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Abstract 

All players in the healthcare industry face increasing public and political pressure to improve 
quality of care and control costs. Hospitals, on the frontline of this challenge, face nursing short-
ages and financial constraints. Survey data indicate that missing medication and supplies inter-
rupt nurses more than twice per shift, increasing costs and putting patients at risk. These chal-
lenges persist even though over 72% of U.S. hospitals have deployed Automated Dispensing 
Machines (ADMs), electronic cabinets that automate inventory management processes and im-
prove product availability.  

This research investigates the role of inventory inaccuracies, i.e., mismatches between book in-
ventory and physical inventory on hand, as drivers of product availability in hospitals. The re-
search objectives are three-fold: (1) characterize the sources of inventory inaccuracies prevalent 
in a hospital context; (2) quantify the impact of inventory inaccuracies on product availability 
and performance metrics; and (3) identify and evaluate practical strategies that hospitals can use 
to improve product availability by reducing and mitigating inventory inaccuracies. 

This thesis views the hospital supply chain as a socio-technical system and addresses the re-
search questions using a multilevel, multi-method approach. The research is empirically 
grounded by the case study of Lambda, a New England area hospital that provided qualitative 
and high-frequency transactional data from its network of 108 ADMs that stock over 21,000 
product-location combinations. 

First, by classifying sources of inventory inaccuracies this thesis identifies Imperfect Demand 
Recording as a hospital-specific source of such inaccuracies. Recording Accuracy is proposed as 
a metric of user behavior at product and location levels, and reveals that between five and thirty 
percent of product usage is not recorded. Then, a single-product Discrete-Event Simulation 
(DES) model shows that Imperfect Demand Recording causes large reductions in availability un-
less mitigated by frequent and consistent (i.e., equally-spaced) inventory counts, and that service 
level estimates provided by ADMs can have a large, optimistic bias. Assuming that count timing 
is independent of inventory state, an analytical model provides a closed-form generalization of 
the simulation results and shows that variability in cycle count has a nonlinear and substantial ef-
fect, causing 35% of counts performed at Lambda to be ineffective. Finally, a sequential and it-
erative framework integrating the managerial implications of these contributions is proposed. 
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Chapter 1 

Introduction 

1.1 Background and Motivation 
U.S. health care costs are the highest in the world (OECD, 2009). In 2007, expenditures on 

health care reached $7,421 per capita, amounted to 16.2% of GDP and kept increasing faster than 

inflation (CMS, 2009). This represents a tremendous burden for all payers: households whose 

health insurance premiums increased at an average rate of 10% per year between 1999 and 2006, 

corporations whose competitiveness is diminished by employee health care costs, and the gov-

ernment whose budget deficit (and projected future deficits) is due, in part, to the Medicare and 

Medicaid programs.  

Beyond costs, according to some observers, the U.S. health care system is not delivering an ac-

ceptable level of performance (Reid, 2005). In 2005, the National Academy of Engineering and 

Institute of Medicine published a joint report entitled “Building a Better Delivery System, a New 

Engineering/Healthcare Partnership” recommending the application of systems engineering tools 

to promote the following objectives for the health care system: Safety, Effectiveness (avoiding 

under use and overuse), Patient-centric care, Timeliness, Efficiency and Equity. While some lo-

cal improvement efforts have been achieved using systems engineering tools, the report notes 

that information technology-intensive enterprise management and supply chain management 

have not been applied strategically to measure and improve performance (Reid, 2005). 
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Within the health care industry, hospitals face strong financial and operational pressures. In 

2004, over 25% of hospitals had a negative margin and the aggregate operating margin for the 

industry was 3.6% (AHA & Levin Group, 2006). Operationally, and in spite of the 2008-2009 

recession, hospitals faced difficulties hiring and retaining nurses as the overall nurse population 

ages (BLS, 2010). In an observational study of 26 nurses in nine U.S. hospitals, Tucker (2004) 

reports that time spent resolving operational failures accounted for 9% of total nursing time, and 

was almost equal to overtime. Problems originating outside the nursing unit, such as a late medi-

cation or a shortage of swabs necessary for taking a sample for infection testing, accounted for 

55% of failures and had a median cost of $124 per incident. In a subsequent survey of nurses in 

48 U.S. hospitals, nurses reported an average of 4.5 operational failures per shift, with failures 

linked to supply items averaging 1.2 times per shift (Tucker & Spear, 2006). Therefore, insuffi-

cient product availability is a frequent problem in U.S. hospitals, and results in additional nursing 

and management time, delayed procedures and workflow interruptions that put patients at risk of 

medical errors (Tucker & Spear, 2006). 

1.2 Research Opportunity: the Hospital Internal 
Supply Chain as an Engineering System 
Given the societal and economic importance of the healthcare and hospital industries in devel-

oped nations and the burden of the issues faced by practitioners, it is surprising how little atten-

tion its supply chain has received to date, at least in comparison with manufacturing. Within the 

health care supply chain, hospitals seem to have received the least attention, despite the fact that 

this “last mile” suffers from significant challenges (Singh & Rice, 2006; Tucker, 2004; Tucker & 

Spear, 2006). For instance, inventory turns and labor utilization are typically lower in hospitals 

materials management departments than at distribution centers due to the economies of scale and 

scope. From the viewpoint of hospital executives, the most natural explanation is that supply 

chain management is often considered a peripheral or ancillary function - usually referred to as 

“materials management” - relative to clinical services that constitute the core mission of the or-

ganization (Singh & Rice, 2006). For this reason, until recently hospitals may have been a less 

natural research ground for supply chain management academics.  
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In 2005, 72% of U.S. hospitals had deployed Automated Dispensing Machines (ADMs), elec-

tronic cabinets that automate inventory management processes (Pedersen, Schneider, & 

Scheckelhoff, 2006). However, inventory inaccuracies, i.e. mismatches between the book inven-

tory and physical inventory on hand, are common in these systems (Klibanov & Eckel, 2003). In 

a case study of Automated Dispensing Machines in a Midwestern hospital, DeScioli (2005) re-

ports anecdotal evidence that demand is not always recorded by end-users, a phenomenon which 

this thesis refers to as Imperfect Demand Recording. Of course, inventory inaccuracies are not 

unique to hospitals and were first acknowledged as a significant problem in the 1960's, in par-

ticular by Rinehart (1960) within government supply centers. However, the advent of technolo-

gies enabling (or claiming to achieve) better inventory visibility, such as Radio-Frequency Iden-

tification (RFID), has prompted further research into inventory inaccuracy since 2003, which is 

reviewed in Chapter 3 of this thesis. Most of the recent literature focuses on retail environments 

and treats inventory inaccuracies as exogenous factors that are independent from demand.  

1.3 Research Objectives 
This thesis takes an Engineering Systems perspective, looking at the internal hospital supply 

chain, defined as starting at the dock of the hospital and ending at the patient bedside. It investi-

gates the role of inventory inaccuracies in product availability. 

The thesis has three research objectives: (1) characterize the sources of inventory inaccuracies 

prevalent in a hospital context; (2) quantify the impact of inventory inaccuracies on product 

availability and performance metrics; and (3) identify and evaluate practical strategies that hospi-

tals can use to improve product availability by reducing and mitigating inventory inaccuracies. 

The research questions are addressed using a multilevel (i.e. at the product, ward, and hospital 

levels) and multi method, systems approach, combining statistical methods, Discrete-Event Si-

mulation (DES), and analytical models. The research is empirically grounded by the case study 

of Lambda, a New England area hospital that provided qualitative and high-frequency transac-

tional data from its network of 108 ADMs that stock over 21,000 product-location combinations. 
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1.3.1 Characterizing the sources of inventory inaccuracies 
The first step of this thesis is to qualitatively and quantitatively characterize the sources of inven-

tory inaccuracies in terms of user behavior within the context of the operations of a hospital, and 

understand how these inaccuracies are mitigated. 

- (Q1a) Can we identify and quantify specific user behaviors that introduce inventory in-

accuracies in the hospital? 

- (Q1b) How are inventory inaccuracies currently mitigated in the hospital? 

Research question (Q1a) aims at establishing a qualitative and quantitative understanding of the 

sources of inventory inaccuracies within the context of a hospital’s inventory management proc-

esses. First, this thesis provides a background assessment and allows us to evaluate assumptions 

about inventory inaccuracies made in recent inventory management models that account for in-

ventory inaccuracies. Second, we develop a measurement methodology to assist in identifying 

problem areas, targeting improvement opportunities, and providing feedback to users in order to 

drive behavioral change. Research question (Q1b) focuses on existing counting policies and is 

addressed in section 7.3. 

1.3.2 Impact of inventory inaccuracies on system performance 
The second point investigated is the impact of inventory record inaccuracies on product avail-

ability and metrics of product availability. The specific research questions are: 

- (Q2a) What is the quantitative impact of inventory record inaccuracies on book and 

physical product availability? 

- (Q2b) How do counting policies affect product availability? 
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1.3.3 Practical strategies for the reduction and management of in-
ventory inaccuracies in the hospital 
Much of the research in the area of inventory inaccuracy is within the retail sector. Within this 

context, DeHoratius, Mersereau and Schrage (2008) identify “at least three ways a retailer may 

respond to inventory record inaccuracy:  

1. “Prevention: Reduce or eliminate the root causes of inventory record inaccuracy through 

the implementation and execution of process improvement.” 

2. “Correction: Identify and correct existing inventory record discrepancies through auditing 

policies.” 

3. “Integration: Use inventory planning and decision tools robust enough to account for the 

presence of record inaccuracy.” (DeHoratius, et al., 2008, p. 258) 

In addition to these three ways, hospitals sometimes respond by adding inventory to buffer the 

inventory record uncertainty (i.e., “safety stock”). However, this strategy is often limited by the 

lack of physical space in the hospitals (more specifically, by the opportunity cost of inventory 

storage space in the hospital relative to a revenue-generating room), by the opportunity cost of 

capital, and by the costs of wasted products due to obsolescence.  

The benefits of prevention, correction and integration are assessed through sensitivity analyses 

on the quantitative models established in answering (Q2). Research question (Q3) can be sum-

marized in the following way: 

- (Q3) What are effective strategies that hospital managers can use, recognizing the inter-

dependencies between different approaches? 

As an example of such interdependencies, consider a Correction strategy consisting of more fre-

quent physical audits. First, Correction purges the inventory inaccuracies in the system and miti-

gates their consequences. Second, by providing more data on such inventory inaccuracies, it al-
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lows for improved measurement of the drivers of inventory inaccuracies (using the methodolo-

gies derived in Q1a), therefore supporting Prevention-focused process improvements efforts. 

Deriving an “optimal” strategy would require extensive modeling of the (uncertain) costs in-

volved in implementing all three approaches and their combinations. Therefore, the approach in 

(Q3) is not to seek such an “optimal” strategy, but rather to evaluate the effectiveness of different 

operationally-realistic scenarios, providing the manager with insights into the tradeoffs and ex-

pected effects of pursuing different strategies, depending on the current level of inaccuracies in 

the system.  

1.4 Dissertation Structure and Overview 
This section summarizes the purpose of each subsequent chapter.  

Chapter 2 provides background on the structure of the hospital supply chain. A generic hospital 

supply chain is described as a socio-technical system in terms of stakeholders with different ob-

jectives, and placed within the context of the broader U.S. healthcare system. 

Chapter 3 is a review of different streams of literature relevant to this thesis. First, research on 

hospital supply chain management is considered, with a particular focus on inventory manage-

ment. Second, research on inventory inaccuracy is reviewed, including descriptive work assess-

ing the prevalence of the problem in different industries, studies of the impact of inventory inac-

curacies on system performance and potential mitigation strategies.  

