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Abstract

Social media platforms have become a popular source of news and information for
a large segment of society. Users can receive information, share digital content, or
attend to online publishers for the latest news. However, the recent proliferation of
misinformation has affected people’s perception of the veracity of online information
and, in turn, their social behavior. In this environment of real and false information,
this dissertation studies two aspects of user behavior through the lens of persuasion:
(1) sharing online news, and (2) consumer choice of news media.

The first part focuses on the dissemination of online news on social media platforms
such as Twitter. I propose two frameworks: in the first I focus on non-strategic agents
and in the second one I proceed with a game-theoretic setting.

In the first model, agents choose to share news based on whether it can move their
followers’ beliefs closer to their own in the aggregate, and the current size of news
spread, without considering news spreading in the future. I describe the dynamics of
news spread arising from individual decisions and uncover the mechanisms that lead
to a sharing cascade. I elucidate an association between the news precision levels that
maximize the probability of a cascade and the wisdom of the crowd.

The second model concerns a binary vote and rational agents who share news to
make their followers cast the same vote as they do while strategically speculating on
others’ sharing decisions and news spread at the steady state. I characterize the un-
derlying news spread as an endogenous Susceptible-Infected (SI) epidemic process and
derive agents’ sharing decisions and the size of the sharing cascade at the equilibrium
of the game. I show that lower credibility news can result in a larger cascade than fully
credible news provided that the network connectivity surpasses a connectivity limit. I
further delineate the relationship between cascade size, network connectivity, and news
credibility in terms of polarization and diversity in prior beliefs.

The second part of this dissertation investigates how subscribers with diverse prior
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beliefs choose between two ideologically opposing news media (intermediaries) that are
motivated to influence the public opinion, through their roles of news verification and
selective disclosure. The news media may access some news about the state of the
world, which may or may not be informative and they can choose whether to verify it.
The news media then decide whether to disclose the news, aiming to persuade their
subscribers to take the optimal action about the state based on their own beliefs. I show
that centrists choose to subscribe to the intermediary with the opposing view, thereby
exhibiting anti-homophily. By contrast, extremists exhibit homophily and prefer the
intermediary with ideology that aligns with theirs.

This dissertation contributes to the growing literature on people’s behavior of news
consumption by offering game-theoretic frameworks built on a persuasion motive.

Thesis Supervisor: Ali Jadbabaie
Title: JR East Professor of Civil and Environmental Engineering, MIT

Thesis Committee Member: Muhamet Yildiz
Title: Professor of Economics, MIT

Thesis Committee Member: Dirk Bergemann
Title: Douglass and Marion Campbell Professor of Economics, Yale

Thesis Committee Member: Amir Ajorlou
Title: Research Scientist, MIT
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Chapter 1

Introduction

Social networks have become a major source of news and information for a large seg-

ment of the population across the political spectrum. In particular, social media giants

such as Facebook and Twitter have amassed a large number of users who primar-

ily consume their news via these platforms. Furthermore, publishers increasingly use

social media to inform the public of unknown facts or the latest news (Shearer and

Matsa 2018). Politicians also launch their political propaganda on social media more

often than via conventional channels to promulgate their ideology and mobilize voters

(Williams and Gulati 2013). A myriad of various information is circulating on online

social networks.

This thesis focuses on three elements underlying users’ interaction on social net-

works in this informational environment: misinformation, persuasion, and news media.

Misinformation

Social media have also become a conduit for spread of inaccurate news and misinfor-

mation. Many popular and widespread posts or memes on social media continue to

be inaccurate, misleading, or false (Gillin 2017, Silverman et al. 2017, Silverman and

Pham 2018). This is due to the fact that any user on social media can readily publicize
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digital content and share others’ posts, often without verification, fact-checking, or

significant third party filtering.

A flurry of recent empirical findings (Takayasu et al. 2015, Vosoughi et al. 2018)

suggest that false news and misinformation are more likely to disseminate on social

networks, spreading faster, deeper, and more widely than true information. More

recent studies show that difference between false-news and true news dissemination may

be substantially explained by the difference in peer-to-peer transmission rate of news

(Juul and Ugander 2021). Even though recent literature across multiple disciplines

has outlined the impact of prevalent misinformation on public opinions, especially on

elections (Bessi and Ferrara 2016, Allcott and Gentzkow 2017), little progress has been

made on why and how inaccurate information can trigger a large sharing cascade among

the users on social media.

Persuasion and strategic communication

At the core of this thesis lies the motivation of individuals behind news sharing and

information disclosure. A potential reason is that one wants to persuade her peers,

moving their beliefs closer to her own belief (Hovland et al. 1953, Che and Kartik

2009, Berger 2014). In particular, in collective decision-making (e.g. presidential elec-

tion or referendum) where each individual’s utility is a function of others’ actions, the

persuasion motive arises since one’s belief may differ from her peers’ beliefs and the

optimal actions can be subjectively dissimilar. When receiving some new information,

one can influence her peers’ beliefs and in turn their actions by sharing the information

and altering their information sets. Likewise, one may choose not to share the infor-

mation if it otherwise persuades her peers to take undesired actions from her view (e.g.

vote for the opposing candidate). The persuasion motive therefore leads to strategic

communication among individuals, related to disclosure games, (Milgrom 1981, Gross-

man 1981), cheap talk (Crawford and Sobel 1982), and persuasion games (Milgrom and
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Roberts 1986). This thesis will focus on the scenario in which agents can not distort

the received news nor send other messages; they only choose whether or not to share

the news they hear (e.g., retweeting on Twitter).

News media and their roles

Unlike creative digital contents such as memes and posts, certain types of information

or news is not easily accessible by the general public, and decision makers often rely

on news intermediaries, such as news media or print publishers, are relied on for such

information. In contrast to a limited number of trusted news agencies available a few

decades ago, the advance of digital technology and popularity of social media have

boosted online news business, fostering a wide range of information sources for news

consumers (Newman et al. 2019). Despite numerous intermediaries, news consumers

selectively attend to a few of them owing to their limited quantity of mental effort

during a short time span (Kahneman 1973).

News media play the vital role of fact-checking the information before any news

release, based on their journalists’ expertise and web of sources. The importance

of fact-checking information can not be emphasized enough: Nowadays digital social

platforms have become a hotbed for digital misinformation to spread wide and fast

(Del Vicario et al. 2016, Vosoughi et al. 2018). Without fact-checking or significant

third-party filtering beforehand, the inundation of misinformation or false news poses

threats to our society, inciting political polarization and social unrest (Howell 2013).

However, news intermediaries often have their own ideological biases and are moti-

vated to influence the public opinion (Gentzkow et al. 2015, Puglisi and Snyder Jr 2015).

For example, they can choose to promote news that can persuade their subscribers to-

wards their own political agenda or conceal the unfavorable information that otherwise

moves their readers’ beliefs away. With diverging information, in a fragmented society

the ideological divide among the population is being entrenched.
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Thesis outline

My thesis contributes to the theoretical literature on individual behavior of sharing

online news and choosing news media for information in an environment with real

and false news. I study the two types of behavior through the lens of persuasion and

strategic communication.

In Chapter 2, I propose a framework to study agents’ news-sharing decisions. Specif-

ically, the agents receiving some news choose whether to share it based on the level

to which the news can move their followers’ beliefs closer to their own in aggregate.

In particular, the agents myopically make their decision in the sense that they do not

foresee the news spreading in the future as a result of others’ decisions. I characterize

the dynamics of the news spread arising from the agents’ decisions and uncover the

mechanisms that lead to a sharing cascade. I further identify a connection between

news the precision levels that maximize the probability of a cascade and the prior

wisdom of the crowd. This chapter is based on Hsu et al. (2020a).

In Chapter 3, on the other hand, I present a game-theoretic analysis of individual

decision making of sharing news on social networks, based on Hsu et al. (2022). There

is a binary vote and agents share news so as to make their followers cast the same vote

as they do while strategically pondering on others’ sharing decisions and news spread

in the future. The highlight result shows that lower credibility news can trigger a larger

cascade than credible news when the social network is highly connected. Moreover, I

demonstrate that sharp polarization in prior beliefs in the population prompts more

sharing of lower credibility news, leading to larger cascade size.

In Chapter 4, I provide a theory of how people select news intermediaries as infor-

mation sources, based on Hsu et al. (2020b). The news media, caring for the welfare of

all subscribers, have a motive to persuade the subscribers to take the optimal action

about the state based on their own beliefs. When there is some news, a leader can

decide whether to fact-check the veracity of the news and then choose whether to dis-

close the news to her own subscribers or not. Our main results give insights into how
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individuals would seek information when information is private or costly to obtain,

while considering the persuasion motive of strategic news providers who are partisan.

Finally, in Chapter 5 I conclude and propose a few future directions that I would

like to explore in the interaction of platforms and artificial intelligence.
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Chapter 2

News Sharing of Myopic Individuals

on Social Networks

2.1 Background

Popularity, ease of access, as well as wide and fast dissemination of digital content are

some of the major reasons why many users share news and information on social media.

News publishers use social media to instantly inform their online readers of the latest

news (Shearer and Matsa 2018). Candidates running for political office launch their

political campaigns on social media to advertise their ideology and mobilize voters

(Williams and Gulati 2013). Social media platforms such as Facebook and Twitter

are now a popular instrument for political activists to organize the public by sharing

information, drawing awareness, and coordinating their activities (Steinert-Threlkeld

et al. 2015, Enikolopov et al. 2015, Hendel et al. 2017).

Social media have also been weaponized as an effective tool in information warfare:

online users often share contents without verification; a vulnerability that is increas-

ingly being exploited by malicious actors to manipulate public opinion by spreading

false news and misinformation on social media (Bessi and Ferrara 2016, Allcott and

Gentzkow 2017, Weedon et al. 2017, Shao et al. 2018). Many fast-spreading social
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media posts or memes turn out to be false or inaccurate (Gillin 2017, Silverman et al.

2017, Silverman and Pham 2018).

The observed prevalence of many false posts or tweets seem to suggest that false

news and misinformation are more likely to circulate on social networks, spreading

faster, deeper, and more widely than accurate information. Recently, Vosoughi et al.

(2018) empirically corroborated this idea using data from Twitter: they find that false

and inaccurate information travels wider, faster, and deeper, and hypothesize novelty

as a potential cause for the prevalence of misinformation.

In this chapter, we aim to complement such empirical findings by providing a theory

that rationalizes the individuals’ decision making process that leads to news sharing

and by characterizing conditions under which these decisions can potentially trigger a

wide spread of false or inaccurate information.

Why do people tend to spread the news that they find to be more novel? One

potential rationale lies in our desire for like-minded others (Bahns et al. 2017, Jost

et al. 2018): we would like to persuade others and assimilate their opinions to our

own. After all, new information can change opinions; if an agent finds a piece of news

so novel and surprising that significantly affects her opinion, the persuasion motive

creates an incentive to modify her peers’ information sets by sharing the news with

them, and as a result, change their opinions as well. Sharing news can also be a result

of an affirmation motive: When having different/opposing opinions from friends, one

may share with them the news that affirms his/her viewpoint. Indeed, Del Vicario

et al. (2016) find empirical evidence that Facebook users involved in sharing cascades

are highly homogeneous in their polarization. As we will show in this work, our model

is capable of rationalizing both.

To this end, we study the news-sharing decision process of individuals on a social

network. News is a noisy observation of an underlying state of the world, initially

shared with a limited number of (randomly chosen) agents. Agents are endowed with

independent heterogeneous priors on the state. Whenever an agent receives the news,
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she updates her belief on the state via Bayes’ rule and then chooses whether to broad-

cast a copy of the news to her followers (e.g., retweet the news): She makes her decision

so as to maximize her expected utility, deliberating the effect of her action on her fol-

lowers’ beliefs. Each agent’s utility is a function of the average distance between her

belief and the beliefs of her followers, capturing her desire for like-minded others. We

assume that there is a cost incurred with broadcasting, which can represent people’s

inherent tendency to refrain from taking an action (Jeuland 1979, Su 2009).

Moreover, we consider non-strategic agents in the sense that they myopically make

their sharing decisions depending on information at the time of receiving the news,

without projecting the news spread in the future: While assessing the marginal gain

in sharing the news with their followers, the agents only weigh in the possibility that

a follower may have already received the news from other agents in the past, and

particularly, do not speculate on the likelihood that an uninformed follower may hear

the news from others at some point in the future. In Chapter 3 we will otherwise focus

on strategic agents who decide whether to share news while accounting for the effect

of others’ news-sharing decisions on news spread in the future.

We emphasize that, instead of a dichotomy between true and false news, this model

concerns news that conveys noisy information about an underlying state of the world.

This corresponds to the scenarios in which the state has not been uncovered nor iden-

tified at the time of publishing articles. The extent to which agents take into account

the news vary with the news agencies’ investment in estimating the state, or relatedly,

their credibility in news reporting. We focus on news with credibility that is known

to the population, corresponding to the old news media who possess long history and

well-established reputation in the news market.

The network that depicts social interactions within the population is exogenously

constructed using a simple random graph model that is similar to the frameworks

adopted by Galeotti and Goyal (2009), Fainmesser and Galeotti (2016, 2020): Each

agent only knows her own set of followers and followees but has no information about
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the interactions among other agents in the network, except for the joint degree distri-

bution.1

This notion that agents’ knowledge of the network are limited to their neighbors is

also empirically corroborated by Breza et al. (2018). We use a random graph model to

construct the followers’ network from a sequence of pairs of in-degrees and out-degrees

that are generated according to a joint degree distribution. Indeed, random networks

can serve as a tractable framework for modeling the structure of social interactions

(e.g., the following relations) within a population. They are extensively used as a

convenient modeling abstraction to facilitate the modeling and analysis of the diffusion

processes on networks (Rapoport 1957, Erdős and Rényi 1959, Newman 2003, Jackson

2008).

As our first contribution, we show how surprise in the news and affirming one’s own

perspective naturally arise from the utility-maximizing decision of agents on broadcast-

ing. In particular, we show that the utility resulting from a broadcast action, exclusive

of the cost, can be decomposed into three parts: (i) A part favoring a broadcast when

the news affirms the view of the agent against the average prior perspective in the

population; (ii) A quadratic gain incentivizing broadcast for surprising news (with

surprise defined as deviation of news from the average prior perspectives, discounted

by news credibility); (iii) A part independent from the news and agents’ perspectives,

solely resulting from reducing the diversity in followers’ perspectives.

As our second result, we then characterize the dynamics of the news spread that is

endogenously generated by micro-level news-sharing decisions, and establish necessary

and sufficient conditions for emergence of a cascade. The cascade condition simply

suggests that a news item goes viral if and only if, each follower who receive the news

early on in the process will pass the news to more than one new agent on average.

The condition depends on both the network structure and the likelihood of sharing
1We abstract the network formation using random network modeling, unlike the set of models

(Sethi and Yildiz 2016, Hsu et al. 2020b) that endogenized the social network as a result of individual
strategic behavior of following or connecting to others in order to garner relevant information.
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for a newly-informed follower. We show that the cascade likelihood over a network is

increasing with the average degree of its corresponding line graph, a dual graph where

the nodes are the edges of the original graph and two nodes form an edge if the two

corresponding edges in the original graph are incident. This enables us to compare

the effect of different network structures on the spread of news by examining expected

degrees of their corresponding line graphs. For network structures generated from a

joint Poisson degree distribution and a Zipf (power-law) degree distribution with a

common expected degree and correlation coefficient, we show that cascades are more

likely to emerge on networks generated from the Zipf distribution.

Finally, we offer theoretical insights into how the fundamental motives underly-

ing individual news-sharing decisions would determine the news precision levels that

maximize the ex-ante likelihood of a cascade. We elucidate the connections between

optimal news precision levels and the diversity of perspectives in the population and the

wisdom of the crowd (Galton 1907, Surowiecki 2005), particularly for well-connected

social networks whose line graphs have a mean degree of at least two. This assumption

ensures all the results to still hold for a general class of utility functions elaborated

on in Section 2.2. Indeed, it is not a restrictive assumption given the apparent well-

connectedness of the existing social media platforms. For the follower network on

Twitter (as the motivating application of our work), we analyze a dataset which was

collected and kindly shared by Kwak et al. (2010): the dataset comprises over 41.7

million nodes and 1.47 billion links, with a value of 6350.3 for the average degree of its

corresponding line graph.

We show that in a well-connected social network, the diversity of perspectives facil-

itates the spread of news at all precision levels. In a highly-diverse population, a wide

range of precision levels result in viral news, including but not limited to the truth;

the range of such precision levels shrinks as the population becomes less diverse. On

the other hand, in a population with moderately-diverse or homogeneous perspectives,

the truth has to be surprising enough to the public so as to trigger a cascade; in a

25



population with individual perspectives concentrated around the truth, however, the

truth has no chance of going viral and the probability of a cascade is maximized at

some nonzero precision level.

Our work joins the recent line of theoretical research on spread of misinformation.

Nguyen et al. (2012), Budak et al. (2011), Törnberg (2018) computationally investi-

gated misinformation diffusion using mechanic models with exogenous rules of relaying

information to others. This work is also related to the theories on information diffusion

(Bala and Goyal 1998, Watts 2002, Jackson 2008, Acemoglu et al. 2010, Sadler 2020).

Our work also connects to the literature on controlling the spread of information on

networks via word-of-mouth. Ajorlou et al. (2018) characterize the optimal dynamic

pricing policy in a setting where the information about a new product spreads only

via word of mouth among buyers, and hence the seller should use the price both to

control the profit and to spread the information in the network. The engagement of

buyers in the spread, however, is determined by their purchase decisions based on their

valuations of the product, independent from the network. Campbell et al. (2017) sug-

gest self-promotion as an expert as the incentive to engage in word-of-mouth spread of

information and study how a firm could maneuver this process by strategically limiting

the release of information and advertising only to possibly high types. Although this

model can explain the diminishing desire of agents to engage in the spread, it is unable

to explain behaviors related to surprise or accuracy of information since no uncertainty,

or belief, is present in their model.

Our work is further related to the recent paper by Candogan and Drakopoulos

(2020), where the authors focus on optimal signaling and mechanism design for an

online platform, aiming to balance the engagement and misinformation on social net-

works. Unlike our model in which agents engage in the news spread by broadcasting

the news, in Candogan and Drakopoulos (2020) the platform directly provides a per-

sonalized recommendation to each individual as to whether engage with the content or

not, without the element of news sharing.
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Individuals in our model acknowledge that the news is generated among the noisy

process of identifying the state and incorporate news value into their beliefs using the

known news credibility on a continuous scale. In this regard, we share the similar

approach to investigating the circulating information on platforms with Allon et al.

(2021); they studied the evolution of beliefs of consumers who selectively consume only

few posts each time when the platforms present a menu of posts that are informative

about the true state.

Our choice of the persuasion motive for an agent to influence her followers’ opin-

ions via sharing the news is related to the literature on disclosure games (Milgrom

1981, Grossman 1981); cheap talk (Crawford and Sobel 1982); and persuasion games

as coined by Milgrom and Roberts (1986). In our setting, agents can only choose

whether or not to disclose the news they receive (e.g., retweeting on Twitter) without

distorting or coarsening the news. In particular, our model shares the similar utility

formulation with the model of Che and Kartik (2009), which concerns one leader and

one follower and the leader would like to move this followers belief close to hers via

strategic disclosure of information.

The effect of news precision on agents’ broadcasting decisions and consequently

emergence of a news-sharing cascade also has connections to information design lit-

erature (Rayo and Segal 2010) and Bayesian persuasion (as coined in Kamenica and

Gentzkow 2011) literature, where the focus is on the problem of persuading a rational

agent to take a desired action by controlling her informational environment in a sym-

metric information setting. The key distinction between Bayesian persuasion and the

classical literature on signaling games (e.g., Crawford and Sobel 1982) is that once the

signal is realized it cannot be manipulated or distorted as is the case in this paper.

In the Bayesian persuasion literature, however, the main focus is on controlling the

informativeness of the public information and usually no element of network processes

or dynamic information disclosure, as involved in our model, is present.

The rest of the chapter is organized as follows. In Section 2.2, we describe our
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model and discuss its assumptions. In Section 2.3 we characterize individual news-

sharing decision rules, where we show how affirmation and surprise motives arise from

utility-maximizing broadcast actions. The endogenous dynamics of news spread in

networks as well as necessary and sufficient conditions for a news cascade to emerge

are derived and discussed in Section 2.4. In Section 2.5, we formulate the likelihood

of a news cascade as a function of the precision level and demonstrate the connections

of the optimal noise levels to the diversity in individual perspectives and the collective

wisdom in a population. Section 2.6 discusses our findings. The formal proofs of all

the lemmas and theorems are collected in the Appendix A.

2.2 Model

The main object of study in this paper is a social network consisting of a large popu-

lation of agents 𝒱 with size |𝒱| = 𝑛 (our particular case of interest is when 𝑛 → +∞).

Agents are indexed by 𝑖 ∈ {1, 2, . . . , 𝑛} and form a directed graph 𝒢 = (𝒱 , ℰ). We

say that agent 𝑗 follows agent 𝑖 if and only if (𝑗, 𝑖) ∈ ℰ . We denote the set of agent

𝑖’s followers by 𝑁 in(𝑖)
Δ
= {𝑗 ∈ 𝒱|(𝑗, 𝑖) ∈ ℰ}. We assume that the set of followers and

followees of agent 𝑖 is her private information. For an edge 𝑒 = (𝑗, 𝑖), we may alterna-

tively refer to 𝑗 as its tail and 𝑖 as its head, which we denote with Head(𝑒) and Tail(𝑒),

respectively. We will work with an abstract model of a network characterized by its

joint distribution of in-degrees and out-degrees. The joint distribution of in-degrees

and out-degrees is common knowledge while the graph 𝒢 itself is not. We postpone

the details of the network to Section 2.4.

There is an unobservable state of the world 𝜃 ∈ R. Following standard Bayesian

models, agents agree to disagree (Aumann 1976); they have heterogeneous prior beliefs

on the distribution from which the state is drawn. We assume that agent 𝑖 has a normal

prior belief with mean 𝜇𝑖 and variance 𝜎2
𝜃 :

𝜃 ∼𝑖 𝒩 (𝜇𝑖, 𝜎
2
𝜃).
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Following Sethi and Yildiz (2016), we refer to the mean of agent 𝑖’s belief as her

perspective and to its variance 𝜎2
𝜃 as the uncertainty level of her belief.2 The prior

perspective 𝜇𝑖 is agent 𝑖’s private information; individual prior perspectives, however,

are assumed to be independently and identically distributed according to

𝜇𝑖 ∼ 𝒩 (�̄�, 𝜎2
𝜇),

where �̄� represents the average or aggregate prior perspective and 𝜎2
𝜇 quantifies the

variance of the individual perspectives on the state in the population. We refer to 𝜎2
𝜇

as the diversity of perspectives, and to 𝜇𝑖−�̄� as the ex-ante bias of agent 𝑖. Furthermore,

we measure the collective wisdom, or wisdom of the crowd (Galton 1907, Surowiecki

2005), by the squared difference between the state and the average perspective in the

population (𝜃 − �̄�)2; the smaller this deviation, the wiser the population.

At the onset, the unobservable state 𝜃 is realized. A sender has access to a noisy

observation of 𝜃 to which we refer as news 𝑥. The noise is assumed to be additive,

independent from the state, and normally distributed. We can hence view news 𝑥 as a

realization of a random variable 𝑋, where

𝑋 = 𝜃 + 𝜖,

𝜖 ∼ 𝒩 (0, 𝜎2
𝜖 ),

where 𝜎𝜖 is the noise level in the news.3 The sender then releases the news 𝑥 to a

(randomly and uniformly chosen) subset of the agents.

An agent who received the news updates her belief on the state via Bayes’ rule.4

2We assume the same precision for prior beliefs, reflecting that agents are ex-ante equally informed
about the state.

3The precision can reflect the credibility of the source, or can be directly inferred from the news
(e.g., from the confidence level when news is a report on the result of a polling survey). The distribution
of the noise and its precision are common knowledge among agents who received the news.

4Only a single piece of news 𝑥 is transmitted. Since the source is included with the news (e.g.,
a link to a certain post from a news agency), agents can distinguish copies of the same news, thus
updating their beliefs only the first time they see the news.
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In particular, the posterior belief of agent 𝑖 who has received a copy of the news 𝑥 is

𝜃|𝑥 ∼𝑖 𝒩
(︁
(1− 𝛽)𝜇𝑖 + 𝛽𝑥, (1− 𝛽)𝜎2

𝜃

)︁
, (2.1)

where 𝛽
Δ
=

𝜎2
𝜃

𝜎2
𝜃+𝜎2

𝜖
∈ [0, 1]. We refer to 𝛽 as the credibility of the news, as it determines

how much weight agents place on the news when updating their perspectives on the

state. Specifically, 𝛽 = 1 corresponds to news with infinite precision, i.e., the case

in which the news reveals the true state; by contrast, 𝛽 = 0 represents the case in

which the news is completely uninformative. After receiving the news and updating

her belief, agent 𝑖 has to immediately decide5 whether to broadcast a copy of the news

to her followers, referred to as her broadcast action 𝑎𝐵𝑖 ∈ {0, 1} (this can correspond

to tweeting).

Given the desire to have like-minded followers, an agent receiving the news broad-

casts it to her followers only if it sufficiently reduces the difference between her belief

and her followers’ beliefs. To quantify the difference between two normally distributed

beliefs, 𝑃1 = 𝒩 (𝜇1, 𝜎
2
1) and 𝑃2 = 𝒩 (𝜇2, 𝜎

2
2), let us define a distance measure between

𝑃1 and 𝑃2 as6

𝑊 2
2 (𝑃1;𝑃2) = (𝜇1 − 𝜇2)

2. (2.3)

We then consider the following utility function for agent 𝑖 taking broadcast action
5Agents typically do not spend much time and attention deliberating whether to share news now

or postpone their decision to a future time.
6All the results presented in the paper still hold for a more general distance of the form

𝑊 2
2 (𝑃1;𝑃2) = (𝜇1 − 𝜇2)

2 + 𝛾(𝜎1 − 𝜎2)
2, (2.2)

measuring the imbalance of information besides disagreement in perspectives, where 𝛾 ≥ 0 controls
the relative importance of the two terms. Since a normally distributed belief is fully characterized by
its mean and standard deviation, this will fully capture distance between agents’ beliefs. For the sake
of clarity, however, we present the results for the case 𝛾 = 0, and prove the validity of the results for
the general case in the Appendix.
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𝑡

Network 𝒢 is
formed

𝜃 is realized
(unobservable)

News 𝑋 = 𝜃 + 𝜖 is
realized & released

0 1 2 3

Agents see the news &
decide whether to share

· · ·

Figure 2-1: Timeline of our model.

𝑎𝐵𝑖 ∈ {0, 1}:

𝑢𝑖

(︀
𝑎𝐵𝑖 , 𝑃

𝑖, {𝑃 𝑘|𝑘 ∈ 𝑁 in(𝑖)}, 𝐶
)︀
=− 1

|𝑁 in(𝑖)|
∑︁

𝑘∈𝑁 in(𝑖)

𝑊 2
2 (𝑃

𝑖;𝑃 𝑘)− 𝐶1I{𝑎𝐵𝑖 =1}, (2.4)

where 𝑃 𝑖 (similarly 𝑃 𝑘) denotes the belief of agent 𝑖 (agent 𝑘) on 𝜃, and 𝐶 > 0

represents the cost associated with broadcasting. To take a broadcast action 𝑎𝐵𝑖 ∈

{0, 1} maximizing her expected utility, agent 𝑖 needs to account for the effect of sharing

the news on her followers’ beliefs. This clearly depends on whether a follower has

already heard the news from other agents or not, which we assume to be the private

information of the follower, and hence unknown to agent 𝑖, who is making the broadcast

decision. We assume, however, that agent 𝑖 can observe the current size of the news

spread in the entire population.7 Given such observation, she would need to estimate

the probability that a randomly chosen follower of hers has heard the news, as will be

described in Lemma 2.2.

Moreover, we assume that agents make their broadcast decisions myopically : While

assessing the marginal gain in sharing the news with their followers, they only weigh

in the possibility that a follower may have already received the news from other agents

in the past, and do not speculate on the likelihood that an uninformed follower may

hear the news from others at some point in the future.

The timeline of our model is summarized in Figure 2-1. Sharing is initiated at 𝑡 = 0

by a sender who has access to the news item 𝑥 with credibility 𝛽 and releases it to a

small (𝑜(𝑛)) subset of agents. Broadcast decisions are subsequently made at discrete
7This can be estimated, e.g., by looking at the number of retweets or the click-through rate of the

news.
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times 𝑡 ∈ {0} ∪ N by those agents who just receive a copy of the news. Our objective

is to characterize conditions under which a news cascade can emerge as the result of

micro-level utility-maximizing broadcast decisions. The formal definition of a cascade

will be stated in Section 2.4.

Discussion of the Model

Here we comment on some of the assumptions made in our model and the rationale

beneath those assumptions.

Belief-based utilities

This choice of utility is motivated by the observation that in many social settings,

agents may base their information-sharing decisions on incentivizing others to take

similar actions in an upcoming decision, rather than merely maximizing a single utility

function. An example would be whether sharing a piece of news would persuade others

to vote for one’s party in a number of upcoming regional and national elections. Given

the belief-driven nature of these actions, one may attain the similarity in her peers’

actions by making a decision of sharing information that persuades peers to have similar

beliefs.

Cost of broadcasting. As can be seen from (2.4), there is a cost associated with

broadcasting the news in our model. This cost could represent people’s inherent ten-

dency to refrain from taking an action as many empirical studies have suggested that

people show “status quo bias" while making decisions (Samuelson and Zeckhauser

1988). This is also known as consumers’ inertia in the marketing literature studying

consumers’ brand-choice (Jeuland 1979, Su 2009). In our context of browsing posts,

news, or tweets on social media, the default action of status quo is “not sharing”. Faced

with extensive amount of information on such platforms, agents usually scroll through

page fast sifting the digital content. A post or tweet must gain enough interest from

an agent to make her pause browsing and share the post.
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The cost also partly accounts for agents’ discomfort about public discussions under

a post on social media. A post on Facebook or a tweet on Twitter may sometimes serve

as a venue for intense discussions or even toxic debates. As reported in Newman et al.

(2018, 2019), agents on social media are now more aware of the negative consequences

that might ensue from their shared contents. It is important to note that, despite such

concerns, retweets and content-sharing are still quite common on social platforms. This

suggests that the cost is not prohibitive and that agents are willing to share news when

they find sufficient value in doing so.

Being unaware of news. One implicit assumption in our model is that agents do

not even know that there is a piece of news about the state unless they hear it. Many

models also concern the players who are unaware of products, opportunities, or rumors

until they observe their neighbors adopted or communicated.8 Sadler (2020) studied a

diffusion game in which strategic players who are informed of the opportunity via their

neighbors’ adoption decide whether to adopt it as well considering network externality.

Merlino et al. (2020) investigated the diffusion of rumors among strategic agents who

can fact-check the rumor once they receive the rumor and know its existence.

In a setting of full rationality, however, an agent who knows that some news may

exist and yet has not received it strategically interprets not hearing news as possibly

a result of her followee deciding not to share it. This level of strategic speculation

primarily concerns niche applications in which the access to information may be costly

or restricted to some players, such as strategic communication at private meetings

or organizations. As an example, in Chapter 4 we will investigate news subscription

choices of fully rational subscribers who actively seek information, accounting for media

bias in news disclosure. In the current context of news sharing on Twitter-like platforms

where many tweets on a wide range of topics are circulating and users are passively

fed digital contexts from others, such level of strategic speculation for the existence
8One can see Bass (1969), Campbell (2013) for diffusion based on non-strategic information trans-

mission.
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of specific news is not realistic. Moreover, if an agent speculates that there is news

circulating in the society, she can readily look for it via digital search engines.

2.3 Agent’s Decision of Sharing the News

2.3.1 Decision Rule

An agent 𝑖 receiving a copy of the news 𝑥 broadcasts it to her followers if and only

if the marginal reduction in the expected average distance between her belief and her

followers’ surpasses the associated cost. Based on the utility function in (2.4), agent 𝑖

decides to broadcast the news 𝑥 if and only if

E𝑖

[︁
𝑊 2

2 (𝑃
𝑖;𝑃 𝑘)|𝑘 ∈ 𝑁 in(𝑖) ∧ 𝑎𝐵𝑖 = 1

]︁
+ 𝐶 < E𝑖

[︁
𝑊 2

2 (𝑃
𝑖;𝑃 𝑘)|𝑘 ∈ 𝑁 in(𝑖) ∧ 𝑎𝐵𝑖 = 0

]︁
,(2.5)

where the expectation is taken over the agent 𝑖’s belief on her followers’ beliefs condi-

tioned on her broadcast action 𝑎𝐵𝑖 ∈ {0, 1}. To evaluate the expected payoff of action

𝑎𝐵𝑖 ∈ {0, 1}, therefore, agent 𝑖 needs to speculate on the effect of her action on her fol-

lowers’ beliefs: Choosing to broadcast the news (𝑎𝐵𝑖 = 1) ensures that all the followers

will hear the news. If agent 𝑖 decides not to broadcast it (𝑎𝐵𝑖 = 0), she still needs to

weigh in the possibility that some of her followers may have already heard the news

from others, in order to evaluate her expected utility.

Denote with 𝑞 the probability that a randomly chosen follower of agent 𝑖 has already

heard the news from other agents at the time she makes her decision, and let 𝑞 = 1−𝑞.

The independence of 𝑞 from agent 𝑖 is a consequence of the independent matching

process of the in-stubs and out-stubs in the configuration model, as we will discuss in

Section 2.4. The value of 𝑞 is indeed a function of the dynamics of the news spread.

Later in Section 2.4, after we explicitly develop the dynamics of the news spread, we

will elaborate on how the probability 𝑞 can be endogenously inferred from the network

metrics known to the public and the current scale of the news spread in the population.

34



For the time being, however, let us assume the value of 𝑞 as given. The decision rule

(2.5) can then be written as

E𝑖

[︁
𝑊 2

2 (𝑃
𝑖
1;𝑃

𝑘
1 )|𝑘 ∈ 𝑁 in(𝑖)

]︁
+ 𝐶 < 𝑞 × E𝑖

[︁
𝑊 2

2 (𝑃
𝑖
1;𝑃

𝑘
1 )|𝑘 ∈ 𝑁 in(𝑖)

]︁
+ (1− 𝑞)× E𝑖

[︁
𝑊 2

2 (𝑃
𝑖
1;𝑃

𝑘
0 )|𝑘 ∈ 𝑁 in(𝑖)

]︁
, (2.6)

where 𝑃 𝑘
1 and 𝑃 𝑘

0 denote the beliefs conditioned on having received the news or not,

respectively. 𝑃 𝑘
0 is the same as the prior while 𝑃 𝑘

1 is the posterior belief updated

according to (2.1):

𝑃 𝑘
0 = 𝒩 (𝜇𝑘, 𝜎

2
𝜃),

𝑃 𝑘
1 = 𝒩

(︀
(1− 𝛽)𝜇𝑘 + 𝛽𝑥, (1− 𝛽)𝜎2

𝜃

)︀
.

Agents’ prior perspectives are their private information and are independent from their

positions in the network—in particular their in- and out-degrees. As a result, although

agent 𝑖’s belief on the joint degree distribution of her followers differs from the com-

monly known joint distribution of in- and out-degrees in the population,9 her belief on

their prior perspectives is the same as the the common prior on the perspectives. This

means that, for agent 𝑖 and any of her followers 𝑘 ∈ 𝑁 in(𝑖), 𝜇𝑘 ∼𝑖 𝒩 (�̄�, 𝜎2
𝜇). Plugging

in the expectation terms in (2.6), we can find the following threshold rules for agents’

broadcast decisions:

Lemma 2.1 Given the probability 𝑞 and the received news 𝑥, agent 𝑖 broadcasts the
9This is related to the friendship paradox, as we explain in Section 2.4.
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news if and only if the following holds:10

2 (1− 𝛽)(𝜇𝑖 − �̄�)⏟  ⏞  
interim bias of agent 𝑖

𝛽(𝑥− �̄�)⏟  ⏞  
interim surprise

+ 𝛽2(𝑥− �̄�)2⏟  ⏞  
magnitude of surprise

+ (1− (1− 𝛽)2)𝜎2
𝜇⏟  ⏞  

reduction in the variance of perspectives

>
𝐶

1− 𝑞
.

(2.7)

We use the decision rule in (2.7) to explain how the surprise and affirmation motives

for sharing emerge naturally from the utility-maximizing broadcast decisions of agents.

Let us define 𝑆𝛽(𝑥)
Δ
= 𝛽(𝑥 − �̄�) as the interim surprise in the news. Also define

𝐵𝛽(𝜇𝑖)
Δ
= (1−𝛽)(𝜇𝑖− �̄�) as the interim bias of agent 𝑖, which is the difference between

agent 𝑖’s posterior perspective and average posterior perspective conditioned on hearing

any realized news.

The interim surprise measures the effective level of surprise in the news. The value

(𝑥 − �̄�) alone represents the deviation of the news 𝑥 from the average perspective �̄�

and its polarity. However, this value per se does not capture the significance of news

credibility when Bayesian agents process the news. To see why, consider the example of

receiving a report of discovering extraterrestrial life on Mars. This would be surprising

if it is announced by NASA; by contrast, the report conveys little surprise if it is

circulated on an online forum from an anonymous source. We therefore denote 𝑆𝛽(𝑥)

as the effective surprise perceived by a Bayesian agent hearing news 𝑥. The interim bias

is the difference between agent 𝑖’s posterior perspective and the average perspective

of a random follower, hypothetically assumed to observe the news.11 The direction of

ex-ante and interim biases are the same but the magnitude of interim bias is smaller

since agents put positive weight on the new information; the more credible the news,
10The following inequality is derived before (2.7):(︁(︀

(1− 𝛽)𝜇𝑖 + 𝛽𝑥
)︀
− �̄�

)︁2
−
(︁(︀

(1− 𝛽)𝜇𝑖 + 𝛽𝑥
)︀
−
(︀
(1− 𝛽)�̄�+ 𝛽𝑥

)︀)︁2
>

𝐶

𝑞
− (1− (1− 𝛽)2)𝜎2

𝜇.

From this we can see the gain in utility by decreasing the differences in the deviation of the mean of
an agent’s posterior from the aggregate mean of the public before and after they see the news.

11This is similar to the setting used by Che and Kartik (2009). We also adopt their terminology.
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the smaller the interim bias.

We say that the news 𝑥 affirms the bias of agent 𝑖 if the interim bias and the

interim surprise have the same sign, i.e., sign(𝑆𝛽(𝑥)) = sign(𝐵𝛽(𝜇𝑖)); otherwise, we say

that the news is opposing her bias. This affirmation effect appears as the first term

in (2.7). From this, we can observe that an affirmative news improves the utility of

a broadcast, while an opposing news forces against it. Moreover, the magnitude of

affirmation/opposition effect is stronger for agents who are more biased away from the

average perspective.

The second part in (2.7) represents the magnitude of the surprise, which improves

the utility of broadcast regardless of its polarity. For affirmative news, the surprise

makes the broadcast action more favorable. When news is opposing an agent’s bias, its

negative effect on the utility (first term in (2.7)) can be compensated by a sufficiently

large surprise. We can rearrange the first two terms in (2.7) as

(︂
2𝐵𝛽(𝜇𝑖) + 𝑆𝛽(𝑥)

)︂
× 𝑆𝛽(𝑥). (2.8)

Fix 𝐵𝛽(𝜇𝑖) and consider an opposing news item 𝑥 such that sign(𝑆𝛽(𝑥)) = −sign(𝐵𝛽(𝜇𝑖)).

When |𝑆𝛽(𝑥)| is small, the opposition effect dominates the surprise and (2.8) is neg-

ative, forcing a no-broadcast action. However, as |𝑆𝛽(𝑥)| increases, the surprise in

the news eventually dominates, flipping agent 𝑖’s polarity and making (2.8) positive,

favoring a broadcast action.

The third term in (2.7) is independent of both the news content and individual

perspectives. This part corresponds to the utility that a broadcast action yields by

concentrating the followers’ perspectives further around their mean. Finally, note that

the right-hand side of (2.7) is increasing as a function of the probability 𝑞, which

captures the diminishing return of a broadcast as the news spreads wider and the

followers are more likely to hear the news from other agents.
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2.3.2 Broadcast Size

In this subsection, we use the micro-level decision rule of broadcasting characterized in

(2.7) to identify the fraction of the newly-informed agents who will share the news with

their followers. This enables us to analyze the dynamics of the news spread without the

need to know each individual’s perspective involved in the spread, thereby bridging the

individual behavior at the micro-level with the collective behavior at the macro-level.

When the news is positively biased against the aggregate perspective, or 𝑥− �̄� > 0,

the broadcast condition of (2.7) can be written as

𝜇𝑖 − �̄� >
𝐶

2𝑞𝛽(1− 𝛽)(𝑥− �̄�)
−

(2− 𝛽)𝜎2
𝜇

2(1− 𝛽)(𝑥− �̄�)
− 𝛽(𝑥− �̄�)

2(1− 𝛽)
.

Given 𝑞 (that is, the probability that a follower has not seen the news yet), we can find

the probability of broadcasting 𝑥 for an agent who has just received the news:12

P
(︁
𝑎𝐵𝑖 = 1 | agent 𝑖 received the news

)︁
=P
(︁
𝜇𝑖 − �̄� >

𝐶

2𝑞𝛽(1− 𝛽)(𝑥− �̄�)
−

(2− 𝛽)𝜎2
𝜇

2(1− 𝛽)(𝑥− �̄�)
− 𝛽(𝑥− �̄�)

2(1− 𝛽)

)︁
=Φ
(︁ (2− 𝛽)𝜎𝜇

2(1− 𝛽)(𝑥− �̄�)
+

𝛽(𝑥− �̄�)

2(1− 𝛽)𝜎𝜇

− 𝐶

2𝑞𝛽(1− 𝛽)(𝑥− �̄�)𝜎𝜇

)︁
,

where Φ(·) is the standard normal CDF. Let us define

𝐾𝛽(𝑥) =
𝐶

2𝛽(1− 𝛽)|𝑥− �̄�|𝜎𝜇

,

𝜂𝛽(𝑥) =
𝜎𝜇

2(1− 𝛽)|𝑥− �̄�|
(2− 𝛽) +

𝛽|𝑥− �̄�|
2(1− 𝛽)𝜎𝜇

.

12Since we assume independence of individual perspectives and agents broadcast the news instead
of forwarding the news to a subset of her followers they select, receiving the news is independent from
the agent’s perspective. The case would be different if we consider homophily in perspectives.
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It is easy to verify that for a general 𝑥,

P
(︁
𝑎𝐵𝑖 = 1 | agent 𝑖 received the news 𝑥

)︁
= Φ

(︁
𝜂𝛽(𝑥)−

𝐾𝛽(𝑥)

𝑞

)︁
. (2.9)

The expression in (2.9) is conditional on the value of 𝑞 at the time when an agent

decides about her broadcast action. As will be discussed in detail in the next section,

𝑞 is a temporal variable which can be endogenously derived at each time instant, given

the dynamics of news spread. It is also worth noting that the broadcast size (2.9) is

the result of aggregating the broadcasting decisions of agents. Furthermore, for given

𝑞 and 𝛽, enlarging the difference of the news from the average perspective, i.e., |𝑥− �̄�|,

can increase the broadcast size Φ(𝜂𝛽(𝑥)− 𝐾𝛽(𝑥)

𝑞
).

2.4 Prevalence of News over the Network

Based on the micro-level decision rule derived in Section 2.3 for news sharing, we now

study the conditions under which a cascade will emerge in steady state. We start by

deriving the spread dynamics and then characterize the prevalence of the news in the

network at steady state.

We say that a news cascade happens if and only if the set of the agents who have

received the news in steady state reaches a size of Θ(𝑛), where 𝑛 is the number of

agents in the population. Our analysis concerns the case in which 𝑛 → ∞, i.e., a

large population of asymptotically infinite size. We identify conditions under which

news initially shared only with a randomly chosen subset of size 𝑜(𝑛) of the population

eventually spreads to a non-zero constant fraction of the population. The initial seeding

of the news is assumed to be large enough to ensure that at least some agents in the

giant component of the network 𝒢, if any, would receive the news at 𝑡 = 0; otherwise, a

news cascade is never possible, even if everybody hearing the news broadcasts it to her

neighbors. Furthermore, it is guaranteed that the fraction of agents who have received

the news converges to a steady-state value as time goes to infinity since the fraction of
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such informed agents in the network is non-decreasing in time and trivially bounded

from above by 1.

We characterize the network by the joint distribution of its in-degrees and out-

degrees. Following the standard notation, we denote with 𝑃 (ℓ, 𝑑) the joint probability

distribution of out-degrees and in-degrees, where 𝑑 and ℓ stand for out-degree and

in-degree respectively. Moreover, let 𝑃 out(·) and 𝑃 in(·) represent the marginal distri-

butions of out-degrees and in-degrees respectively, and 𝑃 out(·|ℓ) and 𝑃 in(·|𝑑) be the

conditional degree distributions.

The network is generated from a realization of in-degrees and out-degrees based

on the configuration model (see Newman (2003) or Jackson (2008) for more details on

the configuration model). As illustrated in Figure 2-2, the basic idea of generating a

network from a sequence of in-degrees and out-degrees in the configuration model is

to consider a “in-stub” (“out-stub”) for each in-link (out-link). The edges are then con-

structed by each time pairing unassigned in-stubs and out-stubs uniformly at random

until all the stubs are assigned.13 Note that E[ℓ] = E[𝑑] since the total in-stubs should

match the total out-stubs (both count the total number of links) and we therefore

refer to the expected in-degree/out-degree of the network as the expected degree for

simplicity.

Regarding the agents’ knowledge of the underlying network, we follow the frame-

works of Sundararajan (2008), Galeotti et al. (2010), and Fainmesser and Galeotti

(2016): each agent only knows her own set of followers and followees but has no infor-

mation about the interactions among other agents in the network, except for the joint

degree distribution.
13It is possible to have self-links, or multiple links between two nodes under this process. In large

networks, however, the chances of any node having duplicate or self-link tends to zero under some
mild assumptions on the generated degree sequence. These issues are discussed in details in Newman
(2003) and Jackson (2008).
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Figure 2-2: Illustration of the network generation process by configuration model from
a sequence of (in-degree, out-degree) pairs.

