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Abstract
In this thesis, we study identification and robustness issues in central banking and
supply chains. First, we present a methodology to identify multiple linear financial
networks when only an aggregate outcome is observed, and use the method to assess
financial networks among financial institutions in the United States. We discover that
the data is better explained by a mix of distinct networks, each of which corresponds
to a different transmission mechanism. Second, we investigate the effect of bounded
uncertainty in central banking, and derive robust decision rules for central banking
policymaking. When bounded uncertainty is passed through a conditional expecta-
tion channel, we find that committing not to use a policy tool is sometimes optimal
for the central bank. An asset purchasing model and a forward guidance model are
examined in depth to illustrate our point. Third, we study a stylized supply chain
model where large aggregate shock hits and prices are not adjusted due to anti-price
gouging laws. We show that individual producers, in this case, will not diversify for
aggregate shock due to the externality of fixed prices. Multinational corporations,
on the other hand, would still diversify their supply chain due to continuation value.
Furthermore, a robustness analysis shows that individual producers will not diver-
sify even when they adopt robust decision rules, but multinational corporations will
further diversify their supply chain in this case. The first two chapters tackle the
real-world challenge of financial systemic risk reflected by the 2008 financial crisis,
and the proliferation of monetary policy tools thereafter. The third chapter tries to
analyze the supply chain disruption caused by the outbreak of the Covid-19 global
pandemic, and give policy suggestions based on our model.
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Chapter 1

Introduction

1.1 Problem Summary

The 2008 world financial crisis started in what was supposed to be a relatively small

and segmented market. At that time, the outstanding value of Sub-Prime debt was

a tad below a trillion dollars, while the market value of credits in both the formal

and shadow US financial sectors was higher than 23 trillion dollars. So, a default on

4 percent of an isolated market (the high-risk mortgages) was expected to have an

equal minuscule effect. Not surprisingly, the Obama administration only requested

800+ billion dollars for the rescue package. It is evident, today, that the systemic

consequences of the sub-prime crisis were unexpectedly more substantial. The shock

propagated to other financial sectors and countries. The total world losses reached

several trillion. This phenomenon has spurred research on systemic risk, particularly

on the estimation of the underlying financial networks governing the propagation of

shocks — or as it is sometimes known as financial contagion.

After the above financial crisis, central banks worldwide embarked on a massive

easing of monetary policy. They started relying on the monetary policy tool they

used for decades: open market operations, lowering the interest rate in the short run.

Very soon, interest rates got close to zero, and in many countries, it got to precisely

zero. Under the assumption that negative rates were unfeasible, 1 central banks
1This assumption was proven to be wrong many years later when Switzerland, Denmark, and
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started to expand their monetary policy tools and deploy alternative interventions.

For example, one of those tools, the forward guidance, is a central bank’s commitment

to keeping interest rates around zero for an extended period. If the market trust

this commitment, then this provides monetary liquidity and expands the economy

(Campbell et al., 2012). However, the forward guidance tool did not incentivize the

economy and push inflation consistently above the 2% target as expected. The Phillips

curve, as part of the widely accepted New Keynesian Model of central banking, has

been reported to be weakly identified and has become flatter and flatter over the years

(Mavroeidis et al., 2014). As such, we believe that the problem of model uncertainty

and robustness need to be carefully investigated in central banking models.

Optimal control theory in engineering has an extensive influence on economic

models. However, optimal control assumes that the system dynamics are accurately

known. When there is model uncertainty, robust control is preferred. Robust control

optimizes the controller performance for a set of models instead of a single nominal

model. In this thesis, I borrow from robust control theory from engineering to in-

vestigate central banking model uncertainty issues. In the robust control theory, we

no longer assume perfect knowledge of the model. Instead, we focus on a baseline

model of the system and then incorporate model uncertainty. After that, the opti-

mal policy for the worst-case scenario is obtained via minimax optimization. Some

counter-intuitive policy implications arise from our analysis using robust control.

Considering robustness in economic modeling is not entirely new. In the same

year of the financial crisis, Lars P. Hansen, a laureate of the Nobel Memorial Prize in

Economic Sciences, published his book ‘Robustness’, summarizing some research of

robust control techniques applied to economic models. Since then, people have been

using those techniques to revisit economic models. Generally speaking, a baseline

statistical model is considered, and a multiplier penalty is given according to the

entropy deviation (i.e., Kullback–Leibler divergence) is attached to the optimization

objective function. However, due to the lack of robustness tools with expectation

channels, not much has been done on central banking’s robustness issues.

other European countries set interest rates to negative numbers.

18



Precisely, we consider the following three different but related identification and

robustness issues in central banking and supply chain:

The first problem is the identification of financial networks. In this thesis, I

develop a methodology to estimate hidden linear networks when only an aggregate

outcome is observed. The aggregate observable variable is a linear combination of the

different networks, and it is assumed that each network corresponds to the transmis-

sion mechanism of different shocks. The identification problem is challenging because

the number of the parameter is large. An EM algorithm is implemented to estimate

the networks, and an analytic solution of a Wishart MLE is obtained to enable the

estimation of networks one by one. Finally, we implement the methodology to esti-

mate financial networks among US financial institutions. Credit Default Swap rates

are the observable variable, and we show that more than one network is needed to

understand the dynamic behavior exhibited in the data.

The second problem is the robustness of the central banking policy. After the

2008 financial crisis, more and more unconventional monetary policy tools are used

by central banks worldwide. The underlying assumption supporting those moves is

that the central bank can do a better job controlling the economy by using more

tools simultaneously. However, as shown in this thesis, that is not true when model

uncertainty and an expectation channel exist simultaneously. The robust monetary

policy is, therefore, to commit never to use certainty policy tools. Our model implica-

tion is aligned with many empirical studies; as they found, US forward guidance has

a mixed effect on the economy: on the one hand, it signals a weak macroeconomic

perspective and slows down consumer spending; on the other hand, it could provide

more liquidity to the market and stimulate economic activities. Data show that both

effects are significant, and the combined result can be either (Andrade et al., 2019).

Intuitively, the central banking system and market are playing a game, and both rely

on the expectation of the opponent’s strategy to generate its strategy. As such, a

new tool introduced by the central bank could change the expectation of strategies

and shift the existing equilibrium of the game. With model uncertainty, the change

of equilibrium could offset the original intention of introducing the tool, and the com-
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bined effect could go either way. A new theoretical model is provided to capture such

intuition to make robust monetary policies in the future.

The third problem is the robustness issue of the global supply chain. During the

global pandemic, it is evident that the global supply chain is not optimized for robust-

ness. This thesis introduces the idea that a decentralized supply chain could become

vulnerable to aggregate shocks in the pursuit of individual efficiency. Furthermore,

when the model has an uncertainty, and all agents adopt a min-max robust decision

rule, the equilibrium result of the decentralized supply chain deviates even further

away from the socially optimal allocation. In other words, in our setup, we reflect

the well-known tradeoff between efficiency and robustness. This thesis will present

research ideas to identify financial networks and understand the impact of model

uncertainty on central banking and supply chain. I will apply statistical tools and

optimization methods to identify financial networks and apply tools from game theory

and robust control theory to answer essential central banking and supply chain ques-

tions. Through this research, I strive to investigate the challenges and implications

brought by considering model uncertainty. Furthermore, practical recommendations

for central bankers, other policymakers, and regulators are provided.

The thesis uses research tools from macroeconomics, game theory, econometrics,

optimization, and robust control theory. The first part of the thesis proposes a way

to identify multiple financial networks. The identification process uses Identification

through Heteroskedesiticity, a tool from econometrics, and EM-algorithm, a widely

adopted optimization method. The second and third part of the thesis applies robust

design approaches to existing central banking and supply chain models, combining

the robustness analysis from control theory with macroeconomic models.

1.2 Summary of Individual Chapters

The remaining chapters of the thesis are organized as follows:

20



1.2.1 Contingent Linear Financial Networks

As part of the response to the financial crises in the developed world, policymakers

have significantly increased central banks’ regulatory authority. Nowadays, one of the

essential roles of a central bank is the regulators for systemic risks. In particular, the

estimation of the underlying financial networks has received more and more attention.

Observing and understanding the contracts underlying the links between banks

is sometimes challenging, however. There are two mainstream approaches in the

literature: either using financial contracts to estimate asymmetric networks or using

aggregate data to estimate symmetric networks. When using the first approach, direct

lending from one bank to another is straightforward to document, while relationships

across other contracts are usually missed out. When using the second approach,

directional information is never recovered. Furthermore, because financial connections

generally depend on the type of shock that hits the market, an identification method

that can identify multiple networks corresponding to different shocks is required.

However, to the best of my knowledge, no existing identification methods can achieve

that.

The conventional method usually cannot identify multiple networks at once due

to two difficulties. One is that the data provide not enough sufficient statistics.

We solve this problem by assuming heteroskedasticity regimes in the data and use

that to provide constraints. The other difficulty is due to a large of parameters and

the nonconvexity of the optimization problem. We solve this problem by using an

EM algorithm and developing a procedure that decouples the estimation process of

different networks.

Chapter 2 develops a methodology to estimate hidden linear networks when only

an aggregate outcome is observed. We implement the methodology to estimate finan-

cial networks among US financial institutions. After controlling for aggregate shocks,

we find the data is explained more accurately with a mixture of different networks,

where each network corresponds to a different transmission mechanism. Credit De-

fault Swap rates are the observable variable and we show that more than one network

21



is needed to understand the data. Furthermore, multiple network identification is im-

plemented using a EM algorithm. We developed a systematic methodology to find the

optimal number of networks and discussed how it can help macro-prudential policy

making. The estimation of different networks allows the implementation of a macro

prudential and robust approach to the systemic risk in the financial system. We show

that if the monetary authority estimates a single network it will underestimate the

systemic risk of the top 10 banks in the US by 71 percent.

1.2.2 Uncertainty and Robustness in Central Banking

While these policies played an essential role in the economic recovery after the finan-

cial crisis, it is an important question whether more tools can always help the central

bank control the economy. At first glance, having more tools at the Central Bank’s

disposal is always better. However, there are cases where the Central Bank should

commit never to use a given mechanism to better manage the economy. The presents

of bounded uncertainty instead of risk is the key to this phenomenon. Unlike risk,

which has a distribution, bounded uncertainty we study in this thesis does not have

a distribution, and a robust decision rule has to apply.

Furthermore, bounded uncertainty is not uncommon in macroeconomic models.

A significant number of macroeconomic models require linearization around an equi-

librium before being calibrated; hence, different equilibrium values would result in

different models and different implications. However, equilibrium values are gener-

ally difficult to measure since the market is constantly evolving, and equilibrium is

never indeed achieved in the real world. In fact, the Humphrey—Hawkins report of

the Fed uses the word ’long term values’ to indicate the equilibrium value that the

economy would hypothetically achieve in the very far future if the current environ-

ment lasts. As a result, equilibrium values are usually reported as a range in which

predictions based on various models fall.

Chapter 3 seeks to exam whether more policy tools are always better in an envi-

ronment with bounded uncertainty. We find that when bounded uncertainty is passed

through a conditional expectation channel, sometimes it is optimal for a central bank
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to not using a policy tool. Two monetary policy models for asset purchasing and for-

ward guidance are examed in detail, and the cause for this phenomenon is discussed.

1.2.3 Robust Global Supply Chain

During the 2019-2020 coronavirus outbreak, we learned a valuable lesson about the

global supply chain. Producing all of the parts with the low-cost suppliers is not

optimal. Diversification is required to reduce risk. It is also evident that the global

supply chain is not diversified for the kind of aggregate risk. This phenomenon is,

however, not what the classic asset pricing theory predicts. In the canonical macro

and asset pricing models, the demand is such that when the quantities tend to zero,

prices rise to infinity. Those models with Cobb-Douglas or CES functions have a

pricing system reflecting the scarcity. When an aggregate shock hits, the state should

have a higher Arrow-Debru price that incentivizes market participants to diversify

production to higher-cost regions. This diversification, on the other hand, maximizes

social welfare.

This efficient allocation relies on the assumption of complete markets. In par-

ticular, it relies on a floating price. During the Covid-19 outbreak, it was evident

that those assumptions do not hold due to anti-price gouging efforts from both the

government and the general public. In this case, the companies that diversify their

production in advance will not be rewarded with higher profit. Even worse, they will

face increasing litigation risk of anti-price gouging enforcement. In this case, diver-

sifying and preparing for aggregate shocks is not financially optimal for individual

companies.

Chapter 4 studies a very stylized model of a supply chain, where we study how the

decision of a multinational corporation changes in the presence of anti-price gouging

and uncertainty. This chapter developed a simple model where large multinationals,

even with the fixed price, still diversify their production plant to higher cost regions

because of continuation values. Our model is inspired by a class of adaptive market

and probability matching literature. It implies that in a market with aggregate shock

and anti-price gouging laws, having a small number of large firms is more efficient
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than having a large number of small firms. We also study a robust supply chain

which concentrates on the worst-case, and is not achieved by simply increasing the

size of shocks. Our model rationalizes "probability matching" behavior observed in

the experimental literature.
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Chapter 2

Contingent Linear Financial

Networks

This work was performed in collaboration with Roberto Rigobon and Munther Dahleh.

2.1 Introduction

The 2008 world financial crisis incentivized much research in financial systemic risk,

which is caused by interconnections among large financial entities. Banks can be

interconnected through many different channels. One type of link is related to the

exposure banks have to similar microeconomic or industry shocks. For example,

two bank’s balance sheets can be interconnected because both are lending to the

same firm or sector, and it suffers a shock. The second type of channel is related to

interbank contracts. Two banks can be interrelated because one bank lends to the

other, or they hold each other’s liabilities. Therefore, a deterioration in the balance

sheet of the borrowing bank affects the quality of the assets of the lending bank.

Finally, banks can be exposed to similar macroeconomic shocks such as exchange

rate, inflation rate, interest rates, economic activity, real estate, etc. In sum, there

are many possible ways in which banks are linked to each other.1 One implication
1See Allen and Gale (2000), Freixas et al. (2000) for earlier contributions, and Acemoglu et al.

(2015), Allen et al. (2012), Caballero and Simsek (2013), Cabrales et al. (2017), Elliott et al. (2014),
Gai and Kapadia (2010), and Gai et al. (2011) for recent theoretical papers. Empirical papers that
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of the different transmission mechanisms is that they could be reflected in different

financial networks.

The information required to estimate these financial networks is quite extensive

and unlikely to be obtained, especially when these connections are not written in

formal contracts.2 The granularity and detail of the information, as well as the global

disclosure requirements, are unfeasible, even to regulators and central banks. There-

fore, any estimation of a financial network tends to rely on outcome variables such

as public financial statements and market data from banks and financial institutions.

Those outcomes capture the total impact confounded through the different networks

as opposed to pairwise relationships.

In order to approximate the underlying network without using pairwise data, two

main approaches have been taken in the literature. The first one uses information-

theoretic principles and aggregate data to fill in the blanks.3 For example, one can

read the total inter-bank debt from Form 10-Ks. After that, the worst-case scenario

can be evaluated by inferring the pairwise debt structure using a maximum entropy

principle. While used in some stress tests, those methods only give a rough estimate of

the debt structures and do not fully utilize the information from time-varying data.

The second approach uses the correlation of prices of financial contracts (Onnela

et al., 2004) to construct interbank financial networks. However, correlation matrices

do not have a structural interpretation4 and cannot reflect the direction of shock

transmission.

The main contribution of the chapter is the estimation of a mixture model of

multiple endogenous asymmetric linear networks.5 The intuition behind the estima-

estimate financial networks include Billio et al. (2010), Merton et al. (2013), Adrian and Brunner-
meier (2016), and Girardi and Ergün (2013).

2For instance, assume a bank lends to Intel, who sells to a South Korean firm, that manufactures
a monitor sold to a California firm, who gets a loan from a different bank. In this setting, the
two banks are related through the South Korean firm. However, the requirements on reporting and
disclosure to be able to uncover such relationship are impossible — i.e., the US regulator can’t force
the South Korean company to reveal its clients and suppliers.

3See Upper (2011); Elsinger et al. (2013) for maximum entropy and Anand et al. (2015) for
minimal density

4Additionally, the estimates based on correlations can be biased in the presence of heteroskedastic
shocks. See Forbes and Rigobon (2002).

5The procedure follows Rigobon (2003) and is able to deal with asymmetric responses, contem-
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tion comes from the fact that in a linear network, the correlation structure across

banks is the result of a linear mixture of the covariance implied by each network -

where the weights are the relative variances of each shock. When the variance of

those shocks changes through the sample, the weights change, leading to variation in

the aggregate covariances. From that variation of the second moment, the underly-

ing structure of the networks can be recovered. Therefore, the identification requires

finding periods where the shocks experience different volatilities. To do so, we use

statistical identification where the changes in the variance in the observed data deter-

mine the “regimes”. This procedure is very similar to the one developed by Sentana

and Fiorentini (2001). The advantage of this methodology is that it allows estimat-

ing the asymmetry of large versus small shocks - where the statistical identification

truly captures the differences in the propagation mechanisms. In the case of finan-

cial systemic risk both macroeconomic and idiosyncratic shocks might be important.

In this chapter, we concentrate on the transmission of idiosyncratic shocks once the

macroeconomic shocks have been controlled for.

We apply our methodology to estimate the US financial network among the 10

largest financial institutions in the country. The data collected are their credit default

swaps (CDSs). The CDSs have been used widely in the literature studying risk

contagion. Most notably, the CDSs of sovereign debt have been examined by various

papers to understand international risk propagation. E.g., Kalbaska and Gątkowski

(2012) investigates the eurozone contagion via a regression on CDS spread changes.

In general, if a risk contagion mechanism exists among certain countries, their CDS

spread will co-move. From the trend of CDS spread, the author reaches a conclusion

that Sovereign debt risk is mainly limited to EU countries. Similarly, Caporin et al.

(2018) also studies European debt crisis by examining the CDS spread. Through a

Bayesian quantile regression that incorporates shock heteroskedasticity, they conclude

that the increases in the correlation of CDS come from heteroskedasticity instead of

structural changes of risk propagation mechanism. In addition, Eichengreen et al.

(2012) studies the Subprime Crisis, most notably the market regime shift and risk

poraneous relationships, and parameter instability.
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contagion during that time, using CDS data.

This chapter develops a methodology to estimate a mixture of multiple linear

financial networks. On the theoretical part, we proved the solution uniqueness of

identifying a single network through heteroskedasticity using GMM, and derived an

Expectation-Maximization based method to identify multiple linear networks. On

the empirical part, we applied our method on credit default swap data of US banks,

and find that three networks best describe the data. Furthermore, each one has a

different centrality ranking.

Identifying multiple networks offers central bankers the opportunity to design the

proper policy response in case a systemic failure exists. The central bank is unlikely to

know exactly which network is at play when the shock hits the economy. Therefore,

a robust approach is desirable. When there are multiple networks a robust policy

making process requires central bankers to stay ready for the worst case. We compare

the systemic impact of banks when a robust response is used in the presence of three

networks, versus the response when a single network is estimated. We find that the

systemic impact is underestimated severely when a single network is used. Indeed

the systemic impact is on average 41 percent smaller with one network that with

three networks. A robust approach would imply a more supportive monetary policy

reaction than what the single network entails. In other words, this chapter provides

an improved method of identifying financial networks and monitoring systemic risk,

and helps central banks build a more robust policy making process.

This chapter is organized as follows: In Section 2.2, a problem of the financial

network is formulated and the problem of identification is discussed. The section

starts with our network model, and then provides a proof of solution uniqueness in the

single network case. Section 2.3 discusses the case when a single network is estimated.

We present the statistical identification method and explains how heteroskedastic

regimes are defined. Section 2.4 presents a test for the single network hypothesis, and

a EM algorithm to estimate multiple networks. In the 10 banks case, 3 networks is

required to explain the data. The results of the estimated networks is then discussed

in this section. Finally, Section 2.5 concludes.
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2.2 Modeling Financial Networks

The estimation of financial networks is not new. A significant proportion of pa-

pers, however, concentrate on the estimation of symmetric single networks — non-

directional, and non-contingent graphs. In this section, we present first, some pre-

liminary evidence based on correlations. We then introduce a linear financial net-

work model, and show: 1. how the network model can be uniquely identified with

variance-covariance data; 2. together with heteroskedastic shocks, how it can explain

the volatility in correlation models.

2.2.1 The Time-Varying Correlations

It is desired to find out how and why banks are related to each other, and which

banks are “crucial” in the risk transmission mechanisms, and which ones are less

relevant. One natural measure for those purposes is the correlation coefficients. In

modern portfolio theory (MPT), correlation coefficients also play an essential role.

MPT quantitatively formalizes the concept of diversification via the statistical notion

of covariance, or correlation.

However, most of those applications of linear correlation models make an over-

simplified assumption, that the correlation coefficients of any two given financial

instruments are time-invariant, or at least time-invariant in the period of analysis.
6 In practice, there are numerous examples where such assumption does not apply.

In this chapter, we are concerned with the systemic financial risks which primarily

propagate through large banks, so we use the Credit Default Swap (CDS) data of the

top 10 US banks as an example. 7

6Although most of the literature estimates the strength of the network transmission by using sim-
ple correlations, there are notable exceptions that are worth highlighting. Adrian and Brunnermeier
(2016) proposes a new measure of comovement called CoVar — which is defined as the value at
risk conditional on the bank being in distress. Girardi and Ergün (2013) extend that measurement
to expand the definition of distress. These types of measures are consistent with networks being
contingent.

7It is important to highlight that CDS might exhibit excessive comovement due to the presence of
a government guarantee. (Merton et al., 2013) uses a different approach to measure the credit risk of
the banks. They use contingent claims analysis instead of CDS. The CDS are partially guaranteed by
government policy — for instance, deposit insurance. Future research should evaluate the robustness

29



The CDSs of banks have been widely used in studying interbank risk propagation.

As pointed out by Eichengreen et al. (2012), the CDS spreads of major banks co-

move and reflects market economic prospects. Furthermore, during the Subprime

Crisis and the following crisis of Lehman Brothers, the common factor in the factor

model become more dominant, i.e., the absorption ratio (as defined in (Kritzman

et al., 2011)) is higher. The fact that major financial crises are reflected by CDS

regime changes is the exact characteristic we want to study. In our contingent linear

financial network model, a significant regime shift is required for unique identification.

As shown in (Eichengreen et al., 2012), the common factor accounted for 62% of the

variance of major bank CDSs before the 2007 breakout of Subprime Crisis and raised

to 77% during the crisis, signaling a major regime shift. Apart from stronger co-

movements, we also want to discover whether the change of regime is a sole result of

heteroskedasticity of shocks, or a result of both the heteroskedasticity of shocks and

the structural change of risk propagation mechanisms. 8

of the results presented in this chapter when different measures of financial performance are used.
8See Appendix for details of the CDS data used.
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Figure 2-1: The 45 pairwise correlation coefficients of CDS of the top 10 US banks.

The stock exchange id numbers of the 10 banks are JPM, BAC, WFC, C, GS, MS,

COF, HSBC, AXP, and CSGN.

The change of volatility could be due to either time-varying linear regression

coefficients (a.k.a. linear financial networks, as we will define later in the chapter),

or heteroskedestistic shocks. Figure 2-1 shows the 45 pairwise correlation coefficients

of CDS of the top 10 US banks calculated using a 200 days moving window. It is

immediately notable that the correlation cannot be considered time-invariant. At an

extreme, the correlation coefficient rises from -0.8 to 0.8 within 200 days.

2.2.2 A Linear Network Model

Suppose there are N financial institutions (indexed by n = 1, 2, · · · , N) in a contingent

financial network with M possible networks, which are denoted by the directed graphs

Gm = {V , Em} for m ∈ {1, 2, · · · ,M}. V is the set of common nodes in all the graphs
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and each node vn ∈ V corresponds to a financial institution n. Furthermore, each

edge eijm ∈ Em denotes the risk spillover through mth network between node i and

node j.

There are two possible — simple — assumptions on how to implement the contin-

gent networks. One in which the shocks are idiosyncratic and hit each bank individu-

ally and then they are propagated in the network, or the second one where the shocks

are hitting the system as a whole but deferentially each bank. The first assumption

is one in which the systemic risk of an individual shock effect is determined by the

propagation between one bank and the other, while in the second assumption the

relative importance of the aggregate shocks is what makes them systemic.

Our empirical strategy is to control for aggregate shocks and concentrate on the

propagation of the idiosyncratic shocks. We believe this is the most intuitive appli-

cation of our methodology.9 In particular, we assume that the system is affected by

shocks denoted as ϵt, a N -by-1 vector representing N shocks at time t. We assume

that the shocks are independent from each other — i.e. E[ϵt,n1 ·ϵt,n2 ] = 0 ∀ n1 ̸= n2.

Assume that at each time instance t, each node receives a shock, that then it is trans-

mitted through one of the possible contingent networks, m. The total impact is the

only statistic that can be observed — which is a combination of direct and indirect

effects.

Formally, assume that the impact of shocks propagating through network m is not

observable but the total risk measure, defined as the mixture of impact of different

networks is observed and given by:

Xt = Θz +
M∑
m=1

wmhFm,t

where z denotes observed aggregate shocks (such as inflation, S&P500, WTI, etc).

Θ denotes exposure to aggregate shocks. Fm,t is the impact of idiosyncratic shocks

propagating through network m, and wmt is an indicator random variable. wmt =

1 if network m dominates at time t, and wmt = 0 otherwise. Assume that the

9Future research should study the implications of aggregate contingent networks
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indicator random variable wmh is 1 with probability pm. Note this pm is a fixed prior

distribution in the mixture model that does not depend on h. Let h indicate different

heteroskedastic regimes, that will be needed to solve the identification problem.

In order to control for aggregate shocks, we first do a linear regression of z against

X, and model the residuals as follows

X̄t =
M∑
m=1

wmhFm,t

We define Γm, m ∈ {1, 2, · · · ,M} as the weighted-directed adjacency matrix of

network m. We assume there cannot be self-loops in the network hence all diagonal

entries of Γm are zero. Now the impact of idiosyncratic shocks propagating through

network m satisfies

Fm,t = αm + ΓmFm,t + ϵt. (2.1)

In the above equation, we can see the direct and indirect effects of the shock. The

indirect impact of ϵt is through Γm; which represents the network on how financial in-

stitutions have exposure through the balance sheet of the other financial institutions.

For simplicity of exposition, the rest of this chapter assumes that our data is

demeaned, hence

Fm,t = ΓmFm,t + ϵt. (2.2)

This is a decomposition of any shock to the system as the exogenous part (ϵt) and

the endogenous network part (Γm). In this model, the time subscript is the same on

both sides of the equation, assuming we are at the equilibrium. This is a recursive

assumption that was first posed by Christiano et al. (1999).

Note that rearranging (2.2) we obtain

Fm,t = [I − Γm]
−1 ϵt. (2.3)
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Hence the observable variable can be written as

Xt =
M∑
m=1

wmt [I − Γm]
−1 ϵt, (2.4)

This describes the observed variable (Xt) as a linear mixture of different unobserv-

able networks (Γm) and different shocks (ϵt). The estimation problem is to uncover

the unobserved networks from the moments of the observed variables.

2.2.3 The identification problem

The identification procedure we use in this chapter is related to the identification

through heteroskedasticity developed in Rigobon (2003). The intuition of the iden-

tification can be developed in a two by two endogenous system of equations, see

Appendix 2.6.1. In this section, we focus on the identification of a multi-bank finan-

cial network.

A crucial ingredient is the presence of heteroskedasticity. Therefore, we assume

that there are regimes of economic environments, denoted by h ∈ {1, 2, · · · , H}. Let

Rh be the set of time instances t that belongs to heteroskedastic regime h. Further-

more, define nh = |Rh| as the number of samples in regime h. If time t ∈ Rh, then the

shock at that time instance is distributed ϵt ∼ N (0,Ξh). Let Ξh, a diagonal matrix,

be the variance of shock ϵ in regime h ∈ {1, 2, · · · , H}, be unknown constants.

