate existing inventory, redirect supply alterna-

tives, and idle downstream plants such that the disruption has the smallest impact.

The resulting performance impact (PI) is the impact of that disruption scenario on

the firm’s chosen performance measure during the TTR. To simplify cross-scenario

comparisons, the model can also calculate a risk-exposure index (REI) [132], which

normalizes the PI for each scenario by the maximum PI over all scenarios considered

in the analysis.

The model can accommodate simultaneous disruptions in multiple supply chain

nodes. This allows management to analyze complex disruption scenarios, including

disruptions that affect all the parts from one supplier plant or disruptions that affect

all the same part regardless of the supplier. We can extend the model to account for

alternative sources of supply and supplier capacity commitments. This facilitates an

explicit examination of interactive effects, which may occur when multiple firms try

to adjust to supply disruptions at the same time. For example, if a supplier fails to

deliver to one firm, it may have gone down for multiple firms. Such an event makes

other potentially compensating nodes (e.g., backup suppliers) more congested.

2.3.2 Time-To-Survive Model

In many cases, accurate TTR information may not be available. More importantly, a

supplier may be optimistic when assessing its TTR; that is, a supplier may underes-

timate the time required to recover and hence may underestimate Ford’s exposure to

a disruption. Therefore, Ford is interested in identifying suppliers whose disruption

impact is sensitive to the given TTR information. For this purpose, we introduce the
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time-to-survive (TTS) concept, which we define as the maximum amount of time the

system can function without performance loss if a particular node is disrupted [134].

As we will show, we determine the TTS associated with a specific node by solving an

optimization problem that takes into account the disruption of this node, inventory

levels, and alternative sources of supply; see below for the model formulation. The

firm can determine whether a more accurate measure of TTR is necessary by com-

paring the TTS value associated with a specific node with the TTR estimate of that

node. If the TTS far exceeds the TTR, it implies that a large change in TTR will

have little impact on the firm’s risk exposure; however, nodes with short TTS values

require Ford to engage these suppliers in a detailed discussion about their TTRs.

2.3.3 Mathematical Models

We first present a single-tier (ST) supply chain model to illustrate some of the main

concepts, and then extend it to a multiple-tier (MT) model that encompasses more

components. The basic premise of both models is that, given a supply chain structure

(a graph) and a disruption scenario (interrupted nodes and edges), we determine how

to allocate the firm’s remaining resources to optimize its ability to satisfy exogenous

demand. A node (or stage) in the graph is a component or manufacturing process

at a particular supplier or assembly site; an edge is a directed flow of materials

from an upstream stage to a downstream stage. We formulate both models as linear

optimization programs. We summarize our notation for the single-tier model in Table

1 and for the multiple-tier model in Table 2.

In the ST model, the firm has a set of plants (𝒜), which produce a set of products

(𝒱). The firm’s objective for each disruption scenario is to minimize the impact of the

disruption on its chosen performance metric. We capture this through the following
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Symbol Explanation

Superscript (𝑛) Disruption scenario 𝑛.

𝒜 Set of all suppliers sites (plants).

𝒱 Set of all final nodes (vehicles).

ℱ (𝑛) Set of production edges under disruption scenario 𝑛.

𝑡(𝑛) TTR for disruption scenario 𝑛.

𝑐𝑖 Total production capacity of node 𝑖 per unit time.

𝑠𝑖 Finished goods inventory of node 𝑖.

𝑓𝑗 Profit margin of product 𝑗.

𝑑𝑗 Demand for 𝑗 (per time unit).

𝑙𝑗 Lost production volume of vehicle type 𝑗.

𝑦𝑖𝑗 Amount of product 𝑗 produced at plant 𝑖.

Table 2.1: This table lists the parameters and variables of the single-tier model and
their explanations.

linear program.

Minimize
∑︀

𝑗∈𝒱 𝑓𝑗𝑙
(𝑛)
𝑗

s.t.
∑︀

𝑖:(𝑖,𝑗)∈ℱ(𝑛) 𝑦
(𝑛)
𝑖𝑗 + 𝑙

(𝑛)
𝑗 ≥ 𝑑𝑗𝑡

(𝑛) − 𝑠𝑗, ∀𝑗 ∈ 𝒱∑︀
𝑗:(𝑖,𝑗)∈ℱ(𝑛) 𝑦

(𝑛)
𝑖𝑗 ≤ 𝑐𝑖𝑡

(𝑛), ∀𝑖 ∈ 𝒜 ∖ 𝑛

𝑦
(𝑛)
𝑖𝑗 , 𝑙

(𝑛)
𝑗 ≥ 0, ∀𝑖 ∈ 𝒜, 𝑗 ∈ 𝒱

In this model, decision variable 𝑦
(𝑛)
𝑖𝑗 is the cumulative production of 𝑗 at plant 𝑖

in disruption scenario 𝑛. Variable 𝑙
(𝑛)
𝑗 is the amount of lost demand for product 𝑗 in

disruption scenario 𝑛. Parameter 𝑓 (𝑛)
𝑗 refers to the impact of one unit of loss in sales for

product 𝑗, for example, the profit margin; 𝑡(𝑛) is the TTR for this disruption scenario.

𝑑𝑗 and 𝑠𝑗 are the demand and inventory for product 𝑗, respectively. Flexibility design

ℱ (𝑛) is the set of edges that are still alive during disruption scenario 𝑛.

The objective function is the minimization of the total weighted loss as a result

of the disruption. The first constraint is a lower-bound constraint for the number of

units lost for product 𝑗, given the production and inventory conditions. The second

constraint is a total capacity constraint on the assembly plant 𝑖. We can replace
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the linear objective function with a convex one in a more general case, for example,

accounting for lost market share if the loss exceeds a specific threshold.

Solving one instance of this linear program measures the impact of one disruption

scenario. A crucial step of using this model is the construction of the set of disruption

scenarios of interest. The identification of this set is a self-contained step that can

be performed by the business executives and risk managers. For example, when the

firm aims to identify the most crucial node of the system, the disruption scenarios are

constructed as all events that relate to the removal of a single node from the graph.

This is the paradigm adopted for the analysis at Ford.

Although the ST model explicitly captures only the last tier of the production

system, it can be used to analyze a disruption at a supplier in an upstream tier. To

do so, we disrupt the nodes in the final tier that depend on the upstream supplier,

and solve ST. This is reasonable if the firm has little control over the nodes prior

to the last tier and if the firm knows which final-tier nodes will be affected by the

disruption. These assumptions may be too conservative, for example, in situations in

which the firm has control over upstream resource allocation and routing. We present

a multiple-tier model that addresses this more general case.

The MT model is similar to the ST model. We include the concept of parts,

which refers to the set of nodes that are functionally equivalent in the manufacturing

process, but potentially processed at a different plant or supplier site.

Minimize
∑︀

𝑗∈𝒱 𝑓𝑗𝑙𝑗

s.t. 𝑢𝑗 −
∑︀

𝑖∈𝒫𝑗𝑘
𝑦𝑖𝑗/𝑟𝑘𝑗 ≤ 0, ∀𝑘 ∈ 𝒩−(𝑗),∀𝑗 ∈ 𝒟∑︀

𝑗∈𝒩+(𝑖) 𝑦𝑖𝑗 − 𝑢𝑖 ≤ 𝑠𝑖, ∀𝑖 ∈ 𝒰

𝑢𝑗 = 0, ∀𝑗 ∈ 𝒮(𝑛)

𝑙𝑗 +
∑︀

𝑘∈𝑉𝑗
𝑢𝑘 ≥ 𝑑𝑗𝑡

(𝑛), ∀𝑗 ∈ 𝒱∑︀
𝑘∈𝐴𝛼

𝑢𝑘 ≤ 𝑐𝛼𝑡
(𝑛), ∀𝛼 ∈ 𝒜

𝑙𝑗, 𝑢𝑗, 𝑦𝑖𝑗 ≥ 0.

The first constraint is a bill-of-materials constraint; for every node 𝑗, we limit

the production of node 𝑗 (denoted by 𝑢𝑗) by the most-scarce parent part. More
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specifically, for this node 𝑗 (e.g., an engine), there are multiple parent nodes (e.g.,

components of an engine). Variable 𝑦𝑖𝑗 represents the material flow from node 𝑖 to

node 𝑗. If two parent nodes, 𝑖 and 𝑖′, represent the same physical and (or) functional

part (e.g., the same type of bolts from two different suppliers), we say that 𝑖 and 𝑖′

are of the same part type. We invoke an additional index 𝑘 to denote the part type

of a node, and use 𝑟𝑘𝑗 to represent the amount of type 𝑘 parts required to produce

one unit of node 𝑗. The ratio 𝑦𝑖𝑗/𝑟𝑘𝑗 is then the units of node 𝑗 that can be produced

with 𝑦𝑖𝑗 units of type 𝑘 parts from node 𝑖. We use 𝒫𝑗𝑘 to represent the set of all nodes

that are (1) upstream of 𝑗, and (2) of part type 𝑘. Hence,
∑︀

𝑖∈𝒫𝑗𝑘
𝑦𝑖𝑗/𝑟𝑘𝑗 represents

the maximum amount of 𝑗 that can be produced, given the aggregated supply of type

𝑘 materials from upstream nodes in 𝒫𝑗𝑘.

The second constraint is also a bill-of-materials constraint, which limits the to-

tal outflow of node 𝑖 (
∑︀

𝑗∈𝒩+(𝑖) 𝑦𝑖𝑗) to be less than the sum of production (𝑢𝑖) and

inventory (𝑠𝑖) at the current location.

The third constraint is the disruption constraint, which limits the production of

disrupted node 𝑗 (i.e., 𝑢𝑗) to be zero. The fourth and fifth constraints are similar to

the first and second constraints in the ST model.

In both the ST and MT models, we make the simplifying assumption that pro-

cessing lead times are not significant relative to the impact of the disruption. In the

MT model, we also assume that the costs of rerouting materials and manufacturing

changeovers are not significant relative to the impact of the disruption. These are

often reasonable assumptions in the context of high-impact disruptions, the effect of

which dwarfs the impact of these other issues.

The ST and MT linear programs generate prescriptive contingency plans that

minimize the impact of the disruption on the firm’s chosen performance metric. Under

each disruption scenario, the optimization model generates a corresponding set of

optimal values for the decision variables, denoting the best routing and resource-

allocation plans for that disruption.
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Symbol Explanation

𝒟 Set of all but the first-tier nodes.

𝒰 Set of all but the final nodes (vehicles).

𝒮(𝑛) Set of all disrupted nodes for disruption scenario 𝑛.

𝒜 Set of all suppliers sites (plants).

𝐴𝛼 Set of all nodes produced at supplier and (or) plant 𝛼.

𝒱 Set of all final nodes (vehicles).

𝑉𝑗 Set of all final nodes (vehicles) that are of the same type (𝑗).

𝒩−(𝑖) Set of parts required to produce node 𝑖.

𝒩+(𝑖) Set of nodes that require node 𝑖.

𝒫𝑗𝑘 Set of all nodes that are in the upstream of node 𝑗 and of part type 𝑘.

𝑡(𝑛) TTR for disruption scenario 𝑛.

𝑢𝑖 Total production quantity of nodes 𝑖 during time 𝑡(𝑛).

𝑙𝑗 Lost production volume of vehicle type 𝑗.

𝑦𝑖𝑗 Allocation of upstream node 𝑖 to downstream node 𝑗 during time 𝑡(𝑛).

𝑠𝑖 Finished goods inventory of node 𝑖.

𝑟𝑘𝑗 Number of type 𝑘 parts required to make one unit of node 𝑗.

𝑓𝑗 Performance impact (e.g., profit margin) of one unit of product 𝑗.

𝑑𝑗 Demand for 𝑗 per time unit.

𝑐𝑖 Production capacity of node 𝑖 per unit time.

Table 2.2: This table lists the parameters and variables of the multiple-tier model
and their explanations.

38



2.3.4 Procedure for Finding Pareto Efficient Solutions Under

TTR Uncertainty

Given a finite set of 𝑛 TTR values and an ordering of their importance (given by

a manager, for example), we can find a resource-allocation strategy that is Pareto

efficient (i.e., not dominated by any other strategy) on this set of TTR values. This

is in spirit the same as finding a lexicographically optimal solution in multiobjective

optimization [45], where the 𝑛 objectives correspond to the performance impact under

these 𝑛 TTR values. Using x to represent the resource-allocation strategy, and 𝑓(x, 𝑡)

and {x | Ax ≥ b(𝑡)} as the objective function and feasible region of the TTR model,

respectively, we provide the procedure for finding a Pareto-efficient solution as follows:

Algorithm 1 Pareto-Efficient Resource-Allocation Strategy Algorithm
1: Solve the original TTR linear optimization model with 𝑡 = 𝑡1, and obtain resource-

allocation strategy x1, which minimizes 𝑓(x, 𝑡1) over the set {x|Ax ≥ b,x ≥ 0}.

2: Determine the strategy x2, which minimizes 𝑓(x, 𝑡2) over the set {x|𝑓(x, 𝑡1) =

𝑓(x1, 𝑡1),Ax ≥ b,x ≥ 0}.

3: For 3 ≤ 𝑘 ≤ 𝑛, determine the strategy x𝑘, which minimizes 𝑓(x, 𝑡𝑘) over the set

{x|𝑓(x, 𝑡𝑖) = 𝑓(x𝑖, 𝑡𝑖) for each 1 ≤ 𝑖 ≤ 𝑘 − 1,Ax ≥ b,x ≥ 0}.

2.3.5 Time-To-Survive Model

We define time-to-survive (TTS) to be the longest time that the firm can last without

losing demand after a disruption happens. TTS for the disruption scenario 𝑛 can be

calculated by solving the following linear program. This model is a special case of the

TTR model in the sense that we can find the TTS of the network by solving a number

of TTR models with different TTR values, and look for the smallest TTR value

corresponding to the financial impact being strictly positive. This TTS formulation

is more efficient because we can find the TTS by solving a single linear program.
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Figure 2-3: Basic setup: 𝜏𝑖𝑗 is the lead time between nodes 𝑖 and 𝑗; 𝑟𝑖 is the amount
of inventory 𝑖 at node 𝑖, 𝑟𝑖𝑗 is inventory of 𝑖 at node 𝑗 (including the pipeline inventory
on (𝑖, 𝑗)). We assume 𝑟𝑖𝑗 ≥ 𝜏𝑖𝑗.

Maximize 𝑡(𝑛)

s.t. 𝑢𝑗 −
∑︀

𝑖∈𝒫𝑗𝑘
𝑦𝑖𝑗/𝑟𝑘𝑗 ≤ 0, ∀𝑘 ∈ 𝒩−(𝑗),∀𝑗 ∈ 𝒟∑︀

𝑗∈𝒩+(𝑖) 𝑦𝑖𝑗 − 𝑢𝑖 ≤ 𝑠𝑖, ∀𝑖 ∈ 𝒰

𝑢𝑗 = 0, ∀𝑗 ∈ 𝒮(𝑛)∑︀
𝑘∈𝑉𝑗

𝑢𝑘 ≥ 𝑑𝑗𝑡
(𝑛), ∀𝑗 ∈ 𝒱∑︀

𝑘∈𝐴𝛼
𝑢𝑘 ≤ 𝑐𝛼𝑡

(𝑛), ∀𝛼 ∈ 𝒜

𝑢𝑗, 𝑦𝑖𝑗, 𝑡
(𝑛) ≥ 0,

where the constraints and variables are similar to the TTR models, except that (1)

𝑡(𝑛) is now a decision variable (TTS), and (2) we do not allow any loss (demand is

strictly satisfied in the fourth constraint). The objective value of each optimization

instance reveals the TTS of the underlying disruption scenario.

2.3.6 Model with Lead Time

For a general supply chain system (directed acyclic graph) with unique parts (no dual

sourcing), lead times can be simplified away by the following transformation:

𝑟𝑖𝑗 = 𝑟𝑖𝑗 − 𝜏𝑖𝑗 ∀ edge (𝑖, 𝑗) (2.1a)

𝜏𝑖𝑗 = 0 ∀ edge (𝑖, 𝑗) (2.1b)
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Figure 2-4: Dual Sourcing: nodes 1 and 2 are the same parts.

where 𝑖 is the upstream node, 𝑗 is the downstream node, 𝑟𝑖𝑗 is the nominal inventory

level, 𝜏𝑖𝑗 is the nominal lead time between nodes 𝑖 and 𝑗. And we know how to solve

zero lead time models. Based on these assumptions:

1. Inventory holding cost is negligible.

2. Setup time at each node is insignificant compared with the whole duration of

lead time.

3. No demand backlogging.

4. Each node is unique.

2.3.7 Multitree Systems With Dual Sourcing

Dual Sourcing at Top Tier

In the simple setup of Figure 2-4, nodes 1 and 2 are the same parts. If node 1 is down

for 1 week, then due to the long lead time of arc (2,3), node 2 does not do anything

and the effective TTR is 1 week.

On the other hand, if node 1 is down for 10 weeks, since node 2 has enough time

to react, then we can ramp up production at node 2. The effective TTR is 5 weeks.

In general, if one of the dual sources is down at the top tier, then we can transform

the inventory levels similar to Equations (2.1), and in addition, change the TTR to

the shortest lead time of the alternative sources. Based on the assumptions:

1. Dual sources are uncapacitated.
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2. Cost of increased production at alternative source is insignificant compared with

the final product margins.

2.3.8 Multitree

Assuming multitree networks – there exists at most one directed path between any

pair of nodes – we present an optimization model with size complexity polynomial in

the number of nodes and edges, independent from the time horizon.

Definition The supply chain network is defined as the bill-of-materials network,

including the current flow of materials and the substituable edges (may carry zero

flow during normal operations).

We let 𝐺 = (𝑉,𝐸) be the network we work with, denote the set of directed paths

as 𝒫 . The set of sink nodes (final products) is 𝑆. Denote the rate of flow with function

𝑓 : 𝒫 × [0, 𝑇 ] → R, then the flow entering path 𝑃 at time 𝜃 is written as 𝑓𝑃 (𝜃). Let

𝛿+(𝑖) and 𝛿−(𝑖) be the set of paths starting and ending at node 𝑖. The lead time on an

path 𝑝 is 𝜏𝑝 ≥ 0. The flow generation (dissipation) at node 𝑖 is 𝑏𝑖(𝑡) for time period

𝑡. Then for a single material, we have the (weak) flow conservation equation:

𝑡∑︁
𝜏=0

𝑏𝜏 +
∑︁

𝑃∈𝛿−(𝑖)

𝑡−𝜏𝑃∑︁
𝜃=0

𝑓𝑃 (𝜃) + 𝑟𝑖 ≥
∑︁

𝑃∈𝛿+(𝑖)

𝑡∑︁
𝜃=0

𝑓𝑃 (𝜃), ∀𝑖 ∈ 𝑉, 𝑡 ∈ 𝑇. (2.2)

The left hand side is the sum of (i) generation of flow, (ii) incoming flow from upstream

nodes that have arrived, and (iii) inventory of materials at this node. The right hand

side is the total outflow of flow.

In the case of a supply chain network, where a node may combine multiple up-

stream parts into one type of downtream part, we have the following modified flow

conservation:

𝑡∑︁
𝜏=0

𝑏𝜏 + min
𝑞∈𝑞−(𝑖)

{︁ ∑︁
𝑃∈𝛿−𝑞 (𝑖)

𝑡−𝜏𝑃∑︁
𝜃=0

𝑓𝑃 (𝜃)
}︁

+ 𝑟𝑖 ≥
∑︁

𝑃∈𝛿+(𝑖)

𝑡∑︁
𝜃=0

𝑓𝑃 (𝜃), ∀𝑖 ∈ 𝑉, 𝑡 ∈ 𝑇. (2.3)
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where 𝑞−(𝑖) is the set of upstream parts of 𝑖, and 𝛿−𝑞 (𝑖) are the paths that enter node 𝑖

as part type 𝑞. Without loss of generality, we assume the part usage ratios are always

1:1.

Directly incorporating these flow conservation constraints would result in an op-

timization model pseudo-polynomial in size (polynomial in the size of 𝑇 ).

TE : min
∑︁
𝑠∈𝑆

𝑐𝑠𝑦𝑠 (2.4a)

s.t.
𝑡∑︁

𝜏=0

𝑏𝜏 + min
𝑞∈𝑞−(𝑖)

{︁ ∑︁
𝑃∈𝛿−𝑞 (𝑖)

𝑡−𝜏𝑃∑︁
𝜃=0

𝑓𝑃 (𝜃)
}︁

+ 𝑟𝑖 ≥
∑︁

𝑃∈𝛿+(𝑖)

𝑡∑︁
𝜃=0

𝑓𝑃 (𝜃), ∀𝑖 ∈ 𝑉 ∖ 𝑆, 𝑡 ∈ 𝑇.

(2.4b)

𝑦𝑖 +
𝑡∑︁

𝜏=0

𝑏𝜏 𝑡 + min
𝑞∈𝑞−(𝑖)

{︁ ∑︁
𝑃∈𝛿−𝑞 (𝑖)

𝑡−𝜏𝑃∑︁
𝜃=0

𝑓𝑃 (𝜃)
}︁

+ 𝑟𝑖 ≥
∑︁

𝑃∈𝛿+(𝑖)

𝑡∑︁
𝜃=0

𝑓𝑃 (𝜃), ∀𝑖 ∈ 𝑆, 𝑡 ∈ 𝑇.

(2.4c)

𝑓𝑃 (𝑡), 𝑦𝑖 ≥ 0, ∀𝑡 ∈ 𝑇, 𝑃 ∈ 𝒫 , 𝑖 ∈ 𝑉. (2.4d)

where 𝑐𝑠 is the profit margin for product 𝑠. Constraints (2.4b) provides the weak

flow conservation at each intermediate node. Constraints (2.4c) records the amount

of lost sales (𝑦𝑠) at each sink node. At optimality, either 𝑦𝑠 is zero, or the constraints

(2.4c) are tight.

Due the following observation, we can actually change the formulation into poly-

nomial in size.

Observation 2.3.1 The time-expanded network of multitree system 𝐺 is a set of

disconnected multitrees with the same topology as 𝐺. The separability comes from the

fact that lead time is unique between any two nodes.

Since the separability relies on the uniqueness of travel time between any two nodes,

we can also apply all following arguments to a graph where the travel time between

any two nodes is unique, regardless of the path taken.
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Figure 2-5: A simple multitree network with lead times on the arcs.
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Figure 2-6: The time-expanded version of the network in Figure 2-5, showing its
decomposability.

Example We can illustrate this observation by an example (Figures 2-5 and 2-6).

Assuming 𝑓 is an optimal solution to the time expanded network formulation TE.

Then let 𝑓 𝑔 denote the flow in one of the separable multitree 𝐺 of the time expanded

network (for example, the one highlighted in red in Figure 2-6).

Lemma 2.3.2 (Smoothing.) For a set of 𝑘 adjacent neighbor sub-graphs {𝑔𝑖}, if each

𝑓 𝑔𝑖 is feasible on 𝑔𝑖, then flow 𝑓 = 1
𝑘

∑︀
𝑖 𝑓

𝑔𝑖 is also feasible on 𝑔𝑖, ∀𝑖.

Proof For any two vectors 𝑓 𝑔1 and 𝑓 𝑔2 satisfying linear constraints 𝐴𝑓 𝑔1 ≥ 𝑏 and

𝐴𝑓 𝑔2 ≥ 𝑏, their average also satisfies the same system of inequalities, i.e., 𝐴(𝑓 𝑔1 +

𝑓 𝑔2)/2 = 𝑏. This argument applies to an arbitrary (finite) number of vectors 𝑓 𝑔𝑖 . �
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TE2 : min
∑︁
𝑠∈𝑆

∑︁
𝑡∈𝒯

𝑐𝑠𝑦𝑠(𝑡) (2.5a)

s.t.
𝑡∑︁

𝜏=0

𝑏𝜏 + min
𝑞∈𝑞−(𝑖)

{︁ ∑︁
𝑃∈𝛿−𝑞 (𝑖)

𝜃𝑗𝑓𝑃 (𝑗)
}︁

+ 𝑟𝑖 ≥
∑︁

𝑃∈𝛿+(𝑖)

𝜃𝑗𝑓𝑃 (𝑗), ∀𝑖 ∈ 𝑉 ∖ 𝑆, 𝑡 ∈ 𝒯 .

(2.5b)

𝜃𝑖𝑦𝑖(𝑡) +
𝑡∑︁

𝜏=0

𝑏𝜏 + min
𝑞∈𝑞−(𝑖)

{︁ ∑︁
𝑃∈𝛿−𝑞 (𝑖)

𝜃𝑗𝑓𝑃 (𝑗)
}︁

+ 𝑟𝑖 ≥
∑︁

𝑃∈𝛿+(𝑖)

𝜃𝑗𝑓𝑃 (𝑗), ∀𝑖 ∈ 𝑆, 𝑡 ∈ 𝒯 .

(2.5c)

𝑓𝑃 (𝑡), 𝑦𝑖(𝑡) ≥ 0, ∀𝑡 ∈ 𝒯 , 𝑃 ∈ 𝒫 , 𝑖 ∈ 𝑉. (2.5d)

for each 𝑃 and 𝑗, 𝑗′ is the index such that
∑︀𝑗

𝑧=0 𝜃𝑧 − 𝜏𝑃 =
∑︀𝑗′

𝑧=0 𝜃𝑧. We basically

divided the time horizon into |𝒯 | events, the 𝑖th interval has length 𝜃𝑖. Here an event

is a sequence of consecutive time periods in which the parameter 𝑏𝑖𝑡 remain constant

for all 𝑖.

Theorem 2.3.3 Given an assembly network 𝐺 that is a multitree, we can solve the

multi-disruption problem in polynomial time. the objective value of TE2 is the same

as TE, and TE2 is polynomial in the number of events and network size.