Chapter 4 expands the detailed research questions and describes the research approach used to 

address them. First, the characteristics of the hospital supply chain that have not been addressed 

in the literature, in particular underlying assumptions about the process generating inventory in-

accuracies, and differences in the availability of frequent count data, are discussed. Lambda hos-

pital, a 300-bed New England hospital that has invested in Automated Dispensing Machines 

(ADMs) is introduced as an in-depth case study of a hospital supply chain. As part of this case 

study, over 3 million transaction records, covering a period of over 15 months, were collected for 

data analysis. Even if the extent of inventory inaccuracies varies among hospitals, it is important 
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to note that Automated Dispensing Machines are commonly in use at many U.S. hospitals, and 

therefore the methodologies developed and analyzed in this case study are widely applicable.  

Chapter 5 characterizes the sources of inventory inaccuracies at Lambda (Q1). First, potential 

sources of inventory inaccuracies are listed and their relative importance is assessed, based on 

data collected through hospital interviews and quantitative transactional data. Imperfect Demand 

Recording is identified as a major source of inventory inaccuracies at Lambda. The root causes 

of this phenomenon are discussed, a metric for characterizing behavioral sources of inventory in-

accuracy is introduced, and inventory inaccuracies are quantified using Lambda’s transaction 

data according to this quantitative methodology. 

Chapter 6 describes a Discrete-Event Simulation model of inventory inaccuracy in the hospital. 

First, the model’s assumptions, structure and output are described. Throughout the model, the 

true (or physical) state of the system, defined as the “Physical View” (PV) is distinguished from 

the state of the system as recorded in the information system, defined as the “Book View” (BV). 

This modeling paradigm has multiple advantages: (1) it enables modeling the effects of informa-

tion inaccuracy; (2) it ensures that all operational decisions are executed using only the informa-

tion available in the “Book View”; and (3) the analysis of the output data can compare and con-

trast both views, potentially highlighting areas where “Book View” metrics are biased by inven-

tory inaccuracies, providing the methodology for addressing questions (Q2a), (Q2b). A possible 

bias between real and measured performance is identified and analyzed for different performance 

metrics under different inventory counting policies. Variability in the time between counts is 

identified as a factor that reduces product availability. Multiple strategies to improve product 

availability are evaluated on a sample of products from the hospital using a factorial simulation 

experiment. 

Chapter 7 generalizes the observations made in chapter 6 on the effects of count variability using 

an analytical model, and provides empirical evidence of count variability using data from Lamb-

da and estimates of the cost of count variability. 
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Chapter 8 examines practical strategies that hospital managers can use to reduce and mitigate in-

ventory inaccuracy (Q3). Their managerial implications are discussed and a sequential and itera-

tive improvement framework is proposed.  

Finally, chapter 9 summarizes the conclusions and contributions of this dissertation, and provides 

suggestions for further research. 
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Chapter 2 

The Hospital Supply Chain 

Hospitals are a major and critical component of the health care delivery system in developed 

economies. In the U.S., hospital care (excluding services performed by physicians in a hospital 

but billed independently) accounted for 31% of total health care expenditures in 2007, represent-

ing the largest cost component (CMS, 2009). 

This chapter presents background information on the hospital supply chain. First, the hospital 

supply chain is situated within the larger U.S. health care delivery system. Second, the hospital 

supply chain is viewed as socio-economic-technical system, and its stakeholders and technical 

infrastructure are presented.  

2.1 The Hospital Supply Chain within the Health 
Care Delivery System 
Throughout this thesis, descriptions about health care and hospital supply chains always pertain 

to the U.S. context, unless otherwise noted. This choice of focus stems from large differences in 

the organization and financing of health care delivery across countries, and in particular, the fact 
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that the U.S. does not have a universal health care system administered by government affiliated 

entities, unlike most developed economies (Institute of Medicine, 2004). 

2.1.1 Overview of the U.S. health care delivery system 
A health care delivery system is characterized by multiple types of stakeholders: Patients or the 

Public at-large, who require health care services; Providers, who deliver the care in different 

types of facilities (hospitals, clinics, pharmacies, nursing homes); and Payers, who reimburse 

Providers for the services performed, from funds collected as insurance premiums or taxes, as 

displayed in Figure 2-1. Charities are payers and/or providers. This describes, at a high level, the 

flow of care services and money.  

 

Figure 2-1: Flows of Money and Services in a Health Care Delivery system (Berndt, 2007) 

Mentzer, et al. (2001) define a supply chain as “a set of three or more entities (organizations or 

individuals) directly involved in the upstream and downstream flows of products, services, fi-

nances, and/or information from a source to a customer.” The previous description of the health 

care delivery system is limited to the delivery of the care services, and should be completed with 

a description of the physical, financial and information flows related to the medical goods that 

enable care. Based on a three-year study of the health care value chain, Burns (2002) decom-
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poses the chain into five steps defined by groups conducting similar tasks: Payers (government, 

employers, individuals), Financial intermediaries (insurers, health-maintenance organizations 

and pharmacy benefits managers), Providers (hospitals, doctors, outpatient clinics, pharmacists), 

Purchasers (distributors of pharmaceuticals and medical and surgical goods, and group purchas-

ing organizations (GPOs)), and Producers (pharmaceuticals and medical devices manufacturers, 

medical surgical manufacturers, information technology vendors and capital equipment manufac-

turers. 

2.1.2 The hospital within the health care supply chain 
The flow of medical goods, information and money defines the health care supply chain, with 

products flowing from raw materials suppliers, through manufacturers and distributors, through-

out the hospital until they reach the patient. From the perspective of the hospital, the health care 

supply chain can be decomposed into the external supply chain and the internal supply chain 

(Rivard-Royer, Landry, & Beaulieu, 2002). The external supply chain stops at the receiving dock 

the hospital. The internal supply chain starts at the dock of the hospital, comprises a storeroom 

and different storage areas on patient care units, and ends at the patient (Figure 2-2). 
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Figure 2-2: The Health Care Supply Chain (Oliveira, 2005) 

 

While this dissertation focuses on the internal hospital supply chain, it is useful to have more in-

formation on the characteristics of external supply chain. At first sight, it follows a typical supply 

chain structure with products flowing from raw materials suppliers through manufacturers, dis-

tributors and finally to the hospital. The U.S. hospital industry comprised of 4,900 community 

hospitals1 in 2007 (AHA & Avalere, 2008). With the notable exception of the Veterans Health 

Administration, which operates 153 medical centers and over 900 ambulatory care and commu-

nity-based outpatient clinics (VA, 2009), the vast majority of hospitals are independently owned 

                                                

 

1 All nonfederal, short-term general and specialty hospitals whose facilities are available to the general public. 
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and operated2. Such hospitals lack the scale to coordinate inbound logistics activities with the 

large numbers of medical goods manufacturers and consequently they rely on distributors to cen-

tralize such activities. Similarly, hospitals often join Group Purchasing Organizations to stan-

dardize and increase purchases of common products and achieve greater bargaining power in 

pricing negotiations (see Figure 2-2). 

Conversely, drug distribution has become highly concentrated as a result of acquisitions 

(Finkelstein, 2003), with the top three players Cardinal Health, McKesson Corporation and Ame-

risourceBergen totaling a wholesale drug market share of approximately 90% in 2007 (Britt, 

2007). The same players also dominate the distribution of commodity single-use medical sup-

plies (e.g. needles, surgical pads). High-end and specialty single-use medical devices (e.g. car-

diac stents) manufacturers often bypass distributors by relying on their direct sales forces to co-

ordinate logistics activities, with product delivery being performed either by a sales representa-

tive when his presence is requested by the surgeon or by a third-party express carrier such as 

UPS or FedEx. 

2.2 The Hospital Supply Chain as a Socio-Economic-
Technical System 
Bartolomei et al. (2006) define an Engineering System as “a complex socio-technical system that 

is designed, developed, and actively managed by humans in order to deliver value to 

stakeholders” (Bartolomei, et al., 2006, p. 3). This definition extends the boundary of the system 
                                                

 

2 In 2009, the Veterans Health Administration’s network was considerably larger than the largest for-profit hospital 

chains, such as Hospital Corporation of America (HCA) (165 hospitals, 112 outpatient centers), Tenet Healthcare 

Corporation (58 acute care hospitals) (Tenet, 2009). 
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beyond technical interactions traditionally considered by engineers to include social, political 

and economic interactions. This thesis views the hospital supply chain as an Engineering System 

under this definition, and seeks to describe and analyze it as such in order to inform and guide 

subsequent analyses. 

In Decisions with Multiple Objectives, Keeney & Raiffa (1993) define objectives as indicators of 

the preferred direction of change; attributes as measurable quantities that indicate the extent to 

which an objective is achieved3; and goals as thresholds of achievement in a particular attribute 

(which therefore are either achieved or not achieved). In real-world problems, the set of objec-

tives and attributes is not given a priori, and preferences for different objectives vary among dif-

ferent stakeholders (Keeney & Raiffa, 1993). The hospital supply chain is of course no exception 

to this statement. While it is the object of multiple objective decision analysis to quantify such 

preferences in order to recommend optimal decisions, this thesis seeks to determine the objec-

tives and attributes of the system only as a lens through which to describe the hospital supply 

chain4. 

                                                

 

3 According to these authors, attributes are comprehensive if “knowing the level of an attribute in a particular situa-

tion the decision maker has a clear understanding of the extent that the associated objective is achieved” (Keeney & 

Raiffa, 1993, p. 39). Attributes should be both measurable and comprehensive in order to be useful to the decision 

analyst. 

4 As mentioned later in this section, objectives of health care systems often cited in the literature are improved qual-

ity of care, improved safety, and reduced cost (sometimes referred to as increased affordability or replaced with im-

proved accessibility). Developing attributes of these objectives and assessing preferences among them constitute 

large research questions in health policy and health economics, beyond the scope of this thesis. 
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The next section describes the objectives of the hospital supply chain. The following section de-

scribes the different stakeholders of the hospital supply chain and highlights the objectives most 

relevant to each category of stakeholders. 

2.2.1 Objectives 
Keeney & Raiffa (1993) refer to MacCrimmon’s (1969) suggestion of literature review, analyti-

cal study and “casual empiricism” as methods to elicit objectives. This thesis draws the objec-

tives of the hospital supply chain (as an engineering system) from the literature, from empirical 

observations from semi-structured interviews with materials managers at different hospitals, and 

from field visits at Lambda. 

The Institute of Medicine of the National Academies has proposed the following six aims for the 

health care system: Safety, Effectiveness (avoiding under use and overuse), Patient-centricity, 

Timeliness, Efficiency and Equity (America, 2001). Effectiveness is also sometimes referred to 

as Quality of Care and is a primary objective of the system. Efficiency is defined as avoiding 

waste of resources, time and ideas. Another objective is increased cost-effectiveness, defined as a 

ratio where the denominator is a gain in health according to a specific measure (e.g. years of life) 

and the numerator is the cost associated with the health gain (Gold, 1996, p. xviii). 

According to annual surveys conducted by the American College of Healthcare Executives, fi-

nancial challenges were cited within as a top concern by 77% of U.S. hospital CEOs, while pa-

tient safety and quality came in second, being cited by 43% of respondents (ACHE, 2009), as 

seen in Figure 2-3.  
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Figure 2-3: Percentage of hospital CEOs citing issue among three most important (ACHE, 2009) 

For the hospital supply chain, Quality of Care and Patient Safety objectives translate into an 

overarching objective of delivering the drugs and medical devices and supplies5 as required for 

the care of the patient. In the context of the hospital, doctors determine the required drugs and 

supplies necessary for patient care, and their cost is covered by different stakeholders depending 

on billing and reimbursement schemes. The issues surrounding choices of products by physicians 

for use on patients are of significant complexity and are the object of extensive study in the fields 

of health economics and health policy. Therefore, this thesis, while still considering the patient 

as a stakeholder in the supply chain, focuses on the physician as the decision-maker in matters of 

product choice within the context of hospital care. 