The model parameters we need to identify are

ψ =

 {Γm}Mm=1

{Ξh}Hh=1

 ,
and the number of parameters for each network m is N(N − 1) + N

∑
hwmh. The

first term comes from the networks. There are N (N − 1) elements in each network

(diagonal are ones). The second term comes from the variance of the structural

shocks. The shock affects N banks for each regime — and there are
∑

hwmh regimes

in which a given network dominates.

34



In this section, we will start by assuming wmh is known. Later, we will show how

it can be estimated. The observed moments (moment constraints) are given by the

variance-covariance matrix of Xi in each regime h. Assume, without loss of generality,

that E[Fm,t] = 0. Then the following constraint must hold for the covariance of Xt

Et∈Rh
XtX

⊤
t −

M∑
m=1

wmh

(
(I − Γm)

−1 Ξh (I − Γm)
−⊤

)
= 0,

where Et∈Rh
XtX

⊤
t denotes the expected value of the matrixXtX

⊤
t given that t belongs

to regime h. Because wmh ∈ {0, 1} and
∑

mwmh = 1, the above constraints can be

written as

Et∈Rh
XtX

⊤
t −

(
(I − Γm)

−1 Ξh (I − Γm)
−⊤

)
= 0,∀wwh = 1. (2.5)

In the above, each matrix Et∈Rh
XtX

⊤
t −

∑M
m=1

(
(I − Γm)

−1 Ξh (I − Γm)
−⊤

)
is a

N -by-N symmetric matrix, therefore each regime h provides N(N+1)
2

moment con-

straints. In total,
∑

hwmh regimes implies N(N+1)
2

∑
hwmh moment constraints.

The condition for an exact or over-identified model is

N(N − 1) +N
∑
h

wmh ≤
N(N + 1)

2

∑
h

wmh (2.6)

which implies that the data must have at least

∑
h

wmh ≥ 2 (2.7)

for just-identification and ∑
h

wmh ≥ 3 (2.8)

for over-identification. i.e., we need each network to dominate in at least 3 regimes

to achieve over-identification. This identification is the order condition: how many

equations are needed for the system to have less unknowns than knowns. In the

single network case, this is simple: the single network will dominate all regimes,
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hence H =
∑

hwmh. In the multiple network case, we need to figure out how many

different mixture of networks (M) present in the data, and which network dominate

which regimes. Those two questions are fundamental questions for the identification

of many mixture models, and we will discuss them in more detail later in Section 2.4

2.2.4 Solution Uniqueness

When there is a single network, parameters in the above model can be estimated via

the Generalized Method of Moments (GMM). We define the score as a vector function

g(Γ,Ξh) =
{
XtX

⊤
t −

(
(I − Γ)−1 Ξh (I − Γ)−⊤

)}
t∈Rh,h=1,···,H

(2.9)

where {·}h=1,···,H denote the H-column vector whose entry are evaluated at h =

1, · · ·H. Estimation is achieved by solving the optimization problem10

min
A,Ξh

Et∈Rh
g(Γ,Ξh)

⊤V −1Et∈Rh
g(Γ,Ξh)

s.t. g(Γ,Ξh) =
{
XtX

⊤
t −

(
(I − Γ)−1 Ξh (I − Γ)−⊤

)}
t∈Rh,h=1,···,H

Ξh are diagonal.

(2.10)

GMM requires that the score function is zero iff the system parameters are correct.

We can prove that this requirement is satisfied when there is only one network, i.e.

M = 1. To prepare for the proof, we define Ξ =
[
diag(Ξ1) diag(Ξ2) · · · diag(ΞH)

]
,

where diag(·) denotes the diagonal entries of the matrix in the form of a column vec-

tor. In addition, define Ωh = Et∈Rh
XtX

⊤
t

Definition 1. Kruskal rank (Stegeman and Sidiropoulos, 2007) Kruskal rank k of

a matrix A is the maximum value of k such that ANY k columns and rows of the

matrix A are linearly independent.

Lemma 1. If (i). M = 1, (ii). I − Γ has full rank and (iii). The Kruskal rank of Ξ

is 2 or higher, then Ωh −
(
(I − Γ)−1 Ξh (I − Γ)−⊤

)
= 0 has a unique solution.

10V is a weighting matrix in the GMM. The GMM is valid as long as V is positive definite, but
an optimal V is propotional to the variance-covariance matrix of the score.
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Note unlike regular matrix rank, which requires it exists K columns or rows that

are linearly independent, the Kruskal rank requires ANY k columns and rows are

linearly independent. In the context of our identification problem, this means that

the variance of shocks need to present enough heteroskedasticity to obtain a unique

solution.

Intuition of the proof:

The identification problem is equivalent to a tensor decomposition problem (for

details of this equivalence, refer to the Appendix). According to the Kruskal’s rank

condition, if

Krank(ar) +Krank(ar) +Krank(ξr) ≥ 2R + 2

where Krank(·) stands for Kruskal rank, then the tensor decomposition problem has

a unique solution. In the above equation, given assumption (ii), we have Krank(ar) =

N . Furthermore, R is the rank of the tensor in (2.28), which equals MN . Inserting

the numbers into the Kruskal’s rank condition and considering assumption (i) and

(iii), we obtain the solution uniqueness.

2.3 Results: Single Network Estimation under En-

dogeneity

Throughout this chapter we use Credit Default Swap (CDS) as a measure of the risk of

bank. Figure 2-2 shows the 100-day moving volatility of the 10 banks of interest. The

first thing to notice is that they exhibit a significant regime shift of heteroskedasticity

over time. Around the time of Nov. 2009, the volatilities of CDS of all 10 banks

are high, while the volatilities are significantly lower in mid-2010. In addition, their

volatility co-move most of the time, despite regime shifts. The fact that they co-move,

allow us to identify a network that is well connected. Apart from similarities in the

overall trend, the CDS volatilities exhibit a certain level of bank-specific movements.

For example, in early-2016, the CDS of Capital One Financial Corporation has very

high volatility that is comparable with that around late 2009. In contrast, the CDS
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Figure 2-2: 100 days moving volatility of the CDS of the 10 banks of interest. CDS
data of 10 largest banks in US are collected from Sep. 1, 2009 to June. 20 2017. The
stock exchange id tickers of the 10 banks are JPM, BAC, WFC, C, GS, MS, COF,
HSBC, AXP, and CSGN.
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of Morgen Stanley is at a relatively low historical level. That kind of bank-specific

characteristic could allow as explore the different risk propagation mechanisms among

different banks.

We control for aggregate shock z by first do an linear regression, and then study

the residuals. The aggregate shocks We study include 9 different macroeconomic vari-

ables that try to capture different aggregate shocks that typically afflict economies:

(1) commodity price shocks (WTI Oil Prices), (2) Inflation (PriceStats daily inflation

index), (3) Economic Activity (Non-farm payroll), (4) Stock Market Prices (S&P), (5)

Risk (VIX), (6) Housing Prices (Case & Shiller index), (7) liquidity provision (short

term interest rates), (8) exchange rates (nominal trade-weighted exchange rate), and

(9) the yield curve (the difference between the long and short interest rates). Alto-

gether, the 9 aggregate shocks account for about 50% of the variances of CDS spread.

2.3.1 Selection of Regimes

As mentioned in previous sections, our model is not uniquely identifiable if the vari-

ance of shock is constant. When the variance of shock is not constant, we can

divide our data into different heteroskedastic regimes. Because the network pa-

rameters are constant over regimes, additional regimes could offer more additional

constraints than additional unknowns. With enough heteroskedastic regimes, our

model can be uniquely identified (Rigobon, 2003). In practice, however, dividing

data into heteroskedastic regimes is not trivial. An effective regime division method

should achieve heteroskedasticity among regimes and maintaining homogeneity within

regimes. There are two broad categories of methods to identify heteroskedastic

regimes: regimes divided by statistical properties of the data itself, and regimes di-

vided by other exogenous variables (in our case, it makes sense to use macroeconomic

factors). An identification process using regimes defined by statistical properties is

named statistical identification, and an identification process using regimes defined

by macroeconomic factors is named macroeconomic identification. In this chapter,

we have already controlled for macroeconomic shocks, so statistical identification is

preferred to give us enough heteroskedasticity among regimes for better identification.
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Statistical identification requires we first split our data into different regimes ac-

cording to statistical properties of the data. Because we want to separate the vari-

ance of shock, it makes sense to look at the quantile level of CDS data volatility. To

maximize the separation of unobserved networks, one could use the quantile level of

volatility of CDS to define regimes. For example, if there are two banks A and B in

the network, one can define four regimes: bank A’s volatility is at top 20% quantile

level while B is not; bank B’s volatility is at top 20% quantile level while A is not;

both banks’ volatility is at top 20% quantile level, and neither banks’ volatility is at

top 20% quantile level. Regimes with insufficient number of samples are not used in

the identification process. It is clear that the overall financial network cannot be the

same in different regimes.

However, regimes divided by a fixed quantile level is usually very unbalanced, i.e.,

the low volatility regimes have far more data points than the high volatility regimes.

From an economic perspective, this is fine because exceptionally high volatility only

occurs during crises. For identification purposes, however, this is not optimal, and

many regimes have so few data points to be used in the identification. Alternatively,

we could use unsupervised learning techniques, such as K-mean and Gaussian Mixture

Model to divide data into groups according to their volatility levels.

Intuitively, a clustering algorithm group data points at different time instances

into subsets, and maximize the similarities of the volatility vector in each subset. Due

to the inherent limitation of most clustering algorithms, the global optimal grouping is

usually very difficult to find, and the algorithm is sometimes trapped at local optimal

solutions. If the dimension of the volatility vector is very high, i.e., we are identifying

the network for a large number of banks, then it is even harder for the algorithm to

find the global optimal solutions. In this case, we can reduce the dimension of the

volatility vector by applying PCA prior to clustering.
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2.3.2 Estimates: Statistical Identification

JPM BAC WFC C GS MS COF HSBC AXP CSGN

JPM -0.0 0.4 -0.06 0.13 -0.02 0.01 -0.03 -0.03 0.02

(0.01) (0.06) (0.02) (0.02) (0.02) (0.02) (0.02) (0.01) (0.02)

BAC 0.77 0.99 0.09 0.01 0.09 0.13 0.08 -0.05 0.02

(0.14) (0.08) (0.04) (0.07) (0.06) (0.06) (0.09) (0.04) (0.05)

WFC 0.43 0.08 0.04 -0.01 0.03 0.16 0.0 0.04 -0.04

(0.04) (0.01) (0.02) (0.01) (0.01) (0.04) (0.02) (0.01) (0.01)

C 0.03 0.2 -0.11 0.12 0.18 0.03 0.04 0.06 -0.01

(0.14) (0.03) (0.14) (0.09) (0.07) (0.06) (0.05) (0.02) (0.04)

GS 0.92 0.06 0.04 0.15 0.39 0.02 0.26 -0.04 -0.15

(0.12) (0.05) (0.1) (0.05) (0.07) (0.05) (0.1) (0.03) (0.06)

MS -0.07 0.13 0.2 0.14 0.94 0.02 -0.08 0.08 0.14

(0.13) (0.04) (0.15) (0.06) (0.07) (0.09) (0.07) (0.03) (0.05)

COF -0.06 -0.08 0.59 0.14 0.09 -0.14 -0.01 0.01 0.14

(0.08) (0.02) (0.08) (0.04) (0.03) (0.03) (0.04) (0.03) (0.03)

HSBC 0.04 0.03 0.06 -0.08 0.21 0.02 0.0 -0.09 0.17

(0.08) (0.02) (0.09) (0.03) (0.03) (0.02) (0.03) (0.02) (0.03)

AXP 0.04 -0.03 0.27 0.46 -0.21 -0.03 0.39 -0.05 -0.02

(0.17) (0.04) (0.14) (0.05) (0.08) (0.06) (0.07) (0.1) (0.05)

CSGN -0.03 -0.12 -0.02 -0.01 -0.09 0.14 0.13 0.83 0.14

(0.16) (0.04) (0.11) (0.05) (0.07) (0.06) (0.08) (0.07) (0.03)

Table 2.1: Estimates of the network structure. Standard deviations (in brackets) are

obtained by bootstrapping (2000 resamples) across regimes. In this case, regimes are

decided by CDS quantile. There are H = 20 regimes.

41



JPM BAC
WFC C GS MS COF

HSB
C

AXP
CSG

N

JPM

BAC

WFC

C

GS

MS

COF

HSBC

AXP

CSGN
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 2-3: Visualization of the single network identified through heteroskedasticity

We now turn to the estimation results for our linear network model. As defined in

Section 2, we estimate the linear shock propagation channel among the top 10 US

banks. In our estimates, we assume that the linear structural parameters that we

estimate is always between -1 and 1. i.e.,

γi,j,m ∈ [−1, 1],∀i, j,m. (2.11)

Mathematically, this constraint will remove any non-unique solutions due to columns

permutations. Economically, this means that the bank which receives a shock directly

is most affected. This approach of removing permutation solutions will be problematic

if a lot of the estimated structural parameters are on the boundary (i.e., the constraint

(2.11) is binding for a lot of parameters). However, at least for the CDS spread dataset

that we study, only 2 parameters are on the boundary in statistical identification.

Table 2.1 shows the estimates of the 10-by-10 network structure using statistical

identification. 11 After controlling for aggregate shocks, Standard deviations (in

brackets) are obtained by bootstrapping (2000 resamples) across regimes. In this
11We do not use Lasso in this small scale estimation problem, because Lasso may introduce bias

that affects our statistical tests in the next section. Furthermore, in our identification using CDS
data, a reasonable amount of Lasso penalty will not change the result much. However, in a larger
scale estimate (e.g., a banking network with 1000+ nodes), Lasso will be very useful in obtaining
sparse networks.
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case, as the name “statistical identification” suggested, regimes are decided by CDS

quantile levels discussed in Section 3.1. The matrix in Table 2.1 can be regarded as

a weighted directed graph. Each column shows where the shock is originated from,

and each row shows where the shock propagates to. For example, the structural

parameter in the 4th column (Citigroup) and the 1st row (JP Morgan) represents

the channel where shock propagates from Citigroup to JP Morgan. In an earlier

example in Section 2.1, we used the correlation between Citigroup to JP Morgan as

an example to show that the correlation between banks can be very volatile. Here

the structural parameter, on the other hand, is reliably estimated with bootstrapping

standard deviation of only 0.02.

The estimated matrix of structural parameters is asymmetric in general. However,

this does not mean any causal relationship between each pair of banks. In our original

model, without (2.11), any column permutation of Γ will give a new solution and

change the direction of edges of the weighted directional graph in Table 2.1. Now

with constraint (2.11), the directions of the edges of the graph are pinned down by

the constraint, but not by any inherent causality in the data.

Figure 2-3 gives a visualization of the same network. The values of structural pa-

rameters are represented by the color and size of the corresponding circles. Positive

structural parameters are displayed in blue and negative structural parameters are

displayed in red. In addition, color intensity and the area of the circles are propor-

tional to the absolute values of the structural parameters. The visualization helps

identify patterns in the risk transmission mechanism. For example, Wells Fargo is

exposed to a number of different shocks, while Bank of America is more resilient to

shocks transmitted from other banks.

2.4 Multiple Contingent Network Estimation

This section first presents a test for the multiple network assumption. In particular,

we propose a testing procedure that compares the consistency of the estimates of

structural variables in a single network case versus a multiple network case. In a
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point-wise test, one can obtain the distribution of differences and carry out the test

without any assumptions on distributions. However, a point-wise test cannot provide

a summary of the results. If we further assume that structural variables follow inde-

pendent but not necessarily identical Gaussian distributions, we can test the sum of

normalized residuals, which follows a Chi-squared distribution.

After the single network hypothesis is rejected by test, this section further presents

a methodology to idenfity multiple networks. In the case of a single network, the so-

lution is established through GMM in the last section. In this section, in the case

of multiple networks, the expectation-maximization (EM) algorithm, which is com-

monly used for estimating mixture models, is adopted. The EM algorithm alternates

between an expectation (E) step, which updates the probability of a network domi-

nating a regime, and a maximization (M) step, which estimate each network through

heteroskedasticity based on the probability updated in the E step. A Wishart distri-

bution is assumed for sample variance-covairance matrices so that the log-likelihood

function used in the EM algorithm is well-defined.

2.4.1 Chi-square Test for Network Contingency and the Re-

jection of the Single Network Hypothesis

In this subsection, we construct an intuitive Chi-square Test that is used to reject

the single network hypothesis. Suppose one observes two sequences of data {Xt}t∈D1

and {Xt}t∈D2 , and estimates structural parameters ΓD1 and ΓD2 . We want to know

whether the two sets of structural parameters are consistent. Let γi,j,1 and γi,j,2

denote the ith row, jth column entry of the network estimated from data set D1 and

D2 respectively.

We begin with a number of assumptions
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Asymptotic Assumptions: (a) The parameter space Ψ of ψ =

 Γ

{Ξh}Hh=1

 is a

compact subset of Rd, and the true value ψ0 lies in the interior of the parameter

space Ψ. (b) The moment function ψ → g(ψ) defined in (2.9) identifies ψ0: g(ψ) = 0

iff ψ = ψ0. (c) The empirical moment function ψ → ĝ(ψ) converges uniformly in

probability to the moment function ψ → g(ψ), namely supψ∈ψ∥ĝ(ψ)−g(ψ)∥→p 0 (d)

The empirical Jacobian Ĝ(ψ) = ∂
∂ψ
ĝ(ψ) is continuous and is uniformly consistent for

the Jacobian matrix, G(ψ) = ∂
∂ψ
g(ψ), i.e., supψ∈ψ∥Ĝ(ψ)−G(ψ)∥→p 0 (e) The matrix

G(ψ0)
⊤G(ψ0) is positive definite. (f) The empirical moment function evaluated at

the true parameter value obeys a central limit theorem:

√
nĝ(ψ0) ∼ N(0,Ω)

asymptotically, where n is the number of samples.

Note those assumptions are inherently the same with the assumptions in the

original GMM paper by Hansen (1982). Note that the key to our single network test

is the solution uniqueness assumption (b) of GMM summarized above. Failing to

establish a result for solution uniqueness will cause incorrect estimates of parameter

distribution. Generally speaking, the bootstrap estimated parameter distribution will

have a larger variance and therefore fails to reject the hypothesis even if the hypothesis

is incorrect. Lemma 1 in this chapter deals with this problem.

Under the null hypothesis that

H0 : γi,j,1 and γi,j,2 are the same

their difference

γi,j,1 − γi,j,2 (2.12)

should follows a distribution with zero mean. If the estimated value of γ̂i,j,1 − γ̂i,j,2

lies in the 0.05 left or right quantiles of the bootstrapping distribution, we can reject
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the null hypothesis and claim that with 90% confidence

H1 : ΓD1 and ΓD2 are different

The above point-wise test has the advantage of distribution-free. However, with-

out a summarizing statistic, one cannot draw conclusions on the overall network.

Suppose further that γi,j,1 − γi,j,2 follows Gaussian distribution N (γi,j, ξ
2
i,j). Under

the null hypothesis that

H0 : ΓD1 and ΓD2 are the same (2.13)

their squared difference (γi,j,1 − γi,j,2)
2 /ξ2i,j follows a Chi-squared difference with de-

gree of freedom 1.

In addition, under the independence assumption, the sum of squared differences

∑
i ̸=j

(γi,j,1 − γi,j,2)
2 /ξ2i,j ∼ K (N(N − 1))

where K denotes a Chi-squared distribution.

If the estimated value of
∑

i ̸=j (γi,j,1 − γi,j,2)
2 /ξ2i,j lies in the 0.1 right quantiles of

the bootstrapping distribution, we can reject the null hypothesis and claim that with

90% confidence

H1 : ΓD1 and ΓD2 are different

Now we are able to compare the network contingency given any two sets of data.

In this subsection, we divide our dataset according to quantile levels of each bank’s

CDS and test the network contingency to those factors. This procedure is analogous

to a sensitivity test of our model.
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Mean diff Mean std Num. rejections Chi-square stat

JPM 0.231852 0.134570 25.0 526.356267

BAC 0.214357 0.124162 24.0 541.589106

WFC 0.231365 0.142895 30.0 429.927184

C 0.240336 0.138054 27.0 517.066271

GS 0.212381 0.128582 25.0 534.629568

MS 0.183259 0.130501 20.0 341.691040

COF 0.169083 0.137471 22.0 327.151715

HSBC 0.175459 0.162129 19.0 261.359446

AXP 0.198182 0.123283 24.0 508.955578

CSGN 0.228512 0.154193 23.0 457.519043

Table 2.2: Network changes driven by risk levels of each bank

Among the 10 tests, network structural changes are all very significant. In all

cases, the p-value is less than 0.01 and the single network hypothesis is rejected.

2.4.2 Estimating mixture models using EM-Algorithm

Although we build the model with a mixture of multiple networks, so far, the identifi-

cation process has mostly been with a single network. In the case of a single network,

the mixture random variable w := {wmh}M ,H
m=1,h=1 is trivial, and the identification is

through the GMM algorithm. Because the last subsection showed that a single net-

work is not sufficient to describe the data, we move towards the model setup of a

multi-network mixture.

Recall the main characteristics of our mixture model as follows: the data Xt in

each regime t ∈ Rh is generated by

Xt =
M∑
m=1

wmh(1− Γm)
−1ϵt (2.14)

where

ϵt ∼ N (0,Ξh)
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Γ := {Γm}Mm=1 and Ξ := {Ξm}Hh=1 are parameters to be identified. In addition, wmh
denote the indicator random variable that equals to 1 if network m dominates in

regime h. Assume wmh =

1 w.p. pm

0 o.w.
. Because only one network dominates in

each regime,
M∑
m=1

pm = 1 (2.15)

Our objectives is to estimate parameters Γ and Ξ by observing Xt.

Similarly to the case of single network identification, we construct

Ωh =
1

nh

∑
t∈Rh

XtX
⊤
t

the maximum likelihood estimator (MLE) of population variance of Xt in each het-

eroskedasticity regimes h. As it will become clear later in this subsection, using Ωh

will allow us to separate the identification of Γ and Ξ. Furthermore, it allows us to

estimate each Γm separately.

The above mixture model is difficult to identify, because wmh is a random variable

which is not observed. In this case, the Expectation-Maximization (EM) Algorithm

can be used to make the problem tractable. Note that Ω := {Ωh}Hh=1 given w is

Wishart distributed, even though Ω itself is not. The EM Algorithm takes this

advantage by iterating between the E step and M step. In the E step, it computes

the discrete distribution of wmh given current parameter estimates, and calculate the

function

Q(Γ,Ξ | Γ(current),Ξ(current)) = Ew|Ω,Γ(current),Ξ(current) [logL(Γ,Ξ;Ω, w)]

where L(Γ,Ξ;Ω, w) is the likelihood function assuming w is observable. In the M

step, it computes the optimal parameters Γ and Ξ to maximize the Q(·) function. It

is a general result of EM that improving Q(·) improves the likelihood function of the

mixture model L(Γ,Ξ;Ω), see Little and Rubin (2019).

A critical step of implementing the EM algorithm is to calculate the likelihood
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function of Ω given w.

Define Vmh := 1
nh
(1 − Γm)

−1Ξh(1 − Γm)
−⊤. Given wmh = 1, i.e. network m

dominates in regime h, we have

Ωh ∼ Wishart(Vmh, nh) (2.16)

The Wishart distributed Ωh has a probability density function (PDF)

fW(Ωh) =
1

2nhN/2 |Vmh|nh/2 L
N

(
nh

2

) |Ωh|(nh−N−1)/2e−(1/2) tr(V −1
mhΩ) (2.17)

where nh is the number of samples in regime h, N is the number of banks in the

network, |·| is the determinant of a matrix, and
L
N(·) is the multivariate Gamma

function with dimension N .

Now we can write the likelihood function L(Γ,Ξ;Ω, w) using the Wishart PDF

L(Γ,Ξ;Ω, w) =
∏
m

∏
h

(
fW(Ωh)

)Iwmh=1

(2.18)

Recall that we can separate the estimation of the network matrices Γ with the

shock variances Ξ in the single network case. Similarly, we can also do that in EM, but

for a different reason: the optimal diagonal Ξh that maximize (2.17) can be obtained

analytically. i.e.,

Lemma 2. Let Ωh be a given N-by-N positive semidefinite matrix. Define Vmh :=

1
nh
(1−Γm)

−1Ξh(1−Γm)
−⊤. Also define PD as the set of positive semidefinite diagonal

matrices. Then

Ξ∗
h : = arg max

Ξh∈PD

1

2nhN/2 |Vmh|nh/2 L
N

(
nh

2

) |Ω|(nh−N−1)/2e−(1/2) tr(V −1
mhΩ)

= diag
(
(1− Γm)Ω(1− Γm)

⊤
) (2.19)

The proof is given in Appendix 2.6.3.

The above Lemma means that we do not have to identify the join of Γ and Ξ. We

can just identify Γ, and the optimal Ξ can be obtained analytically. Now that we have
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separated the identification of the network Γ with Ξ, we focus on a EM-algorithm

that identifies Γ. At this point, we are looking at a mixture model with parameters Γ,

hidden random variables w, and observed random variables Ω. We define the function

Q as follows

Q(Γ | Γ(current)) = Ew|Ω,Γ(current) [logL(Γ; Ω, w)]

=
∑
m

∑
h

Ew|Ω,Γ(current)Iwmh=1 log fW|Ξ∗(Ω)

=
∑
m

∑
h

pmh log fW|Ξ∗(Ω)

(2.20)

where fW|Ξ∗ is the Wishart PDF given optimal Ξ, and pmh := P(wmh = 1|Ωh; Γ) is

the probability that network m dominates in a specific regime h. Inserting (2.19) into

(2.17), we have

fW|Ξ∗(Ω) =
1∣∣∣(1− Γm)−1diag

(
(1− Γm)Ω(1− Γm)⊤

)
(1− Γm)−⊤

∣∣∣(nh/2)
·constant not depend on Γ

Hence

Q(Γ | Γ(current))

=
∑
m

∑
h

p
(current)
mh

(
−nh

2
log

∣∣∣(1− Γm)
−1diag

(
(1− Γm)Ω(1− Γm)

⊤
)
(1− Γm)

−⊤
∣∣∣)

+ constant

(2.21)

where vmh = nh(1− Γm)Ωh(1− Γm)
⊤.

Another step that plays an important role in EM algorithm is the estimate of

pmh and pm. Note that pmh and pm are two different quantities: pmh is the posterior

probability of wmh = 1 for a specific h. On the other hand, pm is the prior distribution
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of wmh, which is the same for all regimes. According to Bayes rule

pmh := P
(
wmh = 1|Ωh; Γ

(current)
)

= P(wmh = 1; Γ(current)) · P(Ωh|wmh = 1; Γ(current)) · constant

= p(current)m · f (current)
V (vmh) · constant

(2.22)

where p(current)m can be estimated by p
(current)
m = 1

H

∑H
h=1 p

(current)
mh , fV is defined in

(2.17) and the normalizing constant is decided by
∑M

m=1 pmh = 112.

EM-Algorithm

Take an initial guess of Γ, then iterate between the following E-step and M-step.

E-step:

Update pmh, the probability that network m dominates in regime h, given current

estimates of Γ, according to (2.22). After that, we use the updated pmh to construct

Q(Γ | Γ(current)) =
∑
m

∑
h

p
(current)
mh

(
nh −N − 1

2
log|vmh|−

nh
2

log|diag(vmh)|
)
+constant

(2.23)

where vmh = nh(1− Γm)Ωh(1− Γm)
⊤.