2.4.1 Spread Dynamics

The following notations and definitions prove useful in characterizing the dynamics

of the spread. For any subset 𝒜 of the agents, we define |𝒜| as the probability of a

randomly chosen agent belonging to 𝒜. In other words, |𝒜| represents the size of 𝒜

normalized by the population size. We also use 𝒜in to denote the set of edges with

their head in 𝒜, and |𝒜in| as the probability that a randomly chosen edge 𝑒 ∈ ℰ lies in

𝒜in. 𝒜out and |𝒜out| are defined similarly. Finally, the set of those agents not in 𝒜 is

denoted by 𝒜.

Let 𝑡 = 0 be the time when the news is initially released to a subset of (randomly

and uniformly chosen) agents in the population. Denote with 𝑟𝛽(𝑥, 𝑡) the set of agents

who receive the news 𝑥 with credibility 𝛽 at time 𝑡 and let 𝑏𝛽(𝑥, 𝑡) ⊆ 𝑟𝛽(𝑥, 𝑡) be the

set of those who decide to share the news with their followers at time 𝑡. The set of all

agents who have received the news up to time 𝑡 is denoted by ℛ𝛽(𝑥, 𝑡) = ∪𝑡
𝜏=0𝑟𝛽(𝑥, 𝜏).

Similarly, ℬ𝛽(𝑥, 𝑡) = ∪𝑡
𝜏=0𝑏𝛽(𝑥, 𝜏). The fraction of agents who have received the news

in the steady state is lim𝑡→∞ |ℛ𝛽(𝑥, 𝑡)| which we denote with |ℛ𝛽(𝑥,∞)|.

The broadcast decision rule in Lemma 2.1 requires an agent (who just received a

copy of the news and is deciding whether to broadcast) to estimate the probability
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𝑞 that a randomly chosen follower of hers has already heard the news. Recall from

Section 2.2 that, whether a follower has heard the news or not is her private information

and hence unknown to the agent making the broadcast decision. Nonetheless, we

assume that the decision-making agent can observe the current scale of the news spread

in the entire population (that is, |ℛ𝛽(𝑥, 𝑡)|), from which she can estimate 𝑞. This makes

𝑞 a temporal variable, endogenously evolving with the news spread, and hence we

denote it hereafter with 𝑞𝛽(𝑥, 𝑡). An important property here is that agents observing

|ℛ𝛽(𝑥, 𝑡)| at time 𝑡 will have identical estimates for 𝑞𝛽(𝑥, 𝑡), which is in particular

independent of their in-degrees (out-degrees); this is due to the independence matching

process of the in-stubs and out-stubs (followers and followees) in the configuration

model. Indeed, it is easy to see that

𝑞𝛽(𝑥, 𝑡) = P
(︁
Tail(𝑒) ∈ ℛ𝛽(𝑥, 𝑡) | Head(𝑒) ∈ 𝑟𝛽(𝑥, 𝑡)

)︁
. (2.10)

In the following lemma, we describe how to find 𝑞𝛽(𝑥, 𝑡) from the publicly observable

cascade size |ℛ𝛽(𝑥, 𝑡)| and the common knowledge of the joint degree distribution.

Lemma 2.2 An agent receiving the news at time 𝑡 and observing the current size of

news spread |ℛ𝛽(𝑥, 𝑡)| can find 𝑞𝛽(𝑥, 𝑡), the probability that a randomly chosen follower

of hers has seen the news, using the following equations:

1− 𝑞𝛽(𝑥, 𝑡) =
∞∑︁
𝑑=1

𝑑

E[𝑑]
(1− |ℬin

𝛽 (𝑥, 𝑡− 1)|)𝑑−1𝑃 out(𝑑),

1− |ℛ𝛽(𝑥, 𝑡)| =
∞∑︁
𝑑=0

(1− |ℬin
𝛽 (𝑥, 𝑡− 1)|)𝑑𝑃 out(𝑑). (2.11)

Based on Lemma 2.2, the agent making the broadcast decision can derive the prob-

ability 𝑞𝛽(𝑥, 𝑡) needed in Lemma 2.1 from |ℬin
𝛽 (𝑥, 𝑡 − 1)|, that is, the fraction of the

edges through which the news has traversed (i.e., triggered by the broadcast) by time

𝑡 − 1; this fraction |ℬin
𝛽 (𝑥, 𝑡 − 1)| can be itself estimated from the size of the spread

at time 𝑡 (i.e., |ℛ𝛽(𝑥, 𝑡)|) from (2.11). It should be noted that the probability 𝑞𝛽(𝑥, 𝑡)
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of a randomly chosen follower having seen the news is generically different from the

probability that a randomly chosen individual from the population has seen the news

(that is, |ℛ𝛽(𝑥, 𝑡)|). This result is rooted in the difference between the out-degree

distributions of a follower and a random member of the population, reflecting the fact

that it is more likely to be followed by an agent with a higher number of followees

(out-degrees)—this phenomenon echoes the friendship paradox (Feld 1991).

In order to characterize the evolution of the spread it suffices to find the update

rule for |ℬin
𝛽 (𝑥, 𝑡)|. Noting that |ℬin

𝛽 (𝑥, 𝑡 + 1)| = |ℬin
𝛽 (𝑥, 𝑡)| + |𝑏in𝛽 (𝑥, 𝑡 + 1)|, and that

|𝑏in𝛽 (𝑥, 𝑡 + 1)| = Φ(𝜂𝛽(𝑥) − 𝐾𝛽(𝑥)

𝑞𝛽(𝑥,𝑡+1)
)|𝑟in𝛽 (𝑥, 𝑡 + 1)| from (2.9), we can come up with the

following update rule for |ℬin
𝛽 (𝑥, 𝑡)| (see the proof of Theorem 2.1 for the details):

|ℬin
𝛽 (𝑥, 𝑡+ 1)| − |ℬin

𝛽 (𝑥, 𝑡)|

=
Φ(𝜂𝛽(𝑥)− 𝐾𝛽(𝑥)

𝑞𝛽(𝑥,𝑡+1)
)

E[𝑑]

∞∑︁
𝑑=0

E[ℓ|𝑑]
(︀
(1− |ℬin

𝛽 (𝑥, 𝑡− 1)|)𝑑 − (1− |ℬin
𝛽 (𝑥, 𝑡)|)𝑑

)︀
𝑃 out(𝑑).

We can use the continuous-time mean-field approximation of the above second-order

nonlinear dynamics to approximate the asymptotic behavior of the spread, as described

in the following Theorem 2.1.

Theorem 2.1 Denote by |ℬin
𝛽 (𝑥,∞)| the fraction of the links through which the news

has passed in the steady state. Then, |ℬin
𝛽 (𝑥,∞)| is the largest solution of 𝐺(|ℬin

𝛽 (𝑥,∞)|) =

0, where

𝐺(|ℬin
𝛽 (𝑥,∞)|) =

∫︁ |ℬin
𝛽 (𝑥,∞)|

0

(︁
− 1 +

Φ(𝜂𝛽(𝑥)− 𝐾𝛽(𝑥)

𝑞(𝑦)
)

E[𝑑]

∞∑︁
𝑑=0

𝑑E[ℓ|𝑑](1− 𝑦)𝑑−1𝑃 out(𝑑)
)︁
𝑑𝑦,

and

𝑞(𝑦) =
1

E[𝑑]

∞∑︁
𝑑=1

𝑑(1− 𝑦)𝑑−1𝑃 out(𝑑),

43



if 𝐺(1) < 0; otherwise, |ℬin
𝛽 (𝑥,∞)| = 1. The steady state size of the spread |ℛ𝛽(𝑥,∞)|

is given by

|ℛ𝛽(𝑥,∞)| = 1−
∞∑︁
𝑑=0

(1− |ℬin
𝛽 (𝑥,∞)|)𝑑𝑃 out(𝑑).

We can use Theorem 2.1 to derive necessary and sufficient conditions for news 𝑥 to

cascade, i.e., |ℛ𝛽(𝑥,∞)| > 0, as given in Proposition 2.1.

Proposition 2.1 Consider the model of news sharing established in Section 2.2. For

a news realization 𝑥 with credibility 𝛽 a cascade happens almost surely if and only if14

E[ℓ𝑑]
E[𝑑]

Φ
(︀
𝜂𝛽(𝑥)−𝐾𝛽(𝑥)

)︀
> 1. (2.12)

The cascade condition (2.12) depends on the network structure through the quantity
E[ℓ𝑑]
E[𝑑] . This is indeed the average in-degree/out-degree15 of the line graph 𝐿(𝒢) of the

original network 𝒢. Recall that the vertices in the line graph 𝐿(𝒢) are edges of the

original graph 𝒢, and (𝑥, 𝑦) is an edge in 𝐿(𝒢) if and only if 𝑥 = (𝑟, 𝑠) and 𝑦 = (𝑠, 𝑡)

are two edges in 𝒢 for some 𝑟, 𝑠, 𝑡 ∈ 𝒱(𝒢) (Aigner 1967). The average degree in the line

graph quantifies the expected number of edges that can be triggered by a randomly

chosen edge in the original graph. We denote with 𝜇Line(𝒢) the average (or mean)

degree of the line graph 𝐿(𝒢). We can rewrite the cascade condition (2.12) as

𝜇Line(𝒢)Φ
(︀
𝜂𝛽(𝑥)−𝐾𝛽(𝑥)

)︀
> 1.

Recalling the broadcast probability from (2.9), the cascade condition simply suggests

that a cascade emerges if and only if, after receiving the news, each follower in expecta-

tion will pass the news to more than one new agent (where the expectation is taken over
14In fact, not all the random realizations of the network generated from configuration model have

a giant component, even if the condition of the proposition is met. It happens, however, in almost
sure sense as 𝑛 → +∞. The same asymptotic behavior applies to our model.

15Of course these two quantities are the same, and we henceforth refer to them simply as the
average degree.
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both the broadcast action and the joint degree distribution), assuming a cascade has

not happened yet. For a hypothetical scenario where every agent receiving the news

broadcasts it to her followers (i.e. the broadcast size is always 1), (2.12) is reduced

to 𝜇Line(𝒢) > 1. That is, the necessary and sufficient conditions for the existence of

a nonzero-measured giant component in a given directed network generated from the

configuration model.16

2.4.2 Effect of the Network Structure

We note that in the cascade condition (2.12), given the credibility 𝛽, the set of news

that meets the cascade condition is increasing17 in 𝜇Line(𝒢), manifesting the structural

fact that cascades are induced when there are on average more links through which a

follower can further share the news. The monotonicity enables us to compare the the

susceptibility of different network structures to the spread of imprecise/false news by

examining the expected degrees of their corresponding line graphs.

To illustrate the effect of the joint degree distribution on the average degree of the

line graph, we compare the average degree of the line graph for network structures

generated from two different joint degree distributions: joint Poisson and Zipf (power-

law) degree distributions.

We first introduce a useful identity for the average degree of the line graph for a

network 𝒢 with joint degree distribution 𝑃 (ℓ, 𝑑):

𝜇Line(𝒢) = E[ℓ𝑑]
E[𝑑]

=
cov(ℓ, 𝑑) + (E[𝑑])2

E[𝑑]
=

𝜌𝜎ℓ𝜎𝑑

E[𝑑]
+ E[𝑑], (2.13)

where 𝜎ℓ (resp. 𝜎𝑑) represents the standard deviation of in-degree (resp. out-degree)

distribution and 𝜌 is the correlation coefficient between in- and out-degree distributions.
16This condition in terms of the mean degree of the line graph accommodates the version for the

emergence of a giant component in undirected networks. See the details in, e.g., Newman (2003) and
Jackson (2008).

17Denote a collection of set {𝒮𝛼}𝛼∈ℐ indexed by an ordered index set ℐ. We say that the sequence
{𝒮𝛼}𝛼∈ℐ is increasing if for any 𝑎, 𝑏 ∈ ℐ such that 𝑎 ⪯ 𝑏, then 𝒮𝑎 ⊆ 𝒮𝑏.
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The equation (2.13) enables us to represent 𝜇Line(𝒢) in terms of the statistics of the joint

degree distribution and to investigate the effects of each component, ceteris paribus.

In what follows, we use (2.13) to juxtapose the mean degree of the line graph for

networks generated from joint Poisson and Zipf (power-law) degree distributions—with

similar expected in-degrees/out-degrees and a common correlation coefficient.

Definition 2.1 A joint Poisson degree distribution is represented by the following

PMF:

𝑃Poiss(𝑑, ℓ) =

min{𝑑,ℓ}∑︁
𝑚=0

𝜆𝑑−𝑚𝜆ℓ−𝑚𝜆𝑚
𝑐

(𝑑−𝑚)!(ℓ−𝑚)!𝑚!
𝑒−(2𝜆+𝜆𝑐), 𝜆 ≥ 0, 𝜆𝑐 ≥ 0. (2.14)

A joint Zipf degree distribution is represented by the following CCDF:

𝑃 Zipf(𝑑 ≥ 𝑚1, ℓ ≥ 𝑚2) =
(︀
1 +

𝑚1 +𝑚2

ℎ
)−𝛼, (2.15)

where ℎ > 0, 𝛼 > 0, and 𝑚1,𝑚2 are non-negative integers.18

For Poisson and Zipf degree distributions, we can express the average degrees of the

corresponding line graphs in terms of their expected degrees and correlation coefficients,

as Lemma 2.3 shows.

Lemma 2.3

(i) The line graph of a joint Poisson degree distribution with expected degree 𝜇𝑃 > 0

and correlation coefficient 𝜌𝑃 ∈ [0, 1], has a mean degree of 𝜇Line
𝑃 = 𝜌𝑃 + 𝜇𝑃 .

(ii) The line graph of a joint Zipf degree distribution with expected degree 𝜇𝑍 > 0 and

correlation coefficient 𝜌𝑍 ∈ (0, 1
2
), has a mean degree of 𝜇Line

𝑍 = 𝜌𝑍(𝜇𝑍+1)
1−2𝜌𝑍

+ 𝜇𝑍.

Proposition 2.2 compares the average degrees of line graphs for these two degree

distributions with the common expected degree and correlation coefficient.
18We adapt the definitions of bivariate Poisson (Kawamura 1973) and Zipf distributions (Yeh 2002)

to joint degree distributions by requiring E[𝑑] = E[ℓ]. See the proof of Lemma 2.3 for the details.
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Figure 2-3: The mean degree of the line graphs for Zipf and Poisson degree distributions
with common expected degrees 𝜇𝑍 = 𝜇𝑃 = 1 and correlation coefficient 𝜌𝑍 = 𝜌𝑃 ∈
(0, 0.5).

Proposition 2.2 Consider a joint Poisson degree distribution and a joint Zipf degree

distribution with a common expected degree 𝜇𝑃 = 𝜇𝑍 > 0 and a common correlation

coefficient 𝜌𝑃 = 𝜌𝑍 ∈ (0, 1
2
). Then,

(i) 𝜇Line
𝑍 > 𝜇Line

𝑃 .

(ii) A network with the Zipf degree distribution is more permeable to news spread than

a network with the Poisson degree distribution.

Figure 2-3 shows the mean degree of the line graphs for Zipf and Poisson degree

distributions with common expected degrees on a log scale, varying their common

correlation coefficient. The rapid growth of 𝜇Line
𝑍 as the correlation coefficient increases

suggests that for Zipf degree distribution, even networks with small expected degrees

could allow a wide range of news to cascade, provided sufficiently high correlation

coefficient between the in-degrees and out-degrees.
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2.5 News Precision Levels Maximizing Cascade Prob-

ability

Proposition 2.1 establishes the necessary and sufficient conditions for news items to go

viral as a function of the credibility of its source, network statistics, and information

structure of the agents in the network. Given the inherent noise in the news that not

only controls the distribution of the news but also determines its credibility, a natural

question is then to identify the noise level that maximizes the ex-ante likelihood of

news going viral before the news is realized.

Given the variance of the priors 𝜎2
𝜃 , changing the noise level 𝜎2

𝜖 is the same as varying

the credibility 𝛽 ∈ [0, 1]. For a piece of news 𝑥, a cascade emerges almost surely if

and only if the condition (2.12) is satisfied. Therefore, the ex-ante likelihood of a news

cascade is the mass (probability) of all news 𝑥 for which (2.12) holds. The problem

of finding the credibility level that maximizes the ex-ante likelihood of a cascade can

therefore be formulated as

maximize
𝛽∈[0,1]

P𝑋

(︁
𝜇Line(𝒢)Φ

(︀
𝜂𝛽(𝑋)−𝐾𝛽(𝑋)

)︀
> 1
)︁
, (2.16)

subject to:

𝑋 ∼ 𝒩 (𝜃,
1− 𝛽

𝛽
𝜎𝜃

2),

𝐾𝛽(𝑋) =
𝐶

2𝛽(1− 𝛽)𝜎𝜇|𝑋 − �̄�|
,

𝜂𝛽(𝑋) =
𝜎𝜇

2(1− 𝛽)|𝑋 − �̄�|
(2− 𝛽) +

𝛽

2(1− 𝛽)𝜎𝜇

|𝑋 − �̄�|.

The rest of this section is dedicated to analyzing the solutions to this optimization

problem. We limit our analysis to the networks with 𝜇Line(𝒢) > 2, to which we refer

as well-connected networks. This ensures all the results to still hold for the general

distance of the form (2.2), as we show in the Appendix. Indeed, there is not much

interest, if any, in the case 𝜇Line(𝒢) ≤ 2 given the well-connectedness of the social
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E[𝑑] 𝜎ℓ 𝜎𝑑 E[ℓ𝑑] 𝜌 𝜇Line(𝒢)
35.3 2419.7 354.7 223867.1 0.259 6350.3

Table 2.1: Network statistics for the follower graph of Twitter (Data source: Kwak
et al. 2010).

platforms: For the follower network of Twitter, which is the motivating application

of our work, we have 𝜇Line(𝒢) ≈ 6350.3; Table 2.1 lists some of the basic network

statistics.19

The next theorem relates the optimal credibility levels to the diversity of perspec-

tives and deviation of the truth from the average of perspectives in a population.

Theorem 2.2 Given the variance of the perspectives 𝜎2
𝜇, let Ω*(𝜎2

𝜇) be the set of values

𝛽 that maximize the likelihood of a cascade as formulated in (2.16). Assume that

𝜇Line(𝒢) > 2. Then,

(i) If 𝜎2
𝜇 > 𝐶, Ω*(𝜎2

𝜇) = [𝛽*(𝜎2
𝜇), 1] and a cascade emerges almost surely, where

𝛽*(𝜎2
𝜇) = 1−

√︃
1− 𝐶

𝜎2
𝜇

.

Furthermore, 𝛽*(𝜎2
𝜇) is strictly decreasing in 𝜎2

𝜇.

(ii) If 𝜎2
𝜇 ≤ 𝐶 < 𝜎2

𝜇 + (𝜃 − �̄�)2, then Ω*(𝜎2
𝜇) = {1} and a cascade emerges almost

surely.

(iii) If 𝜎2
𝜇 + (𝜃− �̄�)2 ≤ 𝐶, then 1 /∈ Ω*(𝜎2

𝜇) and particularly, the truth never cascades.

19We used the open-source dataset collected and kindly shared by Kwak et al. (2010) (available
at http://an.kaist.ac.kr/traces/WWW2010.html) of over 41.7 million nodes and 1.47 billion links
to obtain the statistics reported in Table 2.1. In fact, the well-connectedness we define in this paper
can be observed in many empirical network analyses on the follower graphs of Twitter or other social
media (Java et al. 2007, Mislove et al. 2007, Zhou et al. 2010, Alipourfard et al. 2020): their results
show that the expected degrees are greater than 2 and the correlation between in- and out-degrees is
positive, indicating that the mean degrees of the line graphs are larger than 2 according to the identity
(2.13).
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(a) 𝜇Line(𝒢) = 2.2

(b) 𝜇Line(𝒢) = 6350.3

Figure 2-4: Illustration of the three cases in Theorem 2.2 for a sample case with
�̄� = 0, 𝜎𝜃 = 2, (𝜃 − �̄�)2 = 2, 𝐶 = 4, and 𝜇Line(𝒢) = {2.2, 6350.3}. (Left) Cascade
likelihood versus the credibility 𝛽 and the diversity in perspectives 𝜎2

𝜇. (Right) The set
of optimal credibility Ω* as the correspondence of the diversity in perspectives 𝜎2

𝜇.

The three cases in Theorem 2.2 are illustrated in Figure 2-4 via an example. In

what follows, we explain the underpinnings of the results summarized in the above

theorem, while providing insights into the relation between the cascade likelihood and

the diversity and the wisdom of a population.
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2.5.1 In a Population with Highly-Diverse Perspectives

Recall from Lemma 2.1 in Section 2.3.1 that, when the size of the spread is almost zero

(i.e., news has not yet gone viral), agent 𝑖 broadcasts news 𝑥 if and only if

2 (1− 𝛽)(𝜇𝑖 − �̄�)⏟  ⏞  
interim bias of agent 𝑖

𝛽(𝑥− �̄�)⏟  ⏞  
interim surprise

+ 𝛽2(𝑥− �̄�)2⏟  ⏞  
magnitude of surprise

+ (1− (1− 𝛽)2)𝜎2
𝜇⏟  ⏞  

reduction in the variance of perspectives

> 𝐶.

(2.17)

Examining 𝛽 = 1, we see that in a population with wide diversity in perspectives

(𝜎2
𝜇 > 𝐶), the truth can incentivize an agent with any perspective to share the news

and always trigger a cascade. In such a population, however, news may also go viral

almost surely for a wide range of other credibility levels 𝛽. To see this, consider

sufficiently precise news (e.g., 𝛽 close to 1) whereby the gain resulting from reducing

the variance of perspectives in (2.17) surpasses the cost of broadcasting. For news

having such a level of credibility, at least half of those followers who receive the news

will in turn share it with their own followers: if the news is not affirming the position

of agent 𝑖 with perspective 𝜇𝑖 = �̄� + 𝛿, then it is otherwise affirming an agent with

perspective �̄� − 𝛿 and therefore the broadcast condition (2.17) holds for at least one

of them. As a result, such a credibility level will always result in a cascade no matter

what the content of the news is, in a well-connected network where 𝜇Line(𝒢) > 2.

2.5.2 When the Truth is Surprising to a Population with Ho-

mogeneous or Less Diverse Perspectives

When the diversity of perspectives is not large, i.e., 𝜎2
𝜇 ≤ 𝐶, the gain from reducing

the variance of followers’ perspectives will not make up for the cost, even when this

gain is fully extracted by making the followers unanimous on the truth, i.e., the max-

imum of 𝜎2
𝜇. The surprise effect then becomes prominent in compensating the cost of

broadcasting. Specifically, the truth cascades if and only if (𝜃 − �̄�)2 > 𝐶 − 𝜎2
𝜇, that
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is, the truth needs to carry sufficient surprise (|𝑆1(𝜃)| = |𝜃 − �̄�|) to the public. It is

also easy to see that in this case 𝛽 = 1 is the only credibility level for which a cascade

will always emerge; any 𝛽 < 1 can result in news realizations that are not surprising

enough (e.g., those realizations close to �̄�) to satisfy the broadcast condition in (2.17)

to trigger a cascade.

2.5.3 In a Wise Population with Homogeneous Perspectives

If a population is wise and their perspectives are homogeneous in the sense that (𝜃 −

�̄�)2 + 𝜎2
𝜇 ≤ 𝐶, then the truth has no chance of going viral. Highly imprecise news is

also unlikely to trigger a cascade: note that for 𝛽 ≪ 1 interim surprise 𝛽(𝑥 − �̄�) is

concentrated around zero (𝛽(𝑥 − �̄�) ∼ 𝒩 (𝛽(𝜃 − �̄�), 𝛽(1 − 𝛽)𝜎2
𝜃)). Therefore, cascade

probability is maximized at some moderate level of credibility 𝛽 ∈ (0, 1).

Given the diversity, the difference between the cascade probability for extreme

values of the news precision (i.e., 𝛽 close to 0 or 1) and the optimal cascade probability

widens further in more connected networks with larger 𝜇Line(𝒢). As already discussed

in Section 2.4.2, the cascade probability is increasing in 𝜇Line(𝒢) at all precision levels.

Therefore, for networks with large 𝜇Line(𝒢) such as the follower graph of Twitter (with

𝜇Line(𝒢) ≈ 6350.3), the optimal cascade probability is pushed further away from 0,

resulting in a sharper drop from the peak cascade probability to nearly zero for highly

precise and highly imprecise news. This can be observed from Figures 2-4(a) and 2-

4(b), by comparing the cascade probability for extreme values of 𝛽 (i.e., close to 0 and

1) with its optimal value.

Figure 2-5 depicts the optimal credibility for three different levels of population

wisdom, illustrating case (ii) and (iii) in Theorem 2.2 when the diversity is not wide

(𝜎2
𝜇 ≤ 𝐶). We see that the minimum level of diversity necessary for the truth to cascade

is higher for wiser populations, as expected by the condition 𝜎2
𝜇 > 𝐶 − (𝜃 − �̄�)2 from

Theorem 2.2. We can also observe that, fixing the level of diversity, the truth almost

never goes viral in a sufficiently wise population (when (𝜃 − �̄�)2 ≤ 𝐶 − 𝜎2
𝜇).
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Figure 2-5: Optimal credibility levels Ω*(𝜎2
𝜇) for 𝜎2

𝜇 ∈ [0, 4] for a sample case with
𝐶 = 4, 𝜎𝜃 = 2, 𝜇Line(𝒢) = 2.2, and three levels of collective wisdom (𝜃− �̄�)2 ∈ {0, 2, 6}
illustrating cases (ii)-(iii) in Theorem 2.2.

As a final remark, we would like to generalize an observation that can be made

from Theorem 2.2 on the monotonicity of the set of credibility levels that would almost

surely trigger a cascade: the more diverse the perspectives of a population, the wider

the range of these credibility levels. We can indeed prove that in a well-connected

population (with 𝜇Line(𝒢) > 2) the diversity of perspectives facilitates the spread of

the news for all credibility levels, as the following proposition shows.

Proposition 2.3 In a well-connected social network where 𝜇Line(𝒢) > 2, the cascade

probability is increasing in the variance of perspectives 𝜎2
𝜇 for all credibility levels.

2.6 Discussion

We provided a theory for news-sharing behavior on social networks. Agents make

sharing decisions aiming to reduce the average distance between their beliefs and the

beliefs of their followers, which captures their desire for like-minded others. We showed

that both the surprise and affirmation motives naturally emerge from the utility-

maximizing behavior of agents.
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We further characterized the endogenous dynamics of the news spread resulting

from the agents’ sharing decisions, subsequently deriving necessary and sufficient con-

ditions for a news cascade to emerge. We used this condition to show the monotonicity

of the cascade likelihood in the average degree of the line graph of the network. To

demonstrate the effect of joint degree distributions on the susceptibility of networks

to news cascades, we then compared two network structures generated from joint Zipf

and Poisson degree distributions with common expected degrees and correlation coef-

ficients, showing that news is always more likely to cascade on the network with the

joint Zipf degree distribution.

Lastly, we revealed a connection between the precision levels maximizing ex-ante

likelihood of a cascade and the diversity of perspectives, as well as the wisdom of the

population. In particular, we showed that in a well-connected network, the cascade

likelihood is increasing in the diversity of perspectives for all precision levels. In a very

diverse population, a wide range of precision levels may result in viral news, includ-

ing the truth. The range of such precision levels shrinks as the population becomes

less diverse. By contrast, in a population with moderately-diverse or homogeneous

perspectives, the truth has to be sufficiently surprising to the public so as to cascade;

when the perspectives are so concentrated around the truth, however, the truth has

no chance of going viral and the cascade probability is maximized at some nonzero

precision level.

In this chapter, we studied the decision making of non-strategic agents who decide

whether to share news contingent on the current size of spread without speculating

on the future news spreading. However, size of news spread is (weakly) increasing in

time and an agent will tend to be more reluctant to share news if she can foresee that

the myopic individual news-sharing decisions leads to a (weakly) wider spread than at

the current time. In the next chapter, we turn to focus on strategic agents under a

game-theoretic setting and provide new insights into news-sharing behavior.
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Chapter 3

A Game-theoretic Model of News

Sharing on Social Networks

3.1 Background

In Chapter 2, we considered myopic agents in the sense that they assess the marginal

gain in sharing news with their followers given the current spread and do not internalize

or assume about the likelihood that an uninformed follower may hear the news from

others at some point in the future. Different from this approach, in this chapter, we

propose a simple, game-theoretic setting that is focused on news-sharing decisions of

individuals on social networks. Using the proposed game-theoretic model, we revisit

several fundamental questions regarding news dissemination on social networks: (i)

Under what conditions does a piece of news that initially goes to only an infinitesimal

subset of the population spread to a significant fraction of the population? (ii) Is it

possible that low credibility news spreads wider than highly credible news? (iii) What

is the association between population characteristics, news credibility and size of news

spread?

Focusing on the persuasion motive for sharing, in the model we study the decision

process of news sharing for a continuum of agents who are connected on a social
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network. The agents have heterogeneous subjective prior beliefs on an unobservable

real-valued state. They each will later take a binary action, like voting, that matches

the sign of the state based on their own beliefs. Nature generates a single piece of real-

valued news about the state and the news credibility that represents the sensitivity of

agents’ beliefs in reaction to the news; this is consistent with the approach to news

generation in Chapter 2. Initially, a small and random subset of the population are

informed of the news and its credibility.

When an agent observes the news and its credibility, she updates her belief, fusing

her prior belief and the news. She then chooses whether to share the news with all

of her followers (e.g., retweet the news), deliberating how effectively the news can

persuade her followers to cast the vote in line with her belief. As in Chapter 2, we still

assume that news sharing is not costless.

Due to the nominal cost associated with sharing, agents’ sharing decisions feature

strategic substitutability. Specifically, if an agent speculates that her followers are

likely to hear the news through other agents, she may choose not to share to avoid the

cost. As a result, each agent has to strategically evaluate the impact of other agents’

news-sharing decisions on her followers’ information sets while making her sharing

decision.

Our approach to modeling the network is the same simple random graph model as

the one in Chapter 2. However, we will in particular consider Poisson distribution for

the number of one’s followees and followers.

As our first result, we characterize the news-sharing strategies in the game. The

sharing rule is a function of an agent’s belief mean about the state and the effective

persuasiveness power of the news: Agents with more extreme beliefs have stronger

incentives (or stronger disincentives, depending on whether the news is in alignment

with their beliefs) to share news. We establish the system of equations that govern

the interdependency between individual sharing strategies and the scale of news spread

that endogenously emerges. Using the equations we quantify the cascade size at the
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equilibrium and show the necessary and sufficient conditions for occurrence of a news

cascade. Given news credibility, we show that more extreme news increases the spread

size and that news spreads wider on more connected networks.

As our second contribution, we identify the necessary and sufficient condition under

which news with lower credibility can trigger a larger cascade on social networks. We

further discover that when news is quite neutral to both actions, lower credibility can

make news diffusion larger than full credibility. The beliefs of informed agents about

the state are concentrated around the small news value when observing high level of

credibility. Consequently they find insufficient benefit of making their followers’ actions

aligned with the sign of the state, having weak incentives to persuade their followers. By

contrast, though lower credibility undermines the persuasiveness of news, the extremist

agents still hold relatively extreme beliefs about the state and prefer to share, leading

to a larger cascade than credible news.

The condition also indicates a limit on network connectivity (the average number of

followers) beyond which fully credible news no longer generates a cascade with larger

size than lower credibility news. This result is rooted at the strategic substitutability

of sharing decisions: The ease of diffusion caused by greater connectivity suggests that

informed agents share the news only if they hold more extreme beliefs and, in turn,

stronger sharing incentives. For news with lower credibility, since it does not move

the beliefs of extremists towards the news value as much as fully credible news, more

fraction of informed agents hold extreme beliefs and participate in sharing, resulting

in a larger sharing cascade.

Finally, we study news sharing and diffusion in populations exhibiting belief polar-

ization. We offer theoretical insights into how the intensity of polarization and the level

of perspective diversity within each ideology group (in-group diversity) may facilitate

spillovers of less credible news and affect the limit on network connectivity.

We find that increased polarization decreases the limit on network connectivity level

above which lower credibility news becomes more viral than fully credible news. This
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is due to the fact that a large fraction of agents who hold extremist beliefs will still

share the news after hearing the news with lower credibility. Despite the conventional

wisdom that diversifying opinions across the ideological spectrum may mitigate the

spread of less credible information in highly-polarized populations, our analysis shows

that the impact of increased belief diversity is not necessarily monotone and can even

result in wider spread of less credible news: When there is low in-group diversity in

perspectives, increased diversity heavily reduces the fraction of the extremists who

are in line with the ideology of their own group and impedes sharing of less credible

news, increasing the network connectivity limit. However, since increased diversity also

increases the number of the extremists whose perspectives have the opposite ideological

leaning from their group, the aggregate fraction of extremists is instead rising up when

the perspectives are too diverse, propelling the sharing of news with lower credibility

and reducing the connectivity limit.

Our work contributes to the recent line of theoretical research on news sharing and

spread of misinformation. Several papers have studied the prevalence of misinformation

arising among strategic individuals whose motive is to share and act on the truth.

Kranton and McAdams (2020) focused on news markets on which news consumers can

not fact-check news and need to speculate how likely a news producer may report low-

quality news given that producing high-quality news is costly. Moreover, in Kranton

and McAdams (2020) news-sharing is limited to only a single round, and happens

over a 𝑑-regular network. On the other hand, Merlino et al. (2020) enabled each

individual hearing a rumor to imperfectly inspect the truth with probability of success

increasing in the effort level the individual chooses, and individuals communicate to

others the opinion in line with their beliefs as the inspection result is not decisive.

Papanastasiou (2020) considered perfect inspection on an article and studied decisions

of costly inspection and sharing for a stream of strategic agents who have heterogeneous

beliefs and can not observe any inspection actions (nor the results) but only sharing

decisions by previous agents. In contrast, in our model an individual shares news or
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not to persuade her social contacts to take the action in alignment with her own belief.

This chapter significantly generalizes our preliminary results on news sharing, re-

ported in Hsu et al. (2021). First, unlike the full focus of Hsu et al. (2021) on Gaus-

sian distributions and news that is not fully credible, the present work allows for

non-parametric distributions over agents’ ex-ante expectations about the unobservable

state and characterizes the equilibrium for any news credibility level. This generalized

model enables us to quantify the impact of different population characteristics such as

polarization and in-group diversity on the size of sharing cascades for different levels of

credibility, and in turn on the levels of connectivity required for less credible news to

trigger a larger cascade. We deliver new insights into the mechanisms through which

news, network connectivity, and beliefs in a population affect individual news-sharing

decisions and spread size of news. Specifically, the main contribution of Hsu et al.

(2021) was to determine the set of news values that can trigger a cascade, i.e., whether

or not the news spreads to a positive fraction of the population (irrespective of the

cascade size), and to identify the sufficient and necessary condition under which the

spread size is increasing in credibility. By contrast, this paper shows the comparative

statics on spread size and characterizes the sufficient and necessary condition under

which less credible news can spread to a larger fraction of the population. Moreover,

in this paper we uncover the relationship between polarization, in-group diversity, and

network connectivity limits, shedding light on spread of less credible news in polarized

societies. As a particular case of interest, whereas the specific setting in Hsu et al.

(2021) (with no polarization) would suggest a lower connectivity limit if in-group di-

versity is increased, our new result demonstrates that the effect of in-group diversity

can in fact be non monotone, or even reversed, in a polarized population.

Another related work to our paper is by Acemoglu et al. (2021), where the authors

investigate the fact-checking behavior of agents and sharing news on social networks,

assuming that agents are craving for future shares on the news they shared while hav-

ing a reputation concern of being caught sharing misinformation. Our work differs in
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three fundamental aspects about individual motives and actions. First, in our model

agents are motivated to persuade their followers via news sharing; an informed agent

may choose not to share high credibility news if the news suggests lack of value about

matching the unobservable state. By contrast, in Acemoglu et al. (2021) agents avoid-

ing sharing misinformation strictly prefer to spread the news that is more likely to be

truthful from their own perspectives. Second, our work excludes the option of costly

fact-check by agents and the reputation concern. Consequently, the force is not present

that larger polarization increases the pressure of being caught by the other group’s

fact-checking and inhibits the spread of misinformation. Instead, in our model strong

polarization means that there are more extremists who have strong incentives to share

news, potentially boosting spillovers of less credible news. Lastly, while the sharing

decisions of our game are strategic substitutes, the consideration of one’s reputation

perceived by other peers makes their model feature strategic complementarity.

Our focus on individuals’ strategic news sharing on social networks is also related

to the recent literature on strategic interactions in large random graphs (Parise and

Ozdaglar 2021, Board and Meyer-ter Vehn 2021).

The rest of this chapter proceeds as follows. We describe our model and discuss the

assumptions in Section 3.2. We analyze the equilibrium of our model in Section 3.3,

elucidating the interaction between sharing decisions and scale of news spread. In

Section 3.4 we identify conditions for lower credibility news to trigger a larger cascade

than fully credible news, using which we characterize the limit on network connectivity.

We then provide the implications of our model for news spread in populations with

polarized perspectives. We discuss in Section 3.6. The technical proofs of all lemmas

and theorems are all relegated to the Appendix B.

60



3.2 Model

We consider a unit-mass continuum of agents, each indexed by a real number 𝑖 ∈ ℐ ≜

[0, 1]. Social interactions are characterized by a directed network 𝒢 = (ℐ, ℰ). The

population is concerned with an unobservable state 𝜃 ∈ R, for which there will be a

voting and each agent casts her binary vote. Ex ante the agents have heterogeneous

subjective prior beliefs about the state. Prior to the voting, each agent interacts with

her social contacts and, if observing some piece of news, may share the news with her

followers, influencing their beliefs about the state.

The game proceeds in three stages 0, 1, 2. In stage 0, Nature makes three moves:

(1) Each agent is independently assigned a prior belief about the state, drawn from a

common distribution; (2) the social network 𝒢 is generated based on a simple random

network model; (3) news is generated and given to some random agents with infinitesi-

mal size of the population. All agents are initially unaware of the existence of the news

except for the agents who received the news from Nature. In stage 1 agents interact:

Upon seeing some news, an agent has to decide immediately whether to broadcast the

news or not. We also call stage 1 as interaction stage. Stage 2 is the voting stage where

each agent simultaneously casts a binary vote. The utilities resulting from sharing de-

cisions and votes are realized after the voting is completed. We provide the specifics

as below.

Network of social interactions. The directed network 𝒢 = (ℐ, ℰ) is exogenously

constructed, representing follower–followee relationships among the agents. We say

that agent 𝑗 follows agent 𝑖 if and only if (𝑗, 𝑖) ∈ ℰ : In this relationship, agent 𝑗 is

agent 𝑖’s follower and agent 𝑖 is agent 𝑗’s followee. For each agent 𝑖, we denote the set of

her followers as 𝑁 in
𝑖 ≜ {𝑗 ∈ ℐ|(𝑗, 𝑖) ∈ ℰ} and let ℓ𝑖 ≜

⃒⃒
𝑁 in

𝑖

⃒⃒
be the cardinality of this set,

to which we refer as agent 𝑖’s in-degree. Similarly, we write 𝑁out
𝑖 ≜ {𝑗 ∈ ℐ|(𝑖, 𝑗) ∈ ℰ}

for the set of agent 𝑖’s followees and let 𝑑𝑖 ≜
⃒⃒
𝑁out

𝑖

⃒⃒
denote agent 𝑖’s out-degree.

Network 𝒢 is constructed as follows. Each agent 𝑖 is randomly assigned with two in-
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tegers as her in-degree ℓ𝑖 and out-degree 𝑑𝑖 respectively. We assume that the in-degrees

and out-degrees of agents are uncorrelated and follow a common discrete degree mea-

sure 𝑃 deg(·). Assuming that the draws for agents’ in- and out-degree are independent

of each other, we say that the agents with in-degree ℓ (out-degree 𝑑) account for the

fraction 𝑃 deg(ℓ) (𝑃 deg(𝑑)) of the population by informal use of the law of large num-

bers. Hereafter, we denote as 𝑃 deg(·) the degree distribution of the network. Agent 𝑖

with out-degree 𝑑𝑖 is then randomly assigned with 𝑑𝑖 others according to an atomless

weighted-uniform distribution on the population [0, 1], where the weights are propor-

tional to the in-degrees of the agents.1

Throughout this paper we make a particular choice for the degree distribution:

Assumption 1 We consider Poisson degree distribution with parameter 𝜆, i.e., 𝑃 deg(𝑑) =

𝜆𝑑

𝑑!
𝑒−𝜆, 𝑑 = 0, 1, 2... The parameter 𝜆 is the expected degree of Poisson distribution to

which we refer as the network connectivity. We focus on the range 𝜆 > 1 for which

there exists at least one weakly-connected component in the network comprising a pos-

itive fraction of the population.2

The abstract network model is common knowledge to all the agents while the real-

ization 𝒢 is not: Agents have no knowledge about the interactions among others and

only know their local positions in the network 𝒢. Specifically, each agent only knows

the sets of her followers 𝑁 in
𝑖 and followees 𝑁out

𝑖 , which are her private information.

Prior beliefs and types of agents. The agents have heterogeneous subjective prior

beliefs about the state 𝜃. We assume that their prior beliefs only differ with their real-

valued prior expectations (means) about the state. Individual prior means are their
1Specifically, an agent with in-degree ℓ is ℓ times likely to be drawn as a followee than an agent with

in-degree 1, i.e., the probability density that agent 𝑖 is sampled is ℓ𝑖
E[ℓ] where E[ℓ] is the average degree.

See Galeotti and Goyal (2009), Fainmesser and Galeotti (2016, 2020) for this modeling approach.
2Many empirical studies indeed support large average degrees of social networks (Java et al. 2007,

Mislove et al. 2007, Kwak et al. 2010, Zhou et al. 2010) and hence 𝜆 ≤ 1 is not of practical interest.
For example, the dataset which was collected and kindly shared by Kwak et al. (2010) for the follower
network on Twitter (as the motivating application of the present work) comprises over 41.7 million
nodes and 1.47 billion links, with a value of 35.2 for the average degree.
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private information; we denote each agent 𝑖’s prior mean about the state as 𝜇𝑖 ∈ R,

and call it agent 𝑖’s perspective (or type). However, it is commonly known that each

agent’s perspective is independent and identically distributed according to a common

CDF 𝐹 , i.e., for any agent 𝑖

𝜇𝑖 ∼ 𝐹.

Assumption 2 We assume that CDF 𝐹 is continuously differentiable with correspond-

ing density function 𝑓 and full support on the real line. The mean and variance of

function 𝑓 are finite. For simplicity of exposition, we assume that 𝐹 (0) = 1
2
. We write

ℱ for the space of the CDFs.

News, credibility, and belief updating. Nature generates a single piece of news

𝑥 ∈ R, informative about the state and includes the news source in the news so that

agents can distinguish copies of the same news. We assume that all agents agree on

the precision of the news source; the objective precision is measured as the credibility

𝛽 ∈ [0, 1], which quantifies the sensitivity of agents’ beliefs in reaction to the news.

When an agent 𝑖 receives the news (𝑥, 𝛽), she then knows that the news is circulating

in the population and updates her belief about the state. We denote as 𝑧𝑖 ∈ {∅, (𝑥, 𝛽)}

her private history of being informed or not: We set 𝑧𝑖 = ∅ when agent 𝑖 has not

received any news while 𝑧𝑖 = (𝑥, 𝛽) if she has received the news. We abstract the belief

updating process by focusing only on each agent 𝑖’s belief mean, which we denote as

E𝑖[𝜃|𝜇𝑖, 𝑧𝑖] given her type (𝜇𝑖) and whether she is informed or not (𝑧𝑖). When agent

𝑖 has not received the news (𝑧𝑖 = ∅) and hence stays unaware of the news, her belief

mean stays unchanged, i.e., E𝑖[𝜃|𝜇𝑖, ∅] = 𝜇𝑖. For an agent who has observed the news,

we particularly consider the following linear updating rule for the mean of her belief:

Assumption 3 For each agent 𝑖, if she observes the news (𝑥, 𝛽), her belief mean is
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updated as

E𝑖[𝜃|𝜇𝑖, (𝑥, 𝛽)] = 𝛽𝑥+ (1− 𝛽)𝜇𝑖, (3.1)

where the credibility 𝛽 is the sensitivity of the updated mean to the observed news.

This linear updating rule is in the same form as the Bayesian updating rule (2.1) derived

in Chapter 2, where agents hold Gaussian priors on the state and news is generated as

the state with additive Gaussian noise. In fact, this particular updating rule for the

mean of one’s belief can be rationalized by considering a distribution in the exponential

family for news generation and the associated conjugate prior as an agent’s prior on

the state (Diaconis and Ylvisaker 1979).

Sharing decision, voting, and utility function. The interaction stage takes place

in discrete time 𝑡 = {0} ∪ N. At 𝑡 = 0, the news (𝑥, 𝛽) is released to a random subset

of the population with an infinitesimal mass 𝛿 > 0. Any agent 𝑖 who just received the

news has to immediately make a decision 𝑠𝑖 ∈ {0, 1} as whether to share the news with

her followers or not, which is described as her sharing or broadcast decision. Sharing

news, however, incurs a fixed cost, which will be specified in the utility functions. We

denote agent 𝑖’s sharing strategy as 𝑠𝑖(𝜇𝑖, 𝑧𝑖, 𝐹 ) : R × {∅, (𝑥, 𝛽)} × ℱ → {0, 1} where

𝑠𝑖(𝜇𝑖, ∅, 𝐹 ) = 0 as she can share news only if she has received some news. The inclusion

of 𝐹 as an argument captures agent 𝑖’s consideration of her followers’ perspectives on

the state in her decision making. By convention, we write 𝑠 as the profile of sharing

strategies; we denote by 𝑠((𝑥, 𝛽), 𝐹 ) the sharing strategy profile for news (𝑥, 𝛽) and 𝐹 .

We assume that upon observing the news, agents are unaware of when the news

spread started: They know the calendar of the game but do not know the time corre-

sponding to 𝑡 = 0. Moreover, we assume the interaction stage continues long enough

for the news spread to reach its steady state.3 We define the spread size of news as
3Tracking online mainstreams and social media activities, many empirical studies (Leskovec et al.