This first overarching objective translates into several lower level objectives, which collectively 

reflect maximizing service delivery: 

                                                

 

5 These terms are used in the sense defined in section 2.2.4, page 42. 
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- Maximize product availability at the point and time of clinical use. In the extreme, the 

objective is stated as “Never Run Out” of product (Martin, 2006). 

- Minimize adverse medical consequences in the event that the product is not available at 

the point and time of clinical use. In such cases, nurses and doctors seek an alternate solu-

tion, such as: 

o Searching for the same product in a nearby ward 

o Requesting an emergency delivery of the product from the hospital’s central 

warehouse (a process called dispatching) 

o Substituting with a functionally similar product. 

- Maximize effectiveness at detecting and removing expired or recalled products 

A second overarching objective is resource efficiency or minimizing waste: i.e. ensuring that the 

resources devoted to the hospital supply chain are minimized for a given level of service. 

Finally, as for-profit corporations, the distributors and product manufacturers and certain hospi-

tals have a profit objective and seek to provide a financial return to their shareholders.  

2.2.2 Stakeholders 
This section seeks to describe the different stakeholders whose interactions affect the hospital 

supply chain. The stakeholders of the hospital supply chain are presented in an order opposite to 

product flow:  patient, nurses, doctors, materials management staff, purchasing management, 

group purchasing organizations (GPOs), distributors, supply chain automation vendors, product 

manufacturers, and regulatory agencies. 

Patient: the patient is the ultimate beneficiary of the hospital supply chain, as the goods delivered 

by the hospital supply chain will be administered to her (in the case of drugs) or otherwise used 

during the episode of care. However, while in the hospital, the patient’s role is mostly passive as 

she is not the decision-maker in matters of product choice or delivery times. Ultimately, the pa-
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tient is directly affected by and cares most deeply about the Safety and Quality of Care objec-

tives. 

Non-Physician Clinical Staff: Non-Physician Clinical Staff includes nurses, physicians’ assis-

tants, and surgical technologists6. Figure 2-4 shows current estimates for the national shortage of 

registered nurses, which is projected to continue in the future (AHA & Avalere, 2008; Biviano, 

Tise, & Dall, 2007).  

 

Figure 2-4: Projected full-time equivalent nurses demand and supply (Biviano, et al., 2007) 

                                                

 

6 According to the Bureau of Labor Statistics’ Occupational Outlook Handbook (2007), “Surgical technologists, also 

called scrubs and surgical or operating room technicians, assist in surgical operations under the supervision of sur-

geons, registered nurses, or other surgical personnel. Surgical technologists are members of operating room teams, 

which most commonly include surgeons, anesthesiologists, and circulating nurses.”  
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This group is directly responsible for retrieving products from inventory as needed for patient 

care, based on physicians, surgeon or patient requests. Interviews conducted at Lambda, as well 

as a review of the literature, indicate that inventory management tasks are viewed as a time-

consuming burden by non-physician clinical staff, standing in the way of their clinical mission 

(Hagland, 2005; Neil, 2003; Oliveira, 2005). In its marketing materials, a distributor of ADMs 

touts its automation product as “The Inventory Pain Reliever” and claims to “ease the pain and 

discomfort of inventory management” (Owens & Minor, 2005), playing on the negative attitudes 

held by clinical staff towards this task. 

Physicians and Surgeons: Physicians and surgeons care most deeply about the availability of the 

product they prescribed or requested (as opposed to a substitute) at the time at which they need 

it. According to Sussman & Gupta (1992), “The physician’s primary concern is that the product 

functions effectively and appropriately at all times, at whatever cost. The purchasing manager’s 

concern is to make sure the product is available within acceptable, controllable costs”. In an op-

erating room or a cardiac catheterization lab, the level of urgency implies that necessary supplies 

are prepared ahead of the procedure if possible, or promptly retrieved by a surgical technician or 

nurse. 

This thesis defines end-users as all clinical staff including physicians, surgeons, nurses, physi-

cians’ assistants, and surgical technologists. 

Materials Management Technicians: Materials management technicians, sometimes called “refill 

technicians” are in charge of performing inventory management tasks in the hospital, such as re-

ceiving orders from suppliers, replenishing different stocking locations across the hospital, track-

ing expirations, and counting inventory periodically. 

Purchasing Management: The purchasing department is in charge of procuring supplies and 

seeks to minimize costs. In order to gain leverage over manufacturers, many small hospitals join 

a Group Purchasing Organization, which conducts pricing negotiations on their behalf. Another 
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strategy commonly used is to develop a prime vendor agreement with a distributor. In a prime 

vendor agreement, the hospital commits to using the distributor for a period of several years to 

source pre-defined product categories. For the products covered by the agreement, hospital or-

ders are fulfilled through the distributor, usually through Electronic Data Interchange. In ex-

change for its services, the distributor receives a service fee (usually a percentage of the product 

price). Prime vendor agreements seek to produce savings justifying the service fee through mul-

tiple mechanisms: (1) automation of labor-intensive tasks usually conducted by the purchasing 

department of the hospital; (2) lower inventory and transportation costs for the hospital; (3) 

lower unit prices obtained by reducing the number of suppliers used for a class of products (a 

process called standardization or value analysis), usually with a shift towards the distributor’s 

brand (e.g. carry only one brand of hypodermic needles); (4) lower utilization of expensive prod-

ucts through improved reporting and on-site consulting services (Medline, 2009; E. S. Schneller 

& L. R. Smeltzer, 2006). 

Group Purchasing Organizations (GPOs): Group Purchasing Organizations vary widely in their 

funding mechanisms, for-profit status, and the scope of the services provided to their members. 

Member fees (either flat rate or equal to a percentage of the dollar purchases of the member 

through the GPO) are a primary source of revenue for GPOs, as well as funds from vendors un-

der a special anti-kickback statute exemption granted by the U.S. Congress in 19867. Functions 

                                                

 

7 There is a fierce policy debate about the overall benefit provided by GPOs to the healthcare system. Detractors of 

GPOs such as the Medical Devices Manufacturers Association oppose them on two main grounds: (a) member fees 

based on a percentage of dollar purchases are not an appropriate incentive for delivering cost savings; and (b) ven-

dor fees violate the intent of the Medicare anti-kickback statute. A study funded by Health Industry Group Purchas-

ing Association claims that GPOs provide $36bn annually in price savings and $2bn in avoided human resources 

costs (Schneller, 2009). 
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performed for members range from price negotiation and contract management to a broader ar-

ray of services, including benchmarking and outsourcing of the hospital’s purchasing depart-

ment. 

Distributors: Distributors play an essential role in linking over 20,000 suppliers to over 5,000 

hospitals, and account for 80% of product flows to hospitals and health systems8 (E. S. Schneller 

& L. R. Smeltzer, 2006). Through their role as intermediaries and their network of warehouses, 

distributors offer both economies of scale and economies of scope in their logistics activities. 

Few product manufacturers are willing to take on the distribution function and manage the com-

plexity of interacting with a large number of hospitals. From the perspective of hospitals, third-

party distributors aggregate the supplies from many manufacturers in a single periodic shipment, 

simplifying ordering and inbound logistics activities. 

Supply Chain Automation Vendors: These players provide supply chain automation solutions by 

selling, leasing and maintaining hardware and software products to support hospital inventory 

management, such as Automated Dispensing Machines (ADMs). The main players in this market 

are: CareFusion (CFN), a publicly traded subsidiary of major distributor Cardinal Health (CAH); 

Owens & Minor (OMI), a major distributor; and Omnicell (OMCL), a publicly traded company 

focused solely on this segment. 

Product Manufacturers: Product manufacturers are focused on the production and marketing of 

medical supplies and devices. Their large network of sales representatives serves multiple pur-

poses, including educating doctors about the benefits of their products, and in the case of surgical 

devices, providing training to clinical staff on product use. In some instances, especially for 
                                                

 

8 Health systems, such as the Veterans’ Administration or regional health networks, provide integrated care through 

a network of hospitals, outpatient clinics, and long-term care facilities.  
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high-value medical devices such as stents or implants, sales representative also have a distribu-

tion role, ensuring the delivery of the appropriate device for a particular medical procedure or 

monitoring consigned inventory. 

Regulatory Agencies: There are three major regulatory bodies affecting the hospital supply 

chain: the Food and Drug Administration, the US Centers for Medicare and Medicaid Services 

(CMS), and hospital accreditation agencies. The Food and Drug Administration (FDA) is re-

sponsible for protecting the public health by assuring the safety, efficacy and security of drugs 

and certain medical devices9 (FDA, 2009), which it regulates mainly at the manufacturer and dis-

tributor level by mandating good manufacturing practices, and traceability in order to ensure that 

the supply chain has the capacity to execute product recalls. The Center for Medicare and Medi-

caid Services (CMS), part of the Department of Health and Human Services, oversees the Medi-

care and Medicaid public health care programs. Finally, to be eligible for Medicare reimburse-

ment, hospitals need to be accredited by a hospital accreditation agency. While it is not the only 

accreditation agency, the Joint Commission has a partial monopoly on hospital accreditation in 

the United States, because in many states it is the only recognized accreditation agency valid for 

Medicare reimbursement eligibility. The Joint Commission10, formerly known as the Joint 

Commission on the Accreditation of Healthcare Organizations (JCAHO), is a private not-for-

profit organization dedicated to patient safety that inspects and accredits hospitals that has taken 

a leadership role in issuing safety recommendations and procedures for hospitals. 

                                                

 

99 These terms are used in the sense defined in section 2.2.4, page 42. 

10 Despite being a private organization, the Joint Commission has a partial monopoly on hospital accreditation in the 

United States, because in many states it is the only recognized accreditation agency valid for Medicare reimburse-

ment eligibility. 
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2.2.3 Technical infrastructure 
The technical infrastructure of a hospital’s supply chain varies significantly across hospitals. 

This reflects the lack of standardization in the field and the reality that technology investment 

decisions made by hospital management occur dynamically over a number of years, with hospi-

tals investing in ADMs typically to increase safety and/or reduce labor cost through automation. 

The technical elements of a hospital’s supply chain are both physical and information systems. 

Physical systems include fixed stocking locations such as shelves and cabinets as well as mobile 

components such as totes and carts. The purchasing information system tracks vendors, products, 

pricing information and orders. Common purchasing information systems vendors include Ora-

cle PeopleSoft and SAP. The inventory information system tracks the available quantity of each 

product and reorder products and is complemented by physical components such as labels, bar-

codes, barcode scanners, inventory sheets, RFID chips and Automated Dispensing Machines. In 

contrast to other physical components common to any logistical setting, Automated Dispensing 

Machines (ADMs) are specialty-purpose cabinets designed for storing drugs and medical sup-

plies. Originally introduced to track the chain of custody around narcotic medications and avoid 

theft or abuse by hospital staff, point-of-use ADMs were used in 72% of U.S. hospitals in 2005 

(Pedersen, et al., 2006). These electronic cabinets record the usage and inventory of medical 

supplies for inventory management purposes and can also be linked to billing and patient re-

cords.  

Hospitals that do not use ADMs rely on daily inventory checks by materials management techni-

cians, who identify items that are below a target inventory level (often this is done visually with 

some margin of error) and fill a pick list order using a paper form or electronic handheld device. 

Jayaraman, Burnett & Frank (2000) offer a detailed discussion of the operational issues prevalent 

in this context. 
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2.2.4 Product classification 
The organization of the supply chain varies depending on the type of medical goods involved, 

and therefore it is necessary to distinguish between different types of medical goods. Different 

classifications schemes exist, including the North American Industry Classification System 

(NAICS), the Federal Supply Code used by the Military, and the risk-based Food and Drug Ad-

ministration classification of medical devices, but there is no well-accepted, mutually exclusive 

and collectively exhaustive classification system applicable to all medical products. Definitions 

of what constitutes a “drug” or “medical device” vary across countries and regulatory agencies. 