Proof TE is the optimization problem on the time expanded network 𝐺|𝑇 |. By

Observation 2.3.1, the constraints are decomposable across the events 𝑡. The subset of

optimal solution corresponding to a particular event may not be identical. But within

each event, the parameter values 𝑏𝑖(𝑡) remain constant for all 𝑖 in 𝑉 , and for all 𝑡 in

this event. Thus by Lemma 2.3.2, we can smooth these flow and shortage variables

to be identical, leading to the formulation TE2. This formulation is polynomial in

the number of events and original network size. �
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2.4 Implementation

We implemented our model as a decision support system during a three-year research

engagement between MIT and Ford. The first phase of the project included the

assessment of existing risk-management approaches. In the second phase, we worked

with the Ford optimization and information technology (IT) teams to focus on model

design and implementation, and the integration of the optimization model and Ford’s

IT system. The modeler and optimization specialists communicated weekly, and

received help from Ford’s procurement team to validate the model’s output.

Ford’s procurement staff used the decision support system in three ways: (1)

strategically, to identify exposure to risk associated with parts and suppliers, effec-

tively prioritize and allocate resources, segment suppliers, and develop mitigation

strategies; (2) tactically, to track daily changes in risk exposure to alert procurement

executives to changes in their risk position; and (3) operationally, to identify effective

ways to allocate resources after a disruption. Using the model to conduct a compre-

hensive analysis of its risk exposures (i.e., the strategic level), Ford identified several

supply chain nodes that would have a large impact on its operations if disrupted.

These large exposures lie in unlikely places, such as nonstrategic suppliers or parts

that the company spends relatively little money to procure. Armed with this infor-

mation, Ford can make more informed decisions on how to deploy its risk-assessment

resources and mitigate the effects of a disruption to these nodes.

In this section, we describe the insights our model provides at the strategic, tac-

tical, and operational levels for Ford’s risk-analysis, procurement, and management

teams.

2.4.1 Evaluation of Node Criticality with the TTS Model

As we discussed in the previous section, TTR information is not known accurately in

many practical situations because of information uncertainty and optimistic supplier

assessments. Therefore, the first step of our risk-analysis process is to identify the

disruption scenarios that would lead to immediate performance deterioration, namely,
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Figure 2-7: A significant portion of the suppliers have very low TTS values, thus
requiring more accurate TTR evaluation and closer monitoring for risk-exposure as-
sessment. In addition, some suppliers have very high TTS values, possibly because
of redundant inventory buffers.

to find nodes with small TTS values. Nodes that represent higher exposure levels will

have a TTS value that is lower than a threshold value, for example, TTR plus a safety

allowance.

Figure 2-7 shows that the suppliers included in the analysis have a range of TTS

values. Many suppliers have TTS values of less than a week. Ford’s management

can use this information to concentrate on the PI of low-TTS suppliers and acquire

corresponding TTR information. In addition, by identifying the nodes with high

TTS values, this analysis can identify potential waste, caused by excessive protection

(strategic inventory), within the system. For such nodes, a firm may reduce (strategic)

inventory, thus providing significant cost savings.

2.4.2 Application to Strategic Decisions

Strategically, Ford utilizes the TTR model to identify the risk exposure of parts and

suppliers, allowing it to prioritize resource allocation. Furthermore, by combining the

risk exposure of suppliers with other information, such as the total spend at various

supplier sites, Ford gains insights about possible mitigation strategies it could adopt

toward various types of suppliers. Below, we describe these applications of the model
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Figure 2-8: Among 4,534 sites examined, 2,773 sites have zero impact at the time of
analysis and 408 have very high impact.

to Ford.

Figure 2-8 is based on the PI output (in this case, lost sales measured by the

impact of vehicle-production volume) from a model run, including all the critical

suppliers and Ford plants that support Ford’s North American assembly plants. As

the figure indicates, a significant portion of the suppliers do not expose Ford to any

risk; however, more than 400 sites have very high PIs.

In Figure 2-9, we take a closer look at these suppliers with very high PIs and see

that some of the largest exposures reside in unlikely places, such as the production and

(or) procurement of low-cost, commoditized parts. Therefore, some of the traditional

risk-mitigation strategies (e.g., focusing on high-spend suppliers) may lead to wasteful

resource allocation at low-exposure sites and insufficient protection at high-exposure

sites.

Figure 2-9 suggests that Ford should reduce its exposure to risk by segmenting

suppliers into three categories depending on the supplier’s PI and total spend. Each

segment presents a different set of challenges; therefore, Ford should use different
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Figure 2-9: Impact of a disruption at a supplier site (node) on Ford’s lost profits is
not correlated with the amount Ford spends at the supplier. Each circle represents a
unique supplier site.

mitigation strategies, as Figure 2-10 illustrates. First, suppliers on the left side of

the chart have low exposure; therefore, Ford’s primary actions in many of these cases

should involve signing long-term supply contracts and tracking inventory.

Supplier sites with high total spend and high PI are at the top right side of the

chart. This segment includes, for example, suppliers of seats and instrument pan-

els. These items strongly affect the customer experience, and their prices represent a

large portion of the total manufacturing cost. We typically refer to them as strategic

components and their corresponding suppliers as strategic suppliers. For many com-

panies, this segment represents 20 percent of their suppliers, which accounts for about

80 percent of total spend. Typically, each of these components has a single strategic

supplier. An appropriate supply strategy for these items is to focus on long-term

partnerships with suppliers and implement effective supply contracts where Ford can

share risks with suppliers and track performance. Importantly, because of the high

total spend with these suppliers, Ford may be able to compel some of these suppliers

to have backup supply sites in different regions.
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Figure 2-10: This graph suggests supplier segmentation and different risk-mitigation
strategies for different groups of suppliers.

The most challenging suppliers are those whose total spend is low and PI is high

(i.e., suppliers at the bottom right side of the chart). To ensure supply, a firm may

invest in inventory, require the supplier to have dual sites in different regions, or apply

a dual-sourcing strategy. Unfortunately, each of these mitigation strategies may cause

a problem. Investing in inventory may not be consistent with the lean strategy the

company is applying. Low total spend implies that the firm is not in a good position

to require the supplier to have multiple sites. In addition, some of these suppliers

are associated with high-volume, low-cost, and low-margin components. For these

components, competition typically shifts to a few manufacturers that dominate the

market because of their lower costs and superior quality; as a result, engaging in a

dual-sourcing strategy is difficult. In our experience, one possible mitigation strategy

involves a new product design in which components are standardized, allowing the

firm to shift more volume and more spend to the supplier; hence, the firm would be

in a good position to require dual sites.
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2.4.3 Application to Tactical Decisions

Recall that for some components, risk exposure is directly proportional to the level of

inventory of that component in Ford’s supply chain. To identify risk exposure, pipeline

inventory information is uploaded to the system on a regular basis, and the system

determines the performance impact by component anywhere in the supply chain.

When performance impact is above a specific level, procurement specialists initiate

a process to understand the reason and take corrective action. In that respect, our

system serves as a control tower that allows the firm to monitor suppliers’ performance

and inventory trends to take action before problems occur. Because the company

takes actions in anticipation of a potential adverse event, it can minimize the financial

impact if such events happen.

2.4.4 Application to Operational Decisions

Operationally, Ford supply-risk specialists use the model to respond to a disruption

event. For example, a few months ago, political problems in one region motivated the

procurement department to identify the high-exposure suppliers in that region and

find alternative sources of supply for these components.

In such situations, our TTR model optimizes inventory and capacity allocation

decisions when a disruption occurs, assuming that accurate TTR information is avail-

able immediately after a disruption occurs. Unfortunately, TTR may be different for

different modes of disruptions (e.g., process disruption versus tooling damage), and

the firm may not know the exact TTR value when a disruption occurs. Therefore,

identifying robust allocations of inventory and capacities under such uncertainty in

TTR values is important.

Figure 2-11 provides a stylized example that compares the impact of different

resource-allocation strategies when the length of the disruption varies. In this figure,

each curve represents the financial impact of one resource-allocation strategy. For

example, the solid curve corresponds to the optimal resource-allocation strategy for

TTR=1; we evaluate the performance of this resource-allocation strategy for all TTR
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Figure 2-11: Each curve represents the financial impact of one resource-allocation
decision. The solid curve is optimal for TTR=1, but suboptimal for TTR=0.7; the
reverse is true for the dotted line.

values between 0 and 2. Similarly, the dotted curve is associated with the optimal

resource-allocation strategy when TTR=0.7. Figure 2-11 suggests that neither of the

two strategies dominates; that is, neither strategy outperforms the other on all TTR

values between 0.7 and 1. This is not always the case. Another stylized example

(Figure 2-12) shows that the strategy associated with the solid line outperforms the

strategy associated with the dotted line. The former strategy outperforms all other

strategies for TTR values between 0 and 2 (Figure 2-12 does not show other strate-

gies); that is, the solid line either matches or dominates the performance of any other

resource-allocation strategy determined by using a single TTR value between 0 and

2.

Motivated by these different cases, we developed an algorithm that can (1) find a

dominating strategy if it exists, or (2) find a Pareto-optimal strategy, which always

exists. That is, managers can specify the ranking of potential TTR values, and the

algorithm provides a strategy that is not dominated by any other strategy.
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Figure 2-12: Each curve represents the financial impact of one resource-allocation
decision. The solid curve is optimal for all nonnegative TTR values.

2.4.5 System Architecture

To allow procurement and risk specialists to take advantage of our model, Ford de-

veloped a decision support system that integrates various databases, the TTR and

TTS models, and a data-visualization software package. The data sources include

Ford’s material requirements planning (MRP) system, its purchasing database, and

sales-volume planning information. Figure 2-13 describes the system architecture in

which various data sets, including bill of material, part routing, inventory levels, and

plant vehicle volumes are used to map Ford’s supply chain. [67] describe the basic

methodology of mapping the Ford supply chain. Our optimization engine uses the

results to generate the various performance impacts. These performance measures

are then presented to the users by Tableau data visualization, which includes a geo-

graphic mapping capability. Thus, users can view results both in tabular form and in

various graphical formats. Figure 2-14 provides a screenshot of our interface; the size

of the circles identifies the performance impact of a disruption to the supplier in that

geographic location. The two tables at the bottom of Figure 2-14 provide detailed

information on suppliers and parts. For each supplier, the table on the left provides

the vehicle affected, total spend at that supplier, financial impact, and production-

volume impact if that supplier is disrupted for the duration of its TTR. The table on
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Figure 2-13: Ford’s risk-analysis framework integrates databases, our risk-exposure
model, and an output visualization tool.

the right provides all affected parts associated with each supplier.

Procurement and risk specialists regularly use the system to track risk exposures

in real time as inventory levels fluctuate and the supply chain structure evolves. The

frequency of updates relies on the efficient data-integration technology developed by

Ford and the computational tractability of our linear programming models.

2.4.6 Realized Benefits for Ford

Ford spends several million dollars per year to proactively manage its operational and

supply chain risk. Two points make clear why Ford must deploy its risk-management

resources in the most effective manner possible. First, it must spread these resources

across a huge operational footprint. Ford’s operations and supply chain include over

4,400 Tier 1 supplier sites, hundreds of thousands of lower-tier suppliers (Tier 2 and

lower), over 50 Ford-owned facilities, 130,000 unique parts, 35 billion total parts
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Supplier Vehicle Impacted Total Part Cost Financial Impact Volume Impact Supplier Part Names

x11 cc1 $$$ $$$ vvv x11 y11

x12 cc2 $$$ $$$ vvv x11 y12

x13 cc3 $$$ $$$ vvv x11 y13

x14 cc4 $$$ $$$ vvv x12 y21

x15 cc5 $$$ $$$ vvv x12 y22

x16 cc6 $$$ $$$ vvv x13 y31

x17 cc7 $$$ $$$ vvv x13 y32

x18 cc8 $$$ $$$ vvv x13 y33

x19 cc9 $$$ $$$ vvv x13 y34

x20 cc10 $$$ $$$ vvv x14 y41

Figure 2-14: Critical suppliers are mapped to geographical location. The size of
a circle indicates the magnitude of the impact on Ford’s performance if a supplier
is disrupted. The table view gives detailed information regarding the financial and
vehicle-volume impact associated with these suppliers.

annually, and over $80 billion annually in external procurement costs. Second, the

cost of failure can be huge because supply chain disruptions can have a significant

impact on Ford’s ability to match supply with demand. Indeed, Ford estimates that

the lost revenue associated with a disruption can be significant. To illustrate this

point, recall that in 2011 Toyota lost 800,000 units of production volume as a result

of the Japan earthquake and more than 240,000 units of production volume as a result

of the flood in Thailand. Honda faced similar challenges [127].

The risk-exposure model produces important and tangible benefits for Ford to help

it effectively identify and manage its risks. First, Ford has identified supplier sites that

have a material impact if disrupted, but that it did not recognize as high-exposure

sites. Based on the model results, 2,600 Tier 1 supplier sites have nonzero vehicle-

volume impact that, if disrupted, would adversely impact Ford’s revenue by up to $2.5
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billion. Ford now classifies these exposures as high-priority issues that require a formal

remediation analysis. Identifying these suppliers is particularly compelling because

they represent 1,500 additional supplier sites that will now receive a larger share of

Ford’s risk-management resources. Identifying and addressing such risk exposures

directly supports Ford’s corporate strategy.

A second benefit is identifying low-exposure supplier sites that are currently re-

ceiving an excessive allocation of Ford’s risk-management resources. The model has

identified over 400 supplier sites that Ford includes in its risk-monitoring program,

but which pose insignificant exposure to the company if disrupted. This information

has allowed Ford to more efficiently allocate its supplier risk-management resources.

By reallocating these resources, Ford is better able to protect itself from the

highest-impact exposures in its operations and supply chain. For example, the lost

revenue associated with a two-week disruption to the newly classified high-impact

supplier sites ranges from several hundred thousand dollars to $2.5 billion; in contrast,

the lost-revenue impact associated with a two-week disruption to each of the formerly

classified high-impact supplier sites is minimal. In the words of Ford manager Michael

Sanders, “This has been one of the key game changers for us. This enables us to focus

on the supplier sites which would have a high or very high impact on performance if

disrupted, and lets us put all our resources and all our knowledge into making sure

we have robust plans to protect us in the event that something happens with any one

of those sites” [130].

Finally, our model detects hidden risks in Ford’s supply chain. For example,

it identified a low-cost sensor that has high vehicle exposure; however, because of

the low total spend, Ford’s procurement group was not paying much attention to

this component. Following the risk analysis, the commodity team acknowledged the

sourcing concentration and associated risk and developed a mitigation strategy.
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Chapter 3

Optimizating Biodefense Supply

Chain

3.1 Introduction

In this paper, we study the problem of designing a medical countermeasures (MCM)

supply chain in preparation against bioattacks, i.e., the intentional release of pathogens

or biotoxins against humans to cause serious illness and death. Bioattacks have been

a rising first-order concern to many countries worldwide in the last 15 years; the U.S.

alone, for instance, has poured approximately $60 billion into biodefense prepared-

ness since the 9/11 attacks [78]. Bioattacks are considered a major threat because

a minute quantity of pathogens is sufficient to infect humans; furthermore, the ap-

propriate MCMs need to be administered within a short time window to effectively

reduce casualty. For example, if bioterrorists were to release Bacillus anthracis, i.e.,

anthrax, over a large city, hundreds of thousands of people could be at risk, and MCMs

would need to be administered to them within a few days to have the intended ef-

fect [103, 142]. Distributing such large MCM quantities to the general public within

such short time periods poses a considerable operational challenge, which is often

compounded by attack detection delays.

In order to be prepared to deliver adequate medication in a timely manner in

response to a bioattack, first, MCMs need to be stockpiled at appropriate locations.
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Some inventories can be stored in central locations to take advantage of deployment

flexibility, pooling effects, and scale economies in holding costs, while others can be

positioned closer to populous areas, or even predispensed to the intended users in the

form of home medical kits, in order to reduce transportation time. Second, for end

users to have prompt access to deployed MCMs, target areas need to have adequate

dispensing capacity in place, e.g., in the form of publicly accessible dispensing facilities

or dedicated courier delivery services. Too little capacity would result in inefficient

usage of available inventory and devastating delays; too much would result in wasted

resources. Given candidate storage locations, where and how much MCM inventory

should then be prepositioned in order to cost-effectively defend against bioattacks?

How much dispensing capacity should be installed at target areas? Our goal in this

paper is to address these research questions and develop a decision support framework

that could guide policy design.

MCM supply chain in the U.S. The Centers for Disease Control and Prevention

(CDC) maintains MCM inventories within the Strategic National Stockpile (SNS),

which is a critical component of the national health security programs managed by

the CDC Office of Public Health Preparedness and Response (PHPR) [106, 107]. The

inventory storage and delivery infrastructure of SNS form a crucial line of defense for

the nation’s public health security.

For many bioattack threats, SNS currently stores MCM inventories in central

repositories, while its delivery infrastructure enables deployment of virtually any

amount of stored MCMs to almost any major city in the U.S. within 12 to 36 hours,

at negligible shipping costs. But centrally stored inventories may not be responsive

enough for events such as anthrax attacks. In recent years, CDC has been increas-

ingly aware of alternatives, namely the prepositioning of MCMs to locations closer

to the population. Prepositioning has been raised as a first-order issue for SNS, and

PHPR policymakers have commissioned several studies to examine different strate-

gies [103, 142]. To date, several facets of the problem have been analyzed in isolation,

including location and transportation options, cost of each system component, and

health effects of delayed treatment.
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However, a comprehensive cost-benefit analysis at the system level that integrates

individual considerations into a practical quantitative decision support tool has been

elusive. Our work helps fill in this gap, the importance of which is indeed highlighted

in the following excerpt from a report prepared by the Board of Scientific Counselors

for PHPR [73, 105]:

“Both analytic and simulation (experimental) modeling activities should

be increased substantially. Modeling will allow [the Division of] SNS to

make quantitatively-based decisions on how much inventory to hold and

where to hold it. An end-to-end model capturing the flow of materials

in the SNS, as well as costs and logistical and health measures, should

begin at the SNS-managed inventory site and go all the way to the point

of dispensing to the public. Using such models will reveal bottlenecks,

provide cost estimates, and help SNS properly evaluate the costs and

consequences of alternative Response Supply Chain configurations.”

Herein, we focus on an end-to-end analytic model as described in the quote above.

The absence of such integrative models so far attests to the underlying technical chal-

lenges: (a) the multiplicity of decisions involved, both strategic and operational; (b)

the subtle way prepositioning could influence bioattackers’ actions; and (c) the scale

of the problem. In particular, on the strategic level, policymakers need to decide

how much inventory to store and how much capacity to install among thousands of

locations, in anticipation of an attack. On the operational level, in response to an

attack, appropriate shipment decisions need to be made to efficiently dispense MCMs

based on the specific demand and supply conditions. The static inventory position-

ing and capacity installation decisions need to be made in conjunction with myri-

ads of contingent shipment policies. Furthermore, some information about planned

responses is already available in the public domain, and prepositioning MCMs, par-

ticularly predispensing medical kits, is likely to grant to bioattackers even greater

visibility to planned responses. Consequently, bioattackers, because they usually act

in a pre-planned way to inflict the greatest damage possible, are more likely to tar-
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get under-served populated areas, as opposed to ones that have access to abundant

stockpiles. That attackers’ actions are likely to be adversarial is well recognized by

biodefense policymakers, see, e.g., [142], and the intelligence and military operations

research literature [7, 27, 63, 64, 79].

Our methodology. We model the SNS as a network: inventory stockpiles as nodes,

and shipment routes as edges. Bioattacks correspond to demand surges at some of

the nodes. To model interactions between bioattackers’ and policymakers’ decisions,

we adopt the defender-attacker-defender model (DAD), which can be viewed as a

multistage robust optimization (RO) model [17, 27]. Specifically, we consider MCM

prepositioning as a first-stage static defender decision, bioattacks as second-stage ad-

justable attacker decisions, and MCM shipments as third-stage adjustable defender

decisions. We calibrate the objective and uncertainty set of possible demand scenarios

in ways that reflect policymakers’ considerations. In particular, we deal with minimiz-

ing either inventory holding costs under survivability guarantees for all possible attack

scenarios, or worst-case inventory and health costs, where each scenario comprises si-

multaneous attacks in multiple locations. To preclude overly pessimistic scenarios in

which too many locations are attacked, our uncertainty sets include attack budget

constraints, which are both standard and crucial in the DAD framework [5].

Unfortunately, there are no scalable solution approaches that perform provably

well even for the inventory prepositioning problem, let alone joint optimization of

inventory and dispensing capacity decisions. In particular, DAD models and multi-

stage RO problems of the type we study here are generally intractable [5, 17, 27, 28].

There has been valuable effort in solving reasonably sized problems [6], but they are

orders of magnitude smaller than what our problem entails. In the RO literature, a

popular heuristic is the so-called Affinely Adjustable Robust Counterpart (AARC),

which restricts adjustable decisions to be affine in the uncertainty variables [17]. Al-

though AARCs often lead to tractable formulations, they can perform rather poorly

in high-dimensional problems [19]. Worse, all known performance guarantees for

AARCs apply to problems with “symmetric” uncertainty sets. The aforementioned

attack budget constraints that are necessary in our problem lead to sets that are the
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“least-symmetric,” casting considerable doubt over the performance of AARCs in our

setting (see section 1.2 and discussion in §3.3.2 for more details).

Our contributions. First, for the inventory prepositioning problem, we provide an

approximate solution approach, with theoretical backing for its performance, that can

deal with network sizes on the order of millions of nodes. In particular, we consider

the Affinely Adjustable Robust Counterpart, which reduces to a linear optimization

problem (LP) by restricting the adjustable shipment policies to be affine in the de-

mand shocks. We provide theoretical backing to its performance by proving that

AARC is in fact optimal under certain conditions. Our work contributes to the RO

literature by proving optimality of AARC in a new and important context—see our

discussion in Literature Review and in §3.4. Numerical studies we conducted revealed

that AARCs provide near-optimal performance for the inventory prepositioning prob-

lem under general settings as well.

Second, we consider the joint problem of inventory prepositioning and dispensing

capacities optimization. We show how dispensing capacity, which is costly, can be

captured as a first-stage decision and how the third-stage shipment decisions can be

reformulated so as to reflect the underlying capacitated dispensing operations. We

derive the AARC for this joint problem as an LP and conduct numerical studies to

confirm that it still produces near-optimal solutions.

Third, successfully applying AARC to our problem speaks to the potential of

its broader impact for other DAD problems. In particular, the AARC approach is

applicable to tri-level programs that are nonlinear and with integer variables. In the

sense of [5], AARC is suitable for eight out of the nine types of operator models (the

only exception is simulation-based operator model that does not have a closed form

description at all).

Fourth, we use our model in a thorough, large-scale case study of MCM supply

chain design for the SNS to defend against anthrax attacks. Tractability of our

approach enables us to perform the first study we are aware of in the literature that

is at a realistic, nationwide scale and deals with networks with millions of nodes. We

calibrate our model using multiple literature sources that studied different facets of
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SNS design in isolation. Our integrated framework enables us to derive prescriptive

recommendations to the CDC. For example, we find that if CDC wanted to ensure

85% survivability for attacks that simultaneously affected (any) two states, each with

at most two cities being attacked, with a detection time of under 48 hours, then

the minimum required annual inventory and dispensing capacity budget would be

about $210 million; for survivability target of 92%, the budget would increase to $553

million. This increasing marginal cost phenomenon, along with other cost/policy

implications, can be explored quantitatively within our model.

3.2 The Inventory Prepositioning Problem

We begin by considering the MCM inventory prepositioning problem, assuming for

now that sufficient dispensing capacity is installed. For exposition purposes, we use

SNS to exemplify our discussion, but our model and solution heuristic generalize

to any network. The SNS network is designed to protect the public susceptible to

bioattacks in a set of geographic locations, e.g., densely populated towns or neighbor-

hoods, which we shall refer to as demand locations. The demand locations are split

into administrative divisions according to a hierarchical structure, e.g., boroughs, mu-

nicipalities, provinces, states, etc. There are 𝐿+ 1 levels in the hierarchy, indexed by

ℓ = 0, . . . , 𝐿, whereby each division at the lowest (𝐿th) level comprises precisely one

demand location. Divisions at some intermediate ℓth level comprise subsets of divi-

sions at the lower (ℓ + 1)th level in a nested fashion; the highest (0th) level includes

a single division, e.g., federal/national level. For a division 𝑖 at the ℓth level, let 𝒫(𝑖)

be its parent division at the (ℓ− 1)th level, 𝒞(𝑖) the set of (children) divisions that it

includes at the (ℓ + 1)th level, and 𝒟(𝑖) the set of demand locations that it includes,

i.e.,

𝒟(𝑖) = {demand location 𝑗 : 𝒫(𝒫(. . .𝒫(𝒫⏟  ⏞  
𝐿−ℓ times

(𝑗)) . . .)) = 𝑖}.

Figure 3-1 includes an illustrative example, where the demand locations are cities,

split under state and federal divisions.
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city 1

city 2

city 3

city 4

city 5

state A

state B

federal F

` = 2` = 1` = 0

Figure 3-1: Five demand locations (cities) split into three administrative divisions,
federal ℓ = 0, state ℓ = 1 and city ℓ = 2. Note that 𝒫(1) = 𝒫(2) = 𝒫(3) = A
and 𝒫(4) = 𝒫(5) = B; 𝒞(A) = 𝒟(A) = {1, 2, 3} and 𝒞(B) = 𝒟(B) = {4, 5};
𝒟(F) = {1, 2, 3, 4, 5}.