2009, Schema et al. 2019) have found that the lifetime of online news circulating in a society is mostly
under two weeks; this time span is relatively short compared to the duration until the voting that is
almost always announced well in advance.
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follows:4

Definition 3.1 Given 𝜆, 𝐹 , 𝛿, and sharing strategy profile 𝑠, the spread size for news

𝑥 with credibility 𝛽 is the fraction of the population who have received the news at the

steady state and we denote it by 𝑞
(︀
𝜆, 𝐹, 𝛿, 𝑠((𝑥, 𝛽), 𝐹 )

)︀
.

In the voting stage, each agent 𝑖 casts a binary vote 𝑎𝑖 ∈ {−1,+1} that matches

the sign of her belief mean. Specifically, based on the belief updating (3.1), agent 𝑖

votes using the following rule:5

𝑎𝑖(𝜇𝑖, 𝑧𝑖) = sign
(︀
E𝑖[𝜃|𝜇𝑖, 𝑧𝑖]

)︀
. (3.2)

Let 𝑎 denote the profile of the votes.

After the voting ends, agent 𝑖’s utility resulting from her sharing decision 𝑠𝑖 and

the agents’ votes 𝑎 is realized, and is given by

𝑢𝑖

(︀
𝜃, 𝑠𝑖, 𝑎

)︀
= 𝜃(𝑤𝐼𝑎𝑖 + 𝑤𝐿�̄�𝐿𝑖 + 𝑤𝐺�̄�)− 𝐶 × 1I{𝑠𝑖=1}, (3.3)

where

�̄�𝐿𝑖 ≜
1⃒⃒

𝑁 in
𝑖

⃒⃒ ∑︁
𝑘∈𝑁 in

𝑖

𝑎𝑘; �̄� ≜
∫︁
𝑗∈[0,1]

𝑎𝑗𝑑𝑗;

the weights 𝑤𝐼 , 𝑤𝐿, 𝑤𝐺 ∈ (0, 1) are common for all the agents, satisfying 𝑤𝐼+𝑤𝐿+𝑤𝐺 =

1, and 𝐶 > 0 represents a universal cost associated with broadcasting news. The utility

function (3.3) captures an agent’s preference for alignment of collective actions with
4The present work concerns the size of news-sharing cascades arising from individuals’ sharing

decisions, with no reference to structural properties of news-sharing dynamics on online social networks
(see Vosoughi et al. (2018), Zhao et al. (2020)). This choice enables tractable analysis with focus on
the individuals’ motivation for sharing news, and is also consistent with the findings by Juul and
Ugander (2021) that the structural difference in news spread can be largely explained by difference in
spread size, and moreover, by the transmission rate of news between peers.

5For simplicity we assume that agents take the vote +1 when their belief mean is zero. This
simplification does not affect agents’ strategies of sharing in the following analysis as we consider a
continuum of agents and the measure of such agents is zero.
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the state at individual, local, and global scales, comprising a convex combination of

three components: (1) agent 𝑖’s individual vote 𝑎𝑖; (2) the average vote of agents’

followers; (3) the average vote of the population. Agent 𝑖 derives positive utility when

the weighted average of collective votes matches the sign of the state and the gain/loss

is increasing in the magnitude of state. Since the agents have different subjective beliefs

on the state, agent 𝑖 has an incentive to influence, via sharing the news, her followers’

beliefs and in turn their votes.

We solve for Bayesian Nash equilibria (BNE) of the game, characterizing the news-

sharing strategies of the agents. Note that we exclude from each agent 𝑖’s strategy

formulation the private information about her followees and followers 𝑁 in
𝑖 , 𝑁out

𝑖 . Indeed,

in our model the strategies are independent of the identities of one’s followees and

followers as well as her in-degree and out-degree, as we will demonstrate in Section 3.3.

Our particular interest is whether the news can spread to a non-zero fraction of the

population when the size of the initial seeding is infinitesimal.

Definition 3.2 Given 𝜆, 𝐹 , and strategy profile 𝑠, we say that a cascade of news (𝑥, 𝛽)

emerges almost surely if and only if lim
𝛿→0

𝑞
(︀
𝜆, 𝐹, 𝛿, 𝑠((𝑥, 𝛽), 𝐹 )

)︀
> 0; we refer to the limit

as the corresponding cascade size (or spread size).

We use the following terminology when discussing our results. The binary votes

to match the sign of an unobservable state naturally splits the information space into

positive and negative. We refer to positive side (+1) as right-leaning and negative side

(−1) as left-leaning, using which we describe the sign of an agent’s perspective and the

sign of news. In particular we refer to 𝑥 = 0 as neutral news. The absolute value of

news 𝑥, i.e., |𝑥|, is the news magnitude, which measures how extreme the news is away

from the neutral point. Finally, we say that news is fully credible when it has the full

level of credibility, i.e., 𝛽 = 1.
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3.3 Equilibrium Analysis

We first derive the mechanics of how news spread emerges from the agents’ news-

sharing decisions. We then elucidate on agents’ decision making given their knowledge

about the network structure and speculation on news spread, deriving their equilibrium

news-sharing strategies.

3.3.1 News spread emerging from news-sharing decisions

Based on the random network model and the fact that individual perspectives are

private information, we compute the size of news spread 𝑞 at its steady state using

susceptible-infection model (SI model, see Jackson 2008), the network structure (Pois-

son network with connectivity 𝜆), and the fraction of informed agents who share the

news.

Let 𝑃𝐹 (𝑠((𝑥, 𝛽), 𝐹 )) denote the fraction of informed agents who share the news

(𝑥, 𝛽) according to sharing strategy profile 𝑠, measured with respect to perspective

CDF 𝐹 :6

𝑃𝐹 (𝑠((𝑥, 𝛽), 𝐹 )) ≜ P
(︀
𝑠𝑖(𝜇𝑖, (𝑥, 𝛽), 𝐹 ) = 1|𝑖 ∈ ℐ, 𝜇𝑖 ∼ 𝐹

)︀
.

Since each following link is drawn uniformly at random from the population, the prob-

ability that at the steady state a random following link points to an agent who has

shared the news equals the probability that it follows an agent who has received the

news (𝑞) and would like to forward the news (𝑃𝐹 ). At the steady state, the fraction

of the agents who has not received the news at the whole interaction stage is 1 − 𝑞,

which are the agents who did not receive it at 𝑡 = 0 and has not received it from any

of her followees. We can hence write the equation for the probability that a random
6Since we assume independence of individual perspectives and agents broadcast the news instead

of forwarding the news to a subset of her followers they select, receiving the news is independent from
the agent’s perspective. Therefore, the chance of sharing news for an agent who receives the news
equals the fraction of the population who will share the news upon seeing it.
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agent does not hear the news at the steady state:

1− 𝑞 = (1− 𝛿)
∞∑︁
𝑑=0

𝑃 out(𝑑)
(︀
1− 𝑞𝑃𝐹 (𝑠((𝑥, 𝛽), 𝐹 ))

)︀𝑑
.

Using 𝑃 out(·) ∼ Poisson(𝜆) and taking 𝛿 → 0, we obtain the following result:

Lemma 3.1 Given 𝜆, 𝐹 , and sharing strategy profile 𝑠, the spread size 𝑞(𝜆, 𝐹, 𝑠) for

news 𝑥 with credibility 𝛽 satisfies

𝑞 = 1− 𝑒−𝑞𝜆𝑃𝐹

(︀
𝑠((𝑥, 𝛽), 𝐹 )

)︀
. (3.4)

Moreover, 𝑞 = 0 if 𝜆𝑃𝐹 (𝑠((𝑥, 𝛽), 𝐹 ) ≤ 1.7

Different from the conventional version of SI model in which the probability of

information transmission is an exogenous constant, in our model the probability of

news sharing is a function of sharing strategy profile 𝑠, which endogenously hinges on

the size of news spread, as will be shown later.

3.3.2 News-sharing decisions in light of news spread

We adopt the conventional notation 𝑠−𝑖 for the profile of sharing strategies other than 𝑖.

Upon receiving the news and observing its credibility (𝑥, 𝛽), agent 𝑖’s sharing decision

𝑠𝑖 ∈ {0, 1} is her best response to agents’ voting rule 𝑎 and others’ sharing strategies

𝑠−𝑖, if and only if there is no deviation strictly improving her expected utility:

E𝑖

[︁
𝑢𝑖(𝜃, 𝑠𝑖, 𝑎)|𝑠−𝑖, 𝜇𝑖, 𝑧𝑖 = (𝑥, 𝛽)

]︁
≥ E𝑖

[︁
𝑢𝑖(𝜃, 1− 𝑠𝑖, 𝑎)|𝑠−𝑖, 𝜇𝑖, 𝑧𝑖 = (𝑥, 𝛽)

]︁
, (3.5)

where the expectation is taken over agent 𝑖’s belief about all the other agents’ perspec-

tives on the state and their private histories at the voting stage. To evaluate (3.5),
7It can be shown that 𝑞 = 0 is the only solution to (3.4) if and only if 𝜆𝑃𝐹 (𝑠((𝑥, 𝛽)) ≤ 1. When

𝜆𝑃𝐹 (𝑠((𝑥, 𝛽)) > 1, the spread size is the non-zero solution to (3.4) since 𝑞 = 0 is not a stable solution
due to the infinitesimal fraction of the population who initially received the news. See the proof of
Theorem 3.1 in the Appendix and Jackson (2008) for more details.
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agent 𝑖 needs to speculate on the influence of her sharing decision 𝑠𝑖, as well as other

agents’ sharing decisions, on any agent’s private history. However, it suffices to con-

sider only whether her followers are informed or not. In a population with a continuum

of agents, the sharing decision of a single agent with a finite number of followers has a

negligible effect on the spread size of news. Therefore, given any 𝑠−𝑖, agent 𝑖’s sharing

decision only influences the average vote of her followers �̄�𝐿𝑖 , without affecting the av-

erage vote of the population �̄�; equivalently, agent 𝑖 evaluates whether persuading her

followers is worthy of the cost of sharing.

Specifically, choosing to broadcast the news (𝑠𝑖 = 1) ensures that all of her followers

will hear the news. On the other hand, if she decides not to broadcast (𝑠𝑖 = 0), she

has to weigh in the chance that some of her followers may end up hearing the news

from others agents at the steady state of the news spread. For Poisson networks, one

can show that this chance equals the spread size of the news:

Lemma 3.2 On a Poisson network with connectivity 𝜆, given 𝐹 and profile of sharing

strategies 𝑠, for any follower of agent 𝑖, say 𝑘 ∈ 𝑁 in
𝑖 , the probability that follower 𝑘

receives the news (𝑥, 𝛽) from agents other than agent 𝑖 at the steady state of the news

spread is equal to the spread size of the news 𝑞
(︀
𝜆, 𝐹, 𝑠((𝑥, 𝛽), 𝐹 )

)︀
.8

Therefore, for any agent 𝑖’s follower 𝑘 ∈ 𝑁 in
𝑖 , the probability that follower 𝑘 is informed

at the steady state of the news spread conditional on agent 𝑖’s sharing decision 𝑠𝑖 and

other agents’ sharing strategies 𝑠−𝑖 is estimated as:9

P(𝑧𝑘 = (𝑥, 𝛽)|𝑠𝑖, 𝑠−𝑖) =

⎧⎪⎨⎪⎩1, if 𝑠𝑖 = 1;

𝑞
(︀
𝜆, 𝐹, 𝑠((𝑥, 𝛽), 𝐹 )

)︀
, if 𝑠𝑖 = 0.

(3.6)

8For general out-degree distributions, the identity does not necessarily hold due to two factors:
(i) the out-degree distribution of a follower should be adjusted by the well-known friendship paradox;
(ii) the chance is evaluated conditioned on the event that a follower with out-degree 𝑑 can receive the
news only from any of her other 𝑑− 1 followees.

9Given any 𝑠−𝑖 the value 𝑞(𝜆, 𝐹, 𝑠𝑖 = 0, 𝑠−𝑖) in (3.6) is independent of 𝑠𝑖 because the sharing
decision of a single agent does not affect the spread size of news in .
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The average vote of agent 𝑖’s followers can then be computed as

E𝑖

[︁ 1

|𝑁 in
𝑖 |

∑︁
𝑘∈𝑁 in

𝑖

𝑎𝑘(𝜇𝑘, 𝑧𝑘)|𝑠𝑖, 𝑠−𝑖, 𝑧𝑖 = (𝑥, 𝛽)
]︁

(3.7)

=

⎧⎪⎨⎪⎩E𝑖

[︁
𝑎𝑘|𝑘 ∈ 𝑁 in

𝑖 , 𝑧𝑘 = (𝑥, 𝛽)
]︁
, when 𝑠𝑖 = 1;

𝑞E𝑖

[︀
𝑎𝑘|𝑘 ∈ 𝑁 in

𝑖 , 𝑧𝑘 = (𝑥, 𝛽)
]︀
+ (1− 𝑞)E𝑖

[︀
𝑎𝑘|𝑘 ∈ 𝑁 in

𝑖 , 𝑧𝑘 = ∅
]︀
, when 𝑠𝑖 = 0.

As individual perspectives are private information and each follower 𝑘 uses the same

voting rule (cf. (3.2)), we observe from (3.7) that all informed agents are faced with the

same evaluation process, independent of the identity and number of their own followers,

and consequently deploy the same sharing strategy in the game.10 We henceforth refer

to 𝑠 as the common sharing strategy.

The following lemma characterizes an agent’s decision rule in news sharing:

Lemma 3.3 Given 𝑥, 𝛽, 𝜆, 𝐹 , and the endogenous spread size 𝑞(𝜆, 𝐹, 𝑠((𝑥, 𝛽), 𝐹 ) aris-

ing from the strategy 𝑠, agent 𝑖 strictly prefers to broadcast the news if the following

inequality holds:

[︁
𝛽𝑥+ (1− 𝛽)𝜇𝑖

]︁
⏟  ⏞  
agent 𝑖’s belief mean

[︁
2(1− 𝑞)𝐹 flip(𝑥, 𝛽)

]︁
⏟  ⏞  

effective persuasive power of the news

>
𝐶

𝑤𝐿
, (3.8)

where

𝐹 flip(𝑥, 𝛽)
Δ
= 𝐹 (0)− 𝐹 (

−𝛽𝑥

1− 𝛽
),

measures the fraction of agents who will change their favored votes upon receiving the

news (𝑥, 𝛽). Agent 𝑖 does not broadcast the news if the reversed inequality of (3.8)

holds.

Three elements are identified as indicated in (3.8): belief mean, effective persuasive
10As the set of followees provides no additional information and is not involved in the utility

function, the sharing decision of each agent does not depend on 𝑁out
𝑖 .
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power of the news, and the adjusted cost of sharing.

The effective persuasive power of the news measures the probability that a random

follower will flip her favored vote directly due to the sharing by the agent making a

decision. Specifically, the sign of 𝐹 flip(𝑥, 𝛽) indicates the direction of vote flipping,

which is determined by the sign of news: Right-leaning (resp. left-leaning) news can

only change the favored vote from −1 to +1 (resp. +1 to −1). The magnitude, i.e.,⃒⃒
𝐹 (0)−𝐹 (−𝛽𝑥

1−𝛽
)
⃒⃒
is the fraction of agents who flip their favored votes when seeing news

𝑥. However, considering the probability that a follower may also receive the news from

other agents, this difference has to be discounted by 1 − 𝑞 to reflect the effective

fraction that can be persuaded only by the decision maker, showing the strategic

substitutability of news-sharing decisions. Finally, the multiplicity 2 accounts for the

change in aggregating votes when one agent flips her favored vote.

We observe that the magnitude of persuasive power is increasing in both news

magnitude and credibility: Farther the news is away from being neutral or higher the

news credibility is, then a larger fraction of the population will switch their favored

votes upon seeing the news. In particular, when 𝛽 = 0, no agents share the news since

the news has zero persuasive power, generating no benefits of sharing. It is a trivial

scenario where news does not spread; for simplicity we hereafter exclude 𝛽 = 0 from

our discussion.

The adjusted cost reflects an agent’s care about the average votes of her followers in

her sharing decision: A larger weight 𝑤𝐿 means a higher level of concern and increases

her willingness to persuade her followers. For simplicity of exposition, we henceforth

use notation 𝐶 to represent the adjusted cost, normalized with the weight 𝑤𝐿.

In (3.8) the product of belief mean and the effective power of persuasiveness is the

gain from sharing the news, exhibiting monotonicity in perspective given all the other

parameters. Agents with more extreme perspectives place higher value on their votes

(absolute value of their belief means), and hence have stronger incentives to share or not

to share the news, depending on whether the sign of news is in line with their beliefs.
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This observation suggests a structural form for sharing strategy that we characterize

in the following definition:

Definition 3.3 We say that agent 𝑖 deploys a threshold sharing strategy if given 𝐹 and

𝛽, there exists a set of thresholds 𝜇th((𝑥, 𝛽), 𝐹 ) for each 𝑥 such that

𝑠(𝜇𝑖, (𝑥, 𝛽), 𝐹 ) =

⎧⎪⎨⎪⎩1I{𝜇𝑖 > 𝜇th((𝑥, 𝛽), 𝐹 )}, when 𝑥 ≥ 0;

1I{𝜇𝑖 < 𝜇th((𝑥, 𝛽), 𝐹 )}, when 𝑥 < 0.

(3.9)

where 1I{·} denotes the indicator function.

3.3.3 Equilibrium structure

Lemma 3.1, 3.2 and 3.3 together identify the interplay between the scale of news spread

at macro-level and individual threshold strategies via the fraction of informed agents

who share the news. Noting that the sharing decision rule in Lemma 3.3 becomes

the same for the informed agents when 𝛽 = 1, we proceed with characterizing the

equilibrium in the two cases of 𝛽 < 1 and 𝛽 = 1.

Not fully credible news (𝛽 < 1)

Lemma 3.3 establishes a strategy following the form (3.9) whereby the threshold

𝜇th must satisfy the indifference equation11

[︁
𝛽𝑥+ (1− 𝛽)𝜇th

]︁[︁
2
(︁
1− 𝑞

(︀
𝜆, 𝐹, 𝑠((𝑥, 𝛽), 𝐹 )

)︀)︁
𝐹 flip(𝑥, 𝛽)

]︁
= 𝐶. (3.10)

The following theorem identifies the equilibrium for 𝛽 < 1.

Theorem 3.1 Given any 𝛽 < 1, for any 𝑥, 𝜆, 𝐹 , an equilibrium exists and it is unique,

with the following properties:
11The agents whose perspectives equal the threshold feel indifferent between sharing or not; for

simplicity we assume that they choose not to share the news. Again this simplification does not affect
agents’ strategies of sharing as the measure of critical agents is zero. When 𝑥 = 0 the decision rule
(3.8) suggests no sharing by any informed agents, which is reflected by the corresponding threshold
of positive infinity in (3.10).
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(i) The agents deploy a threshold sharing strategy.

(ii) The common threshold 𝜇th*, the steady-state spread size 𝑞* and the sharing frac-

tion 𝑃 *
𝐹 are the unique solution of the following system of equations:

𝜇th* =

𝐶

2(1− 𝑞*)𝐹 flip(𝑥, 𝛽)
− 𝛽𝑥

1− 𝛽
. (indifference condition)

𝑃𝐹 (𝑠
*) =

⎧⎪⎨⎪⎩1− 𝐹 (𝜇th*) when 𝑥 ≥ 0;

𝐹 (𝜇th*), when 𝑥 < 0,

(sharing fraction)

𝑞* = 1− 𝑒−𝑞*𝜆𝑃𝐹 (𝑠
*). (spread dynamics)

For news that is not fully credible, the beliefs of informed agents about the state

are still heterogeneous: The informed agents with extreme beliefs on one ideological

wing strictly prefer to share the news whereas those holding extreme beliefs with the

opposite ideology strictly prefer not to share. The equilibrium sharing fraction is

therefore non-zero.

Fully credible news (𝛽 = 1)

When 𝛽 = 1, for the informed agents, the mean of their beliefs are identical and

equal to the news value. Lemma 3.3 hence yields the identical criterion for all the

informed agents for news sharing:

⃒⃒
𝑥
⃒⃒(︁
1− 𝑞

(︀
𝜆, 𝐹, 𝑠((𝑥, 1), 𝐹 )

)︀)︁
⪌ 𝐶. (3.11)

As a result, the informed agents may (a) all strictly prefer sharing (when “ > ” holds

in (3.11)); or (b) all strictly prefer not sharing (“ < ” holds); or (c) all feel indifferent

(“ = ” holds). Case (a), in which each agent shares the news (i.e., 𝑠 ≡ 1), is an
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equilibrium if

|𝑥| > 𝐶

1− 𝑞(𝜆, 𝐹, 𝑠 ≡ 1)
,

where 𝑞(𝜆, 𝐹, 𝑠 ≡ 1) is in fact the size of the giant component of network 𝒢 when every

agent shares the news. Similar for case (b) where no agent shares the news (i.e., 𝑠 ≡ 0),

the spread size is 0, and not sharing is an equilibrium if

|𝑥| <𝐶.

For the last case (c), any strategy that assigns sharing to an arbitrary subset of per-

spectives sustains an equilibrium if the induced fraction of agents who share the news

given by 𝑃𝐹 ∈ [0, 1], and the consequent spread size 𝑞 satisfy

⃒⃒
𝑥
⃒⃒
=

𝐶

1− 𝑞

𝑞 =1− 𝑒−𝑞𝜆𝑃𝐹 .

The equilibria in all three cases are in fact in the class of threshold strategies:

The cases (a) and (b) in fact correspond to a threshold strategy (3.9) with thresholds

of infinite magnitude, while for case (c) the threshold is finite. The next theorem

summarizes the above discussion deriving the closed-form solutions for spread size, the

fraction of informed agents sharing news, and the sharing threshold at the equilibrium

for 𝛽 = 1.

Theorem 3.2 Suppose 𝛽 = 1. Given 𝑥, 𝜆, 𝐹 there exists an equilibrium possessing the

following properties:

(i) The agents deploy a threshold sharing strategy.

(ii) The common threshold 𝜇th*, the steady-state spread size 𝑞* and the sharing frac-
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tion 𝑃 *
𝐹 are given by:

(𝑞*, 𝑃 *
𝐹 )(𝑥) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(0, 0), if |𝑥| ∈ [0, 𝐶];

(1− 𝐶

|𝑥|
,
− ln( 𝐶

|𝑥|)

𝜆(1− 𝐶
|𝑥|)

), if |𝑥| ∈ (𝐶, 𝐶
1−𝑞𝐺(𝜆)

];

(𝑞𝐺(𝜆), 1), if |𝑥| > 𝐶
1−𝑞𝐺(𝜆)

,

(3.12)

𝜇th*(𝑥) =

⎧⎪⎨⎪⎩𝐹−1(1− 𝑃 *
𝐹 (𝑥)), when 𝑥 ≥ 0;

𝐹−1(𝑃 *
𝐹 (𝑥)), when 𝑥 < 0,

where 𝑞𝐺(𝜆) is the size of the giant component of 𝒢, i.e., the largest solution to

𝑞 = 1− 𝑒−𝑞𝜆.

Based on Theorem 3.1 and 3.2, the equilibrium spread size and sharing fraction are

continuous functions of credibility 𝛽 in the range [0, 1]:

Corollary 3.1 The steady-state spread size 𝑞*, the sharing fraction 𝑃 *
𝐹 , and the com-

mon sharing threshold 𝜇th* are continuous functions of 𝛽. Specifically,

lim
𝛽→1

𝑞*(𝛽) = 𝑞*(1).

With the focus on threshold sharing strategies (3.9), the sharing threshold is also

continuous at 𝛽 = 1. This continuity property will later be used to identify the

conditions under which fully credible news does not maximize the cascade size.

3.3.4 Effects of news magnitude and connectivity on news spread

size

Theorem 3.2 shows that given 𝛽 = 1 and the sign of news, the spread size is increasing in

news magnitude (cf. (3.12)). This can be explained by inspecting the sharing decision

making in (3.8). Recall that the persuasive power of news (i.e.,
⃒⃒
𝐹 (0) − 𝐹 (−𝛽𝑥

1−𝛽
)
⃒⃒
)
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reaches its full level 1
2

at 𝛽 = 1 regardless of news magnitude. As informed agents are

fully convinced and hold their belief means unanimously at the news value, given any

𝑞, more extreme news suggests higher expectation about the state, creating a stronger

incentive for the informed agents to share the news to persuade their followers. As a

result, at the equilibrium the scale of news spread has to be commensurate with the

news magnitude. Moreover, for news with moderate magnitude (i.e., |𝑥| ∈ (𝐶, 𝐶
1−𝑞𝐺(𝜆)

]),

the spread size 𝑞* is on the exact level that makes all of informed agents feel indifferent

between sharing or not, and the threshold sharing strategy translates to the fraction

of sharing 𝑃 *
𝐹 that sustains the spread size. The above argument for the monotonicity

of spread size in news magnitude in fact holds for any level of credibility.

Lemma 3.4 For any 𝛽, 𝜆 and 𝐹 , fixing the sign of news, the equilibrium spread size 𝑞*

and the sharing fraction 𝑃 *
𝐹 are both increasing in news magnitude |𝑥|. Moreover, the

equilibrium threshold 𝜇th*((𝑥, 𝛽), 𝐹 ) for right-leaning (left-leaning) news is decreasing

(increasing) in news magnitude.

Besides the monotone effect of news magnitude, we also demonstrate that higher

network connectivity enlarges the scale of diffusion for any news and any credibility.

Lemma 3.5 Given 𝑥, 𝛽 and 𝐹 , the equilibrium spread size 𝑞* is increasing in network

connectivity 𝜆.

More social connections in the population make the shared news reach to more follow-

ers on average, facilitating news diffusion and increasing the scale of spread. However,

higher network connectivity in fact yields a smaller fraction of sharing at the equilib-

rium. It is because, in reaction to the ease of news spread, the informed agents are less

motivated to share the news due to the strategic substitutability arising from the cost

of sharing.

Though the spread size is increasing both in news magnitude and in network con-

nectivity, we observe that the mechanisms are fundamentally different. For the former,
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informed agents are incentivized to share extreme news since they have large expecta-

tions on the state and the more extreme news can persuade more followers to flip their

votes, resulting in a larger fraction of sharing. In contrast, high network connectivity

facilitates news spread via more social interactions while discouraging informed agents

from sharing. In the next section we will see how such distinct mechanisms affect the

relative cascade size of news spread for different levels of credibility.

3.4 News Cascade, Scale of Spread, and Credibility

A more intriguing question is how the credibility level may affect the size of news

diffusion in the population. By Theorem 3.2 and the continuity of equilibrium spread

size at 𝛽 = 1, we can identify whether fully credible news (𝛽 = 1) maximizes the size

of a news cascade or lower credibility can otherwise induce a larger news cascade. The

following proposition addresses the key question:

Proposition 3.1 Fix 𝐹 and 𝜆, and denote the size of the giant component by 𝑞𝐺(𝜆).

Then,

(i) when |𝑥| ≤ 𝐶, no informed agents share fully credible news 𝑥 and the cascade

size is minimized at 𝛽 = 1 with value 0;

(ii) when |𝑥| > 𝐶
1−𝑞𝐺

, each informed agent shares fully credible news 𝑥 and the cascade

size is maximized at 𝛽 = 1 with value 𝑞𝐺;

(iii) when |𝑥| ∈ (𝐶, 𝐶
1−𝑞𝐺

], for which agents at equilibrium feel indifferent between

sharing the fully credible news or not at the equilibrium, less credible news results

in a larger cascade if and only if the equilibrium threshold for sharing 𝜇th* for

77



𝛽 = 1 satisfies12

𝜇th*((𝑥, 1), 𝐹 ) > 𝑥, when 𝑥 > 0, (3.13)

𝜇th*((𝑥, 1), 𝐹 ) < 𝑥, when 𝑥 < 0.

where

𝜇th*((𝑥, 1), 𝐹 ) =

⎧⎪⎪⎨⎪⎪⎩
𝐹−1(1−

− ln( 𝐶
|𝑥| )

𝜆(1− 𝐶
|𝑥| )

), when 𝑥 > 0;

𝐹−1(
− ln( 𝐶

|𝑥| )

𝜆(1− 𝐶
|𝑥| )

), when 𝑥 < 0.

For the ease of exposition, we discuss the implications of Proposition 3.1 and the

ensuing results for right-leaning news 𝑥 > 0; the discussion for left-leaning news 𝑥 < 0

is similar. We focus on the range of news with moderate magnitude (cf. case (iii)).

Indeed, the high connectivity that is usually observed on empirical social networks (cf.

footnote 2) suggests that the giant component size 𝑞𝐺(𝜆) is nearly 1.13 This implies

that even when the cost of sharing is small, 𝐶
1−𝑞𝐺(𝜆)

can still be significantly large and

the interval (𝐶, 𝐶
1−𝑞𝐺(𝜆)

] can cover a wide range of news magnitude of interest.

The rationale for the condition (3.13) in case (iii) is as follows. Fix the spread size

𝑞* = 1 − 𝐶
|𝑥| that corresponds to the case 𝛽 = 1 while reducing credibility 𝛽 from 1.

According to the decision rule of sharing (3.8), the effective persuasive power of news

remains nearly the same as 1
2
, suggesting that informed agents with perspectives greater

than 𝑥 strictly prefer to share (𝛽 less than 1). When the condition 𝜇th*((𝑥, 1), 𝐹 ) > 𝑥

holds, more informed agents are incentivized to share the less credible news, meaning

that spread size 𝑞* can not be sustained and the scale of news increases.

According to Lemma 3.4, the equilibrium threshold 𝜇th*((𝑥, 𝛽), 𝐹 ) is decreasing
12Hsu et al. (2021) assumed 𝐹 to be a normal distribution with zero mean. Under this specific

setting the corresponding version of condition (3.13) is also necessary for 𝛽 = 1 not to be the global
maximizer of the cascade size. However, the authors did not further quantify the effects of 𝑥, 𝜆 and
𝜎𝜇 on this sufficient and necessary condition.

13Using the empirical average degree 𝜆 = 35.2 for Poisson network, the giant component is com-
putationally 1.
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in news magnitude of right-leaning news. This, together with case (i), (ii) and the

condition (3.13), implies that fully credible news can not spread wider than lower

credibility news if the news is not sufficiently extreme:

Proposition 3.2 Given 𝜆, 𝐹 , and the sign of news, the spread of lower credibility

news is not smaller than fully credible news for news with sufficiently small magnitude.

Specifically, there exist two unique thresholds 𝑥(𝜆, 𝐹 ) < 0 < �̄�(𝜆, 𝐹 ) such that the spread

of lower credibility news is larger than fully credible news if and only if 𝑥 ∈ (𝑥, �̄�).

When news is small or almost neutral, high credibility will concentrate the beliefs

of informed agents to be around small positive values. As agents find low expected

values for the state, only those agents with quite extreme perspectives (who hold rel-

atively extreme updated belief mean after seeing the news) share the news, yielding

a large threshold 𝜇th*((𝑥, 𝛽), 𝐹 ). On the other hand, when the credibility is reduced,

informed agents are less convinced and their updated expectations about the state are

more dispersed compared to observing fully credible news. Despite the compromised

persuasiveness of news due to lower credibility that discourages agents from sharing,

there are more informed agents who still perceive high expected values for the state and

have strong incentives to share, propelling the spread of news with lower credibility.

This finding echoes the result of Acemoglu et al. (2021), which suggested that reduced

extremism of news increases the virality of misinformation.

From Theorem 3.2 we observe that given news 𝑥 > 𝐶 (𝑥 < −𝐶) with 𝛽 = 1, the

equilibrium sharing fraction 𝑃 *
𝐹 is decreasing in 𝜆 and the equilibrium threshold 𝜇th* is

increasing (decreasing) in 𝜆. Specifically, for small connectivity 𝜆, we have 𝐶
1−𝑞𝐺(𝜆)

≤ |𝑥|

and the equilibrium sharing fraction 𝑃 *
𝐹 is 1; the fraction starts to decrease when the

connectivity becomes sufficiently large such that 𝐶
1−𝑞𝐺(𝜆)

> |𝑥|. This suggests that

there exists some threshold 𝜆th(𝑥, 𝐹 ) such that the condition (3.13) holds if and only if

𝜆 > 𝜆th(𝑥, 𝐹 ). By measuring the fraction of agents who share news based on condition

(3.13) for 𝜇th*((𝑥, 1), 𝐹 ) and 𝑥, we can derive an indifference equation for the threshold
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as

− ln 𝐶
|𝑥|

𝜆th(1− 𝐶
|𝑥|)⏟  ⏞  

=𝑃 *
𝐹 (𝑥)

=

⎧⎪⎨⎪⎩1− 𝐹 (𝑥), when 𝑥 > 0;

𝐹 (𝑥), when 𝑥 < 0.

(3.14)

The next corollary formalizes this observation:

Corollary 3.2 Given 𝐹 , for news 𝑥 with magnitude |𝑥| > 𝐶, lower credibility news

can trigger a larger cascade than fully credible news when the network connectivity

is sufficiently high. Specifically there exists a unique value 𝜆th(𝑥, 𝐹 ) such that lower

credibility news results in a cascade with larger size than fully credible news if and only

if 𝜆 > 𝜆th(𝑥, 𝐹 ) where

𝜆th(𝑥, 𝐹 ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
− ln 𝐶

|𝑥|

(1− 𝐶
|𝑥|)(1− 𝐹 (𝑥))

, when 𝑥 > 0;

− ln 𝐶
|𝑥|

(1− 𝐶
|𝑥|)𝐹 (𝑥)

, when 𝑥 < 0.

Moreover, given the sign of news, 𝜆th(𝑥, 𝐹 ) is increasing in news magnitude |𝑥|. We

refer to the threshold 𝜆th as network connectivity limit.

Acknowledging the aiding effect of network connectivity on news diffusion (cf.

Lemma 3.5), informed agents are discouraged from sharing the news due to the strate-

gic substituability; their updated expected values about the state have to be more

extreme so that they will share, which suggests an increased threshold for the equilib-

rium sharing strategy.

However, the extent of such increment in the threshold varies significantly for dif-

ferent levels of news credibility: The indifference equation for the sharing threshold

(cf. Theorem 3.1) shows that a small increment in spread size 𝑞 (thanks to larger

connectivity) will be translated to a significant increase in 𝜇th when credibility level 𝛽

is high. Indeed, in this case the updated means barely allow for subjective perspec-
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tives, the threshold on perspective has to be much more extreme to result in large

enough updated belief means that motivate sharing. In contrast, when observing news

with lower credibility than full level, agents with large right-leaning perspectives still

hold large updated belief means and would like to share the news. Consequently, on a

densely-connected network, lower credibility news triggers a cascade that outsizes the

spread of fully credible news.

Corollary 3.2 suggests that the connectivity limit 𝜆th(𝑥, 𝐹 ) serves as a natural index

for the level of susceptibility of a population to wider spread of lower credibility news

than credible news: The network connectivity can not surpass the threshold 𝜆th or

lower credibility news can generate a larger cascade than fully credible news. In the

next section, we evaluate the effects of perspective CDF 𝐹 on the connectivity limit,

studying how the distribution of perspectives may facilitate spread of news with lower

credibility.

3.5 News Cascade in Populations with Polarized Per-

spectives

In this section, we study the societies comprising two groups of agents who exhibit

polarization in their perspectives on the state. We investigate how the extent of po-

larization and the diversity of perspectives within each group may affect the spread of

news for different levels of credibility.

Formally, we assume that each agent 𝑖 is equally likely to orient her perspective

toward either left or right side of perspective spectrum, which is her private information

and denoted as 𝑒𝑖 ∈ {−1,+1}. We refer to the group of agents with orientation −1

(+1) as left-wing (right-wing). Agent 𝑖’s perspective is then independently drawn from
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a distribution that conditional on her orientation 𝑒𝑖:

𝜇𝑖|𝑒𝑖 ∼

⎧⎪⎨⎪⎩
1
𝜎𝜇
𝑔
(︁

𝜇+�̄�
𝜎𝜇

)︁
, when 𝑒𝑖 = −1;

1
𝜎𝜇
𝑔
(︁

𝜇−�̄�
𝜎𝜇

)︁
, when 𝑒𝑖 = +1,

(3.15)

where 𝑔 is some continuous density function, �̄� ≥ 0 measures the polarization between

the two groups, and 𝜎𝜇 > 0 represents the diversity of perspectives within each group.

We will also refer to 𝜎𝜇 as in-group diversity. Similar to Assumption 2, we impose

some regularity conditions on 𝑔:

Assumption 4 The density function 𝑔 is continuously-differentiable, log-concave, and

symmetric around zero, with full support on the real line, with mean and variance. We

denote as 𝐺 the associated CDF for 𝑔.

The CDF 𝐹 of perspectives given polarization �̄� and in-group diversity 𝜎𝜇 can be

expressed as

𝐹 (𝜇) =
1

2
𝐺(

𝜇+ �̄�

𝜎𝜇

) +
1

2
𝐺(

𝜇− �̄�

𝜎𝜇

). (3.16)

Note that 𝐹 (0) is a constant 1
2

and also 𝐹 (−𝜇) = 1−𝐹 (𝜇) for any 𝜇. The distributions

(3.15) and (3.16) are common knowledge.

From Proposition 3.1, we can see that lower credibility (𝛽 < 1) can trigger a

larger cascade than fully credible news (𝛽 = 1) only if the news has sufficiently small

magnitude (|𝑥| < 𝐶) or the network is sufficiently connected (𝜆 > 𝜆th(𝑥, 𝐹 )). Below

we investigate the effects of the parameters �̄�, 𝜎𝜇, 𝐺 on the connectivity limit, using

the more explicit notation 𝜆th(𝑥, �̄�, 𝜎𝜇, 𝐺). We rewrite the connectivity limit given in

(3.14), for any news 𝑥, as

𝜆th(𝑥, �̄�, 𝜎𝜇, 𝐺) =
− ln 𝐶

|𝑥|

(1− 𝐶
|𝑥|)𝐹 (−|𝑥|)

=
− ln 𝐶

|𝑥|

(1− 𝐶
|𝑥|)
(︁

1
2
𝐺(−|𝑥|+�̄�

𝜎𝜇
) + 1

2
𝐺(−|𝑥|−�̄�

𝜎𝜇
)
)︁ .(3.17)
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The first result concerns the impact of polarization on the network connectivity

limit:

Proposition 3.3 For any density 𝑔, in-group diversity 𝜎𝜇, and any news 𝑥 with mag-

nitude |𝑥| > 𝐶, increased polarization decreases network connectivity limit, i.e., 𝜆th is

decreasing in �̄�. Moreover, 𝜆th(𝑥, �̄� = 0, 𝜎𝜇, 𝐺) =
− ln 𝐶

|𝑥|

(1− 𝐶
|𝑥| )𝐺(− |𝑥|

𝜎𝜇
)
.

Stronger polarization in a population leads to a larger fraction of extremists, who,

as we have already argued, assume a higher value for the persuasiveness effect of the

news aligned with their large belief mean when 𝛽 < 1. Though stronger polarization

reduces the fraction of the extremists who have the opposite ideological leaning from

their group (e.g., right-leaning agents in left-wing group), such extremists only account

for a small fraction (on the tail of the perspective distribution of left-wing group). As

a result, the fraction of extremists overall increases, facilitating the sharing of lower

credibility news. The news with lower credibility can hence trigger a larger cascade

than fully credible news even on the networks with smaller connectivity, suggesting a

decreased connectivity limit.

Figure 3-1 illustrates the effect of polarization �̄� and in-group diversity 𝜎𝜇 on net-

work connectivity limit 𝜆th when function 𝑔 is the standard normal distribution. Given

any level of in-group diversity, we can see that the network connectivity limit decreases

as the polarization is increased.

On the other hand, the effect of increased in-group diversity on the network con-

nectivity limit is not necessarily monotone, as stated in the following proposition:

Proposition 3.4 For any density 𝑔 (and corresponding 𝐺) and any news 𝑥 with mag-

nitude |𝑥| > 𝐶,

• when polarization is weak, increased in-group diversity decreases the network con-

nectivity limit. Specifically, when �̄� ≤
⃒⃒
𝑥
⃒⃒
, 𝜆th is decreasing in 𝜎𝜇 and moreover,

lim
𝜎𝜇→0

𝜆th(𝑥, �̄�, 𝜎𝜇, 𝐺) = +∞;
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Figure 3-1: The network connectivity limit 𝜆th(𝑥, �̄�, 𝜎𝜇, 𝐺) as a function of polarization
�̄� and in-group diversity 𝜎𝜇 when 𝐶 = 2, 𝑥 = 3, and 𝐺 is the CDF for standard normal
distribution. The colormap indicates the value of connectivity limit.

• when polarization is strong, increased in-group diversity increases the network

connectivity limit only when the in-group diversity is small. Formally, when

�̄� >
⃒⃒
𝑥
⃒⃒
, 𝜆th is increasing in 𝜎𝜇 up to some �̂�(𝑥, �̄�, 𝐺) > 0 and then decreas-

ing. Moreover, lim
𝜎𝜇→0

𝜆th(𝑥, �̄�, 𝜎𝜇, 𝐺) =
−2 ln 𝐶

|𝑥|

1− 𝐶
|𝑥|

.

In a population with weak polarization and low in-group diversity, the agents’

perspectives are highly concentrated around the neutrality with a small fraction of

extremists. Increasing the in-group diversity from a low level instead results in more

agents with extreme perspectives for both ideological leanings, lowering the network

connectivity limit. Figure 3-1 exemplifies that given some polarization level �̄� ≤ 𝑥 the

network connectivity limit approaches the infinity when the diversity is nearly zero and

that the connectivity limit is decreasing in diversity.

On the other hand, in a population with strong polarization, increased in-group

diversity has a non-monotone effect on the connectivity limit. In this case, there is
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a large fraction of extremists and enlarged diversity affects the fraction of extremists

in two ways: (i) decreases the number of the extremists whose perspectives align with

their group’s orientation, while (ii) increases the number of the extremists whose per-

spectives are opposing to their group’s orientation and are on the tail of the perspective

distribution of the group.

When there is low in-group diversity in the population, the decrease from (i) out-

sizes the increase from (ii), reducing the fraction of extremists and raising up the

connectivity limit. For example, with fixed �̄� = 5 in Figure 3-1, 𝜆th increases from 2.5

to around 4 as 𝜎𝜇 is increased from 0 to 5. However, due to the log-concavity of the

perspective distribution (i.e., 𝑔), the relative magnitude of effect (i) to (ii) is decreas-

ing in diversity and consequently the network connectivity limit starts to fall when the

diversity becomes sufficiently large. We can see in Figure 3-1 that given �̄� = 5, 𝜆th is

decreasing for 𝜎𝜇 > 5.

3.6 Discussion

In this chapter, we characterized the Bayesian Nash equilibrium of the news-sharing

game, identifying individual decision rule of sharing and the resulting endogenous news

cascade. We further delineated the sufficient and necessary conditions under which

news with lower credibility can trigger a larger spread than fully credible news. As our

main result, we showed that low credibility news can result in a larger cascade than

fully credible news when the network is highly connected. Moreover, we investigated

news spread in polarized populations. We found that strong polarization relaxes the

connectivity limit necessary for lower credibility news to generate a larger cascade. We

also illustrated that increased diversity of beliefs within each ideological group does not

necessarily reduce the spread of news with lower credibility: When the polarization is

weak or when both groups have quite diverse perspectives, raising up the level of in-

group diversity can instead prompt more sharing of lower credibility news.
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We delineate a few comparisons between this game-theoretic model and the non-

strategic model in Chapter 2 as below.

In both models, each informed agent does not inspect news and updates her belief

by placing real-valued weights on the news and her own prior mean according to the

news generation process.

Though both models feature persuasion motives underlying agents’ sharing deci-

sions, there is a difference in agents’ preferences. In the non-strategic model, each

agent desires to make her followers beliefs close to hers according to some distance

measure on the space of beliefs. By contrast, in this game-theoretic model each agent

prefers aligned binary and the marginal change of her expected utility is increasing in

the magnitude of her expectation about the state. This variation in utility formulation

leads to a difference in the effect of diversity on news spread between the two models.

In Chapter 2, we showed that 𝛽 = 1 maximizes the cascade probability since it can

significantly concentrate the beliefs of followers with diverse perspectives. However, in

this chapter, increased diversity suggests a large fraction of extremists in a population

who would share less credible news given their strong incentives to persuade others.

The strategic model makes tractable the analysis on spread size. In Theorem 2.1

we can see that the spread size at the steady state is an integral of the incremental

spread size at each time. By contrast, strategic agents speculate on the cascade size at

the steady state, of which the equation can be formulated without involving an integral

over time, as shown in Theorem 3.1.

Also, in order for tractable analysis on spread size, in this chapter we particularly

considered Poisson degree distribution for our network setting. On the other hand, the

non-strategic model used the configuration model for the construction of random net-

works, considering a general joint degree distribution in the population. Nonetheless,

its analysis is restricted to the cascade probability given the intractability of spread

size in this model.
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Chapter 4

Subscription Networks, Verification,

and Media Bias

4.1 Background

One key assumption that was made in chapters 2 and 3 was that individuals who do not

receive any news are unaware of its existence. While this is a reasonable assumption

in certain scenarios such as information spread on Twitter, it certainly is not true in

all cases. People sometimes do look for new information for their interests or under-

standing of the world. For example, when there is a developing story about a natural

disaster or a political turmoil, people usually rely on news media or print publishers

for the latest information that is not easily accessible by the general public. In this

chapter, we turn to people’s behavior of seeking information from news media.

In contrast to a limited number of trusted news agencies available a few decades

ago, the advance of digital technology and popularity of social media have boosted

online news business, fostering a wide range of information sources for news consumers

(Newman et al. 2019). However, news consumers can only selectively attend to a

few of them owing to their limited quantity of mental effort during a short time span

(Kahneman 1973).

87



Different segments of the society then may consume quite distinct pieces of news

from different news intermediaries, without a set of commonly accepted facts or truths

(Mitchell et al. 2014, Jurkowitz et al. 2020). News intermediaries often have their own

ideological biases and are motivated to influence the public opinion. For example, they

can choose to promote news that can persuade their subscribers towards their own

political agenda (Allcott and Gentzkow 2017) or conceal the unfavorable information

that otherwise moves their readers’ beliefs away. With diverging information, in a

fragmented society the ideological divide among the population is being entrenched.