The Federal Food, Drug and Cosmetic Act (Federal Food, 1938) defines a drug as: 

“(A) articles recognized in the official United States Pharmacopoeia, official Homoeopathic 

Pharmacopoeia of the United States, or official National Formulary, or any supplement to any of 

them; and (B) articles intended for use in the diagnosis, cure, mitigation, treatment, or preven-

tion of disease in man or other animals; and (C) articles (other than food) intended to affect the 

structure or any function of the body of man or other animals; and (D) articles intended for use 

as a component of any article specified in clause (A), (B), or (C). (…)” (Federal Food, 1938, [21 

U.S.C. 321](g)(1)) 

The same act defines a “device” using a similar definition, to which is added the stipulation that 

it “does not achieve its primary intended purposes through chemical action within or on the body 

of man or other animals and which is not dependent upon being metabolized for the achievement 

of its primary intended purposes”. (Federal Food, 1938, [21 U.S.C. 321](h)(3)) 

This thesis classifies products into three categories: drugs (including biologics) (e.g. aspirin), 

single-use medical devices and supplies (e.g. an implantable stent, a catheter, or a set of sutures), 

and durable medical devices and equipment (e.g. an intravenous pump), recognizing the large 

differences in their supply chain characteristics. Drugs are subject to a specific set of FDA regu-

lations and are the responsibility of the pharmacy once in the hospital. This segmentation is con-

sistent with industry practice: Cardinal Health, a major distributor, divides its activities between 
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the “Pharmaceutical” segment, consisting of branded and generic drugs, and the “Medical” seg-

ment consisting largely of medical infection prevention/operating room products (Barrett, 2009). 

Durable medical devices and equipment are managed very differently, as these constitute assets 

of the hospital as opposed to consumable products, and as such are excluded from further con-

sideration in this thesis. 
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Chapter 3 

Related Work 

This chapter offers a brief overview of the academic literature on hospital inventory manage-

ment, and then concentrates on the literature on inventory inaccuracy.  

3.1 Hospital Inventory Management 

3.1.1 A note on hospital supply chain management 
Schneller & Smeltzer (2006) provide an in-depth survey of several hospitals selected for their 

commitment to strategically improving supply chain management. The book offers an explana-

tion for the limited attention supply chains have received in healthcare until recently: they claim 

that materials managers have historically had limited power in organizations dominated by phy-

sicians. 

A parallel can be drawn with the ascendance of Supply Chain Management to a C-level function 

during the 80’s and 90’s. Earlier the logistics function itself used to be fragmented (divided be-

tween inbound activities, outbound distribution, warehousing, inventory control and transporta-

tion management). Many companies today manage an integrated supply chain process, which in-

cludes these functions as well as procurement, supplier relationships, and in some companies, 
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manufacturing and customer service.  In many hospitals, however, the concept of integrated sup-

ply chain management does not yet exist. 

3.1.2 Hospital inventory management 
Inventory management has historically received little academic attention compared to purchas-

ing-centric themes in hospital supply chain management. An exception to this statement is the 

extensive work on blood bank inventory management, which is associated with the literature on 

perishable products. 

Therefore, most of the literature is comprised of consulting reports and professional journals, 

such as Materials Management in Healthcare or Hospital Material Management Quarterly. 

These articles provide materials managers with information about operations management con-

cepts and strategies (such as Six Sigma), IT and Automation solutions, and feedback from other 

hospitals on different approaches that have been applied. These publications are helpful in under-

standing the operational challenges faced by practitioners but are not targeted at an academic 

audience. Below is a brief review of relevant academic papers focusing on hospital inventory 

management, structured in chronological order. 

Beier (1995) offers a descriptive, survey-based account of inventory management practices at 

hospital pharmacies in the U.S. in the mid-nineties. Because it focuses on pharmacies, it is im-

portant to note that it cannot account for the practices surrounding medical and surgical devices, 

or for the dramatically increasing use and cost of these devices in the past three decades. 

Rivard-Royer, et al. (2002) discuss the evolution of those practices, and the advent in the late 

eighties of “stockless” schemes, where the hospital central storeroom was eliminated  and deliv-

ery to patient care units was performed by the distributor. In some cases, such schemes were full 

Vendor-Managed Inventory implementations, where the distributor would determine orders on 

behalf of the hospital. Rivard-Royer and Landry report that “stockless” agreements eventually 

reached 10% of U.S. hospitals, before being abandoned by distributors who felt that the inven-

tory savings at the hospital did not justify the increased replenishment costs, and that the fees 
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they received in exchange for replenishment services did not cover the costs of such programs. 

Different studies attempting to quantify the benefits and costs of such schemes are reviewed and 

the authors note that most of them are from potentially biased parties (e.g., distributors or con-

sulting firms). The authors also offer a case study based on a Canadian hospital in Québec that 

adopted a hybrid approach, eliminating the storeroom for high-volume products by delivering 

case quantities to patient care units, and keeping a centralized inventory of low-volume items, 

which are broken into single units for delivery at the point of consumption. Through a combina-

tion of questionnaires and estimates of cost data, they compiled a breakdown of total costs before 

and after implementation. They conclude that the hybrid approach yields only marginal benefits 

to both the distributor and hospital, but that packing formats and storage areas can be redesigned 

to achieve substantial savings. 

Recognizing that inventory management has been neglected in the healthcare sector and that 

normative methodologies are needed, Nicholson, et al. (2004) compared the inventory costs and 

service levels (as a proxy for quality of care) of two competing supply chain designs: (1) a three-

echelon network comprised of the distributor, the central storeroom and patient care units versus 

(2) a two-echelon network typical of a “stockless” agreement that lacks a central storeroom. The 

analysis is focused on non-critical medical supplies and concludes based on numerical simulation 

of their model that the two-echelon network performs better both in terms of inventory costs and 

service levels.  While the analysis is grounded in data collected through interviews, the focus on 

non-critical items and an additional assumption of low demand variability (coefficient of varia-

tion ranging from 0.3 to 0.4) restricts the applicability of the obtained results.  

Lapierre, et al. (2007) derive a scheduling approach to optimize the logistics activities in a hospi-

tal, and explicitly aim to capture labor capacity constraints and utilization, in contrast with tradi-

tional inventory control models, which model distribution labor costs as fixed (per order) and/or 

variable (per unit) costs. Under the assumption of a constant demand rate during the planning ho-

rizon, a tabu search heuristic is provided to solve the formulated scheduling problem and nu-

merical results are provided. 
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3.1.3 RFID applications 
Radio-Frequency Identification (RFID) has been applied in hospitals for asset, patient and staff 

tracking applications as well as inventory management applications. While tracking applications 

have reported successful large-scale deployments, two factors limit the near-term applicability of 

RFID to reduce inventory inaccuracy in the hospital: (1) reliability, which is still problematic for 

items containing metals or liquids, and (2) the cost of adding an RFID tag on a consumable 

product, which is currently estimated at $0.50 per box. For these reasons, such inventory man-

agement applications have so far been limited to high-value products, such as implantable de-

vices. 

3.2 Inventory Inaccuracy 
This thesis defines inventory inaccuracy as a discrepancy between the book inventory (i.e., the 

inventory on hand recorded in the information system) and the physical inventory (i.e. the inven-

tory on the shelf)11. 

This section first reviews empirical work assessing the magnitude and causes of inventory inac-

curacies, then discusses models of the impact of inventory inaccuracy on service levels, and fi-

nally reviews models of optimized counting and ordering policies. 

                                                

 

11 Some authors use different terms, such as “recorded” for “book” and “actual” for “physical” (DeHoratius & Ra-

man, 2008). This terminology is chosen to prevent confusion that could arise since this thesis is both empirical and 

theoretical: empirical analysis is performed on historical records (which some would call “actual”), while the dis-

crete-event simulation model “records” (i.e. tracks) both book and physical quantities over time. 



Related Work 49 

 

49 

 

3.2.1 Empirical studies of Inventory Inaccuracy 
Inventory inaccuracy has been documented in different sectors through empirical studies, rang-

ing from government entities (Rinehart, 1960), military warehouses (Iglehart & Morey, 1972), 

utilities (Redman, 1995), manufacturing (Sheppard & Brown, 1993) and retail (DeHoratius & 

Raman, 2008; Gentry, 2005; Raman, 2000). The proportion of stock keeping units (SKUs) with 

inaccurate inventory records during counts varies widely across studies. These studies are diffi-

cult to compare directly due to different definitions of inventory inaccuracy (see (Schrady, 1970) 

for a review of the advantages and disadvantages of different definitions) but Table 3.1 provides 

an summary along with different drivers of inventory inaccuracy. One such driver is the fre-

quency of inventory counts12. To illustrate this point, consider the following: DeHoratius & Ra-

man (2008) report that 65% of SKUs at a retailer had an inaccurate inventory record upon physi-

cal audit, while Klibanov & Eckel (2003) report that 19.5% of the drug Automated Dispensing 

Machines records were inaccurate. Both studies use the same definition of inventory inaccuracy, 

but the frequency of counts in the first study was annual or semi-annual, whereas the second 

study used much more frequent counts (approximately biweekly)13. 

                                                

 

12 Other terms used in the literature include “physical audits” and “inspections”. 

13 As Klibanov & Eckel (2003) collected data for multiple products during a 10-day period and discrepancies were 

recorded and corrected on an ongoing basis. Therefore it is not possible to know the exact count frequency, but it is 

likely that counts are quite frequent. 
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Study 
 

Context Definition of Inventory 
Inaccuracy 

% of inaccurate 
SKUs 

Rinehart (1960) Government agency Absolute Discrepancy >= 
1% of inventory record 
balance; or Absolute 
Discrepancy * Unit Cost 
>= $1 

Major items: negli-
gible 
Secondary items: 
20-50% 

Emma (1966) Military warehouse Absolute Discrepancy > 
24 units after one year 

25% 

Sheppard & 
Brown (1993) 

Electronics 
Manufacturing 

Absolute Discrepancy > 
4 units after three months 

27-36% 

Ernst, Guerrero, 
& Roshwalb 
(1993) 
 

(a) Retail pharma-
ceutical firm 
warehouse 

(b) Two finished-
goods industrial 
manufacturing 
firm warehouses 

Absolute Discrepancy > 
0 

(a) 83.7% 
 

(b) 91.9%, 
95.5% 

Millet (1994) Logistics warehouse Absolute Discrepancy > 
0 

36% 

Klibanov & 
Eckel (2003) 

Hospital, Automated 
Dispensing Machines for 
Drugs 

Absolute Discrepancy > 
0 

8.9% - 26.4% 
Average = 19.5% 

Kang & 
Gershwin (2003) 

Retail Absolute Discrepancy > 
0 
Absolute Discrepancy > 
5 units 

49% 
24% 

DeHoratius & 
Raman (2008) 

Retail Absolute Discrepancy > 
0 

65% 

 

Table 3.1: Inventory Inaccuracy definitions and magnitude in empirical studies 

Sources of inventory inaccuracies 

The existing literature cannot be used to infer the relative magnitude of the sources of inventory 

inaccuracy across different industries due to the lack of standardization of counting policies. 
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Atali et al. (2006) define three sources of inventory inaccuracies: product misplacements, shrink-

age and transaction errors. Product misplacements in the inventory record are also called physi-

cal errors (de Kok, van Donselaar, & van Woensel, 2008), because the book inventory is correct 

but the product cannot be found at its correct stocking locations (for instance, it is in a different 

aisle). Retailers define shrinkage as the sum of employee theft, shoplifting and vendor dishon-

esty, all of which result in depleted physical inventory without correspondingly updated book in-

ventory. According to retail industry surveys, shrinkage accounted for 1.7% of sales in 2002 

(Hollinger, 2003).   

3.2.2 Effect of Inventory Inaccuracy on service levels 
Morey (1985) provides an analytical model to examine the effect of increasing the frequency of 

cycle counts, increasing the safety stock or reducing inventory inaccuracies on the service level. 