M-step:

Update estimates of Γ by maximizing Q(Γ | Γ(current)). It is sufficient to update Γm

separately by

max
Γm

∑
h

p
(current)
mh

(
nh −N − 1

2
log|vmh|−

nh
2

log|diag(vmh)|
)

for each m.

2.4.3 The number of networks

To obtain the optimal number of networks, we apply the Bayesian information crite-

rion. The Bayesian information criterion is defined as

BIC = ln(n)k − 2 ln(L).

12This process is similar to the case of Gaussian mixture models, see Chapter 9 of Bishop (2006)
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where n is the number of samples, k is the number of parameters, and L is the

maximum mixture log-likelihood function, see Fraley and Raftery (1998).
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BIC log(n)k-2log(L)

Figure 2-4: Negative log-likelihood and BIC vs. No. of networks

As shown in Figure 2-4, the optimal number of networks selected by Bayesian

information criteria is 3.

The estimated 3 networks are given in Figure 2-5. In the 3 networks, network 3

is the most similar one with the single network estimated in Section 2.3.2 in terms of

Frobenius Norm.

In summary, we find the data can be explained by 3 networks in the financial net-

work among the top 10 banks in the US with our criteria. We reject the hypothesis

of 1 network using an Chi-square Test and then use the Bayesian information criteria

to conclude that 3 networks are optimal. With 4 or more networks, the model com-

plexity penalty term in the BIC would standout and reject the models. We are only

applying our identification method on financial networks though, other applications

of our identification method could give 4 or more networks as the optimal solution.

2.4.4 Network Centrality and Policy Implications

There are many ways to estimate systemic risk in a financial network. As an example,

we use the Katz centrality because it measures the relative degree of influence of a
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Figure 2-5: Estimated 3 networks using EM Algorithm
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bank in the whole financial network, taking into account both the direct and indirect

impact — much like our model assumption in this chapter. The Katz centrality (Katz,

1953; Junker and Schreiber, 2008) of a network with adjacency matrix Γ is defined as

−→
C Katz = ((I − αΓ)−1 − I)

−→
I , (2.24)

where α is a damping factor that satisfies 0 ≤ α < 1/|λmax|.

The Katz centrality is a generalization of the degree centrality. Intuitively, a node

in the graph is more important if it more often receives shocks from other nodes.

Furthermore, the Katz centrality considers both the direct impact from other nodes

as well as the cascade impact many steps away. It assumes that both direct and

indirect impacts affect the importance of a node, given that indirect impacts are

discounted by a factor of α after each step. Apart from original applications in social

networks and biological networks, Katz centrality has also been applied to evaluate

systemic risk in financial networks, see (Thurner and Poledna, 2013; Temizsoy et al.,

2017). In our estimates, because our matrix I − Γ is invertible by itself, there is no

need to add the damping factor, i.e., α = 1 in our application. The Katz centrality

of the top 10 banks in the US in the three estimated networks is shown in Figure 2-5.

JPM BAC WFC C GS MS COF HSBC AXP CSGN

2

4

6

8

10 Network 1/3
Network 2/3
Network 3/3

Figure 2-6: Estimated Katz centrality of the 3 estimated networks.
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Notice the large variation in the relative importance of the centrality in the differ-

ent networks. The networks we have estimated reflect an underlying structure that

we do not observe. In principle, they should have a structural interpretation, but

unfortunately, there is no information to verify this claim. In other words, based on

the identification discussion in previous sections, the structural parameters should be

recovered. That information is not enough to provide a structural interpretation of

the network.13

Given that there are three distinct networks, the immediate question is the ap-

propriate monetary policy response. In principle, during a given economic event, the

central bank and the regulators do not know which network is the one that is re-

sponsible for the transmission of shocks. One way to deal with this uncertainty is to

take a robust optimization approach. A robust optimization approach aims to find

the optimal policy response in the worst-case scenario. Our estimation strategy helps

central banking policymakers design such robust policy responses.

In Figure 2-7 we present the centrality as computed using only one network or

using our robust approach with multiple networks. The blue estimates are those from

using the heteroskedasticity identification but imposing a single network.14. The

red estimates are the maximum centrality measures from Figure 2-6 For example,

without the multi-network assumption, we would have underestimated every financial

institution’s systemic impact. Furthermore, the resulting centrality measures, or any

other systemic risk measures, will not reflect the fact that there are three networks

with potentially different systemic risk rankings. For example, Bank of America’s

centrality rank assuming one network is less than Citibank, but it is more important

than it in the worst case. In the middle of a financial crisis, when central bankers have

13If our method is used in conjunction with macroeconomic shocks — such as inflation, exchange
rate, stock market movements, etc. — then the network can be interpreted as the transmission of
stock market shocks, or the transmission of inflation shocks. Such application requires extending
the current model and data set to be able to incorporate those shocks formally. In this chapter,
we have just controlled for the macroeconomic shocks leaving only the transmission of idiosyncratic
shocks to be at play. More data will be required to deal with macro shocks because it is likely that
more than three networks will be found.

14In order to make a meaningful comparison with the multiple network case, the network is
estimated by maximizing the Wishard likelihood function in Section 2.4.2, instead of using GMM in
Section 2.2.4
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to decide on supporting banks that are systemically important, a robust approach

would be consistent with a macro-prudential approach.

MS GS C BAC CSGN COF WFC HSBC AXP JPM

2

4

6

8

10 Single Network
Largest Centrality across 3 Networks

Figure 2-7: Estimated Katz centrality in the case of assuming only 1 network vs. the

worst case of three networks.

In summary, our method can identify multiple linear financial networks using

outcome data. It offers central bankers an opportunity to examine more granular

details of financial networks, thus making more informed decisions. It is worth noting

that this chapter’s key contribution is an improved method of identifying financial

networks and monitoring systemic risk, not the ability to specify a particular bank

being systemically important. We believe that this approach will help central banks

build a more robust policy-making process.

2.5 Conclusions

Understanding the financial system’s interconnections has been a first-order concern

in developed economies since the 2008 global financial crises. Macroeconomic pru-

dential regulation needs to determine which banks and financial institutions are sys-

temically important to supervise the systemic risks closely. In the network language,

it would mean that such financial institutions have a large centrality. Most of this
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analysis has been done either by concentrating on symmetric responses (computation

based on correlations) or by observing a subset of financial contracts. This approach

has been quite fruitful. In our view, however, both approaches might be incomplete.

The first approach, which estimates networks using correlation information, tends

to obviate the directionality of the effects and lack of structural interpretations. The

second approach, which concentrates on the detailed description of the contingent

contracts across banks, could represent a solution to this problem. However, it is

virtually impossible to observe all possible contracts. Therefore, a market price of

CDS is conceivably a more reliable measure of the actual exposure. This ambivalence

implies that each procedure has a weakness that we have tried to address in this

chapter. Furthermore, as has been shown in the literature, the nature of the trans-

mission mechanisms changes with the shocks hitting the economy – meaning that the

network is contingent on the state of the economy. We argue that the estimation of

an asymmetric and contingent network requires a different identification method. We

develop a methodology based on identification through heteroskedasticity. Apply-

ing this estimation method on CDS data of 10 large banks, we construct a financial

network model and find that the data generating the model is consistent with three

networks.

Our results indicate that the systemically important banks depends on the type

of shock that hits the economy – which is ultimately transmitted through a different

network. Without our contingent financial network model, it is not possible to identify

the importance of each bank in the financial system when a specific type of shock

hits the economy. Indeed, we reject that the data is explained by a single network

– suggesting that a policy designed based on that network would be inappropriate

when a different transmission mechanism governs the dynamics of the system.

From the regulatory point of view, It is crucial to understand the relative rankings

on the financial institutions and how such ranking shifts in the sample when systemic

risk is present. Our data is short, and therefore we are limited in our ability to observe

shocks that have not happened yet. For instance, we have not observed large positive

productivity shocks, or relatively high inflation rates, or even high interest rates.
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Therefore, our conclusions are conditional on the sample we have seen. Within that

sample, though, it is easy to identify much more granular network structures. Finally,

the application of our identification method for contingent networks is not limited to

policymaking. For example, asset management practitioners could use our method to

estimate the contingent network and allocate assets according to the dominant shock

in a period of time. Macroeconomists could use our method to evaluate the impact

of macroeconomic interventions. In general, how to model, estimate and intervene in

shock contingent networks is still an open and important topic for future research.
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2.6 Appendices

2.6.1 A Single Network Endogenous Model

Assume two banks are related according to the following system of equations and

shocks

xt = βyt + ϵt (2.25)

yt = αxt + ηt (2.26)

with reduced form,

xt =
1

1− αβ
(βηt + ϵt)

yt =
1

1− αβ
(ηt + αϵt)

where ηt and ϵt are the structural shocks and α and β are describing the network.

As it is, this model cannot be estimated from the data. Equations (2.25) and

(2.26) describe the behavior of the data entirely with 4 parameters/variables: two

shocks ϵ and η and two parameters α and β. These four constitute the unknowns of

the system. The problem of identification arises because there are three equations in

four unknowns. The observable variables x and y have zero mean and in the data only

three moments can be estimated; all from the variance-covariance matrix. What are

the solutions to the problem? In economics, solutions tend to create circumstances

in which an additional equation is added to the system of equations. For instance,

the exclusion restriction in the instrumental variable approach boils down to assum-

ing that one parameter is zero (the exclusion assumption). Randomized controlled

trials assume that all the variation is due to the treatment — again, this is implicitly

assuming that there is no feedback effect (β = 0). This is a very reasonable assump-

tion when the experiment is properly designed. All these solutions are making a
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parameter assumption (usually that a parameter is equal to zero). The identification

through heteroskedasticity has a slightly different flavor. The easiest way to explain

how identification through heteroskedasticity works is to show the system of equa-

tion. Assume that the parameters are stable and that the data has heteroskedasticity.

For simplicity assume that there are two heteroskedastic regimes. In this case, it is

possible to estimate one variance-covariance matrix in each regime.

Ω1 =

var(xt,1) covar(xt,1, yt,1)

var(yt,1)

 =
1

(1− αβ)2

ξ2ϵ,1 + β2ξ2η,1 αξ2ϵ,1 + βξ2η,1

α2ξ2ϵ,1 + ξ2η,1


Ω2 =

var(xt,2) covar(xt,2, yt,2)

var(yt,2)

 =
1

(1− αβ)2

ξ2ϵ,2 + β2ξ2η,2 αξ2ϵ,2 + βξ2η,2

α2ξ2ϵ,2 + ξ2η,2


There are six unknowns in the system. The two parameters (α and β), and four

variances (ξ2ϵ,1, ξ2ϵ,2, ξ2η,1, and ξ2η,2). As can be seen, there are six equations in six

unknowns. This means that the system of equations is just identified.

Notice that even though in each regime the system is under-identified (fewer equa-

tions than unknowns) the system as a whole is identified. The key assumptions are

two: that the structural shocks are indeed structural (they are uncorrelated) and

that the parameters are stable. In the end, the parameter stability allows the het-

eroskedasticity to add additional equations — which helps solve the identification

problem.

The intuition of the two endogenous variables case is as follows. First, the graphi-

cal representation of the joint residuals in this model always takes the form of a rotated

ellipse. Second, the rotation is summarized by the variance-covariance matrix.

In equations (2.25) and (2.26), the only meaningful moment we can compute to

estimate the degree of contagion is the covariance matrix. An important question is

then, what does the variance-covariance matrix represent? The errors in these models

are distributed as a multinomial and their contours are ellipses. To fix concepts, let

us start with a simple endogenous system of equations (2.25) and (2.26). The 95th

percentile of the errors is distributed as a rotated ellipse. We can solve for two
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independent normal distributions from the structural equations as follows (with some

abuse of notation)

ϕ1 =
xt − βyt

ξϵ
∼ N(0, 1)

ϕ2 =
yt − αxt

ξη
∼ N(0, 1)

Because ϕ1 and ϕ2 are independent with mean zero and variance one, it is possible

to describe the ζ confidence interval as ϕ2
1 + ϕ2

2 = ζ. This is exactly an ellipse.

Substituting

(
xt − βyt

ξϵ

)2

+

(
yt − αxt

ξη

)2

= ζ (2.27)

The two axes of the ellipse cannot be computed in closed-form solution, but they

depend on the slope of the curves (structural parameters) as well as the relative

variances of the shocks. In Figure 2− 8 a graphical representation is shown. Suppose

that the blue curve represents the supply and the red is the demand (when there

are no shocks). Then xt represent quantity and yt represent price. Furthermore,

the points reflect some random realization of structural shocks that leads to a point

far from the depicted schedules. The ellipse represents the 90th percentile. In this

particular case β is assumed to be negative (representing the “demand"), while α is

positive. In Figure 2-8, the variance of the demand shocks is larger than the variance

of the shocks to the supply, hence, the ellipse is closely aligned with the supply curve.

In the limit, if the variance of the demand is infinitely large, the ellipse would coincide

exactly with the supply curve.
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Figure 2-8: Distribution of Errors

The form of the ellipse is also summarized by the variance-covariance matrix

computed in the reduced form. Additionally, most of the methodologies we study are

based on the variance-covariance matrix. Therefore, all the sources of bias can be

tracked to it. Finally, as mentioned previously, in this model the only statistic that

can be computed from the data — that allows us to recover the structural parameters

— is the variance-covariance matrix.
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Figure 2-9: Identification Through Heteroskedasticity

The intuition behind the identification through heteroskedasticity comes from the

rotation of the residual ellipses. When the variances change, for the same parameters,

the ellipses rotate. In Figure 2− 9, we show two cases: One when the shocks to the

demand dominate (red), and one when the shocks to the supply dominate (blue). In

particular, when the shocks to the demand dominate, then the ellipse approximates

the supply curve. In fact, it is identical to the supply curve if the variance of the de-

mand is infinite relative to the supply. Conversely, when the supply shocks are larger,

then the long axis of the ellipse tilts toward the demand curve. It is this rotation of

the ellipses when the relative variances shift that provides the identification.

It is instructive to re-state the underlying assumptions: structural shocks are

uncorrelated (quite uncontroversial) and parameters need to be stable across the

regimes (so, this is a good technique to measure spillovers).
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2.6.2 Equivalent Formulation via Tensor Decomposition

We first show that the identification problem is equivalent to a tensor decomposition

problem.

In previous sections, we identify multiple layers by matching the second moments

Ωh = (1− Γ1)
−1Ξh(1− Γ1)

−⊤

We define a new N -by-M matrix

A = (1− Γ1)
−1

Then we can write the moment matching equation as

Ωh = AΞhA
⊤.

Because the matrix Ξh is diagonal, we can further write

Ωh =
N∑
r=1

−→a rξrh
−→a ⊤

r

where −→a r is the rth column of A and ξrh is the rth diagonal entry of Ξh. Because

vector outer products can be written as tensor products, we can also write

Ωh =
N∑
r=1

(−→a r ⊗−→a r) ξrh

where ⊗ is the tensor product. Now if we stack all the second moments Ωh along a

third dimension, we obtain a N -by-N -by-H tensor [Ωh] and it holds that

[Ωh] =
N∑
r=1

−→a r ⊗−→a r ⊗
−→
ξ r (2.28)

where
−→
ξ r =

[
ξr1 ξr2 · · · ξrH

]⊤
.
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We can obtain estimates of Γ1 by taking the rank-N tensor decomposition of [Ωh].

According to the Kruskal’s rank condition, if

Krank(ar) +Krank(ar) +Krank(ξr) ≥ 2R + 2

then the tensor decomposition problem has a unique solution.

2.6.3 Proof of Lemma 2

Proof. First, constants are irrelevant, so we just have to prove

Ξ∗
h : = arg max

Ξh∈PD

1

|Vmh|nh/2
|Ω|(nh−N−1)/2e−(1/2) tr(V −1

mhΩ)

= diag
(
(1− Γm)Ω(1− Γm)

⊤
) (2.29)

where Vmh := 1
nh
(1− Γm)

−1Ξh(1− Γm)
−⊤.

Then, the trace term in the exponential can be reduced to

tr(V −1
mhΩ) = tr

([ 1

nh
(1− Γm)

−1Ξh(1− Γm)
−⊤

]−1

Ω
)

= tr
(
nh(1− Γm)

⊤Ξ−1
h (1− Γm)Ω

)
= tr

(
nhΞ

−1
h (1− Γm)Ω(1− Γm)

⊤
)

= tr
(
nhΞ

−1
h diag

(
(1− Γm)Ω(1− Γm)

⊤
))

(2.30)

Define D to be the new optimization variable with

D = nhΞ
−1
h diag

(
(1− Γm)Ω(1− Γm)

⊤
))

Note by definition, D is a diagonal matrix. Now we insert

Ξh = nhD
−1diag

(
(1− Γm)Ω(1− Γm)

⊤
))
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and change the optimization variable to D. Now the optimization problem becomes

D∗ = arg max
D∈PD

|Ω|(nh−N−1)/2e−(1/2) tr(D)∣∣∣(1− Γm)−1nhD−1diag
(
(1− Γm)Ω(1− Γm)⊤

))
(1− Γm)−⊤

∣∣∣nh/2

= arg max
D∈PD

|Ω|(nh−N−1)/2e−(1/2) tr(D)(
|(1− Γm)−1|2·nh · |D−1|·|diag((1− Γm)Ω(1− Γm)−⊤)|

))nh/2

(2.31)

Now because Ω is positive definite, |Ω|> 0 and |diag((1 − Γm)Ω(1 − Γm)
−⊤)|> 0.

Eliminating positive terms that does not involve D will not change the optimization

problem. Hence, the problem reduces to

D∗ = arg max
D∈PD

e−(1/2) tr(D)

|D−1|nh/2

and we just have to prove that the optimal D∗ is a diagonal matrix with all entries

equal to nh. Let di be the diagonal entries of D. Note that |D| =
∏

i di and tr(D) =∑
i di. Now the optimization problem becomes

d∗i = argmax
di>0

(
∏
i

di)
nh/2e−

1
2

∑
i di (2.32)

Setting the first derivative to 0, we obtain the solution of the optimization problem

d∗i = nh.

2.6.4 Credit Default Swap Data Details and Data Retrieval

Process

To better assist understanding our results or reproducing our results, we list carefully

the details of data we used in this chapter.

We obtain the par mid spread of the credit default swap of the 10 target banks

through the Thomson Reuters Eikon excel tool.

Step 1: CDS Ticker search
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Bank RIC Primary CDS RIC
JPM JPM5YUSAX=R
BAC BAC5YUSAX=R
WFC WFC5YUSAX=R
C C5YUSAX=R
GS GS5YUSAX=R
MS MS5YUSAX=R
COF COF5YUSAX=R
HSBC.K HSBA5YEUAM=R
AXP AXP5YUSAX=R
CSGN.S CSGN5YEUAM=R

Table 2.3: RIC tickers for primary CDS products of target banks.

Due to the variety of CDS product exist in the market, we first need to decide

which CDS we use. Thomson Reuters has decided a primary CDS for each bank

through the ticker searching service. Input the command

=@TR("JPM;BAC;WFC;C;GS;MS;COF;HSBC.K;AXP;CSGN.S",

"TR.CDSPrimaryCDSRic","CH=Fd RH=IN",B2)

into the Eikon excel tool, then we have the tickers of primary CDS products of

the target companies. The obtained tickers are in Table 2.3.

Most of those produces are 5 years CDS contracts traded in US. For HSBC and

CSGN, they are 5 year CDS contracts traded in Euroupe.

Step 2: Retrieve par mid spread data for CDS

After obtaining those tickers, we request the actual par mid spread of those CDS

products in the target date range. The command for retrieving spread data is

=@TR("JPM5YUSAX=R;BAC5YUSAX=R;WFC5YUSAX=R;C5YUSAX=R;

GS5YUSAX=R;MS5YUSAX=R;COF5YUSAX=R;HSBA5YEUAM=R;AXP5YUSAX=R;

CSGN5YEUAM=R","TR.PARMIDSPREAD","Frq=D SDate=20090901 EDate=20170630

CH=Fd;IN RH=date",B2)
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Chapter 3

Uncertainty and Robustness in

Central Banking

This work was performed in collaboration with Roberto Rigobon and Munther Dahleh.

3.1 Introduction

After the 2008 Global Financial Crisis, Central Banks expanded their monetary policy

tools when the conventional policy tool, namely short-term interest rates, approached

or reached zero. Heavy asset purchase interventions, all under the umbrella of “quan-

titative easing”, and massive signaling efforts on what became known as “forward

guidance”, were some of the examples used by central bankers worldwide. 1

Furthermore, the monetary policy response to the Coronavirus Pandemic in 2020

has led the monetary authorities to replicate some of the actions started a decade

before. Central Bankers in developed nations responded by lowering interest rates to

zero, and continuing with promises of massive asset purchases. Between March and

May of 2020, the FED had already purchased assets worth about 1.5 trillion dollars

— doubling the speed of asset purchasing followed after the 2008 crisis.

Although these policies were crucial in the management of monetary policy in the

1Equivalent operations include, but are not limited to, "Operation Twist" by the Reserve Bank
of India and targeted longer-term refinancing operations (TLTRO) by European Central Bank
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aftermath of the financial crisis, and conceivably they will be useful in the manage-

ment of the pandemic, it is worth asking whether or not the central bank can do a

better job controlling the economy by using many tools simultaneously. Or is their

ability to control the economy enhanced by committing to using one tool at a time

or even no tools at all. At first glance, the immediate reaction to this question seems

obvious: having more tools at the disposal of the Central Bank is always better. How-

ever, that is not the case. There are conditions in which the ability to manage the

economy is improved when the Central Bank is able to commit never to use a given

mechanism. These conditions, surprisingly, are not far-fetched. The conditions for

having a detrimental impact on the economy when there are too many tools are two:

First, the system suffers from uncertainty — not knowing the distribution — rather

than risk 2. Second, the uncertainty changes the market equilibrium3 and therefore it

is incorporated into the system through market expectations. When these conditions

exist, it is possible that in the economy, volatility is smaller when the central bank is

using fewer tools rather than more.

The first condition involves uncertainty with unknown distribution as opposed

to risk with known distribution. Uncertainty with unknown distribution could come

from the fact that economic models are not perfectly calibrated. Generally speak-

ing, policy decisions are made based on a model with some mismatch. For example,

when productivity increases are described as “between 0.5 and 1 percent” or when

the natural rate of unemployment is described as “between 3 and 5 percent” we are

describing a range of possible outcomes rather than its mean and standard deviation.

Furthermore, the discussion in early 2019 about the steady state balance sheet of the

FED is also framed in terms of a range of possible outcome. In general, most macroe-

conomic models tend to assume the distribution is known, but a large literature4 has

studied the changes implied by deviating from the canonical assumptions.
2In this Chapter, we use the term uncertainty to refer to a variable with unknown distribution,

and risk to refer to a random variable with known distribution
3We will define this equilibrium in a game played by the market participants and the central

bank
4See (Hansen and Sargent, 2008) for robust control in general, (Vitale, 2018) for robust Kyle,

(Miao and Rivera, 2016) for robust contract, (Maccheroni et al., 2013) for robust mean-variance
portfolio choice, (Strzalecki, 2011) for the axiomatization of multiplier preferences, and many others.
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The second condition considers the interaction between the central bank and the

market as a Bayesian game with incomplete information. In such a game, the central

bank’s action not only will have a direct effect on the market, but also will have an

indirect effect by signaling and changing the equilibrium of the game. In the language

of central banking, this can be interpreted as changing the optimal target. Any model

uncertainty of the central bank, in this scenario, can be passed on and become an

uncertain target. Therefore, the volatility of the economy increases by the possibility

of using the policy tool. For example, the above signaling effect is already observed

in US forward guidance. Andrade et al. (2019) shows that the forward guidance

has a mixed impact on the economy: First, it could stimulate economic activities

by providing liquidity to the market. Second, it also signals a weak macroeconomic

perspective, thus slowing down consumer spending. Andrade et al. (2019) shows that

both effects are significant.

The Central Bank can affect the market in several ways. In this chapter, we

explore two models to highlight the interaction between bounded uncertainty and

market equilibrium. The first model is about interventions in the form of asset pur-

chases, while the second one is about signaling as the outcome of forward guidance.

The idea of forward guidance is inherent in the development of the New Keynesian

Model. In the book by (Galí, 2015), two cases are discussed in separate sections: the

fully discretionary central banking case, where the central bank’s policy decision has

no impact on the market expectation of inflation, and the fully committed central

banking case, where the market expectation of inflation is computed from the central

bank’s committed interest rate rule. The fully discretionary case has been a relatively

good model in practice because the central bank did not stick to any specific monetary

policy rules, and the interest rate is set on board meetings. However, the discussion

of the fully committed central banking case in the book depicts how commitments,

such as forward guidance, might impact the market. Nevertheless, the actual situation

after forward guidance being introduced is much more complicated. On the one hand,

the central bank’s forward guidance is not legally binding, and a discretionary interest

rate setting is allowed. On the other hand, the central bank has to follow its own
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forward guidance to make it credible. Otherwise, it becomes cheap talk and will not

affect market expectation anymore.

Mixing discretionary rule and committed rule in the New Keynesian model brings

another complication regarding the forward expectation term5. With the discre-

tionary rule in mind, many empirical studies (e.g. (Rudd and Whelan, 2005) and

(Galı and Gertler, 1999)) assumes that the central bank’s policy decision has no im-

pact on the market expectation of inflation. As a result, the forward expectation

Et[πt+1] equals to πt+1+ ϵt+1, where ϵt+1 is a shock that has zero mean and unobserv-

able until time t+1. On the contrary, with committed central banking rule in mind,

the theoretical work by Farmer et al. (2007) derive the forward expectation term from

the interest rate rule and forward-looking propagation. When a discretionary rule and

committed rule appear in the same model, both effects need to be considered.

The ineffectiveness of forward guidance tools has raised many research interests.

Apart from our explanation through model uncertainty and robustness, others com-

bine nominal price rigidities with a model of precautionary savings 6 to explain the

weak power of forward guidance to expand the economy (McKay et al., 2016). In that

paper, agents’ precautionary savings come from an incomplete market assumption.

The incomplete market assumption means agents cannot allocate their assets opti-

mally according to their risk preference; therefore, a precautionary saving appears

to prepare for the uninsured risk, and reduce the effectiveness of forward guidance.

However, the example showing the power of forward guidance tool in the first section

of (McKay et al., 2016) made some unrealistic assumptions. It did not fully reveal the

mechanism of forward guidance: it assumes that the central bank can directly change

the real rate, and show that an expected real rate adjustment in the future can affect

the output gap by a large margin. In practice, the central bank does not have the

tool to affect the real rate directly; it can only affect the nominal interest rate and

then propagate the effect through price stickiness or cash-in-advance constraints. As

a result, the forward guidance tool may be very weak even in a complete market.

5Here we refer to E[π] and E[x] in New Keynesian Phillips Curve (NKPC) and Euler equation.
6This is also used to analyze many other issues. See e.g. (Guerrieri and Lorenzoni, 2017) for

credit crisis, (Oh and Reis, 2012) for transfer spending effect.
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The effect of the expectation channel along has been studied quite intensively in

the literature. For example, Stein and Sunderam (2018) examined the relationship

between interest rate policies and the bond market through the expectation channel.

In this paper, it is assumed, just as we do in this chapter, that the central bank has

private information about its long-run target rate. With this assumption, the central

bank would use the interest rate policy with much more precaution and gradualism

because the expectation channel will magnify the system’s volatility. However, with-

out uncertainty and robustness concerns, the central bank will still prefer always to

use a policy tool whenever it is available.

The intuition of the results is simple. When there is uncertainty instead of risk,

it implies a much more a dampened action than when the distribution is known.

Furthermore, there exist a set of conditions that the optimal policy is inaction —

which in our case it implies committing not to use an instrument.