Despite their selective news disclosure to persuade the public, news intermediaries

play a vital role of fact-checking the information before any news release, based on

their journalists’ expertise and web of sources. The importance of fact-checking infor-

mation can not be emphasized enough: Nowadays digital social platforms have become

a hotbed for digital misinformation to spread wide and fast (Del Vicario et al. 2016,

Vosoughi et al. 2018). Without fact-checking or significant third-party filtering be-

forehand, the inundation of misinformation or false news poses threats to our society,

inciting political polarization and social unrest (Howell 2013).

In this chapter, we investigate the subscription choices of subscribers with diverse

perspectives between biased news intermediaries who are motivated to influence the

public opinion, through the lens of news verification and selective disclosure in an

environment with real and false news. We shed light on three questions: (i) What news

does an intermediary choose to verify? (ii) How do intermediaries’ disclosure decision

depend on their knowledge of the veracity of the news? (iii) How do subscribers react

to disclosed news while inferring its veracity and, especially, what do they infer when

there is no disclosure?

Our model concerns two biased intermediaries (she) and a continuum of subscribers

(he). There is an unobservable real-valued state that is subject to a vote, in which each

subscriber will simultaneously take a binary action. The subscribers share the same

preference, aiming to match the sign of the state, while the intermediaries are both

88



concerned with the aggregate utility of the subscribers. The players, either interme-

diaries or subscribers, have heterogeneous subjective priors on the unobservable state,

and hence ex-ante their favored actions differ. Prior to the vote, only the intermediaries

may access a piece of information about the state and can choose whether to disclose

it to their own subscribers. In order to make an informed decision in the vote, each

subscriber initially selects exactly one of the intermediaries, hoping to receive infor-

mation about the state from the selected intermediary. We refer to the subscription

choice of a subscriber as (weak) homophily when the subscriber (weakly) prefers the

intermediary who ex-ante advocates for the same binary action; otherwise, we say it is

anti-homophily.

The information a news intermediary may receive is not perfectly informative about

the state: the news can be informative (true) or uninformative (false) about the state:

Informative news is some noisy observation about the state with a noise distribution

that is ex-ante known to all the players. On the other hand, uninformative news is

independent from the state. Only the intermediaries can verify whether the news they

observe is informative or not, if they spend a cost for verification. After receiving some

news and before deciding whether to disclose it to her subscribers, a news intermediary

may choose to verify it at a cost. Each subscriber only observes his news intermedi-

ary’s disclosure decision, either some news or no disclosure, but he cannot observe his

intermediary’s verification decision and result. Based on his prior belief and his news

intermediary’s strategy, the subscriber takes the action that matches the sign of his

posterior mean about the state.

As our first contribution, we propose a game-theoretic framework to study the

strategic communication between news media and subscribers in an environment with

true and false news, examining how the media’s function of filtering and verification

affect subscription choices. We identify the equilibrium structure, characterizing news

intermediaries’ disclosure and verification strategies and subscribers’ belief updating.

We show that each intermediary has no incentives to verify the news that is aligned
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with her perspective but discloses such news for sure. This suggests that only the

news that is against her perspective may be concealed by the intermediary, and her

subscribers will update their own belief towards the ideologically opposite wing when

there is no disclosure by the intermediary.

As our second result, we demonstrate how the intermediaries’ option to selectively

disclose news leads to anti-homophily among the centrists. We investigate the partic-

ular case in which the verification option is absent and the intermediaries only make

their disclosure decisions. The subscribers care about the news that may be concealed

by their intermediaries out of the persuasion motive. For the centrists, if they follow

the intermediary with aligned ideology, the possibility of news being concealed makes

them strategically choose the action opposite from their perspective when there is no

disclosure from this intermediary, suffering a loss from not matching the sign of the

state when there is actually no news. However, if the centrists subscribe to the opposite

intermediary, the concealed news by the intermediary does not change their preferred

actions and any news that may change their actions is disclosed, leading to higher

expected payoffs for the centrists. On the other hand, the extreme subscribers with

stronger ideological bias have no concern about news concealment by the intermedi-

ary with aligned ideology, since the news that can change their favored actions also

changes the intermediary’s favored one, making the intermediary disclose it to persuade

her subscribers.1

We further demonstrate that when the intermediaries can verify news, in the true-

news-disclosing equilibria in which the intermediaries disclose the verified news if and

only if it is true, weak homophily emerges among the extremists whereas the centrists

still make anti-homophilic subscription choices. Each intermediary verifies the news

only if the news can flip her favored action to the opposite when it turns out to be

informative. In order to signal the verification result, which is unobservable to her
1These results subsume our preliminary work in Hsu et al. (2020b), which fully focused on an

environment with no false news and assumed that prior beliefs and noise in informative news follow
Gaussian distributions.
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Figure 4-1: The subscription choices of the centrist (green) and extremist (red) sub-
scribers.

subscribers, the intermediary chooses to disclose the news if and only if it is informa-

tive. Though the intermediary with aligned ideology verifies news that may affect the

centrists’ actions, the necessary signalling for the verification result makes the centrists

unable to distinguish false news from concealed unverified news when observing no

disclosure from the intermediary. The centrists then end up not taking their optimal

actions when the news is false, deriving no benefits from the verification strategy. By

contrast, for the extremists, some of the news that flips their favored actions when it

is informative will be verified and disclosed by the intermediary with aligned ideology,

who they therefore weakly prefer to follow.

We consider a variation of our model in which the verification result for any news

is perfectly observable to subscribers when it is disclosed. This perfect observability

creates an incentive for the intermediaries to verify the news in line with their perspec-

tives so as to persuade their subscribers with the opposite ideology. The equilibrium

subscription choices depend on the relative strength of the intermediaries’ motives be-

tween learning the veracity of opposing news and verifying aligned news for persuasion

purpose. We provide an example to show that when the players think the aligned

news is highly likely to be true but the opposing news is likely to be false, the inter-

mediaries are only incentivized to verify the aligned news for persuasion, leading to

anti-homophily among the subscribers.

Our work joins the recent flourishing literature on the political economy of news

market (Prat and Strömberg 2013, Anderson et al. 2016), studying both supply-side and

demand-side forces behind media bias. The news intermediaries strategically decide

what news to verify and to disclose in order to sway their subscribers’ opinions: On

the supply side they have their own political agendas while on the demand side the
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subscribers possess heterogeneous subjective prior beliefs.2

Our work focuses on how decision makers select their information sources while

accounting for the media bias, rationalizing how homophily and anti-homophily may

arise among different segments of the subscribers. We share the result of homophily

with the following papers. Calvert (1985) proposed a model with two information

sources and two alternatives as in ours and suggested that a decision maker with a bias

in preference on the alternatives would prefer the information source in favor of her

bias rather than the unbiased one. Banerjee and Somanathan (2001) showed that the

experts may conceal their information if the prior beliefs of the experts and the decision

maker differ. Suen (2004) suggested that homophily emerges when there are binary

actions and the leaders can only indicate what action to take rather than disclose the

exact information they have. Similarly, Sethi and Yildiz (2019) obtained homophily

when the information sources disclose their posteriors non-strategically, and the bias

of the sources are unknown.

On the other hand, Che and Kartik (2009) considered a one-leader-one-follower

model with a continuum of actions and the leader aims to persuade the follower to take

her favored real-valued action by endogenously acquiring information and selectively

disclosing the information. They demonstrated that when a follower can choose from a

list of leaders with diverse opinions, a leader with some difference in opinion is preferred

to a like-minded one. Jackson and Tan (2013) studied a similar model of strategic

information transmission with binary signals. They do observe anti-homophily with the

same intuition that an expert with an opposite bias in prior belief shares the information

that changes one’s favored action whereas an expert with an aligned bias does not. We

obtain the subscription network formation in a slightly richer model (with continuum

of signals). The network formation prior to the news intermediaries’ reporting decisions
2A nonexhaustive list for papers on supply side includes Balan et al. (2004), Baron (2006), Ger-

mano (2008), Chan and Suen (2009), Ellman and Germano (2009), Anderson and McLaren (2012).
For a list of work on demand side, see Strömberg (2004), Mullainathan and Shleifer (2005), Gentzkow
and Shapiro (2006), Chan and Suen (2008), Duggan and Martinelli (2011). See Gentzkow et al. (2015)
for more details on media and review of the related theoretical literature.
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adds substantial complexity to the problem, since subscription choices are endogenously

determined with the leaders’ strategies in the equilibrium.

A key component distinguishes our model from the above work is the coexistence

of true news and false news and the news intermediaries’ option to learn the veracity

of news. Many recent works have studied social media users’ behavior in the environ-

ments with coexistence of real news and false news (Papanastasiou 2020, Merlino et al.

2020, Acemoglu et al. 2022, Hsu et al. 2022). In our model only the intermediaries are

able to fact-check news and decide whether to disclose the news. In this regard, our

paper is related to Kranton and McAdams (2020), who studied whether news produc-

ers’ make efforts to create true news in order to earn revenue from views or sharing,

resulting in the distribution of false and true news. In contrast, our work concerns

news intermediaries who verify news to learn the veracity of news and persuade their

subscribers to have aligned ideological stance.

The rest of the chapter proceeds as follows. We describe our model and discuss

the assumptions in Section 4.2. Section 4.3 explains the belief updating process. In

Section 4.4 and 4.5 we study subscription choices when the verification option is un-

available or available to the intermediaries respectively. Section 4.6 examines how

subscription choices change with the intermediaries’ ideological biases. Section 4.7 dis-

cusses a few extensions of our model and Section 4.8 summarizes our findings. The

technical proofs of all lemmas and theorems are relegated to the Appendix C.

4.2 Model

The players are two news intermediaries 𝑖 ∈ {𝐿,𝑅} (she) and a unit-mass continuum

of anonymous subscribers 𝑗 ∈ [0, 1] (he) with Lebesque measure 𝜆. Each subscriber 𝑗

is to take a binary action 𝑎𝑗 ∈ {−1,+1} and his payoff depends on an unobservable
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state 𝜃 ∈ R. Specifically, his payoff from taking action 𝑎𝑗 is

𝑢𝑗(𝜃, 𝑎𝑗) = 𝜃𝑎𝑗,

so that he aims to match the sign of the state. We write 𝑎 for the action profile of

all subscribers. Before taking an action, subscribers are able to learn about the state

from a news intermediary. The payoffs of intermediaries are simply the average payoff

of the subscribers:

𝑢𝑖(𝜃, 𝑎) =

∫︁
𝑗∈[0,1]

𝑢𝑗(𝜃, 𝑎𝑗)𝑑𝜆.

for all measurable action profiles 𝑎.

Prior beliefs and perspectives. The players have heterogeneous subjective prior

beliefs about the state 𝜃. In particular, the subjective prior belief of player 𝑖 is

𝑓𝑖(𝜃) = 𝑓(𝜃 − 𝜇𝑖), (4.1)

where 𝑓 is a continuous density function associated with zero expected value and

𝜇𝑖 ∈ R is the a priori expected value of 𝜃 according to player 𝑖. We refer to 𝜇𝑖 as

the perspective of player 𝑖. The players’ prior beliefs differ only at their expectations

(perspectives) on the state as shown in (4.1). We assume that each player’s prior belief

and perspective are common knowledge.3 Observe that, although players would have

identical preferences if they knew the state, they have differing subjective beliefs, and

hence they may have differing preferences on optimal action when they are uncertain.

In particular, ex ante, each player 𝑘 prefers action +1 if 𝜇𝑘 > 0 and prefers action −1

3Since the subscribers are anonymous, each subscriber in fact only needs to know his own 𝜇𝑗 and
the perspectives of the intermediaries 𝜇𝐿, 𝜇𝑅.
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Figure 4-2: Timeline of the subscription-verification-disclosure game described in Sec-
tion 4.2

if 𝜇𝑘 < 0. The intermediaries’ perspectives are

𝜇𝐿 < 0 and 𝜇𝑅 > 0,

so that they have opposing preferences ex-ante.

We denote the distribution of subscribers’ perspectives induced from measure 𝜆 as

a CDF 𝐺0 : R → [0, 1]; we assume that 𝐺0 is strictly increasing with range (0, 1) so

that the density of followers’ perspectives is non-zero everywhere on the real line. We

also write 𝒢 as the space of measure functions that map R to [0, 1] and are strictly

increasing (note that not all elements of this space are CDFs).

Timeline. The game proceeds in four stages 0, 1, 2, 3 as depicted in Figure 4-2. Each

stage will be described in detail below. Here we summarize. Stage 0 represents the

subscription stage, at which each subscriber subscribes to an intermediary. At stage

1, Nature generates a piece of news, which may be informative about the state, and

privately discloses it to some of the intermediaries (with some probability). At stage 2,

intermediaries move. If an intermediary observes the news, then she decides whether

to verify it and whether to disclose it to her own subscribers. At stage 3, each sub-

scriber observes whether and what his intermediary discloses, updates his belief about

the state, and takes an action. All of these are common knowledge.
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Subscription choices. At stage 0, each subscriber simultaneously makes a subscrip-

tion choice to follow exactly one of the two intermediaries at zero cost. For each

subscriber 𝑗, we denote his subscription with 𝑠𝑗 ∈ {𝐿,𝑅}, which is his private infor-

mation. For any relationship 𝑠𝑗 = 𝑖, we refer to 𝑖 as subscriber 𝑗’s intermediary and

to 𝑗 as intermediary 𝑖’s subscriber. We write 𝑠 : [0, 1] → {𝐿,𝑅} as the profile of the

subscription choices. For simplicity of analysis, we assume that a 𝛿 > 0 fraction of

the subscribers are “noise subscribers", in that they are randomly assigned to one of

the intermediaries (with equal probabilities); the distribution of the noise subscribers’

perspectives is the same as the distribution of the perspective for overall population.

The subscription profile 𝑠 and the noise subscribers induce a measure on the sub-

scribers’ perspectives for each intermediary 𝑖 ∈ {𝐿,𝑅}. Specifically let 𝐺𝑠
𝑖 (𝜇) denote

the fraction of all subscribers who subscribe to intermediary 𝑖 and have perspectives

no more than 𝜇:4

𝐺𝑠
𝑖 (𝜇) =

𝛿

2
𝐺0(𝜇) + (1− 𝛿)𝜆

(︀
{𝑗 ∈ [0, 1]|𝑠𝑗 = 𝑖, 𝜇𝑗 ≤ 𝜇}

)︀
,

where the term 𝛿
2
𝐺0(𝜇) accounts for the noise subscribers and the second term ac-

counts for the subscribers who make their own subscription choices. We assume that

the measure functions 𝐺𝑠
𝐿 and 𝐺𝑠

𝑅 are public information to all the players; we denote

this common history at the end of subscription stage by 𝐺𝑠 = (𝐺𝑠
𝐿, 𝐺

𝑠
𝑅).

News and intermediary types. With probability 1−𝑝, each intermediary 𝑖 privately

receives a piece of news, a real number 𝑥 ∈ R, generated as follows. There are three

random variables: true news 𝑥𝑇 that is informative about the state 𝜃, false news 𝑥𝐹

that is independent of the state 𝜃, and a binary variable 𝜔 ∈ {𝑇, 𝐹} that indicates the

veracity of the news. The binary variable 𝜔 is drawn according to Bernoulli distribution
4As each subscriber chooses exactly one intermediary, the induced measures satisfy 𝐺𝑠

𝑅(𝜇) +
𝐺𝑠

𝐿(𝜇) = 𝐺0(𝜇) for any 𝜇 ∈ R and any subscription profile 𝑠.
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P(𝜔 = 𝐹 ) = 𝑞 with 𝑞 < 1. The news is determined as:

𝑥 =

⎧⎪⎨⎪⎩𝑥𝑇 , if 𝜔 = 𝑇,

𝑥𝐹 , if 𝜔 = 𝐹.

When 𝜔 = 𝑇 , the news 𝑥 = 𝑥𝑇 is informative about the state; the news 𝑥 = 𝑥𝐹 is

uninformative when 𝜔 = 𝐹 . We will use the terms true and informative (resp., false

and uninformative) interchangeably. When an intermediary 𝑖 observes a piece of news

𝑥, she does not know whether it is true (i.e. 𝑥 = 𝑥𝑇 ) or false (i.e. 𝑥 = 𝑥𝐹 ). She would

have updated her belief about the state if she knew that it is true, and she would not

update it if she knew that it is false. We assume that the probability of receiving a

piece of news does not depend on the realization of (𝑥𝑇 , 𝑥𝐹 , 𝜔). We set an intermediary

𝑖’s type as 𝑡𝑖 = 𝑥 if she observes 𝑥 for some 𝑥 ∈ R; we set her type as 𝑡𝑖 = ∅ if she

does not observe any news. Later in the game, the intermediaries may also garner

additional private information as we will see below.

Verification and disclosure. Upon observing her type 𝑡𝑖 = 𝑥, an intermediary

𝑖 decides whether to verify the news at a verification cost 𝐶 ≥ 0. Her verification

decision is denoted by 𝑣𝑖 ∈ {0, 1} where 𝑣𝑖 = 1 means verifying; 𝑣𝑖 is a function of 𝑥

and the subscription distributions 𝐺𝑠. If she verifies the news, she learns its veracity 𝜔.

Type 𝑡𝑖 = ∅ can only choose 𝑣𝑖 = 0. The resulting histories are denoted by (𝐺𝑠, 𝑡𝑖, 1, 𝜔)

or (𝐺𝑠, 𝑡𝑖, 0), depending on whether she verifies the news or not, respectively.

Next, intermediary 𝑖 sends a message 𝑚𝑖 ∈ {𝑡𝑖, ∅} to all of her subscribers; we

denote the message space by ℳ ≜ ∅∪R. When 𝑡𝑖 = 𝑥, she has the choice of disclosing

the news by choosing 𝑚𝑖 = 𝑥 or concealing it by choosing 𝑚𝑖 = ∅. When 𝑡𝑖 = ∅,

she can only send a message 𝑚𝑖 = ∅. Note that when 𝑡𝑖 = 𝑥, 𝑚𝑖 is a function of the

histories above.

Subscribers’ actions. Each subscriber 𝑗 observes only 𝐺𝑠, his subscription 𝑠𝑗 and
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his intermediary’s message 𝑚𝑠𝑗 . If 𝑚𝑠𝑗 = 𝑥, then subscriber 𝑗 knows that intermediary

𝑠𝑗 received the news 𝑥. If 𝑚𝑠𝑗 = ∅, subscriber 𝑗 observes that no news is disclosed and

cannot distinguish whether 𝑠𝑗 conceals information or has no information. Given his

private history ℎ𝑗 = (𝐺𝑠, 𝑠𝑗,𝑚𝑠𝑗), subscriber 𝑗 updates his belief about the state using

Bayes’ rule and then simultaneously takes a binary action 𝑎𝑗 aiming to match the sign

of the state. We write 𝜋𝑗(ℎ𝑗) for his posterior expectation of 𝜃 and 𝑎𝑗(ℎ𝑗) ∈ {−1,+1}

for his action.

Beliefs and information structure. Informative news is a noisy observation of

the state; specifically, we assume that 𝑥𝑇 = 𝜃 + 𝜖 where 𝜖 is an additive, zero-mean,

and independent continuous random noise with continuous density function 𝑓𝜖. From

player 𝑖’s perspective, the ex-ante joint probability density of 𝜃 and informative news

𝑥𝑇 is then given by 𝑓(𝜃−𝜇𝑖)𝑓𝜖(𝑥𝑇 − 𝜃). We then find the ex-ante marginal probability

density of informative news from player 𝑖’s perspective:

𝑓𝑇 (𝑥;𝜇𝑖) ≜
∫︁

𝑓(𝜃 − 𝜇𝑖)𝑓𝜖(𝑥− 𝜃)𝑑𝜃.

On the other hand, uninformative news 𝑥𝐹 is generated according to a continuous den-

sity function 𝑓𝐹 . Throughput this paper, we make the following regularity assumptions

on the density functions 𝑓 , 𝑓𝜖, and 𝑓𝐹 ; recall that 𝑓 is the density function of 𝜃 for

𝜇𝑖 = 0.

Assumption 5 The density functions 𝑓 , and 𝑓𝜖, 𝑓𝐹 are absolutely integrable, sym-

metric around zero, have full support on the real line, and continuously differentiable

almost everywhere. The density 𝑓 and 𝑓𝜖 are also assumed to be log-concave. We as-

sume that for any perspective 𝜇𝑖 ≥ 0 (resp. informative news 𝑥 ≥ 0), there exists some

informative news 𝑥 < 0 (resp. some perspective 𝜇𝑖 < 0) such that for any 𝜃 > 0

𝑓(𝜃 − 𝜇𝑖)𝑓𝜖(𝑥− 𝜃)

𝑓(−𝜃 − 𝜇𝑖)𝑓𝜖(𝑥+ 𝜃)
< 1. (4.2)
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The symmetry of 𝑓 around zero and its log-concavity capture a player’s perception

that a priori the state is more unlikely to be farther away from her perspective. The

log-concavity dictates that 𝑓 and 𝑓𝜖 have light tails for large values, leading to some

properties of a player’s posterior mean when observing informative news: (a) the pos-

terior mean is increasing in her perspective (𝑓); (b) it is increasing in the news value

(𝑓𝜖); (c) it lies between her perspective and the news value. Finally, condition (4.2)

means that the likelihood ratio of 𝜃 to −𝜃 is upper bounded by 1 for any 𝜃 > 0; in

turn, player 𝑖 observing true news 𝑥 reckons that the state is more likely to be negative

and holds negative posterior mean. Given the symmetry of the density functions, the

last assumption in fact requires that for any player 𝑖, there must exist some true news

𝑥 that can change the sign of her expectation. Moreover, it also dictates that for any

true news, there must exist some player who does not change the sign of her expec-

tation.5 An example is the family of Gaussian distributions, which results in a linear

updating rule of one’s expectation fusing her perspective and news. We will elucidate

the properties of belief updating in Section 4.3.

Solution concept and terminology

Our solution concept is pure-strategy perfect Bayesian equilibrium (PBE). By conven-

tion, we drop subscripts to denote profiles; for example, we write 𝑣 for {𝑣𝑖}𝑖∈{𝐿,𝑅}.

An assessment (𝑠, 𝑣, �̂�, �̂�, �̂�) is a PBE if (i) it is sequentially rational (i.e., each player

plays a best response to other players’ strategies at every information set given his be-

liefs) and (ii) the beliefs are derived from the strategies using the Bayes rule on every

equilibrium path that is reached with positive probability. We assume that each inter-

mediary 𝑖 does not disclose if she feels indifferent between disclosure or not; similarly,

each intermediary 𝑖 does not verify news if verifying it does not strictly improve her

expected utility.
5Since 𝑓 and 𝑓𝜖 are log-concave, the likelihood ratio can be regarded as a product of two monotone

likelihood ratios. One can show that when 𝜇𝑖 ≥ then (4.2) holds only if 𝑥 < 0. Otherwise, the ratio
is a product of two strictly increasing functions and surpasses 1 for any 𝜃 > 0.
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We identify the equilibria and discuss the implication of intermediaries’ and sub-

scribers’ strategies for the following scenarios:

• Section 4.4 considers the scenario when verification is not possible (𝑣𝑖 is restricted

to 0).

• Section 4.5 discusses the equilibria when intermediaries can choose to verify news

at a cost.

• Section 4.7 discusses a few variations of our model with illustrative examples.

We use the following terminology. The action space {−1,+1} naturally splits the

space of real numbers into three ideological leanings: right-leaning individuals with

positive prior 𝜇, who prefer action +1 ex-ante, left-leaning individuals with negative

prior 𝜇, who prefer action −1 ex-ante, and neutral individuals with 𝜇 = 0, who are ex-

ante indifferent; the measure of neutral subscribers is zero. We say that a subscriber 𝑗

exhibits homophily if she subscribes to the intermediary who shares his ideological lean-

ing, i.e., sign(𝜇𝑗) = sign(𝜇𝑠𝑗); we say that she exhibits anti-homophily if he subscribes

to the one with the opposite ideological leaning. Moreover, we say that 𝑗 exhibits

weak (resp. strict) homophily if she weakly (resp. strictly) prefers the intermediary

who shares his own ideological leaning ex-ante. Weak and strong anti-homophily are

defined similarly.

4.3 Equilibrium Structure

In this section, we identify structural properties of the communication between inter-

mediaries and subscribers after the subscription stage and the common history 𝐺𝑠 is

observed for any pure-strategy perfect Bayesian equilibrium.
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4.3.1 Belief updating and subscribers’ action strategies

We first study the Bayesian updating process of a player’s belief about the state given

her prior belief and information set, introducing a few notions that are useful for

following analysis. In particular, we will use the function 𝜋𝑗(𝐺
𝑠, 𝑠𝑗,𝑚𝑠𝑗) to represent

subscriber 𝑗’s posterior mean about the state that is updated using Bayes’ rule based

on his intermediary’s verification and disclosure strategies.

When observing news 𝑥, a player incorporates the news into her belief on the state

via Bayes’ rule and using her knowledge about the veracity of the news. Specifically,

for each intermediary 𝑖, she can choose to verify the news and learn its veracity. She

holds one of three possible beliefs about news veracity: (a) true news (𝜔 = 𝑇 ); (b) false

news (𝜔 = 𝐹 ); (c) uncertain about the news veracity. On the other hand, a subscriber

𝑗 who receives news 𝑥 from his intermediary (i.e., 𝑚𝑠𝑗 = 𝑥) updates his expectation

𝜋𝑗(𝐺
𝑠, 𝑠𝑗, 𝑥) while inferring whether the news was verified and, if so, whether it is true

or false. As we focus on pure-strategy equilibria, we can find that subscriber 𝑗’s belief

on the veracity of the news is also one of the three cases (a)-(c).6 For each case of

(a)-(c), player 𝑖’s posterior mean about the state is formed as below:

(a) true news (𝜔 = 𝑇 ): we denote player 𝑖’s posterior expectation on the state for

informative news as E𝑖[𝜃 |𝑥, 𝑇 ], which is given by:

E𝑖[𝜃 |𝑥, 𝑇 ] =
∫︀
𝜃𝑓(𝜃 − 𝜇𝑖)𝑓𝜖(𝑥− 𝜃)𝑑𝜃

𝑓𝑇 (𝑥;𝜇𝑖)
. (4.3)

(b) false news (𝜔 = 𝐹 ): a player 𝑖’s posterior expectation is the same as her

perspective 𝜇𝑖 (we will sometimes denote it as E𝑖[𝜃 |𝑥, 𝐹 ] for purpose of exposition).

(c) uncertain about the news veracity: player 𝑖 weighs in the likelihood that the

news is informative based on her prior on the state and the generation process of news.
6For subscriber 𝑗, the verification and disclosure strategies of his intermediary 𝑠𝑗 corresponding

to each case are described as follows: (a) intermediary 𝑠𝑗 verifies news 𝑥, and discloses it if and only if
it is true; (b) intermediary 𝑠𝑗 verifies news 𝑥, and discloses it if and only if it is false; (c) intermediary
𝑠𝑗 discloses news 𝑥 regardless of his verification decision and the result.
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We can find the likelihood that news 𝑥 is true based on player 𝑖’s prior belief:

P𝑖(𝑇 |𝑥) =
(1− 𝑞)𝑓𝑇 (𝑥;𝜇𝑖)

𝑞𝑓𝐹 (𝑥) + (1− 𝑞)𝑓𝑇 (𝑥;𝜇𝑖)
.

We write E𝑖[𝜃 |𝑥] as her posterior mean for this case and it is computed as

E𝑖[𝜃 |𝑥] = P𝑖(𝑇 |𝑥)E𝑖[𝜃 |𝑥, 𝑇 ] + (1− P𝑖(𝑇 |𝑥))𝜇𝑖,

= 𝜇𝑖 + P𝑖(𝑇 |𝑥)(E𝑖[𝜃 |𝑥, 𝑇 ]− 𝜇𝑖), (4.4)

where we observe that E𝑖[𝜃 |𝑥] is a convex combination of E𝑖[𝜃 |𝑥, 𝑇 ] and 𝜇𝑖.

On the other hand, when there is no disclosure, subscriber 𝑗 strategically updates

his belief on the state, speculating on the possibilities that his intermediary may have

accessed some news but decided to conceal it. He adjusts his expectation by account-

ing for the possible cases in which informative news ends up being concealed by his

intermediary:7

𝜋𝑗(𝐺
𝑠, 𝑠𝑗, ∅) = 𝜇𝑗 + P𝑗

(︀
∃ 𝑥𝑇 that is concealed

)︀(︀
E𝑗

[︀
𝜃
⃒⃒
∃ 𝑥𝑇 that is concealed

]︀
− 𝜇𝑗

)︀
.

(4.5)

Below we describe several properties of a belief function that are important for our

analysis; for the purpose of exposition, we denote a belief function of perspective 𝜇𝑖

and news 𝑥 by 𝑔(𝜇𝑖, 𝑥), which can represent either function E𝑖[𝜃 |𝑥, 𝑇 ] or E𝑖[𝜃 |𝑥].

Symmetry: A belief function 𝑔(𝜇𝑖, 𝑥) is said to be symmetric if for any 𝜇𝑖 and

any 𝑥

𝑔(𝜇𝑖, 𝑥) = −𝑔(−𝜇𝑖,−𝑥).

7Specifically, there are three cases that can lead to no disclosure: (i) his intermediary did not
receive any news; (ii) his intermediary received the news and concealed it without verification (true
or false news both ended up being concealed); (iii) his intermediary received the news, verified it, and
decided to conceal it after learning the news veracity.
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Monotonicity in news: A belief function 𝑔(𝜇𝑖, 𝑥) is said to be monotone in news

if it is strictly increasing in 𝑥 for any 𝜇𝑖.

Unboundedness of news: A belief function 𝑔(𝜇𝑖, 𝑥) is said to exhibit unbound-

edness of news if for every prior belief, there exists some news 𝑥 that switches the sign

of the expectation, i.e., for any 𝜇𝑖, lim
𝑥→+∞

𝑔(𝜇𝑖, 𝑥) > 0 and lim
𝑥→−∞

𝑔(𝜇𝑖, 𝑥) < 0.

Monotonicity in perspective: A belief function 𝑔(𝜇𝑖, 𝑥) is said to be monotone

in perspective if it is strictly increasing in 𝜇𝑖 for any news 𝑥.

Unboundedness of prior beliefs: A belief function 𝑔(𝜇𝑖, 𝑥) is said to exhibit

unboundedness of prior beliefs if for any news 𝑥, there exist a positive prior and a

negative prior for both of which the sign of the expectation does not change, i.e.,

lim
𝜇𝑗→+∞

𝑔(𝜇𝑖, 𝑥) > 0 and lim
𝜇𝑗→−∞

𝑔(𝜇𝑖, 𝑥) < 0.

Lemma 4.1 The function E𝑖[𝜃 |𝑥, 𝑇 ] is symmetric, monotone in news, monotone in

perspective, and satisfies unboundedness of news and unboundedness of prior beliefs

properties. The function E𝑖[𝜃 |𝑥] is symmetric, monotone in perspective, and satisfies

unboundedness of prior beliefs property.

The next lemma shows that when there is no disclosure, the posterior mean of a

subscriber also exhibits monotonicity in his perspective and the property of unbound-

edness of prior beliefs.

Lemma 4.2 Given any measurable strategies 𝑣𝑖,𝑚𝑖 of intermediary 𝑖, for any of her

subscriber 𝑗 (with 𝑠𝑗 = 𝑖), when there is no disclosure from intermediary 𝑖, his posterior

mean is increasing in his perspective 𝜇𝑗, i.e., 𝜋𝑗(𝐺
𝑠, 𝑖, ∅) is increasing in 𝜇𝑗. Moreover,

lim
𝜇𝑗→+∞

𝜋𝑗(𝐺
𝑠, 𝑠𝑗, ∅) > 0 and lim

𝜇𝑗→−∞
𝜋𝑗(𝐺

𝑠, 𝑠𝑗, ∅) < 0.

Thanks to the monotonicity in perspective and unboundedness of prior beliefs as

characterized in Lemma 4.1 and 4.2, the sign of a subscriber’s posterior mean, whether

he observes disclosure or not, can be found by comparing his perspective with a unique

threshold, which is a function of the message, his intermediary, and the common history

according to the intermediaries’ verification and disclosure strategies. Specifically, given
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any 𝐺𝑠 and any message 𝑚𝑖 sent by intermediary 𝑖, there exists a unique threshold,

denoted by ̂︀𝜇𝑖(𝐺
𝑠,𝑚𝑖) ∈ R, such that for any of her subscribers 𝑗 (𝑠𝑗 = 𝑖)

𝜋𝑗(𝐺
𝑠, 𝑖,𝑚𝑖) > 0 if and only if 𝜇𝑗 > ̂︀𝜇𝑖(𝐺

𝑠,𝑚𝑖),

where the threshold ̂︀𝜇𝑖(𝐺
𝑠,𝑚𝑖) is the unique perspective such that 𝜋𝑗(𝐺

𝑠, 𝑖,𝑚𝑖) = 0.

Since each subscriber 𝑗 aims to match the sign of the state based on his belief, this

observation suggests a structural form for subscribers’ action strategies as characterized

in the following definition:

Definition 4.1 We say that subscriber 𝑗 deploys a threshold action strategy if for any

private history (𝐺𝑠, 𝑠𝑗,𝑚𝑠𝑗), there exists a threshold ̂︀𝜇𝑠𝑗(𝐺
𝑠,𝑚𝑠𝑗) such that

𝑎𝑗(𝐺
𝑠, 𝑠𝑗,𝑚𝑠𝑗) = +1 if and only if 𝜇𝑗 > ̂︀𝜇𝑠𝑗(𝐺

𝑠,𝑚𝑠𝑗).

Lemma 4.3 In any equilibrium, each subscriber 𝑗 deploys threshold action strategy.

Moreover, for any private history ℎ𝑗 = (𝐺𝑠, 𝑠𝑗,𝑚𝑠𝑗), the threshold perspective ̂︀𝜇*
𝑠𝑗
(𝐺𝑠,𝑚𝑠𝑗)

is the unique perspective such that 𝜋*
𝑗 (ℎ𝑗) = 0 and the action yields expected utility⃒⃒

𝜋*
𝑗 (ℎ𝑗)

⃒⃒
.

Considering that subscribers deploy threshold action strategy, given any common

history and any news, each intermediary can evaluate the fractions of her subscribers

choosing +1 or −1 for her disclosure choices by using the perspective measures 𝐺𝑠

and the thresholds. Moreover, for any news, the decision making for disclosure al-

ways involves the threshold associated with no disclosure; we especially define critical

perspective as follows:

Definition 4.2 We refer to the threshold on perspective for no disclosure by interme-

diary 𝑖, i.e., ̂︀𝜇𝑖(𝐺
𝑠, ∅), as the critical perspective for intermediary 𝑖. We denote with 𝑘𝑖

a representative subscriber of intermediary 𝑖 who holds the critical perspective and call
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him critical subscriber.8

For each intermediary there must exist a critical subscriber, since both of the per-

spective measures 𝐺𝑠
𝐿, 𝐺

𝑠
𝑅 have full support for any subscription profile 𝑠 due to the

noise subscribers. We will alternatively write 𝜇𝑘𝑖 as the critical perspective. We lever-

age the critical perspectives for analysis of intermediaries’ decision making in the next

section.

4.3.2 Decision making for disclosure and verification

An intermediary 𝑖 receiving news 𝑥 (i.e., 𝑡𝑖 = 𝑥) decides whether to verify and whether

to disclose the news. Since her message 𝑚𝑖 ∈ ℳ can influence only her subscribers,

intermediary 𝑖 equivalently aims to maximize the aggregate utility of her subscribers

while considering their threshold action strategies:

E𝑖

[︁∫︁
𝑗∈[0,1]|𝑠𝑗=𝑖

𝜃𝑎*𝑗(𝐺
𝑠, 𝑖,𝑚𝑖)𝑑𝜆

⃒⃒⃒
𝐺𝑠, 𝑥

]︁
− 𝐶1I{𝑣𝑖=1} (4.6)

Though intermediary 𝑖 does not observe the identity of her subscribers, she can aggre-

gate her subscribers’ utilities using measure 𝐺𝑠
𝑖 and threshold perspectives according

to Lemma 4.3. Abusing the notation 𝑎*𝑗(𝐺
𝑠, 𝑖,𝑚𝑖, 𝜇𝑗) with 𝑠𝑗 = 𝑖, we can rewrite the

aggregate utility in (4.6) as

E𝑖

[︁∫︁
R
𝜃𝑎*𝑗(𝐺

𝑠, 𝑖,𝑚𝑖, 𝜇𝑗)𝑑𝐺
𝑠
𝑖

⃒⃒⃒
𝐺𝑠, 𝑥

]︁
= E𝑖

[︁
𝜃
[︀
𝐺𝑠

𝑖 (+∞)− 2𝐺𝑠
𝑖

(︀̂︀𝜇*
𝑖 (𝐺

𝑠,𝑚𝑖)
)︀]︀ ⃒⃒⃒

𝐺𝑠, 𝑥
]︁
,(4.7)

= E𝑖

[︀
𝜃
⃒⃒
𝐺𝑠, 𝑥

]︀[︀
𝐺𝑠

𝑖 (+∞)− 2𝐺𝑠
𝑖

(︀̂︀𝜇*
𝑖 (𝐺

𝑠,𝑚𝑖)
)︀]︀
,

where intermediary 𝑖’s expectation about the state is conditionally independent from

the aggregate actions of her subscribers, and in fact its sign determines her favored ac-

tion that she wants to persuade her subscribers to take. Her expectation on the state
8Among a continuum of subscribers, there may exist multiple ones who have the critical perspec-

tive.
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may be changed depending on her subsequent verification decision 𝑣𝑖 and verification

result. On the other hand, the fraction of her subscribers taking +1 (or −1) is a func-

tion of her message 𝑚𝑖. (The function value depends on her disclosure and verification

decisions which affect her subscribers’ inference on the space of news and veracity.)

Below we analyze intermediaries’ decision making and identify the properties in any

equilibrium using backward induction.

Disclosure decision

If intermediary 𝑖 verified news 𝑥 (𝑣𝑖 = 1) and learned its veracity 𝜔, she has posterior

mean E𝑖[𝜃 |𝑥, 𝜔] and chooses whether to disclose it so as to maximize (4.7).

𝑚*
𝑖 (𝐺

𝑠, 𝑥, 1, 𝜔) = ∅ ⇔ ∅ ∈ argmax
𝑚𝑖∈{∅,𝑥}

E𝑖

[︀
𝜃
⃒⃒
𝑥, 𝜔

]︀[︀
𝐺𝑠

𝑖 (+∞)− 2𝐺𝑠
𝑖

(︀̂︀𝜇*
𝑖 (𝐺

𝑠,𝑚𝑖)
)︀]︀
.

On the other hand, if she did not verify it (𝑣𝑖 = 0) and holds posterior mean E𝑖[𝜃 |𝑥],

𝑚*
𝑖 (𝐺

𝑠, 𝑥, 0) = ∅ ⇔ ∅ ∈ argmax
𝑚𝑖∈{∅,𝑥}

E𝑖

[︀
𝜃
⃒⃒
𝑥
]︀[︀
𝐺𝑠

𝑖 (+∞)− 2𝐺𝑠
𝑖

(︀̂︀𝜇*
𝑖 (𝐺

𝑠,𝑚𝑖)
)︀]︀
.

Since 𝐺𝑠
𝑖 (𝜇𝑗) is strictly increasing in 𝜇𝑗, intermediary 𝑖 receiving news 𝑥 effectively

makes her disclosure decision by comparing ̂︀𝜇*
𝑖 (𝐺

𝑠, 𝑥) and ̂︀𝜇*
𝑖 (𝐺

𝑠, ∅), choosing the lower

one if and only if she prefers +1. In another way, intermediary 𝑖 ponders on how her

critical subscriber would react to the news if observing it: If the news would sway her

critical subscriber to strictly prefer the action as she prefers, intermediary 𝑖 chooses to

disclose it or her critical subscriber would instead feel indifferent. The following lemma

formalizes this observation and further characterizes each intermediary’s disclosure

strategy and the ideological leaning of her critical subscriber.

Lemma 4.4 (disclosure strategy) In any equilibrium, for any common history 𝐺𝑠

and news 𝑥,

(i) intermediary 𝑖 discloses news 𝑥 if and only if she and her critical subscriber have
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the same belief sign when her critical subscriber receives the news, i.e.,

𝑚*
𝑖 (𝐺

𝑠, 𝑥, 0) = 𝑥 if and only if E𝑖[𝜃 |𝑥] 𝜋*
𝑘*𝑖
(𝐺𝑠, 𝑖, 𝑥) > 0,

and for any 𝜔 ∈ {𝑇, 𝐹}

𝑚*
𝑖 (𝐺

𝑠, 𝑥, 1, 𝜔) = 𝑥 if and only if E𝑖[𝜃 |𝑥, 𝜔] 𝜋*
𝑘*𝑖
(𝐺𝑠, 𝑖, 𝑥) > 0.

(ii) if news 𝑥 will not change the sign of her expectation even when it is informative,

intermediary 𝑖 chooses the same disclosure decision whether she learns news ve-

racity or not, i.e., for any 𝑥 such that 𝜇𝑖 E𝑖[𝜃 |𝑥, 𝑇 ] > 0, then 𝑚*
𝑖 (𝐺

𝑠, 𝑥, 1, 𝑇 ) =

𝑚*
𝑖 (𝐺

𝑠, 𝑥, 1, 𝐹 ) = 𝑚*
𝑖 (𝐺

𝑠, 𝑥, 0);

(iii) intermediary 𝑖 and her critical subscriber have the same ideology, i.e., 𝜇𝑖𝜇𝑘*𝑖
> 0;

(iv) intermediary 𝑖 discloses news 𝑥 if it is not against her ideology, i.e., for any

𝑥 such that 𝜇𝑖𝑥 ≥ 0, her equilibrium disclosure strategy is 𝑚*
𝑖 (𝐺

𝑠, 𝑥, 1, 𝑇 ) =

𝑚*
𝑖 (𝐺

𝑠, 𝑥, 1, 𝐹 ) = 𝑚*
𝑖 (𝐺

𝑠, 𝑥, 0) = 𝑥.

Part (ii) directly follows the result of part (i): If an intermediary prefers the action

in line with her perspective even if the news is true, it then suggests that she prefers the

action regardless of her verification decision and result (recall that E𝑖[𝜃 |𝑥] is a convex

combination of E𝑖[𝜃 |𝑥, 𝑇 ] and 𝜇𝑖, cf. (4.4)), and that she chooses the same disclosure

action for all of the three cases. Intuitively, because the verification result cannot be

observed by her subscribers, the intermediary has the incentive to deviate to make the

same disclosure decision. Specifically, suppose at an equilibrium intermediary 𝑖 chooses

different disclosure decisions, say 𝑚*
𝑖 (𝐺

𝑠, 𝑥, 1, 𝑇 ) ̸= 𝑚*
𝑖 (𝐺

𝑠, 𝑥, 1, 𝐹 ) for example. This

suggests that ̂︀𝜇*
𝑖 (𝐺

𝑠, 𝑥) ̸= ̂︀𝜇*
𝑖 (𝐺

𝑠, ∅) (otherwise, she just conceals), but intermediary 𝑖

would then deviate for the case of true news or false news.

Part (iii) states that the ideological leaning of an intermediary and her critical

subscriber must be aligned. The intuition is as follows. Without loss of generality,
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consider intermediary 𝑅 and suppose her critical subscriber ex-ante (weakly) prefers the

opposite wing. According to intermediary 𝑅’s disclosure strategy and the monotonicity

of belief functions in perspective, intermediary 𝑅 conceals news only when she weakly

prefers +1 whereas her critical subscriber would weakly prefer −1 if seeing the news.

This indicates that when there is no disclosure, the critical subscriber forms negative

posterior expectation, which is contradictory by definition. Therefore, the critical

perspective must have the same sign as the associated intermediary.

The ideological alignment between an intermediary and her critical perspective

suggests that the intermediary discloses any news in line with her ideology (cf. part

(iv)). It is because, regardless of the veracity of the aligned news, the intermediary and

her critical subscriber will both strictly prefer the same action which aligns with their

perspectives. Moreover, disclosing any aligned news in turn sustains this ideological

alignment: Now that only the news with the opposite sign from the intermediary’s

perspective may be concealed, when there is no disclosure, her subscribers accounts for

the possibility that some opposing news was concealed and adjust their expectation

towards the opposite wing. Then the critical perspective must be in line with the

intermediary’s so as to satisfy the indifference condition (cf. Lemma 4.3).