To serve the demand locations, each administrative division at the 0, . . . , 𝐿 − 1

levels maintains a stockpile of appropriate medical countermeasures. In particular,

in case of a bioattack, MCMs would typically need to be shipped from the—usually

remotely located—stockpiles to the demand locations, where they are subsequently

dispensed to the affected population.

Let the demand locations and stockpiles correspond to nodes in a directed graph

(𝑉,𝐸), which we refer to as demand and stockpile nodes, respectively. The subset of

demand nodes is denoted with 𝑉𝐷. We index the root node (stockpile node at the

highest level division) with 0. The edges in 𝐸 connect stockpile nodes with demand

nodes. Specifically, (𝑖, 𝑗) ∈ 𝐸 if and only if inventory can be shipped from 𝑖 to

𝑗 ∈ 𝑉𝐷 once an attack occurs. Shipments have negligible costs and are not subject

to capacity constraints for the purposes of the SNS network.1 However, there is a

fixed lead time 𝜏𝑖𝑗 for shipping inventory from 𝑖 to 𝑗 for all (𝑖, 𝑗) ∈ 𝐸. Note that even

though a “hierarchical inventory network” like the SNS resembles a tree structure,

and the demand and stockpile node sets are usually disjoint, our model and solution

approach are more general and can be applied to any network (𝑉,𝐸), accommodating

demand and stockpile on any node.

We focus on a particular bioattack threat, in anticipation of which a single MCM
1Unlike shipping MCMs, dispensing is often capacitated—a situation we address in §3.5.
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type is stored. Inventory of this MCM can be prepositioned at any node 𝑖 ∈ 𝑉 . If

𝑖 is a demand node, the stored inventory corresponds to predispensed medical kits.

Let x ∈ R|𝑉 | denote the amounts of stored inventories allocated at the nodes. The

set of all feasible inventory allocations, 𝑋 ⊆ R|𝑉 |, is assumed to be a polytope and

could include inventory related constraints, e.g., non-negativity constraints, budget

constraints subject to inventory setup cost and variable cost. A unit of inventory is

adequate to treat precisely one individual. Associated with storing inventory at any

node are purchasing, replenishment, maintenance costs, etc. We refer to these costs

simply as holding costs, and denote the per-unit costs with h ∈ R|𝑉 |. That is, storing

𝑥𝑖 MCM units at node 𝑖 ∈ 𝑉 costs ℎ𝑖𝑥𝑖.

When an attack takes place, a subset of demand nodes are affected, and parts of

their populations are in need of treatment with the MCMs. We also say that division

𝑖 is affected, if any of its children demand nodes 𝒟(𝑖) is affected. For example, if

city 1 is attacked in Figure 3-1, we say that it is affected and so is state A. Let

d ∈ R|𝑉𝐷| be the (a priori unknown) vector with the realized number of affected

individuals in each of the demand nodes. Once d is revealed, inventory stored at

the affected demand nodes is available immediately. In case of shortages, inventory

from other stockpile nodes can be shipped to satisfy the demands, as long as there

exist edges between them. For each edge (𝑖, 𝑗) ∈ 𝐸, let 𝑓𝑖𝑗 denote the amount of

inventory shipped from 𝑖 to satisfy demand at node 𝑗. Note that shipment decisions

are contingent on the realized demand, which we sometimes make explicit by writing

them as 𝑓𝑖𝑗(d). Inventory shipped from 𝑖 would be made available for treatment at

node 𝑗 only after 𝜏𝑖𝑗 time units. Delays in treatment of affected population could lead

to lower probability of survival. We use 𝜌𝑖𝑗 ∈ [0, 1] to denote the survival probability

(or survivability) of an individual in node 𝑗 if treated with inventory shipped from

node 𝑖, and 𝜌 ∈ [0, 1] if left untreated. For example, suppose that node 𝑗 is affected

and 50% of the affected individuals are treated with inventory prepositioned at that

node, 30% are treated with inventory shipped from node 𝑖, and 20% are left untreated.

The average survivability would then be 0.5𝜌𝑗𝑗 + 0.3𝜌𝑖𝑗 + 0.2𝜌.

With respect to the possible attack scenarios, CDC considers ones involving si-
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multaneous attacks to multiple locations across the country [73]. In view of this, we

consider attack scenarios (or demand vectors) where, for each administrative division

𝑖, at most Γ𝑖 of its children divisions 𝒞(𝑖) are affected. We assume Γ𝑖’s to be non-

negative integers and refer to them as the attack scale parameters. For example, if

the administration levels are states and cities, Γ𝑖 = 2 for state 𝑖 would mean that we

consider attack scenarios with at most 2 cities in state 𝑖 being affected.

In case demand location 𝑖 is affected, the maximum number of individuals in need

for treatment at that location is 𝑑𝑖.2 A further probabilistic characterization of the

possible demand vectors d appears to be, unfortunately, prohibitive for a variety of

reasons. One relates to limited historical data, given that bioattacks have so far been

rarely encountered in practice. A second, and more important, reason is the nature

of terrorist attacks being adversarial and endogenous, instead of purely random and

exogenous. In particular, unlike natural disasters, for instance, bioattacks are pre-

meditated and often carefully planned in order to maximize the damage inflicted. The

choice of which locations to attack then, which essentially drives the realization of d,

is likely to be influenced by the inventory decisions, given that prepositioned inventory

(or lack thereof) is partially visible to the public. Both issues of endogeneity and the

adversarial choice of the attacked areas are indeed considered and acknowledged by

policymakers [142] and academics studying the DAD framework [4, 6, 7, 28, 32, 79, 88].

In the next section, we consider a suitable model for d that addresses these issues,

instead of postulating a probabilistic description.

In general, more (less) inventory in the system leads, on the one hand, to higher

(lower) holding costs and, on the other hand, to fewer (more) potential casualties.

Therefore, CDC needs to balance inventory costs and the costs of life loss. We consider

two possible ways to navigate this tradeoff, leading to two problem formulations:

1. Policymakers explicitly quantify the cost of life lost to be 𝑏 monetary units. The
2The maximum number of affected individuals for a bioattack is estimated by policymakers based

on census considerations, e.g., population density, transmission and contagion characteristics, e.g.,
the required quantity of spores to carry out an attack and their ability to remain aloft and travel
further for aerosol attacks, and others. The estimation usually relies on experimental data, see for
example our discussion in Section 3.6.
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problem is then to select an inventory allocation so as to minimize holding costs

plus worst-case life loss costs under all possible attack scenarios. We refer to

this formulation as Life Loss Cost (LLC).

2. Policymakers specify survivability targets: let 1 − 𝜖𝑖 be the target for average

survivability in demand node 𝑖, for some 𝜖𝑖 ∈ [0, 1], which we refer to as the

survivability target parameters. The problem is then to select an inventory

allocation so as to minimize holding costs, while providing the survivability

guarantees implied by the specified targets in all demand locations, under all

possible attack scenarios. We refer to this formulation as Life Loss Guarantee

(LLG).

Our model is well-suited for policy decision-making purposes. In particular, the

attack scale parameters {Γ𝑖 : 𝑖 ∈ 𝑉 } enable policymakers to specify the severity of

attacks they want to hedge against, both in terms of magnitude, since higher values of

Γ for lower level nodes translate into more areas affected, e.g., cities, and in terms of

complexity, since higher values of Γ for higher level nodes translate into the affected

areas being dispersed among more divisions, e.g., states. Furthermore, the life loss

cost 𝑏 in the (LLC) formulation, or the survivability target parameters {𝜖𝑖 : 𝑖 ∈ 𝑉𝐷} in

the (LLG) formulation, reflect the policymakers’ aversion to casualties and insufficient

coverage. Based on the policymakers’ selections, the model prescribes appropriate

inventory prepositioning strategies and elicits their minimum required costs, which

allows for tradeoff analyses.

3.3 Formulation and Solution Approach

For both (LLC) and (LLG), we formulate the inventory prepositioning problem as

a DAD problem, or multistage robust optimization problem. In particular, at the

first stage, the defender decides on the prepositioned inventory allocation x ∈ 𝑋. At

the second stage, the attacker chooses an attack scenario or demand vector d from

the set of scenarios compatible with the specified attack scale parameters, denoted
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by 𝑈 ⊂ R|𝑉𝐷|, so as to minimize expected survivors. We also refer to 𝑈 as the

demand uncertainty set. At the third stage, after the realized demand vector d ∈ 𝑈

is revealed, the defender decides on the shipment strategy {𝑓𝑖𝑗(d) : (𝑖, 𝑗) ∈ 𝐸}.

Formally, we model (LLC) as

(LLC): min
x, f(·), s(·)

h𝑇x + max
d∈𝑈

𝑏
∑︁
𝑖∈𝑉𝐷

(︂
(1 − 𝜌)𝑠𝑖(d) +

∑︁
𝑗:(𝑗,𝑖)∈𝐸

(1 − 𝜌𝑗𝑖)𝑓𝑗𝑖(d)

)︂
(3.1a)

subject to 𝑥𝑖 ≥
∑︁

𝑗:(𝑖,𝑗)∈𝐸

𝑓𝑖𝑗(d), ∀𝑖 ∈ 𝑉, ∀d ∈ 𝑈 (3.1b)

𝑠𝑖(d) +
∑︁

𝑗:(𝑗,𝑖)∈𝐸

𝑓𝑗𝑖(d) = 𝑑𝑖, ∀𝑖 ∈ 𝑉𝐷, ∀d ∈ 𝑈

(3.1c)

𝑠𝑖(d) ≥ 0, ∀𝑖 ∈ 𝑉𝐷, ∀d ∈ 𝑈 (3.1d)

𝑓𝑖𝑗(d) ≥ 0, ∀(𝑖, 𝑗) ∈ 𝐸, ∀d ∈ 𝑈 (3.1e)

x ∈ 𝑋. (3.1f)

The auxiliary variables {𝑠𝑖(·) : 𝑖 ∈ 𝑉𝐷} capture demand shortages, i.e., the number of

affected individuals left untreated at each node. Note that both the shipment decision

variables f(·) and the shortage variables s(·) are adjustable, contingent on the realized

demand vector d. The objective is to minimize inventory holding costs plus worst-

case life loss costs. Constraint (3.1b) is a node capacity constraint: the total amount

of inventory shipped from node 𝑖 should be less than the amount stockpiled at 𝑖.

Constraint (3.1c) defines the demand shortage variable 𝑠𝑖 for each node 𝑖, and 𝑑𝑖 is

the 𝑖th element of d.
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Similarly, we formulate (LLG) as follows:

(LLG): min
x, f(·), s(·)

h𝑇x (3.2a)

subject to 𝜌𝑠𝑖(d) +
∑︁

𝑗:(𝑗,𝑖)∈𝐸

𝜌𝑗𝑖𝑓𝑗𝑖(d) ≥ (1 − 𝜖𝑖)𝑑𝑖, ∀𝑖 ∈ 𝑉𝐷, ∀d ∈ 𝑈 (3.2b)

(3.1b), (3.1c), (3.1d), (3.1e), (3.1f). (3.2c)

Compared to (LLC), the (LLG) formulation has an objective of minimizing holding

costs, while ensuring that the average survivability at each node is higher than the

target set, as reflected by the added constraint (3.2b). Throughout this paper we

assume that 𝜌𝑗𝑖 ≥ 𝜌 for all (𝑗, 𝑖) ∈ 𝐸, i.e., treatment increases survivability; and

𝜌 ≤ 1 − 𝜖𝑖 for all 𝑖 ∈ 𝑉𝐷, otherwise (LLG) reduces to a trivial problem with optimal

cost of zero. Note that we impose a survivability target on a node level instead of

in aggregation—this provides better control and could ensure equitable population

protection across regions. We note later in Theorem 3.4.3 that (LLG) is a special

case of (LLC).

3.3.1 Set of Attack Scenarios

We provide a formulation for the set of attack scenarios under consideration. In

particular, recall that, given some attack scale parameters {Γ𝑖 : 𝑖 ∈ 𝑉 }, a possible

scenario involves demand nodes affected so that, for each administrative division 𝑖,

no more than Γ𝑖 of its children divisions 𝒞(𝑖) are affected. Consider

𝑈 :=

{︂
d ∈ R|𝑉𝐷| : 𝜉 ∈ R|𝑉 |, 𝑑𝑖 = 𝑑𝑖𝜉𝑖 ∀𝑖 ∈ 𝑉𝐷, 0 ≤ 𝜉𝑖 ≤ 𝜉𝒫(𝑖) ∀𝑖 ∈ 𝑉 ∖ {0}, 𝜉0 = 1,∑︁

𝑗∈𝒞(𝑖)

𝜉𝑗 ≤ Γ𝑖𝜉𝑖 ∀𝑖 ∈ 𝑉

}︂
, (3.3)

where 𝜉𝑖 indicates whether location 𝑖 is attacked, and 𝑑𝑖 is the maximum number of

people affected when location 𝑖 is attacked. As we will show, only the extreme points

of 𝑈 will be relevant for the optimal solution of (LLC) and (LLG). Therefore, to
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argue that the polytope 𝑈 represents the set of attack scenarios we are interested in,

it suffices to show that its extreme points precisely correspond to the attack scenarios

under consideration. Indeed, as we will also show, the auxiliary variables 𝜉 are binary

at the extreme points of 𝑈 . The constraint 𝜉𝑖 ≤ 𝜉𝒫(𝑖) enforces all parent divisions of

an affected node to also be affected, i.e., 𝜉𝑗 = 1 for all 𝑗 such that 𝑖 ∈ 𝒟(𝑗) and 𝑖 is

affected. Finally, constraint
∑︀

𝑗∈𝒞(𝑖) 𝜉𝑗 ≤ Γ𝑖𝜉𝑖 ensures that, if 𝑖 is affected, at most Γ𝑖

of its children divisions are affected, as we required. As a side note, it can be readily

seen that the set 𝑈 also includes all remaining attack scenarios that are compatible

with the attack scale parameters, but have a number of affected individuals 𝑑𝑖 ≤ 𝑑𝑖.

To facilitate exposition, we also let

Ξ :=

{︂
𝜉 ∈ R|𝑉 | : 0 ≤ 𝜉𝑖 ≤ 𝜉𝒫(𝑖) ∀𝑖 ∈ 𝑉 ∖ {0}, 𝜉0 = 1,

∑︁
𝑗∈𝒞(𝑖)

𝜉𝑗 ≤ Γ𝑖𝜉𝑖 ∀𝑖 ∈ 𝑉

}︂
.

We can then simply express 𝑈 =
{︁
d ∈ R|𝑉𝐷| : 𝑑𝑖 = 𝑑𝑖𝜉𝑖 ∀𝑖 ∈ 𝑉𝐷, 𝜉 ∈ Ξ

}︁
.

3.3.2 Solution Approach

By involving both static, x, and recourse decisions, f(·), s(·), formulations (LLC)

and (LLG) fall into the class of so-called multi-stage adjustable robust optimization

problems (ARO). Problems in that class are, in general, computationally intractable

[17], because they require the optimization over functions, or policies, instead of

vectors, and this makes them infinite-dimensional problems. Specifically, f(·) and s(·)

are policies that could take different values contingent on the uncertain parameters’

realization (namely, the demand d).

Most popular techniques to deal with ARO problems in the literature are heuristics

and constraint/column generation methods. One popular heuristic, which we also

adopt to tackle our problem, is to limit attention to policies restricted to depend

affinely on the uncertain parameters, which are often referred to as Affine Policies

(AP), as opposed to Fully-Adjustable Policies (FP). This restriction often enables

tractability, see, e.g., [17]. In our setting, the affinely adjustable robust counterpart

69



of (LLG), for example, is

(ALLG): min
x,F,S

h𝑇x (3.4a)

subject to 𝜌(S𝑇
𝑖 d + 𝑆0

𝑖 ) +
∑︁

𝑗:(𝑗,𝑖)∈𝐸

𝜌𝑗𝑖(F
𝑇
𝑗𝑖d + 𝐹 0

𝑗𝑖) ≥ (1 − 𝜖𝑖)𝑑𝑖, ∀𝑖 ∈ 𝑉𝐷, ∀d ∈ 𝑈

(3.4b)

𝑥𝑖 ≥
∑︁

𝑗:(𝑖,𝑗)∈𝐸

(F𝑇
𝑖𝑗d + 𝐹 0

𝑖𝑗), ∀𝑖 ∈ 𝑉, ∀d ∈ 𝑈 (3.4c)

(S𝑇
𝑖 d + 𝑆0

𝑖 ) +
∑︁

𝑗:(𝑗,𝑖)∈𝐸

(F𝑇
𝑗𝑖d + 𝐹 0

𝑗𝑖) = 𝑑𝑖, ∀𝑖 ∈ 𝑉𝐷, ∀d ∈ 𝑈 (3.4d)

∑︁
𝑗:(𝑗,𝑖)∈𝐸

(F𝑇
𝑗𝑖d + 𝐹 0

𝑗𝑖) ≤ 𝑑𝑖, ∀𝑖 ∈ 𝑉𝐷, ∀d ∈ 𝑈 (3.4e)

F𝑇
𝑗𝑖d + 𝐹 0

𝑗𝑖 ≥ 0, ∀(𝑖, 𝑗) ∈ 𝐸, ∀d ∈ 𝑈 (3.4f)

x ∈ 𝑋, (3.4g)

where F𝑖𝑗 ∈ R|𝑉𝐷|, 𝐹 0
𝑖𝑗 ∈ R for all (𝑖, 𝑗) ∈ 𝐸, and S𝑖 ∈ R|𝑉𝐷|, 𝑆0

𝑖 ∈ R for all 𝑖 ∈

𝑉𝐷 are vectors of decision variables corresponding to the affine policies’ coefficients.

The affinely adjustable version of (LLC) is of similar form. We can reformulate

(ALLC) and (ALLG) using standard robust optimization techniques (see Corollary

1.3.5. in [17]) to obtain linear optimization problems. Importantly, the resulting

linear optimization problems are polynomial in size of the original inputs, enabling

tractability and scalability.

On the flipside, tractability of the AP heuristic to deal with ARO problems often

comes at the cost of suboptimal solutions. In fact, for some AROs, the suboptimality

gap between the objective value under AP and the objective value of the original

formulation under FP can grow indefinitely with the dimension of the problem [19].

As we pointed out in the literature review, a handful of papers have recently iden-

tified conditions under which AP are indeed optimal. These conditions require the

absence of simplex-type constraints in the uncertainty set. In our model, however,

the simplex-type constraints
∑︀

𝑗 𝜉𝑗 ≤ Γ𝑖𝜉𝑖 are essential to preclude excessively con-

servative demand scenarios, where an arbitrary number of nodes are affected. Con-
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sequently, given the current state of affairs in the robust optimization literature, the

performance of AP heuristics (ALLC) and (ALLG) remains questionable. The next

section is devoted to providing evidence that (ALLC) and (ALLG) are indeed likely

to produce near-optimal solutions for the original (LLC) and (LLG) formulations.

3.4 Optimality of Affine Shipment Policies

We provide evidence that affine policies are near-optimal for our problem formulations

(LLC) and (LLG). First, and more importantly, we analytically show that under

additional assumptions (on the survivability parameters and the network structure),

AP are indeed optimal. Second, we conduct numerical studies illustrating that the

suboptimality gap remains small for instances that violate the additional assumptions

guaranteeing optimality.

3.4.1 Optimality Result

Consider the following assumptions.

Assumption 3.4.1 The survival probabilities under treatment are all equal, i.e.,

𝜌𝑖𝑗 = 𝜌 ∀(𝑖, 𝑗) ∈ 𝐸.

Assumption 3.4.2 Stockpiles serve all demand nodes in their division, and only

demand nodes in their division, i.e., (𝑖, 𝑗) ∈ 𝐸 ⇐⇒ 𝑗 ∈ 𝒟(𝑖).

Assumption 3.4.1 requires that the difference in shipment times between stockpile

and demand nodes bears no effect on the survivability of treated individuals. Note

that this assumption will be violated for biothreats with incubation periods shorter

than the shipment times, e.g., for nerve-agents that require treatment within minutes

or hours after an attack [142]. However, it will be satisfied for biothreats with longer

incubation periods, e.g., for anthrax attacks that are detected early (see also our

discussion in Section 3.6). Assumption 3.4.2 requires that stockpiles, which are main-

tained by administrative divisions, serve affected locations only within their division.
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In the U.S., this would mean that the stockpiles maintained by states are reserved

for usage by their residents. In emergency situations, however, neighboring states,

for example, could also provide assistance and this assumption might not hold—we

explore this further in the next section.

Let 𝑧⋆LLC, 𝑧⋆LLG, 𝑧⋆ALLC, 𝑧⋆ALLG be the optimal values of formulations (LLC), (LLG),

(ALLC), (ALLG) respectively. We have the following result.

Theorem 3.4.3 Under Assumptions 3.4.1 and 3.4.2, affine policies are optimal for

(LLG), i.e.,

𝑧⋆LLG = 𝑧⋆ALLG.

Furthermore, if 𝜌 = 1, affine policies are optimal for (LLC), i.e.,

𝑧⋆LLC = 𝑧⋆ALLC.

To illustrate the applicability of our methodology beyond the scope of MCM

inventory prepositioning, we prove our result in a more general model. In particular,

for any node we consider shipments to any of its children nodes, not just its demand

(leaf) nodes. Furthermore, we allow demand to occur at any node in 𝑉 , not just the

(leaf) nodes in 𝑉𝐷. We formalize this generalization within the proof of Theorem 3.4.3,

which can be found in Appendix 3.8, and show that it subsumes problems (LLC) and

(LLG) as special cases. We discuss alternative applications in Section 3.7.

3.4.2 Performance of Affine Policies for the General Case

To quantify the performance of the AP heuristic for more general cases, we conducted

two numerical studies, in which we sequentially relaxed the optimality-guaranteeing

Assumptions 3.4.1 and 3.4.2. For brevity, we present our studies for the (LLC)

formulation—our studies on the (LLG) formulation yielded quantitatively similar

results.

We measured the AP heuristic’s performance via its suboptimality gap, defined

as the relative difference between the heuristic’s optimal cost, 𝑧⋆ALLC, and the true
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optimal cost, 𝑧⋆LLC, that is (𝑧⋆ALLC − 𝑧⋆LLC)/𝑧⋆LLC. Because the underlying problem

is intractable, it is impossible to compute 𝑧⋆LLC for large instances. To quantify the

gap then, we rely on the method in [136] to generate a valid lower bound on 𝑧⋆LLC.

Using this bound instead of the true optimal cost enables us to obtain an upper bound

on the suboptimality gap. Despite such conservativeness, we found the performance

of the AP heuristic to be strong across a wide range of parameter values: median

suboptimality gaps were less than 1.5%, and, importantly, they did not grow with

the problem’s scale.

In Study 1, we relax Assumption 3.4.1 and allow the survival probabilities to vary.

At a high level, we created 5000 instances of (LLC). For each instance, we generated

a random tree-style graph with varying numbers of nodes. Inventory cost, antibiotic

efficacy, and attack scale parameters were also randomly sampled—see Table 3.1 for

the sampling ranges, and Appendix 3.9 for more details.

Parameter Sampling Range

Approximate number of nodes {100, 200, 500, 1000, 2000, 5000, 10000}
Number of levels {2, 3, 4, 5}
Inventory cost [0, 0.2] × 𝑏
Efficacy [0, 1]
Attack scale [0, 0.2] × |𝐶𝑖| for each node 𝑖

Demand (𝑑𝑖) [0,1000] for each node 𝑖

Table 3.1: Parameter setup for Study 1: 𝑏 is the demand loss cost, and |𝐶𝑖| is the
number of children for node 𝑖.

In Study 2, we relax Assumption 3.4.2 and introduce edges that violate the tree

structure. In particular, we considered the same setup as in Study 1, and then for

every pair of nodes that were not already connected and resided in adjacent levels

in the graph, we added an edge between them with some probability, 𝑝arc, so as to

obtain “non-tree” graphs. We sampled 𝑝arc in [0, 0.01], resulting in graphs that had

up to about 200% more edges than the tree-style graphs in Study 1.

Using a high-performance computing cluster, we ran the AP heuristic and the

exact solution method in [136] for each instance. Each run was given a 4-hour time

limit, 16 GB of memory, and 2 CPUs (2.1 GHz each). Across both Studies 1 & 2,
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AP successfully solved all 10000 instances, with an average run time of 6 seconds.

Although the exact solution method managed to solve only 2% of the instances, it

generated valid lower bounds for 91% of them, with an average run time of 14116

seconds. The generated lower bounds were then used for our comparisons.

Results. Table 3.2 provides statistics of the upper bounds on the suboptimality

gaps we obtained by using the generated valid lower bounds on the optimal costs.

Qualitatively, our analysis reveals that the suboptimality gap is small and does not

Min 1st Quantile Median Mean 3rd Quantile Max

0.0% 0.4% 1.4% 1.9% 3.0% 9.9%

Table 3.2: Statistics of upper bounds on suboptimality gaps for AP heuristic for
Studies 1 & 2.

have strong correlation with any of the parameters we varied, including, among others,

the number of nodes and the attack severity. In particular, the studies suggest that

the suboptimality gap does not grow with the network size. This is a key consideration

given that we cannot tractably characterize the gap for even larger networks due to

limitations of the exact solution method. More details are included in Appendix 3.9.

3.5 Optimizing Dispensing Capacity

In this section, we relax the assumption of sufficient dispensing capacity being pre-

installed, and jointly optimize inventory prepositioning and dispensing capacity de-

cisions. By dispensing capacity, we refer to the ability of the appropriate local au-

thorities to distribute MCMs to the general public at demand nodes subsequent to a

bioattack—technically, it corresponds to the MCM delivery rate from so-called Re-

ceive, Stage and Store facilities to end users. Such joint optimization is essential: too

much inventory and not enough dispensing capacity would result in inventory buildup

while the population suffers from dispensing delays; too little inventory and too much

capacity would result in idle workers and under-utilized resources.