The rest of this chapter is organized as follows: Section 2 shows the impact

of bounded uncertainty on central bank decision rule. A Kyle model of markets

is adopted to study the behaviour of central banker, market maker and informed

trader. Section 3 illustrates the effect of bounded uncertainty on forward guidance

tools, where a linearized New Keynesian model with asymmetric information is used.

Section 4 discusses several intuitions of the phenomenon presented previously in this

chapter, as well as the relevance of bounded uncertainty modeling in central banking.

3.2 Central Bank Intervention: An Asymmetric

information Perspective

This section considers a market with noise traders and asymmetric information as in

the traditional Kyle model. We extend the model in two directions. First, we add a

central bank as a player in the game. The central bank has more accurate observation

or modeling of the behavior of the noise traders. The central bank’s objective is to

reduce market inefficiency. Hence, the central bank intervenes in the market by
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purchasing assets in order to achieve its policy goals.7 The second extension is the

inclusion of an uncertain trader. The uncertain trader acts as a noise trader except

that their actions cannot be described by a known distribution and forces others to

take a robust optimization approach.

We start the section by analyzing the Kyle model when a central bank intervention

occurs. We call this the nominal model — in the sense that the distributions of all

the shocks are known. Then we introduce the uncertain trader into the mismatched

model, and analyze its impact on the equilibrium and on the robust policy rules of

each agent.

3.2.1 Nominal Model: Kyle model with Central Bank

This section presents the classical Kyle model and its extension when a central bank

is included. This model we identify as the Nominal Model.

Consider a single period security pricing model as follows.

• Nature decides the realization of valuation v. v ∼ N (p0, σ
2
v).

• A noise trader first submit to the exchange an order to buy u shares of a risky

asset with end of period payoff v, where u ∼ N (0, σ2
u)

• An informed trader, knowing the realized value of v, submit an order to buy

x shares of the risky asset. The order size is chosen to maximize the informed

trader’s expected payoff

max
x

E[x(v − p)|v] (3.1)

• A market maker, after observing the total order size x + u, choose a market

price p(x + u) to clear the market. Market makers are fully competitive and

risk neutral, therefore the equilibrium price is given by

p = E[v|x+ u] (3.2)
7The modelling of central bank intervention using a modified Kyle model is not unique; see

Pasquariello et al. (2011) and Pasquariello (2017) for similar constructions.
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In this model, the noise traders are individuals and institutions entering market

purely for liquidity purposes. For example, a index fund must sell its constituent

stocks when its clients cash out their investments. When the economy is hit by a

major aggregate shock, noise traders will execute correlated trades with a macro-

level impact. Furthermore, the informed traders are individuals and institutions with

information advantages over average market participants. Examples of them include

large mutual funds that do extensive research in a particular sector or company.

Finally, market makers are individuals and institutions making both bids and asks and

provide liquidity to the market. Examples of them include large securities companies.

The above model is a signaling game with Perfect Bayesian Equilibrium. The

optimal order for the informed agents, and the market clearing prices are:

x =
σu
σv

(v − p0) (3.3)

p = p0 +
1

2

σv
σu

(u+ x) (3.4)

We define market inefficiency Ψ as follows

Ψ = E[(v − p)2 + λ(v − p)x] (3.5)

The market inefficiency is measured by the sum of price mismatch and informed

trader’s profit. The first part says the end-of-period price should reveal the valuation

of the asset as much as possible. The second part says the price of information should

be as small as possible.
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Insert the equilibrium strategies into the definition, we have

ΨKyle = E[(v − p)2 + λ(v − p)x] = E[(v − p0 −
1

2

σv
σu

(x+ u))2] + λE[(v − p0 −
1

2

σv
σu

(x+ u))
σu
σv

(v − p0)]

= E[(
1

2
(v − p0)−

1

2

σv
σu
u)2] + λE[(

1

2
(v − p0)−

1

2

σv
σu
u)
σu
σv

(v − p0)]

=
1

2
(λ
σu
σv

+ 1)σ2
v

In summary, the market inefficiency in the case of the standard Kyle model is

given by

ΨKyle =
1

2
(λ
σu
σv

+ 1)σ2
v (3.6)

We extend the previous model to introduce a Central Bank. We model the cen-

tral banker as an agent with information about the noise traders (signal h), whose

objective is to reduce the market inefficiency by performing an intervention (order z).

We assume that the central bank observes the noise trader’s submitted order with

some noise

h = u+ ϵ, ϵ ∼ N (0, σg) (3.7)

The government agency submit an order to buy the asset with size z to minimize the

market inefficiency

E[(v − p)2 + λ(v − p)x|h]

The only change to the Kyle Model is on equation 3.2. The set of fully competitive,

risk-neutral market makers, set prices after observing the total order size x + u + z.

The equilibrium price is given by

p = E[v|x+ u+ z] (3.8)

Conceptually, it is optimal for the government agency to do a Bayesian inference
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and reduce the effect of noise trader. The optimal intervention is given by

z = − σ2
u

σ2
u + σ2

g

h

and the joint noisy-central bank orders follow,

u− z = u− σ2
u

σ2
u + σ2

g

h =
σ2
g

σ2
u + σ2

g

u+
σ2
u

σ2
u + σ2

g

ϵ ∼ N (0,
σ2
uσ

2
g

σ2
u + σ2

g

)

Define

σcb =
σuσg√
σ2
u + σ2

g

(3.9)

as the adjusted standard deviation after the central bank intervention. The PBE is

given by

xnom =
σcb
σv

(v − p0) (3.10a)

pnom = p0 +
1

2

σv
σcb

(x+ u+ z) (3.10b)

znom = − σ2
u

σ2
u + σ2

g

h (3.10c)

Here the subscripts "mm" refers to the solutions with model mismatch.

Lemma 3. The set of strategies in (3.10) is a perfect Bayesian equilibrium of the

insider trading problem with government intervention.

See proof in the appendix.

The market inefficiency, measured by the price mismatch and informed trader’s

profit, is given by

Ψnom =
1

2
(λ
σcb
σv

+ 1)σ2
v (3.11)

Notice the differences between equations 3.6 and 3.11. The effect of central bank

intervention is equivalent to having reduced the variance of the noise traders. σcb < σu.

The inefficiency has two parts, one is the profit made by the informed trader, and

the other is the mismatch between market clearing price and the value of assets. For

the first part, reducing the variance of noise trader will reduce the market capacity
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of the informed agents. Hence, reducing their profits. For the second part, the price

mismatch is independent of the noise trader’s variance and, therefore, independent of

the actions taken by the central bank. Consequently, the central bank responds by

attenuating the impact of the noise traders (equation 3.10c). From the equilibrium

point of view, this is equivalent to reducing the volatility of the market. Lastly,

Central Bank intervention is always good in this model.

3.2.2 Model Mismatch and Robustness with an Uncertain

Trader

We extend the Kyle model to include an uncertain trader. The uncertain trader puts

an order δ at the same time as the noise trader. We model the order as belonging to

the interval [−∆,∆] with unknown distribution. After this order is added, the overall

order size becomes u+ x+ δ without a central bank, and u+ x+ z+ δ with a central

bank.

To understand the implications of the uncertainty in the model, we proceed in

steps. First, we introduce the impact of a constant unmodeled δ. Unmodeled implies

that the central bank’s optimal reaction functions and the informed agents do not

consider the existence of δ. That is an extreme simplification but allows us to provide

a simple intuition on how the uncertainty enters the market inefficiency.

The following step is to analyze the optimal robust response of the central bank

and the informed agents. We show that the uncertainty introduces a non-trivial

region of inaction, i.e., it is optimal for an agent to set its action to a constant zero.

That means sometimes the market efficiency is improved by either the central bank

committing not to intervene. Economies operating under those circumstances achieve

lower inefficiencies by not using the policy tools at all.

Robustness Analysis with an Uncertainty Trader

First, we would like to highlight the implications of the uncertain trader assuming

that the informed agent and the central bank do not modify their optimal responses.
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In the model without the central bank, the only change is on the market-clearing

price.

The price is given by

p̃mm = p0 +
1

2

σv
σu

(u+ x+ δ) (3.12)

and the market inefficiency is given by

Ψ̃mm =
1

2
(λ
σu
σv

+ 1)σ2
v +

1

4

σ2
v

σ2
u

δ2 (3.13)

Here the subscripts "mm" refers to the solutions in the nominal model.

Notice how the uncertainty term δ enters differently in the expression of the in-

efficiency (compare with the volatility of the noise traders in (3.6)). Remember we

have assumed that the optimal x has not changed from the Kyle model (equation

3.3), and therefore in the computation of the expectation E[λ(v − p̃mm)x], δ drops

out. The distribution of u, as part of the statistical model, is known to all agents.

But the model uncertainty, δ, is not part of the decision of any of the agents. It is

treated as an unknown constant. Therefore, its covariance with the optimal actions

is zero. Hence, δ only enters the inefficiency through its impact on prices.

In this model, the informed trade does not have a robust decision rule, so it does

not take into account the model uncertainty δ. If it does, the results will differ.

As a matter of fact, uncertainty is different from the risk in terms of preference

as well. In a model with risk, agents optimize payoffs using expectations. With

model uncertainty, agents optimize the worst-case payoff using minimax. We show

the minimax optimization in Section 3.2.2.

The inclusion of the central bank implies a market clearing price is set to

p̃mmcb
= p0 +

1

2

σv
σcb

(u+ x+ z + δ)

and inefficiency of

Ψ̃mmcb
=

1

2
(λ
σcb
σv

+ 1)σ2
v +

1

4

σ2
v

σ2
cb

δ2 (3.14)
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Notice that we can now compare the inefficiency when the central bank exists,

and when the central bank does not exists. This is the comparison between equations

(3.13) and (3.14). As opposed to the classical Kyle model, when a central bank inter-

vention always reduces the degree of inefficiency, this is not the case when uncertainty

exists.

Note that since σu > σcb for a relatively small mismatch (δ close to zero), it is

better for the economy that the central bank exists and intervenes. However, when

the mismatch is large (large values of δ), the economy is better off not having a central

bank. The market inefficiency as a function of the degree of mismatch is shown in

Figure 3-1.

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
1.0

1.2

1.4

1.6

1.8

2.0 Using the tool
Not using the tool

Figure 3-1: Market inefficiency in the Kyle model with model mismatch

What does it mean “not to have a central bank"? It means that a central bank

needs to commits to set z = 0 at all times. The reason is that the existence of a

central bank changes the expectations of the market makers.

As shown in the equations above, the central bank increases the inefficiency when

we have a fixed order δ. That is not a surprise. The central bank’s strategy is opti-
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mized for the nominal model. When the actual model is mismatched with the nominal

model, the strategy is no longer optimal and will cause higher inefficiency compared

to the nominal model. However, the interesting thing is that the model mismatch

deteriorates the inefficiency more significantly when the central bank intervenes com-

pared to when the central bank does not intervene. This phenomenon has several

different aspects. First, because the central bank’s nominal model has a mismatch

with the true model, its decision is not guaranteed to be optimal. Decisions based

on a mismatched model could increase, not reduce the market inefficiency. Second,

with central bank intervention, agents (including the informed trader and the market

maker) expect the market with central bank intervention to be more efficient. When

the model is wrong, however, the market is also more efficiently wrong. As a result,

the market is better without central bank intervention. Third, this example echoes

a series of literature in robust control theory. In many engineering systems, it is

observed that optimizing for efficiency reduces robustness. In our central banking

model, the expectation channel amplifies the downside robustness issue so that the

market is better without central bank intervention.

Robust Strategies for the Central Bank and Other Participants

All prior derivations assumed that informed agents and central banks kept their pol-

icy actions unchanged in the presence of uncertainty. In fact, the uncertainty was

treated as a constant displacing the distribution of the noise traders. In this section,

we explore the implications to the optimal responses of the central bank and the in-

formed agent. We use robust control and assume each agent designs a policy choice

considering the worst possible realization of δ within the existing bounds.

We study the central bank’s robust response, the informed agent’s robust response,

and the market maker’s robust response.

Suppose the central bank is aware of the potential model mismatch and wants to

adopt a robust decision rule. On the other hand, other agents are not aware of the

model mismatch and the fact that the central bank is using a robust decision rule.

Here, choosing a optimal linear decision rule h→ z is equivalent with choosing a
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optimal variance σ for u+ z that solves the following minmax problem

min
σ∈[σcb,σu]

max
δ∈[−∆,∆]

1

2
(λ
σ

σv
+ 1)σ2

v +
1

4

σ2
v

σ2
δ2

Here the central bank faces a tradeoff: market efficiency versus market stability.

Applying a robust control rule can increase market stability, but reduces market

efficiency. This trade off is to be considered when the policy tool is introduced.

The robust decision rule of the central bank applies a minimax preference. This

results in different decision rules compared to the risk term u, which has a known

distribution. An immediate difference is that the robust decision rules with model

uncertainty generates an inaction region, where the central bank prefer to set its

order size to constant zero. As discussed before, when model uncertainty is large, the

market inefficiency is less without central bank intervention. Therefore, the solution

of the above minimax problem is z = 0 if ∆ is larger than a fixed threshold.

Now suppose the central bank and the informed agents are both robust. This

time, other agents are also aware of the model mismatch and the fact that the central

bank uses a robust decision rule. Now a new perfect Bayesian equilibrium has to be

established.

First of all, the max-min problem of the informed trader is given by

max
x

min
δ
E[x(v − p)|v]

While the minimax optimization problem for the informed trader is straightfor-

ward, the robust decision rule of the market maker is less obvious. In the original

model, the market maker sets the price as the expected value of assets given the ob-

served combined order x+u+z. In the robust control setting, it is natural to assume

that it sets the price as a minimax estimator of the conditional expectation of value

as follows:

p = argmin
p

max
δ∈[−∆,∆]

|E[v|x+ u+ z + δ]− p| (3.15)

Due to the symmetric nature of the minimax problem, the solution of the market
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maker’s robust decision rule is given by

p = E[p|x+ u+ z + δ, δ = 0]

i.e., the market maker acts as if the model uncertainty does not exist.

Furthermore, the central bank solves the following optimization problem

min
z

max
δ∈[−∆,∆]

E[(pδ − v)2|h] + λE[(v − pδ)x|h]

Simulation results show that when the informed trader and market makers are

also robust, the optimal decision of the central bank is to use the tools even less.

4 3 2 1 0 1 2 3 4
v

3

2

1

0
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2

3

x

nonrobust
central bank robust
all robust

Figure 3-2: The optimal response of the informed trader in three scenarios: non-

robust, only the central bank being robust, and everyone being robust. The informed

trader observes asset value v and then make a decision on purchase volume x.
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Figure 3-3: The optimal response of the market maker in three scenarios: non-robust,

only the central bank being robust, and everyone being robust. The market maker

observes combined order volume u+x+ z+ δ and then decides market clearing price

p.
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Figure 3-4: The optimal response of the central bank in three scenarios: non-robust,

only the central bank being robust, and everyone being robust. The central bank

takes an observation h of the noise trade u and then decides policy intervention z(h).

As shown in Figure 3-2, when all agents adopt robust decision rules, the informed

trader’s optimal response has an inactive region. The inactive region has the following

intuition: when the known asset value v is not too far away from zero, unmodelled

turbulence (uncertainty term δ) could distort the market so that a trade would lose

money in the worst-case scenario. Since the informed trader is robust against that

uncertainty, it would prefer no to trade and wait for a better trading opportunity

that secures a positive profit. This inactive region of the informed trader, just like

the inactive region of the central bank, is caused by the robust response of model

uncertainty. However, they are not exactly the same. The central bank is always

active when the uncertainty is small, and always inactive when the uncertainty is

large. The informed trader, on the other hand, is always inactive for an infinitesimal

v as long as the uncertainty exists. The difference in the robust decision is due to

the difference in the way that uncertainty term enters their optimization objective

function. The uncertainty term enters the objective function of the central bank
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in the quadratic form, so that direction does not matter; on the other hand, the

uncertainty term enters the objective function of the informed trader in a way that

direction matters.

In summary, the inactive region of the central bank and the informed trader have

different causes: the inactive region of the central bank is caused by the fact that

uncertainty deteriorates the market more when the central bank intervenes, and the

inactive region of the informed trader is caused by the fact that the uncertainty term

enters linearly in the profit of the informed trader.

3.3 Uncertainty and Robustness in forward guid-

ance tools

This section models the forward guidance as a signaling game between the central

bank and market participants. Following the line of Cisternas (2018), we consider

the monetary policy of the central bank a signal to the market. While Cisternas

(2018) considers the problem of long-run commitment of central banks, we consider

the forward guidance commitment as a short-run commitment instead. Our view is

that forward guidance is a signal with dual effect on the economy. First, it encourages

borrowing and expands the economy. Second, it also signals a weak macroeconomic

perspective, thus discourage borrowing. The signal can be modeled in a signaling

game between the central bank (the sender) and the market participants (the re-

ceiver). As a result, the signaling game in forward guidance, just like the signaling

game in asset purchasing tools, makes central banking more efficient but less robust.

A common problem with signaling games is the danger of getting a cheap talk. As

pointed out by the original signaling game paper by Holmström (1999), if the sender’s

action (central bank) and the observation by the receiver are both costless, the signal

becomes cheap-talk, meaning it could not affect the payoffs of the game. To overcome

this issue, Cisternas (2018) assumes quite strongly that the monetary expansion pro-

cess is not observed by the market. In his particular setting, the assumption might

86



seem artificial. In our problem of forward guidance, however, this is not an issue:

First, Central Banks have a preference to use interest rate based tools, so, the fact

that the interest rate is constrained below implies that at least to the Central Bank,

there is a cost of setting the nominal rate too low. In other words, there is a cost of

using a non-standard monetary policy tool. Second, forward guidance is a statement

about the stance of monetary policy in the future, and the Central Bank might have

better information about the equilibrium of the economy than the market. If that

is the case, even when the market observe the Central Bank actions, it can not fully

infer the equilibrium.

3.3.1 The benchmark model without forward guidance

We first consider a benchmark case without forward guidance. In this case, the central

bank chooses an interest rate rule it to minimize the expected square error of inflation

πt under economic shock ut. We assume that ut ∼ N (0, σ2
u) is observed by the central

bank. The central bank solves the following optimization problem

min
it(·),gt(·)

E[π2
t ]

subject to πt = B(it − rnt ) + ut

it ≥ i

(3.16)

where rnt ∈ N (0, σ2
r) is also observed by the central bank. Here i is the lower bound

on feasible interest rate. In practice, this lower bound is 0 as many central banks

consider negative interest rates unfeasible. This is a common setting where central

banking and the zero bound on interest rates has been studied.8

The goal of this section is to study how robustness affects the usefulness of forward

guidance. In order to study such case, we need to simplify the model even further.

In order to obtain a linear solution, we replace the constraint it ≥ i with a multiplier

penalty λ(it − rnt )
2 in the cost function. This assumption is important to be able

to simplify the learning model under robustness. Now the central bank solves the

8See CITATIONS

87



optimization problem
min
it(·)

E[π2
t + λ(it − rnt )

2]

subject to πt = B(it − rnt ) + ut

(3.17)

The solution of the problem is a linear interest rule

it = aut + rnt (3.18)

where

a = − B

B2 + λ
.

. Furthermore, the expected optimal cost is given by

λσ2
u

B2 + λ
.

We denote (3.17) as the nominal model. As we did in Section 3.2, we study the

case when there is a model mismatch, and derive the central bank robust decision.

Assume there is a model mismatch, given by δ ∈ [−∆,∆], on the real interest rate.

Now the real interest rate follows a Gaussian distribution rnt ∼ N (δ, σ2
r) instead. The

central bank solves a minimax problem as follows to obtain its robust decision rule

min
it(·)

max
δ∈[−∆,∆]

E[π2
t + λ(it − rnt )

2]

subject to πt = B(it − rnt ) + ut

(3.19)

In our baseline model, because the central bank can directly observe the realiza-

tions of the natural real interest rate rnt , the model mismatch does not change the

optimization problem it faces. i.e., the optimization problem (3.19) is the same with

(3.17). Later on, when we introduce the forward guidance tool in the next subsection,

this is no longer true as a mismatched model will impede the formation of market

expectations.
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3.3.2 The model of forward guidance

We consider a forward guidance model with asymmetric information as follows:

• Suppose ut ∼ N (0, σ2
u) (iid) and rnt ∼ N (0, σ2

r). The distribution is known to

every agent in the game.

• At the beginning of the game, nature chooses the realization of ut, ut+1 and rnt .

• The central bank, upon observing the realization of ut, ut+1 and rnt , chooses the

current period interest rate it as well as the next period forward guidance ft to

minimize the cost function.

• The market participants, upon observing it and ft, compute rational expecta-

tions Emt [·]. Here the expectation Emt [·] is taken over the information set of the

market (superscript m) at time t (subscript t).

• The cost of central bank at time t is given as E[π2
t ], with the following constraints

πt = βEmt [πt+1] + κxt + ut

xt = −1

θ
(it − Emt [πt+1]− rnt ) + Emt [xt+1]

it ≥ i

(3.20)

where it is the nominal interest rate in the current period, gt is the forward guidance

of the nominal interest rate for the period t+ 1, β is the discount rate, πt is inflation

rate, xt is output gap, ut is an inflation shock, rnt is the exogenous natural interest

rate, and i is the lower bound for nominal interest rate.

Because the inequality constraint on it makes Bayesian inference impractical, in

this section, we assume that a quadratic cost (it− rnt )
2 is used to prevent the central

bank from setting the actual nominal interest rate too low in an expending monetary

policy regime.

In our model the objective cost function of the central bank is Ect [π2
t +λ(it−rnt )2].

The first part is a simplified current period inflation target only cost function, and the
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second part represent the quadratic cost function to prevent the central bank from

setting the actual nominal interest rate too high or low. The central bank’s overall

optimization problem is given by

min
it,ft

Ect [π2
t + λ(it − rnt )

2]

πt = βEmt [πt+1] + κxt + ut

xt = −1

θ
(it − Emt [πt+1]− rnt ) + Emt [xt+1]

(3.21)

Because the objective function and constraints are both forward looking, all infor-

mation until and include time t−1 are not relevant. At time t, central bank observes

ut, ut+1 and rt, hence Ect [·] := E[·|ut, ut+1, rt]. Similarly, at time t, market participants

observes it and ft, hence Emt [·] := E[·|it, ft].

3.3.3 The reduced form system equations

Consider the set of New Keynesian models as followsxt
πt

 =

1 1
θ

κ β + κ
θ

Emt

xt+1

πt+1

+

−1
θ

−κ
θ

 (it − rnt ) +

0
1

ut (3.22)

Define AO =

1 1
θ

κ β + κ
θ

 and BO =

−1
θ

−κ
θ

. Iterating the system equations, we

obtain

xt
πt

 =BO(it − rnt ) +
∞∑
τ=1

AτOBOEmt (it+τ − rnt+τ )

+

0
1

ut + ∞∑
τ=1

AτO

0
1

Emt [ut+τ ]

(3.23)

Here we need a technical assumption that as τ → ∞, both Emt [ut+τ ] and Emt [it+τ−

rnt+τ ] go to zero faster than the largest eigenvalue of AS. This is a transversality
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condition.

Given those assumptions, ∀τ ≥ 2, Emt [it+τ − rnt+τ ] = 0, and ∀τ ≥ 2, Emt [ut+τ ] = 0.

Therefore, the system equations reduce to

xt
πt

 = BO(it − rnt ) + AOBOEmt (it+1 − rnt+1) +

0
1

ut + AO

0
1

Emt [ut+1] (3.24)

Because the above equations represent a static system, and the output gap xt does

not appear in the objective function of the central bank, we only need to concentrate

on the inflation part. The equation regarding π can be simplified (see Appendix

3.6.2), hence the optimization problem of the central bank is

min
it(·),gt(·)

E[π2
t + λ(it − rnt )

2]

subject to πt = ASBSEmt (it+1 − rnt+1) + (AS − 1)Emt [ut+1]

+BS(it − rnt ) + ut

(3.25)

where AS = 1 + β + κ/θ and BS = −κ/θ

3.3.4 Equilibrium

For simplicity, we consider only linear decision rules in the form of

it = a1ut + a2ut+1 + rnt

ft = b1ut + b2ut+1 + Et[rnt+1]
(3.26)

We propose a linear solution as above because the optimization objective function

is quadratic and the signaling game involves Bayesian inference of Gaussian random

variables.

Proposition 1. Consider a forward guidance game where i.i.d. shocks ut ∼ N (0, σ2
u)

and rnt ∼ N (0, σ2
r) hit a system at each time instance t. At time t, the central bank

observes ut, ut+1 and rt, and chooses it and ft according to the linear rules (3.26) to
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solve optimization problem (3.25). On the other hand, market participants knows the

distributions of ut, ut+1 and rt, knows the linear rules (3.26), and observes realizations

of it and ft. Market participants form expectations by calculating Emt [·] := E[·|it, ft].

Then, it exist at least one set of parameters {a1, a2, b1, b2} such that market par-

ticipants form conditional expectations and central bank minimizes loss.

Here are some insights about the solutions

• At the optimal solution, a2=0. Because the role of ut+1 is to reveal the private

information of central bank to market participants, and to make the forward

guidance credible. Therefore, it only needs to appear in the second term.

• if (a1, b1, b2) is a tuple of solutions, then (a1, αb1, αb2), ∀α ∈ R is also a solution.

Because it is the portion of information revealed that changes the cost. Any

constant multiplied on it can be reversed by market participants.

Proof. Let

M =
[ a1 0 σr

σu

1 b2 0

]

It holds that it
ft

 =

a1 0 1

1 b2 0



ut

ut+1

rnt

 =M


ut

ut+1

σu
σr
rnt

 (3.27)

In the above equation, we rescale rnt by σu
σr

so that all three random variables in[
ut ut+1

σu
σr
rnt

]⊤
have the same variance. Upon observing this period it and gt, the

next period market expected nominal interest rate minus real natural interest rate is

given by
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Emt [it+1 − rnt+1] =
[
0 a1 0

]
M⊤(MM⊤)−1

it
ft



=
[
0 a1 0

]
M⊤(MM⊤)−1M


ut

ut+1

σu
σr
rnt


(3.28)

We plug in the result of the inference problem of market participants. Now the

central bank solves the following optimization problem

min
a1,b2

E[π2
t + λ(it − rnt )

2]

subject to πt = E +B(it − rnt ) + ut

(3.29)

where

E =
[
0 ABa1 + (A− 1) 0

]
M⊤(MM⊤)−1M


ut

ut+1

σu
σr
rnt


and

it = a1ut + rnt

The central bank’s optimization problem reduces to

(3.30)

min
a1,b2

1

a21b
2
2σ

2
u + (b22 + 1)σ2

r

[
σ2
rσ

2
u

(
a21

(
b22
((
A2
S + 1

)
B2
S + λ

)
+ 2b2ASB

2
S

+B2
S + λ

)
+ 2a1BS

(
b22
(
A2
S − AS + 1

)
+ b2 (2AS − 1) + 1

)
+ b22

(
A2
S − 2AS +2

)
+2b2 (AS − 1)+ 1

)
+ a21b

2
2σ

4
u

(
a21

((
A2
S +1

)
B2
S +λ

)
+ 2a1

(
A2
S − AS + 1

)
BS + A2

S − 2AS + 2
)]

which can be numerically solved.

In the following simulations, we use a default parameter setting of σu = 1, σr=1,

λ = 0.1, κ = 0.25, θ = 0.5 and β = 0.8.

First, we vary the value of λ.
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Figure 3-5: The optimal response of the central bank with different values of λ

As shown in Figure 3-5, as it becomes more and more costly to use interest

rate policy (i.e., λ increases), the optimal policy for the central bank is to use more

forward guidance. Using forward guidance would achieve similar effects with setting

the interest rate in terms of inflation targetting. However, those two tools come with

different limitations: the interest rate cannot be set too far away from the neutral rate

(controlled by λ in our model), and the forward guidance only has limited power (see

e.g., Del Negro et al. (2012)) because of the way the market expectation is formed.