Verification decision

Knowing that she will play disclosure strategy 𝑚*
𝑖 , intermediary 𝑖 decides whether

to verify news 𝑥 so as to maximize (4.6):

𝑣*𝑖 (𝐺
𝑠, 𝑥) = 0 ⇔ 0 ∈ argmax

𝑣𝑖∈{0,1}
E𝑖

[︁
𝜃
[︀
𝐺𝑠

𝑖 (+∞)− 2𝐺𝑠
𝑖

(︀̂︀𝜇*
𝑖 (𝐺

𝑠,𝑚*
𝑖 (ℎ

𝑣𝑖
𝑖 ))
)︀]︀ ⃒⃒⃒

𝐺𝑠, 𝑥, 𝑣𝑖

]︁
− 𝐶1I{𝑣𝑖=1},

(4.8)

where

ℎ𝑣𝑖
𝑖 =

⎧⎪⎨⎪⎩(𝐺𝑠, 𝑥, 1, 𝜔), if 𝑣𝑖 = 1;

(𝐺𝑠, 𝑥, 0), if 𝑣𝑖 = 0.
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Precisely, if intermediary 𝑖 chooses not to verify the news (𝑣𝑖 = 0), the expected value

of (4.8) becomes

E𝑖[𝜃 |𝑥]
[︀
𝐺𝑠

𝑖 (+∞)− 2𝐺𝑠
𝑖

(︀̂︀𝜇*
𝑖

(︀
𝐺𝑠,𝑚*

𝑖 (𝐺
𝑠, 𝑥, 0)

)︀)︀]︀
, (4.9)

On the other hand, to evaluate whether verifying the news (𝑣𝑖 = 1) is more beneficial,

intermediary 𝑖 estimates the likelihood of the news being true (or false) and accounts

for her subsequent optimal disclosure decisions while incurring the verification cost:

P𝑖(𝑇 |𝑥) E𝑖[𝜃 |𝑥, 𝑇 ]
[︀
𝐺𝑠

𝑖 (+∞)− 2𝐺𝑠
𝑖

(︀̂︀𝜇*
𝑖

(︀
𝐺𝑠,𝑚*

𝑖 (𝐺
𝑠, 𝑥, 1, 𝑇 )

)︀)︀]︀
,

+
(︀
1− P𝑖(𝑇 |𝑥)

)︀
𝜇𝑖

[︀
𝐺𝑠

𝑖 (+∞)− 2𝐺𝑠
𝑖

(︀̂︀𝜇*
𝑖

(︀
𝐺𝑠,𝑚*

𝑖 (𝐺
𝑠, 𝑥, 1, 𝐹 )

)︀)︀]︀
− 𝐶.(4.10)

According to Lemma 4.4, intermediary 𝑖 chooses the same disclosure action for the

news that does not change her favored action regardless of its veracity. In this case, we

can observe that her expected utility from no verification (4.9) is larger than verifying

the news (4.10) by cost 𝐶, and intermediary 𝑖 decides not to verify it. It implies the

necessary condition for intermediary 𝑖 to verify news, as stated in the following lemma:

Lemma 4.5 (necessary condition for verification) In any equilibrium, for any 𝐺𝑠

and news 𝑥, intermediary 𝑖 verifies news 𝑥 only if the news, if it is informative, will

flip the sign of her expectation to the opposite, i.e.,

𝑣*𝑖 (𝐺
𝑠, 𝑥) = 1 only if 𝜇𝑖 E𝑖[𝜃 |𝑥, 𝑇 ] < 0.

Moreover, if intermediary 𝑖 verifies the news, she then chooses different disclosure

decisions for true news and false news after learning its veracity, i.e., if 𝑣*𝑖 (𝐺𝑠, 𝑥) = 1,

then 𝑚*
𝑖 (𝐺

𝑠, 𝑥, 1, 𝑇 ) ̸= 𝑚*
𝑖 (𝐺

𝑠, 𝑥, 1, 𝐹 ).

When observing some news that can change an intermediary’s favored action if it is

informative, she has an incentive to verify it and learn its veracity, based on which she

can tailor her disclosure decision and accordingly persuade her subscribers to take her
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favored actions. Moreover, if an intermediary verifies some news at the equilibrium, she

then has to choose different disclosure decisions for true and false news respectively, say

disclosing the news if and only if it is true (resp. if and only if it is false). Otherwise,

she can simply choose not to verify the news and make the same disclosure decision,

deriving the same expected aggregate utility of her subscribers without spending the

cost of verification.

The separating disclosure decisions asymmetrically signal the verification result to

the subscribers: When the news is true (resp. false) and disclosed, the subscribers

know that it is true (resp. false), whereas when the news is false (resp. true) and

concealed, the subscribers observe no disclosure, unable to distinguish it from no news

or other concealed news. We will see more details about the effect of this asymmetrical

signaling on subscription choices in Section 4.5.

The next theorem summarizes the equilibrium structure identified in Lemma 4.3,

4.4, and 4.5.

Proposition 4.1 Any perfect Bayesian equilibrium features the following properties:

(i) Each subscriber plays a threshold action strategy.

(ii) Each intermediary’s ideology and her critical subscriber’s are aligned.

(iii) Each intermediary discloses the news whose sign is not opposite from her ideology.

(iv) Each intermediary verifies news only if the news will switch her belief sign when

it is true.

(v) If an intermediary verifies news and learns its veracity, she chooses different

disclosure decisions for true news and false news.
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4.4 Equilibria without Verification Option

In this section, in order to understand how media bias in selective disclosure affects

subscription choices, we investigate the equilibria assuming that none of the interme-

diaries have the option of verifying news (corresponding to infinite cost of verification,

i.e., 𝐶 = +∞). Any player 𝑖 receiving news 𝑥 updates her expectation about the state

as E𝑖[𝜃 |𝑥]. We will study the characteristic of this belief function, illustrating the

variability in players’ reactions to extreme news with uncertain veracity. We in turn

categorize the subscribers as centrists and extremists, and investigate their equilibrium

subscription choices.

4.4.1 Variability in players’ reactions to news with uncertain

veracity

Below we exemplify the expectation of a player 𝑖 for news with unknown veracity

(E𝑖[𝜃 |𝑥]) by considering a Gaussian system for prior beliefs (𝑓) and generation process

of news (𝑓𝜖, 𝑓𝐹 ).

Example 4.1 Let 𝜑 be the PDF of the standard normal distribution. Consider 𝑓(𝑥) =
1
𝜎𝜃
𝜑( 𝑥

𝜎𝜃
), 𝑓𝜖(𝜖) = 1

𝜎𝜖
𝜑( 𝑥

𝜎𝜖
) and 𝑓𝐹 (𝑥) =

1
𝜎𝐹

𝜑( 𝑥
𝜎𝐹

) where standard deviations 𝜎𝜃, 𝜎𝜖, 𝜎𝐹 are

positive. Then

𝑓𝑇 (𝑥;𝜇𝑖) =
1

𝜎𝑇

𝜑(
𝑥− 𝜇𝑖

𝜎𝑇

)

where 𝜎𝑇 ≜
√︀
𝜎2
𝜃 + 𝜎2

𝜖 . The posterior mean of player 𝑖 for informative news 𝑥 is

E𝑖[𝜃 |𝑥, 𝑇 ] =
𝜎2
𝜖

𝜎2
𝑇

𝜇𝑖 +
𝜎2
𝜃

𝜎2
𝑇

𝑥;

her posterior mean for unknown veracity is updated as:

E𝑖[𝜃 |𝑥] =
(︀
1− P𝑖(𝜔 = 𝑇 |𝑥)

)︀
𝜇𝑖 + P𝑖(𝜔 = 𝑇 |𝑥)

(︀𝜎2
𝜖

𝜎2
𝑇

𝜇𝑖 +
𝜎2
𝜃

𝜎2
𝑇

𝑥
)︀
,
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where P𝑖(𝑇 |𝑥) =
1−𝑞
𝜎𝑇

𝜑(
𝑥−𝜇𝑖
𝜎𝑇

)

𝑞
𝜎𝐹

𝜑( 𝑥
𝜎𝐹

)+ 1−𝑞
𝜎𝑇

𝜑(
𝑥−𝜇𝑖
𝜎𝑇

)
.

Figure 4-3: The posterior mean as a function of news 𝑥 when news veracity is uncertain
and the signal structures are Gaussian variables: 𝜎𝜃 = 𝜎𝜖 = 1.5 (𝜎2

𝑇 = 4.5) and 𝑞 =
0.2, 𝜇𝑖 = 2.

For Gaussian distributions, the posterior mean E𝑖[𝜃 |𝑥], as a function of news,

features a variety in the player’s reaction to the news that is away from her perspective,

as illustrated in Figure 4-3 for three different cases. The asymptotic trend of the

posterior mean varies with the relative density between the tails of the distributions

of true and false news. When the variance in false news (𝜎𝐹 ) is smaller than that in

true news (𝜎𝑇 ) (cf. blue curve), the player reckons that the news that is away from

her perspective, regardless of which ideological extreme the news lies in, is more likely

to be true and updates her belief mean closer to the posterior mean for true news.

By contrast, if the variance in false news is greater (cf. green curve), she regards

the extreme news as likely to be false and her belief mean is updated close to her

perspective. Lastly, when the variances are equal (cf. red curve), the player thinks

that the extreme news in line with her perspective is likely to be true whereas the
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extreme news on the opposite ideology is probably false. We will leverage this finding

for many of our examples in the following sections.

From Figure 4-3 we also observe that there may exist some extreme perspectives

such that the sign of corresponding posterior mean is unchanged for any news with

unknown veracity (cf. red and green curve). Based on the monotonicity of belief

function in perspective, the range for such perspective values can be identified by the

following bounds:

𝜈𝐿 ≜ max{𝜇𝑖 ∈ R|E𝑖[𝜃 |𝑥] ≤ 0 ∀𝑥 ∈ R};

𝜈𝑅 ≜ min{𝜇𝑖 ∈ R|E𝑖[𝜃 |𝑥] ≥ 0 ∀𝑥 ∈ R}.

Note that 𝜈𝐿 ∈ [−∞, 0), and that 𝜈𝐿 = −𝜈𝑅 by the symmetry of 𝑓, 𝑓𝜖, 𝑓𝐹 around zero.

We now define centrist and extremist subscribers as follows:

Definition 4.3 Given any belief system and generation process of news, we refer to

any subscriber 𝑗 with 𝜇𝑗 ≤ 𝜇ext
𝐿 or 𝜇𝑗 ≥ 𝜇ext

𝑅 as an extremist, where

𝜇ext
𝐿 ≜ max{𝜇𝐿, 𝜈𝐿} and 𝜇ext

𝑅 ≜ min{𝜇𝑅, 𝜈𝑅};

otherwise, we call subscriber 𝑗 as a centrist.

The definition of extremists is based on whether their perspectives are relatively

more extreme than an intermediary or they can not be influenced to change their

favored actions via any news with uncertain veracity.

4.4.2 Subscription choices of centrists and extremists

First, the disclosure strategy stated in Lemma 4.4 can be reduced to the following rule

𝑚*
𝑖 (𝐺

𝑠, 𝑥, 0) = 𝑥 if and only if E𝑖[𝜃 |𝑥] E𝑘*𝑖
[𝜃 |𝑥] > 0. (4.11)
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Based on (4.11), we identify the equilibria and the subscription choices in the following

proposition:

Proposition 4.2 When verification option is not possible, equilibria exist and all the

equilibria feature the unique intermediaries’ disclosure strategies and the two unique

critical perspectives for each intermediary. The critical subscribers are both centrists,

i.e., 𝜇𝑘*𝑖
is between 0 and 𝜇ext

𝑖 . In any equilibrium,

• strict anti-homophily among all the centrists: for any subscriber 𝑗, if

𝜇𝑗 ∈ (𝜇ext
𝐿 , 0), then 𝑠*𝑗 = 𝑅; on the other hand, if 𝜇𝑗 ∈ (0, 𝜇ext

𝑅 ), then 𝑠*𝑗 = 𝐿.

• indifference among all the extremists: for any subscriber 𝑗 such that 𝜇𝑗 /∈

(𝜇ext
𝐿 , 𝜇ext

𝑅 ) or 𝜇𝑗 = 0, subscribing to either intermediary results in the same ex-

ante expected utility.

The equilibrium critical subscribers must be centrists. If the critical subscribers

are otherwise extremists (ideologically more extreme than their own intermediary or

do not change their favored action for any news), the disclosure strategy (4.11) and the

monotonicity of belief function in perspective together suggest that an intermediary

conceals news only when it switches her favored action but will not change her critical

subscriber’s. Then the critical subscriber in turn strictly prefers the action aligned with

his ideology when there is no disclosure, making the indifference condition unsatisfied.

The qualitative properties of equilibrium subscription choices are robust to the ex-

ante probability of news being false and the variability in players’ reaction to extreme

news (cf. Figure 4-3). In fact, the subscription choices and disclosure strategies are

rooted at the change in the intermediaries’ favored actions in reaction to news and the

monotonicity of belief mean in perspective, as we will explain below.

When making a subscription choice, each subscriber accounts for potential utility

loss incurred in the event of no disclosure where he may take an action that is not opti-

mal if he were to observe his intermediary’s type (some news 𝑥 or no news). Specifically,

the nondisclosure event can result from multiple possibilities (either no news or some
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concealed news that opposes his intermediary’s perspective), but the subscriber cannot

distinguish the underlying reason, only to take one action which may be sub-optimal

for part of the possible causes. The subscriber chooses an intermediary to minimize this

expected loss from the mismatch between his best-response action in the nondisclosure

event and his optimal action if he could observe the information set of his intermediary.

If subscribing to the intermediary with opposite ideology, a subscriber effectively

takes his optimal action for any news realization, achieving his ex-ante best expected

payoff. According to Lemma 4.4, the news that is concealed by the opposite inter-

mediary must be against her ideology, that is, must be in line with the subscriber’s

perspective. As the subscriber’s optimal action for no news also aligns with his per-

spective, it suggests that when there is no disclosure the subscriber will take the action

aligned with his ideology, which is optimal for concealed news and no news.

On the other hand, if making homophilic subscription choices, due to the iden-

tification problem in the non-disclosure event, centrists cannot effectively take their

optimal actions for some news advocating the opposite ideology from theirs, incurring

some loss in their ex-ante expected utility. Specifically, no disclosure can be attributed

to either no news or to some concealed news that opposes the intermediary’s ideology

and can sway her critical subscriber, who is a centrist with the same ideology, to take

the opposite action. It suggests that the centrist would maintain his ex-ante favored

action if he knew there was no news, but for some news concealed by this intermedi-

ary with aligned ideology he would prefer the opposite action if he could observed the

news. The centrist then reckons that ex-ante there must be some news realizations (or

the case of no news) for which his corresponding optimal action is opposite from the

single action he will take in the non-disclosure event. As a result, the centrist makes

an anti-homophilic subscription choice.

In contrast, the extremists are still able to achieve their best expected payoff even

if making homophilic subscription choices. When there is no disclosure, extremists

choose the action in line with their own perspective and they know that it is optimal for
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whatever news realizations that lead to no disclosure. First, for an extremist who never

switches the sign of his expectation whatever news he observes (i.e., the magnitude of

his perspective is no less than |𝜈𝑖|), he always takes the action aligned with his ideology,

which is his optimal action for any news realization. Indeed, his action strategy is

independent of both intermediaries’ disclosure decisions and hence he finds indifference.

Second, for an extremist who is more extreme than the intermediary on the same wing,

he knows that any opposing news that will flip his favored action is certainly disclosed

by the aligned intermediary as well and he can then choose his optimal action. It is

because such opposing news also flips the intermediary’s favored action, incentivizing

her to disclose it to persuade her subscribers. Consequently, the extremist knows that

the action aligned with his perspective is optimal for any case that leads to no disclosure

and can obtain his best ex-ante expected payoff.

Finally, as a special case, we can find the equilibria when ex-ante there is no false

news (i.e., 𝑞 = 0) and 𝜈𝑅 = −𝜈𝐿 = +∞:

Corollary 4.1 When ex-ante there is no false news, i.e., 𝑞 = 0, in any equilibrium,

• strict anti-homophily among all the centrists: For any subscriber 𝑗, if

𝜇𝑗 ∈ (𝜇𝐿, 0), then 𝑠*𝑗 = 𝑅; on the other hand, if 𝜇𝑗 ∈ (0, 𝜇𝑅), then 𝑠*𝑗 = 𝐿.

• indifference among all the extremists: For any intermediary 𝑖 and any

subscriber 𝑗 such that 𝜇𝑗 /∈ (𝜇𝐿, 𝜇𝑅) or 𝜇𝑗 = 0, there exists an equilibrium in

which 𝑠*𝑗 = 𝑖.

Corollary 4.1 generalizes our preliminary result in Hsu et al. (2020b), in which

players’ beliefs and the additive noise in informative news are Gaussians. As news

must be informative, for each subscriber there must exist some informative news that

can change his favored action. The extremists find indifference between the intermedi-

aries because both intermediaries disclose the informative news that flips their favored

actions.
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4.5 Equilibria with Verification Option

In this section we study the general model in which only the two intermediaries can

verify the veracity of news. As Proposition 4.1 shows, each intermediary verifies the

news only if it is opposing her ideology. Moreover, since verification results are com-

pletely unobservable to subscribers, upon receiving some news, a subscriber has to

infer the news veracity and update his belief according to his intermediary strategies;

the intermediaries need to signal verification results via their disclosure decisions. In

the following discussion, we concentrate on the equilibria in which each intermediary

discloses the news that is verified if and only if it is informative.

Definition 4.4 We refer to the class of equilibria in which each intermediary chooses

to disclose the news that is verified if and only if it is true as true-news-disclosing

equilibria.

In the class of true-news-disclosing equilibria, when an intermediary disclosed un-

favorable news against her ideological perspective, her subscribers reckon that if the

news was verified, it must be that this news is informative and has changed their

intermediary’s favored action.

We note that when ex-ante there is no false news (i.e. 𝑞 = 0), any news is in-

formative for sure and intermediaries do not verify, considering whether to disclose

informative news. The corresponding equilibrium subscription choices are as charac-

terized in Corollary 4.1. In the following discussion we therefore focus on the case 𝑞 > 0

and we study the equilibria for 𝐶 = 0 and 𝐶 > 0.

Equilibrium with zero verification cost 𝐶 = 0

Costless fact-checking is beneficial for the intermediaries when their own favored ac-

tion may be changed by informative news; in fact, we show that the necessary condition

in Lemma 4.5 is also sufficient:
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Lemma 4.6 (sufficient condition for verification when the cost is zero) When

𝑞 > 0 and 𝐶 = 0, in any equilibrium, for any common history 𝐺𝑠 and news 𝑥, inter-

mediary 𝑖 verifies the news if it will change the sign of her expectation about the state

when it is true, i.e., 𝑣*𝑖 (𝐺𝑠, 𝑥) = 1 if 𝜇𝑖 E𝑖[𝜃 |𝑥, 𝑇 ] < 0.

The following proposition identifies subscription choices in the true-news-disclosing

equilibria.

Proposition 4.3 Given 𝑞 > 0 and both intermediaries can verify news at cost 𝐶 = 0,

true-news-disclosing equilibria exist and feature the unique intermediaries’ strategies

and the unique set of critical perspectives. The critical subscribers are centrists, i.e.,

𝜇𝑘*𝑖
is between 0 and 𝜇ext

𝑖 . In any true-news-disclosing equilibrium,

• strict anti-homophily among the centrists: for any subscriber 𝑗 with 𝜇𝑗 ∈

[𝜇𝑘*𝐿
, 0), then 𝑠*𝑗 = 𝑅; on the other hand, if 𝜇𝑗 ∈ (0, 𝜇𝑘*𝑅

] then 𝑠*𝑗 = 𝐿;

• strict homophily among all the extremists: for any subscriber 𝑗, if 𝜇𝑗 ≤

𝜇ext
𝐿 , then 𝑠*𝑗 = 𝐿; on the other hand, if 𝜇𝑗 ≥ 𝜇ext

𝑅 , then 𝑠*𝑗 = 𝑅;

• for any subscriber 𝑗 with 𝜇𝑗 = 0, she feels indifferent between the two intermedi-

aries.

Figure 4-4 illustrates the strategies of intermediary 𝑅 and the subscription choices

in the true-news-disclosing equilibria when 𝐶 = 0. According to Lemma 4.5 and 4.6,

each intermediary verifies news if and only if it will flip her favored action when it

turns out to be informative, and then chooses different disclosure decisions to signal

the verification result. Below we examine the subscription choices of extremists and

centrists through the two functions of intermediaries: verifying news and selective

disclosure. For simplicity we discuss the rationale for the right-leaning subscribers.

A right-leaning subscriber cares about the veracity of the left-leaning news that

is extreme since his favored action will be switched to −1 if the news is informative.

For the other news values, including any right-leaning news, he prefers action +1
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Figure 4-4: Verification and disclosure strategy of leader 𝑅 and the subscription choices
in the true-news-disclosing equilibria as described in Proposition 4.3.

regardless of its veracity. If subscribing to intermediary 𝐿, since only right-leaning

news (unverified or verified as false news) or no news can lead to no disclosure by

intermediary 𝐿, the right-leaning subscriber takes +1 in the non-disclosure event and it

is his optimal action for both concealed news and no news. However, since intermediary

𝐿 does not verify any left-leaning news and only discloses it (cf. Proposition 4.1), the

subscriber can only take the same action for left-leaning news whether it is true or

false, suggesting that he does not benefit from intermediary 𝐿’s function of verifying

news.

By contrast, intermediary 𝑅 verifies left-leaning extreme news, but concealing false

news to signal verification results couples with no news and her concealment of some

unverified left-leaning news in the non-disclosure event, interfering right-leaning sub-

scribers’ extraction of this verification benefit. Indeed, the extremists can derive the

benefit from intermediary 𝑅’s verifying left-leaning news whereas the centrists who

are not as extreme as critical subscriber of intermediary 𝑅 (i.e., their perspectives are

between 0 and 𝜇𝑘*𝑅
) cannot. This result leads to homophily among all the extremists

but anti-homophily among the centrists; we explain it below.

For a right-leaning extremist, any left-leaning news that flips his favored action

to −1 if it is true also flips intermediary 𝑅’s. Therefore, the extremist knows that

intermediary 𝑅 will verify the left-leaning news and disclose it when it is true; in turn

he can take his optimal action −1 as long as intermediary 𝑅 observes such news. For
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all the other news and the case of no news, the extremist maintains the sign of his

expectation about the state and prefers action +1. It then suggests that even when

there is no disclosure from intermediary 𝑅, the extremist has no concern that there

exists some news that switches his favored action (otherwise, it would be disclosed by

intermediary 𝑅), and he takes his optimal action +1, regardless of the underlying cause

of no disclosure. Consequently, by subscribing to intermediary 𝑅, the right-leaning

extremist effectively takes his optimal action for any news value and any veracity,

achieving his best ex-ante expected payoff. It is better than choosing intermediary 𝐿,

who does not verify any left-leaning news whose veracity matters to the extremist’s

action.

On the other hand, for a right-leaning centrist who is not as extreme as critical

subscriber of intermediary 𝑅, the identification problem he faces in the non-disclosure

event makes him unable to derive the benefit from intermediary 𝑅’s verifying left-

leaning extreme news as the extremists do. Specifically, no disclosure can also result

from concealment of left-leaning news that is not verified by intermediary 𝑅 (such news

can be true), besides no news and false left-leaning news. With a perspective close to 0,

the centrist thinks that informative news is around 0 with high probability and reckons

that no disclosure is more likely attributed to concealment of unverified left-leaning

news that is true (intermediary 𝑅 verifies only extreme news), therefore choosing −1.

As a result, for any left-leaning news value that is verified by intermediary 𝑅, the

centrist ends up taking action −1 for both true news (it is disclosed and switches his

favored action to −1) and false news (it is concealed and he chooses −1), unable to

take his optimal actions correspondingly.9 Moreover, choosing −1 in the non-disclosure

event incurs loss if there is in fact no news or false news and his optimal action is +1.
9Given any news value, the expected utility resulting from taking action −1 is weakly worse

than choosing an action to maximize expected utility based on the news value while speculating its
veracity. Therefore, in terms of the left-leaning news value verified by intermediary 𝑅, the centrist
derives weakly lower ex-ante expected utility from intermediary 𝑅 than 𝐿: He effectively takes −1
for the news value if following intermediary 𝑅 whereas intermediary 𝐿 discloses the news so that he
observes it and makes his best response.
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Overall, considering that he cannot benefit from intermediary 𝑅’s verification and may

take a sub-optimal action in the non-disclosure event, the centrist finds it strictly more

beneficial to subscribe to intermediary 𝐿.

Equilibrium with non-zero verification cost 𝐶 > 0

We consider the scenario in which the verification comes with positive cost, i.e.,

𝐶 > 0.10 Due to the cost, each intermediary does not verify all of the opposing news

that, if it is informative, changes her favored action. To reckon whether verifying news

is worth the cost, the intermediary has to account for not only the likelihood of the

news being true or false and her belief mean for each case, but also the fraction of her

subscribers who can be persuaded.

We find that the anti-homophily still arises among the centrists: The identifica-

tion problem in the non-disclosure event still makes centrists unable to benefit from

verification by the intermediary with aligned ideology and also leads to utility loss

due to misaligned optimal actions for underlying causes of no disclosure, pushing the

centrists to make anti-homophilic subscription choices. On the other hand, there is

weak homophily exhibited in the extremists’ subscription choices: They either strictly

prefer the aligned intermediary or feel indifferent. As discussed in Proposition 4.3, an

extremist strictly prefers the aligned intermediary because she verifies the news that

potentially changes the sign of his expectation about the state and discloses it if it is

informative. However, when news verification is costly, it can happen that any such

news is not verified by the aligned intermediary; in this case, the extremist then finds

indifferent between the two intermediaries. The following proposition summarizes the

equilibrium subscription choices when 𝐶 > 0.

Proposition 4.4 Given 𝑞 > 0 and both intermediaries can verify news at cost 𝐶 > 0,

in any true-news-disclosing equilibrium, the critical subscribers are centrists, i.e., 𝜇𝑘*𝑖

10The cost is implicitly assumed on a moderate level so that the intermediaries still have incentives
to verify some news. Otherwise, the results would be equivalent to the case when verification is not
possible (cf. Proposition 4.2).
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is between 0 and 𝜇ext
𝑖 , and strict anti-homophily arises among the centrists whereas

weak-homophily emerges among all the extremists.

4.6 Comparative Statics on Subscription Choices

In this section, we study how the subscription choices may change with the ideological

biases of the intermediaries and the cost of verification. In particular, we investigate

the fine grains of the weak homophily among the extremist subscribers, characterizing

the subsets of the extremists who strictly prefer the aligned intermediary and who finds

indifference. Our discussion will be focused on right-leaning players for simplicity.

4.6.1 Intermediaries’ perspectives and the set of extremists

From Proposition 4.2, 4.3, and 4.4, we observe that the equilibrium subscription choices

of right-leaning subscribers do not vary with intermediary 𝐿’s ideological bias. It is

because right-leaning subscribers, whose favored actions may be switched only by left-

leaning news, find that intermediary 𝐿 deploys the same verification and disclosure

strategy for any left-leaning news regardless of her ideological bias. In turn the right-

leaning subscribers, whose favored actions may be switched only by left-leaning news,

derive the identical ex-ante expected utility if subscribing to intermediary 𝐿.

By contrast, since intermediary 𝑅 with a different perspective deploys different

strategies for left-leaning news, the subscription choices of right-leaning subscribers

change with intermediary 𝑅’s ideological bias. Indeed, the boundary 𝜇ext
𝑅 that distin-

guishes right-leaning extremists and centrists for their different subscription choices

depends on intermediary 𝑅’s perspective 𝜇𝑅 as well as the bound 𝜈𝑅. Specifically, the

boundary 𝜇ext
𝑅 is the smaller value of 𝜇𝑅 and 𝜈𝑅. We discuss how the boundary scales

with intermediary 𝑅’s perspective in two cases: 𝜈𝑅 is infinite or finite.

When 𝜈𝑅 = +∞(= −𝜈𝐿), e.g., when ex-ante there is no false news (𝑞 = 0) or

𝜎𝑇 > 𝜎𝐹 in Example 4.1, the boundary equals intermediary 𝑅’s perspective. When
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intermediary 𝑅’ perspective moves to the extreme (i.e., 𝜇𝑅 is increased), there are more

right-leaning centrists, who tend to subscribe to intermediary 𝐿 due to their concern

about left-leaning news close to the neutrality being concealed by intermediary 𝑅. If

intermediary 𝐿 also has an extreme perspective, i.e., the two intermediaries are sharply

polarized, there is a wide range of centrists who make anti-homophilc subscription

choices.

On the other hand, when ex-ante false news exists and the bound 𝜈𝑅 is finite

(e.g., 𝜎𝑇 ≤ 𝜎𝐹 in Example 4.1), there are extremists whose favored actions can be

influenced only by informative news: The right-leaning extremists with perspectives

no less than 𝜈𝑅 always weakly prefer intermediary 𝑅 regardless of her perspective,

since only intermediary 𝑅 may verify left-leaning news and disclose it if it is true.

In other words, the range of the right-leaning centrists, who exhibit anti-homophilic

subscription behavior, does not scale up with intermediary 𝑅’s perspective, limited by

the bound 𝜈𝑅.

4.6.2 Strict homophily and indifference among the extremist

subscribers

Weak homophily arises among all the extremists no matter what level of verification

cost is. In the following example, we further study how the subsets of the extremists

who strictly prefer the aligned intermediary and who feel indifference can vary with

the verification cost and the intermediaries’ perspectives.

Example 4.2 (strict homophily and indifference among the extremists) Suppose

that 𝑓, 𝑓𝜖, 𝑓𝐹 are Gaussian distributions as described in Example 4.1 and that 𝜎2
𝑇 = 𝜎2

𝐹 ,

We assume that the intermediaries have biases large enough such that |𝜇𝑖| > |𝜈𝑖|. We

also assume that there are more extremist subscribers than the centrists for both ide-
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ological wings; particularly, for 𝑖 ∈ {𝐿,𝑅},

|𝐺0(𝜈𝑖)−𝐺0(𝜇𝑖)| > |𝐺0(0)−𝐺0(𝜈𝑖)|

We analyze the verification strategy of intermediary 𝑅 and right-leaning subscribers;

the case for left-leaning players can be similarly derived by symmetry.

Intermediary 𝑅 verifies news 𝑥 only if it can flip her favored action when it is true,

i.e., E𝑅[𝜃|𝑥, 𝑇 ] < 0. Given equilibrium perspective measures (𝐺𝑠*
𝐿 , 𝐺𝑠*

𝑅 ) and the cost,

one can further show that in a true-news-disclosing equilibrium, for any news 𝑥 such

that E𝑅[𝜃|𝑥, 𝑇 ] < 0, intermediary 𝑅 verifies the news only if

P𝑅(𝑇 |𝑥)E𝑅[𝜃|𝑥, 𝑇 ] 2
(︀
𝐺𝑠*

𝑅 (̂︀𝜇*
𝑅(∅))−𝐺𝑠*

𝑅 (̂︀𝜇*
𝑅(𝑥)

)︀
⏟  ⏞  

the fraction who are persuaded if 𝑥 is true and disclosed

> 𝐶, (4.12)

where ̂︀𝜇*
𝑅(𝑥) stands for the perspective threshold when the subscribers know that news

𝑥 is true, i.e., E𝑗[𝜃 |𝑥, 𝑇 ] = 0 if 𝜇𝑗 = ̂︀𝜇*
𝑅(𝑥). Recall that the equilibrium critical

subscribers are centrists; we have the relation ̂︀𝜇*
𝑅(∅) < 𝜈𝑅 < 𝜇𝑅 < ̂︀𝜇*

𝑅(𝑥). Intuitively,

the condition (4.12) means that deviating to not verifying and concealing the news

(intermediary 𝑅 prefers +1 for any news with unknown veracity) is not beneficial.11

Moreover, intermediary 𝑅 can verify the news in an equilibrium if the condition (4.12)

holds; below we study the equilibria in which she chooses to verify when (4.12) is

satisfied.

Using two simple bounds on the fraction of her subscribers who are persuaded

and the fact that P𝑅(𝑇 |𝑥)E𝑅[𝜃|𝑥, 𝑇 ] is unimodal in the range of news 𝑥 for which

E𝑅[𝜃|𝑥, 𝑇 ] < 0, we identify the subsets of extreme left-leaning news that intermediary

𝑅 verifies and doe not verify in the following analysis, which is illustrated in Figure 4-5.
11Specifically, when intermediary 𝑅 verifies news 𝑥 in an equilibrium, she discloses true news

whereas conceals false news. If she deviates to not verifying it, then given the news with unknown
veracity her posterior expectation about the state is positive (𝜇𝑅 > 𝜈𝑅) and she will conceal the news
because ̂︀𝜇*

𝑅(∅) < ̂︀𝜇*
𝑅(𝑥). The condition (4.12)dictates that intermediary 𝑅 derives higher expected

payoff from verifying the news so as she will not deviate.
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Figure 4-5: Illustration of intermediary 𝑅’s decision-making of verifying left-leaning
news that satisfies E𝑅[𝜃|𝑥, 𝑇 ] < 0 in Example 4.2.

• News that is verified and the extremists who make homophilic choices:

The magnitude of the fraction is lower bounded by |
(︀
𝐺0(𝜈𝑅)−𝐺0(𝜇𝑅)

)︀
𝛿
2
|, which

results from the noise subscribers with perspectives in the range (𝜈𝑅, 𝜇𝑅). Inter-

mediary 𝑅 verifies the news 𝑥 if

P𝑅(𝑇 |𝑥)E𝑅[𝜃|𝑥, 𝑇 ]
(︀
𝐺0(𝜈𝑅)−𝐺0(𝜇𝑅)

)︀
𝛿 > 𝐶. (4.13)

Intermediary 𝑅 verifies news 𝑥 if 𝑥 ∈ (𝑥V
𝑅, �̄�

V
𝑅) where 𝑥V

𝑅 ≤ �̄�V
𝑅 < 0 both satisfy the

indifference condition in (4.13). Consequently, any subscriber 𝑗 with perspective

𝜇𝑗 ∈ [𝜇ext
𝑅 , 𝜇sH

𝑅 ), where 𝜇sH
𝑅 is the unique perspective such that E𝑗[𝜃 |𝑥V

𝑅, 𝑇 ] = 0

when 𝜇𝑗 = 𝜇sH
𝑅 , strictly prefers intermediary 𝑅 because she verifies some news

that will affect his action if it is true.

• News that is not verified and the extremists who find indifference: The

magnitude of the fraction is at most |
(︀
𝐺0(0)−𝐺0(+∞)

)︀
(1− 𝛿

2
)|, which comprises
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all the right-leaning subscribers (except for some noise subscribers). Intermediary

𝑅 does not verify news 𝑥 if

P𝑅(𝑇 |𝑥)E𝑅[𝜃|𝑥, 𝑇 ]
(︀
𝐺0(0)−𝐺0(+∞)

)︀
(2− 𝛿) < 𝐶. (4.14)

Intermediary 𝑅 does not verify news 𝑥 if 𝑥 ≤ 𝑥NV
𝑅 for some threshold 𝑥NV

𝑅 < 0 that

satisfies the indifference condition in (4.14). For any subscriber 𝑗 with perspective

𝜇𝑗 ≥ 𝜇ind
𝑅 , where 𝜇ind

𝑅 is the unique perspective such that E𝑗[𝜃 |𝑥NV
𝑅 , 𝑇 ] = 0 when

𝜇𝑗 = 𝜇ind
𝑅 , he feels indifferent between the intermediaries since no intermediaries

verify the news of which he desires to learn the veracity.

Figure 4-6 depicts how the extremists’ subscription behavior of strict homophily

and indifference vary with the verification cost. When the cost is zero, intermediary

𝑅 verifies any news 𝑥 for which E𝑅[𝜃|𝑥, 𝑇 ] < 0, and strict homophily arises among

all the extremists (cf. Proposition 4.3). As the cost is increased, the two bounds

on the fraction in Figure 4-5 move downwards, capturing intermediary 𝑅’s increased

reluctance to verify news. As a result, more right-leaning subscribers on the very

extreme feel indifferent between the intermediaries (𝜇ind
𝑅 moves towards 0) and less

right-leaning subscribers strictly prefer intermediary 𝑅 (𝜇sH
𝑅 moves towards 0). When

the cost becomes sufficiently large and the intermediaries find verification not beneficial

for any news, all the extremists feel indifferent, which corresponds to Proposition 4.2

when verification is not possible.

We also remark that the range of news 𝑥 for which E𝑅[𝜃|𝑥, 𝑇 ] < 0 is decreasing in her

perspective, and so is the magnitude of the product P𝑅(𝑇 |𝑥)E𝑅[𝜃|𝑥, 𝑇 ]: Intermediary

𝑅 with a more extreme perspective thinks that left-leaning news is more unlikely to

be true and even if it is true her posterior mean tends to be on the right wing. This

monotonicity is reflected in Figure 4-5 by the relative position of the two curves for

small and large perspectives. As a result, given a moderate verification cost, a more

extreme intermediary does not verify a large set of news, leading to more right-leaning
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R
subscriber’s perspective0 𝜈𝑅

strict homophily

R
subscriber’s perspective0 𝜈𝑅 𝜇sH

𝑅 𝜇ind
𝑅

indifferencestrict homophily

R
subscriber’s perspective0 𝜈𝑅

indifference

𝐶 = 0

𝐶 = +∞

Figure 4-6: The range of strict homophily and indifference for the right-leaning ex-
tremists’ subscription choices varies with the verification cost in Example 4.2.

extremists finding indifference between the two intermediaries.

4.7 Extensions

We study a few variations of our model. We point out that the variety of disclosure

strategies for the set of verified news can arise in equilibria, other than the class of true-

news-disclosing equilibria. We then investigate another setting under which verification

result is perfectly observable to subscribers for any disclosed news. Finally, we discuss

an alternative to our modeling on the utility function and action space.

4.7.1 Disclosure strategies for verified news

In Section 4.5 we concentrate on the true-news-disclosing equilibria. In fact, there can

be infinitely many PBEs featuring different disclosure strategies for the set of verified

news, since for each news value in the verification region an intermediary may choose

one of the two separating disclosure decisions. For example, consider the case with

zero verification cost and suppose after verifying news, an intermediary discloses the

news if and only if it is uninformative. Believing in this disclosure strategy, her critical

subscriber, when seeing the news that should be verified by the intermediary, maintains

his posterior mean equal to his perspective and hence takes the action in line with the
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intermediary’s perspective. The intermediary in turn has no incentive to deviate to

conceal the news, which will otherwise make her critical subscriber feel indifferent and

consequently result in less fraction of subscribers taking her favored action. Neither

will she deviate to disclose the news if it is true: Her critical subscribers would regard

the disclosed news as false and in turn choose the unfavorable action in this case. Such

an equilibrium exists.

The strategy that disclosing verified news if and only if it is false changes the

equilibrium subscription choices of the centrists and the extremists from the result in

Proposition 4.3. In contrast to the true-news disclosing equilibria, the centrists can

derive the verification benefits from the intermediary with aligned ideology as they are

able to take their optimal actions for true news and false news respectively when it

is verified. If the verification gain outweighs the expected loss from inability to take

their optimal actions when there is actually no news, the centrists make homophilic

subscription choices.

The extremists, on the other hand, no longer derive the verification benefits from

the intermediary with aligned ideology. The reason is similar to why the centrists can

not derive such benefits in the true-news-disclosing equilibria: The extremists end up

with the same action in line with their perspectives no matter whether the verified news

is true or false. The extremists may instead turn to the opposite intermediary since

this intermediary simply discloses such news (without verification) and the extremists

can evaluate the likelihood of the news being true, choosing their optimal actions.

The diversity in equilibrium disclosure strategies is a common result in signaling

games that an equilibrium is sensitive to receivers’ beliefs about the implications of

disclosure and no disclosure. When any information about verification results can

not be transmitted to subscribers, the disclosure strategy couples with the beliefs of

subscribers about news veracity when observing disclosed news. We relate such a

variety of equilibria to the intricacies of readers’ linguistic interpretation about the

news coverage by intermediaries and only focus on the true-news-disclosing equilibria.
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4.7.2 Verification result is perfectly observable to subscribers

We consider a variation of the model in which for any news that is disclosed by an in-

termediary, her subscribers can perfectly observe the verification result, i.e., whether it

was verified and, if it was, whether the news is true or false. This perfect observability

can model absolute trust the subscribers have in their intermediaries’ report about ve-

racity of news. The perfect observability creates a new incentive for the intermediaries:

For the news that is aligned with their perspectives, the intermediaries are motivated

to prove that the news is informative so as to sway the beliefs of their subscribers to

full extent. As we will see, when this new motive for the intermediaries to show that

the aligned news is true is stronger than the motive to learn the veracity of the op-

posing extreme news that can change their favored actions, they tend to verify aligned

news rather than opposing news and anti-homophily can emerge among the extremist

subscribers.

First, we identify some properties of intermediaries’ disclosure strategy in the fol-

lowing lemma:

Lemma 4.7 (disclosure strategy when verification result is perfectly observable)

In any equilibrium, given any common history 𝐺𝑠,

(i) intermediary 𝑖 discloses news 𝑥 if and only if she and her critical subscriber have

the same belief sign when seeing the news and its verification result:

𝑚*
𝑖 (𝐺

𝑠, 𝑥, 0) = 𝑥 if and only if E𝑖[𝜃 |𝑥] E𝑘*𝑖
[𝜃 |𝑥] > 0,

and for any 𝜔 ∈ {𝑇, 𝐹}

𝑚*
𝑖 (𝐺

𝑠, 𝑥, 1, 𝜔) = 𝑥 if and only if E𝑖[𝜃 |𝑥, 𝜔] E𝑘*𝑖
[𝜃 |𝑥, 𝜔] > 0.

(ii) intermediary 𝑖’s critical subscriber is ideologically aligned with her but has a less

extreme perspective, i.e., 𝜇𝑘*𝑖
is between 0 and 𝜇𝑖.
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(iii) intermediary 𝑖 discloses any news that is not against her ideology, i.e., for any 𝑥

such that 𝜇𝑖𝑥 ≥ 0, 𝑚*
𝑖 (𝐺

𝑠, 𝑥, 1, 𝑇 ) = 𝑚*
𝑖 (𝐺

𝑠, 𝑥, 1, 𝐹 ) = 𝑚*
𝑖 (𝐺

𝑠, 𝑥, 0) = 𝑥.

(iv) moreover, for any news 𝑥 that switches intermediary 𝑖’s favored action when it is

true, she discloses the news if she verifies it, i.e., for 𝑥 such that 𝜇𝑖 E𝑖[𝜃 |𝑥, 𝑇 ] < 0,

𝑚*
𝑖 (𝐺

𝑠, 𝑥, 1, 𝑇 ) = 𝑚*
𝑖 (𝐺

𝑠, 𝑥, 1, 𝐹 ) = 𝑥.

By the same insights from Lemma 4.4 and 4.5, each intermediary discloses any news

that is not against their perspectives and her critical subscribers have the same ideology

as her: The intermediary discloses the aligned news so that her critical subscribers do

not adjust their belief means towards the opposite wing if observing no disclosure.

Below we discuss the verification decisions and characterize the equilibria; we in

particular study two cases when 𝐶 = 0 and 𝐶 > 0.

No verification cost 𝐶 = 0

With zero verification cost, each intermediary would like to learn whether opposing

extreme news is true or false so that she may switch her favored action and accordingly

persuade her subscribers (cf. Lemma 4.6). Given the perfect observability on verifica-

tion results, the intermediary maximizes her expected utility by disclosing both true

news and false news, instead of deploying separating disclosure decisions to signal the

veracity (cf. Lemma 4.5).12 Consequently, her subscribers with the same ideology can

derive the benefits from her verifying opposing extreme news and take their optimal

actions according to its veracity.

Moreover, an intermediary may verify some news that aligns with her perspective

because she can sway more subscribers to take her favored action (the one her perspec-

tive dictates) if she shows that this news is true. This means that the intermediary

is also appealing to the subscribers on the opposite wing, as she may verify the news
12We can show that in any equilibrium the critical perspective must lie between the neutrality and

the corresponding intermediary’s perspective; disclosing both true and false news is the intermediary’s
best response.

130



that is against these subscribers and discloses it. However, there is a trade-off in this

verification decision: When the news is false, the intermediary has to disclose it to

avoid pushing her subscribers to the opposite wing due to their speculation about con-

cealment of opposing news, and then her subscribers take the actions in line with their

own perspectives. She in turn loses some fraction of opposing subscribers who would

have taken her favored action if she simply disclosed the news without verification (the

centrists on the opposite wing think that the unverified news can be true and tend

to choose her favored action). The trade-off suggests that the intermediary does not

necessarily verify all the aligned news.

We demonstrate that weak homophily arises among the extremists:

Proposition 4.5 Consider 𝑞 > 0 and both intermediaries can verify news at cost

𝐶 = 0. When verification results are perfectly observable to subscribers for any disclosed

news, in any equilibrium weak homophily arises among the subscribers who are more

extreme than the intermediaries.

An extremist derives his maximal ex-ante expected utility if subscribing to the

intermediary with aligned ideology, who verifies and discloses any opposing extreme

news. On the other hand, the extremist may also attain his best ex-ante payoff from

the opposite intermediary and hence find indifference, if any such opposing news that

possibly switches his favored action is also verified by the opposite intermediary, who

wants to prove its veracity for persuasion purpose. Consequently, weak homophily

arises among the extremists.

The equilibrium subscription choices of the centrists are not clear: They have to

weigh the benefit from the intermediaries’ verification strategies against the potential

loss from the identification problem in the non-disclosure event. Their subscription

choices are sensitive to the functional forms of the belief system and news generation.

Verification requires a cost 𝐶 > 0

Costly verification discourages the intermediaries to verify news. However, the
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extents of this impact on the two motives, to learn news veracity or to prove informa-

tiveness, may significantly differ, contingent on the belief system and news generation.

We provide an example below to illustrate that the motive to learn news veracity can

be overwhelmed by the cost whereas the motive to prove the informativeness stays

stronger that the disincentive, leading to anti-homophily among all the subscribers.

Example 4.3 (Anti-homophily among all the subscribers) Suppose that 𝑓, 𝑓𝜖, 𝑓𝐹

are Gaussian distributions as described in Example 4.1 and that 𝜎2
𝑇 = 𝜎2

𝐹 . We assume

that the intermediaries have commensurate biases, i.e., 𝜇𝐿 = −𝜇𝑅. and their biases

are large such that |𝜇𝑖| > |𝜈𝑖|.

Suppose that the subscribers are mainly concentrated on four perspective values in

terms of their ideological leaning and magnitude of bias: Left or Right, Centrists or

Extremists. In particular, the CDF of perspectives is assumed to be

𝐺0(𝜇) = (1− 𝛼)
∑︁

𝜇′∈{𝜇𝐿−𝜂,−𝜂,𝜂,𝜇𝑅+𝜂}

1

4
1I{𝜇≥𝜇′} + 𝛼𝐻(𝜇),

where 𝜂 > 0, 𝛼 > 0 are both infinitesimal real numbers and 𝐻(·) is a CDF with full

support and 𝐻(0) = 1
2
. We assume verification cost 𝐶 > (1 + 𝛼)𝜇𝑅.