Inventory inaccuracies are characterized only by their mean and variance per time period. Under 

the assumption of approximately normal lead time demand and independence of inventory errors 

with lead time demand, Morey (1985) derives the Minimum Average Protection Level (MAPL), 

an upper bound on the probability of stocking out during a replenishment cycle (i.e., the Type I 

service level). Analyzing how the MAPL evolves in response to changes in cycle count fre-

quency, safety stock or inventory inaccuracy parameters allows managers to evaluate the tradeoff 

between these different management strategies. In a continuous review (R,Q) setting and under 

the assumption of normal lead time demand, Kumar & Arora (1992) quantify the effect of inven-

tory inaccuracies on the on-shelf availability and find that lead time variability compounds their 

effect. Defining the relative inventory inaccuracy l as the ratio of the inventory error to the cor-

rect inventory, estimates of the in-stock probability are derived for different values of l, and nu-

merical integration over the probability distribution function of l generalizes the model to sto-

chastic inventory inaccuracies. Kumar & Arora (1992) apply the model to empirical data from a 

service parts organization and show that the realized service level is significantly below the serv-

ice level implied by the initial safety stock calculation. 
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In order to assess the potential benefits of RFID technologies in a retail context where shrinkage 

is common14, Kang & Gershwin (2005) assume truncated normal demand and independent Pois-

son-distributed inventory errors and show, using a Monte Carlo simulation model, that even 

small rates of stock loss can create severe out-of-stock situations. In a multi-echelon context in-

volving a producer, a distributor and a retailer, Fleisch & Tellkamp (2005) investigate the impact 

of different sources of inventory inaccuracy including theft, unsaleables15, misplaced items and 

incorrect deliveries for a high-value consumer packaged good through a Monte Carlo simulation. 

Using ANOVA, they report critical values of parameters characterizing sources of inventory in-

accuracies at which performance measures differ significantly from the base case, but do not di-

rectly report the magnitude of the effect. 

Table 3.2 summarizes the four models of the effect of inventory inaccuracies on service level de-

scribed above. 

                                                

 

14 Kang & Gershwin (2005) use the term “stock loss” for shrinkage. 

15 i.e. “damaged, out-of-date, discontinued, promotional, or seasonal items that cannot be sold any longer”, which 

can be detected by the retailer or the end customer. 
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Model 

 
Characteristic 

Morey (1985) Kumar & 
Arora (1992) 

Kang & 
Gershwin 
(2005) 

Fleisch &  
Tellkamp (2005) 

Inventory policy Continuous re-
view w/ safety 
stock (B) 

Continuous 
review (R, Q) 

Daily periodic 
review (R, Q) 

Weekly review 
(R, Q) 

Demand  i.i.d. Normal i.i.d. Truncated 
normal 

i.i.d. Normal 

Lead time i.i.d. Normal 
and independ-
ent of Demand 

i.i.d. Normal 
lead time de-
mand Constant Constant 

Backlogged demand No No No Yes 
Inventory inaccura-
cies 

i.i.d. 
Known mean 
and variance16 

• Fixed rela-
tive inaccu-
racy 

• Probability 
distribution 

• Shrinkage: 
i.i.d. One-
sided Pois-
son 

• Shrinkage: 
i.i.d. Uniform 

• Misplacement: 
i.i.d. Com-
pound Ber-
noulli-Uniform 

Counting policy Periodic counts None • None 
• One count 

• Periodic counts 
• Correction on 

Stockouts17 
Service level metric Type I service 

level (MAPL) 
Fill rate Fill rate In-Stock Prob-

ability 
Methodology Stochastic 

analytical mod-
el 

• Stochastic 
analytical 
model 

• Numerical 
integration 

• Determinis-
tic analytical 
model 

• Stochastic 
simulation 

Stochastic simu-
lation 

 

Table 3.2: Summary of the characteristics of models of the service level impact of inventory inaccuracy 
                                                

 

16 Although no distributional assumptions are made, the normal approximation used by Morey (1985) implies that 

the distribution of errors is symmetric. 

17 Fleisch & Tellkamp (2005) assume that book inventory is corrected during periodic counts and whenever the 

physical inventory reaches zero, effectively assuming an instantaneous Zero-Balance Walk (ZBW) policy. 
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3.2.3 Counting and ordering policies under Inventory Inaccuracy 
A stream of literature aims to characterize improved or optimal counting and/or ordering policies 

in the context of inventory inaccuracies. The first part of this section focuses on counting poli-

cies, then the section presents work on ordering policies. 

Counting policies 

Inventory counts serve two purposes: (1) recording assets for accounting and tax reasons; and (2) 

reducing inventory inaccuracy. Counts performed for accounting and tax reasons are usually 

conducted as physical inventories: the entire facility is shutdown and all products and locations 

are counted at once, at yearly or quarterly intervals. For this reason they are less frequent than 

cycle counts, whose purpose is to improve inventory accuracy by counting only a sample of 

products at a time. 

The literature uses the term “cycle counting” to cover a wide array of counting methodologies, 

and a brief review of the literature on these methods is provided in Rossetti, et al. (2001), with a 

more in-depth treatment in Brooks, et al. (2007) and Piasecki (2003). This thesis restricts the de-

finition of cycle counting to sampling methods that are independent of the inventory state. This 

corresponds to the traditional definition, where items are assigned a target count frequency de-

pending on product characteristics (Kok & Shang, 2009). On the other hand, counting policies 

that depend on the state of the book or physical inventory are thereafter referred to in this thesis 

as dynamic counting policies. 

Cycle counts are increasingly being used to address inventory accuracy challenges, with the pro-

portion of retailers intending to perform “more cycle counts” rising from 46% to 78% between 

2001 and 2003 (CSA, 2001, 2003). In fact, the proportion of retailers who performed more than 

ten cycle counts per year increased from 25% in 2004 to 37% in 2005 (Foundation & 

BearingPoint, 2005). 

Several papers focus on determining the optimal count frequency. One study (Iglehart & Morey, 

1972) considers the case of a single-item, periodic review inventory system with a pre-
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established (s,S) ordering policy. The authors assume that the only source of inventory inaccu-

racy is transaction errors, and do not consider misplacement or theft. They jointly derive the op-

timal count frequency and additional buffer stock required to minimize total cost per unit time, 

subject to a service level constraint, both in the case of perfect and imperfect audits. Morey & 

Dittman (1986) derive the minimum frequency of physical audits that keeps inventory record in-

accuracy (rather than the service level) within a set limit for a single item. 

Dynamic Ordering and Counting policies 

Lee & Özer (2007) examine the literature on Radio Frequency Identification (RFID). They high-

light the importance of deriving ordering policies that account for inventory inaccuracy in order 

to have a correct benchmark against which to value technologies claiming to eliminate inventory 

inaccuracies. Using a dynamic programming formulation, Atali, et al. (2006) derive an optimal 

base stock policy, with the base stock level depending on the time elapsed since the last audit. 

Kok & Shang (2007) show that for inventory inaccuracies that have mean of zero, an inspection 

adjusted base stock policy is optimal for the single-period problem, and propose a cycle-count 

adjusted base stock policy that modifies the base stock level according to the time since the last 

cycle count. DeHoratius, et al. (2008) introduce the notion of a probabilistic Bayesian inventory 

record and show how it can be stored, updated, and then used to derive dynamic ordering and 

counting policies. 
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Chapter 4 

Problem Statement and Approach 

This chapter first states the problem and defines the research questions. It then presents the re-

search approach and study site. 

4.1 Problem Statement 
This study takes a holistic perspective on the hospital supply chain and recognizes the social, 

technical and managerial components of this Engineering System in order to improve product 

availability in the hospital (Figure 4-1). 

The Social component acknowledges that the system is comprised of multiple stakeholders 

whose behavior is affected by their own values and objectives. This system is also Technical, us-

ing information technology and a large physical infrastructure of stocking locations to coordinate 

the procurement, receiving, delivery and dispensing of products. Lastly, a Managerial component 

drives the system behavior by setting policies, providing ongoing feedback and training. 
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Figure 4-1: Conceptual view of the Social, Technical and Managerial components of the Hospital Supply 

Chain as an Engineering System 

4.1.1 Discussion of the literature 
The academic literature on hospital inventory management is heavily focused on comparing the 

cost performance of different supply chain designs (e.g., pooled inventories in a central ware-

house vs. “stockless” schemes with direct deliveries to the wards). Unlike retail, stock out costs 

at hospitals are essentially intangible and unrelated to the product value, but manifest themselves 

in the form of additional nursing labor, managerial effort and patient risk (Tucker, 2004). For this 

reason, the focus of this thesis is on product availability. However, it is important to ensure that 

proposed solutions are practically feasible, and avoid raising operational costs. 

While Klibanov & Eckel (2003) report that 19.5% of a hospital’s medication inventory records 

were inaccurate, the type and number of inventory counts that were conducted during the study 
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period are not provided and therefore it is difficult to put this figure in context18. More generally, 

knowledge about the sources and patterns of inventory inaccuracies in a hospital setting is lim-

ited. 

The literature has examined the effect of inventory inaccuracies on product availability through 

analytical and simulation methods, however the following factors have not been investigated: 

1. The effect of inventory inaccuracies on slow-moving items for which the normal demand 

distribution assumption (and more generally a continuous distribution) is not valid; 

2. The impact of inventory inaccuracy on book (i.e., measured) vs. physical (i.e., actual) 

service level metrics; 

3. The role of counting policies in mitigating high levels of shrinkage (i.e. > 5% of de-

mand). 

4.1.2 Research questions 
The limitations of the research previously described suggest the following research questions: 

(Q1a) Can we identify and quantify specific user behaviors that introduce inventory inaccura-

cies in the hospital? 

(Q1b) How are inventory inaccuracies currently mitigated in the hospital? 

                                                

 

18 Klibanov & Eckel (2003) focus on medication errors and therefore inventory management is not of direct interest 

to their study. The paper does not suggest that all items were inspected for discrepancies. 
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(Q2a) What is the quantitative impact of inventory record inaccuracies on book and physical 

product availability? 

(Q2b) How do counting policies affect product availability? 

(Q3) What are effective strategies that hospital managers can use, recognizing the interde-

pendencies between different strategies? 

 

4.2 Research Approach 
The research is empirically grounded by a longitudinal case study of a New-England area hospi-

tal, Lambda, which is presented in subsection 4.2.1. Research questions (Q1a) and (Q1b) are ap-

proached using interviews and data from Automated Dispensing Machines described in subsec-

tion 4.2.2. Research questions (Q2a) and (Q2b) are explored using a Discrete-Event Simulation 

model and an analytical model. Finally, research question (Q3) is addressed through an inte-

grated analysis including the exercise of the DES and analytical models on real-world data. 
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Figure 4-2: Diagram summarizing the multi-method approach to the research questions 

4.2.1 Research site and scope 
The research site is a 300-bed New England hospital, referred to here as Lambda, with annual 

inpatient admissions of approximately 20,000 patients, revenues of approximately $800m, an op-

erating margin of 3% and a total staff of 5,000 employees.  Purchased supplies and services as a 

percentage of costs is in line with the industry average at 31% (E. S. Schneller & L. R. Smeltzer, 

2006). 

In addition to the quantitative data described in the next section, semi-structured interviews were 

conducted at Lambda and other hospitals to gain a detailed understanding of inventory manage-

ment processes (the list of the titles of persons interviewed is provided in Appendix A). 

4.2.2 Automated Dispensing Machine field data 
Lambda has deployed a network of 108 Automated Dispensing Machines across its 35 wards for 

medical and surgical supplies. Lambda also uses Automated Dispensing Machines for medica-
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tions dispensing, but drugs are tightly managed (at Lambda as well as other hospitals, for regula-

tory reasons) through the pharmacy, and were not considered in this study. Each machine, or sta-

tion, comprises one or multiple closed-door cabinets and drawers storing medical and surgical 

supplies.  To retrieve supplies, perform replenishment or inventory counting, a nurse or replen-

ishment technician can log in into a console, using a password or biometric identification. Addi-

tionally, some products are available on open shelves, and their use can be recorded by pressing 

a radio-frequency button that is linked to the station. 