Limited dispensing capacity could introduce further delays before the affected
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population has access to MCMs, which in turn could affect their efficacy. Unlike

delays due to transportation lead times, which are independent of the MCM quantity

shipped, delays due to limited dispensing capacity are dependent on the MCM quan-

tity being dispensed. This creates the need to introduce a time dimension explicitly

in our model.

We illustrate our approach using the (LLG) formulation. Subsequent to an attack,

consider 𝑇 discrete time periods, each with duration 𝛿, indexed by 𝑡 = 1, 2, . . . , 𝑇 .

Let 𝑢𝑗 be the dispensing capacity in MCM units per time period at demand node 𝑗.

In view of this capacity, a shipment from some node 𝑖, although it would still arrive at

𝑗 after 𝜏𝑖𝑗 time periods, might not be immediately available to the population at its

entirety. To capture this, let 𝑓𝑖𝑗𝑡 be the MCM amount shipped from 𝑖 and dispensed

at 𝑗 at time 𝑡. To measure antibiotic efficacy, let 𝜌𝑡 be the survival probability if

treatment is received 𝑡 time periods after the attack. We use 𝛿 small enough so that

the probability of survival remains approximately constant and equal to 𝜌𝑡 within

time period [(𝑡− 1)𝛿, 𝑡𝛿].

Let 𝑐𝑗 be the cost per unit capacity installation (e.g., training of staff, preparation

and maintenance of dispensing facilities), and let 𝑝𝑗 be the cost per unit of MCM

dispensed after an attack. The joint inventory prepositioning and dispensing capacity

optimization problem can be cast as:
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(LLGC): min
x,u, f(·), s(·)

max
d∈𝑈

h𝑇x + c𝑇u + p𝑇 f(d) (3.5a)

subject to 𝑥𝑖 ≥
∑︁

𝑗:(𝑖,𝑗)∈𝐸

𝑇∑︁
𝑡=1

𝑓𝑖𝑗𝑡(d), ∀𝑖 ∈ 𝑉, ∀d ∈ 𝑈 (3.5b)

𝑠𝑗(d) +
∑︁

𝑖:(𝑖,𝑗)∈𝐸

𝑇∑︁
𝑡=1

𝑓𝑖𝑗𝑡(d) = 𝑑𝑗, ∀𝑗 ∈ 𝑉𝐷, ∀d ∈ 𝑈

(3.5c)

𝜌𝑠𝑗(d) +
∑︁

𝑖:(𝑖,𝑗)∈𝐸

𝑇∑︁
𝑡=1

𝜌𝑡𝑓𝑖𝑗𝑡(d) ≥ (1 − 𝜖𝑗)𝑑𝑗, ∀𝑗 ∈ 𝑉𝐷, ∀d ∈ 𝑈

(3.5d)∑︁
𝑖:(𝑖,𝑗)∈𝐸

𝑓𝑖𝑗𝑡(d) ≤ 𝑢𝑗, ∀𝑗 ∈ 𝑉𝐷, ∀d ∈ 𝑈, ∀𝑡 ∈ [𝑇 ] (3.5e)

𝑓𝑖𝑗𝑡(d) = 0, ∀(𝑖, 𝑗) ∈ 𝐸, ∀d ∈ 𝑈, ∀𝑡 ∈ [𝜏𝑖𝑗 − 1] (3.5f)

𝑓𝑖𝑗(d) ≥ 0, ∀(𝑖, 𝑗) ∈ 𝐸, ∀d ∈ 𝑈 (3.5g)

𝑠𝑖(d) ≥ 0, ∀𝑖 ∈ 𝑉𝐷, d ∈ 𝑈 (3.5h)

x ∈ 𝑋,u ≥ 0. (3.5i)

Constraint (3.5e) ensures that no more than 𝑢𝑗 MCM units are dispensed at demand

node 𝑗 across all origin nodes 𝑖, at each time period 𝑡. Constraint (3.5f) ensures

that no MCMs shipped from node 𝑖 can be dispensed at node 𝑗 before the associated

shipment lead time 𝜏𝑖𝑗. All other constraints are similar in spirit to the ones we have

in (LLG).

By restricting the flow and demand shortage variables to be affine in demand

vector d, the robust counterpart of (LLGC) remains a linear optimization problem.

Thus, we are able to solve large problem instances that match the fidelity and scale

of a national biodefense network.

Finally, note that introducing a time dimension here can be thought of as simply

introducing additional edges in the set 𝐸. Therefore, beyond adding capacity vari-

ables and accounting for costs, the only essential way that (LLGC) differs from (LLG)
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is the inclusion of capacity constraints (3.5e). In the Appendix 3.9, we present a nu-

merical study similar to the ones in §3.4.2, in which we quantify the AP heuristic’s

suboptimality gap for problems including such capacity variables, costs, and con-

straints. As before, we find performance to be strong, with a median suboptimality

gap less than 1%.

3.6 Strategic National Stockpile Supply Chain

In this section, we apply our work in a case study on SNS design for aerosolized

Bacillus anthracis (anthrax) attacks in the U.S., which are of particular interest

to public health experts owing to their relatively high probability of occurrence and

potentially devastating impact [142]. Anthrax spores spread easily in the air to affect a

large number of people through inhalation, with high fatality rates if left untreated for

even just a few days. More precisely, if 𝑡 is the time between infection and treatment,

then, according to the studies of [25, 26, 158, 159], the survival probability 𝜌(𝑡) of

anthrax infected population can be approximated, for 𝑡 ≤ 200 hours, by

𝜌(𝑡) = 𝑒−(0.004𝑡)2 . (3.6)

Considering the time it would take to detect an anthrax attack and the time to

ship and dispense MCMs from warehouses to individuals, which is likely to be on the

order of days [142], CDC is exploring different options in prepositioning MCMs and

coordinating the SNS network to achieve better antibiotic efficacy. We now discuss

how to calibrate our model to tackle this problems.

3.6.1 Model calibration

For the purposes of this study, we consider the (LLGC) formulation, that is, poli-

cymakers specify coverage targets and the model optimizes the required inventory,

capacity, and dispensing costs.

Network. There are 12 federally-managed SNS warehouses for MCM storage, with
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their exact locations being classified for security reasons. It is known that the loca-

tions have been chosen such that MCMs can be transported from them to any state

within 24-36 hours of a deployment call [107]. In our model, it is appropriate then

to model these warehouses as a single virtual federal stockpile node. In case of an

attack, inventories can be shipped from the federal inventory node to state-managed

warehouses, where additional inventory is usually stored. We therefore model the SNS

stockpile network with 1 federal stockpile node, 52 state and special district nodes.

Inventory from the state warehouses can then be forwarded to city, county, and local

authorities for dispensing to the general public. Using census data to obtain precise

information about major cities or so-called Metropolitan Statistical Areas (MSAs),

counties, we include 377 MSA nodes, 3221 county nodes, and 77072 neighborhood

nodes. In addition, we also include 77072 household nodes, each denoting the aggre-

gate demand in a neighborhood. The federal stockpile node serves all downstream

state nodes. State nodes serve not only their downstream MSAs, but also all MSA

nodes in neighboring states. MSAs serve predominantly their downstream counties,

but also neighboring MSAs and counties, and so forth. In total, the network comprises

157795 nodes and 335010 edges.

Transportation times. As we remarked above, the time to ship MCMs from the

federal node to any state level node varies between 24 to 36 hours. From state level

to MSA/county level, we assume the transportation time to be within 2 to 6 hours,

e.g., if shipped via ground transportation, depending on the geography of the state.

According to field experiments, including, for example, a study in Philadelphia in

2005 [1] and another one in Minneapolis in 2008 [11], policymakers have estimated

the shipment of MCMs from local authorities to dispensing points to take 10 to 12

hours.

Holding costs. We consider the SNS design for one MCM type, e.g., ciprofloxacin

or doxycycline, to treat individuals affected by anthrax attacks in the U.S. Inventory

costs include the cost of purchasing, storage, management, replenishment, and ship-

ment from manufacturer to warehouse. According to a commissioned paper by the

Institute of Medicine [68], the costs for anthrax antibiotics stored at regional ware-
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houses amount to $2.10 per person, while home kits are more expensive at $10 per

person, due to higher packaging and delivery costs. We estimate the federal, state,

MSA, county, and neighborhood holding costs to be between $1 and $2 per person. In

general, upstream holding costs are cheaper than downstream ones due to anticipated

scale economies. Annual management and replenishment costs are 85% of purchase

cost according to [68].

Demand. To estimate the demand volume in a neighborhood at each MSA in case

of an attack, we assume that an airborne attack has the same spread radius in every

geographic region, and we use a value of 3000 square miles as in the field study on the

Minneapolis MSA [11]. The affected population at node 𝑖 can then be calculated as

(population density at 𝑖) × min{3000 sq miles, area of neighborhood}. We obtained

population density and area data of neighborhood from statistics of the Census Bureau

[153].

Dispensing modes and costs. Two dispensing modes are currently available: (1)

Point-of-Dispenses (PODs), and (2) door-to-door delivery by the United States Postal

Service (USPS) [157]. PODs are what the supply chain literature would consider a

“pull” strategy, in which people commute to pre-specified locations in their neighor-

hoods to pick up MCMs for their families. The USPS option is a “push” strategy, in

which the staff members of USPS deliver MCMs into the mailboxes of each household.

Dispensing capacity is shared among neighborhoods, so that there are approximately

2 PODs per county.

Primary costs associated with the PODs setup are: medical staff training costs

and wages, supervisor training costs and wages, security wages, and public facility

rental costs. Using the recommendation in [162], we estimate a labor wage of $18.64

per hour, $2785 security cost per POD per day, and $5000 administrative overhead

cost per POD per day; for each POD, the total number of staff is 300 and can support

a dispensing service rate of 1000 patients per hour. The resulting cost of operating

a POD during dispensing phase is $3.39 per hour for a one-person/hour increase in

dispensing capacity. For capacity installation costs, we assume that a two-day drill

is performed annually, resulting in $162.72 per unit capacity per year.
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The main costs associated with the USPS option are the wages for the delivery

staff and wages for the accompanying security officers. Based on the Minneapolis-St.

Paul study [68] with USPS delivery involving 179 staff, wage of $23.72 per person

per hour, covering 205,000 households in 8.5 hours (estimate of 6.9 hours spent on

transportation and 1.6 hours on material handling) for a population density of 1000

households per square mile, we derive a population-density-dependent USPS dispens-

ing cost function: $ (356/
√

density+ 19) per hour for every one-person/hour increase

in delivery capacity. For capacity installation costs, we also assume a two-day drill

every year. In addition to these costs, the USPS option also has an upper-bound on

how many workers can take up the delivery job, as each delivery worker has to be

accompanied by one security officer, and the total number of security officers is likely

a bottleneck during such an emergency situation. We assume that each county can

support at most 10 delivery workers at any given time.

Survival parameters. We choose a time step of 𝛿 = 8 hours, in accordance with

the standard work shift length of 8 hours per group of staff for dispensing and

delivery [142]. Then based on the survival probability calculation aforementioned

in (3.6), for a detection time of 48 hours, we calculate {𝜌1, 𝜌2, 𝜌3, 𝜌4, . . . } to be

{0.957, 0.944, 0.929, 0.912, . . . }. If a person inhales anthrax spores and is left un-

treated, his/her survival probability is estimated to be 0.2 [154].

3.6.2 Results

Having calibrated the model, we compute the optimal costs for different policy pa-

rameters: survivability target, attack scale, detection time, and dispensing mode.

Table 3.3 is a summary of the model inputs and outputs. Table 3.4 provides solution

times and information about the size of the resulting optimization problems.

The default input parameters we consider are attack scale parameters Γ𝑖 = 2,

∀𝑖 ∈ 𝑉 , and detection time 𝜏0 = 48 hours.3 Below, we perform several sensitivity

analyses to illustrate the flexibility of our framework and how it can be used to guide

policymaking.
3For a discussion of anticipated detection times in case of an anthrax attack, see [142].
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Input Output

Survivability target: 𝜖𝑖 Total cost (inventory+capacity+dispensing)
Attack scale: Γ𝑖 Optimal inventory prepositioning strategy: x⋆

Detection time: 𝜏0 Optimal capacity installation: u⋆

Table 3.3: Input/output for our case study.

Min 1st Quantile Median Mean 3rd Quantile Max

192 719 798 671 839 954

Table 3.4: Solution time (seconds). The resulting optimization problems for the case
study instances have 1100000 variables and 115000 constraints, approximately, after
pre-processing using Gurobi.

Varying survivability target. Figure 3-2 depicts the minimum required annual cost

as a function of the survivability target. For example, for an 80% survivability target

the annual budget needs to be about $194 million dollars; if the survivability target

is set to 92%, the budget would need to be increased to $553 million, approximately.

The curve in Figure 3-2 also illustrates that increasing the survivability target beyond

90% requires a rather steep cost increase. We can also interpret the curve as a Pareto

frontier associated with the cost-survivability tradeoff: the region left to the curve

represents the achievable outcomes.

Figure 3-3 shows how much inventory and at which level it needs to be preposi-

tioned for different survivability targets. It can be seen that as the target increases,

more inventory is required. Notably, for a target less than 90%, predispensed medi-
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Figure 3-2: Minimum required annual cost for different survivability targets.
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Figure 3-3: Amount (𝑦-axis) and location (𝑥-axis) of prepositioned inventory for
different survivability targets {0.6, 0.75, 0.9, 0.925}; at the 𝑥-axis, level 0 is federal,
level 1 is state, level 2 is MSA, level 3 is county, and level 4 is predispensed medical
kits in households.

0 0.2 0.4 0.6 0.8 1

Survivability target e

0

2000

4000

6000

8000

10000

C
a

p
a

c
it
y
 (

p
p

l/
h

o
u
r)

Figure 3-4: Average capacity installation per county (number of people served per
hour) for different survivability targets.

cal kits are redundant, whereas for a higher target a rather large number of them is

required.

Figure 3-4 shows county-level capacity decisions for different survivability targets.

Although required capacity naturally increases with the desired target, interestingly,

it drops at a steep rate beyond a certain point.

Put together, the analysis of varying survivability target illustrates a phase change

that takes place around the target of 90%, approximately. To better understand this

phenomenon, recall first that survivability targets translate into certain responsiveness

requirements, through relationship (3.6), for example, with higher targets calling for

higher responsiveness. For targets lower than 90% then, storing inventory upstream

at federal/state levels provides acceptable responsiveness, and because it is so much

more cost-efficient per unit and also enjoys pooling benefits (in the sense that one

kit could serve multiple downstream recipient households), it makes predispensed
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kits redundant. For targets higher than 90%, upstream storage no longer provides

adequate responsiveness for the entire SNS network, and predispensed kits become

necessary, which explains their introduction to the prepositioning strategy. The high

rate at which these kits are introduced then, compared with kits stored upstream, can

be explained by the lack of pooling benefits (one predispensed kit could only serve

a single household). This in turn explains the observed steep increase in inventory

costs and the decrease in required dispensing capacity.

Varying attack scale. We now explore different attack scale parameters. Figure

3-5 reports the minimum required annual costs and optimal inventory amounts at

each level, under nine different cases: {1, 2, 3} states being attacked and each state

having {1, 2, 3} MSAs or counties affected. Recall that the first parameter reflects

the geographic complexity of the attack, and the second parameter the magnitude of

an attack within a state.
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Figure 3-5: Amount (𝑦-axis) and location (𝑥-axis) of prepositioned inventory for
different attack scale parameters; at the 𝑥-axis, level 0 is federal, level 1 is state, level
2 is MSA, level 3 is county, and level 4 is predispensed medical kits in households.

Varying detection time. Figure 3-6 shows the cost-survivability trade-off for differ-

ent detection times 𝜏0, highlighting the importance of timely response mechanisms.
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In particular, if the detection mechanism is able to identify an attack and start de-

ployment within 60 hours, approximately $788 million USD is needed for a 90%

survivability target annually. For enhanced detection mechanism capable of detect-

ing attacks within 24 hours, the corresponding annual costs reduce to just over $210

million.
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Figure 3-6: Minimum required annual costs for different survivability targets and
detection times.

Choosing between different dispensing modes. Figure 3-7 illustrates the cost-

survivability trade-offs for different dispensing modes. Using USPS dispensing mode

alone is generally more costly as compared with using PODs, due to the upper bound

on USPS capacity and reliance on home medical kits. Overall, we find that even

though USPS is empirically efficient in high density neighborhoods, PODs should

still remain as the primary dispensing channel due to their scalability.
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Figure 3-7: Minimum required annual costs for different survivability targets and
dispensing modes.
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3.7 Extensions and Concluding Remarks

In this paper, we considered a framework to tackle the problem of designing a cost-

effective and responsive public health stockpile supply chain for protection against

bioterrorism attacks. Our framework captured many of the key drivers facing CDC

in maintaining the Strategic National Stockpile, for example, holding costs, pooling,

capacity, and responsiveness. Our methodology can be extended to capture additional

SNS design considerations, or used in other supply chain applications. For example,

an interesting direction for future research could be to allow for multiple types of

MCMs, for the same or different biothreats. In that case, our model could be used to

guide the design of CDC’s overall portfolio and mix of MCMs in view of budgetary

constraints.

3.8 Proofs

Proof Proof of Theorem 3.4.3. Under Assumption 3.4.2, our model can be re-

formulated to one where, instead of inventory shipments over the edges of (𝑉,𝐸),

{𝑓𝑒 : 𝑒 ∈ 𝐸}, we consider inventory shipments over the edges of the directed out-tree

(𝑉, 𝑇 ) with root node 0 and 𝑇 := {(𝑖, 𝑗) : 𝑖 ∈ 𝑉, 𝑗 ∈ 𝒞(𝑖)}. This is because, under

Assumption 3.4.2, any inventory shipment to node 𝑗 occurs from some “parent node”

𝑖 such that 𝑗 ∈ 𝒟(𝑖), i.e., 𝒫𝐿−ℓ(𝑗) = 𝑖 for some ℓ, where 𝒫𝑛(𝑘) := 𝒫(𝒫𝑛−1(𝑘)) for 𝑛

positive integer, 𝑘 ∈ 𝑉 and 𝒫0(𝑘) := 𝑘. Thus, any 𝑓𝑖𝑗 can be thought of as a flow

along the unique path 𝑖 → 𝒫𝐿−ℓ−1(𝑗) → . . .𝒫(𝑗) → 𝑗. It can then be readily seen

that our model entails a path-based network flow formulation for inventory shipments

in the graph (𝑉, 𝑇 ). In the rest of the proof, we consider the associated edge-based

formulation, and denote the shipments over the edges with y = {𝑦𝑡 : 𝑡 ∈ 𝑇}. Clearly,

this is without loss, since for every feasible (f , s) in the path-based formulation, there

exists y such that (y, s) is feasible for the edge-based formulation, and vice versa (for

more details see Chapter 3.5 in [3]). Furthemore, we assume that demand occurs at

every node; specifically, demand at node 𝑖 is 𝑑𝑖 = 𝑑𝑖𝜉𝑖 for all 𝑖 ∈ 𝑉 and some 𝜉 ∈ Ξ.
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Unmet demand at each node in 𝑉 ∖ 𝑉𝐷 is treated in the same way as at nodes in 𝑉𝐷:

either penalized at a cost rate 𝑏 under the (LLC), or subject to a guarantee under

the (LLG).

To prove optimality of affine policies, it suffices to show that for any static in-

ventory allocation decision x ∈ 𝑋, there exist policies that are affine in the uncer-

tain demand for the adjustable decisions and achieve the same worst-case cost under

fully-adjustable policies. Thus, we henceforth consider the static inventory allocation

decision x as fixed.

We first deal with (LLC). At the end of the proof, we argue how (LLG) can be

cast as a special case of (LLC). Using the edge-based formulation, the more general

demand model, and a fixed inventory allocation x ∈ 𝑋, it can be readily seen that

when 𝜌 = 1, the (LLC) problem is equivalent to (in the sense that they have the same

optimal set)4

min
y(·),s(·)

max
𝜉∈Ξ

1𝑇 s(𝜉)

subject to 𝑠𝑖(𝜉) + 𝑦𝒫(𝑖)𝑖(𝜉) + 𝑥𝑖 ≥
∑︁
𝑗∈𝒞(𝑖)

𝑦𝑖𝑗(𝜉) + 𝑑𝑖𝜉𝑖, ∀𝑖 ∈ 𝑉, ∀𝜉 ∈ Ξ

𝑦𝒫(𝑖)𝑖(𝜉) + 𝑥𝑖 ≥
∑︁
𝑗∈𝒞(𝑖)

𝑦𝑖𝑗(𝜉), ∀𝑖 ∈ 𝑉, ∀𝜉 ∈ Ξ

y(·), s(·) ≥ 0,

where 1 is the vector of all ones. Let 𝑧F be the optimal value of this fully-adjustable

formulation. Correspondingly, let 𝑧A be the optimal value of its affinely adjustable

counterpart, i.e., when we restrict y(·) and s(·) to be affine in 𝜉. It suffices then to

show that 𝑧F = 𝑧A.

We now introduce some useful notation:

∙ For some index set 𝐼, let 𝜉𝐼 := {𝜉𝑖 : 𝑖 ∈ 𝐼} and proj𝐼Ξ := {𝜉𝐼 : 𝜉 ∈ Ξ}.

∙ Let 𝑉 𝑙 be the set of nodes at the 𝑙th level, i.e., 𝑉 𝑙 := {𝑗 ∈ 𝑉 : 𝒫 𝑙(𝑗) = 0}.
4Technically, this means that if (f , s) is optimal for (LLC), then there exists y such that (y, s) is

optimal for the corresponding edge-based formulation, and vice versa.
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∙ Let 𝐴𝑖 be the set of ancestor nodes of 𝑖, i.e., 𝐴𝑖 := {𝑖,𝒫(𝑖),𝒫2(𝑖), . . . , 0}.

∙ We will frequently look into subgraphs of (𝑉, 𝑇 ), specifically out-trees rooted

at some node 𝑖 ∈ 𝑉 𝑙, denoted by (𝑉𝑖, 𝑇𝑖), where 𝑉𝑖 := {𝑗 ∈ 𝑉 : 𝒫𝑘(𝑗) =

𝑖 for some 𝑘 = 0, 1, 2, . . . , 𝐿− 𝑙}, and 𝑇𝑖 := {(𝑘, 𝑙) : 𝑘 ∈ 𝑉𝑖, 𝑙 ∈ 𝒞(𝑘)}.

∙ Let 𝒬𝑖(𝜉
′
𝑖, 𝑥𝑖,x−𝑖) by the set of feasible policies for (𝑉𝑖, 𝑇𝑖), with inventory at

node 𝑖 being 𝑥𝑖, the inventory on 𝑉𝑖∖{𝑖} being x−𝑖, and the uncertain parameter

being 𝜉′𝑖 at node 𝑖, i.e.,

𝒬𝑖(𝜉
′
𝑖, 𝑥𝑖,x−𝑖) :={{y(·), s(·)} :

𝑥𝑖 ≥
∑︁
𝑗∈𝒞(𝑖)

𝑦𝑖𝑗(𝜉), ∀𝜉 ∈ Ξ𝑖

𝑠𝑖(𝜉) + 𝑥𝑖 ≥
∑︁
𝑗∈𝒞(𝑖)

𝑦𝑖𝑗(𝜉) + 𝑑𝑖𝜉
′
𝑖, ∀𝜉 ∈ Ξ𝑖

𝑦𝒫(𝑘)𝑘(𝜉) + 𝑥𝑘 ≥
∑︁

𝑗∈𝒞(𝑘)

𝑦𝑘𝑗(𝜉), ∀𝑘 ∈ 𝑉𝑖 ∖ {𝑖}, ∀𝜉 ∈ Ξ𝑖

𝑠𝑘(𝜉) + 𝑦𝒫(𝑘)𝑘(𝜉) + 𝑥𝑘 ≥
∑︁

𝑗∈𝒞(𝑘)

𝑦𝑘𝑗(𝜉) + 𝑑𝑘𝜉𝑘, ∀𝑘 ∈ 𝑉𝑖 ∖ {𝑖},∀𝜉 ∈ Ξ𝑖

y(𝜉), s(𝜉) ≥ 0, ∀𝜉 ∈ Ξ𝑖}.

where Ξ𝑖(𝜉
′
𝑖) := {𝜉 | 𝜉 ∈ Ξ, 𝜉𝑖 = 𝜉′𝑖}. We use shorthand notation Ξ𝑖 when there

is no ambiguity in 𝜉′𝑖.

∙ Let Θ𝑖(𝜉
′
𝑖, s) be the worst-case demand loss in (𝑉𝑖, 𝑇𝑖) under 𝜉𝑖 = 𝜉′𝑖 and (fea-

sible) resource allocation policy {y(·), s(·)}, Ω𝐹
𝑖 (𝜉′𝑖, 𝑥𝑖,x−𝑖) be the worst-case

demand loss in 𝑉𝑖 under 𝜉𝑖 = 𝜉′𝑖 with an optimal fully-adjustable policy, and

𝒬⋆
𝑖 (𝜉

′
𝑖, 𝑥𝑖,x−𝑖) be the set of all optimal policies:

Θ𝑖(𝜉
′
𝑖, s) := max

𝜉∈Ξ𝑖(𝜉′𝑖)

∑︁
𝑘∈𝑉𝑖

𝑠𝑘(𝜉),

Ω𝐹
𝑖 (𝜉′𝑖, 𝑥𝑖,x−𝑖) := min

y(·),s(·)
Θ𝑖(𝜉

′
𝑖, s) subject to {y(·), s(·)} ∈ 𝒬𝑖(𝜉

′
𝑖, 𝑥𝑖,x−𝑖),

𝒬⋆
𝑖 (𝜉

′
𝑖, 𝑥𝑖,x−𝑖) := argminy(·),s(·) Θ𝑖(𝜉

′
𝑖, s) subject to {y(·), s(·)} ∈ 𝒬𝑖(𝜉

′
𝑖, 𝑥𝑖,x−𝑖).
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Similarly, we define the affinely-adjustable counterpart Ω𝐴
𝑖 (𝜉′𝑖, 𝑥𝑖,x−𝑖) as the

worst-case demand loss in 𝑉𝑖, restricted to {y(·), s(·)} ∈ 𝒬𝑖(𝜉
′
𝑖, 𝑥𝑖,x−𝑖) and

affine.