There exists an equilibrium in which all the subscribers choose the intermediary

with the opposite ideology from their own. We reason as below; suppose the subscrip-

tion choices hold in the equilibrium,

• Each intermediary 𝑖 does not verify any opposing news 𝑥; intermediary 𝑖 discloses

it if and only if the centrists with the aligned ideology will take her favored action

when seeing unverified news:

For any opposing news 𝑥 that may change her favored action (𝜇𝑖 E𝑖[𝜃 |𝑥, 𝑇 ] < 0),

intermediary 𝑖 does not verify it because the utility gain from verification is upper
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bounded by13

P𝑖(𝑇 |𝑥)
⃒⃒
E𝑖[𝜃 |𝑥, 𝑇 ]

⃒⃒1
2
(1 + 𝛼)⏟  ⏞  

𝜔 = 𝑇 and persuade the aligned extremists

+ (1− P𝑖(𝑇 |𝑥))
⃒⃒
𝜇𝑖

⃒⃒1
2
(1 + 𝛼)⏟  ⏞  

𝜔 = 𝐹 and persuade the aligned centrists

<(1 + 𝛼)(1− P𝑖(𝑇 |𝑥))
⃒⃒
𝜇𝑖

⃒⃒
< 𝐶,

where P𝑖(𝑇 |𝑥)
⃒⃒
E𝑖[𝜃 |𝑥, 𝑇 ]

⃒⃒
< (1 − P𝑖(𝑇 |𝑥))

⃒⃒
𝜇𝑖

⃒⃒
since intermediary 𝑖 favors the

action in line with her perspective when the news veracity is unknown (|𝜇𝑖| > |𝜈𝑖|).

On the other hand, for opposing news 𝑥 such 𝜇𝑖 E𝑖[𝜃 |𝑥, 𝑇 ] ≥ 0, the only benefit

from verification is to persuade the opposing Centrists if it is false. However, this

gain is at most 1
2
(1 + 𝛼)(1 − P𝑖(𝑇 |𝑥))

⃒⃒
𝜇𝑖

⃒⃒
< 𝐶 and she does not verify it. As a

result, intermediary 𝑖 does not verify any opposing news.

• Each intermediary 𝑖 verifies news 𝑥 that is not against her ideology if

𝜇𝑖E−𝑖[𝜃 |𝑥] < 0 and (4.15)

P𝑖(𝑇 |𝑥)
⃒⃒
E𝑖[𝜃 |𝑥, 𝑇 ]

⃒⃒1
2
(1− 𝛼)(1− 𝛿

2
) > (1− P𝑖(𝑇 |𝑥))

⃒⃒
𝜇𝑖

⃒⃒1
2
(1 + 𝛼)(1− 𝛿

2
) + 𝐶.

She then discloses the news for both true and false news. The first condition

in (4.15) dictates that the news, if not verified, can not persuade the opposite

intermediary, nor the opposing Extremists, to take the action in line with her

perspective; intermediary 𝑖 then has an incentive to verify and to show that

the news is true. The second condition requires that, given the anti-homophily

in the subscription choices, the gain from showing the true news and persuad-

ing the opposing Extremists with perspective magnitude |𝜇𝑖| + 𝜂 outweighs the

verification cost and the loss if the news turns out to be false and the oppos-

ing Centrists will otherwise take the opposite action. By the assumption that
13The upper bound is computed by considering that intermediary 𝑖 can persuade all the aligned

Extremists (aligned Centrists) when the news is true (false) as well as all the other subscribers on the
same wing in the population.
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|𝜇𝑖| > |𝜈𝑖| and intermediary 𝑖 thinks the aligned extreme news is likely to be

true (i.e., P𝑖(𝑇 |𝑥)
⃒⃒
E𝑖[𝜃 |𝑥, 𝑇 ]

⃒⃒
→ +∞ when the magnitude of aligned news |𝑥|

increases), the set of news that satisfies the conditions (4.15) and is verified is

non-empty.

• For each subscriber, the news of which he would like to learn the veracity for

his action is only verified by the opposite intermediary. Besides, the opposite

intermediary only conceals the news that aligns with the subscriber’s ideology; it

suggests that his action in response to no disclosure is optimal for the case of no

news and any concealed news. Consequently, all the subscribers find it weakly

better to subscribe to the opposite intermediary.

Example 4.3 reveals a coordination problem between the intermediaries’ strategies

and subscription choices when verification is costly and the intermediaries have an

incentive to prove informativeness of aligned news (due to the perfect observability

of verification results). Specifically, for an intermediary to verify aligned news, not

only does she have to think that the news is likely to be informative, but also has to

be followed by many subscribers on the opposite wing so that she is incentivized to

persuade them and verify the news. This in turn justifies these opposing subscribers’

anti-homophilic choices.

We remark that this anti-homophily among the extremists is not contradictory to

our previous results that they make (weakly-)homophilic subscription choices. When

a channel to perfectly convey the verification result is present, both intermediaries

may verify the news of which the extremists would like to learn the veracity and

the equilibrium subscription behavior relies on the belief system and the coordination

between the intermediaries and the subscribers.
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4.7.3 Utility function and action space

In this work, we consider a binary action space {−1,+1} and the subscribers’ utility

functions to be the product of their own binary actions and the state of the world. An

alternative for this modeling is the continuous action space and each subscriber aims

to minimize the quadratic loss between his real-valued action and the state (see Che

and Kartik 2009). This alternative modeling, however, leads to intractable analysis

when an intermediary’s welfare aggregation of the subscribers’ utilities is evaluated.

Specifically, the common approach to deal with the quadratic loss is to decompose it

into two parts: the variance in her own belief and the aggregate quadratic loss between

her optimal action and her subscribers’. As we have seen in Section 4.3 which studies

players’ belief updating, the functional form for an intermediary’s optimal action can

be quite different from her subscribers’ for the case when the news is concealed; this

adds much technical complexity to analysis of the model.14

4.8 Discussion

The goal of this chapter was to investigate how subscribers choose their information

sources when the partisan news intermediaries are motivated to persuade the public

opinion while selectively deciding what news to verify and to disclose. We proposed a

framework for modeling the coexistence of true and false news and illustrated the va-

riety in one’s belief updating when observing news with unknown veracity. We showed

that when verification option is not possible and the intermediaries can only decide

whether to disclose the news, anti-homophily emerges among the centrist subscribers

whereas the extremists feel indifferent between the intermediaries. We proved that,

when verification option is available before any news disclosure, anti-homophily still

arises among the centrists whereas the extremists make weakly-homophilic subscription

choices. Furthermore, we demonstrated that the larger the intermediaries’ ideological
14See Appendix C for our speculation on this variation of the model.
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biases are, the wider the range of perspectives around the neutrality with which the

subscribers exhibit anti-homophilic subscription behavior.
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Chapter 5

Conclusion and Future Work

This Ph.D. thesis provided a few theories that rationalize individual behavior of com-

munication on social network through a persuasion motive when circulating online

information can be inaccurate or false. Specifically, this thesis focused on two aspects

of people’s behavior considering their persuasion motives underlying communication:

(1) news sharing, (2) choice of news media.

For the first component, I proposed two theoretical frameworks to study people’s

decisions of sharing news. In Chapter 2 where I focused on non-strategic individuals,

I studied the network effect on news cascade and identified the effects of perspective

diversity and the wisdom of the crowd on the optimal levels of news precision that

maximizes cascade probability. In Chapter 3 I presented a game-theoretic setting and

showed that there is a natural network connectivity limit above which less credible

information spreads faster. I further demonstrated how this network connectivity limit

is affected by polarization and diversity of perspectives in a population.

In Chapter 4, I built a theory of strategic communication between news consumers

and news media to understand the decision making underlying news consumers’ se-

lection of their information sources. I showed how centrists and extremists may make

different choices in terms of ideological alignment while they ponder on news media’s

strategic moves of news verification and selective disclosure.
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This thesis complemented the recent growing empirical literature on news con-

sumption behavior of social media users. In particular, this thesis made a theoretical

contribution to several disciplines: information diffusion on social networks, misinfor-

mation on social media, and political economy on news media. On the other hand,

this thesis suggested several empirical predictions, such as the non-monotone effect of

diversity of perspectives on connectivity limit as well as the difference in subscription

choices between centrists and extremists, which are worth investigating empirically for

future research.

Beyond this thesis, I describe a few interesting research directions below:

News spread on social networks with homophily in ideology

Chapters 2 and 3 both consider a homogeneous network structure in the sense that

follower-followee relationships are independent from agents’ individual beliefs (or ideol-

ogy). However, much empirical evidence shows that people tend to build relationships

with others who have similar opinions or personal characteristics. I am extending the

settings in Chapter 3 to homophilic social networks and have derived some preliminary

results.

Strategic fabrication of news

In this thesis, creation of false news (or inaccurate news) is an exogenous process

and common knowledge to all individuals. This source of false news, however, can be

strategic and endogenous. Specifically, a malicious principal aiming to influence the

public opinion can strategically fabricate and disseminate misinformation or conspira-

cies on social media. Aware of this intention, the individuals on social media in turn

strategically speculate on how much misinformation is circulating and adjust their be-

liefs about veracity of online news. This extension can give us some insights into what

types of news may be fabricated (extreme or more neutral?) and the composition of

real news and false news on social media.

Interaction between users and algorithms of platforms

The process of news spreading and belief manipulation is meddled by news feed
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algorithms of social media platforms, which selectively determine what posts a user may

see. In this regard, I plan to derive some principles about how a news feed algorithm

should be designed to elude the interference of misinformation. Specifically, social

media platforms have to choose whether they should detect suspiciously false news and

even fact-check the information for their users before pushing the information to other

users. If the platforms find some posts dubious, should they present the information

to their users with warnings or conceal them for the users’ sake? Given that verifying

tons of dubious news requires lots of resources, is it possible to create a mechanism or

use behavioral nudging to engage users in verifying news by themselves?

On the other hand, many platforms also select what online news media to recom-

mend for their users (e.g. Apple News, Google News, or Facebook News). It is still

unclear whether news recommendation algorithms deployed by these platforms lead to

receiving information from diverse views or result in reinforcement of one’s perspective

and even polarization in a society. So far there has been little progress on managerial

policies of the platforms and their effects on the public opinion.
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Appendix A

Supplementary Material for Chapter 2

A more general distance between the beliefs: The distance (2.3) between beliefs

𝑃1 and 𝑃2 can be extended to include the square of differences in standard deviations

as

𝑊 2
2 (𝑃1;𝑃2) = (𝜇1 − 𝜇2)

2 + 𝛾(𝜎1 − 𝜎2)
2,

which also measures the information imbalance, where 𝛾 ≥ 0 controls for the relative

importance of two terms. Since a normally distributed belief is fully characterized by

its mean and standard deviation, this will fully capture the distance between any two

agents’ beliefs.

While the discussions in the main body correspond to the case 𝛾 = 0 for simplicity,

we present all the proofs for the generalized distance measure in (2.2). It is also

worth noting that when 𝛾 = 1 the measure becomes what is known as the Wasserstein

distance between two Gaussian distributions. The Wasserstein distance between two

probability distributions 𝜇, 𝜈 on real line is defined as

𝑊 2
2 (𝜇, 𝜈) = inf

𝑋∼𝜇,𝑌∼𝜈
E
[︁
𝑑(𝑋, 𝑌 )2

]︁
.
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A.1 Proofs of Section 2.3

Proof of Lemma 2.1:

First, let us calculate the expected distance between the agent 𝑖 and her followers

if they all see the news.

E𝑖

[︁
𝑊 2

2 (𝑃
𝑖
1;𝑃

𝑘
1 )|𝑘 ∈ 𝑁 in(𝑖)

]︁
= E𝑖

[︁
(1− 𝛽)2(𝜇𝑖 − 𝜇𝑘)

2|𝑘 ∈ 𝑁 in(𝑖)
]︁
,

= (1− 𝛽)2E𝑖

[︁
(𝜇𝑖 − �̄�+ �̄�− 𝜇𝑘)

2|𝑘 ∈ 𝑁 in(𝑖)
]︁
,

= (1− 𝛽)2(𝜇𝑖 − �̄�)2 + (1− 𝛽)2𝜎2
𝜇.

Similarly, we can compute the expected distance if none of agent 𝑖’s followers receives

the news.

E𝑖

[︁
𝑊 2

2 (𝑃
𝑖
1;𝑃

𝑘
0 )|𝑘 ∈ 𝑁 in(𝑖)

]︁
=E𝑖

[︁
(𝛽𝑥+ (1− 𝛽)𝜇𝑖 − 𝜇𝑘)

2 + 𝛾(
√︀
1− 𝛽𝜎𝜃 − 𝜎𝜃)

2|𝑘 ∈ 𝑁 in(𝑖)
]︁
,

=E𝑖

[︁
(𝜇𝑖 − �̄�+ �̄�− 𝜇𝑘)

2|𝑘 ∈ 𝑁 in(𝑖)
]︁
+ 𝛾(1−

√︀
1− 𝛽)2𝜎2

𝜃 ,

=(𝛽𝑥+ (1− 𝛽)𝜇𝑖 − �̄�)2 + 𝜎2
𝜇 + 𝛾(1−

√︀
1− 𝛽)2𝜎2

𝜃 .

By plugging in the corresponding values above and rearranging, we have

2 (1− 𝛽)(𝜇𝑖 − �̄�)⏟  ⏞  
interim bias of agent 𝑖

𝛽(𝑥− �̄�)⏟  ⏞  
interim surprise

+ 𝛽2(𝑥− �̄�)2⏟  ⏞  
magnitude of surprise

+ (1− (1− 𝛽)2)𝜎2
𝜇⏟  ⏞  

reducing the variance of perspectives

+ 𝛾(1−
√︀

1− 𝛽)2𝜎2
𝜃⏟  ⏞  

reducing the difference in uncertainty

>
𝐶

1− 𝑞
.

(A.1)

The new term resulting from accounting for the information balance captures the broad-

casting agent’s incentive to inform her followers (as measured by the uncertainty of their

beliefs) so that they are at the same informativeness level of the agent. Lemma 2.1 is
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an immediate consequence of (A.1) when no consideration on information balance is

involved. ■

A.2 Proofs of Section 2.4

Proof of Lemma 2.2 and Theorem 2.1:

For the generalized belief distance (2.2) that incorporates the variances of individual

beliefs, we redefine the function 𝐾𝛽(𝑥) and 𝜂𝛽(𝑥) that appears in the broadcast size

(2.9):

𝐾𝛽(𝑥) =
𝐶

2𝛽(1− 𝛽)|𝑥− �̄�|𝜎𝜇

,

𝜂𝛽(𝑥) =
𝜎𝜇

2(1− 𝛽)|𝑥− �̄�|

(︁
2− 𝛽 + 𝛾

1−
√
1− 𝛽

1 +
√
1− 𝛽

𝜎2
𝜃

𝜎2
𝜇

)︁
+

𝛽|𝑥− �̄�|
2(1− 𝛽)𝜎𝜇

.

The following analysis is also applied to the case in our main context by making

�̄� = 𝛾 = 0 in function 𝐾𝛽(𝑥) and 𝜂𝛽(𝑥). Since the credibility of news 𝛽 and the

realized news 𝑥 are both given, we omit the argument of these terms and make the

time variables as subscripts for simplicity. Additionally, given a set 𝒜𝑡 of agents, we

use 𝒜𝑡(𝑑) ⊆ 𝒜𝑡 as the subset of these agents with out-degree 𝑑. Given an edge 𝑒 ∈ ℰ

whose tail has not yet seen the news by time 𝑡, let us define 𝑝𝑡 as the probability of

receiving it from Head(𝑒) at time 𝑡+ 1. That is,

𝑝𝑡 = P
(︁
Head(𝑒) ∈ 𝑏𝑡 | Tail(𝑒) /∈ ℛ𝑡

)︁
,

and write 𝑝𝑡 = 1 − 𝑝𝑡. An out-stub of an agent in ℛ̄𝑡 can not be connected to any of

the in-stubs of agents in ℬ̄𝑡−1, but is equally likely to connect to in-stubs of agents in

ℬ̄𝑡−1. Given an edge 𝑒 ∈ ℰ with its tail in ℛ̄𝑡, the probability of having its head in 𝑏𝑡
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is thus given by the density of the in-stubs of 𝑏𝑡 in ℬ̄in
𝑡−1. Therefore,

𝑝𝑡 =
|𝑏in𝑡 |

1− |ℬin
𝑡−1|

,

using which and Bayes’ rule update we can find

𝑞𝑡 =
P
(︁
Tail(𝑒) /∈ ℛ𝑡,Head(𝑒) ∈ 𝑟𝑡

)︁
P
(︁
Head(𝑒) ∈ 𝑟𝑡

)︁ ,

=
P
(︁
Tail(𝑒) /∈ ℛ𝑡

)︁
P
(︁
Head(𝑒) ∈ 𝑟𝑡 | Tail(𝑒) /∈ ℛ𝑡

)︁
P
(︁
Head(𝑒) ∈ 𝑟𝑡, 𝑒 ∈ ℰ

)︁ ,

=

|ℛ̄out
𝑡 | × |𝑟in𝑡 |

1− |ℬin
𝑡−1|

|𝑟in𝑡 |
,

=
|ℛ̄out

𝑡 |
1− |ℬin

𝑡−1|
. (A.2)

From (2.10) it follows that

P
(︁
Head(𝑒) /∈ 𝑏𝑡 | Tail(𝑒) /∈ ℛ𝑡, 𝑒 ∈ ℰ

)︁
= 1− 𝑝𝑡 =

1− |ℬin
𝑡 |

1− |ℬin
𝑡−1|

,

using which and by the independent following process in the configuration model we

can show that

|ℛ̄𝑡+1(𝑑)| =
(︀ 1− |ℬin

𝑡 |
1− |ℬin

𝑡−1|
)︀𝑑|ℛ̄𝑡(𝑑)|.

Applying this recursively along with |ℛ̄0(𝑑)| = 𝑃 out(𝑑), we get

|ℛ̄𝑡+1(𝑑)| = (1− |ℬin
𝑡 |)𝑑𝑃 out(𝑑).
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As a result,

|ℛ̄𝑡+1| =
∞∑︁
𝑑=0

(1− |ℬin
𝑡 |)𝑑𝑃 out(𝑑),

|ℛ̄out
𝑡+1| =

1

E[𝑑]

∞∑︁
𝑑=0

𝑑(1− |ℬin
𝑡 |)𝑑𝑃 out(𝑑),

|ℛ̄in
𝑡+1| =

1

E[𝑑]

∞∑︁
𝑑=0

E[ℓ|𝑑](1− |ℬin
𝑡 |)𝑑𝑃 out(𝑑).

We can simplify the expression for 𝑞𝑡 in (A.2) using the above to get

𝑞𝑡 =

1
E[𝑑]
∑︀∞

𝑑=1 𝑑(1− |ℬin
𝑡−1|)𝑑𝑃 out(𝑑)

1− |ℬin
𝑡−1|

=
1

E[𝑑]

∞∑︁
𝑑=1

𝑑(1− |ℬin
𝑡−1|)𝑑−1𝑃 out(𝑑).

This means that 𝑞𝑡 needed in the decision rule of Lemma 2.1, can be estimated from

|ℬin
𝑡−1|, which is the fraction of the edges through which the news has passed (i.e.,

covered by the broadcast) by time 𝑡− 1. This can be itself estimated from the size of

the spread by time 𝑡 from

|ℛ̄𝑡| =
∞∑︁
𝑑=0

(1− |ℬin
𝑡−1|)𝑑𝑃 out(𝑑).

This proves Lemma 2.2.

The update rule for |ℬin
𝑡 | can be obtained noting that |ℬin

𝑡+1| = |ℬin
𝑡 | + |𝑏in𝑡+1| and

|𝑏in𝑡+1| = Φ(𝜂 − 𝐾
𝑞𝑡+1

)|𝑟in𝑡+1|, and that

|𝑟in𝑡+1| = |�̄�in
𝑡 | − |�̄�in

𝑡+1|

=
1

E[𝑑]

∞∑︁
𝑑=0

E[ℓ|𝑑]
(︀
(1− |ℬin

𝑡−1|)𝑑 − (1− |ℬin
𝑡 |)𝑑

)︀
𝑃 out(𝑑).
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This leads to

|ℬin
𝑡+1| − |ℬin

𝑡 | =
Φ(𝜂 − 𝐾

𝑞𝑡+1
)

E[𝑑]

∞∑︁
𝑑=0

E[ℓ|𝑑]
(︀
(1− |ℬin

𝑡−1|)𝑑 − (1− |ℬin
𝑡 |)𝑑

)︀
𝑃 out(𝑑).

To approximate the asymptotic behavior of the spread, we now use the continuous-

time mean-field approximation of the above second-order nonlinear dynamics. More

specifically, we approximate |ℬin
𝑡 | with a continuous-time process 𝑦𝑡 with �̇�𝑡 ≈ |ℬin

𝑡 | −

|ℬin
𝑡−1| and 𝑦𝑡 ≈ |ℬin

𝑡+1| − 2|ℬin
𝑡 |+ |ℬin

𝑡−1|. The dynamics of 𝑦𝑡 is given by

𝑦𝑡 = �̇�𝑡 ×
(︀
− 1 +

Φ(𝜂 − 𝐾
𝑞(𝑦𝑡)

)

E[𝑑]

∞∑︁
𝑑=0

𝑑E[ℓ|𝑑](1− 𝑦𝑡)
𝑑−1𝑃 out(𝑑)

)︀
, (A.3)

where

𝑞(𝑦) =
1

E[𝑑]

∞∑︁
𝑑=1

𝑑(1− 𝑦)𝑑−1𝑃 out(𝑑).

We can solve (A.3) using a change of variables 𝑧𝑡 = �̇�𝑡:

𝑑𝑧𝑡
𝑑𝑦𝑡

=
𝑦𝑡
�̇�𝑡

=
(︀
− 1 +

Φ(𝜂 − 𝐾
𝑞(𝑦𝑡)

)

E[𝑑]

∞∑︁
𝑑=0

𝑑E[ℓ|𝑑](1− 𝑦𝑡)
𝑑−1𝑃 out(𝑑)

)︀
,

leading to

�̇�𝑡 − �̇�(0) =

∫︁ 𝑦𝑡

𝑦(0)

(︁
− 1 +

Φ(𝜂 − 𝐾
𝑞(𝑦)

)

E[𝑑]

∞∑︁
𝑑=0

𝑑E[ℓ|𝑑](1− 𝑦)𝑑−1𝑃 out(𝑑)
)︁
𝑑𝑦,

where the initial conditions are �̇�(0) = 𝑦(0) = 0. Define

𝑔(𝑦) = −1 +
Φ(𝜂 − 𝐾

𝑞(𝑦)
)

E[𝑑]

∞∑︁
𝑑=0

𝑑E[ℓ|𝑑](1− 𝑦)𝑑−1𝑃 out(𝑑).
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Then, 𝑦 = 0 is unstable if 𝑔(0) > 0, or equivalently

E[ℓ𝑑]
E[𝑑]

Φ(𝜂 −𝐾) > 1,

and is stable if 𝑔(0) < 0, or

E[ℓ𝑑]
E[𝑑]

Φ(𝜂 −𝐾) < 1.

For the case 𝑔(0) = 0, we need to look at 𝑑
𝑑𝑦
𝑔(𝑦)|𝑦=0. It is easy to verify that

𝑑
𝑑𝑦
𝑔(𝑦)|𝑦=0 < 0, implying the stability of 𝑦 = 0 in this case. The above analysis

proves (2.12), which states that a news cascade happens if and only if

E[ℓ𝑑]
E[𝑑]

Φ(𝜂 −𝐾) > 1.

Moreover, when a news cascade emerges, |ℬin
∞| is the unique nonzero solution to

𝐺(|ℬin
∞|) = 0, where

𝐺(|ℬin
∞|) =

∫︁ |ℬin
∞|

0

(︁
− 1 +

Φ(𝜂 − 𝐾
𝑞(𝑦)

)

E[𝑑]

∞∑︁
𝑑=0

𝑑E[ℓ|𝑑](1− 𝑦)𝑑−1𝑃 out(𝑑)
)︁
𝑑𝑦,

if 𝐺(1) < 0; otherwise, |ℬin
∞| = 1. The steady state size of the spread, denoted by |ℛ∞|,

can be calculated from |ℬin
∞| according to

|ℛ∞| = 1−
∞∑︁
𝑑=0

(1− |ℬin
∞|)𝑑𝑃 out(𝑑).

■

Proof of Proposition 2.1: This is already proved as part of Theorem 2.1. ■

Proof of Lemma 2.3:

(i) Given non-negative parameters 𝜆01, 𝜆10 and 𝜆11, the bivariate Poisson distribu-
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tion (see Kawamura (1973)) is defined as

PPoiss(ℓ, 𝑑) =

min{ℓ,𝑑}∑︁
𝑚=0

𝜆𝑑−𝑚
10 𝜆ℓ−𝑚

01 𝜆𝑚
11

(𝑑−𝑚)!(ℓ−𝑚)!𝑚!
𝑒−(𝜆10+𝜆01+𝜆11),

with the following statistics

EPoiss[ℓ] = 𝜎2
ℓ,Poiss = 𝜆10 + 𝜆11,

EPoiss[𝑑] = 𝜎2
𝑑,Poiss = 𝜆01 + 𝜆11,

EPoiss[ℓ𝑑] = (𝜆10 + 𝜆11)(𝜆01 + 𝜆11) + 𝜆11.

Degree distributions should satisfy EPoiss[ℓ] = EPoiss[𝑑], requiring that 𝜆10 = 𝜆01 = 𝜆

and 𝜆11 = 𝜆𝑐. The joint Poisson degree distribution (2.14) then follows, with the

statistics

𝜇𝑃 := EPoiss[ℓ] = EPoiss[𝑑] = 𝜆+ 𝜆𝑐

𝜎2
𝑃 := 𝜎2

ℓ,Poiss = 𝜎2
𝑑,Poiss = 𝜆+ 𝜆𝑐

𝜌𝑃 :=
EPoiss[ℓ𝑑]− 𝜇2

𝑃

𝜎2
𝑃

=
𝜆𝑐

𝜆+ 𝜆𝑐

∈ [0, 1].

Using the relation (2.13), we obtain

𝜇Line
𝑃 =

EPoiss[ℓ𝑑]

EPoiss[𝑑]
=

𝜌𝑃𝜎
2
𝑃

𝜇𝑃

+ 𝜇𝑃 = 𝜌𝑃 + 𝜇𝑃 , (A.4)

where 𝜌𝑃 ∈ [0, 1] and 𝜇𝑃 > 0.

(ii) Given positive parameters 𝑘1, 𝑘2, and 𝛼, the bivariate Zipf distribution is defined

in terms of its complement CDF (see (Yeh 2002)):

PZipf(ℓ ≥ 𝑚1, 𝑑 ≥ 𝑚2) =
(︀
1 +

𝑚1

𝑘1
+

𝑚2

𝑘2
)−𝛼,𝑚1,𝑚2 = 0, 1, ....
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with the following statistics

EZipf [ℓ] =
∑︁
𝑚1≥1

(︀
1 +

𝑚1

𝑘1
)−𝛼,

𝜎2
ℓ,Zipf =

∑︁
𝑚1≥1

(2𝑚1 − 1)
(︀
1 +

𝑚1

𝑘1
)−𝛼 − (EZipf [ℓ])

2,

EZipf [ℓ] =
∑︁
𝑚2≥1

(︀
1 +

𝑚2

𝑘2
)−𝛼,

𝜎2
𝑑,Zipf =

∑︁
𝑚2≥1

(2𝑚2 − 1)
(︀
1 +

𝑚2

𝑘2
)−𝛼 − (EZipf [𝑑])

2,

EZipf [ℓ𝑑] =
∑︁
𝑚1≥1

∑︁
𝑚2≥1

(︀
1 +

𝑚1

𝑘1
+

𝑚2

𝑘2
)−𝛼.

The requirement EZipf [ℓ] = EZipf [𝑑] for degree distributions enforces 𝑘1 = 𝑘2 = 𝑘,

resulting in the joint Zipf degree distribution (2.15). Similarly, we derive the equations

for the statistics

𝜇𝑍 := EZipf [ℓ] = EZipf [𝑑] =
∑︁
𝑚≥1

(︀
1 +

𝑚

𝑘
)−𝛼

𝜎2
𝑍 =

∑︁
𝑚≥1

(2𝑚− 1)
(︀
1 +

𝑚

𝑘
)−𝛼 − 𝜇2

𝑍

EZipf [ℓ𝑑] =
∑︁
𝑚1≥1

∑︁
𝑚2≥1

(︀
1 +

𝑚1 +𝑚2

𝑘
)−𝛼 =

∑︁
𝑚≥1

(𝑚− 1)
(︀
1 +

𝑚

𝑘
)−𝛼.

Observe, from the above, that

EZipf [ℓ𝑑] =
𝜎2
𝑍 + 𝜇2

𝑍 − 𝜇𝑍

2
.

Therefore,

𝜌𝑍 :=
EZipf [ℓ𝑑]− 𝜇2

𝑍

𝜎2
𝑍

=
𝜎2
𝑍 − 𝜇2

𝑍 − 𝜇𝑍

2𝜎2
𝑍

, (A.5)
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which is smaller than 1
2

because 𝜇𝑍 > 0. Moreover, observe that

𝜎2
𝑍 − 𝜇2

𝑍 − 𝜇𝑍 =
∑︁
𝑚≥1

(2𝑚− 2)
(︀
1 +

𝑚

𝑘
)−𝛼 − 2𝜇2

𝑍 ,

= 2
[︁∑︁
𝑚≥1

(𝑚− 1)
(︀
1 +

𝑚

𝑘
)−𝛼 − 𝜇2

𝑍

]︁
,

= 2EZipf [ℓ𝑑] > 0,

and therefore 𝜌𝑍 > 0. By (A.5), 𝜎2
𝑍 can be written in terms of 𝜇𝑍 and 𝜌𝑍 ,

𝜎2
𝑍 =

𝜇2
𝑍 + 𝜇𝑍

1− 2𝜌𝑍
,

and by (2.13), we derive that for 𝜌𝑍 ∈ (0, 1/2) and 𝜇𝑍 > 0,

𝜇Line
𝑍 =

EZipf [ℓ𝑑]

EZipf [𝑑]
=

𝜌𝑍𝜎
2
𝑍

𝜇𝑍

+ 𝜇𝑍 =
𝜌𝑍(𝜇𝑍 + 1)

1− 2𝜌𝑍
+ 𝜇𝑍 . (A.6)

This completes the proof. ■

Proof of Proposition 2.2:

Part (i) is an immediate result from (A.4) and (A.6) with 𝜇𝑃 = 𝜇𝑍 > 0 and

𝜌𝑃 = 𝜌𝑍 ∈ (0, 1/2) and part (ii) follows according to Proposition 2.1. ■

A.3 Proof of Section 2.5

Proof of Theorem 2.2:

We state the general form of the theorem for the general measure of distance be-

tween individual beliefs defined in (2.2).

Theorem A.1 (General version of Theorem 2.2) Given the variance of the perspec-

tives 𝜎2
𝜇, denote with Ω*(𝜎2

𝜇) the set of values 𝛽 that maximize the likelihood of a cascade

as formulated in (2.16). Assume that 𝜇Line(𝒢) > 2 and let ∆ = Φ−1
(︀

1
𝜇Line(𝒢)

)︀
. Then,
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(i) If 𝜎2
𝜇 + 𝛾𝜎2

𝜃 > 𝐶, then Ω*(𝜎𝜇) = [𝛽*(𝜎2
𝜇), 1] and a cascade emerges almost surely,

where 𝛽*(𝜎2
𝜇) satisfies

(︀
(1− 𝛽)2 − 1

)︀
𝜎2
𝜇 − 𝛾

(︀
1−

√︀
1− 𝛽

)︀2
𝜎2
𝜃 + 𝐶 = 0.

Furthermore, 𝛽*(𝜎2
𝜇) is strictly decreasing in 𝜎2

𝜇 for any 𝛾 ≥ 0.

(ii) If 𝜎2
𝜇+𝛾𝜎2

𝜃 ≤ 𝐶 < 𝜎2
𝜇+𝛾𝜎2

𝜃 +(𝜃− �̄�)2, then Ω*(𝜎2
𝜇) = {1} and a cascade emerges

almost surely.

(iii) If 𝜎2
𝜇 + 𝛾𝜎2

𝜃 + (𝜃 − �̄�)2 ≤ 𝐶, then 1 /∈ Ω*(𝜎2
𝜇) and particularly, the truth never

causes a cascade.

Below, we prove the theorem in its general form.

According to (2.16), a realization of the news 𝑥 results in a cascade if and only if

− 𝐶

2𝛽(1− 𝛽)|𝑥− �̄�|𝜎𝜇

+
(︁
2− 𝛽 + 𝛾

1−
√
1− 𝛽

1 +
√
1− 𝛽

𝜎2
𝜃

𝜎2
𝜇

)︁ 𝜎𝜇

2(1− 𝛽)|𝑥− �̄�|
+

𝛽

2(1− 𝛽)𝜎𝜇

|𝑥− �̄�| > ∆,

or equivalently 𝑉 (|𝑥− �̄�|) > 0, where we define

𝑉 (𝑧) = 𝛽𝑧2 − 2(1− 𝛽)∆𝜎𝜇𝑧 + 𝛾
1−

√
1− 𝛽

1 +
√
1− 𝛽

𝜎2
𝜃 −

𝐶

𝛽
+ (2− 𝛽)𝜎2

𝜇. (A.7)

The discriminant of the above quadratic polynomial is

Γ(𝛽, 𝜎2
𝜇) = (1− 𝛽)2∆2𝜎2

𝜇 − 𝛾(1−
√︀

1− 𝛽)2𝜎2
𝜃 + 𝐶 − 𝜎2

𝜇 + (1− 𝛽)2𝜎2
𝜇 (A.8)

=
(︀
(1− 𝛽)2(∆2 + 1)− 1

)︀
𝜎2
𝜇 − 𝛾(1−

√︀
1− 𝛽)2𝜎2

𝜃 + 𝐶.

If the discriminant Γ(𝛽, 𝜎2
𝜇) ≤ 0, then 𝑉 (|𝑥 − �̄�|) > 0 holds for almost all 𝑥 (where

𝑉 (𝑧) is defined in (A.7)). This implies that a cascade happens almost surely when for

news having credibility 𝛽. It is important, however, to note that this is not the only
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possibility for a cascade to happen almost surely: For a value of 𝛽 with Γ(𝛽, 𝜎2
𝜇) >

0, it still holds that 𝑉 (|𝑥 − �̄�|) > 0 almost surely (or, equivalently 𝑉 (𝑧) > 0 for

𝑧 > 0) if and only if the larger root of (A.7) is non-positive. This is translated to

(1 − 𝛽)∆𝜎𝜇 +
√︀
Γ(𝛽, 𝜎𝜇) ≤ 0, which requires both ∆ < 0 and Γ<0(𝛽, 𝜎𝜇) ≤ 0 (and

Γ(𝛽, 𝜎𝜇) > 0), where

Γ<0(𝛽, 𝜎2
𝜇) =

(︀
(1− 𝛽)2 − 1

)︀
𝜎2
𝜇 − 𝛾(1−

√︀
1− 𝛽)2𝜎2

𝜃 + 𝐶. (A.9)

Observe that the discriminant functions (A.8) and (A.9) are both decreasing in 𝛽 and

that Γ(𝛽, 𝜎2
𝜇) ≥ Γ<0(𝛽, 𝜎2

𝜇) for any 𝛽 and any ∆.

First consider the case when Γ(1, 𝜎2
𝜇) < 0, i.e., 𝜎2

𝜇 + 𝛾𝜎2
𝜃 > 𝐶 (cf. case (i)). Due to

the monotonicity in 𝛽, we derive Γ(𝛽, 𝜎2
𝜇) ≤ 0 for 𝛽 ∈ [𝛽*

1 , 1] where 𝛽*
1 is the unique

solution to Γ(𝛽*, 𝜎2
𝜇) = 0 and a cascade emerges with probability 1 for credibility in this

range. If ∆ < 0, the other possibility requires Γ<0(𝛽, 𝜎2
𝜇) ≤ 0 and Γ(𝛽, 𝜎2

𝜇) > 0, and

there is an almost always cascade for 𝛽 ∈ [𝛽*
2 , 𝛽

*
1) where 𝛽*

2 is the unique solution to

Γ<0(𝛽*, 𝜎2
𝜇) = 0. The relation 𝛽*

2 ≤ 𝛽*
1 is due to the inequality Γ(𝛽, 𝜎2

𝜇) ≥ Γ<0(𝛽, 𝜎2
𝜇).

As a result, for networks with 𝜇Line(𝒢) > 2 (∆ < 0), the values of 𝛽 for which a cascade

happens almost surely are in form of 𝛽 ∈ [𝛽*, 1], where 𝛽* is the unique solution to

Γ<0(𝛽*, 𝜎2
𝜇) = 0. For any 𝛽 /∈ [𝛽*, 1] defined as above, the cascade probability would

be less than 1 and hence not optimal; the calculation for the corresponding cascade

probability would follow the same derivation in the next case.

Moreover, for the unique solution 𝛽*(𝜎2
𝜇) to Γ<0(𝛽*, 𝜎2

𝜇) = 0 when ∆ < 0, it is easy

to verify that for any 𝛾 ≥ 0

𝑑𝛽*(𝜎2
𝜇)

𝑑𝜎𝜇

=
2
(︀
(1− 𝛽*)2 − 1

)︀
𝜎𝜇

2(1− 𝛽*)𝜎2
𝜇 + 𝛾𝜎2

𝜃

1−
√

1−𝛽*√
1−𝛽*

≤ 0,

and therefore the lower bound 𝛽*(𝜎2
𝜇) is decreasing in 𝜎2

𝜇.

Now we consider the case Γ(1, 𝜎2
𝜇) ≥ 0, that is, 𝜎2

𝜇 + 𝛾𝜎2
𝜃 ≤ 𝐶. It then follows that
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Γ(𝛽, 𝜎2
𝜇) ≥ Γ<0(𝛽, 𝜎2

𝜇) ≥ 𝐶−𝜎2
𝜇−𝛾𝜎2

𝜃 ≥ 0 for all 𝛽 ∈ [0, 1], resulting in one non-negative

root and the other non-positive root for (A.7). Therefore, the cascade-triggering news

𝑥 satisfies

|𝑥− �̄�| >
(1− 𝛽)∆𝜎𝜇 +

√︁(︀
(1− 𝛽)2(∆2 + 1)− 1

)︀
𝜎2
𝜇 − 𝛾(1−

√
1− 𝛽)2𝜎𝜃

2 + 𝐶

𝛽
:= ℎ(𝛽, 𝜎2

𝜇),

(A.10)

where ℎ(𝛽, 𝜎2
𝜇) ≥ 0, the non-negative root. The probability of a cascade emerging

(2.16) can therefore be written as a function of 𝛽:

𝑃 cascade(𝛽)
Δ
= 1− Φ

(︁ (1−𝛽)Δ𝜎𝜇+

√︂(︀
(1−𝛽)2(Δ2+1)−1

)︀
𝜎2
𝜇−𝛾(1−

√
1−𝛽)2𝜎𝜃

2+𝐶

𝛽
− (𝜃 − �̄�)√︁

1−𝛽
𝛽
𝜎𝜃

)︁

+ Φ
(︁− (1−𝛽)Δ𝜎𝜇+

√︂(︀
(1−𝛽)2(Δ2+1)−1

)︀
𝜎2
𝜇−𝛾(1−

√
1−𝛽)2𝜎𝜃

2+𝐶

𝛽
− (𝜃 − �̄�)√︁

1−𝛽
𝛽
𝜎𝜃

)︁

= 1− Φ
(︁ (1−𝛽)Δ𝜎𝜇+

√︂(︀
(1−𝛽)2(Δ2+1)−1

)︀
𝜎2
𝜇−𝛾(1−

√
1−𝛽)2𝜎𝜃

2+𝐶
√

𝛽(1−𝛽)
− (𝜃 − �̄�)

√︁
𝛽

1−𝛽

𝜎𝜃

)︁

+ Φ
(︁− (1−𝛽)Δ𝜎𝜇+

√︂(︀
(1−𝛽)2(Δ2+1)−1

)︀
𝜎2
𝜇−𝛾(1−

√
1−𝛽)2𝜎𝜃

2+𝐶
√

𝛽(1−𝛽)
− (𝜃 − �̄�)

√︁
𝛽

1−𝛽

𝜎𝜃

)︁
,

which is strictly smaller than 1 for 𝛽 ∈ (0, 1). From the above formula, we can observe

that as 𝛽 → 0, the probability of cascade 𝑃 cascade(𝛽) → 1−Φ(+∞) +Φ(−∞) = 0. As
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𝛽 → 1, 𝑃 cascade(𝛽) has the following asymptotic:

𝑃 cascade(𝛽) ≈ 1− Φ
(︁√︁𝐶 − 𝜎2

𝜇 − 𝛾𝜎2
𝜃 − (𝜃 − �̄�)

√
1− 𝛽𝜎𝜃

)︁
+ Φ

(︁−√︁𝐶 − 𝜎2
𝜇 − 𝛾𝜎2

𝜃 − (𝜃 − �̄�)
√
1− 𝛽𝜎𝜃

)︁
.

Using this equation, we can see that as 𝛽 → 1,

Case (ii) 𝑃 cascade(𝛽) → 1 if |𝜃 − �̄�| >
√︁

𝐶 − 𝜎2
𝜇 − 𝛾𝜎2

𝜃 , and

Case (iii) 𝑃 cascade(𝛽) → 0 if |𝜃 − �̄�| ≤
√︁

𝐶 − 𝜎2
𝜇 − 𝛾𝜎2

𝜃 .

This completes the proof. ■

Proof of Proposition 2.3:

Proposition 2.3 needs no modification for the general measure of distance between

individual beliefs (2.2).

Recall that for networks with 𝜇Line(𝒢) > 2, or ∆ < 0, Theorem 2.2 already shows

that, when 𝜎2
𝜇 + 𝛾𝜎2

𝜃 > 𝐶, the cascade probability is 1 for 𝛽 ∈ [𝛽*(𝜎2
𝜇), 1] where the

endpoint 𝛽*(𝜎2
𝜇) is the unique solution to Γ<0(𝛽, 𝜎2

𝜇) = 0 (A.9) and is strictly decreasing

in 𝜎2
𝜇. It means that after 𝜎2

𝜇 is increased, the news of credibility 𝛽 ∈ [𝛽*(𝜎2
𝜇), 1] still

cascades almost surely. Now it remains to examine whether the cascade probability is

increasing (a) for 𝛽 < 𝛽*(𝜎2
𝜇) and 𝜎2

𝜇 + 𝛾𝜎2
𝜃 > 𝐶 and (b) when 𝜎2

𝜇 + 𝛾𝜎2
𝜃 ≤ 𝐶.

According to the proof of Theorem 2.2, both cases (a) and (b) will result in one non-

negative root and the other non-positive root for (A.7) (and Γ(𝛽, 𝜎2
𝜇) ≥ 0), meaning

that the quantity ℎ(𝛽, 𝜎2
𝜇) would be non-negative in (A.10). That is, news 𝑥 would

cascade if and only if |𝑥 − �̄�| > ℎ(𝛽, 𝜎2
𝜇) ≥ 0. Now we would like to show that in

case (a) and (b) where ℎ(𝜎2
𝜇) ≥ 0, the function ℎ(𝜎2

𝜇) decreases in 𝜎2
𝜇, or equivalently

decreases in 𝜎𝜇. Consequently, the set of news realizations that generate a cascade

would be enlarged, resulting in higher cascade probability.
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By simple calculations, we can find that

𝜎𝜇

𝜕ℎ(𝛽, 𝜎2
𝜇)

𝜕𝜎𝜇

= ℎ(𝛽, 𝜎2
𝜇)−

𝐶 − 𝛾(1−
√
1− 𝛽)2𝜎𝜃

2

𝛽
√︁

Γ(𝛽, 𝜎2
𝜇)

.

We further rewrite ℎ(𝛽, 𝜎2
𝜇) as

ℎ(𝛽, 𝜎2
𝜇) =

𝐶 − 𝛾(1−
√
1− 𝛽)2𝜎𝜃

2 − 𝛽(2− 𝛽)𝜎2
𝜇

𝛽(
√
Γ− (1− 𝛽)∆𝜎𝜇)

.

For ∆ < 0 (i.e., 𝜇Line(𝒢) > 2) and ℎ(𝛽, 𝜎2
𝜇) ≥ 0, we can see that

0 ≤
𝐶 − 𝛾(1−

√
1− 𝛽)2𝜎𝜃

2 − 𝛽(2− 𝛽)𝜎2
𝜇

𝛽(
√
Γ− (1− 𝛽)∆𝜎𝜇)

≤ 𝐶 − 𝛾(1−
√
1− 𝛽)2𝜎𝜃

2

𝛽(
√
Γ− (1− 𝛽)∆𝜎𝜇)

≤ 𝐶 − 𝛾(1−
√
1− 𝛽)2𝜎𝜃

2

𝛽
√
Γ

.

Thus, for ∆ < 0 and for any 𝛽, 𝜕ℎ(𝛽,𝜎2
𝜇)

𝜕𝜎𝜇
≤ 0 in case (a) and (b), and the cascade

probability is increasing in 𝜎𝜇 (also increasing in 𝜎2
𝜇). With the result for the case

when 𝛽 ∈ [𝛽*(𝜎2
𝜇), 1] and 𝜎2

𝜇 + 𝛾𝜎2
𝜃 > 𝐶, the proof is complete. ■
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Appendix B

Supplementary Material for Chapter 3

B.1 Proofs of Section 3.3

Proof of Lemma 3.2.

Denote by 𝑄 the probability that a follower receives the news at the steady state

from other agents according to the strategy profile 𝑠; we reason similarly as how the

equation for 𝑞 is derived. However, we need to adjust two elements: (i) a follower with

out-degree 𝑑 has not received it from any of her “other” followees, conditioned on the

event that the decision maker does not share the news; (ii) the out-degree distribution

of a follower should be adjusted by the well-known friendship paradox. We have:

1−𝑄 = (1− 𝛿)
∞∑︁
𝑑=1

𝑑𝑃 out(𝑑)

E[𝑑]
(1− 𝑞𝑃𝐹 (𝑠((𝑥, 𝛽)))

𝑑−1.

Using 𝑃 out(·) ∼ Poisson(𝜆) and taking 𝛿 → 0, we obtain that at the steady state

𝑄 = 𝑞. ■

Proof of Lemma 3.3:
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According to (3.2), we obtain

E𝑖

[︀
𝑎𝑘|𝑘 ∈ 𝑁 in

𝑖 , 𝑧𝑘 = (𝑥, 𝛽)
]︀

=P[𝑎𝑘(𝜇𝑘, (𝑥, 𝛽)) = +1|𝜇𝑘 ∼ 𝐹 ]− P𝜇𝑘∼𝐹 [𝑎𝑘(𝜇𝑘, (𝑥, 𝛽)) = −1|𝜇𝑘 ∼ 𝐹 ]

=1− 2𝐹 (
−𝛽𝑥

1− 𝛽
),

and similarly,

E𝑖

[︀
𝑎𝑘|𝑘 ∈ 𝑁 in

𝑖 , 𝑧𝑘 = ∅
]︀
= 1− 2𝐹 (0).