Transaction-level demand, replenishment, inventory policy, inventory audit data at the Station-

SKU level, covering a period of 15 months, were extracted from the Automated Dispensing Ma-

chines (ADMs) database and stored in a MySQL database. This dataset consists of 3.6 million 

transaction records containing multiple fields: a unique identifier for the Station, the Stock Keep-

ing Unit (SKU) number, identifiers of the drawer in the cabinet where the SKU is stored, the 

type of transaction (Demand, Return, Replenishment or Count), the quantity involved in the 

transaction, the expected inventory prior to the transaction, the physical inventory at the begin-

ning of the transaction, the inventory at the end of the transaction, the reorder point, and the or-

der-up-to level (see Table 4.1 for a sample transaction record). 
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Station S_CL_A 
Transaction Time 2/1/2007 16:19 
Transaction Type Demand 
Drawer 56 
Pocket 26 
Supplyclass 4 
Item ID 61367 
Item Name KWU2014W23 
Quantity 1 
Expected Count 2 
Actual Count 2 
End Count 1 
Minimum (Reorder point) 3 
Maximum (Order up to level) 5 

 
Table 4.1: Sample Transaction Record for Item 61367 in Station Cath Lab A 



Problem Statement and Approach 64 

 

64 

 

 

 

 

 

 

 

[Page intentionally left blank] 

 
 



Characterizing and Quantifying Sources of Inventory Inaccuracies 65 

 

65 

 

Chapter 5 

Characterizing and Quantifying Sources 
of Inventory Inaccuracies 
This section provides a typology of the different sources of record inaccuracies in Automated 

Dispensing Machines. Some of these sources are analogous to the causes of record inaccuracies 

in a retail environment, while others are specific to the hospital context. Sources of record inac-

curacies are usually highly socio-technical, as they are often driven by both behavior and techno-

logical factors. The relative magnitudes of the different sources are evaluated in the hospital en-

vironment. Inventory record inaccuracies are a subset of record inaccuracies, where record inac-

curacy is defined as the discrepancy between the records in an information system and the true 

state of the system. Record inaccuracies can also affect quantities other than inventory, such as 

sales, product returns, and replenishment quantities. 

After classifying the potential sources of inventory inaccuracies, the most common ones are ana-

lyzed qualitatively and quantitatively using Lambda’s data. 

5.1 Typology of Sources of Inventory Inaccuracies 
In a retail context, DeHoratius & Raman (2008) mention different sources of inventory inaccura-

cies based on the inventory management processes during which they occur: Selling and Re-
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stocking, Replenishment, Database Synchronization, and Inventory Counts. They also identify 

product theft as a potential source of inventory record inaccuracy. 

This section distinguishes between the following sources of inventory inaccuracies at Lambda: 

Imperfect demand recording, incorrect returns, incorrect replenishments, incorrect counts, and 

fake transactions. 

5.1.1 Imperfect Demand Recording 
Imperfect Demand Recording occurs when the end-user withdraws products from a machine and 

product usage is either not recorded at all or is recorded inaccurately. Multiple causes of Imper-

fect Demand Recording exist, including behavioral and technical issues. 

a) The end-user forgets to press the “Take” button to record the transaction (behavioral is-

sue). 

b) The end-user withdraws multiple units of a product but only presses the “Take” button 

once, thereby not keying in the correct quantity withdrawn (behavioral issue). 

c) The end-user presses the “Take” button, but the button fails to record the transaction be-

cause of a mechanical malfunction or a dead battery. Some malfunctions can be intermit-

tent, making them difficult to detect (technical issue). 

From an inventory record perspective, such inaccuracies are analogous to product theft in a retail 

setting. Without the existence of a checkout counter, products are withdrawn without the inven-

tory record being updated. 

During interviews, inventory managers at Lambda defined “Compliance” as the act of properly 

recording the quantity withdrawn (i.e., (a) and (b) above are considered non-compliant), and they 

considered non-compliance as the main source of inventory inaccuracies. Improvement efforts 

have consisted of educating end-users about the necessity of pressing the “Take” button as they 
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withdraw product from the machine. For instance, stickers are posted on the Automated Dispens-

ing Machines to remind end-users to press the “Take” button (Figure 5-1). 

 

Figure 5-1 A “For patients’ sake, Press Take” sticker affixed to an Automated Dispensing Machine at Lamb-

da hospital 

5.1.2 Incorrect returns 
Product returns occur when the incorrect product is withdrawn and then returned, or a product is 

not opened and therefore is not used on a patient. For instance, during a cardiac catheterization 

procedure, the physician may want multiple catheters of different sizes on hand, but will typi-
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cally not use all of them. After the procedure, the catheters are returned to the Automated 

Dispensing Machine, and a “Return” button next to the “Take” button should be pressed. 

However, the end-user sometimes forgets to press the “Return” button or forgets to input the 

correct product quantity when returning more than one unit. 

This can result in a situation in which the book inventory record understates the on-hand physical 

inventory. Recorded product returns represented 4.1% of all transactions, 5.3% of demand trans-

actions, and 4.8% of demand quantities (see Table 5.1). 

5.1.3 Incorrect replenishments 
Replenishment transactions take place through the main console of the Automated Dispensing 

Machine, and are performed by a materials management technician. Replenishments problems 

occur when such a transaction is not recorded or the recording itself is inaccurate. 

During interviews, the following scenario was described. A technician arrives with a product 

with which to refill the machine, but the console is being used by an end-user, such as a nurse 

searching for a product. Rather than wait for the end-user to clear the station as instructed, the 

technician may instead leave the product on the shelf without recording the replenishment 

through the ADM console. This issue can be potentially exacerbated by pressure from end-users, 

who may be waiting for the technician to clear the machine or the area altogether. Another pos-

sible scenario is one in which the replenishment technician finds too much inventory at the des-

ignated location for the product, and therefore lacks the space to “put away” the product. He may 

choose to leave the product on the floor or on an empty shelf without recording it. Such varia-

tions to the designated process can result in the book inventory understating the physical inven-

tory and cause loss of product or trigger unnecessary replenishments. 

Another source of errors during replenishment is keying errors. When a transaction quantity is 

input using a numeric keyboard, typing errors can occur and result in incorrect quantities. For in-
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stance, “22” may be recorded instead of “2” or vice versa, and “6” may be entered incorrectly in-

stead of “9”. 

5.1.4 Incorrect counts 
During a transaction, each user has the opportunity to correct the inventory record. This is the 

principal purpose of Count transactions. A user inputting an erroneous quantity for the inventory 

present on the shelf may fail to correct or introduce inventory inaccuracy. 

5.1.5 Fake transactions 
End-users sometimes try to modify the system’s behavior in unorthodox ways. For instance, the 

following pattern was discussed during the interviews. In a ward experiencing a high number of 

stock-outs during weekends as a result of reorder points that were too low, a particular nurse re-

corded artificial discrepancies or fake demand transactions on Thursday to trigger a large deliv-

ery on Friday morning, to cover for the weekend demand. However, most of these cases took 

place in the early phases of implementation and no current evidence (qualitative or quantitative) 

exists that such behavior is still frequent. 

Another source of fake transactions came from the necessity of having a metric for imperfect 

demand recording. The ADM system records a “Null transaction” whenever an end-user logs in-

to the ADM, opens a door cabinet, and shuts the door without pressing the “Take” or “Return” 

button. In theory, this can happen because either: 

a) the end-user forgot to record the product withdrawal or return, or 

b) no product was withdrawn or returned (for instance, the product sought by the end-user 

was not found behind this particular cabinet door). 

In order to use Null transactions as a proxy for Imperfect Demand Recording, end-users at 

Lambda were instructed to press the Take button followed by the Return button if they were in 
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scenario (b) above. This ensures that Null transactions only correspond to scenario (a)19. How-

ever, Null transactions cannot be tied to a specific product (since a given cabinet door often con-

tains multiple products) and therefore were not directly usable at the Station-SKU level. 

5.2 Existing Metrics of Inventory Inaccuracy 
Automated Dispensing Machines (ADMs) calculate and report different Compliance metrics 

from the recorded transaction data. These metrics are aggregated at the Station level (i.e., they 

reflect all products stocked in a given machine) and are reviewed by materials management staff, 

usually monthly. First, the content of the “Null transactions” and “Compliance” reports is de-

scribed, and then the limitations of these reporting mechanisms and metrics are analyzed. 

5.2.1 Inaccuracy detection 
During each transaction the user has the opportunity to correct inventory record inaccuracies, but 

in practice this does not occur, with over 95% of the discrepancies corrected during a Replen-

ishment or Count transaction (Table 5.1). Interviews confirmed that nurses do not view correct-

ing discrepancies as part of their responsibility and they lack the time to compare the physical 

inventory present on the shelf to the book inventory. 

                                                

 

19 In theory, this could artificially inflate the number of Demand and Return transactions, but the software automati-

cally discards transactions in which the Return button is pressed soon after the Take button. This was verified by fil-

tering real-world transaction data. All unit-sized Return transactions that followed a unit-sized Demand transaction 

within a one-minute interval were counted and amounted to 2,275 transactions out of a total of 147,195 Return 

transactions (1.55%). 



Characterizing and Quantifying Sources of Inventory Inaccuracies 71 

 

71 

 

 

Transaction Type Demand Replenish Return Count 

Number of transactions  2,768,226 369,934 147,195 312,589 

% of transactions  76.94% 10.28% 4.09% 8.69% 

Total transaction quantities 12,032,720 12,875,764 577,319 11,032,984 

Number of discrepancies 2,902 80,816 671 65,133 

% of discrepancies 1.94% 54.05% 0.45% 43.56% 

Discrepancy detection rate 

(discrepancies/transactions)  

0.10% 21.85% 0.46% 20.84% 

 

Table 5.1: Discrepancy detection rates for different transaction types 

5.2.2 Existing reports 
The Null transactions report counts the number of Null transactions by End-User (as identified 

by his or her biometric login) and by Station, ranked in decreasing order (Figure 5-2). This al-

lows materials management technicians to focus their training efforts on individuals who have a 

high number of null transactions. In particular, newly arrived staff members who did not receive 

training on how to use the ADM system are often identified in this way. However, once “outlier” 

stations or end-users have been identified and addressed, this type of report offered limited addi-

tional insights that could help reduce Imperfect Demand Recording. 

The Compliance report provides for each Station on a monthly basis: 

! Number of discrepancies: number of times a mismatch between the book and physical 

inventory was corrected, across all transactions; 

! Discrepancy quantities: the sum of the absolute value of the difference between the book 

and physical inventory records when discrepancies were detected, across all transactions; 
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! Number of transactions: the total number of transactions that were Demand or Return 

transactions; 

! Transaction quantities: the absolute sum of the Demand or Return transaction quantities; 

! Activity Compliance = 

Number of Transactions / (Number of Transactions + Number of Discrepancies); 

! Quantity Compliance = 

Transaction Quantities / (Transaction Quantities + Discrepancy Quantities); 

! Number of Stock-outs; 

! Number of Null Transactions. 

5.2.3 Limitations of Existing Metrics 
Activity Compliance and Quantity Compliance attempt to characterize the amount of inventory 

inaccuracy in the system. Both of these metrics suffer from several limitations. 

Aggregation bias 

First, observations made at the Station-SKU level are implicitly weighted according to the num-

ber of demand / return transactions (for Activity Compliance) or the total demand / return quanti-

ties (for Quantity Compliance). This is of concern because fast-moving products may exhibit dif-

ferent compliance characteristics and are not necessarily the most critical ones. 