As we will show later, the expectation channel in the forward guidance becomes more

problematic with the presence of model uncertainty.

Another factor that affects the optimal policy is the ratio between σu, the volatility

of the shocks to the Phillips Curve, and σr, the volatility of the real interest rates.

Note if we scale the volatility of the two types of shock together, the optimal policies

it and ft will not change. Define γ as

γ = log
σr
σu

(3.31)

and vary the value of γ.
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Figure 3-6: The optimal response of the central bank with different values of γ

The ratio γ has two aspects in our model. First, it is the relative scale of shocks

to the economy, and second, it is also the signal-to-noise ratio (SNR) in the forward

guidance signaling game. As shown in Figure 3-6, when γ is large, both tools are

used with increasing intensity as γ increases, reflecting the first perspective. When γ

is small, the forward guidance is more effective and the interest rate tool is used less

as γ increases, reflecting the second perspective.

3.3.5 Model uncertainty and Robust Monetary Policy

The New Keynesian model we use in this chapter is linearized around the natural

real rate rnt . However, the natural real rate cannot be directly observed. Models are

derived to estimate its values (e.g., the Laubach and Williams (2003) Model), hence

model uncertainty on the natural real rate and its potential impact is essential to

investigate.

Suppose that the central bank’s model on natural interest rate rnt is uncertain.

More specifically, assume there is a model mismatch, given by δ ∈ [−∆,∆], on the real

interest rate. Now the real interest rate follows a Gaussian distribution rnt ∼ N (δ, σ2
r)

instead. The central bank solves a minimax problem as follows to obtain its robust
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decision rule

min
it(·),gt(·)

max
δ∈[−∆,∆]

E[π2
t + λ(it − rnt )

2]

subject to πt = ASBSEmt (it+1 − rnt+1) + (AS − 1)Emt [ut+1]

+BS(it − rnt ) + ut

(3.32)

Figure 3-7 shows the optimal cost of the central bank with different levels of model

uncertainty under three circumstances: no forward guidance tool, using forward guid-

ance tool with the nominal model, and using forward guidance with robust decision

rules. It is evident that when model uncertainty is large, the robust optimal cost is

close to the one of not using forward guidance tool.

-4 -2 2 4
Δ

0.28

0.30

0.32

0.34

Optimal Expected Loss

Non-Robust

No Forward Guidance

Robust Policy

Figure 3-7: The optimal value of cost function when the model of rt is mismatched

3.3.6 Discussion about the Forward Guidance Model

In this section, we present a forward guidance model with model uncertainty. In

conclusion, when model uncertainty is small, forward guidance, as an additional pol-

icy tool, always helps in stabilizing the economy. On the other hand, when model

uncertainty is large, the economy is more stable without the forward guidance tool.

This result reassembles many similar aspects with the asset purchasing model in the

previous section.

However, this model also shows some unique features. First, the central bank
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faces a constraint that it cannot set the interest rate to negative as we mentioned in

the introduction. This constraint means there is a cost for the central bank to set

interest arbitrarily low. In fact, additional policy tools is only beneficial if different

monetary policy tools has different costs to the central bank. Second, the central

bank has better data in terms of inter-bank transactions than the market, therefore,

has a better model of the economy than market participants. We assume that this is

reflected in the natural interest rate of rnt . As a result, even though the market can

observe precisely the central bank’s action, i.e., the nominal fed fund interest rate it,

it cannot infer the optimal it − rnt directly, because it is the difference it − rnt , not it
that carries the information.

3.4 When is the bounded uncertainty important?

In our previous analysis of central banking models, we provided two examples where

using fewer policy tools is better than using more policy tools in the presence of

model uncertainty. However, that is not saying that the bounded uncertainty term

always has that effect. In the two central banking models that we show, the bounded

uncertainty term both go through an expectation channel. More specifically, in the

asset pricing model, market makers take the expectation of asset value conditional

on total market size, and the total market size includes a bounded uncertainty term.

In the forward guidance model, market participants take the expectation of future

inflation conditional on the forward guidance, and the forward guidance includes a

bounded uncertainty term. In summary, bounded uncertainty in the model deserves

scrutiny when it goes through an expectation channel.

Furthermore, the type of analysis in this chapter is most useful when a quantity of

interest is best characterized by a falling in a range instead of following a distribution.

For example, according to Humphrey—Hawkins Full Employment Act of the US,

the Federal Reserve Board of Governors must submit a Monetary Policy Report to

Congress twice a year outlining its monetary policy. Historical Humphrey—Hawkins

testimonies and detailed Monetary Policy Report as early as July 1996 are available
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Economic Projections for  1996 and 1997

Federal Reserve Governors
and Reserve Bank Presidents Administration

Range
Central
Tendency

1996

Percent change,
fourth quarter to fourth quarter1

Nominal GDP 43⁄4 to 53⁄4 5 to 51⁄2 5.0
Real GDP 21⁄2 to 3 21⁄2 to 23⁄4 2.6
Consumer price index 2 3 to 31⁄4 3 to 31⁄4 3.2

Average level in the
fourth quarter, percent

Civilian unemployment rate 51⁄4 to 53⁄4 About 51⁄2 5.6

1997

Percent change,
fourth quarter to fourth quarter1

Nominal GDP 4 to 51⁄2 41⁄4 to 5 5.1
Real GDP 11⁄2 to 21⁄2 13⁄4 to 21⁄4 2.3
Consumer price index 2 21⁄2 to 31⁄4 23⁄4 to 3 2.8

Average level in the
fourth quarter, percent

Civilian unemployment rate 51⁄2 to 6 51⁄2 to 53⁄4 5.7

Table 3.1: Economic Projections for 1996 and 1997, taken from the Monetary Policy
Report of July 1996.

Economic projections of Federal Reserve Board members and Federal Reserve Bank presidents, under their 
individual assumptions of projected appropriate monetary policy, December 2020
Percent

Variable
Median Central tendency Range

2020 2021 2022 2023 Longer 
run 2020 2021 2022 2023 Longer 

run 2020 2021 2022 2023 Longer 
run

Change in real GDP . . . . -2.4  4.2  3.2  2.4  1.8 -2.5–-2.2 3.7–5.0 3.0–3.5 2.2–2.7 1.7–2.0 -3.3–-1.0 0.5–5.5 2.5–4.0 2.0–3.5 1.6–2.2
September projection -3.7  4.0  3.0  2.5  1.9 -4.0–-3.0 3.6–4.7 2.5–3.3 2.4–3.0 1.7–2.0 -5.5–1.0 0.0–5.5 2.0–4.5 2.0–4.0 1.6–2.2

Unemployment rate . . . .  6.7  5.0  4.2  3.7  4.1 6.7–6.8 4.7–5.4 3.8–4.6 3.5–4.3 3.9–4.3 6.6–6.9 4.0–6.8 3.5–5.8 3.3–5.0 3.5–4.5
September projection  7.6  5.5  4.6  4.0  4.1 7.0–8.0 5.0–6.2 4.0–5.0 3.5–4.4 3.9–4.3 6.5–8.0 4.0–8.0 3.5–7.5 3.5–6.0 3.5–4.7

PCE inflation . . . . . . . . . .  1.2  1.8  1.9  2.0  2.0 1.2 1.7–1.9 1.8–2.0 1.9–2.1 2.0 1.1–1.4 1.2–2.3 1.5–2.2 1.7–2.2 2.0
September projection  1.2  1.7  1.8  2.0  2.0 1.1–1.3 1.6–1.9 1.7–1.9 1.9–2.0 2.0 1.0–1.5 1.3–2.4 1.5–2.2 1.7–2.1 2.0

Core PCE inflation4 . . . .  1.4  1.8  1.9  2.0 1.4 1.7–1.8 1.8–2.0 1.9–2.1 1.3–1.5 1.5–2.3 1.6–2.2 1.7–2.2
September projection  1.5  1.7  1.8  2.0 1.3–1.5 1.6–1.8 1.7–1.9 1.9–2.0 1.2–1.6 1.5–2.4 1.6–2.2 1.7–2.1

Memo: Projected 
appropriate policy path
Federal funds rate  . . . . .  0.1  0.1  0.1  0.1  2.5 0.1 0.1 0.1 0.1–0.4 2.3–2.5 0.1 0.1 0.1–0.4 0.1–1.1 2.0–3.0

September projection  0.1  0.1  0.1  0.1  2.5 0.1 0.1 0.1 0.1–0.4 2.3–2.5 0.1 0.1 0.1–0.6 0.1–1.4 2.0–3.0

Table 3.2: Economic projections of Federal Reserve Board members and Federal
Reserve Bank presidents, under their individual assumptions of projected appropriate
monetary policy, December 2020, reported in the Monetary Policy Report of February
2021.
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at Board of Governors of the Federal Reserve System (2021). In each Monetary

Policy Reports, projections to key economic factors such as Change in real GDP,

Unemployment rate, PCE inflation, and Core PCE inflation are given in ranges. See

Table 3.1 for the reported ranges in the Monetary Policy Report of July 1996, and

Table 3.2 for the reported ranges in the Monetary Policy Report of February 2021.

Another example of such uncertainty is model uncertainty. Chen et al. (2019) points

out that all economic model have a potential model mismatch, and discusses the

impact of such mismatch and possible measures of such mismatch9.

3.5 Conclusions

In response to the 2008 Global Financial Crisis, Central Banks worldwide embarked

on an extensive easing of monetary policy. They greatly expanded their monetary

policy tool arsenal due to the zero limit of interest rate. Furthermore, in response to

the COVID 19 Global Pandemic, monetary authorities further expanded their mon-

etary policy tools. All of these actions rely on the assumption that more policy tools

are always better. This chapter seeks to examine whether this assumption holds true

where this is bounded uncertainty as oppose to risk. Unlike risk, which has a distri-

bution, bounded uncertainty we study in this chapter does not have a distribution,

and a robust decision rule has to apply. We find that when bounded uncertainty

is passed through a conditional expectation channel, sometimes it is optimal for a

central bank to not using a policy tool. In this chapter, two monetary policy models

for asset purchasing and forward guidance are examed in detail.

The first model, the asset purchasing model, is derived from the Kyle model,

and bounded uncertainty is added to its expectation channel. The central bank and

market participants react to the bounded uncertainty by applying robust decision

rules. Under robust decision rules, sometimes it is optimal for the central bank to

not using its policy tool. The second model, the forward guidance model, is derived

9For example, in the Section II of that paper, model mismatch is modeled as bounded uncertainty
in the form of b(t/n), such that supu∈[0,1]|b(u)|≤ 1
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from the linearized New Keynesian model, and bounded uncertainty is added to the

natural real interest rate and passed through its expectation channel. In reality, just

like our modeling, the natural real interest rate is generally estimated to fall within a

range without a known distribution. Under robust decision rules, when the range of

uncertainty grows, it is optimal for the central bank to use less and less the forward

guidance tool.

Our results indicate that when bounded uncertainty interacts with conditional

expectation, it is optimal for the central bank to use less to no additional tools. This

result raises the potential problem of expanding monetary policy tools in an environ-

ment with uncertainty, and points out that robust and macro-prudential policymaking

sometimes contradicts more policy tools.

Finally, our finding should also apply to other applications where bounded uncer-

tainty and robust decision rule are concerned. An example of those includes optimal

currency areas, where the optimal movement of capital and labor can fall in a range of

continuum multi-equilibria without any distribution. In this application, uncertainty

might imply that it is optimal to eliminate a currency. We seek to investigate the

interplay of bounded uncertainty and expectation channel in those applications in the

future.

3.6 Appendices

3.6.1 Proof of Lemma 3

IC condition for the government

We first check the IC condition for the government. We evaluate each term sepa-

rately. The second term provides no incentives as

E[(v − p)x|h; z] = E[(
1

2
(v − p0)−

1

2

σv
σcb

(u+ z))
σcb
σv

(v − p0)]

=
1

2

σcb
σv
σ2
v
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For the first term

E[(p− v)2|h; z] = E[(p0 +
1

2

σv
σuσg√
σ2
u+σ

2
g

(x+ u+ z)− v)2|h]

= E[(p0 +
1

2

σv
σuσg√
σ2
u+σ

2
g

(

σuσg√
σ2
u+σ

2
g

σv
(v − p0) + u+ z)− v)2|h]

=
1

4
E[(p0 − v)2] +

1

4

σ2
v

σ2
cb

E[u2|h] + 1

4

σ2
v

σ2
cb

z2

+
1

2
E[p0 − v]

σv
σcb

E[u|h] + 1

2
E[p0 − v]

σv
σcb

z +
1

2

σ2
v

σ2
cb

zE[u|h]

=
1

4
σ2
v +

1

4

σ2
v

σ2
cb

E[u2|h] + 1

4

σ2
v

σ2
cb

z2 +
1

2

σ2
v

σ2
cb

zE[u|h]

Note that

E[u|h] = σ2
cb

σ2
g

h

The optimal strategy for the central bank satisfies the first order condition

1

2

σ2
v

σ2
cb

z +
1

2

σ2
v

σ2
cb

σ2
cb

σ2
g

h = 0

Hence the optimal strategy is given by

z = −σ
2
cb

σ2
g

h

IC condition for the market maker

Now we check the IC condition for market maker. Because the set of market

makers are fully competitive, we have

p = E[v|x+ u+ z]

= E[
σv
σcb

x+ p0|x+ u+ z]
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Note that

u+ z = u− σ2
u

σ2
u + σ2

g

h =
σ2
g

σ2
u + σ2

g

u+
σ2
u

σ2
u + σ2

g

ϵ ∼ N (0, σ2
cb)

and

x =

σuσg√
σ2
u+σ

2
g

σv
(v − p0) ∼ N (0, σ2

cb)

Hence

E[x|x+ u+ z] = σ2
cb/(σ

2
cb + σ2

cb)(x+ u+ z) =
1

2
(x+ u+ z)

and

p = E[
σv
σcb

x+ p0|x+ u+ z] =
1

2

σv
σcb

(x+ u+ z) + p0

IC condition for the informed trader

The informed trader maximize its total payoff

max
x

E[x(v − p)|x]

The total payoff

E[x(v − p)|x] = E[x(v − p0 −
1

2

σv
σcb

(x+ u+ z))|x]

= −1

2

σv
σcb

x2 + x(v − 1

2

σv
σcb

E[u+ z]− p0)

The first order condition is given by

− σv
σcb

x+ (v − 1

2

σv
σcb

E[u+ z]− p0) = 0

Hence the optimal strategy for the informed agent is given by

x =
σcb
σv

(v − p0)
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This ends the proof.

3.6.2 Simplifying Equation (3.24)

Inserting the definitions of AO and BO into equation (3.24) we obtain

xt
πt

 =

− 1
σ

−κ
σ

 (it−rnt )+

1 1
σ

κ β + κ
σ

− 1
σ

−κ
σ

Emt (it+1−rnt+1)+

0
1

ut+
1 1

σ

κ β + κ
σ

0
1

Emt [ut+1]

Evaluating the coefficients of all the terms in the equation regarding π, we obtain

π = −κ
σ
(it − rnt )−

κ

σ

(
1 + β +

κ

σ

)
Emt (it+1 − rnt+1) + ut +

(
β +

κ

σ

)
Emt [ut+1]

To simplify the expression, we define AS = 1+ β + κ/σ and BS = −κ/σ, and the

equation regarding π can be written as

πt = ASBSEmt (it+1 − rnt+1) + (AS − 1)Emt [ut+1] +BS(it − rnt ) + ut
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Chapter 4

From Just in Time, to Just in

Case, to Just in Worst-Case

This work was performed in collaboration with Daniel Rigobon and Roberto Rigobon.

4.1 Introduction

"Just-in-Time" (JIT) manufacturing was introduced in Japan during the late 1940s

and early 1950s by Toyota, with the purpose of reducing inventories, reducing setup

times, and saving costs in other aspects of the supply chain. The reasons why it

started in Japan are not completely clear. Some have argued that it was a combination

of limited natural resources, a lack of physical space to hold the inventories, and

financial constraints that the Japanese industry faced at the end of the war.1 The

cost reduction and efficiency gains of JIT became well known worldwide. Indeed,

it became the standard of excellence in a short period of time and was adopted by

many corporations. In fact, the globalization of the manufacturing of goods and

services that started in the 1980s was, for the most part, inspired by JIT premises.

Interestingly, even from the very beginning, Toyota suggested that the main risk of

1See the Toyota Production System, where one of the two pillars for production is just-in-time:
a type of production where "only the necessary products, at the necessary time, in the necessary
quantity are manufactured, and in addition, the stock on hand is held to a minimum." Also see
Plenert (2007).
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this strategy was its excessive reliance on suppliers — which could be less resilient and

flexible than Toyota itself. Hence, a successful JIT implementation required a large

emphasis on supplier development. Toyota argued that the JIT’s biggest weakness

was this vulnerability.

In response to those risks and seeking resilience, companies have explored other al-

ternatives. These strategies, dubbed "Just-in-Case", usually recommend actions such

as larger inventories, diversification of the production network, and harmonization

of parts. In the end, the advice is simple: to develop flexibility and redundancy in

the supply chain. Regardless of all these efforts, the world’s supply chains proved

to be unreliable during the Covid-19 pandemic. Either international trade frictions,

quarantine restrictions, large shifts in demand (such as protective equipment), or even

panic demand purchases of some products (such as toilet paper and disinfectant wipes

in the US) highlighted the fragility of supply chains in the world. As a result, many

countries experienced supply disruptions for various products during the pandemic.

We believe this collapse is due to a design flaw: while the just-in-case approach might

be appropriate for idiosyncratic shocks, it seems to have failed in the presence of an

aggregate shock.

Many have argued that the solution is to have greater resilience and robustness.2

However, what exactly does it mean to have a robust supply chain? How does it differ

from assuming a more severe shock? In this chapter, we argue that a robust supply

chain is one that addresses uncertainty instead of risk. The presence of uncertainty

requires a decision-maker to solve a minimax optimization problem, in which they

optimize the worst case of a set of outcomes – see for instance Gilboa and Schmeidler

(1989) for an axiomatic treatment. In this sense, robustness means more than just

assuming larger shocks; it means considering the worst possible outcome of a set of

models; it means shifting to "Just-in-Worst-Case".

In this chapter, we present a very simple model. It introduces the idea that, in

the pursuit of efficiency, a decentralized supply chain could become vulnerable to ag-

gregate shocks. In other words, our setup reflects the well-known trade-off between

2See The FT Editorial Board (2020), Evans (2020) and Long (2020)
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efficiency and robustness. In particular, a design with greater resilience to shocks

will sacrifice efficiency during normal times. We are interested in understanding the

consequences of natural disasters, environmental shocks, and pandemics on the global

supply chain. These shocks tend to be substantial and infrequent, but also widespread

— affecting many countries and regions at the same time. Just-in-Case’s standard

supply chain analysis studies firms facing large, frequent idiosyncratic shocks with

known distribution. We study a different problem, one in which the shocks are in-

frequent, aggregate, and with unknown distribution. The simple model analyzes the

survival of a multinational firm that purchases from small global suppliers. The sup-

pliers decide where to locate, and locations are subject to aggregate shocks — which

for simplicity are correlated with location.3 We compare two types of global sup-

ply chain arrangements and two different types of shocks. First, the small suppliers

individually decide their location, and the multinational purchases the surviving sup-

pliers’ products. Second, we study the case when the multinational can choose all

its suppliers’ locations, thereby internalizing the location decision (i.e., the suppliers

are subsidiaries of the multinational firm). From the perspective of the shocks, we

compare the situation of risk versus uncertainty through two settings of random ag-

gregate shocks. In the first case, we assume the distribution is given, while in the

second case, only the distribution’s support is known.

Our setup replicates many well known results: just-in-time, a multinational inter-

nalizing an externality, etc. The purpose of reproducing those results is to compare

them to the strategy implied by robust control. The robust strategy is in the spirit

of a behavioral result known in psychology as probability matching. A rational in-

dividual facing a choice between two options should always choose the option with

the higher payoff probability. For example, consider an individual with two choices:

option A delivers one dollar 70 % of the time (zero otherwise), while option B pays

one dollar only 30 % of the time (and zero otherwise). A rational agent should choose

option A in all instances — whether they are playing once or many times. However,

3Our aggregate shock is one that affect all suppliers in the world, but not all of them negatively.
In other words, some suppliers could be benefited from the shock while others could be hurt. It is
a form of aggregate shock in the sense that when one location is affected the other location is not.
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experimental research has shown that this is not the case. When participants are

faced with a series of these choices, they often choose by replicating the probabilities.

In other words, they would pick option A 70 % of the time and option B 30% of the

time. Hence, the strategy is called probability matching. Several possible explana-

tions of this phenomenon have been offered. First, one may describe the behavior as

irrational. Another explanation appeals to bounded rationality. Intuitively, because

it is costly for humans to process information, they will recur to heuristics when mak-

ing decisions.4 A heuristic allows for a fast resolution, and in fact replicates many of

the (seemingly) irrational behaviors observed in sports and gambling. For example –

the fallacy that an event must occur because it has not happened for a while: "a coin

has flipped four heads in a row, it is very unlikely that another one will occur", or

thinking that a batter will get a hit because they have failed to do so for a while. In

this case the heuristic is to match the decision to the representativeness of choices.

The last explanation for probability matching comes from evolutionary psychology.5

Observation of foraging species documents that the allocation of individuals matches

the distribution of resources, and that this behavior maximizes the survival proba-

bility of the species while also reducing the possibility that competing species invade

the resource. 6 In this chapter, we present a model in which a fully rational agent

who is ambiguity averse and internalizes the survival probability will replicate the

probability matching behavior.

Our basic model has two locations: the Mountain and the Valley.7 The two

locations differ only in the probability that an aggregate shock hits. We will assume

the shock is extreme, such that all suppliers in the affected location perish.8 Without

4See Kahneman et al. (1982) and Kahneman and Tversky (1979)
5See Todd and Gigerenzer (2012)
6See Seth (2007) for simulations replicating probability matching — that in econology is known

as the ideal free distribution.
7This example is inspired by Lo (2017) discussion on probability matching.
8In practice, aggregate shocks may not be so severe or permanent. In keeping with the theme of

this chapter, we assume the worst possible outcome. See, for instance, Hallegatte (2015) and Tran
et al. (2020) for discussion on the extent and duration of economic shocks due to natural disasters.
For example, in November of 2020, it was still very difficult to purchase masks, hand sanitizer, and
sanitary wipes in the US. This suggests that even in a developed nation, the supply disruptions can
last for a long period of time.
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loss of generality, we also assume that the shock is more likely to occur in the Mountain

than in the Valley. Formally, if an aggregate shock occurs in our model, then the

conditional probability of the shock affecting the Mountain (or the Valley) will be θ

(or 1− θ), where θ > 1/2.

Each supplier produces a single unit, or a "part". Both the cost of production and

the sell price per part are held constant: in both locations, for all producers, and in

any state of the world. In particular, the prices are independent of both the realization

of the aggregate shock, and the number of surviving suppliers.9 However, in canonical

macroeconomic and international models, this would not be the case. The demand is

usually chosen such that when quantities tend to zero, prices increase and can even

tend to infinity. Models based on Cobb-Douglas or CES functions have this feature,

and the pricing system reflects scarcity. Nonetheless, if firms are concerned about

the consequences of increasing their prices after natural disasters, or there is a law

that does not allow prices to increase after such an event, then the price required

to achieve the efficient allocation may never be realized. If this were known ex-ante,

then it would affect the willingness of suppliers to diversify into risky locations. Our

model takes an extreme assumption — prices are fixed — to capture this feature of

regulations and institutions. Moreover, below we include some anecdotal evidence

of law enforcement and consumers’ negative reactions to price gouging during the

Covid-19 pandemic.

The number of suppliers grows and depends on the number of surviving suppliers.

We treat each suppliers’ part as a different intermediate good, and the multinational

purchases as many parts as possible to sell the final product internationally. The

product is more desirable the more parts it has — but it can be manufactured with a

subset of the parts. This setting is equivalent to assume that the quality of the item

9There are a few motivations for this assumption, which are discussed more in detail by Sec-
tion 4.2. First, a natural disaster or other disruptive event may lead to some degree of price stick-
iness. While fixed prices are an extreme of stickiness, partially-adjusting prices will still replicate
the qualitative results of our model. Additionally, we can appeal to consumer anger in response to
price gouging after natural disasters. For consumer anger see Rotemberg (2002, 2011)) and for price
gouging laws Executive Order 13910 of March 23, 2020, Preventing Hoarding of Health and Medical
Resources To Respond to the Spread of Covid-19. For examples of price gouging laws in the US, see
King and Spalding (2020)
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increases with the number of parts it has.10

The parameters in the model are such that each supplier’s location decision has

a dominant strategy, which is not collectively optimal when the probability of global

survival is taken into account. This discrepancy comes from the inability of the pricing

system to compensate firms properly for moving into the Mountain. In this setting,

the multinational wants to ensure its suppliers survive. Putting this differently, the

multinational cares about survival, while the suppliers do not. This difference implies

that the multinational might be willing to set production facilities in the Mountain to

insure itself against an aggregate shock in the Valley. This part of the model captures

a simple externality and the need for a diversified supply chain, but not yet a robust

one.

This is where the nature of the shock matters. When the shocks have known

distributions — what is known as risk or the nominal model — the multinational

will exhibit behavior that takes into account all the sources of risk. This setting im-

plies a desire for diversification, and one of the implications, for example, is that the

multinational’s optimal allocation of firms to the Mountain depends on the number

of suppliers that have survived. There is both a marginal benefit and cost of diversifi-

cation, and in general, an internal solution is found (at least under our assumptions).

The multinational’s policy changes dramatically when the shock has bounded uncer-

tainty — meaning that the distribution is unknown — in the robust model. In this

setting, an ambiguity-averse multinational will perform a robust control optimization.

As we will see, with sufficient uncertainty the optimal allocation of firms is indepen-

dent of the number of surviving firms. The robust supply chain decision, therefore,

looks very different from the nominal model.

This chapter includes several theoretical results worth highlighting. First, we

compare the centralized and decentralized solutions to the model. We show a corner

solution of the decentralized allocation (all firms locate themselves in the Valley) –

exposing the multinational to an aggregate shock to the Valley. This result contrasts

10It is very common in supply chain management to assume that if one good or part is missing,
the whole product can’t be manufactured. By relaxing this assumption, we can eliminate the typical
assumptions behind just-in-case theories and concentrate on the robustness aspect.
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with the internal solution (a proportion larger than zero of firms in the Mountain)

of the centralized allocation. Individual suppliers maximize efficiency (or productiv-

ity) while the multinational maximizes survival. This result is known and simple to

understand — the multinational internalizes the survival externality.

Second, we study the implications of risk and uncertainty in the probability dis-

tribution of the aggregate shock. We depart from the assumption of the first part

of our chapter: that the value of θ, the conditional probability that the aggregate

shock affects the Mountain, is known. We first study what occurs when θ is risky;

for example we assume it is distributed between [θ̄ − ∆, θ̄ + ∆] according to some

a priori known distribution. This exercise represents a risky setup — the nominal

model. We compare it to the uncertain setup where the multinational only knows that

θ ∈ [θ̄−∆, θ̄+∆], but the distribution is unknown. This is the case of uncertainty, and

the optimal control problem requires a robust approach. Being averse to ambiguity,

the individual suppliers and the multinational maximize the expected profit assuming

the worst-case value of θ. For example, if θ̄ > 1/2 but the support of θ contains 1/2,

then the optimal robust control will optimize as if θ = 1/2. The diversification result-

ing from robust control replicates probability matching, and is very different from the

diversification obtained in a traditional expected utility maximization problem with

large variance or risk aversion.