Plug them into (3.7) and the sharing rule (3.8) is the immediate result. ■

Proof of Theorem 3.1:

WLOG, we discuss the case 𝑥 ≥ 0. The equilibrium when 𝛿 → 0 should satisfy the

following system of equations:

𝑞* = 1− 𝑒−𝑞*𝜆𝑃𝐹 (𝑠
*),

𝑃𝐹 (𝑠
*) = 1− 𝐹

(︁ 𝐶
2(1−𝑞*)𝐹flip(𝑥,𝛽)

− 𝛽𝑥

1− 𝛽

)︁
To prove the existence and uniqueness of an equilibrium, we define a continuous func-

tion ℎ(𝑞) for 𝑞 ∈ [0, 1]:

ℎ(𝑞)
Δ
= 1− 𝑒−𝑞𝜆𝑃𝐹 (𝑠) − 𝑞, (B.1)

𝑃𝐹 (𝑠) = 1− 𝐹
(︁ 𝐶

2(1−𝑞)𝐹flip(𝑥,𝛽)
− 𝛽𝑥

1− 𝛽

)︁
By the continuity and ℎ(0) = 0 and ℎ(1) = −1 (because 𝑃𝐹 (𝑠) = 0 for 𝑞 = 1), there

must exist at least one such solution to (B.1), proving the existence of an equilibrium.

Though 𝑞 = 0 is always a solution, the zero spread size may not be an equilibrium
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for infinitesimal seeding size 𝛿 when there are other positive solutions (see Jackson

(2008) for details). We now identify the condition under which there are other positive

solutions to ℎ(𝑞), i.e., a news cascade emerges, and then show the uniqueness of the

equilibrium.

Emergence of a news cascade:

Take derivative (B.1) of w.r.t. 𝑞,

ℎ′(𝑞) = 𝜆𝑒−𝜆𝑞𝑃𝐹 (𝑠)
(︁
𝑃𝐹 (𝑠) + 𝑞

𝑑𝑃𝐹 (𝑠)

𝑑𝑞

)︁
− 1.

Note that for 𝛽 < 1, 𝑃𝐹 is differentiable in the range [0, 1] (for 𝑥 = 0 or 𝛽 = 0, 𝑃𝐹 (𝑠)

is the constant zero). As ℎ(0) = 0, ℎ(1) = −1, if ℎ′(0) = −1 + 𝜆𝑃𝐹 (𝑠)|𝑞=0 > 0, due to

the continuity, some positive solutions must exist.

We now show that ℎ′(0) > 0 is also necessary. Noting that the derivative 𝑑𝑃𝐹 (𝑠)
𝑑𝑞

must be non-positive due to the strategic substituability and 𝑃𝐹 (𝑠) is maximized at

𝑞 = 0. Consequently, we can find that when ℎ′(0) ≤ 0, then ℎ′(𝑞) < 0 for any 𝑞 > 0,

indicating that ℎ(𝑞) is strictly decreasing and 𝑞 = 0 is the only root.

Uniqueness of the equilibrium:

We have shown that if 𝜆𝑃𝐹 (𝑠)|𝑞=0 ≤ 1, 𝑞* = 0 is the only solution and 𝑃 *
𝐹 , 𝜇

th*

are in turn determined, resulting in a unique equilibrium. If 𝜆𝑃𝐹 (𝑠)|𝑞=0 > 1, there

are other positive solutions and 𝑞* ̸= 0 (Jackson 2008); for this case, there is only one

positive solution and the equilibrium is therefore unique. To see this, suppose there

are two positive solutions 𝑞1 > 𝑞2 > 0. Then we have 𝑃𝐹 (𝑠)|𝑞=𝑞1 < 𝑃𝐹 (𝑠)|𝑞=𝑞2 due to

strategic substitutability. However, the equation 𝑞 = 1−𝑒−𝑞𝜆𝑃𝐹 (𝑠), or 𝑃𝐹 (𝑠) =
− ln(1−𝑞)

𝜆𝑞
,

dictates that the solutions should satisfy 𝑃𝐹 (𝑠)|𝑞=𝑞1 > 𝑃𝐹 (𝑠)|𝑞=𝑞2 . Contradiction! As

a result, only one positive solution for 𝑞 exists, with 𝑃 *
𝐹 , 𝜇

th* in turn determined, and

the equilibrium is unique. ■

Proof of Theorem 3.2:

For convenience, define 𝑞(𝑥) ≜ 1 − 𝐶
|𝑥| . Given 𝜆, 𝐹 , for 𝛽 = 1, according to
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Lemma 3.3, we can see that 𝑃𝐹 (𝑠(𝑥, 1)) = 1 for any 𝑞 < 𝑞(𝑥) while 𝑃𝐹 (𝑠(𝑥, 1)) = 0 for

any 𝑞 > 𝑞(𝑥). We keep the argument news 𝑥 and 𝛽 only as a shorthand. Note that the

cascade size is bounded above by the size of giant component 𝑞𝐺(𝜆) when every agent

shares news (𝑃𝐹 ≡ 1). We have three cases depending on the magnitude of 𝑥:

1) |𝑥| ∈ [0, 𝐶]: 𝑞(𝑥, 1) ≤ 0 and then 𝑃𝐹 (𝑥, 1) = 0 for any 𝑞 ∈ (0, 1] ⇒ 𝑞*(𝑥, 1) =

0, 𝑃 *
𝐹 (𝑥, 1) = 0.

2) |𝑥| ∈ (𝐶, 𝐶
1−𝑞𝐺(𝜆)

]: In this case 𝑞(𝑥) ∈ [0, 𝑞𝐺(𝜆)]. Observe that ℎ(𝑞) > 0 for

𝑞 < 𝑞(𝑥) and ℎ(𝑞) < 0 for 𝑞 > 𝑞(𝑥). Let 𝑃𝐹 (𝑥, 1)|𝑞=𝑞(𝑥) =
− ln(1−𝑞(𝑥))

𝜆𝑞(𝑥)
, and it can

be shown that 𝑃𝐹 (𝑥, 1) ∈ [0, 1] and ℎ(𝑞(𝑥)) = 0. Therefore, the equilibrium is

𝑞*(𝑥, 1) = 𝑞(𝑥) and 𝑃 *
𝐹 (𝑥, 1) =

− ln(1−𝑞(𝑥))
𝜆𝑞(𝑥)

.

3) |𝑥| > 𝐶
1−𝑞𝐺(𝜆)

: 𝑞(𝑥) > 𝑞𝐺(𝜆) and then 𝑃𝐹 (𝑥) = 1 for any 𝑞 ≤ 𝑞𝐺(𝜆). It is obvious

that 𝑞*(𝑥, 1) = 𝑞𝐺(𝜆), 𝑃 *
𝐹 (𝑥, 1) = 1.

The equilibrium sharing threshold 𝜇th*(𝑥, 1) is obtained by applying inverse of CDF

𝐹−1 to the sharing fraction 𝑃 *
𝐹 (𝑥, 1). The existence of an equilibrium with is then

obvious. ■

Proof of Corollary 3.1:

When 𝛽 < 1, it is easy to see that for any news 𝑥, 𝑞*(𝑥, 𝛽), 𝑃 *
𝐹 (𝑥, 𝛽) and 𝜇th*(𝑥, 𝛽)

are continuous in 𝛽 ∈ [0, 1). We now show that they are continuous at 𝛽 = 1, i.e., their

limits when 𝛽 → 1 are equal to their corresponding values at 𝛽 = 1.

1) |𝑥| ≤ [0, 𝐶]: If lim
𝛽→1

𝑞*(𝑥, 𝛽) > 0, then for 𝑥 ≥ 0

lim
𝛽→1

𝜇th*(𝑥, 𝛽) = lim
𝛽→1

𝐶

2(1−𝑞*)(𝐹 (0)−𝐹 (−𝛽𝑥
1−𝛽

))
− 𝛽𝑥

1− 𝛽
= lim

𝛽→1

𝐶
1−𝑞*

− 𝑥

1− 𝛽
= +∞,

and hence lim
𝛽→1

𝑃 *
𝐹 (𝑥, 𝛽) = 0, resulting in lim

𝛽→1
𝑞*(𝑥, 𝛽) = 0. Then obviously

lim
𝛽→1

𝑞*(𝑥, 𝛽) = 0 and lim
𝛽→1

𝑃 *
𝐹 (𝑥, 𝛽) = 0. The reasoning for 𝑥 < 0 is similar.
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2) |𝑥| ∈ (𝐶, 𝐶
1−𝑞𝐺(𝜆)

]: If lim
𝛽→1

𝑞*(𝑥, 𝛽) < 𝑞(𝑥), then lim
𝛽→1

𝑃 *
𝐹 (𝑥, 𝛽) = 1, resulting in

lim
𝛽→1

𝑞*(𝑥, 𝛽) = 𝑞𝐺(𝜆) ≥ 1 − 𝐶
|𝑥| . Contradiction. Similarly lim

𝛽→1
𝑞*(𝑥, 𝛽) > 𝑞(𝑥) can

not hold as well. Therefore lim
𝛽→1

𝑞*(𝑥, 𝛽) = 𝑞(𝑥). Moreover, 𝑃 *
𝐹 (𝑥, 1) =

− ln(1−𝑞(𝑥))
𝜆𝑞(𝑥)

.

3) |𝑥| > 𝐶
1−𝑞𝐺(𝜆)

: Since 𝑞* is bounded above by 𝑞𝐺(𝜆), we hence obtain lim
𝛽→1

𝑃 *
𝐹 (𝑥, 𝛽) =

1, which sustains that lim
𝛽→1

𝑞*(𝑥, 𝛽) = 𝑞𝐺(𝜆).

Therefore, with the results from Theorem 3.2, 𝑞*(𝑥, 𝛽) and 𝑃 *
𝐹 (𝑥, 𝛽) are both continu-

ous at 𝛽 = 1. As 𝜇th*(𝑥, 𝛽) is a continuous function of 𝑃 *
𝐹 (𝑥, 𝛽) (inverse CDF 𝐹−1), it

is also continuous at 𝛽 = 1. ■

Proof of Lemma 3.4:

It is self-evident for the case when 𝛽 = 1 by Theorem 3.2. For 𝛽 < 1, we ob-

serve that, given news sign, if for any 𝑞 ∈ [0, 1], the corresponding value of function

1 − 𝑒−𝑞𝜆𝑃𝐹 (𝑠((𝑥,𝛽),𝐹 )) is increased in |𝑥|, the solution 𝑞* (and corresponding fraction of

sharing 𝑃 *
𝐹 ) is increased as well. Therefore, it suffices to show that for any 𝑞, 𝑃𝐹 is

increasing in news magnitude |𝑥|; this can be easily proved by noting the monotonic-

ity of the sharing threshold 𝜇th((𝑥, 𝛽), 𝐹 ) =

𝐶

2(1−𝑞)(𝐹 (0)−𝐹 (
−𝛽𝑥
1−𝛽

))
−𝛽𝑥

1−𝛽
in news magnitude. ■

Proof of Lemma 3.5: According to Theorem 3.2, given 𝛽 = 1, when |𝑥| ≤ 𝐶 the equi-

librium spread size is zero whereas when |𝑥| > 𝐶 it is min{1− 𝐶
|𝑥| , 𝑞

𝐺(𝜆)}; in either case

the equilibrium spread size is increasing in 𝜆. For 𝛽 < 1, the argument is similar to the

above proof: Since all else equal the function value of 1− 𝑒−𝑞𝜆𝑃𝐹 (𝑠((𝑥,𝛽),𝐹 )) is increasing

in 𝜆, the result is then obvious. ■

B.2 Proofs of Section 3.4

Proof of Proposition 3.1:

161



Case (i) and (ii) are direct results of Theorem 3.2. We now prove the necessary

and sufficient condition for 𝛽 = 1 to be a local minimizer when |𝑥| ∈ (𝐶, 𝐶
1−𝑞𝐺(𝜆)

]. We

compute the derivative of 𝑞* w.r.t. 𝛽 when 𝛽 → 1, i.e.,lim𝛽→1
𝜕𝑞*

𝜕𝛽
. In the following we

only compute the case for 𝑥 > 0 and for 𝑥 < 0 the approach is similar. To evaluate

lim𝛽→1
𝜕𝑞*

𝜕𝛽
, we use the continuity of 𝜇th* at 𝛽 = 1.

𝜇th*((𝑥, 1), 𝐹 ) = lim
𝛽→1

𝜇th*((𝑥, 𝛽), 𝐹 ) = lim
𝛽→1

𝐶
2(1−𝑞*)𝐹flip(𝑥,𝛽)

− 𝛽𝑥

1− 𝛽
.

Applying l’hopital rule to the last term and using the fact that lim
|𝜇|→∞

𝜇2𝑓(𝜇) = 0 (as

the mean and variance are both finite), we derive

lim
𝛽→1

𝐶

2(1− 𝑞*)𝐹 flip(𝑥, 𝛽)
− 𝛽𝑥

1− 𝛽
= lim

𝛽→1

−𝐶
(︀
− 𝑑𝑞*

𝑑𝛽
𝐹 flip(𝑥, 𝛽) + (1− 𝑞*)𝑓(−𝛽𝑥

1−𝛽
) 𝑥
(1−𝛽)2

)︀
2
(︀
(1− 𝑞*)𝐹 flip(𝑥, 𝛽)

)︀2 − 𝑥

−1
,

=
−𝑥2 lim

𝛽→1

𝑑𝑞*

𝑑𝛽

𝐶
+ 𝑥.

As a result, when 𝑥 > 0, lim
𝛽→1

𝑑𝑞*

𝑑𝛽
< 0 iff 𝜇th*((𝑥, 1), 𝐹 ) > 𝑥. Similarly, repeating the

approach, one can show that when 𝑥 < 0, lim
𝛽→1

𝑑𝑞*

𝑑𝛽
< 0 iff 𝜇th*((𝑥, 1), 𝐹 ) < 𝑥. The proof

is completed. ■

Proof of Proposition 3.2:

WLOG, we prove for positive news; we aim to show the existence of �̄�(𝜆, 𝐹 ).

According to Proposition 3.1, for 𝛽 = 1, when 𝑥 ≤ 𝐶, no agents share the

news whereas when 𝑥 > 𝐶
1−𝑞𝐺(𝜆)

, every agent shares the news. It also means that

𝜇th*({𝑥 = 𝐶, 1}, 𝐹 ) = +∞ and 𝜇th*({𝑥 = 𝐶
1−𝑞𝐺(𝜆)

, 1}, 𝐹 ) = −∞. Therefore, in the

range (𝐶, 𝐶
1−𝑞𝐺(𝜆)

], the equilibrium sharing threshold 𝜇th*((𝑥, 1), 𝐹 ) is decreasing in 𝑥,

from +∞ to −∞ (cf. Lemma 3.4). We can then easily see that there exists unique

�̄�(𝜆, 𝐹 ) > 𝐶 such that 𝜇th*({𝑥, 1}, 𝐹 ) > 𝑥 iff 𝑥 < �̄�(𝜆, 𝐹 ). ■
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B.3 Proofs of Section 3.5

Proof of Proposition 3.3:

Observing that in (3.17), �̄� affects 𝜆th through function 𝐹 (−|𝑥|), we investigate

their effects on 𝐹 (−|𝑥|). When �̄� = 0, 𝜆th(𝑥, 0, 𝜎𝜇, 𝐺) =
− ln 𝐶

|𝑥|

(1− 𝐶
|𝑥| )𝐺(− |𝑥|

𝜎𝜇
)
. The derivative

of 𝐹 (−|𝑥|) w.r.t. �̄� is

𝑑𝐹 (−|𝑥|)
𝑑�̄�

=
1

2𝜎𝜇

[︁
𝑔
(︀−|𝑥|+ �̄�

𝜎𝜇

)︀
− 𝑔
(︀−|𝑥| − �̄�

𝜎𝜇

)︀]︁
=

1

2𝜎𝜇

[︁
𝑔
(︀ �̄�− |𝑥|

𝜎𝜇

)︀
− 𝑔
(︀ �̄�+ |𝑥|

𝜎𝜇

)︀]︁
> 0,

since 𝑔 is even and decreasing in [0,+∞) and
⃒⃒
�̄�+ |𝑥|

⃒⃒
>
⃒⃒
�̄�− |𝑥|

⃒⃒
. Therefore 𝐹 (−|𝑥|)

is strictly increasing in �̄� and then 𝜆th(𝑥, �̄�, 𝜎𝜇, 𝐺) is decreasing in �̄�. ■

Proof of Proposition 3.4:

We can similarly derive the effect of 𝜎𝜇 on 𝜆th by examining its effect on 𝐹 (−|𝑥|):

𝑑𝐹 (−|𝑥|)
𝑑𝜎𝜇

=
1

2𝜎𝜇

[︁
𝑔
(︀−|𝑥|+ �̄�

𝜎𝜇

)︀(︀𝑥− �̄�

𝜎𝜇

)︀
+ 𝑔
(︀−|𝑥| − �̄�

𝜎𝜇

)︀(︀𝑥+ �̄�

𝜎𝜇

)︀]︁
,

=
1

2𝜎𝜇

[︁
𝑔
(︀ �̄�− |𝑥|

𝜎𝜇

)︀(︀𝑥− �̄�

𝜎𝜇

)︀
+ 𝑔
(︀ �̄�+ 𝑥

𝜎𝜇

)︀(︀ �̄�+ 𝑥

𝜎𝜇

)︀]︁
,

which is positive iff

𝑔
(︀ �̄�+|𝑥|

𝜎𝜇

)︀
𝑔
(︀
�̄�−|𝑥|
𝜎𝜇

)︀ >
�̄�− |𝑥|
�̄�+ |𝑥|

. (B.2)

Note that for �̄� ≤
⃒⃒
𝑥
⃒⃒
, (B.2) holds for any 𝜎𝜇, implying that 𝐹 (−|𝑥|) is increasing

in 𝜎𝜇. When �̄� >
⃒⃒
𝑥
⃒⃒
, we first show that the LHS of (B.2) is increasing in 𝜎𝜇. Take the
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derivative, we find that

𝑑

𝑑𝜎𝜇

𝑔
(︀ �̄�+|𝑥|

𝜎𝜇

)︀
𝑔
(︀
�̄�−|𝑥|
𝜎𝜇

)︀ = −
𝑔
(︀ �̄�+|𝑥|

𝜎𝜇

)︀
𝑔
(︀
�̄�−|𝑥|
𝜎𝜇

)︀ [︁𝑔′(︀ �̄�+|𝑥|
𝜎𝜇

)︀
𝑔
(︀
�̄�+|𝑥|
𝜎𝜇

)︀ (�̄�+ |𝑥|)
𝜎2
𝜇

−
𝑔′
(︀ �̄�−|𝑥|

𝜎𝜇

)︀
𝑔
(︀
�̄�−|𝑥|
𝜎𝜇

)︀ (�̄�− |𝑥|)
𝜎2
𝜇

]︁
⏟  ⏞  

(*)

.

Since 𝑔′(𝑦)
𝑔(𝑦)

is decreasing due to log-concavity of 𝑔 and 𝑔′(𝑦)
𝑔(𝑦)

< 0 for 𝑦 > 0, the part (*)

is negative and consequently LHS of (B.2) is increasing in 𝜎𝜇. Observing that LHS of

(B.2) approaches to 0 when 𝜎𝜇 → 0 while to 1 when 𝜎𝜇 → +∞, the monotonicity then

suggests that there exists some value ̂︀𝜎(𝑥, 𝜇,𝐺) > 0 such that 𝐹 (−|𝑥|) is decreasing in

𝜎𝜇 iff 𝜎𝜇 ≤ ̂︀𝜎(𝑥, 𝜇,𝐺).

For the two cases discussed above:

• When �̄� ≤ |𝑥|, we have lim
𝜎𝜇→0

𝐹 (−|𝑥|) = 0. Hence, lim
𝜎𝜇→0

𝜆th(𝑥, �̄�, 𝜎𝜇, 𝐺) = +∞

and 𝜆th(𝑥, �̄�, 𝜎𝜇, 𝐺) is decreasing in 𝜎𝜇.

• When �̄� > |𝑥|, we have lim
𝜎𝜇→0

𝐹 (−|𝑥|) = 1
2

and thus lim
𝜎𝜇→0

𝜆th(𝑥, �̄�, 𝜎𝜇, 𝐺) =
−2 ln 𝐶

|𝑥|

1− 𝐶
|𝑥|

.

As 𝐹 (−|𝑥|) is decreasing in 𝜎𝜇 iff 𝜎𝜇 ≤ ̂︀𝜎(𝑥, 𝜇,𝐺), then 𝜆th(𝑥, �̄�, 𝜎𝜇, 𝐺) is increas-

ing in 𝜎𝜇 up to �̂�(𝑥, �̄�, 𝐺) and then decreasing.

■
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Appendix C

Supplementary Material for Chapter 4

C.1 Proofs of Section 4.3

Proof of Lemma 4.1.

Symmetry: by the symmetry in the information structure.

We claim one more important property here.

Non-expansion of beliefs: for any 𝑥, |E𝑖[𝜃 |𝑥, 𝑇 ]− 𝜇𝑖| ≤ |𝑥− 𝜇𝑖|. For a perspective

𝜇𝑖, the difference E𝑖[𝜃 |𝑥, 𝑇 ]− 𝜇𝑖 equals∫︀
(𝜃 − 𝜇)𝑓(𝜃 − 𝜇𝑖)𝑓𝜖(𝑥− 𝜃)𝑑𝜃∫︀

𝑓(𝜃 − 𝜇𝑖)𝑓𝜖(𝑥− 𝜃)𝑑𝜃
=

∫︀
𝑡𝑓(𝑡)𝑓𝜖((𝑥− 𝜇𝑖)− 𝑡)𝑑𝑡∫︀
𝑓(𝑡)𝑓𝜖((𝑥− 𝜇𝑖)− 𝑡)𝑑𝑡

. (C.1)

Chambers and Healy (2012, Proposition 3) showed that under Assumption 5 the above

expression (C.1) is a convex combination of 0 and 𝑥−𝜇𝑖 and hence |E𝑖[𝜃 |𝑥, 𝑇 ]−𝜇𝑖| ≤

|𝑥 − 𝜇𝑖|. We will use E0[𝜃|𝑥, 𝑇 ] to refer to the posterior expectation corresponding

to zero perspective and informative news 𝑥; note that the expression (C.1) equals

E0[𝜃|𝑥− 𝜇𝑖, 𝑇 ].

Monotonicity in informative news: Given that 𝑥 is the sum of two independent

variables 𝜃 and 𝜖 and that 𝑓𝑖 and 𝑓𝜖 are both log-concave, according to Efron’s theorem

(Efron 1965), the belief function E𝑖[𝜃 |𝑥, 𝑇 ] is non-decreasing in 𝑥. Moreover, following
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the proof provided by Saumard and Wellner (2014), we can find that the equality

holds only if 𝜃 or 𝜖 is almost surely a constant. This suggests that E𝑖[𝜃 |𝑥, 𝑇 ] is strictly

increasing in 𝑥.

Unbounded information:

Now we show that for any 𝜇𝑖, lim
𝑥→+∞

E𝑖[𝜃 |𝑥, 𝑇 ] > 0 and lim
𝑥→−∞

E𝑖[𝜃 |𝑥, 𝑇 ] < 0. It is

obviously true for 𝜇𝑖 = 0. For 𝜇𝑖 ̸= 0, according to (4.3), we only need to focus on the

numerator:

∫︁
𝜃𝑓(𝜃 − 𝜇𝑖)𝑓𝜖(𝑥− 𝜃)𝑑𝜃 =

∫︁ +∞

0

𝜃𝑓(𝜃 − 𝜇𝑖)𝑓𝜖(𝑥− 𝜃)𝑑𝜃 +

∫︁ 0

−∞
𝜃𝑓(𝜃 − 𝜇𝑖)𝑓𝜖(𝑥− 𝜃)𝑑𝜃,

=

∫︁ +∞

0

𝜃𝑓(𝜃 − 𝜇𝑖)𝑓𝜖(𝑥− 𝜃)𝑑𝜃 −
∫︁ +∞

0

𝜃𝑓(−𝜃 − 𝜇𝑖)𝑓𝜖(𝑥+ 𝜃)𝑑𝜃,

=

∫︁ +∞

0

(︁
1− 𝑓(−𝜃 − 𝜇𝑖)𝑓𝜖(𝑥+ 𝜃)

𝑓(𝜃 − 𝜇𝑖)𝑓𝜖(𝑥− 𝜃)⏟  ⏞  
(*)

)︁
𝜃𝑓(𝜃 − 𝜇𝑖)𝑓𝜖(𝑥− 𝜃)𝑑𝜃.

Alternatively, we can write the convolution sum as

∫︁
𝜃𝑓(𝜃 − 𝜇𝑖)𝑓𝜖(𝑥− 𝜃)𝑑𝜃 = −

∫︁ +∞

0

(︁
1− 𝑓(𝜃 − 𝜇𝑖)𝑓𝜖(𝑥− 𝜃)

𝑓(−𝜃 − 𝜇𝑖)𝑓𝜖(𝑥+ 𝜃)⏟  ⏞  
(*)

)︁
𝜃𝑓(−𝜃 − 𝜇𝑖)𝑓𝜖(𝑥+ 𝜃)𝑑𝜃.

The ratio (*) is the relative likelihood between −𝜃 and 𝜃 given 𝜇𝑖 and 𝑥𝑖.1

1In fact (*) can be seen as the ratio of two ratios that possess monotone likelihood property in 𝜃:

𝑓(−𝜃 − 𝜇𝑖)

𝑓(𝜃 − 𝜇𝑖)

𝑓𝜖(𝑥− 𝜃)

𝑓𝜖(𝑥+ 𝜃)

The magnitude of numerator measures the likelihood ratio of −𝜃 to 𝜃 based on perspective 𝜇𝑖 while the
denominator means based on the news generation process the likelihood ratio between 𝜃 to −𝜃 based
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By Assumption 5 that for any 𝜇𝑖 there exists 𝑥 such that the ratio (*) is decreasing

in 𝜃. Since (*) equals 1 for 𝜃 = 0, we prove that for any 𝜇𝑖, there exist 𝑥−(𝜇𝑖), 𝑥+(𝜇𝑖)

such that E𝑖[𝜃 |𝑥−, 𝑇 ] < 0 and E𝑖[𝜃 |𝑥+, 𝑇 ] > 0. Using the monotonicity of E𝑖[𝜃 |𝑥, 𝑇 ]

in true news 𝑥, we show the result.

Monotonicity in perspective:

For E𝑖[𝜃 |𝑥, 𝑇 ], the result follows Efron’s theorem by noticing that given 𝑥 we can

regard 𝑓𝜖(𝑥− 𝜃) as a density function of 𝜃 and 𝑓(𝜃−𝜇𝑖) as one of some 𝜖′ independent

of 𝜃 such that 𝜃 + 𝜖′ = 𝜇𝑖.

To show the monotonicity of E𝑖[𝜃 |𝑥] in 𝜇𝑖, we use the property that it is a con-

vex combination of E𝑖[𝜃 |𝑥, 𝑇 ] and 𝜇𝑖. Consider any 𝜇1 > 𝜇2. If 𝑥 ∈ [𝜇2, 𝜇1], then

E1[𝜃|𝑥, 𝑇 ] ≥ 𝑥 ≥ E2[𝜃|𝑥, 𝑇 ] by the convexity property; since the likelihood weights

in the convex combination are nonzero, it is obvious that E1[𝜃|𝑥] > E2[𝜃|𝑥] for this

case. If 𝑥 < 𝜇2 < 𝜇1, then 𝑓𝑇 (𝑥;𝜇2) > 𝑓𝑇 (𝑥;𝜇1) and ℓ2(𝑥, 𝑇 ) > ℓ1(𝑥, 𝑇 ). Because

E2[𝜃|𝑥, 𝑇 ] < 𝜇2 and E2[𝜃|𝑥, 𝑇 ] < E1[𝜃|𝑥, 𝑇 ], we have

E2[𝜃|𝑥] = ℓ2(𝑥, 𝑇 )E2[𝜃|𝑥, 𝑇 ] + (1− ℓ2(𝑥, 𝑇 ))𝜇2,

< ℓ1(𝑥, 𝑇 )E2[𝜃|𝑥, 𝑇 ] + (1− ℓ1(𝑥, 𝑇 ))𝜇2,

< ℓ1(𝑥, 𝑇 )E1[𝜃|𝑥, 𝑇 ] + (1− ℓ1(𝑥, 𝑇 ))𝜇1 = E1[𝜃|𝑥].

We can similarly analyze the case when 𝑥 > 𝜇1 > 𝜇2.

Unboundedness of prior beliefs:

Now we show that for any 𝑥, lim
𝜇𝑖→+∞

E𝑖[𝜃 |𝑥, 𝑇 ] > 0 and lim
𝜇𝑖→−∞

E𝑖[𝜃 |𝑥, 𝑇 ] < 0. It is

obviously true for 𝑥 = 0. Similar to our approach in the proof for unboundedness of

informative news, for any 𝑥 ̸= 0 we can find that there exist some 𝜇+
𝑖 (𝑥) and 𝜇−

𝑖 (𝑥) such

that E𝑖[𝜃 |𝑥, 𝑇 ] > 0 for 𝜇𝑖 = 𝜇+
𝑖 and E𝑖[𝜃 |𝑥, 𝑇 ] < 0 for 𝜇𝑖 = 𝜇−

𝑖 ; by the monotonicity,

we show the result.

on the noise distribution. If both ratios are decreasing in 𝜃, it means that perspective 𝜇𝑖 suggests
that the set of positive value for 𝜃 is more likely whereas 𝑥 suggests the opposite side. In this case,
if the ratio for perspective 𝜇𝑖 decreases faster in 𝜃 than its counterpart, the expected value will have
the sign of the ideology that 𝑥 indicates.

167



Moreover, for the case when news veracity is uncertain, given any 𝑥,

lim
𝜇𝑖→+∞

E𝑖[𝜃 |𝑥] = lim
𝜇𝑖→+∞

P𝑖(𝜔 = 𝑇 |𝑥)E𝑖[𝜃 |𝑥, 𝑇 ] + (1− P𝑖(𝜔 = 𝑇 |𝑥))𝜇𝑖 > 0.

Similarly we can derive for the case when 𝜇𝑖 → −∞. The proof is complete. ■

Proof of Lemma 4.2.

We define some notations for the proof. Let 𝑇𝐶𝑖 denote the set of “true" news that

will be concealed according to the strategies 𝑣𝑖,𝑚𝑖 and similarly define 𝐹𝐶𝑖 for the

set of false news that is concealed; we rewrite the updating function when there is no

disclosure (4.5) as

𝜋𝑗(𝑖, ∅) =
𝑝𝜇𝑗 + (1− 𝑝)

[︁
𝑞

∫︁
𝑥∈𝐹𝐶𝑖

𝜇𝑗 𝑓𝐹 (𝑥)𝑑𝑥+ (1− 𝑞)

∫︁
𝑥∈𝑇𝐶𝑖

E𝑗[𝜃 |𝑥, 𝑇 ] 𝑓𝑇 (𝑥;𝜇𝑗)𝑑𝑥
]︁

𝑝+ (1− 𝑝)
[︁
𝑞

∫︁
𝑥∈𝐹𝐶𝑖

𝑓𝐹 (𝑥)𝑑𝑥+ (1− 𝑞)

∫︁
𝑥∈𝑇𝐶𝑖

𝑓𝑇 (𝑥;𝜇𝑗)𝑑𝑥
]︁ ,

(C.2)

=𝜇𝑗 +

(1− 𝑝)(1− 𝑞)

∫︁
𝑥∈𝑇𝐶𝑖

E0[𝜃|𝑥− 𝜇𝑗, 𝑇 ] 𝑓𝑇 (𝑥;𝜇𝑗)𝑑𝑥
]︁

𝑝+ (1− 𝑝)
[︁
𝑞

∫︁
𝑥∈𝐹𝐶𝑖

𝑓𝐹 (𝑥)𝑑𝑥+ (1− 𝑞)

∫︁
𝑥∈𝑇𝐶𝑖

𝑓𝑇 (𝑥;𝜇𝑗)𝑑𝑥
]︁

⏟  ⏞  
𝑃𝑗

where 𝑃𝑖 represents the probability of the no disclosure by intermediary 𝑖 based on

subscriber 𝑗’s prior belief and strategy 𝑣𝑖, 𝑚𝑖.
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Take the derivative of (C.2) w.r.t. 𝜇𝑖, we obtain2

1 +
(1− 𝑝)(1− 𝑞)

𝑃 2
𝑗

(︁
𝑃𝑗

∫︁
𝑥∈𝑇𝐶𝑖

− 𝑑

𝑑𝑥
E0[𝜃|𝑥− 𝜇𝑗, 𝑇 ]𝑓𝑇 (𝑥;𝜇𝑗)𝑑𝑥+ 𝑃𝑗

∫︁
𝑥∈𝑇𝐶𝑖

E0[𝜃|𝑥− 𝜇𝑗, 𝑇 ]
𝑑

𝑑𝜇𝑗

𝑓𝑇 (𝑥;𝜇𝑗)𝑑𝑥

− (1− 𝑝)(1− 𝑞)

∫︁
𝑥∈𝑇𝐶𝑖

𝑑

𝑑𝜇𝑗

𝑓𝑇 (𝑥;𝜇𝑗)𝑑𝑥

∫︁
𝑥∈𝑇𝐶𝑖

E0[𝜃|𝑥− 𝜇𝑗, 𝑇 ]𝑓𝑇 (𝑥;𝜇𝑗)𝑑𝑥
)︁

If 𝑇𝐶𝑖 = ∅, it is trivial to see that the difference is positive. Suppose 𝑇𝐶𝑖 ̸= ∅. We

decompose the expression in within the large parentheses into three terms:

𝑃𝑗

∫︁
𝑥∈𝑇𝐶𝑖

− 𝑑

𝑑𝑥
E0[𝜃|𝑥− 𝜇𝑗, 𝑇 ]𝑓𝑇 (𝑥;𝜇𝑗)𝑑𝑥⏟  ⏞  

(𝑎)

,

+
(︀
𝑝+ (1− 𝑝)𝑞

∫︁
𝑥∈𝐹𝐶𝑖

𝑓𝐹 (𝑥)𝑑𝑥
)︀ ∫︁

𝑥∈𝑇𝐶𝑖

E0[𝜃|𝑥− 𝜇𝑗, 𝑇 ]
𝑑

𝑑𝜇𝑗

𝑓𝑇 (𝑥;𝜇𝑗)𝑑𝑥⏟  ⏞  
(𝑏)

,

+(1− 𝑝)(1− 𝑞)
(︁∫︁

𝑥∈𝑇𝐶𝑖

𝑓𝑇 (𝑥;𝜇𝑗)𝑑𝑥

∫︁
𝑥∈𝑇𝐶𝑖

E0[𝜃|𝑥− 𝜇𝑗, 𝑇 ]
𝑑

𝑑𝜇𝑗

𝑓𝑇 (𝑥;𝜇𝑗)𝑑𝑥

−
∫︁
𝑥∈𝑇𝐶𝑖

𝑑

𝑑𝜇𝑗

𝑓𝑇 (𝑥;𝜇𝑗)𝑑𝑥

∫︁
𝑥∈𝑇𝐶𝑖

E0[𝜃|𝑥− 𝜇𝑗, 𝑇 ]𝑓𝑇 (𝑥;𝜇𝑗)𝑑𝑥
)︁

⏟  ⏞  
(𝑐)

.

We will show that the derivative is positive by combining (a)-(c) with the constant 1.

(a): Since 0 < 𝑑
𝑑𝜇𝑗

E𝑗[𝜃|𝑥, 𝑇 ] = 𝑑
𝑑𝜇𝑗

(𝜇𝑗 + E0[𝜃|𝑥 − 𝜇𝑗, 𝑇 ]) = 1 − 𝑑
𝑑𝑥
E0[𝜃|𝑥 − 𝜇𝑗, 𝑇 ],

combining (a) with the term 1, we have

1 +
(1− 𝑝)(1− 𝑞)

𝑃 2
𝑗

(︁
𝑃𝑗

∫︁
𝑥∈𝑇𝐶𝑖

− 𝑑

𝑑𝑥
E0[𝜃|𝑥− 𝜇𝑗, 𝑇 ]𝑓𝑇 (𝑥;𝜇𝑗)𝑑𝑥

)︁
,

>1− 1

𝑃𝑗

(1− 𝑝)(1− 𝑞)

∫︁
𝑥∈𝑇𝐶𝑖

𝑓𝑇 (𝑥;𝜇𝑗)𝑑𝑥 > 0.

2The interchange of integration and derivative is justified as the sets of concealed news are mea-
surable and the density functions are log-concave.
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(b): It is easy to see that E0[𝜃|𝑥 − 𝜇𝑗, 𝑇 ] > 0 iff 𝑥 > 𝜇𝑗. Note that given 𝜇𝑗, the

function 𝑓𝑇 (𝑥;𝜇𝑗) is symmetric around 𝑥 = 𝜇𝑗 and log-concave in 𝑥. We can also

show that 𝑓𝑇 (𝑥;𝜇𝑗) = 𝑓𝑇 (𝑥−𝜇𝑗; 0) and then derive that 𝑓𝑇 (𝑥;𝜇𝑗) is log-concave in 𝜇𝑗.

Therefore

𝑑

𝑑𝜇𝑗

𝑓𝑇 (𝑥;𝜇𝑗) < 0, iff 𝑥 < 𝜇𝑗.

We then show that (b) is non-negative.

(c): Divide it by (
∫︀
𝑥∈𝑇𝐶𝑖

𝑓𝑇 (𝑥;𝜇𝑗)𝑑𝑥)
2 and we obtain

∫︁
𝑥∈𝑇𝐶𝑖

E0[𝜃|𝑥− 𝜇𝑗, 𝑇 ]

𝑑
𝑑𝜇𝑗

𝑓𝑇 (𝑥;𝜇𝑗)

𝑓𝑇 (𝑥;𝜇𝑗)

𝑓𝑇 (𝑥;𝜇𝑗)∫︀
𝑥∈𝑇𝐶𝑖

𝑓𝑇 (𝑥;𝜇𝑗)
𝑑𝑥

−
∫︁
𝑥∈𝑇𝐶𝑖

𝑑
𝑑𝜇𝑗

𝑓𝑇 (𝑥;𝜇𝑗)

𝑓𝑇 (𝑥;𝜇𝑗)

𝑓𝑇 (𝑥;𝜇𝑗)∫︀
𝑥∈𝑇𝐶𝑖

𝑓𝑇 (𝑥;𝜇𝑗)
𝑑𝑥

∫︁
𝑥∈𝑇𝐶𝑖

E0[𝜃|𝑥− 𝜇𝑗, 𝑇 ]
𝑓𝑇 (𝑥;𝜇𝑗)∫︀

𝑥∈𝑇𝐶𝑖
𝑓𝑇 (𝑥;𝜇𝑗)

𝑑𝑥.

Since 𝑑
𝑑𝜇𝑗

𝑓𝑇 (𝑥;𝜇𝑗) = − 𝑑
𝑑𝑥
𝑓𝑇 (𝑥 − 𝜇𝑗; 0), we can find that

𝑑
𝑑𝜇𝑗

𝑓𝑇 (𝑥;𝜇𝑗)

𝑓𝑇 (𝑥;𝜇𝑗)
is increasing in 𝑥

by log-concavity. Note that E0[𝜃|𝑥− 𝜇𝑗, 𝑇 ] is also increasing in 𝑥 and the total sum is

non-negative by Chebyshev sum inequality.

Now to prove that lim
𝜇𝑗→+∞

𝜋𝑗(𝑖, ∅) > 0. Let’s consider 𝜇𝑗 > 0 and then increase 𝜇𝑗

to +∞. We only need to consider the numerator of (C.2):

(︁
𝑝+ (1− 𝑝)𝑞

∫︁
𝑥∈𝐹𝐶𝑖

𝑓𝐹 (𝑥)𝑑𝑥
)︁
𝜇𝑗 + (1− 𝑝)(1− 𝑞)

∫︁
𝑥∈𝑇𝐶𝑖

E𝑗 [𝜃|𝑥,𝑇 ]<0

E𝑗[𝜃 |𝑥, 𝑇 ] 𝑓𝑇 (𝑥;𝜇𝑗)𝑑𝑥⏟  ⏞  
(*)

+ (1− 𝑝)(1− 𝑞)

∫︁
𝑥∈𝑇𝐶𝑖

E𝑗 [𝜃|𝑥,𝑇 ]≥0

E𝑗[𝜃 |𝑥, 𝑇 ] 𝑓𝑇 (𝑥;𝜇𝑗)𝑑𝑥⏟  ⏞  
(**)

.

The term (**) is non-negative. Equivalently we want to show that the term (*) is

positive for some perspective that is sufficiently large. Let’s simply focus on the range
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Since 𝜇𝑗 > 0, then only 𝑥 < 0 can make E𝑗[𝜃 |𝑥, 𝑇 ] < 0. We can see that given any 𝑥

such that E𝑗[𝜃 |𝑥, 𝑇 ] < 0, 𝑓𝑇 (𝑥;𝜇𝑗) is decreasing in the range 𝜇𝑗 > 0. Together with

the fact that E𝑗[𝜃 |𝑥, 𝑇 ] is increasing in 𝜇𝑗 (and hence the set of news 𝑥 such that

E𝑗[𝜃 |𝑥, 𝑇 ] < 0 is decreasing in 𝜇𝑗), we can derive that the red term is increasing in 𝜇𝑗.

Because the blue term is strictly increasing in 𝜇𝑗 and the derivative is bounded away

from zero (𝑝+ (1− 𝑝)𝑞
∫︀
𝑥∈𝐹𝐶𝑖

𝑓𝐹 (𝑥)𝑑𝑥 > 𝑝) for any 𝜇𝑗, suggesting that for sufficiently

large 𝜇𝑗, the numerator is positive. ■

Proof of Lemma 4.4.

The result holds for any common history 𝐺𝑠 and we dismiss the argument 𝐺𝑠 for

simplicity. WLOG, we consider intermediary 𝑅. Also, since E𝑖[𝜃 |𝑥, 𝑇 ] is strictly in

news value (cf. Lemma 4.1), we know that for any player 𝑖, E𝑖[𝜃|𝑥, 𝑇 ] > 0 iff 𝑥 > 𝑥th
𝑇 (𝜇𝑖)

where 𝑥th
𝑇 (𝜇𝑖) is the unique solution to E𝑖[𝜃 |𝑥, 𝑇 ] = 0. We will simply refer to the set

of 𝑥 such that 𝜇𝑅E𝑅[𝜃|𝑥, 𝑇 ] > 0 as 𝑥 > 𝑥th
𝑇 (𝜇𝑖).

(i): For this part, we illustrate the case when the news is not verified and the cases

for true and false news follow the same logic.

(if part) If E𝑅[𝜃|𝑥]𝜋𝑘*𝑅
(𝑥) > 0, it is obvious that she can persuade her critical

subscribers to strictly prefer her favored action if disclosing news 𝑥 instead of finding

indifference.

(only if part) Suppose intermediary 𝑅 discloses news 𝑥 but E𝑅[𝜃|𝑥]𝜋𝑘*𝑅
(𝑥) ≤ 0.

When it is E𝑅[𝜃|𝑥] = 0 or 𝜋𝑘*𝑅
(𝑥) = 0, intermediary 𝑅 feels indifferent because for the

former her utility is zero while for the latter she cannot change the fractions of her

subscribers whether she discloses or not . If she and her critical subscribers strictly

prefer the opposite actions when observing news 𝑥, intermediary 𝑅 conceals it since

she can make her critical subscribers feel indifferent, relatively leaning to her side.

Contradiction.

(ii): For any 𝑥 > 𝑥th
𝑇 (𝜇𝑅), intermediary 𝑅 favors +1 regardless of her verifi-

cation decision and news veracity. Then based on part (i), it is easy to see that
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𝑚*
𝑅(𝐺

𝑠, 𝑥, 1, 𝑇 ) = 𝑚*
𝑅(𝐺

𝑠, 𝑥, 1, 𝐹 ) = 𝑚*
𝑅(𝐺

𝑠, 𝑥, 0). ■

(iii): We check the numerator of posterior mean when there is no disclosure (C.2)

and show that the critical perspective for intermediary 𝑅 must be positive. As inter-

mediaries’ disclosure decisions can depend on news veracity, we write 𝑇𝐶*
𝑅 (𝐹𝐶*

𝑅) for

the set of true (false) news that is concealed by intermediary 𝑅 at the equilibrium.

According to (4.5) and 𝑇𝐶*
𝑅, 𝐹𝐶*

𝑅, we write the equation for critical perspective as:

0 =𝑝𝜇𝑘*𝑅
+ (1− 𝑝)

∫︁
𝑥∈𝑇𝐶*

𝑅∩𝐹𝐶*
𝑅

𝑥>𝑥th
𝑇 (𝜇𝑅)

(︁
𝑞𝑓𝐹 (𝑥) + (1− 𝑞)𝑓𝑇 (𝑥;𝜇𝑘*𝑅

)
)︁
E𝑘*𝑅

[𝜃|𝑥]𝑑𝑥

⏟  ⏞  
(𝑎)

(C.3)

+ (1− 𝑝)
[︁ ∫︁

𝑥∈𝐹𝐶*
𝑅

𝑥≤𝑥th
𝑇 (𝜇𝑅)

𝑞𝑓𝐹 (𝑥)𝜇𝑘*𝑅
𝑑𝑥+

∫︁
𝑥∈𝑇𝐶*

𝑅

𝑥≤𝑥th
𝑇 (𝜇𝑅)

(1− 𝑞)𝑓𝑇 (𝑥;𝜇𝑘*𝑅
)E𝑘*𝑅

[𝜃|𝑥, 𝑇 ]𝑑𝑥
]︁

⏟  ⏞  
(𝑏)

.