Sensitivity to the number of counts 

Second, these metrics do not adjust for the number of inventory counts performed at the Station 

during the month. This means that one can measure higher Compliance because fewer counts 

were performed and fewer discrepancies were discovered, whereas the accuracy actually de-

creased (described in Figure 5-4 as “Good QC without verified counts”). Count transaction data 

show that count frequency varies substantially across stations, products and time, therefore mak-

ing comparisons and tracking these quantities over time is difficult at best and likely speculative. 
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Figure 5-2: Sample excerpt of Null Transactions report (user name obfuscated) 
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Figure 5-3: Sample Compliance Report 
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Sensitivity to outlier observations 

Furthermore, Quantity Compliance received the most attention because it was recommended by 

the ADM vendor as the metric to focus on. However, this metric was sometimes abnormally low 

(< 50%), and materials managers discovered that it was not robust to outliers. For instance, a 

single keying error affecting only one product (recording a demand quantity as 666,666 instead 

of 6) could be immediately corrected by the user (creating a discrepancy of 666,660) and artifi-

cially lower the value of the metric (described in Figure 5-4 as “Bad QC with keying errors”). 

Materials managers often screen the transaction log for these erroneous transactions, make a note 

of them and manually (with a paper and calculator) recalculate the Quantity Compliance metric. 

 

Figure 5-4: Internal slide used at Lambda during materials management technicians training, illustrating the 

sensibility of Quantity Compliance (QC) to the number of counts and outlier observations 
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5.3 The Role of Framing 
One material manager at Lambda mentioned that he reported the Quantity Compliance metric, 

rather than the Activity Compliance metric, because it had lower values (e.g., 81% instead of 

94%), and made inventory inaccuracy look like a more important problem when reported to end-

users. This anecdote suggests that the scale used for the reporting metric is important, and is con-

sistent with the literature on the effect of the framing of outcomes on decision-making. In a se-

minal Science paper, Tversky & Kahneman (1981) presented subjects with a choice between two 

treatment programs for an upcoming disease that will save 200 lives on average, the first one 

with certainty and the second one by having a one-third chance of saving 600 lives and a two-

thirds chance of saving no one. Mathematically identical choices were framed as either lives 

saved or projected deaths. When the problem was framed in terms of lives saved, 72% of sub-

jects chose the first (risk-free) program, whereas in the “projected deaths” framing, 78% of sub-

jects chose the second (risk-taking) program. 

Therefore, it is plausible that the way a given metric is calculated and reported affects the orga-

nization’s response to it. For instance, Quantity Compliance is expressed on a percentage scale, 

with the ideal value at 100%. At the time interviews that were conducted, its common range at 

Lambda was 70–95% and no explicit target was set beyond the ideal value of 100%. A Quantity 

Compliance of 95% was considered a good outcome. This framing can be contrasted with the 

Defects Per Million (DPM) measure of process performance, where the scale is inverted (i.e., a 

lower number is better, with zero being the ideal value) and widened (i.e., small differences are 

large numbers). While a 95% Compliance is mathematically equivalent to 50,000 DPM, the sec-

ond framing sounds much less favorable. 

One could argue that managers choose metrics that present current performance in a more favor-

able light. At Lambda, this did not appear to be the case, as materials managers were facing the 

situation and trying to reduce Imperfect Demand Recording by end-users. They used and com-

municated the Compliance metrics reported built into the ADM software. This suggests that sig-
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nificant improvements are possible if these behavioral effects are recognized and integrated into 

the design of information and reporting systems. 

5.4 Quantifying Imperfect Demand Recording 
The goal of this section is to create a metric of Imperfect Demand Recording that can be used for 

measurement and modeling. When estimated from ADM data and aggregated over different 

products, the metric can be tracked over time and can provide feedback on process improvement 

efforts to managers and end-users. Imperfect Demand Reporting should also be usable as an in-

put parameter in a quantitative model. 

This thesis defines Recording Accuracy as the percentage of actual product usage (i.e., sales net 

of product returns) recorded. For instance, if three units of products are withdrawn from an ADM 

cabinet and one unit of product is recorded as used, the Recording Accuracy is 33.3%20. 

 

Recording Accuracy =  
Recorded Usage

Actual Usage
 

 

 

                                                

 

20 As defined, a Recording Accuracy above 100% is possible if the recorded quantity is overstated. Although this 

can happen, it is relatively rare in a hospital setting. 

yDiscrepanc UsageRecorded
 UsageRecorded

Accuracy  Recording
+

=

Inventory Actual -Inventory  Recordedy Discrepanc =
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5.4.1 Challenges to estimating Recording Accuracy from ADM data 
To estimate Recording Accuracy, one needs to compare the book and physical inventory records 

over a given measurement period. However, the ADM transaction record only contains the book 

inventory record and any discrepancies that have been noted between it and the physical inven-

tory record. Discrepancies are detected during Count and Replenishment transactions (see Table 

5.1). The absence of a discrepancy between the physical inventory record and the book inventory 

record is only meaningful if it is certain that a count was performed. This can be assumed in the 

case of Count transactions but not for Replenishment transactions. 

Estimating Imperfect Demand Recording from current ADM data is challenging for the follow-

ing three reasons. 

a) Irregular count frequencies: 

Count events are unevenly spaced across time and the time interval between two counts 

typically spans multiple estimation periods (e.g., monthly measurements). 

b) Small sample sizes: 

Counts for a single product may be infrequent relative to the estimation period. As a re-

sult, and all other things being equal, increasing the estimation frequency will result in 

smaller sample sizes and, therefore, wider confidence intervals around the estimates. 

Additionally, low-demand items exhibit both low demand and discrepancy figures (usu-

ally less than five items used between two counts), resulting in wider confidence intervals 

for the estimate of the Recording Accuracy. 

c) Heterogeneity: 

Imperfect Demand Recording varies over time and across different products. 

For instance, items accessible on an open shelf as opposed to a locked cabinet had a low-

er Recording Accuracy. 
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Pooling data for different products within a single period and accounting for heterogeneity can 

help mitigate these issues. Section 5.4.2 introduces the notations and estimation methodology for 

a single product. Section 5.4.3 considers the case of multiple products and allows for heterogene-

ity across different products. Finally, section 5.5 presents empirical results related to Recording 

Accuracy at Lambda. 

5.4.2 Estimation methodology for a single product 
Throughout this section, the following notations are used:  

! T represents the number of periods considered; 

! t "[1,T] represents the index for the current period (e.g., month); 

! q represents the number of products considered; 

! j "[1,q] represents the index for the current product; 

! ij represents the number of inventory count events for product j over periods [1,T]; 

! i " [1,ij] represents the index for the current count for product j; 

! NetSalesj(i) represents the recorded cumulative sales quantities of product j, net of re-

turns, from count i – 1 to count i; 

! NetSalesj(i,t) represents the book cumulative sales quantities of product j, net of returns, 

between count i – 1 to count i that are allocated to period t; 

! Discrepanciesj(i) represents the difference between the Book Inventory and the Physical 

Inventory observed at count i; 

! Discrepanciesj(i,t) represents the difference between the Book Inventory and the Physical 

Inventory observed at count i allocated to period t. 

 

Throughout the current section, the index j is dropped since only one product is being consid-

ered. 

In this model, the following assumptions are made: 
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1. All demand transactions are unit-sized.  

2. The probability of a demand transaction being recorded is 0 < pt < 1 and follows a Ber-

noulli distribution. It is constant within the period t and, therefore, is independent of de-

mand. 

3. No product returns can take place. This implies that NetSales is nonnegative. 

4. All counts are perfectly accurate: they reflect the “true” physical inventory. 

Assumption 1 allows us to equate the number of successes with the recorded sales quantities 

since the last count, and the number of failures with the discrepancy observed during the count. 

 

The chosen prior for the Recording Accuracy pt is a Beta distribution with the following hyper 

parameters: 

. 

The Beta distribution is quite flexible and allows for a varying degree of confidence in the prior 

estimates. For instance, a weakly informative prior such as !t
0 = 1, "t

0 = 1 reduces to the Uni-

form(0,1) distribution. At each count i, the estimate can easily be updated because the Beta dis-

tribution is a conjugate prior for this problem. In other words, the posterior (updated estimate) 

has a Beta distribution with the following hyper parameters: 

 

where: 
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! NetSales(i,t) represents the sum of recorded sales quantities, net of returns, since the last 

count that took place during period t. This quantity can be interpreted as the number of 

successes in a binomial experiment. 

! Discrepancies(i,t) represents the sum of unrecorded sales quantities, net of returns, since 

the last count that took place during period t. This quantity can be interpreted as the num-

ber of failures in a binomial experiment. 

The equations below follow by induction: 

. 

The confidence interval (or more accurately, the Bayesian credible interval) characterizing the 

uncertainty around the estimate is known. Note that the Maximum Likelihood Estimate of this 

Binomial proportion (i.e., simply taking the ratio of cumulative net sales to cumulative net sales 

and discrepancies) corresponds to the improper prior !t
0 = 0, "t

0 = 0. 

Allocation of count data to different periods 

If the current and last count took place during period t, Discrepancies(i,t) is readily available 

from the transactional data. However, if the time between two successive counts spans multiple 

periods, then only NetSales(i,t) is known. Discrepancies(i,t) are unknown since, by definition, 

there is no indication of when the inaccuracies were introduced. However, Discrepancies(i), the 

difference between the book inventory record before the count and the true inventory after the 

physical count, is known. 
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In this case, Discrepancies(i) are allocated to different periods according to a heuristic to pro-

duce estimates for the different periods. For instance, consider the case of a product for which es-

timates of monthly Recording Accuracy in June and July are sought. The physical inventory 

counts took place on the following dates (see Figure 5-5):  

! i = 1: June 8th 

! i = 2: July 14th 

! i = 3: August 7th 

! i = 4: September 9th 

The proposed heuristic allocates discrepancies proportionally to the time spanned by the count in 

that period. For instance, 100% of the first count is allocated to the month of June because in this 

example no data are available prior to June 1st. The second count (i = 2) is allocated to June and 

July in the following proportions: 

 

More generally, the following relationship defines the allocation heuristic: 

! Discrepancies(i,t) = Discrepancies(i)*wt
i, where wt

i is equal to the percentage of the time 

since count i – 1 that took place during period t, such that the sum of the weights wt
i over 

all periods is equal to one. 
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For computational convenience, instead of calculating NetSales(i,t) from the transactional data, 

net sales are also allocated proportionally to the time spent in that period21: 

! NetSales(i,t) = NetSales(i)* wt
i, where NetSales(i) is the sum of recorded sales quantities, 

net of returns, since the last count; 

 

Figure 5-5 Count events (blue dots), periods and corresponding allocation weights 

Note that although this approach will result in non-integer quantities, which may not make sense 

physically for some items, but which is not a problem with Bayesian estimation since the Beta 

distribution is defined over real positive parameters. 

Bayesian credible interval 

Given the calculated hyper parameters, the x% Bayesian credible interval is calculated by invert-

ing the cumulative density function of the Beta distribution. As the parameters of the Beta distri-

                                                

 

21 Sensitivity analyses showed that the results did not differ materially. 
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bution increase, the width of such an interval decreases, reducing the uncertainty around the es-

timate of the Recording Accuracy. 

5.4.3 Estimation for multiple products and with heterogeneity 
In this subsection, all of the quantities described in 5.4.2 have an additional index j, which de-

notes a particular product and allows for heterogeneity in the Recording Accuracy that may oc-

cur for multiple reasons. 

First, there could be unobserved differences between products that create variations in Recording 

Accuracy. For instance, products of different monetary value may exhibit radically different Re-

cording Accuracy rates despite being stored in the same location. For instance, the staff may 

place more importance on properly recording transactions with such products. Anecdotally, it 

was noted that in a particular hospital studied, the total demand for batteries increased sharply 

before Christmas, because a large fraction went unrecorded, and this resulted in increased stock 

outs. Second, some measurement error in observations is likely, which may create over-

dispersion. For instance, a possible source of measurement error is incorrect counts. Lastly, by 

assuming no variation in Recording Accuracy, the previous method places proportionally heavier 

weights on fast-moving products at the expense of slow-moving products. For all of these rea-

sons, it is important to allow for and to quantify heterogeneity in Recording Accuracy. 