In traditional supply chain literature of Just-in-Time and Just-in-Case, most of

the analysis concentrates on idiosyncratic shocks of suppliers. As a result, building

a supply chain with a precisely calculated amount of inventory can maximize effi-

ciency and profit. Since the Covid-19 outbreak and the consequently supply chain

disruptions, it is evident that aggregate shock on macroeconomic situation matters.

In macroeconomics, the analysis of aggregate shock relies heavily on mathematical

models, which are subject to modeling assumptions and model calibrations. Recently,

some macroeconomic research starts to consider model uncertainty and robustness
11. With model uncertainty, robust decision rules seek to maximize the payoff in the

11See (Hansen and Sargent, 2008) for robust control in general, and (Strzalecki, 2011) for the
axiomatization of multiplier preferences, and many others.
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worst-case scenario of a set of potential models.

This modeling choice is also supported by theoretical and empirical literature in

ambiguity aversion. Ambiguity aversion refers to the behavioral phenomenon where

people prefer variations with known distribution over unknown distribution. This

phenomenon can be explained by people maximizing their utility for the worst-case

scenario when the distribution is unknown, as in Gilboa and Schmeidler (1989). Since

global supply chain disruptions have catastrophic impacts on social welfare, and the

probability of such disruptions is not accurately known, uncertainty and robust deci-

sion rules are the proper tools for analysis and policy recommendations. In our case,

the diversification implied by robust decision rules is very different from the diversi-

fication that could be obtained in a standard risk-averse model by either increasing

the variance or the risk aversion to infinity.

Finally, we study what happens when prices and costs of production differ across

locations. We compare three settings for the global supply chain: (i) the decentralized

myopic setting that always chooses a corner solution, except when prices and costs

are at the knife-edge when the value of both locations is the same; (ii) the probability

matching heuristic where the allocation of firms coincides with the probabilities of

survival in each location; (iii) and the optimal allocation by the multinational. We

show that the decentralized solution can replicate the centralized solution when the

value in the Mountain is equal to the value in the Valley. Our model justifies why

governmental subsidies can help the decentralized economy achieve a robust solution.

For each simple model, we draw policy implications motivated by the recent ex-

perience with the pandemic. Summarized in the end, all of these policy implications

have a simple message: robustness is under-supplied.

This chapter is organized as follows: Section 4.2 introduces some empirical evi-

dence of supply shocks and price gouging restrictions during the Covid-19 pandemic.

Section 4.3 presents our simple model of optimal control of a supply chain, with

accompanying simulations. In Section 4.4, we introduce risk and uncertainty, and

discuss the differences between the optimal solutions of these settings. Next, Sec-

tion 4.5 studies the impact of different costs in the Mountain and the Valley, and
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finally Section 4.7 concludes with policy implications and future research.

4.1.1 Literature Review

Probability Matching: Our model provides a control problem rationalization of

probability matching. When a game similar to ours is presented to individuals, ex-

periments show that individuals tend to locate at the Valley roughly with probability

θ, and locate at the Mountain roughly with probability 1 − θ. This experimental

result is known as probability matching in the literature.12 Many different theoret-

ical approaches to behavior are developed to explain this phenomenon that humans

prefer probability matching over rational expected utility maximization. Some early

work suggests that it is a behavioral limitation due to bounded rationality, but more

recent literature attributes that to learning strategies. Vulkan (2000) and Gaissmaier

and Schooler (2008) argue that people would consistently try to learn patterns of the

outcome series in a repeated game even when they are informed that the series is

completely i.i.d. As a result, if the outcome series is truly i.i.d. as many of the earlier

models assume, then probability matching seems irrational. On the other hand, if

there is, in fact, a pattern in the series, probability matching claims a higher expected

reward in the long run by gradually learning the patterns. Other literature suggests

that probability matching is related to the growth pattern of a group of individuals.

For example, Brennan and Lo (2011) concludes that if two choices result in similar

growth rates, then deterministic decision rule prevails. On the other hand, if two

choices result in drastically different growth rates, then probability matching gives an

evolutionary advantage over the deterministic decision rules.

In our model, the intuition of the mechanism is simple: what is individually opti-

mal is not collectively optimal. The reason is that the survival of firms in our model

has a global externality from the inability of firms to coordinate — the increase in

the number of firms that could produce — that given our set up the decentralized

market does not take into account. When the multinational solves the model, how-

12See, for example, Fiorina (1971), Morse and Runquist (1960), Vulkan (2000), and Brennan and
Lo (2011)
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ever, it internalizes this effect, and it forces firms to do something that looks locally

irrational. As said before, locating firms in the Mountain provides insurance to the

multinational when an aggregate shock to the Valley takes place. That insurance is

extremely valuable when uncertainty is present.

Supply Chain: The literature on the supply chain is extensive and impossible to

summarize in a few paragraphs. There are, however, aspects that have been discussed

in the literature that are relevant to the model we present here.

Aggregate shocks like Covid-19 has a significant implication of global supply chain

risk management. Earlier empirical research describes this as supply chain flexibility,

see Vickery et al. (1999). That paper defines flexibility as the ability to adapt to

aggregate shocks. It shows through correlation analysis that supply chain flexibility

is critical to the long-run survival of an organization. On the other hand, flexibility

may affect the immediate competitiveness of the firm in the short run.

The vulnerability of the global supply chain to identical suppliers has already

raised some concerns in the industry. Wagner and Bode (2006) studied questionnaires

from company executives in Germany and concludes that a firms dependence on single

type customers and suppliers is the largest contributor to a firms exposure to supply

chain risk.

In recent years, the question of whether to integrate suppliers or not has been

receiving more and more attention to supply management. The existing empirical

literature has been studying this issue by looking at the elasticity of substitution of

produces, see Antràs and Chor (2013) and Alfaro et al. (2019). When the demand

for the final product is elastic, and inputs are not substitutable, firms choose not

to integrate upstream suppliers. On the other hand, when the demand for the final

product is inelastic, and inputs are substitutable, firms choose to integrate upstream

suppliers. This finding shows that firms’ supply chain decisions are optimal for the

deterministic case, but not necessarily when an aggregate shock hits.

Apart from the works highlighted above, two groups of literature align with the

spirit of this chapter.
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First, there is ample literature discussing the organization of the supply chain.

Following Antràs (2020), global supply chains can be viewed through different lenses.

First, the value-added approach where firms allocate production internationally, and

each stage of production contributes to the final product. In general, this literature

concentrates on countries and industries as the unit of analysis. Second, the firm-

level perspective — started by Melitz (2003) — offers an alternative to the aggregate

view of the first approach. In this literature, the firms are the unit of analysis,

and they are the ones that decide whether or not to participate in global supply

chains. Both of these approaches assume there is no informational problem. This

is relaxed by the relational view of supply chains. In this view, firms and suppliers

face contracting problems — moral hazard or incomplete contracts — and therefore

enter in relation to solve the informational problem. The main question it addresses

is the organizational structure of the firm. The boundary of the firm in the global

supply chain started with the seminal contribution of Antras (2003). The author

discusses how incomplete contracts determine whether a firm should be integrated

internationally versus enter into arms-length negotiations.13 Finally, Yeaple (2003)

studies the vertical and horizontal integration of multinationals.

Second, the literature on supply resilience highlights that resilience can be ob-

tained by organizational robustness or organizational flexibility. See, for instance,

Ambulkar et al. (2015), Töyli et al. (2013), Zhao and You (2019), Saenz et al. (2015),

Durach and Machuca (2018), Helpman et al. (2004) and the references therein. Most

of this literature, however, has two features. One is very related to our model — the

literature advises that a robust supply chain can be achieved by working closely with

the suppliers. In the spirit of our model, that is equivalent to when the multinational

decides the global allocation problem. The second aspect is that most of these papers

think about the robustness of a supply chain in response to shocks to the firms —

i.e., the robustness to idiosyncratic shocks.

13See Antràs and De Gortari (2020), Antràs and Chor (2018) and Antras (2015).
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4.2 Covid-19 and Supply Chains

4.2.1 Heterogeneous Supply Chain Disruptions

As has been argued by many, Covid 19 is a hybrid crisis. It has both supply and

demand components, so understanding the magnitude and relevance of a single supply

chain disruption is difficult. Furthermore, the demand/supply shock combinations are

country-specific.

From the anecdotal point of view, many products suffered shortages during the

Covid pandemic — hand sanitizer, toilet paper, meat products, beer, etc. The de-

mand for these products, especially hand sanitizer, did not decline; therefore, it is

clear that supply disruptions were present in many of them. The disruptions, inter-

estingly, were not specific to China. In fact, in Figure 4-1 we present the value of

trade merchandise for the world (top panel), the USA, and China (left, and right

bottom panels). This data comes from the WTO.
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Figure 4-1: Merchandise Value for World, USA and China

For each region, the indices have been normalized to one in January of 2006. As

can be seen, the 2008 financial crisis had a huge impact on all of them: world trade

declined by almost a half (from 1.73 to 1.01), in the USA the decline was from 1.57

to 1.05, and in China, the value of trade dropped from 2.10 to 0.99.

On the other hand, the impact of Covid was heterogeneous. World trade experi-

enced a small decline; comparing trade volumes in Q3 2020 to Q3 2019, the drop was

only 6.2 percent. In the case of China, trade actually increased by 3.7 percent, while

it declined by 23 percent for the USA.

In summary, the trade data shows the distinct effects of the pandemic on the

supply chains of the US and China. It is exactly this heterogeneity that we seek to

capture through our model’s use of the Mountain and Valley.

117



4.2.2 Prices and Supply Shocks

It is difficult to measure the impact of the supply disruption by only the value of

trade, but a study of prices proves a much simpler exercise. Figures 4-2 and 4-3

present the inflation rate of different sectors and items. All the data comes from the

Bureau of Labor Statistics (BLS), the CPI database. We selected all the seasonal

adjusted monthly series aggregated at the US level. There are 317 categories; for

illustrative purposes, the figures only present the most aggregate ones (about 97).
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Figure 4-2: US Inflation by sector between January-May of 2020
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Figure 4-3: US Inflation by sector between January-September of 2020
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The figures are sorted by the size of the price deflation or inflation. As can be

seen, there is tremendous heterogeneity, although the median annualized inflation

rate is north of 10 percent. Several aspects are worth highlighting.

First, if the demand shock of Covid were to dominate any supply disruption, then

we should observe most sectors experiencing deflation. Empirically this was not the

case – of the 313 BLS series for which inflation could be computed between January

and May14, only 119 experienced deflation. Consequently, more than 60 percent of

the indices computed by the BLS experienced inflation at a time when the economy

was undergoing strict lockdowns. We believe this inflation reflects the supply chain

disruptions occurring during the pandemic.

Second, the sectors where prices declined are concentrated in Energy, Transporta-

tion Apparel, Tourism, and Jewelry.15 The sectors that experienced price increases

are related to Food, Household products, Beverages, and Medical Supplies.16. As we

might have expected, more essential products experienced greater inflation during the

pandemic.

Third, extending the analysis to September does not change the qualitative results

— except that the supply shock dominates more than the demand shock — which

should have been expected given that the US economy opened up. From January to

September, only 99 of the 313 series ID’s computed by the BLS experienced any form

of deflation. Furthermore, the repressed sectors were still Energy, Transportation,

Apparel, Tourism, and Recreation. Interestingly, in these sectors there is no report of

supply disruptions – either in the US or globally. Deflation in these sectors is exclu-

14Several sectors or items have prices collected at different frequencies.
15In fact, the sectors with deflation higher than 2 percent are Motor fuel, Energy commodities,

Fuel oil and other fuels, Public transportation, Energy, Motor vehicle insurance, Lodging away from
home, Women’s apparel, Transportation, Private transportation, Transportation services, Women’s
and girls’ apparel, Infants’ and toddlers’ apparel, Apparel, Footwear, Men’s apparel, Men’s and
boys’ apparel, Boys’ apparel, Jewelry and watches, Nondurables, Girls’ apparel, Commodities, Other
recreational goods, and Sporting goods.

16The list of the items which experienced more than 2 percent inflation, in order from the lowest
inflation (2%) to the highest (15%), are: Medical care services, Alcoholic beverages at home, Fresh
fruits, Beverage materials including coffee and tea, Fresh vegetables, Other recreation services, Food
and beverages, Bakery products, Food, Other meats, Housekeeping supplies, Fish and seafood, Ce-
reals and cereal products, Processed fruits and vegetables, Other foods, Dairy and related products,
Juices and nonalcoholic drinks, Pork, Poultry, Eggs, and Beef and veal
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sively driven by the demand shock. The sectors experiencing inflation in September

and May are similar, and are concentrated in Food, Beverages, Household Products,

and Medical Supplies. In all these sectors, we have reports of supply disruptions —

at least anecdotally.

In summary, analysis of prices in the US by sector makes clear that supply chains

failed to deliver basic products. Items such as food, beverages, household products,

and medical supplies experienced large inflation. In fact, in these types of essential

products many countries established much-needed anti-price gouging laws during the

pandemic. Therefore, the inflation that we observe is not as high as the one that

would have existed without the restrictions. This is the topic of the next subsection.

4.2.3 Price Gouging

One of the important assumptions of our model is that prices do not adjust fully to the

aggregate shocks. In general, prices may deviate from equilibrium due to stickiness,

as has been studied in the relevant macro literature. See, for instance, Caballero and

Engel (2006) and references therein for theoretical results, and Anderson et al. (2015)

for some empirical evidence. In the case of large aggregate shocks, we also motivate

the fixed-price assumption by the existence of price gouging laws in many countries

during the pandemic — either because of fairness considerations or consumer anger.

In this subsection, we discuss the origin and relevant evidence of this latter motivation.

When facing large aggregate shocks, the price of essential goods cannot float freely

as assumed by the classic general equilibrium model. Take Covid-19 as an example;

during the pandemic the demand for personal protective equipment, foods, and other

essential supplies rose dramatically, which raised the concern of price gouging with

both regulators and the general public.

On the side of regulators, Executive Order 13910 of March 23, 2020, “Preventing

Hoarding of Health and Medical Resources To Respond to the Spread of Covid-19”

was issued by the US to deal with the threat of price gouging. Individual States

of the US, evidenced in the laws of King and Spalding (2020), were very active in

controlling companies pricing for products related to the pandemic.
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Figure 4-4: Law enforcements’ efforts to control price gouging.

As shown in Figure 4-4, many State Attorney General Offices created procedures

to deal with price gouging complaints. The purpose of these laws is quite "benevolent";

regulators seek to prevent hoarding and ensure that the prices of essential goods do not

increase beyond that which is considered "reasonable or fair". However, in practice,

it is not possible to distinguish which part of the price increase is reasonable (e.g., a

price increase which generates profits to compensate for the cost of diversification in

normal times) and which part is not reasonable (e.g., price increase due to hoarding).

During Covid-19, the companies that had previously diversified their production,

and were hence able to keep producing essential products during the pandemic, were

not rewarded with higher profit. They were unable to set prices freely, and were

instead penalized by the increasing litigation risk of anti price gouging enforcement –

failing to benefit from prices adjusting to a new equilibrium. As a result, diversifying

and preparing for aggregate shocks may not a financially optimal decision for compa-

nies in classic market equilibrium models. Theoretically, the problem described above

is an inefficient allocation due to market incompleteness. Our model, with individual

producers and the fixed-price assumption, reflects this issue.

The general public also paid great attention to price gouging. For example, a
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Google Images search on October 5th, 2020 for "price gouging" presents the following

results.

Figure 4-5: Google Search results for Price Gouging.

Some of the images are shown in detail in figure 4-6: consumers compare the price

of isopropyl alcohol with a a bottle of champagne, a convenience store clarifies the

price of toilet paper is not a joke, and purchase of water is restricted.

When the consumers and law enforcement are so concerned with price increases

after a natural disaster, is reasonable to expect that firms are unable to fully benefit

from the scarcity, and may even prefer not to supply than to face the public relations

nightmare that would require justifying their selling price.

The examples we show here are only in the US, but European countries experi-

enced a similar search for firms violating price gouging laws. See Cary et al. (2020)

and UK Competition Authority (2020) for a discussion of the recent law enforcement

efforts regarding complains of price abuses in many developed nations.
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Figure 4-6: Price gouging examples in stores and online.

On the side of the general public, price gouging received immediate attention at

the start of the pandemic. Even though the images constitute anecdotal evidence, we

can provide evidence on the intensity with which people searched for “price gouging”.
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Figure 4-7 shows the Google search frequencies of topics "Coronavirus" and "Price

Gouging" in different regions (US, UK, and worldwide) as well as different languages

(English and Spanish). It is evident that the public’s awareness of "price gouging"

rises almost simultaneously with awareness of "Coronavirus" itself.
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Figure 4-7: Google search frequencies of topics "Coronavirus" and "Price Goug-

ing". Numbers are normalized by 100 at maximum values. Data Source:

https://trends.google.com/trends/

Supply chain allocation is a durable decision. Nevertheless, we identify price

inflexibility as a source of fragile supply chain allocation for the following reasons:

First, supply chain allocation is durable and unlikely to adapt during disasters on

a large scale, which means the supply disruption is generally as long as the disaster

itself. Second, when an aggregate shock hits, the anti-price gouging enforcement

actions are as long as the supply-side shock. For example, Anderson and Apfel (2020)

summarizes many anti-price gouging enforcement actions worldwide from February to

July 2020. Third, even if the period of price distortion during a disaster is relatively

short compared to normal times, it eliminates companies’ essential motivation to
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diversify production to less competitive locations and prepare for those shocks. In

summary, we believe price inflexibility is an important externality when studying

aggregate shocks like the global pandemic and many natural disaster events.

4.3 Model

In this section, we present a firm-location-problem model that highlights the vulner-

ability of the global supply chain to aggregate shocks. It is a simple survival model

in which individual firms fail to take into consideration the impact they have on the

aggregate — a standard externality argument — and whose decisions change quite

substantially once uncertainty is taken into account.

We assume two different forms of organizing the world supply chain. In the first,

a multinational asks already established firms (factories) to independently offer the

parts required to produce a final product. In this case, the factories decide where to

locate themselves. We identify this structure with a global supply chain of Indepen-

dent Suppliers or the Decentralized economy. The second organization is one in which

the multinational allocates its production facilities — which are the subsidiaries of

the multinational. We identify this structure as Multinational Subsidiaries or as the

Centralized economy.

As said before, a second ingredient in our model is the difference between risk

and uncertainty. Optimization under risk produces a policy function that is very

different from that derived under uncertainty. Our model is a single firm, partial

equilibrium model, which concentrates on the existence and response of the supply

chain to aggregate shocks. The Covid-19 pandemic was an obvious aggregate shock.

However, natural and environmental disasters becoming more prevalent implies that

we need a different approach to the understanding of resilience and robustness of the

supply chain. A distinct feature of these shocks is their aggregate nature, but also

how uncertain they are; we might know that sea level will be rising, but the extent

of the damage has tremendous uncertainty, and the distribution itself is likely to be

unknown.
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We use both ingredients — the internalization of survival (the externality) and

the robust approach (uncertainty) — to rationalize supply chains whose level of di-

versification are an order of magnitude larger than what we observe in practice.

4.3.1 Baseline Model

A product sold by a multinational is comprised of many "parts", each produced by

a factory, and each factory can be located in two different regions. Time occurs in

discrete steps, and the discount rate is β.

Assume there are Nt firms at the start of period t. Each factory/supplier has a

location decision: for simplicity, we will identify the locations as the Mountain and

the Valley. Factories choose one of these two locations at time t where they set up

production. Each factory only produces one unit of the part, which has a constant

cost c. Suppliers sell the part to the multinational, who produces the final good. The

cost is paid before production takes place.

Production is uncertain. In each period, one of two locations might suffer an

aggregate shock with arrival probability γ. Conditional on such a shock, and before

production occurs, all firms in the Mountain or Valley perish with probability θ or

1 − θ, respectively. We assume that θ >> 1/2. In other words, the Mountain is

significantly riskier than the Valley. With probability 1 − γ there is no aggregate

shock. Production takes place only by the surviving firms, and the multinational

produces the final product with the parts it has access to17.

At the end of each period, the number of subsidiaries can grow. The growth rate

is given by

Nt+1 = A · (N s
t )

1−µ (4.1)

where N s
t denotes the number of firms that have survived the aggregate shock. Notice

that this growth process has a fixed point at N∗ = A1/µ. In our model, it makes sense

to have a decreasing return to scale due to limited resources. This is a distinction
17The reason behind this assumption is that in the canonical model of complementary inputs (e.g.,

Kremer (1993)) an idiosyncratic shock has macroeconomic consequences. In our model, we want
idiosyncratic shocks to be "harmless" and concentrate on the role of aggregate shocks.
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with the origional model in Lo (2017). The timing is denoted in Figure 4-8.

t t+ 1

Nt
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Location
Decision

c

Cost
payment

γ and θ

Aggregate
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N s
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with surviving

Firms

Nt+1
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Growth

Figure 4-8: Model timing.

The multinational aggregates parts from all the suppliers and produces a final

good. The complexity of the final good depends on the number of parts included.

This model has an extremely simple demand side; we assume that the final product’s

revenue when sold is linear in the number of parts it includes. Furthermore, we add

a Survival Constraint to this model by assuming that the firm needs at least 1 part

to be able to produce the final product. In other words, N s
t ≥ 1 for the firm to be

able to continue operating.

Πt =

 pN s
t if N s

t ≥ 1

0 o.w.

The price per part, p, is constant and independent of production and the state of

the world. This is equivalent to assuming that all firms are price taker, but it also is

capturing the fact that prices rarely move freely after natural disasters — the anti-

price gouging laws. This is obviously an extreme assumption, but one that simplifies

the exposition. In many countries, there are price gouging regulations that limit

the extent to which the pricing system helps ameliorate the supply chain problem.

Therefore, the pricing system cannot finance the supply chain reforms required to

reestablish production, and instead other actions (such as time or government subsi-

dies) are required to recover the supply chain. During the Covid-19 pandemic, it has

been clear that fairness arguments have dominated the discussion. For example, see

Executive Order 13910 of March 23, 2020, Preventing Hoarding of Health and Med-

ical Resources To Respond to the Spread of Covid-19, or King and Spalding (2020)

for a list of price gouging laws in the US. A more detailed discussion of price gouging
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during Covid-19 was given earlier in Subsection 4.2.3.

Two important aspects of the price assumption are worth highlighting. First,

we are assuming a very extreme form of anti-price gouging — prices are completely

fixed. In our model, the anti-price gouging behavior is quite important for our results.

If prices cannot adjust after a natural disaster, there is no way of compensating

the suppliers that locate themselves in the mountain. On the other hand, if firms

face a standard demand satisfying the inada conditions, then all suppliers can be

compensated when locating themselves in the mountain. In fact, it is optimal to

make the expected value of investing in the mountain equal to investing in the valley.

The assumption of anti-price gouging laws, however, is not unreasonable. First, they

are observed in practice. Second, as argued in Dworczak et al. (2020), anti-price

gouging laws can be socially optimal in the presence of income inequality and other

inefficiencies.

The second aspect worth highlighting is that the price gouging is as long as the

investment horizon. This is also an extreme assumption that allows us to characterize

the solution. In our case, the investment horizon is one period (after which the

suppliers can relocate without cost). Future research should include the possibility

that there is stickiness in the location decision to study the implications of price

freezes shorter than the investment horizon.

The fact that inflation is found in some of the sectors could be misconstrued as a

rejection of the price gauging assumption. That is not necessarily the case. If prices

are not allowed to increase to the market clearing price there is scarcity in the market

and inflation at the same time. For most of the products highlighted here, inflation,

and rationing and excess demand indeed existed.

Denote ψt the proportion of firms that are located in the Valley. The evolution of

firms is given by

Nt+1 =


A · (Nt)

1−µ w/p (1− γ)

A · (ψtNt)
1−µ w/p γθ

A · ((1− ψt)Nt)
1−µ w/p γ(1− θ)
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where the top realization occurs when there is no aggregate shock, and the sec-

ond (third, respectively) one is when the aggregate shock hits the Mountain (Valley,

respectively). The growth of the firms has two components: multiplicative and ex-

ponential. As can be seen, the growth of suppliers depends on the total number of

surviving suppliers in the world. We assume that the new suppliers are distributed

according to the existing number of surviving firms in each location, but that the

growth rate depends on the total number of existing firms. This assumption in the

basic model is innocuous, but it is essential if the model is extended to introduce ad-

justment costs — or switching costs. We leave this interesting application for future

research.

Independent Producers

In the independent producers setting, the suppliers decide their location individually,

and then the multinational contracts with the firms. We assume that all the revenue

from the multinational is transferred to the suppliers — i.e. the multinational has

zero profits. The total revenue is equally shared among the surviving suppliers.

Suppliers are small and they do not take into account the impact their decision has

on the decision of the location of others (ψt). As we mentioned before, there is no cost

of switching between locations. Therefore the suppliers are solving a static problem

— the continuation value is exactly the same for all firms. Firms are maximizing the

expected value of Mountain versus Valley and given our assumptions Valley dominates

for all firms. Then, the value at time t of locating in the Valley or the Mountain is

given by

V v
t = ((1− γ) + γθ)p − c+

1

1 + β
((1− γ) + γθ)Vt+1 (4.2)

V m
t = ((1− γ) + γ(1− θ))p− c+

1

1 + β
((1− γ) + γ(1− θ))Vt+1. (4.3)

The continuation value for each supplier, conditional on having survived the ag-

gregate shock, is independent of the location. This is a feature of the zero cost of

relocation. Therefore, the value of locating in the Valley is always larger than the
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value of locating in the Mountain. Formally,

V v
t − V m

t = γ(2θ − 1)

(
p+

1

1 + β
Vt+1

)
> 0 (4.4)

for θ > 1/2, and hence ψt = 1.

Multinational Subsidiaries

Assume now that the multinational has all the decision power and it allocates the

production units. Two aspects now matter for the multinational firm that were not

relevant for the independent suppliers: the multinational takes into account the dis-

tribution of firms, and it takes into account the expected value of continuation in all

states of the world.

The problem of the multinational firm can be written as follows

V (Nt) = max
ψt




(1− γ) · (pNt + 1
1+β

V (A · (Nt)
1−µ) )

+γθ · (pψtNt + 1
1+β

V (A · (ψtNt)
1−µ) )

+γ(1− θ) · (p(1− ψt)Nt + 1
1+β

V (A · ((1− ψt)Nt)
1−µ) )

− cNt


(4.5)

where

lim
N→1−

V (N) = 0 (4.6)

is the value matching constraint.

As before, the top line represents the value when the aggregate shock does not oc-

cur, and the second (third, respectively) when the aggregate shock hits the Mountain

(Valley, respectively). Although the cost is the same cNt, the revenue depends on the

number of surviving firms. Recall that the cost of production is paid irrespectively of

the aggregate shock.

The first-order condition (FOC) with respect to ψt, after simplifying, is

(2θ−1)p = A(1−µ) N
−µ
t

1 + β

{
(1− θ)(1− ψt)

−µV ′ (A((1− ψt)Nt)
1−µ)− θψ−µ

t V ′ (A(ψtNt)
1−µ)} .

(4.7)
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We simulate the discrete time version of the model to characterize the solution.

The parameters used in the simulation are: β = 0.02, γ = 0.2, θ = 0.6, µ = 0.5,

A = 5, pm = pv = 1 and cm = cv = 0.5.

In terms of the number of suppliers in equilibrium, the choice of µ = 0.5 implies a

fixed point of Nt = 25, in the absence of aggregate shocks. We initialize all simulations

in this fixed point.