The term (a) concerns the news value 𝑥 > 𝑥th
𝑇 (𝜇𝑅) for which intermediary 𝑅 chooses

the same disclosure action (cf. (ii)); consequently, if she conceals some news value

𝑥 > 𝑥th
𝑇 (𝜇𝑅), both true and false news are concealed and her subscribers integrate the

likelihood of such news value and corresponding expectation. On the other hand, the

term (b) represents the other news that intermediary 𝑅 may choose different disclosure

decisions depending on her verification result.

Suppose there exists an equilibrium with 𝜇𝑘*𝑅
< 0. By (i) and monotonicity in

perspective, in term (a) it must be that E𝑘*𝑅
[𝜃|𝑥] ≤ 0 since intermediary 𝑅 discloses

any news 𝑥 such that E𝑘*𝑅
[𝜃|𝑥] > 0. Also, it is obvious to see that (b) is non-positive:

For any 𝑥 ≤ 𝑥th
𝑇 (𝜇𝑅) < 0, the sign of the expectation based on perspective 𝜇𝑘*𝑅

must be

negative. Therefore the sum is negative (note that 𝑝𝜇𝑘*𝑅
< 0); contradiction. It is not

possible that 𝜇𝑘*𝑅
= 0 because when 𝜇𝑘*𝑅

= 0, then E𝑘*𝑅
[𝜃|𝑥] < 0 for any 𝑥 ∈ (𝑥th

𝑇 (𝜇𝑅), 0)

and the sum is negative. Consequently 𝜇𝑘*𝑅
> 0.

(iv): For any 𝑥 ≥ 0, if intermediary 𝑅 discloses the news, based on (ii), each of her

subscriber 𝑗 updates his expectation as E𝑗[𝜃 |𝑥] as they cannot tell if it is true or false.

Because for such news intermediary 𝑅 strictly prefer +1 and her critical subscribers
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have positive expectation if seeing such news, intermediary 𝑅 discloses it (otherwise she

loses some fraction of her subscribers taking +1 as critical subscribers feel indifferent

when there is no disclosure). ■

Proof of Lemma 4.5.

As argued in the context, intermediary 𝑅 does not verify any news 𝑥 > 𝑥th
𝑇 (𝜇𝑅).

For news 𝑥 = 𝑥th
𝑇 (𝜇𝑅), which makes E𝑅[𝜃|𝑥, 𝑇 ] = 0, we have E𝑅[𝜃|𝑥th

𝑇 (𝜇𝑅)] = (1 −

ℓ𝑅(𝑥
th
𝑇 (𝜇𝑅), 𝑇 ))𝜇𝑅, suggesting that she feels indifferent between disclosing or not if the

news if true. It is then easy to see that she chooses 𝑚*
𝑅(𝑥, 1, 𝐹 ) = 𝑚*

𝑅(𝑥, 0) and derives

the same expected payoff for either verifying it or not; she does not verify it.

If 𝑣*𝑅(𝑥) = 1, she has to deploy a separating disclosure strategy; otherwise, she can

obtain the same expected payoff by choosing not to verify it and making the same

disclosure decision. ■

C.2 Proofs of Section 4.4

Proof of Proposition 4.2.

Corollary 4.1 is a special case of the proof.

Existence of equilibrium and unique critical perspectives and disclosure

strategies:

In (4.11) the disclosure strategy 𝑚*
𝑅 is formulated as a function of the critical

perspective 𝜇𝑘*𝑅
. We can then write the fixed-point equation for 𝜇𝑘*𝑅

according to (4.5):

𝑝𝜇𝑘*𝑅
+ (1− 𝑝)

∫︁
𝑥|𝑚*

𝑅(𝑥)=∅

[︀
𝑞𝑓𝐹 (𝑥) + (1− 𝑞)𝑓𝑇 (𝑥;𝜇𝑘*𝑅

)
]︀
E𝑘*𝑅

[𝜃|𝑥]𝑑𝑥 = 0, (C.4)

where the set of concealed news (i.e., {𝑥|𝑚*
𝑅(𝑥) = ∅}) is determined using (4.11). Note

that the solutions 𝑚*
𝑅 and 𝜇𝑘*𝑅

to (C.4) (if any) are not dependent on 𝐺𝑠, meaning

that intermediary 𝑅 plays 𝑚*
𝑅 with corresponding 𝜇𝑘*𝑅

for any common history 𝐺𝑠. In

turn, any solution to (C.4) suggests the existence of an equilibrium and the equilib-
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rium subscription choices are made by simply comparing the intermediaries’ disclosure

strategies 𝑚*
𝐿, 𝑚*

𝑅 resulting from (C.4).

There exists a solution in range (0, 𝜇ext
𝑅 ): The function on the left-hand side of (C.4)

is continuous in 𝜇𝑘𝑅 and, based on our previous proofs, the function value is negative

when 𝜇𝑘𝑅 = 0 whereas positive when 𝜇𝑘𝑅 = 𝜇ext
𝑅 . Consequently, a solution exists.

We now show that the function is increasing in 𝜇𝑘𝑅 ∈ [0, 𝜇ext
𝑅 ], implying the unique-

ness of the solution. First, since 𝜇𝑘𝑅 < 𝜇𝑅, E𝜇𝑘𝑅
[𝜃|𝑥] ≤ 0 for any concealed news

{𝑥 ∈ R|𝑚*
𝑅(𝑥) = ∅}. Second, E𝜇𝑘𝑅

[𝜃|𝑥] is increasing in 𝜇𝑘𝑅 for any 𝑥; it also means

that the set of concealed news is decreasing in 𝜇. Finally, 𝑓𝐹 is not a function of 𝜇𝑘𝑅

while 𝑓𝑇 (𝑥;𝜇) is decreasing in 𝜇𝑘𝑅 ≥ 0 given any 𝑥 < 0 (recall that intermediary 𝑅

only conceals left-leaning news by Lemma 4.4). By calculus the function in (C.4) is

increasing in 𝜇𝑘𝑅 .

Subscription choices:

WLOG, consider subscriber 𝑗 with 𝜇𝑗 ≥; his ex-ante expected utility from subscrib-

ing to intermediary 𝑖, who plays disclosure strategy 𝑚*
𝑖 , is

E𝑗

[︁
𝑎*𝑗𝜃
⃒⃒⃒
𝑠𝑗 = 𝑖

]︁
= E𝑗

[︁
E𝑗[𝑎

*
𝑗𝜃 | 𝑠𝑗,𝑚*

𝑠𝑗
]
⃒⃒⃒
𝑠𝑗 = 𝑖

]︁
= E𝑗

[︁⃒⃒
E𝑗[𝜃 | 𝑠𝑗,𝑚*

𝑠𝑗
]
⃒⃒⃒⃒⃒
𝑠𝑗 = 𝑖

]︁
.

where the expectation is taken w.r.t. subscriber 𝑗’s prior belief about the distributions

of true and false news. Expanding the term further, we obtain

⃒⃒
𝑝𝜇𝑗 + (1− 𝑝)E𝑗

[︁
E𝑖[𝜃 |𝑥]1I{𝑚*

𝑖 (𝑥)=∅}

]︁⃒⃒
⏟  ⏞  

match the sign of his posterior mean there is no disclosure

+ (1− 𝑝)E𝑗

[︁⃒⃒
E𝑗[𝜃 |𝑥]

⃒⃒
1I{𝑚*

𝑖 (𝑥)=𝑥}

]︁
⏟  ⏞  

match the sign of his posterior mean when hearing some news

,

≤𝑝|𝜇𝑗|+ (1− 𝑝)E𝑗

[︁⃒⃒
E𝑗[𝜃 |𝑥]

⃒⃒
1I{𝑚*

𝑖 (𝑥)=∅}

]︁
+ (1− 𝑝)E𝑗

[︁⃒⃒
E𝑗[𝜃 |𝑥]

⃒⃒
1I{𝑚*

𝑖 (𝑥)=𝑥}

]︁
,

=𝑝|𝜇𝑗|+ (1− 𝑝)E𝑗

[︁⃒⃒
E𝑗[𝜃 |𝑥]

⃒⃒]︁
.

If he follows intermediary 𝐿, i.e., 𝑠𝑗 = 𝐿, he can obtain the maximum; it is because

only right-leaning news may be concealed, for which 𝜇𝑗 E𝑗[𝜃 |𝑥] ≥ 0, and the equality
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holds. On the other hand, if 𝑠𝑗 = 𝑅,

(i) For 𝜇𝑗 ∈ (0, 𝜇𝑘*𝑅
): Since E𝜇𝑘*

𝑅
[𝜃|, 𝑥] ≤ 0 for any concealed news 𝑥 by intermediary

𝑅 and E𝑗[𝜃 |𝑥] is strictly increasing in 𝜇𝑗, we obtain that E𝑗[𝜃 |𝑥] < 0 for any

𝑥 concealed by intermediary 𝑅. It is the opposite sign against 𝜇𝑗 and hence his

ex-ante utility is strictly smaller than that if following intermediary 𝐿;

(ii) For 𝜇𝑗 ∈ [𝜇𝑘*𝑅
, 𝜇ext

𝑅 ): There must exist some nonzero-measured subset of the

concealed news for which E𝑗[𝜃|𝑥] < 0, and as a result, he derives strictly higher

payoff from subscribing to intermediary 𝐿. To see this claim, suppose not and

E𝑗[𝜃|𝑥] ≥ 0 for any concealed news. Given that 𝜇𝑗 < 𝜈𝑅, there exists some

nonzero measure set of news for which E𝑗[𝜃 |𝑥] < 0.3 For convenience, denote

the set as 𝐴(𝜇𝑗) ≜ {𝑥 ∈ R|E𝑗[𝜃 |𝑥] < 0}. Since 𝜇𝑗 < 𝜇𝑅, by continuity and the

monotonicty in perspective, we have E𝑅[𝜃|𝑥] ≥ 0 for some subset of 𝐴(𝜇𝑗) and

intermediary 𝑅 would conceal this subset of news because E𝑘*𝑅
[𝜃|𝑥] < E𝑗[𝜃 |𝑥] < 0

for any 𝑥 ∈ 𝐴(𝜇𝑗). Contradiction.

(iii) For 𝜇𝑗 = 0 or 𝜇𝑗 ≥ 𝜇ext
𝑅 , it is easy to see that 𝜇𝑗 E𝑗[𝜃 |𝑥] ≥ 0 holds for any

concealed news by intermediary 𝑅 and the equality is satisfied, suggesting indif-

ference between the two intermediaries. ■

C.3 Proofs of Section 4.5

Proof of Lemma 4.6.

WLOG, we discuss for intermediary 𝑅. When 𝐶 = 0, we show that for any 𝑥 <

𝑥th
𝑇 (𝜇𝑅), it is always strictly beneficial for intermediary 𝑅 to verify.

For any 𝑥 < 𝑥th
𝑇 (𝜇𝑅) the decision 𝑣*𝑅(𝑥) = 0 is not sustainable. Suppose in an equi-

librium intermediary 𝑅 does not verify 𝑥 for some news 𝑥 < 𝑥th
𝑇 (𝜇𝑅). If intermediary

𝑅 subsequently chooses 𝑚*
𝑅(𝑥, ∅) = 𝑥, i.e., to reveal the unverified news, then she can

3The nonzero measure is implied by the regularity conditions in Assumption 5.
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deviate to verify and then choose to conceal either true or false news. First note that

after seeing 𝑥 her subscribers’ posterior mean are updated as E𝑗[𝜃 |𝑥] as they believe

it is unverified; the corresponding perspective threshold 𝜇th*
𝑅 (𝑥) is positive (because

𝑥 < 0). If 𝜇th*
𝑅 (𝑥) > ̂︀𝜇*

𝑅(∅), then intermediary 𝑅 is incentivized to verify the news

and will conceal the false news as she can make more subscribers vote +1. Similarly,

she deviates when ̂︀𝜇*
𝑅(𝑥) < ̂︀𝜇*

𝑅(∅). If ̂︀𝜇*
𝑅(𝑥) = ̂︀𝜇*

𝑅(∅), then intermediary 𝑅 would just

conceal the news in the beginning; contradiction.

If intermediary 𝑅 subsequently chooses to conceal (𝑚*
𝑅(𝑥, 0) = ∅), then she can

deviate to verify it and choose 𝑚*
𝑅(𝑥, 1, 𝐹 ) = 𝑥 if the news is false to derive a higher

expected payoff: When her subscribers see the off-equilibrium disclosure of news 𝑥,

they know that intermediary 𝑅 verified the news (it could not be disclosing without

verification; otherwise, intermediary 𝑅 would not play 𝑚*
𝑅(𝑥, 0) = ∅ in the beginning.).

They acknowledge her incentive when the news is false (𝜔 = 𝐹 ) for which intermediary

𝑅 prefers +1: The fraction of her subscribers taking +1 is 𝐺𝑠*
𝑅 (+∞) − 𝐺𝑠*

𝑅 (0), more

than 𝐺𝑠*
𝑅 (+∞) − 𝐺𝑠*

𝑅 (̂︀𝜇*
𝑅(∅)) (̂︀𝜇*

𝑅(∅) > 0 cf. Lemma 4.4) when the news is concealed.

This justifies intermediary 𝑅’s deviation.

Now we prove that intermediary 𝑅 will not deviate to choose no verification when

she verifies some news 𝑥 < 𝑥th
𝑇 (𝜇𝑅). We simply consider disclosure strategy 𝑚*

𝑅(𝑥, 1, 𝑇 ) =

∅,𝑚*
𝑅(𝑥, 1, 𝐹 ) = 𝑥, i.e., disclosing the news iff it is false. As her subscribers believe this

disclosure strategy, they preserve their perspective as their belief means when seeing

news 𝑥. If intermediary 𝑅 decides not to verify the news and then simply discloses

it, her subscribers would think the news is false and take their actions accordingly. In

this case, if the news is in fact true, for which intermediary 𝑅 prefers −1, then she

loses some expected payoff since she could have made more of subscribers to take −1

by concealing the news (𝜇𝑗 ∈ [0, ̂︀𝜇*
𝑅(∅))). Similarly, if she simply conceals the news

without verification, she could have gained more expected utility if the news is false,

by making those subscribers with 𝜇𝑗 ∈ [0, ̂︀𝜇*
𝑅(∅)) take +1. Consequently, when 𝐶 = 0,

in any equilibrium intermediary 𝑅 verifies news 𝑥 if 𝑥 < 𝑥th
𝑇 (𝜇𝑅). ■
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Proof of Proposition 4.3.

We study the class of true-news-disclosing equilibria. We brief the results from

Lemma 4.4 to 4.6: (1) 𝑣*𝑅(𝑥) = 1 iff 𝑥 < 𝑥th
𝑇 (𝜇𝑅); (2) for any 𝑥 ≥ 𝑥th

𝑇 (𝜇𝑅), 𝑚*
𝑅(𝑥, 0) = ∅

iff E𝑅[𝜃|𝑥]E𝑘*𝑅
[𝜃|𝑥] ≤ 0; (3) for any 𝑥 < 𝑥th

𝑇 (𝜇𝑅), then 𝑚*
𝑅(𝑥, 1, 𝑇 ) = 𝑥 and 𝑚*

𝑅(𝑥, 1, 𝐹 ) =

∅.

The critical subscribers are centrists:

We prove that if there exists any true-news-disclosing equilibrium, then 𝜇𝑘*𝑅
< 𝜇ext

𝑅 .

Given that intermediary 𝑅 conceals news if it is verified and false, we rewrite (C.3) as

0 = 𝑝𝜇𝑘*𝑅
+(1− 𝑝)

∫︁
𝑥∈R|𝑣*𝑅(𝑥)=0,𝑚*

𝑅(𝑥,0)=∅

(︁
𝑞𝑓𝐹 (𝑥) + (1− 𝑞)𝑓𝑇 (𝑥;𝜇𝑘*𝑅

)
)︁
E𝑘*𝑅

[𝜃|𝑥]𝑑𝑥⏟  ⏞  
(𝑎)

(C.5)

+ (1− 𝑝)

∫︁
𝑥∈R|𝑣*𝑅(𝑥)=1

𝑞𝑓𝐹 (𝑥)𝜇𝑘*𝑅
𝑑𝑥⏟  ⏞  

(𝑏)

.

Suppose 𝜇𝑘*𝑅
≥ 𝜇ext

𝑅 . In (a), E𝑘*𝑅
[𝜃|𝑥] ≥ 0 for any unverified news (if for some 𝑥 such

that E𝑘*𝑅
[𝜃|𝑥] < 0, then it must be the case that 𝜈𝑅 > 𝜇𝑘*𝑅

≥ 𝜇𝑅. However, it leads

to E𝑅[𝜃|𝑥] < 0 and 𝑥 should be disclosed.). We can see that the sum is positive;

contradiction.

No deviations for true-news-disclosing strategy:

For any news that is verified, it must be that 𝑥 < 𝑥th
𝑇 (𝜇𝑅) and we have the relation

that ̂︀𝜇*
𝑅(𝑥) > 𝜇𝑅 > ̂︀𝜇*

𝑅(∅)(= 𝜇𝑘*𝑅
) because her subscribers believe that if news 𝑥 is

disclosed, then it is true and flips intermediary 𝑅’s favored action. It is not hard to

find that intermediary 𝑅 has no incentives to deviate from the true-news-disclosing

strategy.4

Existence of equilibrium and unique critical perspectives and disclosure
4For any news 𝑥 < 𝑥th

𝑇 (𝜇𝑅), the off-equilibrium disclosure choice (if intermediary 𝑅 does not verify
it) is to conceal the news iff E𝑅[𝜃|𝑥] ≥ 0, i.e., her favored action (+1) is different from the action her
critical subscribers will take when seeing the news (−1).
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strategies:

We solve the fixed-point equation (C.5) for critical perspective 𝜇𝑘*𝑅
. Note that

the solutions 𝑚*
𝑅 and 𝜇𝑘*𝑅

to (C.5) (if any) are not dependent on 𝐺𝑠, meaning that

intermediary 𝑅 plays 𝑚*
𝑅 with corresponding 𝜇𝑘*𝑅

for any common history 𝐺𝑠. In turn,

any solution to (C.5) suggests the existence of an equilibrium and the equilibrium

subscription choices are made by simply comparing the intermediaries’ strategies.

There exists a solution in range (0, 𝜇ext
𝑅 ): The function on the right-hand side of

(C.5) is continuous in 𝜇𝑘𝑅 and it is negative when 𝜇𝑘𝑅 = 0 whereas positive when

𝜇𝑘𝑅 = 𝜇ext
𝑅 . Consequently, a solution exists. Moreover, given the range 𝑥 ≥ 𝑥th

𝑇 (𝜇𝑅) in

(a), using the similar argument in the proof of Proposition 4.2 we can find that (a) is

increasing in 𝜇𝑘𝑅 among the range [0, 𝜇ext
𝑅 ]. Consequently the function is increasing in

𝜇𝑘𝑅 ∈ [0, 𝜇ext
𝑅 ], implying the uniqueness of the solution.

Subscribers’ belief updating:

Each of her subscriber 𝑗 updates his mean as E𝑗[𝜃 |𝑥, 𝑇 ] when seeing some news

𝑥 < 𝑥th
𝑇 (𝜇𝑅) whereas as E𝑗[𝜃 |𝑥] when seeing some news 𝑥 ≥ 𝑥th

𝑇 (𝜇𝑅).

Subscription choices:

Considering intermediaries’ equilibrium strategies 𝑣*,𝑚*, subscriber 𝑗’s ex-ante ex-

pected utility if following intermediary 𝑖 is

(1− 𝑝)E𝑗

[︀⃒⃒
E𝑗[𝜃 |𝑥]

⃒⃒
1I{𝑣*𝑖 (𝑥)=0,𝑚*

𝑖 (𝑥,0)=𝑥}
]︀⏟  ⏞  

when receiving unverified news 𝑥

+(1− 𝑝)E𝑗

[︀⃒⃒
E𝑗[𝜃 |𝑥, 𝑇 ]

⃒⃒]︀
1I{𝑣*𝑖 (𝑥)=1,𝜔=𝑇,𝑚*

𝑖 (𝑥,𝑇 )=𝑥}
]︀⏟  ⏞  

when receiving verified and informative news

(C.6)

+
⃒⃒
𝑝𝜇𝑗 + (1− 𝑝)E𝑗

[︀
𝜇𝑗1I{𝑣*𝑖 (𝑥)=1,𝜔=𝐹,𝑚*

𝑖 (𝑥,𝐹 )=∅}
]︀
+ (1− 𝑝)E𝑗

[︀
E𝑗[𝜃 |𝑥]1I{𝑣*𝑖 (𝑥)=0,𝑚*

𝑖 (𝑥,0)=∅}
]︀⃒⃒⏟  ⏞  

when not receiving any news

.

Observe the identity that for any set 𝑆 ⊂ R,

E𝑗

[︀
E𝑗[𝜃 |𝑥]1I{𝑥∈𝑆}

]︀
= E𝑗

[︀
E𝑗[𝜃 |𝑥, 𝑇 ]1I{𝜔=𝑇,𝑥∈𝑆}

]︀
+ E𝑗

[︀
𝜇𝑗1I{𝜔=𝐹,𝑥∈𝑆}

]︀
.
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WLOG, consider subscriber 𝑗 with 𝜇𝑗 ≥ 0. If he follows intermediary 𝐿, i.e., 𝑠𝑗 = 𝐿,

subscriber 𝑗 votes +1 both when he sees verified and informative news as well as when

there is no disclosure from intermediary 𝐿 (because 𝜇𝑗 ≥ 0 > 𝜇𝑘*𝐿
):

E𝑗

[︀
𝑎*𝑗𝜃
⃒⃒
𝑠𝑗 = 𝐿

]︀
, (C.7)

=(1− 𝑝)E𝑗

[︁⃒⃒
E𝑗[𝜃 |𝑥]

⃒⃒
1I{𝑣*𝐿(𝑥)=0,𝑚*

𝐿(𝑥,0)=𝑥}

]︁
+ (1− 𝑝)E𝑗

[︁
E𝑗[𝜃 |𝑥, 𝑇 ]⏟  ⏞  
he votes +1

1I{𝜔=𝑇,𝑣*𝐿(𝑥)=1,𝑚*
𝐿(𝑥,𝑇 )=𝑥}

]︁

+
(︁
𝑝𝜇𝑗 + (1− 𝑝)E𝑗

[︁
𝜇𝑗1I{𝜔=𝐹,𝑣*𝐿(𝑥)=1,𝑚*

𝐿(𝑥,𝐹 )=∅}

]︁
+ (1− 𝑝)E𝑗

[︁
E𝑗[𝜃 |𝑥]1I{𝑣*𝐿(𝑥)=0,𝑚*

𝐿(𝑥,0)=∅}

]︁)︁
⏟  ⏞  

when not receiving any news

,

=(1− 𝑝)

(︃
E𝑗

[︁⃒⃒
E𝑗[𝜃 |𝑥]

⃒⃒
1I{𝑣*𝐿(𝑥)=0,𝑚*

𝐿(𝑥,0)=𝑥}

]︁
+ E𝑗

[︁
E𝑗[𝜃 |𝑥]1I{𝑣*𝐿(𝑥)=1 or 𝑣*𝐿(𝑥)=0,𝑚*

𝐿(𝑥,0)=∅}

]︁)︃
+ 𝑝𝜇𝑗,

=(1− 𝑝)E𝑗

[︁⃒⃒
E𝑗[𝜃 |𝑥]

⃒⃒]︁
+ 𝑝𝜇𝑗,

where the last equality comes from the two facts: (1) Any news 𝑥 such that 𝑣*𝐿(𝑥) = 1

or (𝑣*𝐿(𝑥) = 0,𝑚*
𝐿(𝑥, 0) = ∅) must be positive, making E𝑗[𝜃 |𝑥] positive as well; (2) the

two subsets of news are a partition of real line.

On the other hand, if 𝑠𝑗 = 𝑅:

(i) For 𝜇𝑗 ∈ [0, 𝜇𝑘*𝑅
], subscriber 𝑗 votes −1 when observing verified and true news as

well as votes −1 when there is no disclosure from intermediary 𝑅.5 We rewrite
5The critical subscriber with 𝜇𝑘*

𝑅
feels indifferent between the binary actions when there is no

disclosure. For convenience of analysis, we make him vote −1 here.
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(C.6) as

E𝑗

[︁
𝑎*𝑗𝜃
⃒⃒⃒
𝑠𝑗 = 𝑅

]︁
,

=(1− 𝑝)E𝑗

[︁⃒⃒
E𝑗[𝜃 |𝑥]

⃒⃒
1I{𝑣*𝑅(𝑥)=0,𝑚*

𝑅(𝑥,0)=𝑥}

]︁
+ (1− 𝑝)E𝑗

[︁
−E𝑗[𝜃 |𝑥, 𝑇 ]⏟  ⏞  

he votes −1

1I{𝑣*𝑅(𝑥)=1,𝜔=𝑇,𝑚*
𝑅(𝑥,𝑇 )=𝑥}

]︁

−
(︁
𝑝𝜇𝑗 + (1− 𝑝)E𝑗

[︁
𝜇𝑗1I{𝑣*𝑅(𝑥)=1,𝜔=𝐹,𝑚*

𝑅(𝑥,𝐹 )=∅}

]︁
+ (1− 𝑝)E𝑗

[︁
E𝑗[𝜃 |𝑥]1I{𝑣*𝑅(𝑥)=0,𝑚*

𝑅(𝑥,0)=∅}

]︁)︁
⏟  ⏞  

when not receiving any news; he votes −1

,

=(1− 𝑝)

(︃
E𝑗

[︁⃒⃒
E𝑗[𝜃 |𝑥]

⃒⃒
1I{𝑣*𝑅(𝑥)=0,𝑚*

𝑅(𝑥,0)=𝑥}

]︁
− E𝑗

[︁
E𝑗[𝜃 |𝑥]1I{𝑣*𝑅(𝑥)=1 or 𝑣*𝑅(𝑥)=0,𝑚*

𝑅(𝑥,0)=∅}

]︁)︃
− 𝑝𝜇𝑗.

Hence, the difference in ex-ante expected utility between choosing intermediary

𝐿 over 𝑅 is

E𝑗

[︁
𝑎*𝑗𝜃
⃒⃒⃒
𝑠𝑗 = 𝐿

]︁
− E𝑗

[︁
𝑎*𝑗𝜃
⃒⃒⃒
𝑠𝑗 = 𝑅

]︁
,

=(1− 𝑝)E𝑗

[︁(︁⃒⃒
E𝑗[𝜃 |𝑥]

⃒⃒
+ E𝑗[𝜃 |𝑥]

)︁
1I{𝑣*𝑅(𝑥)=1 or 𝑣*𝑅(𝑥)=0,𝑚*

𝑅(𝑥,0)=∅}

]︁
+ 2𝑝𝜇𝑗.

For 𝜇𝑗 ∈ (0, 𝜇𝑘*𝑅
], the difference is greater than zero and subscriber 𝑗 strictly

prefers intermediary 𝐿. When 𝜇𝑗 = 0, the difference is zero (E𝑗[𝜃 |𝑥] ≤ 0 for

any 𝑥 such that 𝑣*𝑅(𝑥) = 1 or 𝑣*𝑅(𝑥) = 0,𝑚*
𝑅(𝑥, 0) = ∅) and he feels indifferent

between the intermediaries.

(ii) For 𝜇𝑗 ≥ 𝜇ext
𝑅 , subscriber 𝑗 can take his optimal vote when observing verified and

true news (it may be +1 or −1) while votes +1 when there is no disclosure from
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intermediary 𝑅:

E𝑗

[︁
𝑎*𝑗𝜃
⃒⃒⃒
𝑠𝑗 = 𝑅, 𝑣*𝑅,𝑚

*
𝑅

]︁
,

=(1− 𝑝)E𝑗

[︁⃒⃒
E𝑗[𝜃 |𝑥]

⃒⃒
1I{𝑣*𝑅(𝑥)=0,𝑚*

𝑅(𝑥,0)=𝑥}

]︁
+ (1− 𝑝)E𝑗

[︁⃒⃒
E𝑗[𝜃 |𝑥, 𝑇 ]

⃒⃒⏟  ⏞  
optimal vote

1I{𝑣*𝑅(𝑥)=1,𝜔=𝑇,𝑚*
𝑅(𝑥,𝑇 )=𝑥}

]︁

+
(︁
𝑝𝜇𝑗 + (1− 𝑝)E𝑗

[︁
𝜇𝑗1I{𝑣*𝑅(𝑥)=1,𝜔=𝐹,𝑚*

𝑅(𝑥,𝐹 )=∅}

]︁
+ (1− 𝑝)E𝑗

[︁
E𝑗[𝜃 |𝑥]1I{𝑣*𝑅(𝑥)=0,𝑚*

𝑅(𝑥,0)=∅}

]︁)︁
⏟  ⏞  

when not receiving any news, he votes +16

,

=(1− 𝑝)

(︃
E𝑗

[︁⃒⃒
E𝑗[𝜃 |𝑥, 𝑇 ]

⃒⃒
1I{𝑣*𝑅(𝑥)=1,𝜔=𝑇,𝑚*

𝑅(𝑥,𝑇 )=𝑥}

]︁
+ E𝑗

[︁
𝜇𝑗1I{𝑣*𝑅(𝑥)=1,𝜔=𝐹,𝑚*

𝑅(𝑥,𝐹 )=∅}

]︁)︃

+ (1− 𝑝)E𝑗

[︁⃒⃒
E𝑗[𝜃 |𝑥]

⃒⃒
1I{𝑣*𝑅(𝑥)=0}

]︁
+ 𝑝𝜇𝑗,

where in the last equality we use the fact that E𝑗[𝜃 |𝑥] ≥ 0 for any 𝑥 such that

𝑣*𝑅(𝑥) = 0 (i.e., 𝑥 ≥ 𝑥th
𝑇 (𝜇𝑅)). We then can find the difference in ex-ante

expected utility between choosing intermediary 𝑅 over 𝐿 as

E𝑗

[︁
𝑎*𝑗𝜃
⃒⃒⃒
𝑠𝑗 = 𝑅

]︁
− E𝑗

[︁
𝑎*𝑗𝜃
⃒⃒⃒
𝑠𝑗 = 𝐿

]︁
, (C.8)

=(1− 𝑝)
(︁
E𝑗

[︁⃒⃒
E𝑗[𝜃 |𝑥, 𝑇 ]

⃒⃒
1I{𝑣*𝑅(𝑥)=1,𝜔=𝑇,𝑚*

𝑅(𝑥,𝑇 )=𝑥}

]︁
+ E𝑗

[︁
𝜇𝑗1I{𝑣*𝑅(𝑥)=1,𝜔=𝐹,𝑚*

𝑅(𝑥,𝐹 )=∅}

]︁

− E𝑗

[︁⃒⃒
E𝑗[𝜃 |𝑥]

⃒⃒
1I{𝑣*𝑅(𝑥)=1}

]︁)︁
which is positive due to the triangular inequality and E𝑗[𝜃 |𝑥, 𝑇 ] < 0 for a

nonzero-measured subset of the verified news ({𝑥|𝑣*𝑅(𝑥) = 1}); intermediary 𝑅 is

thus strictly preferred. ■

Proof of Proposition 4.4.
6In fact any subscriber 𝑗 with 𝜇𝑗 > 𝜇𝑘*

𝑅
votes +1.
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We study the strategies of right-leaning players in the class of true-news-disclosing

equilibria.

Verification and disclosure strategy:

By Lemma 4.5, intermediary 𝑅 does not verify any news 𝑥 ≥ 𝑥th
𝑇 (𝜇𝑅). Due to

the positive verification cost, intermediary 𝑅 does not necessarily verify any news

𝑥 < 𝑥th
𝑇 (𝜇𝑅). For unverified news, she conceals the news if the critical subscribers

would weakly prefer the opposite action when seeing the news. For verified news, she

discloses it iff it is true.

The critical subscribers are centrists: The reasoning follows the proof of Propo-

sition 4.3.

Subscription choices:

The ex-ante expected utility of right-leaning subscribers who subscribe to interme-

diary 𝐿 is the same as (C.7) since they take +1 for any news value that is verified by

intermediary 𝐿.

On the other hand, if 𝑠𝑗 = 𝑅:

(i) For 𝜇𝑗 ∈ [0, 𝜇𝑘*𝑅
], the analysis follows the proof of Proposition 4.3.

(ii) For 𝜇𝑗 ≥ 𝜇ext
𝑅 , one will obtain the difference between following intermediary 𝑅

and 𝐿 as described in (C.8). The difference is non-negative due to the triangular

inequality; the zero holds iff E𝑗[𝜃 |𝑥, 𝑇 ] ≥ 0 for any 𝑥 such that 𝑣*𝑅(𝑥) = 1. ■

C.4 Proofs of Section 4.7

Proof of Lemma 4.7.

(i): Since verification result is perfectly observable to her subscribers when news

is disclosed, it is easy to see that after observing the verification result intermediary

𝑅 conceals the news if and only if her critical subscribers, observing the verification

result, would weakly prefer the action that is not favored by her.
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(ii): We rewrite the equation for the critical perspective (C.2):

0 = 𝑝𝜇𝑘*𝑅
+(1− 𝑝)

∫︁
𝑥∈R|𝑣*𝑅(𝑥)=0,𝑚*

𝑅(𝑥,0)=∅

(︁
𝑞𝑓𝐹 (𝑥) + (1− 𝑞)𝑓𝑇 (𝑥;𝜇𝑘*𝑅

)
)︁
E𝑘*𝑅

[𝜃|𝑥]𝑑𝑥

+ (1− 𝑝)

∫︁
𝑥∈R|𝑣*𝑅(𝑥)=1,𝑚*

𝑅(𝑥,1,𝐹 )=∅
𝑞𝑓𝐹 (𝑥)𝜇𝑘*𝑅

𝑑𝑥

+ (1− 𝑝)

∫︁
𝑥∈R|𝑣*𝑅(𝑥)=1,𝑚*

𝑅(𝑥,1,𝑇 )=∅
(1− 𝑞)𝑓𝑇 (𝑥;𝜇𝑘*𝑅

)E𝑘*𝑅
[𝜃|𝑥, 𝑇 ]𝑑𝑥.

If 𝜇𝑘*𝑅
< 0, she would conceal any right-leaning news (for which she prefers +1) that

will make her critical subscribers take action −1 (either it is verified or not). Since her

critical subscribers strictly prefer −1 for any for any 𝑥 ≤ 0, they would have negative

posterior mean when there is no disclosure. Contradiction.

We now show that 𝜇𝑘*𝑅
< 𝜇𝑅. Suppose not, then intermediary 𝑅 conceals the news

(with its verification result) only when she weakly prefers −1 and her critical subscribers

would weakly prefer +1 if seeing the news; as a result her critical subscribers’ posterior

mean would be positive when there is no disclosure. Contradiction.

(iii): It is immediate from (i) and (ii).

(iv): For any 𝑥 such that 𝜇𝑅E𝑅[𝜃|𝑥, 𝑇 ] < 0, if intermediary 𝑅 verifies it and learns

that it is true, she prefers −1 and knows that her critical subscriber, whose perspective

is more left-leaning than hers, will take −1 when observing the news and its verification

result. She hence discloses the news. Similarly, if intermediary 𝑅 verifies it and the

news is false, she prefers +1 and her critical subscriber will take +1 when seeing the

false news; consequently she discloses it. ■

Proof of Proposition 4.5.

We still focus on the right-leaning players. We use the insights in previous proofs.

Subscription choices of the subscribers who are more extreme than inter-

mediaries:

We first show that 𝑣*𝑅(𝑥) = 1 if 𝑥 < 𝑥th
𝑇 (𝜇𝑅). By Lemma 4.7, if intermediary 𝑅
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verifies some 𝑥 < 𝑥th
𝑇 (𝜇𝑅) and learns its veracity, she will then disclose the news either it

is true or false. Given the news value, in both cases she attains the maximal fraction of

her subscribers taking the action she favors. Concealing or disclosing unverified news

only result in sub-optimal fractions of her subscribers who take her favored action.

Given that 𝐶 = 0, it is strictly beneficial for her to verify the news (and then discloses

it).

For an extremist subscriber 𝑗 with 𝜇𝑗 ≥ 𝜇𝑅, whichever intermediary he chooses,

he takes +1 when there is no disclosure. Moreover, he takes +1 for any news value

𝑥 ≥ 𝑥th
𝑇 (𝜇𝑅) if it is disclosed. Therefore, one can derive that the difference in his ex-ante

expected utility between choosing intermediary 𝑅 and 𝐿 comes from their strategies

for news that can change his favored action, i.e., for news 𝑥 < 𝑥th
𝑇 (𝜇𝑗). Note that

𝑥th
𝑇 (𝜇𝑗) ≤ 𝑥th

𝑇 (𝜇𝑅) and observe that for any news 𝑥 < 𝑥th
𝑇 (𝜇𝑅) < 0, intermediary 𝐿 may

not verify it but will disclose it (cf. Lemma 4.7). Subscriber 𝑗 then weakly prefers

intermediary 𝑅 who verifies any news that may change his favored action if it is true

and enables him to take his optimal action. Specifically,

E𝑗

[︁
𝑎*𝑗𝜃
⃒⃒⃒
𝑠𝑗 = 𝑅

]︁
− E𝑗

[︁
𝑎*𝑗𝜃
⃒⃒⃒
𝑠𝑗 = 𝐿

]︁
,

=(1− 𝑝)
(︁
E𝑗

[︁⃒⃒
E𝑗[𝜃 |𝑥, 𝑇 ]

⃒⃒
1I{𝜔=𝑇,𝑣*𝐿(𝑥)=0,𝑥<𝑥th

𝑇 (𝜇𝑗)}

]︁
+ E𝑗

[︁
𝜇𝑗1I{𝜔=𝐹,𝑣*𝐿(𝑥)=0,𝑥<𝑥th

𝑇 (𝜇𝑗)}

]︁
− E𝑗

[︁⃒⃒
E𝑗[𝜃 |𝑥]

⃒⃒
1I{𝑣*𝐿(𝑥)=0,𝑥<𝑥th

𝑇 (𝜇𝑗)}

]︁)︁
which is non-negative and the zero holds iff intermediary 𝐿 also verifies any news

𝑥 < 𝑥th
𝑇 (𝜇𝑗). ■

184



C.5 Additional Results and Discussion

The change of the critical perspective with the intermediary’s

perspective

We discuss the comparative statics for the case when verification is available and cost-

less. The following lemma identifies how the magnitude of a intermediary’s perspective

affects her critical perspective at the equilibria.

Lemma C.1 When verification comes with no cost, i.e., 𝐶 = 0, if intermediary 𝑖 has a

more extreme perspective, the unique critical perspective for her is also more extreme.

Specifically, for intermediary 𝑖, the magnitude of the equilibrium critical perspective

|𝜇𝑘*𝑖
| is increasing in |𝜇𝑖|.

Proof :

For the equilibrium in Proposition 4.2, the critical perspective 𝜇𝑘*𝑅
(= ̂︀𝜇*

𝑅(∅)) for

intermediary 𝑅 satisfies

𝑝𝜇𝑘*𝑅
(∅) + (1− 𝑝)

[︁ ∫︁
𝑥∈𝐶*

𝑅

(︁
𝑞𝑓𝐹 (𝑥) + (1− 𝑞)𝑓𝑇 (𝑥;𝜇𝑘*𝑅

)︁
E𝑘*𝑅

[𝜃|𝑥]𝑑𝑥
]︁
= 0.

Fix 𝜇𝑘*𝑅
and increase 𝜇𝑅 to 𝜇�̃� = 𝜇𝑅 + 𝜂 for some infinitesimal 𝜂 > 0. Then the set

of concealed news 𝐶*
𝑅, for which E𝑘*𝑅

[𝜃|𝑥] ≤ 0, will be enlarged because E�̃�[𝜃|𝑥] >

E𝑅[𝜃|𝑥] for every 𝑥 and the intermediary with 𝜇�̃� would like to conceal more news.

Consequently, the sum will be negative, and 𝜇𝑘*𝑅
has to be increased, so that E𝑘*𝑅

[𝜃|𝑥]

is increased for every 𝑥 and then the set of the concealed news is decreased, to satisfy

the equation.

For the equilibrium in Proposition 4.3, the critical perspective for intermediary 𝑅
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satisfies

0 = 𝑝𝜇𝑘*𝑅
+(1− 𝑝)

[︁ ∫︁
𝑥∈𝐹𝐶*

𝑅

𝑥<𝑥th
𝑇 (𝜇𝑅)

𝑞𝑓𝐹 (𝑥)𝜇𝑘*𝑅
𝑑𝑥
]︁

+ (1− 𝑝)
[︁ ∫︁

𝑥∈𝑇𝐶*
𝑅∩𝐹𝐶*

𝑅

𝑥∈[𝑥th
𝑇 (𝜇𝑅),0)

(︁
𝑞𝑓𝐹 (𝑥) + (1− 𝑞)𝑓𝑇 (𝑥;𝜇𝑘*𝑅

)
)︁
E𝑘*𝑅

[𝜃|𝑥]𝑑𝑥
]︁
.

Again fix 𝜇𝑘*𝑅
and consider 𝜇�̃� = 𝜇𝑅+𝜂 for some infinitesimal 𝜂 > 0. The set of verified

news is decreased (note that 𝑥th
𝑇 (𝜇�̃�) < 𝑥th

𝑇 (𝜇𝑅)); the set of the news that is concealed

without verification can be increased as the intermediary may want to conceal some

news in the range [𝑥th
𝑇 (𝜇�̃�), 𝑥

th
𝑇 (𝜇𝑅)) if it makes E𝑘*𝑅

[𝜃|𝑥] ≤ 0. Consequently, the sum

will be negative, and 𝜇𝑘*𝑅
has to be increased to satisfy the equation. ■

Intuitively, when a intermediary has a more extreme perspective, she only verifies

the opposing news that is very extreme, leaving a wider range of opposing news un-

verified, for which she retains her favored action whereas her critical subscribers prefer

the opposite action. Therefore, the intermediary would conceal more news that is un-

favorable. Expecting this strategic disclosure, the subscribers will adjust their belief

mean more towards to the opposite wing when observing no disclosure.

Verification decisions for news aligned with an intermediary’s

ideology

As argued in the main context, for any news aligned with intermediary 𝑖’s ideology,

intermediary 𝑖 has an incentive to prove its informativeness while she may lose some

subscribers taking her favored action if the news turns out to be false. We provide the

details of verification decision making as below.

According to Lemma 4.7, intermediary 𝑖 discloses any news aligned with her ide-

ology. Since subscribers can perfectly observe the verification result for any disclosed

news, we can find the threshold perspectives for observing news as a function of news

value and verification result, with no dependence on intermediaries’ strategies. Specif-
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ically, for any 𝑥, we denote by ̂︀𝜇(𝑥, 𝑇 ) the unique perspective such that the corre-

sponding posterior mean when seeing true news 𝑥 is zero, i.e., E𝑖[𝜃 |𝑥, 𝑇 ] = 0 for

𝜇𝑖 = ̂︀𝜇(𝑥, 𝑇 ). Similarly, for the case when there is no verification, we denote by ̂︀𝜇(𝑥)
the unique perspective such that E𝑖[𝜃 |𝑥] = 0 for 𝜇𝑖 = ̂︀𝜇(𝑥). For any false news, the

threshold perspective is zero. By the convexity and monotonicity in perspective, ̂︀𝜇(𝑥)
is between ̂︀𝜇(𝑥, 𝑇 ) and 0.

Given common history 𝐺𝑠, if intermediary 𝑖 chooses to verify aligned news 𝑥, her

expected utility is

ℓ𝑖(𝑥, 𝑇 ) E𝑖[𝜃|𝑥, 𝑇 ]
[︁
𝐺𝑠

𝑖 (+∞)− 2𝐺𝑠
𝑖

(︀̂︀𝜇(𝑥, 𝑇 ))︀]︁
+
(︀
1− ℓ𝑖(𝑥, 𝑇 )

)︀
𝜇𝑖

[︁
𝐺𝑠

𝑖 (+∞)− 2𝐺𝑠
𝑖 (0)

]︁
− 𝐶.

If she does not verify it, she derives expected utility

E𝑖[𝜃|𝑥]
[︁
𝐺𝑠

𝑖 (+∞)− 2𝐺𝑠
𝑖

(︀̂︀𝜇(𝑥))︀]︁.
The difference between verifying and not is then given by

ℓ𝑖(𝑥, 𝑇 ) E𝑖[𝜃|𝑥, 𝑇 ] 2
[︁
𝐺𝑠

𝑖

(︀̂︀𝜇(𝑥))︀−𝐺𝑠
𝑖

(︀̂︀𝜇(𝑥, 𝑇 ))︀]︁⏟  ⏞  
persuade more opposing subscribers

−
(︀
1− ℓ𝑖(𝑥, 𝑇 )

)︀
𝜇𝑖 2

[︁
𝐺𝑠

𝑖 (0)−𝐺𝑠
𝑖

(︀̂︀𝜇(𝑥))︀)︀]︁⏟  ⏞  
lose opposing subscribers with perspectives close to neutrality

−𝐶.

The alternative modeling of continuous action space and utility

function of quadratic loss

Despite the challenge in analysis, we do expect some different incentives under this

alternative setting. When the verification results are unobservable to the subscribers,

the intermediaries may now have an incentive to verify the aligned news and disclose

the news if and only if it is true. The reason is that the exact adjustments in the
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subscribers’ belief mean matter: If the aligned news is true, then the intermediary

discloses it and her subscribers move their belief mean closer to the news value, as well

as to the intermediary’s belief. On the other hand, if the news is false, the intermediary

may prefer that her subscribers keep their perspectives rather than update their beliefs

speculating the news is likely true. The intermediary conceals the news when it is false

and has no incentives to deviate to disclose it, which otherwise makes the subscribers

think the news is true and consequently overreact. Similarly, the reasoning is applied

to the case of extreme opposing news as the intermediary significantly updates her

belief towards the opposite wing when the news is true and wants to persuade her

subscribers as well. For the news that around the neutrality, whether it is true or false

may not cause a significant shift in the subscribers’ belief means and the intermediary

may only decide whether to disclose the news.

As the intermediaries disclose verified news if and only if it is true, the extremists

can derive the verification benefits whereas the centrists may not due to the indistin-

guishable false news signalling from the concealed news. However, it is uncertain which

intermediary the extremists would choose considering that both intermediaries verify

extreme news on both wings.
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