Using our notation, 𝑧F = Ω𝐹
0 (1, 𝑥0,x−0) and 𝑧A = Ω𝐴

0 (1, 𝑥0,x−0). It thus suffices

to show that

Ω𝐹
0 (1, 𝑥0,x−0) = Ω𝐴

0 (1, 𝑥0,x−0). (3.10)

We now present two useful intermediate results. The first provides a recursive

expression for Ω𝐹
𝑖 , and the second shows that Ξ has binary vertices.

Proposition 3.8.1 For all 𝑖 ∈ 𝑉 , 𝜉′𝑖 ∈ [0, 1], x ≥ 0,

Ω𝐹
𝑖 (𝜉′𝑖, 𝑥𝑖,x−𝑖) =

⎛⎝𝑑𝑖𝜉
′
𝑖 − 𝑥𝑖 + max

𝜉𝒞(𝑖)∈proj𝒞(𝑖)Ξ𝑖(𝜉′𝑖)

∑︁
𝑗∈𝒞(𝑖)

Ω𝐹
𝑗 (𝜉𝑗, 𝑥𝑗,x−𝑗)

⎞⎠+

.

Moreover, Ω𝐹
𝑖 (𝜉𝑖, 𝑥𝑖,x−𝑖) is convex in 𝜉𝑖 over 𝜉𝑖 ∈ [0, 1].

Proposition 3.8.2 Ξ is a polytope with binary vertices, i.e., 𝜉 ∈ ext(Ξ) =⇒ 𝜉 ∈

{0, 1}𝑛.

Proposition 3.8.1 shows the intuitive fact that given a fixed inventory decision and

under the optimal policy, the demand shortage in 𝑉𝑖 should be the sum of shortages in

{𝑉𝑗}𝑗∈𝒞(𝑖) plus the demand on node 𝑖, subtracting away inventory 𝑥𝑖. Based on such

recursive definition, we can view the tree as a collection of hub-and-spoke clusters,

each consisting of one node and several edges pointing away from this node (Figure

3-8).

Now we prove (3.10) by induction. For a given tree (𝑉𝑖, 𝑇𝑖) and uncertainty set

Ξ𝑖, we limit our attention to {y(·), s(·)} that satisfies the following properties:

(I) ∀𝑚 ∈ 𝑉𝑖, 𝑗 ∈ 𝒞(𝑚), 𝜉 ∈ Ξ𝑖 : 𝑠𝑚(𝜉) = 𝑠𝑚(𝜉𝑚), 𝑦𝑚𝑗(𝜉) = 𝑦𝑚𝑗(𝜉𝑗), i.e., the

policies are univariate in 𝜉𝑚, 𝜉𝑗 respectively.

(II) ∀𝑚 ∈ 𝑉𝑖: (a) 𝑦𝒫(𝑚)𝑚(0) = 0, (b) 𝑦𝑗𝑘(0) = Ω𝐴
𝑘 (0, 𝑥𝑘,x−𝑘) = 0 ∀(𝑗, 𝑘) ∈ 𝑇𝑚, and

(c) 𝑠𝑗(0) = 0 ∀𝑗 ∈ 𝑉𝑚, i.e., these policies are linear.
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Ω𝐹
𝑖 (𝜉𝑖, 𝑥𝑖,x−𝑖) 𝑖

𝑥𝑖

𝑑𝑖𝜉𝑖 + 𝑑𝑖

𝑗
𝑦𝑗(𝜉)

𝑠𝑗(𝜉)
Ω𝐹

𝑗 (𝜉𝑗, 𝑥𝑗,x−𝑗)

Figure 3-8: Recursive representation of Ω𝐹
𝑖 .

Let

𝒬𝑖(𝜉𝑖, 𝑥𝑖,x−𝑖) := {{y, s} ∈ 𝒬𝑖(𝜉𝑖, 𝑥𝑖,x−𝑖) : {y, s} satisfies (I)-(II)}

𝒬⋆

𝑖 (𝜉𝑖, 𝑥𝑖,x−𝑖) := 𝒬𝑖(𝜉𝑖, 𝑥𝑖,x−𝑖) ∩𝒬⋆
𝑖 (𝜉𝑖, 𝑥𝑖,x−𝑖).

We are now ready to formalize the induction process.

Induction Hypothesis. If for some 𝑙 ∈ {0, 1, . . . , 𝐿 − 1}, ∀𝑗 ∈ 𝑉 𝑙+1,x ≥ 0,

∃{ȳ𝑗(·), s̄𝑗(·)} such that

(Feasibility) ∀𝜉𝑗 ∈ [0, 1], {ȳ𝑗(·), s̄𝑗(·)} ∈ 𝒬𝑗(𝜉𝑗, 𝑥𝑗,x−𝑗), (3.11)

(Optimality) ∀𝜉𝑗 ∈ {0, 1},Θ𝑗(𝜉𝑗, s̄
𝑗) = Ω𝐴

𝑗 (𝜉𝑗, 𝑥𝑗,x−𝑗) = Ω𝐹
𝑗 (𝜉𝑗, 𝑥𝑗,x−𝑗), (3.12)

then, ∀𝑖 ∈ 𝑉 𝑙,x ≥ 0, ∃{ȳ𝑖(·), s̄𝑖(·)} such that

(Feasibility) ∀𝜉𝑖 ∈ [0, 1], {ȳ𝑖(·), s̄𝑖(·)} ∈ 𝒬𝑖(𝜉𝑖, 𝑥𝑖,x−𝑖), (3.13)

(Optimality) ∀𝜉𝑖 ∈ {0, 1},Θ𝑖(𝜉𝑖, s̄
𝑖) = Ω𝐴

𝑖 (𝜉𝑖, 𝑥𝑖,x−𝑖) = Ω𝐹
𝑖 (𝜉𝑖, 𝑥𝑖,x−𝑖). (3.14)

Base Case (𝑙 = 𝐿 − 1). Given some x ≥ 0, for each 𝑗 ∈ 𝑉 𝐿 we define 𝑠𝑗𝑗(𝜉) =

𝑠𝑗𝑗(𝜉𝑗) = 𝜉𝑗(𝑑𝑗 − 𝑥𝑗)
+. This policy satisfies (I) and (II) by construction, and it is

straightforward to check feasibility and optimality.

General Step. Now we prove the general induction step: suppose (3.11)-(3.12)

hold for some 𝑙 ∈ {0, 1, . . . , 𝐿 − 1} and ∀𝑗 ∈ 𝑉 𝑙+1,x ≥ 0. To construct {ȳ𝑖(·), s̄𝑖(·)},

we define the following. Since Ω𝐴
𝑗 (𝜉𝑗, 𝑥𝑗,x−𝑗) is nondecreasing in 𝜉𝑗 and nonnegative,

there necessarily exists 𝑔𝑗 ≥ 0 such that Ω𝐴
𝑗 (𝜉𝑗, 𝑥𝑗,x−𝑗) = 𝑔𝑗𝜉𝑗 for 𝜉𝑗 ∈ {0, 1}. Let
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𝛽𝑖 := min

(︂
1, 𝑥𝑖∑︀Γ𝑖

𝑗=1 𝑔(𝑗)+𝑑𝑖

)︂
if
∑︀Γ𝑖

𝑗=1 𝑔(𝑗) + 𝑑𝑖 > 0, and 𝛽𝑖 := 1 otherwise, where 𝑔(𝑗) is

the 𝑗th largest element of {𝑔𝑗}𝑗∈𝒞(𝑖). (𝛽𝑖 is the surge demand coverage ratio)

We are now ready to construct affine {ȳ𝑖, s̄𝑖}:

{ȳ𝑖, s̄𝑖} :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑦𝑖𝑖𝑗(𝜉𝑗) = 𝛽𝑖𝑔𝑗𝜉𝑗 ∀𝑗 ∈ 𝒞(𝑖)

𝑠𝑖𝑖(𝜉𝑖) = (1 − 𝛽𝑖)𝑑𝑖𝜉𝑖

𝑦𝑖𝑘𝑚(𝜉𝑚) = 𝑦𝑗1𝑘𝑚(𝜉𝑚) ∀(𝑘,𝑚) ∈ 𝑇𝑗, ∀𝑗 ∈ 𝒞(𝑖)

𝑠𝑖𝑘(𝜉𝑘) = 𝑠𝑗1𝑘 (1)𝜉𝑘 ∀𝑘 ∈ 𝑉𝑖 ∖ {𝑖}.

(3.15)

Let 𝒬⋆

𝑗1 := 𝒬⋆

𝑗(1, 𝑥𝑗 + 𝑦𝑖𝑖𝑗(1),x−𝑗). By the induction hypothesis, 𝒬⋆

𝑗1 ̸= ∅, since

𝑥𝑗 + 𝑦𝑖𝑖𝑗(𝜉𝑗) ≥ 0 for 𝜉𝑗 ∈ [0, 1]. We now check the feasibility and optimality of {ȳ𝑖, s̄𝑖}.

For (Feasibility), note that Property (I-II) hold by construction. To show {ȳ𝑖, s̄𝑖}

satisfies the constraints in 𝒬𝑖(𝜉
′
𝑖, 𝑥𝑖,x−𝑖), note that the constraints involving node

𝑖 are satisfied by construction of {ȳ𝑖, s̄𝑖}. For nodes downstream from 𝑖, note that

𝑦𝑖𝑘𝑚(𝜉𝑚) = 𝑦𝑗1𝑘𝑚(1)𝜉𝑚 and 𝑠𝑖𝑘(𝜉𝑘) = 𝑠𝑗1𝑘 (1)𝜉𝑘, for all (𝑘,𝑚) ∈ 𝑇𝑗, 𝑗 ∈ 𝒞(𝑖) and 𝑘 ∈

𝑉𝑖 ∖ {𝑖}. Since {ȳ𝑗0(·), s̄𝑗0(·)} and {ȳ𝑗1(·), s̄𝑗1(·)} satisfy the constraints of 𝒬𝑗(0, 𝑥𝑗 +

𝑦𝑖𝑖𝑗(0),x−𝑗) and 𝒬𝑗(1, 𝑥𝑗 + 𝑦𝑖𝑖𝑗(1),x−𝑗) respectively, it is straightforward to check the

constraint satisfaction of {y𝑖, s𝑖} for 𝒬𝑖(𝜉
′
𝑖, 𝑥𝑖,x−𝑖).
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For (Optimality), note that for 𝜉′𝑖 ∈ {0, 1} we have

Θ𝑖(𝜉
′
𝑖, s̄

𝑖) =𝑠𝑖𝑖(𝜉
′
𝑖) + max

𝜉∈Ξ𝑖

∑︁
𝑗∈𝒞(𝑖)

∑︁
𝑘∈𝑉𝑗

𝑠𝑖𝑘(𝜉𝑘) (3.16a)

=𝑠𝑖𝑖(𝜉
′
𝑖) + max

𝜉𝒞(𝑖):1
𝑇 𝜉𝒞(𝑖)≤Γ𝑖𝜉

′
𝑖

𝜉𝑗∈[0,𝜉′𝑖],𝑗∈𝒞(𝑖)

∑︁
𝑗∈𝒞(𝑖)

max
𝜉∈Ξ𝑗(𝜉𝑗)

∑︁
𝑘∈𝑉𝑗

𝑠𝑗1𝑘 (1)𝜉𝑘 (3.16b)

=𝑠𝑖𝑖(𝜉
′
𝑖) + max

𝜉𝒞(𝑖):1
𝑇 𝜉𝒞(𝑖)≤Γ𝑖𝜉

′
𝑖

𝜉𝑗∈{0,𝜉′𝑖},𝑗∈𝒞(𝑖)

∑︁
𝑗∈𝒞(𝑖)

max
𝜉∈Ξ𝑗(𝜉𝑗)

∑︁
𝑘∈𝑉𝑗

𝑠𝑗1𝑘 (1)𝜉𝑘 (3.16c)

=𝑠𝑖𝑖(𝜉
′
𝑖) + max

𝜉𝒞(𝑖):1
𝑇 𝜉𝒞(𝑖)≤Γ𝑖𝜉

′
𝑖

𝜉𝑗∈{0,𝜉′𝑖},𝑗∈𝒞(𝑖)

∑︁
𝑗∈𝒞(𝑖)

Ω𝐴
𝑗 (𝜉𝑗, 𝑥𝑗 + 𝑦𝑖𝑖𝑗(𝜉𝑗),x−𝑗) (3.16d)

=𝑠𝑖𝑖(𝜉
′
𝑖) + max

𝜉𝒞(𝑖):1
𝑇 𝜉𝒞(𝑖)≤Γ𝑖𝜉

′
𝑖

𝜉𝑗∈{0,𝜉′𝑖},𝑗∈𝒞(𝑖)

∑︁
𝑗∈𝒞(𝑖)

Ω𝐹
𝑗 (𝜉𝑗, 𝑥𝑗 + 𝑦𝑖𝑖𝑗(𝜉𝑗),x−𝑗) (3.16e)

=𝑠𝑖𝑖(𝜉
′
𝑖) + max

𝜉𝒞(𝑖):1
𝑇 𝜉𝒞(𝑖)≤Γ𝑖𝜉

′
𝑖

𝜉𝑗∈{0,𝜉′𝑖},𝑗∈𝒞(𝑖)

∑︁
𝑗∈𝒞(𝑖)

(︀
Ω𝐹

𝑗 (𝜉𝑗, 𝑥𝑗,x−𝑗) − 𝑦𝑖𝑖𝑗(𝜉𝑗)
)︀+ (3.16f)

=𝑠𝑖𝑖(𝜉
′
𝑖) + max

𝜉𝒞(𝑖):1
𝑇 𝜉𝒞(𝑖)≤Γ𝑖𝜉

′
𝑖

𝜉𝑗∈{0,𝜉′𝑖},𝑗∈𝒞(𝑖)

⎛⎝ ∑︁
𝑗∈𝒞(𝑖)

Ω𝐹
𝑗 (𝜉𝑗, 𝑥𝑗,x−𝑗) −

∑︁
𝑗∈𝒞(𝑖)

𝑦𝑖𝑖𝑗(𝜉𝑗)

⎞⎠ (3.16g)

=

⎛⎜⎝𝑑𝑖𝜉
′
𝑖 − 𝑥𝑖 + max

𝜉𝒞(𝑖):1
𝑇 𝜉𝒞(𝑖)≤Γ𝑖𝜉

′
𝑖

𝜉𝑗∈{0,𝜉′𝑖},𝑗∈𝒞(𝑖)

∑︁
𝑗∈𝒞(𝑖)

Ω𝐹
𝑗 (𝜉𝑗, 𝑥𝑗,x−𝑗)

⎞⎟⎠
+

(3.16h)

=

⎛⎜⎝𝑑𝑖𝜉
′
𝑖 − 𝑥𝑖 + max

𝜉𝒞(𝑖):1
𝑇 𝜉𝒞(𝑖)≤Γ𝑖𝜉

′
𝑖

𝜉𝑗∈[0,𝜉′𝑖],𝑗∈𝒞(𝑖)

∑︁
𝑗∈𝒞(𝑖)

Ω𝐹
𝑗 (𝜉𝑗, 𝑥𝑗,x−𝑗)

⎞⎟⎠
+

(3.16i)

=Ω𝐹
𝑖 (𝜉′𝑖, 𝑥𝑖,x−𝑖) = Ω𝐴

𝑖 (𝜉′𝑖, 𝑥𝑖,x−𝑖). (3.16j)

Equalities (3.16a-3.16b) are straightforward applications of definitions of Θ𝑖 and

s̄𝑖.

To show equality (3.16c), we argue that is it sufficient to check 𝜉𝑗 = 1 and 𝜉𝑗 = 0

for 𝑗 ∈ 𝒞(𝑖). Suppose that Ξ𝑗(𝜉𝑗) has 𝑛 extreme points 𝜉1, . . . , 𝜉𝑛, and 𝑊𝑚 = {𝑘 ∈

𝑉𝑗 : 𝜉𝑚𝑘 = 𝜉𝑗}, 𝑊𝑚 = 𝑉𝑗 ∖𝑊𝑚. Since for each extreme point, 𝜉𝑘 takes value of either
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𝜉𝑗 or 0 (cf. Proposition 3.8.2), we can write

max
𝜉∈Ξ𝑗(𝜉𝑗)

∑︁
𝑘∈𝑉𝑗

𝑠𝑗1𝑘 (1)𝜉𝑘 = max
𝑚∈{1,...,𝑛}

∑︁
𝑘∈𝑉𝑗

{︀
𝑠𝑗1𝑘 (1)𝜉𝑘1𝑘∈𝑊𝑚

}︀
,

which is a convex function of 𝜉𝑗 (1𝑖∈𝐼 = 1 if 𝑖 ∈ 𝐼 and 0 otherwise). By this token,

we can replace 𝜉𝒞(𝑖) ∈ proj𝒞(𝑖)Ξ𝑖 with 𝜉𝒞(𝑖) ∈ proj𝒞(𝑖)Ξ𝑖 ∩ {0, 1}|𝒞(𝑖)| for the argument

of the outer maximization, since Ξ𝑖(0) and Ξ𝑖(1) have binary vertices.

To show equality (3.16d), note that for 𝜉𝑗 = 1, Ω𝐴
𝑗 (1, 𝑥𝑗+𝑦𝑖𝑖𝑗(1),x−𝑗) = Θ𝑗(1, s̄

𝑗1) =

𝑠𝑗1𝑗 (1) + max𝜉∈Ξ𝑗(1)

∑︀
𝑘∈𝑉𝑗∖{𝑗} 𝑠

𝑗1
𝑘 (𝜉𝑘), which is equal to max𝜉∈Ξ𝑗(1)

∑︀
𝑘∈𝑉𝑗

𝑠𝑗1𝑘 (1)𝜉𝑘. For

𝜉𝑗 = 0, Ω𝐴
𝑗 (0, 𝑥𝑗+𝑦𝑖𝑖𝑗(0),x−𝑗) = 0. Equality (3.16e) holds by the induction hypothesis.

Equality (3.16f) follows from the definition of Ω𝐹
𝑗 and (3.20). For equality (3.16g),

by the definitions of 𝛽𝑖, we have (Ω𝐴
𝑗 (𝜉𝑗, 𝑥𝑗,x−𝑗) − 𝑦𝑖𝑖𝑗(𝜉𝑗)) ≥ 0 for 𝑗 ∈ 𝒞(𝑖), therefore

we can rewrite (3.16f) into (3.16g). For the transition into (3.16h), it is straightfor-

ward to consider 𝜉′𝑖 = 0 and 𝜉′𝑖 = 1 separately. Lastly, (3.16i) holds by the convexity

property of
∑︀

𝑗∈𝒞(𝑖) Ω𝐹
𝑗 (𝜉𝑗, 𝑥𝑗,x−𝑗) and (3.16j) holds by the recursive property, both

shown in Proposition 3.8.1. We have now completed the proof for the inductive step,

thus showing 𝑧F = 𝑧A.

To complete the proof, we now turn our attention to the (LLG) formulation. By

solving for 𝑠𝑖(d) from (3.1c) and substituting in (3.2b), we can eliminate (3.1c) and

re-write (3.2b) as

∑︁
𝑗:(𝑗,𝑖)∈𝐸

𝑓𝑗𝑖(d) ≥ 1 − 𝜖𝑖 − 𝜌

𝜌− 𝜌
𝑑𝑖, ∀𝑖 ∈ 𝑉, ∀d ∈ 𝑈.

At optimality, the above constraint can be taken to be active without loss (if it is

not, we can scale down the associated flows into 𝑖 so that it becomes active). Thus,
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the (LLG) is equivalent to

min
x, f(·), s(·)

h𝑇x

subject to 𝑥𝑖 ≥
∑︁

𝑗:(𝑖,𝑗)∈𝐸

𝑓𝑖𝑗(d), ∀𝑖 ∈ 𝑉, ∀d ∈ 𝑈 ′

𝑠𝑖(d) +
∑︁

𝑗:(𝑗,𝑖)∈𝐸

𝑓𝑗𝑖(d) = 𝑑𝑖, ∀𝑖 ∈ 𝑉, ∀d ∈ 𝑈 ′

𝑠𝑖(d) = 0, ∀𝑖 ∈ 𝑉, ∀d ∈ 𝑈 ′

𝑓𝑖𝑗(d) ≥ 0, ∀(𝑖, 𝑗) ∈ 𝐸, ∀d ∈ 𝑈 ′

x ∈ 𝑋,

where 𝑈 ′ :=
{︁
d′ : 𝑑′𝑖 = 1−𝜖𝑖−𝜌

𝜌−𝜌
𝑑𝑖 ∀𝑖 ∈ 𝑉, d ∈ 𝑈

}︁
. Then, this is in turn equivalent to

min
x, f(·), s(·)

h𝑇x + max
d∈𝑈 ′

𝑏′
∑︁
𝑖∈𝑉

(1 − 𝜌)𝑠𝑖(d)

subject to 𝑥𝑖 ≥
∑︁

𝑗:(𝑖,𝑗)∈𝐸

𝑓𝑖𝑗(d), ∀𝑖 ∈ 𝑉, ∀d ∈ 𝑈 ′

𝑠𝑖(d) +
∑︁

𝑗:(𝑗,𝑖)∈𝐸

𝑓𝑗𝑖(d) = 𝑑𝑖, ∀𝑖 ∈ 𝑉, ∀d ∈ 𝑈 ′

∑︁
𝑗:(𝑗,𝑖)∈𝐸

𝑓𝑗𝑖(d) ≤ 𝑑𝑖, ∀𝑖 ∈ 𝑉, ∀d ∈ 𝑈 ′

𝑓𝑖𝑗(d) ≥ 0, ∀(𝑖, 𝑗) ∈ 𝐸, ∀d ∈ 𝑈 ′

x ∈ 𝑋

for 𝑏′ large enough. However, this corresponds to an (LLC) instance that satisfies our

assumptions and therefore admits an optimal affine adjustable policy. �

Proof Proof of Proposition 3.8.1.
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Note that we can express Ω𝐹
𝑖 (𝜉′𝑖, 𝑥𝑖,x−𝑖) as max𝜉∈Ξ𝑖(𝜉′𝑖)

𝑟𝑖(𝜉, 𝑥𝑖,x−𝑖), where

𝑟𝑖(𝜉, 𝑥𝑖,x−𝑖) := min
y,s

∑︁
𝑘∈𝑉𝑖

𝑠𝑘

subject to 𝑥𝑖 ≥
∑︁
𝑗∈𝒞(𝑖)

𝑦𝑖𝑗

𝑠𝑖 + 𝑥𝑖 ≥
∑︁
𝑗∈𝒞(𝑖)

𝑦𝑖𝑗 + 𝑑𝑖𝜉𝑖

𝑦𝒫(𝑘)𝑘 + 𝑥𝑘 ≥
∑︁

𝑗∈𝒞(𝑘)

𝑦𝑘𝑗, ∀𝑘 ∈ 𝑉𝑖 ∖ {𝑖}

𝑦𝒫(𝑘)𝑘 + 𝑠𝑘 + 𝑥𝑘 ≥
∑︁

𝑗∈𝒞(𝑘)

𝑦𝑘𝑗 + 𝑑𝑘𝜉𝑘, ∀𝑘 ∈ 𝑉𝑖 ∖ {𝑖}

y, s ≥ 0.