In Figure 4-9, we present the proportion of firms in the Valley as a function

of the total number of suppliers (horizontal axis). The orange line represents the

decentralized allocation — the individual rationality solution. The blue line indicates

the probability matching solution for survival. Finally, The green line indicates the

optimal solution of the multinational.
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Figure 4-9: Optimal ψ∗ as a function of Nt.

The multinational has a tradeoff between instantaneous profits (what the individ-

ual suppliers maximize) and the probability of survival. The right panel of Figure 4-9

is a closer view of the left panel, but concentrating on relatively small N .

As shown in Figure 4-9, the multinational’s optimal ψ is a function of the num-

ber of production units Nt, and has three distinct phases. In the first phase, when

Nt ∈ [1, 2), the multinational’s optimal choice is a corner solution, which coincides

with individuals’ optimum. This occurs because when Nt < 2, losing one unit will

discontinue the multinational’s operation. Hence, there is no way to ensure survival

and to realize the benefit of continuation value. In the second phase, when Nt ∈ [2, 3),

the multinational will allocate exactly one production unit to the Mountain to take
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advantage of the continuation value. As a result, the optimal allocation is given by

ψ∗ = 1− 1/Nt. In the third phase, when Nt ≥ 3, the optimal ψ is a concave increas-

ing function of Nt. It is increasing because, with guaranteed survival, it is optimal

to allocate a greater percentage of production units to the Valley to maximize profit.

It is concave because the function ψ∗(Nt) asymptotically approaches a constant less

than 1.
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Figure 4-10: Value function V (Nt) with optimal ψ.

The value function of the multinational, with the optimal ψ, is presented in Figure

4-10. The concavity of the value function comes from the concavity of the growth

function of the suppliers, and also from the value matching constraint. If the suppliers

grow at a constant rate, the value function would be linear with respect to the number

of suppliers — and therefore, even the solution of the multinational would be at a

corner.

The value function has two discontinuities points at Nt = 1 and Nt = 2. The

discontinuity at Nt = 1 is trivial due to the constraint that V (Nt) = 0,∀Nt <

1. On the other hand, the discontinuity at Nt = 2 has an important implication

about continuation value. When the number of production units is less than 2, the

multinational firm cannot ensure survival. When the number of production units is

greater than or equal to 2, the multinational can allocate one production unit on the

Mountain to ensure survival. This ensured survival creates a continuation value for

the multinational, which is responsible for the jump of value function at Nt = 2.
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4.3.2 Probability Matching

As was shown in Figure 4-9, the optimal proportion of firms in the Valley varies with

the number of suppliers. It is interesting to compare the effectiveness of the optimal

firm allocation with respect to a naive strategy — a constant psi independent of the

number of firms. For instance, assuming the probability matching strategy is adopted,

the value function of the multinational with constant ψ = 0.6 is presented in Figure

4-11.
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Figure 4-11: Value function V (Nt) with constant ψ = 0.6.

Apart from the trivial discontinuity at Nt = 1, the value function has two other

discontinuous points at Nt = 5/3 and Nt = 2.5. Below 5/3, the constant ψ = 0.6

does not place a single production unit in either location, and the multinational fails

when any aggregate shock occurs. As a result, the discontinuity at 5/3 represents

the continuation value of firms in the Valley. On the other hand, the discontinuity

at Nt = 2.5 represents the continuation value of firms in the Mountain. When the

number of available production units is less than 2.5, the multinational places fewer

than one unit in the Mountain, and will not survive an aggregate shock to the Valley.

However, when the number of production units is greater than or equal to 2.5, the

multinational can allocate at least one production unit on the Mountain, thereby

ensuring survival. The jump of the value function at Nt = 2.5 reflects this guaranteed

survival.

The difference between the value function using the optimal strategy, and the
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value function following the probability matching strategy is small. We compare the

optimal-strategy value function with the probability-matching value function (when

ψ is constant and equal to 0.60). Figure 4-12 shows the percentage increase in the

value function when the firm switches between probability matching to optimal.

The x-axis is the number of firms on a logarithmic scale, and for comparison

purposes, we concentrated on Nt > 3. The discrete jumps in the value function for

smaller Nt swamp any possible comparison outside that region. On the y-axis is the

percentage difference between the two value functions.

The relationship, as expected, is increasing. The reason is that the optimal ψ

increases with the number of surviving firms; therefore, the loss incurred by fixing

it at 0.60 is also increasing. Having said this, notice that the magnitudes are small:

between one and two percent.
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Figure 4-12: Difference between Value function V (Nt) with optimal ψ and Value

function with constant ψ = 0.6.

One interesting question to ask is how the probability of survival is affected by

different possible allocation strategies by the multinational. Recall that Figure 4-9

indicates that the optimal proportion of firms in the Valley is a function of the total

number of suppliers that exist. However, we here study a simple, naive allocation
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strategy in the spirit of probability matching models. For instance, assume the multi-

national chooses a fixed proportion of suppliers in the Valley regardless of the total

number of suppliers that exist.

In Figure 4-13, we present the probability of survival for various fixed values of

ψ over different horizons. We define the probability of survival as one minus the

probability that the number of suppliers is smaller than 1 for any time step within

the horizon, and initialize simulations with the same parameters as above.
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Figure 4-13: Probability of survival

For large time horizons, the probability is either one or zero; interestingly the

breakpoints include the probability matching proportion (ψ = 0.6).

4.3.3 Implications

This model presents a simple contrast between three possible strategies: the decen-

tralized allocation in which firms do not take into account the survival probability of

the multinational, the centralized allocation in which the multinational internalizes

the decision, and the behavioral response that would use simple probability matching

heuristics concentrating on the maximization of the probability of survival.

The behavioral finance literature points out many cases in which individuals will
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tend to chose the third strategy. In our model, indeed, such a strategy will guarantee

the survival of the multinational. However, it is inefficient. A dynamic allocation

increases profits, for example, and also guarantees the survival of the firm in equilib-

rium.

Many questions arise from this framework that we explore further in this chapter

and some that are left for future research.

First, how can the probability matching behavior be rationalized in this setting?

As shown in figure 4-9 the optimal allocation in the Valley is an increasing function of

the number of surviving firms - after Nt > 2. So, the optimal solution is an internal

solution, and it is dependent on the number of firms. As we discussed before, some

jumps happen at small numbers, which are the result of the constraint at which the

multinational shuts down. Probability matching implies a constant proportion of

firms regardless of the number of surviving firms, which contradicts this feature of

the multinational’s optimal allocation. In Section 4.4 we will introduce uncertainty

and show how the robust optimal response is indeed very close in its spirit to the

probability matching.

Second, given the externality, is there something that a government could do

such that the decentralized economy could reproduce the centralized allocation? The

answer to this question is usually yes, and it either requires taxes or subsidies. We

study this point in Section 4.5. We show that in the context of differences in prices,

there exists a governmental policy in which the decentralized economy achieves the

centralized outcome — or at least — the firms are indifferent between locating in the

Mountain versus the Valley, so the centralized allocation is available. The price or

cost differences can be interpreted as an ex-ante tax or subsidy to the allocation of a

firm in a particular destination.

Although trivial, it is worth highlighting that if prices are allowed to adjust, the

decentralized allocation will replicate the centralized one. In our model, prices are

not allowed to change, and therefore it is impossible to compensate the firms in the

Mountain when a shock to the Valley has taken place. If the prices were to adjust,

then once an aggregate shock takes place, the revenues of the surviving suppliers
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would increase. Moreover, because there are fewer firms in the Mountain, the price

increase when a shock to the Valley takes place would increase the price of parts more

than when the shock occurred in the Mountain. Because survival is very important,

any usual demand function — CES for example — implies that the expected value

of firms in the Mountain and the Valley are equalized. Under those circumstances,

the decentralized economy reproduces the centralized one. The assumption of prices

NOT adjusting is crucial. We do believe it is a reasonable assumption when aggregate

shocks occur, justified through the prevention of price gouging.

Third, a simplifying assumption in our model is that the growth of firms is related

to the total number of surviving firms regardless of where the firms were located.

Also, we are assuming that there is no cost of reallocation. These are simplifying, but

unreasonable assumptions. Further research should look into the implications when

the growth of firms is specific to the location, and there are adjustment costs. We

leave this extension to future research.

Finally, our supply chain structure is extremely simple. In reality supply chains

look like complex networks.18 Future research should look at the implications of

robustness in a more complex structure.

4.4 The Nominal and the Robust Models

The model in the previous section only deals with risk. In this section, we explore

the implication of adding uncertainty into the model. In particular, we will assume

the probability of the aggregate shock in the Valley (θ) is uncertain. As has been said

before, this section shows that the optimal robust strategy is exactly in the spirit of

probability matching: a constant proportion regardless of the number of firms that

exist.

We study two cases: in the first, we consider a risky θ. Here we assume that θ

is uniformly distributed in [θ̄ −∆, θ̄ +∆]. Due to the linearity of the value function

with respect to θ, we show that the optimal choices for both the individual producers

18See Yeaple (2003)
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and the multinationals are the same as the baseline case. Though the result is trivial

in this case, it allows us to set up the comparison with our second case, where we

assume model uncertainty: θ can be any value between [θ̄ − ∆, θ̄ + ∆] and agents

deploy a robust decision rule by solving a minimax problem.

4.4.1 Risk: the Nominal Model

Let us assume that θ ∈ [θ̄ − ∆, θ̄ + ∆] where ∆ is small enough to guarantee that

the support of θ is contained in [0, 1]. We assume that the distribution is uniform

and known by all agents. This setting is identified in our discussion as the nominal

model. We will continue to assume that the Mountain is riskier, therefore, θ̄ > 1/2.

Because individual suppliers are risk-neutral and the aggregate shock enters linearly,

the decentralized equilibrium is identical: all the suppliers choose to locate in the

Valley.

Similarly for the multinational, because θ enters linearly to the value function,

the profit maximization problem and its solution is unchanged. More specifically

V (Nt) = max
ψt(Nt)

∫ θ̄+∆

θ̄−∆


(1− γ) · (pNt + 1

1+β
V (A · (Nt)

1−µ) )

+γ(θ) · (pψtNt + 1
1+β

V (A · (ψtNt)
1−µ) )

+γ(1− θ) · (p(1− ψt)Nt + 1
1+β

V (A · ((1− ψt)Nt)
1−µ) )

− cNt

 dθ

= max
ψt(Nt)


(1− γ) · (pNt + 1

1+β
V (A · (Nt)

1−µ) )

+γ(θ̄) · (pψtNt + 1
1+β

V (A · (ψtNt)
1−µ) )

+γ(1− θ̄) · (p(1− ψt)Nt + 1
1+β

V (A · ((1− ψt)Nt)
1−µ) )

− cNt


Therefore, under the assumption of risk the solutions of the decentralized and

decentralized economy are identical to the baseline model. Of course this is a feature of

the assumptions we have chosen to make and where the parameter risk was introduced.

We have made these choices for simplicity.
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4.4.2 Uncertainty: The Robust Model

The second case we study is the case of uncertainty in the sense of robust control.

Assume that all agents know that θ ∈ [θ̄ − ∆, θ̄ + ∆], but they do not know the

distribution.

Optimal control implies that the optimization maximizes the worst possible case.

For individual producers, the values in the Valley and the Mountain are

V v
t = min

δ∈[−∆,∆]
((1− γ) + γ(θ̄ + δ))p − c+

1

1 + β
((1− γ) + γ(θ̄ + δ))Vt+1 (4.8)

V m
t = min

δ∈[−∆,∆]
((1− γ) + γ(1− θ̄ − δ))p− c+

1

1 + β
((1− γ) + γ(1− θ̄ − δ))Vt+1

(4.9)

Because nature will choose a value of ∆ that minimize producers’ value, the worst

case scenario for the Valley is when δ = −∆, and the worst case scenario for the

Mountain is when δ = ∆. The difference in value between the Valley and Mountain

is given by

V v
t − V m

t = γ(2θ̄ − 1)

(
p+

1

1 + β
Vt+1

)
> 0 (4.10)

for θ̄ > 1/2. Note this is identical to the baseline case (Equation 4.4 in Section 4.3.

The worst case for each individual firm still implies that the worst case in the Valley

is better than the worst case in the Mountain.

The problem of the multinational firm can be written as follows

V (Nt) = max
ψt(Nt)

min
δ∈[−∆,∆]




(1− γ) · (pNt + 1
1+β

V (A · (Nt)
1−µ) )

+γ(θ̄ + δ) · (pψtNt + 1
1+β

V (A · (ψtNt)
1−µ) )

+γ(1− θ̄ − δ) · (p(1− ψt)Nt + 1
1+β

V (A · ((1− ψt)Nt)
1−µ) )

− cNt


subject to

lim
N→1−

V (N) = 0.

The above value function has the following characteristics: First, given any fixed

141



δ, the value function is upper semi-continuous and concave in ψ, for all Nt ≥ 2. For

Nt < 2 there is a unique corner solution. Second, given any fixed ψ, the value function

is linear (therefore continuous and convex) in δ. Finally, ψ ∈ [0, 1] and δ ∈ [−∆,∆]

are chosen from compact sets.

As a result, according to Sion’s Minimax Theorem Sion et al. (1958), the maxi-

mization and minimization are interchangable, and the minimax problem has at least

one solution.

The optimal δ (meaning the choice that produces the worst possible case for the

multinational) is given by

δ∗ =

−∆ if θ̄ −∆ > 1/2

−θ̄ + 1/2 if θ̄ −∆ <= 1/2

(4.11)

This then implies that the multinational’s optimal response is the ψ from Figure

4-9, but where the shock probability is given by θ = θ̄ + δ∗.

4.4.3 Efficiency vs. Robustness

It may seem too conservative to always considering the worst-case scenario, especially

for multinationals trying to maximize profit. Even though the worst-case scenario is

known to be δ = −∆ for small enough ∆, this scenario may not be considered by the

agents in the system who seek efficiency. Naturally, an efficiency versus robustness

tradeoff emerges.
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Figure 4-14: Efficiency versus Robustness. ∆ = 0.05 Efficiency is represented by

the value in nominal model, and robustness is represented by the value in worse-case

model. The number of firms Nt is 25.

Figure 4-14 compares the case of the nominal and worst-case models. The blue

line represents the value function for the nominal model, and the orange the value

function for the robust model. The simulations are constructed assuming that the

uncertainty parameter ∆ = 0.05, and that θ̄ = 0.6. So, the range for θ is between

[.55, .65]. The nominal model optimizes as if δ = 0, and we plot what the realized

value function for δ < 0 instead being zero. In other words, when δ = 0 the blue line

reaches the maximum because the real value of theta is exactly the one used by the

multinational to optimize. on the other extreme (left) when the value of δ = −0.05

the multinational makes choices thinking that the relative shock parameter is θ̄ when

it actually is θ̄ − 0.05. Therefore, the nominal value function is subject to potential

losses.

The orange line is the robust model. Given the assumption of the bounded range,

we know that the multinational assumes that the θ = θ̄ − 0.05. In this case, notice
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that the orange line is flatter, and the worst-case is better than when the nominal

model chooses. In fact, the robust model is optimal when δ = −0.05.

Figure 4-15 depicts the case when ∆ = 0.15. In this case, the size of the un-

certainty is large enough that the case of θ = 0.5 is in the support. According to

equation 4.11 the robust approach assumes that θ = 0.5.

Notice that the blue line — the nominal model — behaves similarly as in the

previous case, except that a larger range implies bigger potential losses. Again, in

the extreme left, the multinational assumes that θ = 0.6 when it actually is 0.45. In

contrast, the orange line assumes a θ = 0.5 and produces a totally flat value function.

The intuition behind this result is simple. The robust allocation of suppliers is to

set half in the mountain and half in the valley. This implies that in the presence of an

aggregate shock — independently where it occurs — half of the suppliers disappear.

The flows and costs are identical. Therefore, the expected value is independent of the

true "θ".

144



0.14 0.12 0.10 0.08 0.06 0.04 0.02 0.00
Model mismatch  in a realization

267.5

270.0

272.5

275.0

277.5

280.0

282.5

285.0

287.5

V(
25

)

(b) =0.15

Value with decision rule in the nominal model
Value with robust decision rule

Figure 4-15: Efficiency versus Robustness. ∆ = 0.15. Efficiency is represented by

the value in nominal model, and robustness is represented by the value in worse-case

model. The number of firms Nt is 25.

These two figures highlight the implications of applying robustness to a decision

problem. Robustness is needed when the agents do not know the distribution of the

shock they are facing, and therefore need to prepare for the worst. Robustness, then,

serves to find a policy that reduces the differences over all possible states of nature.

In the limit, the most robust action is one in which the outcomes are identical in all

states of nature (as shown in Figure 4-15)

4.4.4 Discussion

The results in our model need two ingredients: robustness, and a centralized decision

maker that internalizes survival probabilities. Table 4.1 summarizes the relationships

between the modeling choices and the characteristics of the policy function.
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Table 4.1: Relationship between modeling choices and characteristics of the policy

function.

Risk Uncertainty

Decentralized
Corner

Solution

Valley

Corner

Solution

Valley

Centralized
Internal

Solution

ψ(Nt)

Probability

Matching

ψ′(Nt) = 0

When the economy is populated with decentralized decision makers, the optimal

policy choices are independent of the nature of the shock. In other words, individ-

ual suppliers will choose a corner solution (e.g. locating exclusively in the Valley)

irrespectively of whether they are facing risk or uncertainty. A centralized decision

maker, on the other hand, tends to prefer internal solutions. When they face risk,

the optimal allocation of firms is an increasing function of the number of firms. It is

when both uncertainty and centralization are present that the solution is an internal

and fixed ratio; very much in the spirit of probability matching.

This result has important implications for the supply chain. In our model, it

does not matter how bad the Mountain is relative to the Valley, there is a level of

uncertainty for which the multinational allocates half the firms in the Mountain. A

robust supply chain is one in which the survival probability is maximized, and where

there will be production even in the worst of circumstances. Of course, this is a

result that depends on the underlying assumptions of the model, but the intuition

should be easy to extend to more realistic circumstances: if the supply chains in the

world would have been prepared to supply goods in the worst possible circumstance,

then the Covid-19 shock should have produced zero stock-outs. A supply chain that

deals with risk but optimizes using the "expected" value is found to be ill-prepared

to handle an aggregate shock of the magnitude implied by Covid-19.
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Finally, robustness is often compared to the solution of a model with large risk

aversion. In some applications, that is indeed the case. In our model, robustness

changes the nature of the solution — in fact, the optimal allocation is independent

of the number of firms, and the allocation in Mountain and Valley is symmetric. It

is common in economics to equate robust approaches to greater risk aversion, which

itself leads to higher incentives for diversification. Again, that is not the case in our

model. The result we highlight, that implicitly rationalizes probability matching,

cannot be achieved with infinite risk aversion.

4.5 Price and Cost Differences

Up to now, we have not allowed prices to change depending on the state of the world.

This is clearly a simplification that has allowed us to characterize the solution of the

model and study the price gouging case. This section, in practice, relaxes the price

gouging assumption.19 The conclusion so far is that even when prices do not adjust —

making the decision to locate the suppliers in the Mountain a less profitable decision

— the values of continuation and robustness are enough for the multinational to

allocate firms in the Mountain. In this section we study the implications of allowing

prices and costs in the two locations to be different.

4.5.1 Model

We assume that there are heterogeneous costs cv ̸= cm and prices pv ̸= pm in the

two locations. We use this model to address many different questions. First, can

the government define an intervention (either reducing the cost of the Mountain, or

increasing its price) for which the decentralized economy achieves the social optimum

- even in the case of uncertainty? Second, what is the profit margin of the Mountain

at which the robust control strategy ceases to diversify the supply chain? In other

words, when is robustness undesirable?

19see section 4.2.3 for the justification.
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The value functions for the individual suppliers are given by

V v
t = ((1− γ) + γθ)pv − cv +

1

1 + β
((1− γ) + γθ)Vt+1 (4.12)

V m
t = ((1− γ) + γ(1− θ))pm − cm +

1

1 + β
((1− γ) + γ(1− θ))Vt+1 (4.13)

The continuation values still are identical in each of the two locations because

there is no cost of relocation of suppliers. The difference between the two locations

is given by

V v
t −V m

t = (((1−γ)+γθ)pv−cv)−(((1−γ)+γ(1−θ))pm−cm)+γ(2θ−1)

(
1

1 + β
Vt+1

)
(4.14)

There is an expected markup in the Mountain larger than the markup at the

Valley at which the firms are indifferent in their location. Intuitively, it is not enough

for the markups of the Mountain and Valley to be the same. We need to compensate

individuals going to the Mountain for their lower probability of survival. Therefore,

given pv, cv and cm, there exists a cutoff p∗m at which V v
t = V m

t = Vt+1. Substituting

in Equations 4.12 and 4.13, the transition occurs when

(1− γ + γθ)pv − cv
1− 1

1+β
(1− γ + γθ)

=
(1− γ + γ(1− θ))p∗m − cm
1− 1

1+β
(1− γ + γ(1− θ))

. (4.15)

Given the parameters of our simulation, p∗m ≈ 1.24. Then, for any pm < p∗m all

individual firms locate in the Valley, and for pv > p∗m all locate in the Mountain. The

intuition of Equation 4.15 is simple; it states that the expected markups adjusted by

the survival probabilities need to be equated in the two locations.

In this case, the individual allocation implies multiple equilibria due to the indif-

ference between the two locations. Below that markup the dominant strategy is to

locate in the Valley, and above it the optimal decision is to locate in the Mountain.

We compare this solution to the one chosen by the multinational in the exact same

setting.
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The problem of the multinational firm can be written as

V (Nt) = max
ψt




(1− γ) ((pvψt + pm(1− ψt))Nt + 1
1+β

V (A · (Nt)
1−µ) )

+γθ (pvψtNt + 1
1+β

V (A · (ψtNt)
1−µ) )

+γ(1− θ) (pm(1− ψt)Nt + 1
1+β

V (A · ((1− ψt)Nt)
1−µ) )


− (cvψt + cm(1− ψt))Nt

}
(4.16)

subject to the same boundary condition we have imposed before:

lim
N→1−

V (N) = 0.

The instantaneous profits are linear in prices and costs, so we have decided to

keep costs constant and only change the Mountain’s price (pm) in our simulations.

Our first result studies how the multinational’s optimal policy ψ∗(N) changes with

the Mountain’s price pm.
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Figure 4-16: Optimal policy as cost of Mountain changes

In Figure 4-16 we present two panels. The left panel shows the optimal allocation

for different number of suppliers, and the panel on the right just zooms into the case

when there are few suppliers available. Each colored line indicates a different price

149



level, and prices in the Mountain were varied in the range [0.5, 2.0].

As in the baseline model, when there are two firms the multinational allocates one

in each location to ensure survival. We decided to start the figure at that point because

nothing particularly new occurs for Nt = 1. As Nt increases, the multinational

allocates firms depending on the prices and the number of available suppliers.

When the prices are low, the optimal allocation is biased toward the Valley, and

when the prices are high, the allocation is biased toward the Mountain. Interestingly,

there is a price at which the allocation is virtually flat.

Figure 4-17 shows the optimal allocation in the Valley for a given N , but different

values of pm. The plot has been drawn for Nt = 10.
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Figure 4-17: Individual vs. Multinational Optimal with Heterogeneous prices.

The multinational transitions smoothly between extreme values of ψ∗ as the price

of the Mountain varies, but the decentralized equilibrium instantaneously shifts at a

critical value of p∗m ≈ 1.24. This phase transition from ψ∗ = 0 to ψ∗ = 1 occurs when

the values of the Mountain and Valley given by Equation 4.12 are equal.

There are two aspects worth highlighting from this simulation. First, the price

at which the multinational is indifferent between Mountain and Valley — the point

at which it allocates half the firms in the Valley — occurs between 1 and 1.2 (when

Ntψ = 5). Notice that the price at this indifferent point is much lower than the price
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at which the individuals are indifferent. The reason is that the value of continua-

tion is marginally improved when ψ is lowered from 1, and therefore the marginal

contribution for the multinational is larger than for the individual firm.

Second, there is a kink at the top left for the multinational. This is the place

where the optimal allocation in the Mountain would have implied less than one firm.

However, because of the value matching condition, the multinational allocates a max-

imum of 9 firms to the Valley. A similar kink occurs on the right side of the graph, but

the prices required to reach it are large - swamping the details of the graph presented.

4.6 Discussion and Policy Implications

Our model is quite minimalist and has the objective of highlighting the contrast

between the possible alternatives of approaching the global supply chain problem.

The most important result is that robustness in the presence of certain forms of

uncertainty replicates a behavior that tends to be considered sub-optimal or irrational

– firms follow a probability matching strategy. However, what does robustness looks

in practice, and what can policy makers do to achieve such an arrangement?

In this chapter we argue that robustness should be a stronger consideration for

the design of supply chains, but that this has not been the case. Therefore, it is not

surprising to us that there are many supply chain disruptions — during Covid-19

and even in 2021 with the scarcity of CPU’s. It is our opinion that Just-in-Time and

Just-in-Case are not enough to remedy those shocks. Moreover, JIT and JIC will

not provide assurances for shocks that are yet to come – for instance those related

to environmental disasters and social unrest. Therefore, instead of trying to find an

example that is either extremely particular or not terribly important, we have decided

to look at other industries that are designed for robustness. Those are the financial

system and the postal services.
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4.6.1 Robustness in Practice

The financial system is becoming more and more robust through time. This is driven

by the fact that it is a sector where supply disruptions are extremely costly, and

aggregate shocks tend to happen repeatedly. The financial industry continues to

advance and become more resilient – this is a slow process, but the institutions of

the modern banking system are ages ahead of those that existed at the beginning of

the 20th century. The banking system is safer today than ever before and that has

allowed for unprecedented growth.20

The banking system has deposit insurance, cash and capital requirements, stress

tests, specific rules to deal with failure, strict licenses of operation, and a lender

or last resort. Most of these institutional improvements have been proposed after

financial crises. Interestingly to us, supply disruptions have not tended to improve

the institutional environment of the global supply chain.

First, the stress test implemented after the 2008 crisis is clearly a tool to evaluate

the bank’s performance in a set of extreme circumstances. It is by definition an

statistic to measure the impact on the balance sheet in the worst case. In reality, the

worst case for each bank can be a different combination of shocks. There are some

cases in a supply chain — such as an internal production line — that stress tests are

performed. Very rarely is this evaluated internationally, certainly not to the extent

of achieving robustness to global shocks.

The second set of tools that are associated with robustness are those that deal

with readiness to a shock. In this case, capital requirements and cash reserves are

designed to protect the balance sheet to contingent loses. Failure of the stress tests

or the provision of capital requirements has consequences for financial institutions.

These sometimes include limiting the ability of the risky bank to continue operating,

and even the removal of its license to operate.

The third set of policies deal with the “clients" behavior. In the example of the

20In fact, if we were to take the current regulatory environment and the size and activities of the
banking system of 100 years ago, the probability of a financial crisis would be virtually zero. The
increased resilience and trust allows for the financial sector to continue expanding — which creates
new opportunities of disruption and subsequently new opportunities to improve it.
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banking system, the clients are the depositors. The objective of a federal deposit

insurance is to stop bank runs — or at least to reduce their severity and frequency.

Again, this is a policy that is entirely designed to deal with an extreme shock.

Finally, the existence of a lender of last resort works in conjunction with the

previous regulatory tools. It makes the deposit insurance credible, and it creates the

residual claimant of the stress tests and the capital requirements. Therefore, there

exists someone in the economy that is really concerned with the rescue of the banks

because it is extremely costly for them. One important aspect of the single residual

claimant of a banking crises is the ability to handle the informational frictions that are

likely to appear. This institutional arrangement offers social insurance to the banking

system, which leads to the standard moral hazard and adverse selection problems. It

is important in this design to take into account those issues. During the Covid-19

crisis we indeed observed a “lender of last resort” in the form of fiscal and monetary

policy support to firms and citizens. However, these were reactionary policies, and if

used repeatedly without proper design may create bad incentives.