It is straightforward to check that the above optimization problem admits an optimal

solution such that 𝑠𝑖 = (𝑑𝑖𝜉
′
𝑖 − 𝑥𝑖)

+ and
∑︀

𝑗∈𝒞(𝑖) 𝑦𝑖𝑗 = (𝑥𝑖 − 𝑑𝑖𝜉
′
𝑖)
+. Also,

𝑟𝑖(𝜉, 𝑥𝑖 + ∆,x−𝑖) = (𝑟𝑖(𝜉, 𝑥𝑖,x−𝑖) − ∆)+, ∀∆ ≥ 0. (3.20)

Another fact we will use is that

min
x≥0

1𝑇x=𝐾

𝑛∑︁
𝑖=1

(𝑞𝑖 − 𝑥𝑖)
+ = (1𝑇q−𝐾)+, ∀q ∈ R𝑛, 𝐾 ≥ 0. (3.21)
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Using all these properties we have

Ω𝐹
𝑖 (𝜉′𝑖, 𝑥𝑖,x−𝑖) =(𝑑𝑖𝜉

′
𝑖 − 𝑥𝑖)

+ + max
𝜉∈Ξ𝑖

min
{𝑦𝑖𝑗}𝑗∈𝒞(𝑖) : 𝑦𝑖𝑗≥0,∑︀
𝑗∈𝒞(𝑖) 𝑦𝑖𝑗=(𝑥𝑖−𝑑𝑖𝜉

′
𝑖)

+

∑︁
𝑗∈𝒞(𝑖)

𝑟𝑗(𝜉, 𝑥𝑗 + 𝑦𝑖𝑗,x−𝑗)

(3.22a)

=(𝑑𝑖𝜉
′
𝑖 − 𝑥𝑖)

+ + max
𝜉∈Ξ𝑖

min
{𝑦𝑖𝑗}𝑗∈𝒞(𝑖) : 𝑦𝑖𝑗≥0,∑︀
𝑗∈𝒞(𝑖) 𝑦𝑖𝑗=(𝑥𝑖−𝑑𝑖𝜉

′
𝑖)

+

∑︁
𝑗∈𝒞(𝑖)

(𝑟𝑗(𝜉, 𝑥𝑗,x−𝑗) − 𝑦𝑖𝑗)
+

(3.22b)

=(𝑑𝑖𝜉
′
𝑖 − 𝑥𝑖)

+ +

⎛⎝max
𝜉∈Ξ𝑖

∑︁
𝑗∈𝒞(𝑖)

𝑟𝑗(𝜉, 𝑥𝑗,x−𝑗) − (𝑥𝑖 − 𝑑𝑖𝜉
′
𝑖)
+

⎞⎠+

(3.22c)

=(𝑑𝑖𝜉
′
𝑖 − 𝑥𝑖)

+ +

⎛⎝ max
𝜉𝒞(𝑖)∈proj𝒞(𝑖)Ξ𝑖

max
𝜉∈Ξ𝑗(𝜉𝑗),
𝑗∈𝒞(𝑖)

∑︁
𝑗∈𝒞(𝑖)

𝑟𝑗(𝜉, 𝑥𝑗,x−𝑗) − (𝑥𝑖 − 𝑑𝑖𝜉
′
𝑖)
+

⎞⎠+

(3.22d)

=(𝑑𝑖𝜉
′
𝑖 − 𝑥𝑖)

+ +

⎛⎝ max
𝜉𝒞(𝑖)∈proj𝒞(𝑖)Ξ𝑖

∑︁
𝑗∈𝒞(𝑖)

max
𝜉∈Ξ𝑗(𝜉𝑗)

𝑟𝑗(𝜉, 𝑥𝑗,x−𝑗) − (𝑥𝑖 − 𝑑𝑖𝜉
′
𝑖)
+

⎞⎠+

(3.22e)

=(𝑑𝑖𝜉
′
𝑖 − 𝑥𝑖)

+ +

⎛⎝ max
𝜉𝒞(𝑖)∈proj𝒞(𝑖)Ξ𝑖

∑︁
𝑗∈𝒞(𝑖)

Ω𝐹
𝑗 (𝜉𝑗, 𝑥𝑗,x−𝑗) − (𝑥𝑖 − 𝑑𝑖𝜉

′
𝑖)
+

⎞⎠+

(3.22f)

=

⎛⎝𝑑𝑖𝜉
′
𝑖 − 𝑥𝑖 + max

𝜉𝒞(𝑖)∈proj𝒞(𝑖)Ξ𝑖

∑︁
𝑗∈𝒞(𝑖)

Ω𝐹
𝑗 (𝜉𝑗, 𝑥𝑗,x−𝑗)

⎞⎠+

. (3.22g)

Equality (3.22a) follows from the definition of 𝑟𝑖; (3.22b) follows from (3.20); (3.22c)

follows from (3.21); (3.22d) is an equivalent way of writing the maximization operator;

exchanging the inner maximization and summation operators is allowed since 𝑟𝑗 only

depends on {𝜉𝑘, 𝑘 ∈ 𝑉𝑗}, leading to (3.22e); (3.22f) follows from the definition of 𝑟𝑗.

Equality (3.22g) holds by considering the fact that Ω𝐹
𝑗 ≥ 0 for any 𝑗 ∈ 𝒞(𝑖), and

checking two cases: one with 𝑑𝑖𝜉
′
𝑖 − 𝑥𝑖 < 0, and the other with 𝑑𝑖𝜉

′
𝑖 − 𝑥𝑖 ≥ 0.

To show convexity of Ω𝐹
𝑖 (𝜉′𝑖, 𝑥𝑖,x−𝑖), we use an induction argument on the level of
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node 𝑖. First note that for 𝑖 ∈ 𝑉 𝐿, we have Ω𝐹
𝑖 (𝜉′𝑖, 𝑥𝑖,x−𝑖) = (𝑑𝑖𝜉

′
𝑖−𝑥𝑖)

+, which is con-

vex and non-decreasing in 𝜉′𝑖. For 𝑖 in any other level of the network, given the result

we just proved (3.22g), it suffices to show max𝜉𝒞(𝑖)∈proj𝒞(𝑖)Ξ𝑖(𝜉′𝑖)

∑︀
𝑗∈𝒞(𝑖) Ω𝐹

𝑗 (𝜉𝑗, 𝑥𝑗,x−𝑗)

is convex in 𝜉′𝑖. Since Ω𝐹
𝑗 (𝜉𝑗, 𝑥𝑗,x−𝑗) is convex in 𝜉𝑗 (by the induction hypoth-

esis), maximum is obtained at the extreme points. Given that proj𝒞(𝑖)Ξ𝑖(𝜉
′
𝑖) =

{𝜉𝒞(𝑖) : 𝜉𝑗 ∈ [0, 𝜉′𝑖],1
𝑇𝜉𝒞(𝑖) ≤ Γ𝑖𝜉

′
𝑖} and Ω𝐹

𝑗 is non-decreasing in 𝜉𝑗, we can equiva-

lently write: max|𝑆|=Γ𝑖,𝑆⊆𝒞(𝑖)

{︁∑︀
𝑗∈𝑆 Ω𝐹

𝑗 (𝜉′𝑖, 𝑥𝑗,x−𝑗) +
∑︀

𝑗∈𝒞(𝑖)∖𝑆 Ω𝐹
𝑗 (0, 𝑥𝑗,x−𝑗)

}︁
, which

is convex, non-decreasing in 𝜉′𝑖.�

Proof Proof of Proposition 3.8.2.

For the sake of reaching a contradiction, suppose there exists some extreme point

𝜉 ∈ ext(Ξ), such that its 𝑘th entry is fractional, 𝜉𝑘 ∈ (0, 1). Note that by definition

of Ξ, 𝜉0 = 1, and thus 𝑘 ̸= 0. Let 𝑝 = 𝒫(𝑘) be its parent, i.e., 𝑘 ∈ 𝒞(𝑝). Then it must

hold that 0 <
∑︀

𝑖∈𝒞(𝑝) 𝜉𝑖 ≤ Γ𝑝𝜉𝑝, and thus Γ𝑝 > 0 and 𝜉𝑝 > 0.

Suppose 𝜉𝑝 = 1. Then the above condition becomes 0 <
∑︀

𝑖∈𝒞(𝑝) 𝜉𝑖 ≤ Γ𝑝.

Furthermore, 𝜉𝑖 ∈ [0, 1] ∀𝑖 ∈ 𝒞(𝑝). Now consider the |𝒞(𝑝)|-dimensional polytope

{𝛾 :
∑︀

𝑖∈𝒞(𝑝) 𝛾𝑖 ≤ Γ𝑝, 𝛾𝑖 ∈ [0, 1]∀𝑖 ∈ 𝒞(𝑝)}, which can be readily seen to have binary

extreme points. Let these extreme points be {𝛾𝑗, 𝑗 = 1, . . . , 𝑁}. Since 𝜉𝒞(𝑝) belongs

to this polytope, we can express it as

𝜉𝒞(𝑝) =
𝑁∑︁
𝑗=1

𝛼𝑗𝛾
𝑗, where

𝑁∑︁
𝑗=1

𝛼𝑗 = 1, 𝛼𝑗 ≥ 0, ∀𝑗 ∈ {1, . . . , 𝑁}.

In particular, for those 𝑖 ∈ 𝒞(𝑝) that 𝜉𝑖 > 0, we have:

𝑁∑︁
𝑗=1

𝛼𝑗𝛾
𝑗
𝑖 = 𝜉𝑖 ⇐⇒

𝑁∑︁
𝑗=1

𝛼𝑗
1

𝜉𝑖
𝛾𝑗
𝑖 = 1. (3.23)

Now we use each 𝛾𝑗 to construct a vector 𝜉𝑗 ∈ Ξ and show that we can write 𝜉 as a

convex combination of {𝜉𝑗, 𝑗 = 1, . . . , 𝑁}, and 𝜉 ̸= 𝜉𝑗,∀𝑗 ∈ {1, . . . , 𝑁}—which will

contradict our assumptions.

96



We construct 𝜉𝑗, 𝑗 = 1, . . . , 𝑁 , as follows:

𝜉𝑗𝑉 ∖𝑉𝑝
= 𝜉𝑉 ∖𝑉𝑝

,

𝜉𝑗𝑝 = 𝜉𝑝,

𝜉𝑗𝒞(𝑝) = 𝛾𝑗,

𝜉𝑗𝑉𝑖∖{𝑖} =

⎧⎪⎨⎪⎩
1
𝜉𝑖
𝜉𝑉𝑖∖{𝑖} if 𝜉𝑖 > 0 and 𝜉𝑗𝑖 = 1

0 otherwise
, ∀𝑖 ∈ 𝒞(𝑝).

It is straightforward to verify that for all 𝑗 = 1, . . . , 𝑁 , 𝜉𝑗 ∈ Ξ and 𝜉𝑗 ̸= 𝜉. We next

argue that
∑︀

𝑗=1,...,𝑁 𝛼𝑗𝜉
𝑗 = 𝜉 by checking component-wise. This is straightforward

for components 𝑉 ∖𝑉𝑝, 𝑝, and 𝒞(𝑝). For any 𝑙 ∈ 𝑉𝑖 ∖ {𝑖} for 𝑖 ∈ 𝒞(𝑝) such that 𝜉𝑖 = 0,

we have that 𝜉𝑗𝑙 = 𝜉𝑙 = 0 for all 𝑗 = 1, . . . , 𝑁 . Finally, for any 𝑙 ∈ 𝑉𝑖 ∖ {𝑖} for 𝑖 ∈ 𝒞(𝑝)

such that 𝜉𝑖 > 0, we have that

𝑁∑︁
𝑗=1

𝛼𝑗𝜉
𝑗
𝑙 =

∑︁
𝑗:𝜉𝑗𝑖=1

𝛼𝑗𝜉𝑙/𝜉𝑖 +
∑︁
𝑗:𝜉𝑗𝑖=0

0 =
𝑁∑︁
𝑗=1

𝛼𝑗𝜉𝑙/𝜉𝑖𝜉
𝑗
𝑖 =

𝑁∑︁
𝑗=1

(︀
𝛼𝑗𝜉

𝑗
𝑖 /𝜉𝑖

)︀
𝜉𝑙 =

𝑁∑︁
𝑗=1

(︀
𝛼𝑗𝛾

𝑗
𝑖 /𝜉𝑖

)︀
𝜉𝑙

(3.23)
= 𝜉𝑙.

Consequently, 𝜉 cannot be an extreme point if 𝜉𝑝 = 1. Since 𝜉𝑝 > 0, we must

have 𝜉𝑝 ∈ (0, 1). We can propagate this argument upstream to eventually show that

𝜉0 ∈ (0, 1), which contradicts that 𝜉0 = 1 for all 𝜉 ∈ Ξ, and the proof is complete.�

3.9 Numerical Studies on AP Heuristic

3.9.1 Relaxing Assumptions 1 and 2

We provide details on how problem instances are generated for Studies 1 and 2 in

§3.4.2, alongside a quantitative analysis of our results. For each problem instance, we

generate a tree-style graph as follows:

1. Uniformly sample the target total number of nodes, 𝑛 ∈ {100, 200, 500, 1000, 2000, 5000, 10000}.

2. Uniformly sample the number of levels, 𝑙 + 1 ∈ {2, 3, 4, 5}.
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3. For each non-leaf level 𝑘 = 0, 1, . . . , 𝑙 − 1, sample a random integer 𝑓𝑘 between

5 and 15.

4. Find 𝐹 (e.g., by line search) such that round
(︀
1 + 𝑓0/𝐹 + 𝑓0𝑓1/𝐹

2 + · · · + 𝑓0 · · · 𝑓𝑙−1/𝐹
𝑙−1

)︀
=

𝑛, where round(·) is the usual rounding operation.

5. Grow the tree from root in a breadth-first way: for each node in level 𝑘 =

0, 1, . . . , 𝑙−1, assign to it 𝑐𝑖 children, where 𝑐𝑖 is randomly picked from {(
∏︀𝑘

𝑗=0 𝑓𝑗/𝐹
𝑘−

1)+,
∏︀𝑘

𝑗=0 𝑓𝑗/𝐹
𝑘,

∏︀𝑘
𝑗=0 𝑓𝑗/𝐹

𝑘 + 1}.

With this procedure, we generate 5000 trees. For Study 2, for each of the 5000 trees,

we create a non-tree counterpart by introducing additional edges into the graph.

Specifically, for each pair of nodes that are in adjacent levels in the previously con-

structed tree, we assign them an edge with probability 𝑝arc, which is randomly sampled

from [0, 0.01] for each instance. The total number of edges in the non-tree counterpart

comes out to have 0% to 200% more edges than its base tree.

To generate cost, efficacy, demand, and attack severity parameter values, we first

normalize the per unit demand loss cost, 𝑏 = 100. Then for each instance, we do the

following:

1. Generate (float-valued) inventory cost upper and lower bounds uniformly: ℎ ∈

[0, 10], and ℎ̄ ∈ [10, 20], and 𝛿ℎ = ℎ̄− ℎ.

2. For each node 𝑖, assign an inventory cost ℎ𝑖 ∈ [ℎ, ℎ̄] to it. More specifically, ℎ𝑖 is

uniformly sampled from [ℎ+ 𝑙(𝑖)+0.5
𝑙+1

×𝛿ℎ, ℎ+ 𝑙(𝑖)+1
𝑙+1

×𝛿ℎ], where 𝑙(𝑖) ∈ {0, 1, . . . , 𝑙}

is the level in which node 𝑖 resides.

3. Uniformly sample the average efficacy 𝜌 ∈ [0, 1]. For each path 𝑝, generate

𝜌𝑝 ∈ [0.5, 1] × 𝜌. Assign a flow cost efficacy 100𝜌𝑝 to the path.

4. For each demand node 𝑖, the maximum demand is 𝑑𝑖, which is uniformly sampled

from [0, 1000]. (This value is then fed into the optmization formulation 𝑑𝑖(𝜉𝑖) =

𝑑𝑖𝜉𝑖.)
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5. To determine the attack scale for each node, Γ𝑖, first generate Γ̄ ∈ [0, 0.2]. Then

for each node 𝑖 in this network instance, uniformly sample an integer Γ𝑖 between

round(0.8Γ̄𝑐𝑖) and round(1.2Γ̄𝑐𝑖).

Figures 3-9-3-14 depict, either through scatter plots or standard box plots, the

upper bounds on the AP heuristic suboptimality gaps we obtained for Studies 1 & 2

for varying number of nodes, tree depth, inventory cost parameters, attack severity

parameters, antibiotic efficacy, and tree-violating edges. It can be seen that subopti-

mality gaps are small and do not appear to have strong correlation with any of the

parameter values tested, including, the number of nodes and the attack severity.
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Figure 3-9: Upper bounds on AP suboptimality gap for varying number of nodes
(Left: tree; right: non-tree).
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Figure 3-10: Upper bounds on AP suboptimality gap for varying number of levels
(Left: tree; right: non-tree).

10 12 14 16 18 20

0
.0

0
0

.0
2

0
.0

4
0

.0
6

0
.0

8
0

.1
0

Inventory Cost

G
a

p
: 

A
P

 a
n

d
 L

o
w

e
r 

B
o

u
n

d

10 12 14 16 18 20

0
.0

0
0

.0
2

0
.0

4
0

.0
6

0
.0

8
0

.1
0

Inventory Cost

G
a

p
: 

A
P

 a
n

d
 L

o
w

e
r 

B
o

u
n

d

Figure 3-11: Upper bounds on AP suboptimality gap for varying inventory cost, ℎ̄
(Left: tree; right: non-tree).
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Figure 3-12: Upper bounds on AP suboptimality gap for varying attack severity, Γ̄
(Left: tree; right: non-tree).
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Figure 3-13: Upper bounds on AP suboptimality gap for varying antibiotic efficacy,
𝜌 (Left: tree; right: non-tree).
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Figure 3-14: Upper bounds on AP
suboptimality gap for varying net-
work complexity.
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Figure 3-15: Upper bounds on AP
suboptimality gap for varying num-
ber of nodes, capacitated networks.

101



3.9.2 Relaxing Infinite Capacity Assumption

To explore the AP heuristic’s performance for the joint inventory and dispensing ca-

pacity optimization problem, (LLGC) in §3.5, we conducted numerical studies similar

to Studies 1 & 2 described above.

Recall that (LLGC) differed from (LLG) by introducing capacity constraints (3.5e)

for subsets of edges in the graph, and the associated capacity variables and costs. We

conducted two studies, in both of which we considered the same setup as in Study 1.

In the first of these two new studies, we generated these subsets of edges in a random

fashion. In the second, we considered subsets of edges that had similar structure as

in (3.5e)—specifically, sets of edges which all shared the same demand node. Both

studies yielded similar results; we focus only on the latter in the remainder.

To introduce dispensing capacity, for each demand node, we partitioned its in-

coming edges to 𝑘 equi-sized sets; 𝑘 was sampled from {2, 4, 6, 8}. For each resulting

set of edges, we introduced a capacity variable and a constraint, as in (3.5e). The

associated capacity cost coefficient was sampled as a fraction of the life loss cost.

Table 3.5 provides statistics of the upper bounds on the suboptimality gaps we

obtained. Figure 3-15 depicts the suboptimality gap bounds for varying number of

Min 1st Quantile Median Mean 3rd Quantile Max

0.00% 0.00% 0.00% 0.15% 0.00% 0.22%

Table 3.5: Statistics of upper bounds on AP heuristic’s suboptimality gaps for the
numerical studies on the joint inventory and dispensing capacity optimization prob-
lem.

nodes. As before, our analysis reveals that the suboptimality gap is small and does

not grow with the size of the network.
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Chapter 4

Optimizing Influenza Vaccine

Selection

4.1 Introduction

Seasonal influenza (flu) imposes high cost on health and economic activities every

year. Globally, influenza-related respiratory diseases led to 290,000 to 650,000 deaths

each year, between years 1999 and 2015 [75]. In the United States, the Centers for

Disease Control and Prevention (CDC) estimates that influenza causes 9.3 million to

49.0 million illnesses, 140,000 to 960,000 hospitalizations, and 12,000 to 79,000 deaths

annually since 2010 [58]. Since influenza is a communicable disease, one strategy to

relieve the disease burden is to provide large quantity of preventative vaccines to the

public in a timely manner [56]. In the 2017-2018 flu season, influenza vaccination

prevented 7.1 million illnesses, 3.7 million medical visits, 109,000 hospitalizations,

and 8,000 deaths [123].

Improving vaccine effectiveness (VE) is a focal point of current public health and

policy studies. In the 2017-2018 season, VE was estimated to be 38% in the United

States. A main reason behind the relatively low vaccine effectiveness is the mismatch

between vaccine strains and the circulating virus strains – the actual virus strains

that are causing an epidemic [138]. To understand such (in)effectiveness, we briefly

summarize how influenza vaccines work here. Influenza vaccination works by exposing
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human body’s immune system to inactivated or attenuated virus strain. The immune

system responds to virus intrusion by identifying which type of protective protein

(antibody) from its repertoire works well against such virus, and proliferating such

antibodies. The immune system then memorizes the production mechanism of this

antibody type, resulting in more effective response to any future virus that is similar

to the previous one. If the circulating viruses are similar to the vaccine virus, a

vaccinated person stands a high chance of staying healthy and non-contagious. If the

circulating viruses are not similar to the vaccine virus, the vaccinated person might

still be protected (with a lower probability) due to so-called cross-immunity.

Ideally, the vaccine strains should be selected to precisely match future circulat-

ing virus strains. But this match quality is limited by the current vaccine manufac-

turing technology [16]. More specifically, three concurring factors cause mismatch

between vaccine virus strains and circulating virus strains. First, the viruses’ active

components (antigens) undergo genetic changes constantly, a phenomenon known as

antigenic drift and shift [55]. Drifting refers to relatively small genetic changes, re-

sulting in reduced vaccine effectiveness. Shifting refers to abrupt, major changes of

the virus protein structure, usually leading to a pandemic [145]. Second, due to long

production lead time of vaccines, the strains need to be selected months ahead of

flu season [57]. Third, the strains in the final, delivered vaccines may differ from

the original seed strains, due to the strains adapting to their biological environments

in the manufacturing process [138]. Therefore, limitations in the traditional vaccine

manufacturing technology, along with constant antigenicity changes, reduce matching

accuracy between vaccine strains and flu season circulating strains.

Indeed, improving manufacturing technologies has been a first-order priority from

the policymakers’ point of view, as evidenced from a testimony in a 2018 U.S. House

of Representatives meeting [109]:

“Continuous manufacturing holds great promise for both cell-based and

recombinant vaccines because supply could be more easily ramped up on

short notice. This would allow us to more rapidly address newly emerging

strains or strain drift. Getting all the necessary preparatory work done is
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one limiting step of the egg-based processes.”

Several new vaccine technologies and manufacturing processes have been approved

by the Food and Drug Administration (FDA) in 2013 and 2016 [59], which are more

consistent in yield quality and quantity and have shorter production lead times [15,

29].

The implications of better vaccine manufacturing technologies are multi-faceted.

A more effective vaccine is not only beneficial for the person being vaccinated, her

social network, but also conducive to higher public confidence in vaccinations, all of

which contribute to a virtuous cycle of more vaccine benefit and less disease burden

for the society. From the international and national policymakers’ point of view,

this invites examination and update of the current influenza monitoring effort and

vaccine strain selection criteria to better suit the new vaccine manufacturing tech-

nologies. From the vaccine manufacturing companies’ point of view, the new vaccine

technologies expand the space of business strategies, introducing opportunities for

cooperation and areas of competition.

Research Question and Approach.

In this work, we address the question of how to select strains and produce vaccines,

in light of new vaccine technologies. We support this quantitative policy analysis with

analytical tools and publicly available data. The overall framework is not drastically

different from existing operations management and operations research models. One

can imagine the conceptual mapping between traditional operations management

models (such as the newsvendor problem and the facility location problem) and the

strain selection problem as follows: product / supply site selection decisions – vac-

cine strain selection, demand type – circulating virus strain type, demand changes –

antigenic drift & shift, process flexibility – cross–immunity. And the list goes on. We

will make the model more concrete in the sections to come.

Contributions.

We differ from these above mentioned works by incorporating different produc-

tion technologies in the vaccine selection and production problem. We show that the

newly FDA-approved manufacturing technologies have the potential to impact vac-
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cine policies well beyond increasing vaccine availability. In particular, we show that

selecting more than one vaccine strain for each virus subtype is complementary to

adding a fast production technology. As a result, the policymakers should re-examine

the current practice of selecting just one vaccine strain per subtype per flu season,

because the benefit may outweigh the cost of selecting an additional strain.

To analyze this problem, we bring together several technical tools from a few areas

– theoretical biology, discrete convex analysis, and distributionally robust optimiza-

tion – to create a vehicle for our model and theory. The model and theory are general,

and can be used to analyze other network newsvendor type and facility location type

of problems.

Figure 4-1: (Adopted from [74]) Structure of a virus: the HA and NA are charac-
teristic proteins on a virus that can be recognized by human immune system. These
proteins are called antigens – substance that causes immune system’s antibodies to
be generated.

4.2 Immunology Background

There are four types of influenza viruses: A, B, C, and D. Types A and B cause

seasonal epidemics. The sudden changes in influenza A viruses can also cause a

pandemic. Type C is mild, and type D is not known to affect humans [53].

Type A influenza virus, for example, are characterized by two proteins, hemag-

glutinin (HA) and neuraminidase (NA) (Figure 4-1). One key feature of a influenza

virus is its imperfect polymerase (DNA and RNA formulation), which results in ge-

netic mutations (antigenic drift and shift) that change the chemical properties of

such proteins [86]. HA proteins assist viral entry into human cells by identifying

host cells and facilitating the cell membrane merging, for the deposit of viral genome
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Figure 4-2: Clonal selection of B cells. Figure adopted from [110].

into human cells. NA proteins help the virus move through the human respiratory

tract system and also assist the elution of replicated viruses out of host cells. The

hemaglutinin has at least 18 subtypes, and the neuraminidase protein has at least 11

subtypes [60].

B cells, or B lympholytes, is a type of white blood cells that produce antibodies

against viruses (B refers to the place that produces the cells: bursa of Fabricius in

birds and bone marrow in mammals, and is not related to the B in influenza type

B) [39]. Each B cell has one type of Y-shaped surface receptors (i.e., antibodies),

suitable for binding with specific types of antigens (virus surface proteins such as HA

and NA). When a B cell encounters its compatible antigen, the receptor binds with

the antigen and is said to be activated. After being activated, B cells differentiate

into two types. The first type, plasma cells, act as supercharged production facility to

generate antibodies, which then inactivate viruses and send out signals to other cells

to clean up the bound virus clumps. The second type, memory cells, are primed for

future encounters of similar types of antigens. The process of B cell activation, dif-

ferentiation, and future activation are in summary called the clonal selection process

(Figure 4-2).
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Figure 4-3: More efficient antigen recognition and containment during secondary
response after the priming of memory cells. Figure adopted from [110].

Vaccination works by injecting specific types of inactivated or live attenuated

viruses into the human body, to induce the production of memory cells that can

recognize these types of viruses (B cells undergoing the primary response phase as

depicted in Figure 4-2). In the subsequent flu season, if the actual circulating viruses

are similar to the vaccine viruses, then memory cells would readily recognize the

circulating viruses and more efficiently contain them (Figure 4-3).

As discussed in the previous section, the vaccine effectiveness is largely determined

by the antigenic similarity between the vaccine virus strain and circulating virus

strain. And this similarity can be measured in so-called shape space [117, 161]. In the

operations research and computer science terminology, we can think of shape space

as a linear feature space in which we can embed virus strains’ genetic information.

The vaccine effectiveness has been shown to closely follow an exponential function:

𝑤(𝑣, 𝑠) = 𝑒−𝜂‖𝑣−𝑠‖2 ,

where 𝑣 and 𝑠 are vector representations of the virus and vaccine strains in the feature

space, 𝜂 is the effectiveness coefficient, and norm ‖·‖ is the Euclidean norm in this

feature space. Shape space theory has been studied and validated via extensive lab

experiments and empirical data in this biological setting. For the case of influenza

virus and antibody interaction, a two-dimensional manifold is sufficient [139].
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Figure 4-4: Global influenza virus circulation between 2007 and 2019. Data from
[111].

4.3 Vaccine Selection and Production

Continuous antigenic shift of influenza viruses makes total immunity difficult. In-

fluenza vaccines have to be updated every year to target newly emerging variants

of the type A and B viruses. The World Health Organization (WHO) monitors the

circulation of influenza viruses through a global collaboration network, the Global

Influenza Surveillance and Response System (GISRS) (Figure 4-4) [112]. In the U.S.,

the CDC also closely monitors the outpatient illness and viral activities on the federal

and local levels [54].

Potential viruses are isolated to undergo lab experiments, and sometimes full gene

sequencing, every year [139]. The main method of experiment, hemaglutination inhi-

bition (HI) assay, generates a data matrix. Each entry of the matrix HI𝑖𝑗 indicates

the similarity between the reference virus 𝑗 and potential circulating virus 𝑖. Statis-

tical learning and optimization methods are then used to convert HI data to create

antigenic maps, which is a specific implementation of the shape space theory [87].

With the experimental studies and quantitative methods, WHO makes recommen-

dation about the specific virus strains to include the subsequent vaccine production

(February/March for the northern hemisphere, and August/September for the south-

ern hemisphere). For example, the WHO recommended the following four strains for
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Fig. 1. Antigenic map of influenza A (H3N2) virus from 1968 to 2003. 

Derek J. Smith et al. Science 2004;305:371-376

American Association for the Advancement of Science

Figure 4-5: The antigenic map of influenza A (H3N2) from year 1968 to 2003. Figure
adopted from [139].
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the 2019–2020 influenza seasons for northern hemisphere in March 2019 [112]:

∙ A/Brisbane/02/2018 (H1N1)pdm09-like virus;

∙ A/Kansas/14/2017 (H3N2)-like virus;

∙ B/Colorado/06/2017-like virus (B/Victoria/2/87 lineage); and

∙ B/Phuket/3073/2013-like virus (B/Yamagata/16/88 lineage).

In the first strain, for example, “A” refers to the antigenic type, “Brisbane” refers

to the geographical origin, “02” refers to the strain number, “2018” refers to the year

of strain isolation, and “pdm09” refers to the pandemic in 2009. For influenza A type

viruses, the HA and NA description is included in the parantheses, such as (H1N1)

and (H3N2).

Seasonal influenza vaccines are monovalent, trivalent, or quadrivalent – indicating

that the vaccines include one, three, or four types of the recommended strains. The

traditional vaccine production technology is heavily dependent on hen’s eggs [59, 148].

In the United States, the CDC and labs provide candidate vaccine viruses (CVV) to

the vaccine manufacturers. Then, the CVVs are incubated in fertilized eggs for several

days. Subsequently, the virus-containing fluid is isolated and purified according to

FDA-approved processes. The final vaccine yield depends highly on the quantity and

quality of healthy eggs. And because quality varies from one lot to the next, each lot

has to be separately approved by the FDA. Furthermore, the (random) adaptation of

viruses to the biological environment in eggs reduces vaccine effectiveness. Overall,

production lead time is at least six to eight months from the time CVVs are provided

to manufacturers to delivery [57].

New vaccine technologies recently approved by the FDA can improve both the

yield quality and reduce the production lead time of vaccines [96]. For example, the

recombinant protein approach completely avoids the reliance on eggs. After strains

are selected, the gene encoding for the HA proteins are directly cloned into base

viruses, which are injected into insect cells for replication, and later purification.

The overall production is more reliable and has a production lead time shorter than
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38 days, from gene isolation to delivery [29]. In addition to HA and NA targeting

vaccines, new technologies (so-called universal vaccines) try to elicit human immune

response to target to portions of viruses that do not drift or shift much. The first

clinical trial for universal vaccines has begun recently [104].

4.4 Decision Model: Vaccine Selection and Produc-

tion

The main question we hope to address is the impact of vaccine technologies on global

strain selection decisions. More precisely, we want to understand how vaccine strain

selection policy would change, given the decrease in vaccine production lead times, and

increase in the production capacity. In this section, we only model the vaccine strain

selection process for one subtype, e.g., influenza A (H1N1), to facilitate exposition

and focus on the question of how many strains we should select within each virus

subtype. However, the model and theory in this and later sections can be readily

generalized to include multiple virus subtypes.

We can visualize this optimization problem as a network design problem on a

bipartite graph (𝑉 ∪𝑉𝐷, 𝐸). On the one side, node 𝑖 ∈ 𝑉 are supply nodes. Let index

𝑖 represent the 𝑖th vaccine strain candidate, and decision variables 𝑧𝑖, 𝑥𝑖, �̃�𝑖 represent

the strain selection, production quantity of slow vaccine, and production quantity

of fast vaccine respectively. We let 𝑚 = |𝑉 |. On the other side of the bipartite

graph, let 𝑗 ∈ 𝑉𝐷 be the 𝑗th circulating strain candidate, and 𝑑𝑗 be the number of

people susceptible to strain 𝑗. The support of random vector 𝑑 := {𝑑1, 𝑑2, . . . , 𝑑𝑛} is

𝐷 := 𝐷1×𝐷2× . . .×𝐷𝑛, where 𝑛 = |𝑉𝐷|. Decision variable 𝑦𝑖𝑗 represents the number

of vaccine 𝑖 used to vaccinate people with virus 𝑗. The demand is random and takes

distribution 𝜇. To hedge against uncertainty, we assume the demand distribution is

drawn from a distribution family Γ.
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Figure 4-6: Example of vaccine strain selection being misguided by antigenic drift,
visualized in a two-dimensional antigenic map. Small black dots: virus strains that
show up earlier in the flu season. Small gray dots: virus strains that show up later
in the flu season. Upper-right yellow dot: vaccine strain selected to target earlier
circulating strains. Lower-left yellow dot: vaccine strain selected later in the season
to target all strains. Dotted circle: vaccine’s effectiveness range.

VS : min
𝑥,𝑧

max
𝜇∈Γ

E𝑑∼𝜇[min
�̃�,𝑦

𝑓(𝑥, �̃�, 𝑦, 𝑧, 𝑑)] (4.1a)

subject to
∑︁
𝑗∈𝑁−

𝑖

𝑦𝑖𝑗(𝑑) ≤ 𝑥𝑖 + �̃�𝑖(𝑑), ∀𝑖 ∈ 𝑉, ∀𝑑 ∈ 𝐷 (4.1b)

∑︁
𝑖∈𝑁+

𝑗

𝑦𝑖𝑗(𝑑) ≤ 𝑑𝑗, ∀𝑗 ∈ 𝑉𝐷, ∀𝑑 ∈ 𝐷 (4.1c)

𝑥𝑖 + �̃�𝑖(𝑑) ≤ 𝑁𝑧𝑖, ∀𝑖 ∈ 𝑉, ∀𝑑 ∈ 𝐷 (4.1d)∑︁
𝑖∈𝑉

𝑥𝑖 ≤ 𝑐𝑒, (4.1e)

∑︁
𝑖∈𝑉

�̃�𝑖 ≤ 𝑐𝑟, (4.1f)

∑︁
𝑖∈𝑉

𝑧𝑖 ≤ 𝜅 (4.1g)

�̃�(𝑑), 𝑦(𝑑) ≥ 0, ∀𝑑 ∈ 𝐷 (4.1h)

𝑧 ∈ 𝒵 ⊆ {0, 1}𝑚. (4.1i)
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Constraints (4.1b) ensure that the total amount of vaccine 𝑖 allocated out is no

more than the total amount of vaccine 𝑖 produced. Constraints (4.1c) show the

total number of people vaccinated is no more than the size of susceptible population.

Constraints (4.1d) show that the total production quantity of vaccine type 𝑖 cannot be

positive unless we have selected this strain 𝑖 (𝑁 is a large enough constant, e.g., 𝑁 =∑︀
𝑗∈𝑉𝐷

max{𝑑𝑗 | 𝑑𝑗 ∈ 𝐷𝑗}). Capacity parameters 𝑐𝑖, 𝑐𝑒, and 𝑐𝑟 represent the maximum

amount of vaccine 𝑖, total amount of eggs available for slow vaccine production, and

total amount of cells available for fast vaccine production respectively. Constraint

(4.1g) shows that the total number of strains to be selected should not exceed 𝜅.

Unless specifically mentioned, coefficients in this work are positive. 𝑁+
𝑗 is the set of

supply nodes that can supply 𝑗, 𝑁+
𝑗 := {𝑖 ∈ 𝑉 | (𝑖, 𝑗) ∈ 𝐸}, 𝑁−

𝑖 is the set of demand

nodes that are supplied by 𝑖, 𝑁−
𝑖 := {𝑗 ∈ 𝑉𝐷 | (𝑖, 𝑗) ∈ 𝐸}, 𝒵 is the feasible region for

vaccine selection decisions.

Assumption 4.4.1 Cost function 𝑓 is linear.

Linearity on production related variables 𝑧, 𝑥, �̃� are standard in the operations man-

agement literature. Linearity on the fulfillment vector 𝑦 and demand 𝑑 are not imme-

diately clear given that we are treating people that potentially can contract commu-

nicable disease. Note that this assumption still allows us to incorporate the fact that

if one person is vaccinated, her social network also benefits. The only limitation is

that we assume there are no “cross” effects when vaccinating the population. A more

extensive discussion with simulation results can be found in [46], which numerically

shows that the disease burden is very close to a linear function of the number of

people vaccinated. More specifically, we assume the cost function to take the form:

𝑓(𝑥, �̃�, 𝑦, 𝑧, 𝑑) :=
∑︁
𝑖∈𝑉

(ℎ𝑖𝑥𝑖 + ℎ̃𝑖�̃�𝑖 + ℎ̂𝑖𝑧𝑖) +
∑︁
𝑗∈𝑉𝐷

(𝑏𝑗𝑑𝑗 −
∑︁
𝑖∈𝑁+

𝑗

𝑣𝑖𝑗𝑦𝑖𝑗),

where we assume the disease burden for demand type 𝑗 is 𝑏𝑗 per person. The logistical

costs are ℎ𝑖, ℎ̃𝑖, and ℎ̂𝑖. The network vaccine effectiveness is 𝑣𝑖𝑗, defined as the

probability of vaccine preventing illness for the vaccinated person, multiplied by the
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expected number of people she protects in her network if she does not carry the flu

virus. A consequence of this choice of objective function is that the last term, (𝑏𝑗𝑑𝑗 −∑︀
𝑖∈𝑁+

𝑗
𝑣𝑖𝑗𝑦𝑖𝑗), can theoretically be negative, if the network vaccination effectiveness is

greater than 1 (e.g., VE for the vaccinated person is 50% and that also protects four

other people in her social network). But for this specific model and calibration, we

observe numerically that this is not a concern due to current low vaccine effectiveness.

We have also made several other assumptions in proposing this model:

Assumption 4.4.2 (Model Assumptions)

1. One person is susceptible to only one type of circulating virus strain.

2. Antigenic drift is independent of vaccination, i.e., demand 𝑑 is not a function

of 𝑥, 𝑦.

3. Evaluation of the number of susceptible people is accurate after epidemic in-

fluenza has circulated long enough, i.e., �̃� is a decision after realization of 𝑑.

4. There is only a finite number of strains, i.e., |𝑉 | and |𝑉𝐷| are finite.

5. Central planner chooses the strains and production quantity, manufacturers fol-

low truthfully.

In reality, some people can be affected by multiple strains in the same flu season.

But most of these cases are outpatients with exposure within healthcare facilities

and constitute on the order of 1% of the overall population [66]. Furthermore, if

we insist, our model can be easily extended to incorporate cases where a group of

people are susceptible to multiple strains of circulating viruses. We can do so by

allowing demand nodes 𝑗 to represent the 𝑗th composition of virus strains. The

second assumption is a standard assumption in the vaccination literature [161]. The

third assumption relies on the fact that new vaccine production technology has a

significantly shorter production lead time (on the order of a few weeks), compared

with egg-based production technologies (on the order of six to eight months) [29].

The fourth assumption comes from practice – the total number of strains tested
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Figure 4-7: Vaccine selection casted as a network design problem.

experimentally is finite. The last assumption is based on current WHO and CDC

practices, and the fact that manufacturers have to rely on the vaccine strains selected

by national laboratories.

4.5 Theoretical Properties and Solution Technology

In this section, we show that the inner minimization of problem (4.1) can be equiv-

alently formulated as a max weight circulation problem, which in turn allows us to

prove several theoretical properties. For example, we show that the inner minimiza-

tion is supermodular in the uncertain demand 𝑑, and as a consequence, the overall

problem is efficiently solvable. Similar techniques can also be applied to infer that

the model has certain complementarity condition between vaccine strain selection and

the new manufacturing capacities.
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More precisely, we define the inner minimization problem as

𝑔(𝑧, 𝑥, 𝑑) := min
�̃�,𝑦

𝑓(𝑥, �̃�, 𝑦, 𝑧, 𝑑) (4.2a)

subject to
∑︁
𝑗∈𝑁−

𝑖

𝑦𝑖𝑗 ≤ 𝑥𝑖 + �̃�𝑖, ∀𝑖 ∈ 𝑉 (4.2b)

∑︁
𝑖∈𝑁+

𝑗

𝑦𝑖𝑗 ≤ 𝑑𝑗, ∀𝑗 ∈ 𝑉𝐷 (4.2c)

𝑥𝑖 + �̃�𝑖 ≤ 𝑁𝑧𝑖, ∀𝑖 ∈ 𝑉 (4.2d)∑︁
𝑖∈𝑉

�̃�𝑖 ≤ 𝑐𝑟, (4.2e)

�̃�, 𝑦 ≥ 0 (4.2f)

For exposition, we sometimes suppress its dependency on 𝑥 and 𝑧 and simply write

𝑔(𝑑). Sometimes we also elevate the coefficients such as 𝑐𝑟 to the arguments of 𝑔 to

emphasize its dependence on these parameters.

We also sometimes refer to the worst-case problem:

𝑔⋆Γ(𝑧, 𝑥) := max
𝜇∈Γ

E𝑑∈𝜇 𝑔(𝑧, 𝑥, 𝑑).

We suppress the dependency on Γ when there is no ambiguity for the choice of am-

biguity set Γ.

Definition An order list {𝑣1, 𝑎1, 𝑣2, 𝑎2, . . . , 𝑣𝑛, 𝑎𝑛, 𝑣𝑛+1} is a simple cycle if

1. 𝑣𝑖 ∈ 𝑉 and 𝑎𝑖 ∈ 𝐸 for all 𝑖 = 1, . . . , 𝑛,

2. for any 𝑖 < 𝑖′, we have that 𝑣𝑖 = 𝑣𝑖′ if and only if 𝑖 = 1, 𝑖′ = 𝑛 + 1,

3. for all 𝑖, 𝑖′ ∈ {1, . . . , 𝑛}, we have that and 𝑎𝑖 ̸= 𝑎𝑖′ .

Definition Two arcs are parallel if they have opposite orientations in every simple

cycle that contains both of them. A set of arcs are parallel arcs if they are pairwise

parallel. Similarly, a pair of arcs are in series if they have the same orientation in
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Figure 4-8: Converting the network design problem into an equivalent max weight
circulation problem. Solid lines and circles are from the original network, dotted
circles and arrows are auxiliary components to construct the circulation. Nodes 𝑏 and
ℎ are source and sink nodes. Node 𝑎 is added to incorporate fast vaccine capacity
�̃�𝑖. Node 𝑒 is added so that flow on (𝑒, 𝑓) and (𝑒, 𝑔) represents the number of people
that do not receive vaccines on node 𝑓 and node 𝑔. Elements in the tuple on each arc
represents its arc cost, flow lower bound, and flow upper bound.

every simple cycle that contains both of them. And a set of arcs are in series if they

are pairwise in series.

With ‘∧’ and ‘∨’ as the conventional meet and join operators for vectors (component-

wise min and max), we define the key concept in our analysis:

Definition 𝑔(𝑑) : R𝑛 → R is supermodular in 𝑑 if for any 𝑑, 𝑑′, the following condi-

tion holds:

𝑔(𝑑) + 𝑔(𝑑′) ≤ 𝑔(𝑑 ∧ 𝑑′) + 𝑔(𝑑 ∨ 𝑑′).

𝑔(𝑑) is submodular if −𝑔(𝑑) is supermodular.

We also define a weaker notions:

Definition Let 𝑑 = (𝑑1, 𝑑2), and 𝑑′ = (𝑑′1, 𝑑
′
2), where 𝑑1 and 𝑑′1 have the same

dimensions, and likewise for 𝑑2 and 𝑑′2. Then 𝑔(𝑑) = 𝑔(𝑑1, 𝑑2) is complementary in its

first and second sets of arguments if

𝑔(𝑑1, 𝑑2) + 𝑔(𝑑′1, 𝑑
′
2) ≤ 𝑔(𝑑1 ∧ 𝑑′1, 𝑑2 ∧ 𝑑′2) + 𝑔(𝑑1 ∨ 𝑑′2, 𝑑1 ∧ 𝑑′2).
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We say that 𝑑1 and 𝑑2 are substitutes for 𝑔(𝑑1, 𝑑2) if they are complementary for

−𝑔(𝑑1, 𝑑2).

With these definitions of simple cycles, parallel arcs, and supermodularity, we are

ready to present the first result for our model.

Lemma 4.5.1 𝑔(𝑑) is supermodular in 𝑑.

Proof (Lemma 4.5.1) We first characterize a closely related problem: max weight

circulation. A max weight circulation problem is a network optimization model that

maximizes the total weighted circulation in a network, subject to lower and upper

bounds on the flow on each arc:

min
𝑦

∑︁
𝑎∈𝐸

𝑤𝑎𝑦𝑎 (4.3a)

subject to
∑︁
𝑎∈𝑣+

𝑦𝑎 =
∑︁
𝑎∈𝑣−

𝑦𝑎, ∀𝑣 ∈ 𝑉 (4.3b)

𝑦𝑎 ∈ [𝑙𝑎, 𝑢𝑎], ∀𝑎 ∈ 𝐸 (4.3c)

Here 𝑉 and 𝐸 are the node and arc set of the circulation problem, 𝑣 and 𝑎 refer to

particular node and arc, 𝑣+ and 𝑣− refer to the incoming and outgoing arc sets for

𝑣. We associate each arc with a tuple of three parameters: {𝑤𝑎, 𝑙𝑎, 𝑢𝑎}. They are the

weight of flow, lower bound of flow, and upper bound of flow on this particular arc 𝑎.

It is straightforward to see that given a particular 𝑑 and first stage decision 𝑥, 𝑧,

the network flow problem 𝑔(𝑧, 𝑥, 𝑑) can be represented as a max weight circulation

problem. To exemplify, we use Figure 4-8 to represent this specific instance of max

weight circulation problem 𝑔′(𝑧, 𝑥, 𝑑), associated with 𝑔(𝑧, 𝑥, 𝑑). In this schematic,

we highlight the decision variables �̃�𝑖 and 𝑦𝑖𝑗 and the coefficient tuples related to

𝑔(𝑥, 𝑧, 𝑑) to show the transformation. According to the way we defined our network

for 𝑔′(𝑧, 𝑥, 𝑑), we have that

𝑔(𝑧, 𝑥, 𝑑) = −𝑔′(𝑧, 𝑥, 𝑑).
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It is known in the discrete convexity literature that for any max weight circulation

problem 𝑔′, if a set 𝑃 of arcs are parallel, then 𝑔′ is submodular in 𝑐𝑃 , where 𝑐𝑃 is

the set of arc capacities of 𝑃 [61].

But it is obvious that in our network for 𝑔′(𝑑), the arcs associated with 𝑑𝑗 always

connect to the sink node (e.g., node (ℎ) in Figure 4-8), implying that any pair of

𝑑𝑗-capacitated arcs are in parallel.

Therefore, 𝑔′(𝑧, 𝑥, 𝑑) is submodular in 𝑑, and 𝑔(𝑧, 𝑥, 𝑑) is supermodular in 𝑑. �

Having characterized the supermodularity of 𝑔(𝑑), we can then leverage a result in

stochastic programming to show that the so-called price of correlation in optimization

this problem is large.

Definition (Price of Correlation, Agrawal et al. (2012) [2]) We define the price of

correlation of any function 𝑔(𝑥, 𝑑) with regard to some nominal distribution 𝜇0 and

ambiguity set Γ to be:

POC := sup
𝜇∈Γ

E𝑑∼𝜇[𝑔(𝑥𝑆, 𝑑)]

E𝑑∼𝜇[𝑔(𝑥𝐷, 𝑑)]
,

where 𝑥𝑆 := argmin𝑥 E𝑑∼𝜇0𝑔(𝑥, 𝑑), and 𝑥𝐷 := argmin𝑥 max𝜇∈Γ E𝑑∼𝜇𝑔(𝑥, 𝑑).

In our context, the price of correlation essentially quantifies the risk of solving

the optimization model with regard to a fixed demand distribution 𝜇 when the true

demand distribution could be drawn from the ambiguity set Γ. If POC is close to 1,

that means one can simply solve the optimization problem and be “robust” against

all realized distributions from Γ. If POC is much larger than 1, then by implementing

the solution 𝑥𝑆 from stochastic programming, the actual loss could be much larger

under some realizations of the actual distribution.

We show in the following statement that, the POC in our case is not bounded

above. Let us define: 𝑏 := max{𝑏𝑗 | 𝑗 ∈ 𝑉𝐷}, and ℎ := min{ℎ′ |ℎ′ ∈ {ℎ𝑖, ℎ̃𝑖}, 𝑖 ∈ 𝑉 }.

Proposition 4.5.2 The price of correlation for our optimization problem (4.1) can

be as large as 𝑏/ℎ.

Proof (Proposition 4.5.2) The proof is straightforward if we follow the same argu-

ment as [2]. �
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As a result of Proposition 4.5.2, the price of correlation can be extremely large, given

that 𝑏 represents the per unit disease burden, while the ℎ is the per unit manufacturing

cost. This justifies the distributionally robust approach we have taken in problem

(4.1), that we included a distribution family Γ to hedge against uncertainty. Popular

choices of Γ in the literature include Wasserstein ball, and marginals model.

Definition Let (𝑀,𝑑) be a metric space. The 𝑝th Wasserstein distance between two

measures 𝜇 and 𝜈 on 𝑀 as

𝑊𝑝(𝜇, 𝜈) :=

(︂
inf

𝛾∈Γ(𝜇,𝜈)

∫︁
𝑀×𝑀

𝑑(𝑥, 𝑦)𝑝 d𝛾(𝑥, 𝑦)

)︂1/𝑝

,

where Γ(𝜇, 𝜈) is the measure on 𝑀 ×𝑀 with marginals 𝜇 and 𝜈.

Definition The Wasserstein ball (with radius 𝑟) around measure 𝜇 is defined as

𝐵𝑝
𝑟 (𝜇) = {𝜈 |𝑊𝑝(𝜇, 𝜈) ≤ 𝑟}.

To discuss the tractability of problem (4.1), we have to show that the

Theorem 4.5.3 (Tractability Under Wasserstein Ambiguity Set) Problem (4.1) is

polynomially solvable with regard to a Wasserstein-ball ambiguity set. That is, Γ =

𝐵𝑝
𝑟 (𝜇), given some nominal 𝜇 and radius 𝑟.

Proof (Theorem 4.5.3) Formulation (4.1) – with the linear objective – is a special

case of the formulation (18b) in Esfahani and Kuhn (2017), Page 30 [100]. �

An alternative formulation for ambiguity set is the marginals model. We assume

the given input is a set of marginal distributions 𝜇𝑗 for each demand node 𝑗, and we

want the problem to be robust against all joint distributions 𝜇 that are consistent

with such marginals.

Definition Given a set of measures 𝜇𝑗 on 𝑀𝑗 for all 𝑗 ∈ 𝑉𝐷, the set of joint distri-

butions that is consistent with the marginal distributions is

Γ(𝜇1, 𝜇2, . . . , 𝜇𝑛) := {𝜇 |Π𝑗𝜇 = 𝜇𝑗},
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where Π𝑗 is the projection onto 𝑀𝑗.

We have assume the marginal distributions are given with a finite number of

support points. For example, such marginal 𝜇𝑗 may be an empirical distribution with

finitely many data points, or a measure that is absolutely continuous with regard to

this empirical distribution.

Assumption 4.5.4 Each marginal distribution 𝜇𝑗 has at most 𝑙 < ∞ points in the

support, i.e., |𝐷𝑗|≤ 𝑙 for all 𝑗 in 𝑉𝐷.

Lemma 4.5.5 (Monotone Coupling Lemma, Theorem 3.1.2 in Rachev and Rüschen-

dorf (1998) [121], Lemma 1 in Chen et al. (2019) [33]) When problem (4.1) is en-

dowed with the marginal ambiguity set Γ(𝜇1, 𝜇2, . . . , 𝜇𝑛), the worst-case joint distribu-

tion 𝜇⋆ can be fully characterized by 𝜇1, 𝜇2, . . . , 𝜇𝑛 (independent of 𝑧, 𝑥, �̃�, 𝑦). Further-

more, 𝜇⋆ has at most 𝑛𝑙 support points and can be computed from {𝜇𝑗, 𝑗 = 1, . . . , 𝑛}

in 𝒪(𝑛𝑙) time.