When we think about the global supply chain, (i) there is a lack of stress tests,

(ii) most suppliers are independent and therefore there is little ability to enforce

proper firm health (equivalent to a capital requirement) (iii) there is no institution

that compensates clients for failures of the suppliers (analogous to the FDIC), and

(iv) only in the case when all the suppliers belong to a single firm can we find a

residual claimant (the lender of last resort). We hope this makes clear why supply

chain failures happen so regularly, and why ex-post these shocks look easy to deal

with – such as occurred with isopropyl alcohol and toilet paper.

We are obviously not advocating for a central bank equivalent of global supply

chains. We are, however, highlighting the fact that firms can design for and assess

robustness ex-ante. Stress testing is simple to implement and can even be a part of

the supply contract. Furthermore, capital requirements or financial health is usually

evaluated in some international relationships (such as joint ventures) but a process

of certification that is transparent and standardized would be more effective than

dealing with these issues on a case-by-case basis.
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There is a final aspect of robust supply chains that is hard to see in the financial

system — even though it exists. Probability matching implies resilience though re-

dundancies. A robust supply chain will have excess capacity that seems very costly

in normal times, because that excess capacity exists to be used if the extreme shock

occurs. It is exactly the opposite of Just-in-Time and on average contradicts Just-in-

Case which presumably implies that only half the time it has excess capacity. The

financial system has this excess capacity built into the tools we describe, but this

is more easily seen in the postal service. The postal service is a very robust supply

chain. Notice the elements: one residual claimant, continuous stress testing, and

excess capacity in normal times. In fact, the postal service has so much excess ca-

pacity that people in general argue that it is too inefficient. We are not arguing that

the postal service is efficient. We are highlighting that such a statement cannot be

made in the absence of robust thinking. If the postal service has been designed with

robustness in mind, it needs to look inefficient during normal times. This problem is

even harder to resolve in the global supply chain. The reason is that excess capacity

requires not only physical capital but also human capital. Multinationals need to

develop production capabilities in countries where, in normal times, it seems like a

bad decision to do so or a luxury the firm can avoid. Of course, these assessments

lead to underinvestment in production capabilities; when the shock hits, the regret

of not having invested settles in.

4.6.2 Uncertainty and Price Gouging in Reality

The two most important elements of our model are the existence of uncertainty and

the failure of prices to fully adjust. Uncertainty occurs when the distribution of a

model parameter is unknown, but it can fall only within a range. In macroeconomics,

uncertainty is pervasive, and rightfully so. Many shocks of different natures affect the

economy, and are transmitted through complex and unobservable networks that shift-

ing through time. Not surprisingly then, central bankers experience such uncertainty

and even “talk in ranges” (See Section 3.4 of Chapter 3).

In fact, as argued by Sargent and Hansen, uncertainty is the natural outcome
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of an estimation process where multiple models are acceptable. Uncertainty in our

economic and policy models should be the norm, although unfortunately it is not. We

believe that this failure may lead to bad policy choices – thereby increasing the risk

our economies are subjected to and the likelihood that living standards deteriorate.

The second important element in our model is price gouging. For example, if

firms knew ex-ante that prices would be allowed to increase to their fullest extent,

then firms would individually choose to diversify until locating in the Mountain or

the Valley has the same expected returns. There were several events during Covid-19

that show that prices did not adjust to this extent. First, many countries have price

gouging laws that limit firms’ ability to increase prices. So, after a supply shock prices

would increase – but not fully. Second, in many countries, lawsuits began accusing

firms of abusive behavior – most of which were related to price increases. Third, even

when prices for some goods increased, we saw stock-outs and rationing of products

— clearly signaling that the demand was higher than the supply and prices could

not have been at equilibrium. As we have said before, we know that price gouging as

modeled here is an extreme assumption. The supply disruptions and rationing that

occurred in developed nations for products such as food, beverages, personal care,

etc., indicates that prices never increased enough for it to be profitable for the supply

chain to diversify and prepare for large aggregate shocks. to the point at which it is

profitable for the supply chain to prepare for large aggregate shocks. Our results in

this chapter will qualitatively hold as long as prices do not adjust fully.

Furthermore, we see countries provide price incentives to curtail Just-in-Time

practices. As shown in Figure 4-16, there is a price of Mountain-produced goods for

which the multinational’s optimal policy implies diversification similar to the robust

policy. In fact, a similar heterogeneity of prices can make individual suppliers replicate

the robust policy as well. Therefore, a subsidy given to firms in riskier locations can

help achieve the robust allocation.

This conclusion is important because governments and the private sector might

experience risk differently. Typically, governments are the residual claimant in case

of natural disasters. Therefore, governments are more likely to prefer a "robust ap-
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proach" than the private sector would. For instance, if the cost of a natural disaster

is very asymmetric, the government is more likely to pay attention to the worst-case

than the private sector. If this is indeed the case, the government can align private

incentives by providing a small subsidy to the riskier location.

4.7 Conclusions

Covid-19 was an aggregate shock that highlighted the weaknesses on the supply chain.

Many products suffered disruptions: from personal protective equipment, to toilet

paper, and beer. It is clear that the supply chains of the world were not prepared

for this event. Many are imploring that "future" supply chains become more resilient

or robust — but what exactly is a robust supply chain? and how exactly do firms’

decisions change when taking a robust approach?

This chapter studies a very stylized model of a supply chain. A multinational pro-

ducing a product benefits from many suppliers providing parts, but those firms might

not choose the best allocation of resources when aggregate shocks are present. Our

model discusses how different arrangements of the supply chain emerge in different

settings. In particular, we concentrate on two factors: (i) the internalization of the

survival probability — in the spirit of the usual externalities; and (ii) the nature of

the shock with either risk or uncertainty.

In this chapter, a robust supply chain is that which optimally deals with uncer-

tainty. It implies designing for the worst-case of a set of aggregate shocks. Robustness

yields a strategy that seems to maximize survival probability, and therefore our model

rationalizes or explains the well known "probability matching" behavior observed in

experimental literature. Probability matching is the result of a group decision process

in which the number of people in the group who choose a given strategy is proportional

to the probability that that strategy will yield survival. Probability matching is inef-

ficient for individual decision-makers, as it is optimal for them to maximize their own

probability of survival. However, probability matching maximizes collective growth.

To achieve, or at least to get close to probability matching, we need coordination
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between small decentralized suppliers — the market does not work properly during a

crisis because the price system fails to signal scarcity correctly. A multinational can

partially remedy this by considering continuation value, and fiscal support can help

replicate the probability matching and robust allocation.

This chapter leaves many research questions that could be addressed in the fu-

ture. First, the relaxation of the identical price fixing period and investment horizons.

Implicitly, the question is to evaluate quantitatively the importance of the anti-price

gouging or partial price adjustment effects. Second, our model needs a market ineffi-

ciency to exist in order to break the first welfare theorem. This chapter concentrates

on such an inefficiency in the pricing system. However, it is conceivable that many

other market imperfections could produce similar results.21. The role of robustness

in those environments — with imperfect information, coordination failures, or exter-

nalities — might be a promising area of research.22

Finally, as we highlighted in this chapter, robustness is not equivalent to assuming

that shocks are larger or more severe; it is a fundamentally different strategy that

addresses uncertainty by minimize the losses of the worst case outcome. In doing

so, it produces a different form of diversification. Increasing the variance of shocks is

equivalent to arguing that the supply chain moves from Just-in-Time to Just-in-Case.

Uncertainty, on the other hand, implies that the supply chain moves to Just-in-Worst-

Case.

21We thank David Baqaee for providing us with these future avenues of research.
22Other forms of inefficiencies can affect how costly the supply disruptions can be. In our model

is a very simple mechanism, but see Baqaee and Farhi (2020) for a thorough study of misallocation
in general equilibrium of different market imperfections
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Chapter 5

Conclusion and Future Work

A large amount of modern economic analysis consists primarily of building abstract

mathematical models for decision-making. However, mathematical models are essen-

tial tools that rely heavily on model assumptions and calibrations. As a result, it is

an important question how to make decisions based on a collection of potentially true

models. This thesis studies this robustness issue in a variety of macroeconomic and

supply chain problems. Standing on the shoulder of existing literature, we develop

tools and theories to build a more robust macroeconomic decision-making process.

In the first chapter, we study the problem of identifying linear financial networks

using aggregate data. Since a financial network may be contingent on the type of

shock that hits it, an identification tool for multiple networks is needed. We showed

the solution uniqueness of identifying a single network using heteroskedasticity and

created an Expectation-Maximization based method to identify multiple linear net-

works in the theoretical section. We tested our strategy on credit default swap data

from US banks and discovered that three networks best represent the data. Fur-

thermore, each one of the networks ranks banks differently in terms of centrality. A

macroprudential policy would prepare for the worst case of the three networks.

In the second chapter, we examine whether more policy instruments are always

better in a bounded uncertainty setting. Bounded uncertainty is the more appropriate

modeling tool for our central banking problem because many quantities in central

banking are more commonly communicated in terms of falling in a range rather
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than following a distribution. When bounded uncertainty is transmitted through a

conditional expectation channel, we find that not utilizing a policy tool is sometimes

the better option for a central bank. Two monetary policy models for asset purchasing

and forward guidance are used to illustrate the phenomenon.

In the third chapter, we look at a stylized supply chain model to see how a global

corporation’s decision alters in the face of anti-price gouging and uncertainty. This

chapter created a basic model in which huge multinationals diversify their manufac-

turing plants to higher-cost countries due to continuation values despite having a

fixed price. Our approach is based on a class of literature on adaptive markets and

probability matching. It means that having a small number of large enterprises is

more efficient than having a large number of small firms in a market with aggregate

shock and anti-price gouging rules. We also look at a robust supply chain that fo-

cuses on the worst-case scenario. Our model explains the behavior of "probability

matching" reported in the experimental literature.

Sophisticated mathematical models improve our economy’s efficiency and some-

times bring with it the problem of model robustness. More and more models are

verified, selected, and calibrated with the help of big data, but large economic shocks

usually bring fundamental changes not reflected in the data collected in normal times.

As a result, the robustness challenge is even more prominent these days in economics,

as well as other social science domains. There is a lot of exciting future research in

this area, many of which I do not have enough knowledge to comment on. In the

following paragraphs, I will focus on a few that are closest to my research expertise.

We discussed a forward guidance model in an environment with bounded uncer-

tainty in the second chapter. The model is based on a linearized New Keneysian

Model of central banking. While the linearized model is enough for our purpose and

is straightforward to solve, we cannot use it to study the effect of model uncertainty

in the inflation dynamics models. In the New Keynesian model, while the Euler

equation part is widely accepted and adopted in many different analyses, there are

many different ways to model the inflation dynamics part. The canonical one that

we embraced assumes sticky prices and no capital accumulation. While those as-
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sumptions allow us to derive a linearized New Keynesian Phillips curve in just a few

steps, it is a great simplification of reality. It will be interesting to discuss the robust

decision rules of the central bank when the New Keynesian Phillips curve has a large

model uncertainty. This future research will also have a critical real-world impact,

since many empirical papers have found that the slope of the Phillips curve has a

considerable variation when fitted with data collected in recent years.

We discussed a stylized model of a supply chain facing aggregate shocks in the

third chapter. A critical assumption in this chapter is the fixed price due to price

rigidity and anti-price gouging. Although this assumption is enough to demonstrate

our point and makes the model straightforward to solve, we cannot analyze or measure

the amount of price distortion and the induced allocation distortion without a model

with a partially adjusted price system. Some established price rigidity models can

be used to improve our analysis. While the model may become much harder to

solve, it might suggest a way to estimate or measure the fragility of supply chains in

different industries. This would then help build a warning system for industry-wide

catastrophic supply chain failures.

Furthermore, many global games model gives a continuum of multiple equilibria.

Although more granular modeling of the dynamics of equilibrium formation can of-

ten pin down the unique equilibrium, the information required may not always be

available to policymakers. As a result, policymakers have to make decisions based on

a range of potential equalibria results. In this case, the equilibrium value cannot be

modeled as a random variable with some distribution. Instead, policymakers should

model it as a bounded uncertainty term and apply a robust decision-making rule.

161



162



Bibliography

Acemoglu, D., A. Ozdaglar, and A. Tahbaz-Salehi (2015). Systemic risk and stability
in financial networks. The american economic review 105 (2), 564–608.

Adrian, T. and M. K. Brunnermeier (2016). Covar. American Economic Re-
view 106 (7), 1705–1741. Predicting and measuring a financial institution’s con-
tribution to systemic risk that internalizes externalities and avoids procyclicality.

Alfaro, L., D. Chor, P. Antras, and P. Conconi (2019). Internalizing global value
chains: A firm-level analysis. Journal of Political Economy 127 (2), 508–559.

Allen, F., A. Babus, and E. Carletti (2012). Asset commonality, debt maturity and
systemic risk. Journal of Financial Economics 104 (3), 519–534.

Allen, F. and D. Gale (2000). Financial contagion. Journal of political econ-
omy 108 (1), 1–33.

Ambulkar, S., J. Blackhurst, and S. Grawe (2015). Firm’s resilience to supply chain
disruptions: Scale development and empirical examination. Journal of operations
management 33, 111–122.

Anand, K., B. Craig, and G. Von Peter (2015). Filling in the blanks: Network
structure and interbank contagion. Quantitative Finance 15 (4), 625–636.

Anderson, D. and P. Apfel (2020, July). Covid-19 global impact: A world tour of
competition law enforcement (4 "tracker maps"). www.concurrences.com.

Anderson, E., N. Jaimovich, and D. Simester (2015). Price stickiness: Empirical
evidence of the menu cost channel. Review of Economics and Statistics 97 (4),
813–826.

Andrade, P., G. Gaballo, E. Mengus, and B. Mojon (2019). Forward guidance and
heterogeneous beliefs. American Economic Journal: Macroeconomics 11 (3), 1–29.

Antras, P. (2003). Firms, contracts, and trade structure. The Quarterly Journal of
Economics 118 (4), 1375–1418.

Antras, P. (2015). Global production: Firms, contracts, and trade structure. Princeton
University Press.

Antràs, P. (2020). Conceptual aspects of global value chains. The World Bank.

163



Antràs, P. and D. Chor (2013). Organizing the global value chain. Economet-
rica 81 (6), 2127–2204.

Antràs, P. and D. Chor (2018). On the measurement of upstreamness and down-
streamness in global value chains. Routledge.

Antràs, P. and A. De Gortari (2020). On the geography of global value chains.
Econometrica 88 (4), 1553–1598.

Baqaee, D. R. and E. Farhi (2020). Productivity and misallocation in general equi-
librium. The Quarterly Journal of Economics 135 (1), 105–163.

Billio, M., M. Getmansky, A. W. Lo, and L. Pelizzon (2010). Econometric measures
of systemic risk in the finance and insurance sectors. Technical report, National
Bureau of Economic Research.

Bishop, C. M. (2006). Pattern recognition and machine learning. springer.

Board of Governors of the Federal Reserve System (2021, Feb). Monetary policy
report.

Brennan, T. J. and A. W. Lo (2011). The origin of behavior. The Quarterly Journal
of Finance 1 (01), 55–108.

Caballero, R. J. and E. Engel (2006). Price stickiness in ss models: basic properties.
unpublished, MIT, October .

Caballero, R. J. and A. Simsek (2013). Fire sales in a model of complexity. The
Journal of Finance 68 (6), 2549–2587.

Cabrales, A., P. Gottardi, and F. Vega-Redondo (2017). Risk sharing and contagion
in networks. The Review of Financial Studies 30 (9), 3086–3127.

Campbell, J. R., C. L. Evans, J. D. Fisher, A. Justiniano, C. W. Calomiris, and
M. Woodford (2012). Macroeconomic effects of federal reserve forward guidance.
Brookings Papers on Economic Activity 2012 (1), 1–80.

Caporin, M., L. Pelizzon, F. Ravazzolo, and R. Rigobon (2018). Measuring sovereign
contagion in europe. Journal of Financial Stability 34, 150–181.

Cary, G. S., M. J. F. M. Dolmans, B. Hoffman, T. Graf, L. Brannon, R. Pepper,
H. Mostyn, A. R. B. Lazda, S. Haynes, K. Georgieva, and J. Przerwa (2020, April).
Exploitative abuses, price gouging & covid-19: The cases pursued by eu and na-
tional competition authorities. www.concurrences.com.

Chen, H., W. W. Dou, and L. Kogan (2019). Measuring dark matter in asset pricing
models. Technical report, National Bureau of Economic Research.

Christiano, L. J., M. Eichenbaum, and C. L. Evans (1999). Monetary policy shocks:
What have we learned and to what end? Handbook of macroeconomics 1, 65–148.

164



Cisternas, G. (2018). Two-sided learning and the ratchet principle. The Review of
Economic Studies 85 (1), 307–351.

Del Negro, M., M. P. Giannoni, and C. Patterson (2012). The forward guidance
puzzle. FRB of New York Staff Report (574).

Durach, C. F. and J. A. Machuca (2018). A matter of perspective–the role of inter-
personal relationships in supply chain risk management. International Journal of
Operations & Production Management 38 (10), 1866–1887.

Dworczak, P., S. D. Kominers, and M. Akbarpour (2020). Redistribution through
markets.

Eichengreen, B., A. Mody, M. Nedeljkovic, and L. Sarno (2012). How the subprime
crisis went global: evidence from bank credit default swap spreads. Journal of
International Money and Finance 31 (5), 1299–1318.

Elliott, M., B. Golub, and M. O. Jackson (2014). Financial networks and contagion.
American Economic Review 104 (10), 3115–53.

Elsinger, H., A. Lehar, and M. Summer (2013). Network models and systemic risk
assessment. Handbook on Systemic Risk 1, 287–305.

Evans, D. (2020, Feb). Coronavirus shows that supply chains are outdated and unfit
for modern manufacturing. www.forbes.com.

Farmer, R. E., D. F. Waggoner, and T. Zha (2007). Understanding the new-keynesian
model when monetary policy switches regimes. Technical report, National Bureau
of Economic Research.

Fiorina, M. P. (1971). A note on probability matching and rational choice. Behavioral
Science 16 (2), 158–166.

Forbes, K. J. and R. Rigobon (2002). No contagion, only interdependence: measuring
stock market comovements. The journal of Finance 57 (5), 2223–2261.

Fraley, C. and A. E. Raftery (1998). How many clusters? which clustering method?
answers via model-based cluster analysis. The computer journal 41 (8), 578–588.

Freixas, X., B. M. Parigi, and J.-C. Rochet (2000). Systemic risk, interbank rela-
tions, and liquidity provision by the central bank. Journal of money, credit and
banking 32 (3), 611–638.

Gai, P., A. Haldane, and S. Kapadia (2011). Complexity, concentration and contagion.
Journal of Monetary Economics 58 (5), 453–470.

Gai, P. and S. Kapadia (2010). Contagion in financial networks. Proceedings of
the Royal Society A: Mathematical, Physical and Engineering Sciences 466 (2120),
2401–2423.

165



Gaissmaier, W. and L. J. Schooler (2008). The smart potential behind probability
matching. Cognition 109 (3), 416–422.

Galí, J. (2015). Monetary policy, inflation, and the business cycle: an introduction
to the new Keynesian framework and its applications. Princeton University Press.

Galı, J. and M. Gertler (1999). Inflation dynamics: A structural econometric analysis.
Journal of monetary Economics 44 (2), 195–222.

Gilboa, I. and D. Schmeidler (1989). Maxmin expected utility with non-unique prior.
Journal of mathematical economics 18 (2), 141–153.

Girardi, G. and A. T. Ergün (2013). Systemic risk measurement: Multivariate garch
estimation of covar. Journal of Banking & Finance 37 (8), 3169–3180.

Guerrieri, V. and G. Lorenzoni (2017). Credit crises, precautionary savings, and the
liquidity trap. The Quarterly Journal of Economics 132 (3), 1427–1467.

Hallegatte, S. (2015). The indirect cost of natural disasters and an economic definition
of macroeconomic resilience. The World Bank.

Hansen, L. P. (1982). Large sample properties of generalized method of moments
estimators. Econometrica: Journal of the Econometric Society 50 (4), 1029–1054.

Hansen, L. P. and T. J. Sargent (2008). Robustness. Princeton university press.

Helpman, E., M. J. Melitz, and S. R. Yeaple (2004). Export versus fdi with hetero-
geneous firms. American economic review 94 (1), 300–316.

Holmström, B. (1999). Managerial incentive problems: A dynamic perspective. The
review of Economic studies 66 (1), 169–182.

Junker, B. H. and F. Schreiber (2008). Analysis of biological networks, Volume 2.
Wiley Online Library.

Kahneman, D., S. P. Slovic, P. Slovic, and A. Tversky (1982). Judgment under
uncertainty: Heuristics and biases. Cambridge university press.

Kahneman, D. and A. Tversky (1979). Prospect theory: An analysis of decision under
risk. Econometrica 47, 263–291.

Kalbaska, A. and M. Gątkowski (2012). Eurozone sovereign contagion: Evidence from
the cds market (2005–2010). Journal of Economic Behavior & Organization 83 (3),
657–673.

Katz, L. (1953). A new status index derived from sociometric analysis. Psychome-
trika 18 (1), 39–43.

King and Spalding (2020). Covid-19 survey of federal and state price gouging laws.
www.kslaw.com.

166



Kremer, M. (1993). The o-ring theory of economic development. The Quarterly
Journal of Economics 108 (3), 551–575.

Kritzman, M., Y. Li, S. Page, and R. Rigobon (2011). Principal components as a
measure of systemic risk. The Journal of Portfolio Management 37 (4), 112–126.

Laubach, T. and J. C. Williams (2003). Measuring the natural rate of interest. Review
of Economics and Statistics 85 (4), 1063–1070.

Little, R. J. and D. B. Rubin (2019). Statistical analysis with missing data, Volume
793. John Wiley & Sons.

Lo, A. W. (2017). Adaptive markets. Princeton University Press.

Long, S. (2020, May). Coronavirus pandemic exposes fatal flaws of the ’just-in-time’
economy. www.abc.net.au.

Maccheroni, F., M. Marinacci, and D. Ruffino (2013). Alpha as ambiguity: Robust
mean-variance portfolio analysis. Econometrica 81 (3), 1075–1113.

Mavroeidis, S., M. Plagborg-Møller, and J. H. Stock (2014). Empirical evidence on
inflation expectations in the new keynesian phillips curve. Journal of Economic
Literature 52 (1), 124–88.

McKay, A., E. Nakamura, and J. Steinsson (2016). The power of forward guidance
revisited. American Economic Review 106 (10), 3133–58.

Melitz, M. J. (2003). The impact of trade on intra-industry reallocations and aggre-
gate industry productivity. Econometrica 71 (6), 1695–1725.

Merton, R. C., M. Billio, M. Getmansky, D. Gray, A. W. Lo, and L. Pelizzon (2013).
On a new approach for analyzing and managing macrofinancial risks (corrected).
Financial Analysts Journal 69 (2), 22–33.

Miao, J. and A. Rivera (2016). Robust contracts in continuous time. Economet-
rica 84 (4), 1405–1440.

Morse, E. B. and W. N. Runquist (1960). Probability-matching with an unscheduled
random sequence. The American journal of psychology 73 (4), 603–607.

Oh, H. and R. Reis (2012). Targeted transfers and the fiscal response to the great
recession. Journal of Monetary Economics 59, S50–S64.

Onnela, J.-P., K. Kaski, and J. Kertész (2004). Clustering and information in corre-
lation based financial networks. The European Physical Journal B 38 (2), 353–362.

Pasquariello, P. (2017). Government intervention and arbitrage. The Review of Fi-
nancial Studies 31 (9), 3344–3408.

167



Pasquariello, P., J. Roush, and C. Vega (2011). Government intervention and strategic
trading in the us treasury market. Journal of Financial and Quantitative Analysis,
1–91.

Plenert, G. (2007). Reinventing lean: introducing lean management into the supply
chain. Oxford, UK: Butterworth-Heinemann.

Rigobon, R. (2003). Identification through heteroskedasticity. Review of Economics
and Statistics 85 (4), 777–792.

Rotemberg, J. J. (2002). Customer anger at price increases, time variation in the
frequency of price changes and monetary policy. Technical report, National Bureau
of Economic Research.

Rotemberg, J. J. (2011). Fair pricing. Journal of the European Economic Associa-
tion 9 (5), 952–981.

Rudd, J. and K. Whelan (2005). New tests of the new-keynesian phillips curve.
Journal of Monetary Economics 52 (6), 1167–1181.

Saenz, M. J., X. Koufteros, C. F. Durach, A. Wieland, and J. A. Machuca (2015). An-
tecedents and dimensions of supply chain robustness: a systematic literature review.
International Journal of Physical Distribution & Logistics Management 45 (1),
118137.

Sentana, E. and G. Fiorentini (2001). Identification, estimation and testing of condi-
tionally heteroskedastic factor models. Journal of econometrics 102 (2), 143–164.

Seth, A. K. (2007). The ecology of action selection: insights from artificial life.
Philosophical Transactions of the Royal Society.

Sion, M. et al. (1958). On general minimax theorems. Pacific Journal of mathemat-
ics 8 (1), 171–176.

Stegeman, A. and N. D. Sidiropoulos (2007). On kruskals uniqueness condition for the
candecomp/parafac decomposition. Linear Algebra and its applications 420 (2-3),
540–552.

Stein, J. C. and A. Sunderam (2018). The fed, the bond market, and gradualism in
monetary policy. The Journal of Finance 73 (3), 1015–1060.

Strzalecki, T. (2011). Axiomatic foundations of multiplier preferences. Economet-
rica 79 (1), 47–73.

Temizsoy, A., G. Iori, and G. Montes-Rojas (2017). Network centrality and funding
rates in the e-mid interbank market. Journal of Financial Stability 33, 346–365.

The FT Editorial Board (2020, April). Companies should shift from just in time to
just in case. Financial Times.

168



Thurner, S. and S. Poledna (2013). Debtrank-transparency: Controlling systemic risk
in financial networks. Scientific reports 3, 1888.

Todd, P. M. and G. Gigerenzer (2012). Ecological rationality: Intelligence in the
world.

Töyli, J., H. Lorentz, L. Ojala, A. Wieland, and C. M. Wallenburg (2013). The
influence of relational competencies on supply chain resilience: a relational view.
International Journal of Physical Distribution & Logistics Management 43 (4), 300–
320.

Tran, B. R., D. J. Wilson, et al. (2020). The local economic impact of natural
disasters. Technical report.

UK Competition Authority (2020, April). The uk competition authority publishes
update on its covid-19 taskforce, including a number of excessive pricing complaints
and investigations. www.concurrences.com.

Upper, C. (2011). Simulation methods to assess the danger of contagion in interbank
markets. Journal of Financial Stability 7 (3), 111–125.

Vickery, S. n., R. Calantone, and C. Dröge (1999). Supply chain flexibility: an
empirical study. Journal of supply chain management 35 (2), 16–24.

Vitale, P. (2018). Robust trading for ambiguity-averse insiders. Journal of Banking
& Finance 90, 113–130.

Vulkan, N. (2000). An economists perspective on probability matching. Journal of
economic surveys 14 (1), 101–118.

Wagner, S. M. and C. Bode (2006). An empirical investigation into supply chain
vulnerability. Journal of purchasing and supply management 12 (6), 301–312.

Yeaple, S. R. (2003). The complex integration strategies of multinationals and cross
country dependencies in the structure of foreign direct investment. Journal of
international economics 60 (2), 293–314.

Zhao, S. and F. You (2019). Resilient supply chain design and operations with
decision-dependent uncertainty using a data-driven robust optimization approach.
AIChE Journal 65 (3), 1006–1021.

169