Proof (Lemma 4.5.5) 𝑔(𝑑) is continuous in 𝑑 since the optimization problem 𝑔(𝑑)

is always feasible. This allows us to apply the theorem in Rachev and Rüschendorf

(1998) and Chen et al. (2019) directly to get the desired result. �

This brings us to the tractability result for problem (4.1) under the marginal

model.

Theorem 4.5.6 (Tractability Under Marginal Ambiguity Set) Problem (4.1) can be

solved efficiently under the marginal ambiguity set Γ(𝜇1, 𝜇2, . . . , 𝜇𝑛). More precisely,

the problem can be reformulated to a mixed integer linear minimization problem with

𝒪(𝑚𝑛2𝑙) continuous variables, 𝑚 binary variables, 𝒪(𝑚𝑛𝑙 + 𝑛𝑛𝑙) linear constraints,

and 𝒪(𝑚𝑙) constraints with binary variables, where 𝑚 is the number of supply nodes,

𝑛 is the number of demand nodes, 𝑙 = max{|𝐷𝑗| : 𝑗 = 1, . . . , 𝑛} is the maximum

number of support points in the discrete marginals.

Proof (Theorem 4.5.6) With the definition of 𝑔(𝑑), problem (4.1) is:

min
𝑥,𝑧

max
𝜇∈Γ

E𝑑∼𝜇[𝑔(𝑧, 𝑥, 𝑑)].
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Under the marginal model, let 𝜇⋆ be the worst-case distribution in Γ(𝜇1, 𝜇2, . . . , 𝜇𝑛).

Then we get the following reformulation:

min
𝑥,𝑧

E𝑑∼𝜇⋆ [𝑔(𝑧, 𝑥, 𝑑)].

Therefore, problem (4.1) is equivalent to this optimization problem

min
𝑥,𝑧,�̃�,𝑦

∑︁
𝑖∈𝑉

(ℎ𝑖𝑥𝑖 + ℎ̂𝑖𝑧𝑖 +
𝑆∑︁

𝑠=1

ℎ̃𝑖�̃�
𝑠
𝑖 ) +

∑︁
𝑗∈𝑉𝐷

𝑆∑︁
𝑠=1

(𝑏𝑗𝑑
𝑠
𝑗 −

∑︁
𝑖∈𝑁+

𝑗

𝑣𝑖𝑗𝑦
𝑠
𝑖𝑗)𝑝𝑠 (4.4a)

subject to
∑︁
𝑗∈𝑁−

𝑖

𝑦𝑠𝑖𝑗 ≤ 𝑥𝑖 + �̃�𝑠
𝑖 , ∀𝑖 ∈ 𝑉, 𝑠 = 1, . . . , 𝑆 (4.4b)

∑︁
𝑖∈𝑁+

𝑗

𝑦𝑠𝑖𝑗 ≤ 𝑑𝑘𝑗 , ∀𝑗 ∈ 𝑉𝐷, 𝑠 = 1, . . . , 𝑆 (4.4c)

𝑥𝑖 + �̃�𝑠
𝑖 ≤ 𝑁𝑧𝑖, ∀𝑖 ∈ 𝑉, 𝑠 = 1, . . . , 𝑆 (4.4d)∑︁

𝑖∈𝑉

𝑥𝑖 ≤ 𝑐𝑒, (4.4e)

∑︁
𝑖∈𝑉

�̃�𝑠
𝑖 ≤ 𝑐𝑟, 𝑠 = 1, . . . , 𝑆 (4.4f)

∑︁
𝑖∈𝑉

𝑧𝑖 ≤ 𝜅 (4.4g)

𝑥, �̃�, 𝑦 ≥ 0, (4.4h)

𝑧 ∈ 𝒵 ⊆ {0, 1}𝑚, ∀𝑖 ∈ 𝑉 (4.4i)

where the worst-case joint distribution 𝜇⋆ is supported on {𝑑𝑠, 𝑠 = 1, . . . , 𝑆}, and

𝜇⋆(𝑑𝑠) = 𝑝𝑠; �̃�𝑠 and 𝑦𝑠 are scenario-based second stage decision variables.

By Lemma 4.5.5, we have 𝑆 ≤ 𝑛𝑙. Therefore problem (4.1) can be solved in form

(4.4), with the above mentioned numbers of constraints and variables. �

Up to now, we have demonstrated that our model is tractable for important am-

biguity set formats. Next, we hope to generate some insights in the comparative

statistics of problem (4.1). Again, we rely on the tools developed in discrete convex

analysis by Gale and Politof (1981) [61] and Murota and Shioura (2005) [101].

Recall that with a slight abuse of notation, we can write the inner minimization
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problem of (4.1) as 𝑔(𝑐𝑟, 𝑧) to emphasize its dependence on the optimization param-

eters like 𝑐𝑟 and 𝑧.

Theorem 4.5.7 (Complementarity in Value) Under the marginal ambiguity model, if

𝒵 ⊆ {0, 1}𝑛 is a totally ordered lattice, then 𝑐𝑟 and 𝑧 are substitutes for the worst-case

cost of problem (4.1), in the sense that:

𝑔⋆(𝑐𝑟, 𝑧) + 𝑔⋆(𝑐′𝑟, 𝑧
′) ≥ 𝑔⋆(𝑐𝑟 ∧ 𝑐′𝑟, 𝑧 ∧ 𝑧′) + 𝑔⋆(𝑐𝑟 ∨ 𝑐′𝑟, 𝑧 ∨ 𝑧′).

Proof (Theorem 4.5.7)

We first note that 𝑐𝑟 and 𝑧 being substitutes for cost 𝑔⋆(𝑐𝑟, 𝑧) is equivalent to

saying that 𝑐𝑟 and 𝑧 are complementary for “utility” −𝑔⋆(𝑐𝑟, 𝑧). Thus the naming of

the theorem in the direction of “complementarity”.

We prove the substitutes statement with the following steps: we show that the

inner minimization problem satisfies the substitutes condition, i.e., 𝑐𝑟 and 𝑧 are sub-

stitutes for 𝑔(𝑑, 𝑐𝑟, 𝑧) under totally ordered 𝒵, then we show the condition holds for

𝑔⋆. To see the first part, note that 𝑔 corresponds to a max weight circulation problem

𝑔′ where 𝑐𝑟 and 𝑧𝑖 (for some fixed 𝑖) correspond to flow capacities on two arcs that

are always in series (see Figure 4-8). Therefore, by the Main Theorem in Gale and

Politof (1981) [61] Theorem 1.3 in Murota and Shioura (2005) [101], 𝑐𝑟 and 𝑧𝑖 are

supermodular for the circulation function 𝑔′. Thus, 𝑐𝑟 and 𝑧𝑖 are submodular for 𝑔

(provided that setting 𝑧𝑖 = 1 is within the feasible set set by 𝜅).

The substitution condition of 𝑔 in 𝑐𝑟 and 𝑧𝑖 for some fixed 𝑖 implies the substitution

condition of 𝑔 in 𝑐𝑟 and 𝑧 under the condition that 𝒵 is a totally ordered set. To

see this, recall that 𝒵 is a lattice in {0, 1}𝑛, and its total order implies that for any

𝑧, 𝑧 ∈ 𝒵,
∑︀

𝑖∈𝑉 𝑧𝑖 −
∑︀

𝑖∈𝑉 𝑧𝑖 = 1 if and only if the two binary vectors differ in exactly

one bit. Therefore, for any fixed 𝑐𝑟 ≥ 𝑐𝑟, 𝑧 > 𝑧 differing by 1 bit, substitution of 𝑐𝑟

and 𝑧𝑖 implies the following condition:

𝑔(𝑐𝑟, 𝑧) + 𝑔(𝑐𝑟, 𝑧) ≤ 𝑔(𝑐𝑟, 𝑧) + 𝑔(𝑐𝑟, 𝑧).
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Now suppose 𝑧 > 𝑧, and 𝑧 differs from 𝑧 by exactly 1 bit. Then we have that

𝑧 > 𝑧 > 𝑧, each inequality represents a 1-bit difference. Then repeating the previous

argument, we have that:

𝑔(𝑐𝑟, 𝑧) + 𝑔(𝑐𝑟, 𝑧) ≤ 𝑔(𝑐𝑟, 𝑧) + 𝑔(𝑐𝑟, 𝑧).

Adding the two inequalities up, we have that:

𝑔(𝑐𝑟, 𝑧) + 𝑔(𝑐𝑟, 𝑧) ≤ 𝑔(𝑐𝑟, 𝑧) + 𝑔(𝑐𝑟, 𝑧).

By induction, we can then show that 𝑐𝑟 and 𝑧 are substitutes for 𝑔 if 𝒵 is totally

ordered.

By Proposition 5 in Chen (2017) [34], the expectation operation preserves sub-

modularity. But we know from worst-case cost definition and Lemma 4.5.5 that

𝑔⋆(𝑐𝑟, 𝑧) := max
𝜇∈Γ(𝜇1,...,𝜇𝑛)

E𝑑∼𝜇𝑔(𝑑, 𝑐𝑟, 𝑧) = E𝑑∼𝜇⋆𝑔(𝑑, 𝑐𝑟, 𝑧).

Thus, 𝑐𝑟 and 𝑧 are substitutes for the worst-case cost 𝑔⋆(𝑐𝑟, 𝑧). �

Theorem 4.5.7, roughly speaking, says that the act of adding new vaccine produc-

tion technology and the act of selecting additional vaccine strains are substitutes in

cost, and therefore complementary in value: the benefit from doing both is greater

than the sum of the benefits of doing just one of them. The assumption on totally

ordered 𝒵 is practically sound if we assume that there is a natural preference ordering

of the vaccine strain candidates 𝑖, e.g., the strain 𝑖 will always be selected before 𝑖+ 1

is selected in the final decision.

Although Theorem 4.5.7 only makes a statement about substitution and comple-

mentarity with regard to the inner maximization cost 𝑔⋆, we observe numerically that

the same hold (approximately) for the overall problem (4.1).
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4.6 Experiment and Policy Insight

To analyze problem (4.1), we calibrate the model with the following data:

∙ Total number of vaccine strain candidates: 𝑚.

∙ Total number of circulating virus strain candidates: 𝑛.

∙ Total number of strains to be selected: 𝜅.

∙ Fixed cost of strain selection: ℎ̂.

∙ Variable cost of vaccine production and delivery for old and new technologies:

ℎ, ℎ̃.

∙ Disease burden: 𝑏.

∙ Value of vaccination: 𝑣.

∙ Estimation of the size of susceptible population: 𝐷 and Γ.

∙ Production capacity of old (egg-based) technology: 𝑐𝑒.

∙ Production capacity of new (recombinant) technology: 𝑐𝑟.

Number of Vaccine Strain Candidates 𝑚 and Epidemic Strain Candidates 𝑛.

We could not find the total number of vaccine strain candidates and circulating virus

candidates in the literature or public documentations. However, our intuition is that

both 𝑚 and 𝑛 are on the order of 10, given the size of the experiments in related

papers. For example, the hemagglutination inhibition assay analysis tend to have a

matrix on the order of 10 strains by 10 strains [8, 108, 125].

Total Number of Strains Selected 𝜅. Currently, the WHO and CDC choose one

strain per influenza subtype [113]. For our analysis, we also includes higher numbers

to test the impact of including additional vaccine strains.

Fixed Cost of Strain Selection ℎ̂. To avoid contamination in the vaccine production

process, equipment cannot be re-used for products with different biological or chemical

compositions. Therefore, producing more than one type of vaccines would entail the
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setup of multiple production facilities. The cost of setting up each additional antigen

strain is estimated to be between 50 to 500 million US dollars [119].

Variable Costs ℎ, ℎ̃. The variable cost of vaccine production, transportation, and

delivery is estimated to be $5 to $15 per person [50].

Disease Burden 𝑏. The economic disease burden of a case of influenza illness is

estimated to be $630 to $2530 per person [120].

Vaccine Effectiveness 𝑣. The societal effectiveness of a vaccine is the product of

two numbers: individual vaccine effectiveness and network protection (reproduction

number 𝑅 in the public health literature). The individual VE for matched strains

is around 54% to 73%, and individual VE for mismatched strains is around 37% to

63% [52, 151]. The reproduction number for seasonal influenza (not pandemic) is

estimated to be 𝑅 ∈ [1.19, 1.37], meaning that keeping one person healthy can in

expectation reduce another 0.19 to 0.37 cases of influenza sickness [22]. Therefore,

the overall VE is between 0.64 to 1 for matched vaccine and circulating strains, and

between 0.44 and 0.86 for mismatched strains.

Estimation of the Susceptible Population 𝐷 and Γ. We construct synthetic

distribution and ambiguity set for demand distribution based on historical numbers of

influenza burden, as summarized in Table 4.1 [49]. Based on the number of circulating

strains each year and the total number of influenza illness cases per year, we set the

support for demand 𝑗 to be {0,1,2,3,4,5,6,7,8,9,10} million people, and the marginal

probability distribution to be 𝑝 = (0.05, 0.05, 0.1, 0.12, 0.18, 0.18, 0.12, 0.1, 0.05, 0.05).

Production Capacity of Old (Egg-Based) Technology 𝑐𝑒. The production capac-

ity is somewhere between 130 and 150 million doses per year in the United States

[51].

Production Capacity of New (Recombinant) Technology 𝑐𝑟. The current pro-

duction capacity for recombinant vaccine is estimated to be between 10 and 20 million

doses per year [126].

We summarize the parameters used in our experiments in Table 4.2. The com-

putational experiments are run on a MacBook with 1.2 GHz Intel Core M processor

and 8 GB 1600 MHz DDR3 memory, consuming about 1 second per instance.
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Flu Season All Ages 0-4 yrs 5-17 yrs 18-49 yrs 50-64 yrs 65+ yrs

2010-2011 21.3 2.8 4.4 7.4 4.8 1.8
2011-2012 9.3 0.9 2.0 3.5 1.9 1.0
2012-2013 33.7 3.6 6.7 11.4 7.9 4.2
2013-2014 29.7 2.5 4.0 13.0 8.5 1.7
2014-2015 30.2 4.7 7.3 8.6 6.4 3.2
2015-2016 25.5 2.3 4.3 10.1 7.1 1.7
2016-2017 29.9 2.3 6.0 8.5 8.5 4.4
2017-2018 48.4 4.0 7.5 14.4 15.6 7.3

Table 4.1: Disease burden in the United States: million people with influenza symp-
tomatic illness [49].

Parameter Value Range Increment Num. of Values

𝑚 10 – 1
𝑛 10 – 1
𝜅 [1,10] 1 10
ℎ̂ [50,500] 200 3
ℎ [5, 15] 10 2
ℎ̃ [5, 15] 10 2
𝑏 [630,2530] 800 3
𝑣𝑖𝑖 matched [0.64, 1] 0.1 4
𝑣𝑖𝑗 mismatched [0.32,0.6] 0.1 3
𝑐𝑒 [150,150] – 1
𝑐𝑟 [0,100] 20 6

Table 4.2: Values of parameters in our numerical case study. For variation among
the different 𝑖 or 𝑗, we added 20% random noise. For cost and people, units are in
million people, million dollars, and million dollars per million people.
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Figure 4-9: Total cost (including disease burden, vaccine selection cost, and manufac-
turing cost) and the total number of strains selected. High recombinant production
capacity refers to 𝑐𝑟 = 40 million doses per year, and current technology and policy
refer to 𝑐𝑟 = 20 and 𝜅 = 1. Other parameters are fixed: avg(ℎ̂𝑖)=450, avg(ℎ𝑖)=15,
avg(ℎ̃𝑖)=5, avg(𝑏𝑗)=630, avg(𝑣𝑖𝑖)=0.64, avg(𝑣𝑖𝑗)=0.32, and 𝑐𝑒=150.
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We examined the experiment runs and see qualitatively similar results in all ex-

periment runs. We present a subset of the runs to exemplify what we find. We plot

such findings in Figure 4-9, and draw three observations.

First, we see that there is a reasonable cost reduction opportunity if we can im-

prove the recombinant technology by simply increasing capacity. This can be done

without much technological challenge or policy hurdle, since the recombinant tech-

nology is already in production, and selecting one vaccine strain per year (per hemi-

sphere) is business-as-usual.

Second, if policymakers consider selecting more vaccine strains for production, the

cost reduction potential is much larger than just ramping up the recombinant vaccine

production alone. There are complications too: should we combine all vaccine strains

in the same dose? Or should we manufacture different vaccines, each with only one

strain per subtype? The former would increase manufacturing complexity and is

not readily FDA-approved. The latter introduces myriads of concerns: who should

receive a certain type of vaccine? Is this an opportunity to implement personalized

medicine in the context of influenza vaccination and improve overall social welfare,

or is it going to lead to wider inequality in healthcare?

The third observation is, universal vaccines provide significant potential cost re-

duction without introducing the complication of including multiple strains in the

vaccine production and allocation process. The downside is, this technology has not

gone through FDA trial, and may take years to come [104].

4.7 Extensions

We discuss briefly the potential to extend our model beyond the current setup.

Modeling Production Quality. New technologies offer the potential to manufacture

vaccines with better quality consistency, due to the fact that these new vaccines do

not depend on eggs. To model this, we can simply generalize the definition of supply

node 𝑖 from “vaccine strain 𝑖” to the 𝑖th vaccine strain and technology pair.

Modeling Heterogeneity in Demand Location. Similarly, we can expand the
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definition of demand node 𝑗, from “virus type 𝑗” to the 𝑗th virus type and location

pair.

Convex Cost Function. Because influenza is communicable, a natural consequence

of incorporating location-specific demand is that we would have to consider the inter-

action between demand nodes. This can be approximated by incorporating nonlinear

interaction between the demand nodes and generalize the objective function from

linear to nonlinear. From the literature on epidemic simulations [10], we see that

the cost function can empirically be approximated as a piecewise affine convex func-

tion. This allows us to exploit the convexity and generalize our results to a convex

cost network flow question. Results such as the tractability of problem (4.1) under a

Wasserstein ambiguity set would still hold.

Improving Vaccination Rate. We did not explicitly model the percentage of people

getting vaccinated as a decision variable. However, significant resources are put into

encouraging vaccination, especially in the healthcare workforce and those stay near

high risk patients. A first step to include such decisions can be adding a decision

variable in our model to indicate the flow capacity on certain subsets of arcs.

4.8 Conclusion

In this work, we model the vaccine selection and production problem under a variety

of manufacturing technologies and antigenic drift. Our goal is to examine the impact

of recently approved manufacturing technologies, and provide some insight on the

potential cost-saving directions for policymakers and the scientific community. We

provide quantitative evidence that the new technologies hold immediate potential,

and can be further leveraged to improve public health conditions with more sophis-

ticated vaccine strain selection policies. Our model is a two-stage distributionally

robust optimization problem, and theoretical results can be applied to other opera-

tions settings, such as facility location and network newsvendor.
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Chapter 5

Summary and Future Outlook

In this thesis, I have presented three distinct applications of optimization theory. In

all three cases, the analyses result in practical tools and structural insights for the

decision problems. New theories in optimization are also presented, motivated by

these applications. I now explicitly tie together these insights and theories on the

concept of networks, and on the concept of optimization. The unifying angle will

demonstrate thematic coherence of the applications. But more interestingly, it points

towards future research directions.

5.1 Paths, Flowers, and Trees

Real World Networks are Simple. These naturally occurring networks in the three

applications exhibit interesting structural properties. For the case of Ford’s manu-

facturing bill-of-materials network, I discovered from data that the network is almost

cycle-free: data show that the number of nodes in cycles is on the order of 1% of the

total number of nodes. Furthermore, after checking the cycles in greater details, I

found that they are all collapsible, in the following sense.

Definition A cycle (𝑉𝑐, 𝐸𝑐) is collapsible in a directed network (𝑉,𝐸), if there are

nodes 𝑖, 𝑖′ ∈ 𝑉𝑐, and 𝑗, 𝑗′ ∈ 𝑉 ∖ 𝑉𝑐, such that (𝑖, 𝑗) and (𝑗′, 𝑖′) are in 𝐸, and there are

no other edges that connect 𝑉𝑐 and 𝑉 ∖ 𝑉𝑐.
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Practically, these collapsible cycles arise in situations such as: a manufacturing

component is used in multiple downstream parts, and these parts are used exclusively

make one part in their downstream. From the modeling perspective, this essentially

tells us that the network can almost be thought of as an arborescence – the connection

path between any pair of upstream / downstream nodes is unique, if we collapse

these cycles. In the case of designing biodefense supply chain, the inventory storage

& distribution network is largely hierarchical (Figure 3-1), also a special case of

arborescence.

Simple Networks and Clean Theory. Theoretically, this simple structure would

enable us to generate more algorithmic and analytical tools, due to the desirable

combinatorial properties of such networks. These collapsible cycles are reminiscent

to what mathematician Jack Edmonds called a flower in his seminal paper on maxi-

mum matching [44]. In this thesis, I also showed that simple and efficient heuristics

work well on these simple networks: time-expanded version of arborescence flow is

polynomially solvable, and affine policy is optimal for two-stage robust optimization

on trees.

Simplicity is Natural. It is tempting to dismiss such simplicity as contrived or ar-

tificial. Afterall, manufacturing systems are designed by people, and organizational

structures are byproducts of governance. However, after examining numerous com-

plex systems from human organizations to human immunological systems, one cannot

ignore such commonality, and wonder why these systems exhibit such strong hierar-

chical, arborescence, tree-like structures. Perhaps the answer was already alluded to

by Herbert Simon, who argued that hierarchy leads to decomposability, and decom-

posibility leads to robustness against disruptions [137]. This is points to an interesting

direction for future discussion: what types of simplicity simultaneously lead to sys-

temic robustness and are conducive to computationally efficient design algorithms?
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5.2 Data Structure in Optimization

An optimization model comprises the sequence of decisions, objective, and con-

straints. These components implicitly encode the modeler’s knowledge of the un-

derlying decision problem. For example, the objective function encodes certain be-

liefs about the causality of a system – how it reacts to exogenous decisions imposed

upon it. Consequently, optimization models are often used as prescriptive decision

frameworks.

With the recent availability of large amounts of data, researchers and practitioners

have rushed to throw data to “train” such belief models. This is a strong application

of optimization tools. However, it also creates risks if haphazardly done.

Problem of Locality. The first danger of fitting regression models to data without

being cognizant about the data environment is locality: data are generated from

limited ranges of system states. Extrapolating the system behavior beyond certain

range of states is risky. But optimization is inherently range-breaking – it explores

the potential of all boundary cases of decisions, many of which may not have been

present in the data generation processes.

Problem of Correlation. A problem of blindly fitting regression models is the over-

whelming emphasis on correlation over causality (at least in the current research

styles of machine learning and data-driven optimization). This is not an issue if one

does not claim causality. However, in the case of optimization, models are used as

prescriptive tools, therefore modelers are implicitly claiming causality. Yet so far

there has not been much effort in data-driven optimization that properly encodes the

logic of events into data modeling.

Conservativeness as Temporary Solution. In this thesis, I touched on these prob-

lems by using worst-case approaches. These approaches address uncertainty in a

conservative way – even though we do not know what will happen exactly given cer-

tain actions, we want to evaluate the cost in the most conservative way. This might

help us mitigate some of the discrepancy between causality and correlation modeling.

But I made no attempt to quantify such error. In the best case, a worst-case approach
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is a round-about solution to address the problem of correlation.

The only tools that are close to consciously incorporating causality in optimization

are Markov decision process and reinforcement learning type of models – the learner

interacts with the environment, learns the response of the environment, and incor-

porates this knowledge into its probabilistic understanding of the world. However,

the current state-of-the-art theory in reinforcement learning hints that this is not an

efficient solution for many cases, as the number of interactions needed to train simple

tasks goes well beyond 𝒪(𝑛3), 𝑛 being some characteristic size of the model. This

is far from satisfactory in many decision problems for engineering, business, policy,

and healthcare, because the number of allowable trial-and-errors is sometimes on the

order of 𝒪(1), or even 0.

Structured Uncertainty Models. To provide a tool that can be truly prescrip-

tive, optimizers need to invent new theory and computational machinery to precisely

model processes and their uncertainty. This has already been fueled, partially, by the

machine learning community, with its recent focus on optimal transport theory and

optimization: theories from optimal transport help researchers better describe the

relationship between a measure 𝜇 and a measure 𝜈, which in turn allows us to model

empirical data and potential underlying data generation processes in a more struc-

tured and computationally efficient way. This led to new progress in distributionally

robust optimization theory, with new types of ambiguity sets Γ (see formulation 1.1).

Analogous to the new uncertainty modeling approach for statistical applications,

I think we have much to do for complex systems. One way forward is to directly

incorporate the nominal probability distribution of a set of parameters as a graphical

model – a graph-based representation that emphasizes dependency structures, and

sometimes causal relationships, among random variables and decision variables. We

can then construct the ambiguity set Γ based on metrics that are more natural [155] to

similarities between instances of graphical models. An approach like this has several

potential advantages:

1. Causality of a system is naturally incorporated into the decision problem.

136



2. It can simultaneously incorporate data, and expert understanding of how the

system works. This is especially important for areas requiring deep domain

knowledge, such as drug discovery, complex engineering systems, and economic

and political policy design.

3. Optimization models are “algorithmizable” by design, therefore the inclusion of

structured uncertainty would mechanize many more difficult decision problems,

as mentioned in the previous point.

4. It is interpretable by design.

5. It might still be susceptible to mature mathematical theories such as optimal

transport.

6. If the prior knowledge is strong, a small data set is sufficient to describe the un-

certainty. This relates to the long held debate in artificial intelligence regarding

nature versus nurture in learning, and might shed light on how optimizers can

contribute to general artificial intelligence.

Overall, a more structured approach to uncertainty modeling could bring optimiza-

tion theory closer to being robust and precise tools for decision-making in complex

systems.
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