Skellam (1948) formally proposed the Beta-Binomial Model (BBM), which has been widely ap-

plied throughout the marketing literature and in ecology as a model for heterogeneity in a popu-

lation. Lee and Sabavala (1987) and Ennis and Bi (1998) review the uses of the Beta-Binomial 

Model in different fields. 

The Beta-Binomial Model (BBM) is obtained by assuming that a (fixed) Recording Accuracy 

pproduct=j,period=t for each item and period is sampled from a Beta distribution with parameters !pe-

riod=t, #period=t (see Figure 5-6). Note that this differs from the case in the previous section: each 
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probability is considered fixed for a particular product and period, but the probabilities may dif-

fer among products. By estimating the parameters of the Beta distribution, the Recording Accu-

racy for the “average” product and the dispersion around this value among different products are 

characterized. 

 

 

 

 

 

 

 

 

 

Figure 5-6 Hierarchical representation of the Beta-Binomial Model (BBM) 

Difficulties in Bayesian Estimation of the Beta-Binomial Model 

Bayesian estimation requires a prior assumption on the distributions of the hyper parameters 

!t,#t. Unfortunately and contrary to the Binomial case, no simple true conjugate priors exist for 

the Beta-Binomial distribution. Lee & Sabavala (1987) describe a prior with a conjugate-like 

property for the case when the number of trials is fixed and equal to two, which is too restrictive 

to be applied in the case of inventory inaccuracies. Everson & Bradlow (2002) derive closed-

form expressions of the posterior distribution using polynomial expansions that are computation-

Beta Distribution 

!period=t , #period=t 

pproduct=1,period=t 

Discproduct = 1, period = t 
NetSalesproduct = 1, period =t 
 

 

pproduct=j,period=t pproduct=q,period=t 

Discproduct= j, period=t 
NetSalesproduct = j, period =t 
 

 

Discproduct=q, period=t 
NetSalesproduct = q, period =t 
riod =t 
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ally efficient, but their algorithm is quite complex, especially when the number of trials is not 

constant. Another alternative is to resort to numerical integration or Monte Carlo Markov Chain 

techniques. Because the benefit of Bayesian estimation of these quantities is limited in this case, 

and these approaches are computationally more expensive, Maximum Likelihood Estimation is 

used instead. 

Maximum Likelihood Estimation of the Beta-Binomial Model 

This paragraph outlines the procedure for Maximum Likelihood estimation. Writing the marginal 

likelihood function for an individual product observation j results in: 

 

where Beta is the probability distribution function of the Beta(!t,"t) distribution and B is the Beta 

function. 

Combining the observations for the different products j with j ![1,q]: 

. 

Taking the log and ignoring constants specific to the observations, the log-likelihood to maxi-

mize is: 
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. 

This expression can then be maximized using a numerical algorithm, as there is no known closed 

form solution. As discussed in Griffiths (1973), Williams (1975) and Prentice (1986), it is help-

ful to re-parameterize the Beta distribution to achieve faster convergence and numerical stability. 

The parameterization described in Prentice (1986) is applied: 

, 

The inverse formulas provide the original parameters of the Beta distribution: 

. 

Here p is the Recording Accuracy for the average product and # is a positive coefficient that in-

creases toward one with heterogeneity in the population. 

5.5 Empirical Analysis of Recording Accuracy 
In this section, the multi-item Beta Binomial Model is applied to transactional data from Lambda 

over a 15-month period. 

5.5.1 Data pre-processing 
Because of simplifying assumptions, real-world data contain some observations that are incom-

patible with the structure of the prior models. The treatment of such cases is discussed in this 

subsection. Because of the presence of product returns, the NetSales variable may take negative 

values. Given returns and other sources of inventory inaccuracies, instances where the Discrep-

ancies variable takes negative values also occur (i.e., because discrepancies are defined as book 
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inventory minus physical inventory, this means that the physical inventory was understated). A 

frequency distribution of these instances for all count events is given in Table 5.2 below. 

" Number of 
observations"

% of obser-
vations"

Counts" 312,589" 100.0%"
Negative Discrepancies" 14,339" 4.6%"
Negative Net Sales" 3,912" 1.3%"
Negative Discrepancies AND Negative Net Sales" 293" < 0.1%"
Negative Discrepancies OR Negative Net Sales" 17,958" 5.7%"

Table 5.2 Distribution of negative values among count events 

Overall, negative observations account for 5.7% of observations. Such negative observations, in 

which Net Sales and/or Discrepancies are negative, are added to the Net Sales and Discrepancies 

values of the next count event in time, until non-negative values are obtained. This approach 

avoids bias by capturing the information, and retains the fact that a count took place for the pur-

pose of calculating the time since the last count. 

Because of the allocation heuristic described in 5.4.2, Net Sales and Discrepancies allocated to a 

given time period may take non-integer values. Both the Bayesian updating framework and 

Maximum Likelihood Methods assume discrete observations, and therefore this could potentially 

be problematic. In the case of the Bayesian updating model, the Beta distribution is defined for 

real positive parameters, and because of the simplicity of the formulas described in 5.4.2, it is 

clear that they extend smoothly to the case of non-integer observations. On the other hand, 

Maximum Likelihood Estimation requires discrete observations. To carry out the estimation of 

the Beta-Binomial Model, NSj(t) and Discj(t) are rounded to the nearest integer. 

5.5.2 Implementation 
Transactional data from Lambda were exported into a MySQL database after allowing for coding 

to reduce the size of the database and for optimized processing. From the transactional data, the 
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quantities described in the outlined data are calculated using code programmed in the R statisti-

cal programming language and SQL queries to the database. The Maximum Likelihood Estima-

tion is performed through an iterative numerical optimization routine provided in the R VGAM 

package (Yee, 2008). 

5.5.3 Product groups 
To improve the confidence intervals on the estimates of the Recording Accuracy, increasing the 

number of count event observations is desirable. One approach is to consider more products and 

to quantify the heterogeneity in the Recording Accuracy using the Beta-Binomial Model (BBM). 

However, the Beta distribution is inappropriate if the distribution of the Recording Accuracy is 

not unimodal. Therefore, products likely to have radically different recording accuracy should be 

isolated rather than pooled together. Furthermore, from a managerial perspective, identifying fac-

tors that account for different recording accuracy is important, as they may suggest possible im-

provements. 

Since the Beta-Binomial Model outlined in 5.4.3 allows for and quantifies the heterogeneity in 

Recording Accuracy, it is actually not critical to immediately obtain the correct product segmen-

tation. An ineffective segmentation will be reflected in the parameter estimates of the Beta dis-

tribution, which will reflect a high level of heterogeneity (i.e., values for !t,, "t below or around 

one). A new segmentation can then be devised and the BBM model applied again until the de-

gree of heterogeneity within each group of products is reduced to an acceptable level. 

As a first step, groups (each having their distribution hyperparameters !t, "t) are defined accord-

ing to stations. A possible refinement to this approach is to distinguish between products avail-

able behind closed cabinet doors and products available on open shelves (because accessibility 

could influence Recording Accuracy).  
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5.5.4 Results 
This section applies the Beta-Binomial Model described in section 5.4.3 to analyze all products 

between January 1, 2007 and April 1, 2008. The Recording Accuracy is computed at monthly in-

tervals (T = 15 months) and plotted for a subset of stations: 6C, 6E, 6SE, 5W, Cath Lab A, Cath 

Lab B and Cath Lab, and the median Recording Accuracy is estimated across all stations. 

One can note in Figure 5-7 that the Cath Lab stations (CL A, B and C) have relatively low levels 

of Recording Accuracy (75–90%), although they have improved a bit over time. This was ex-

plained by the presence of a full-time technician in charge of performing frequent counts and re-

ordering high-value supplies such as stents and catheters. A possible hypothesis is that the pres-

ence of this full-time employee created a “safety net” and therefore made it less critical for staff 

to actually record their inventory usage. The sharp drop in the median Recording Accuracy in 

March 2007 was caused by the installation of new machines with very few SKUs and exception-

ally low recording accuracy during the training phase. 
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Figure 5-7 Beta-Binomial Model: Monthly estimates of the Recording Accuracy for seven stations 

Lambda has a separate facility located approximately 50 miles North of the main campus of the 

hospital. ADMs were deployed at Lambda North and had higher Recording Accuracy than those 

in wards that performed the same services and operating rooms available at Lambda’s main facil-

ity, as shown in Figure 5-8. This suggests that high levels of Recording Accuracy are achievable. 

However, it is difficult to pinpoint the factor that led to this higher performance. Several hy-

potheses were advanced by hospital managers: senior nursing staff being more committed to the 

success of the Automated Dispensing Machines and the lack of a night shift at Lambda North 

would limit the number of less-well trained people accessing the machines. I observed a staff 

meeting and it was apparent that the satisfaction with the system by nursing and materials man-
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agement was higher at Lambda North, but did not identify a causal effect explaining this higher 

Recording Accuracy. 

 

Figure 5-8: Histogram of Monthly Recording Accuracy, separating Lambda's Main facility (left pane) from 

Lambda North (right pane) 
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Figure 5-9 shows that 17 stations out of a total of 10022 had a median Recording Accuracy above 

95%, 34 stations had a median Recording Accuracy between 90% and 95% and 49 stations had a 

Recording Accuracy below 90%. These figures indicate that Imperfect Demand Recording is 

large and an essential source of inventory inaccuracy at Lambda. 

 

Figure 5-9: Stations ranked by Median Recording Accuracy across 15 months 

                                                

 

22 Eight stations did not have sufficient counts to estimate Recording Accuracy during all months. 
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Chapter 6 

Impact of Inventory Inaccuracies on Sys-
tem Performance 
The goal of this chapter is to understand the effect of inventory inaccuracies on the performance 

of the hospital supply chain through modeling rather than data analysis. Because the analysis 

conducted in Chapter 5 concluded that Imperfect Demand Recording is the main source of inven-

tory inaccuracies in the hospital inventory inaccuracies arising from this source are considered in 

more detail. Section 6.1 describes the research approach and a discrete-event simulation model 

of the phenomenon. Section 6.2 analyzes product availability under different scenarios, and sec-

tion 6.3 studies the bias in performance metrics. The next chapter explores in more detail the ef-

fect of different counting policies. 

6.1 Discrete-Event Simulation Model 
Discrete-Event Simulation (DES) was chosen to reflect the stochastic nature of the inputs, and to 

provide flexibility in exploring the effect of different ordering and counting policies that are dif-

ficult to analyze in closed form (Riddalls, Bennett, & Tipi, 2000). 

6.1.1 Key assumptions 
This subsection summarizes the key assumptions of the model. 
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! Single-item model: only a single Station-SKU is considered. Interaction effects among 

products or locations, such as substitution effects during stock-outs, are very difficult to 

characterize and quantify from Automated Dispensing Machine data because of inventory 

inaccuracies and small sample sizes. Using a single-item model ignores these effects be-

cause the focus is on understanding the effects of inventory inaccuracies. 

! Independent and identically distributed (i.i.d.) demand: while this is a common assump-

tion in inventory models, checking the validity of this assumption in a hospital context is 

important. The presence of autocorrelation was tested by conducting a Ljung-Box test 

with lags up to 14 days23, which failed to reject the null hypothesis of independence of 

recorded demand over time. 

! Negative binomial hourly demand: among distributions appropriate for modeling count 

data, the negative binomial (which is a Gamma Poisson mixture) offers flexibility in 

modeling situations with a high number of zeros and/or variance greater than the mean. 

Agrawal & Smith (1996) have shown that retail demand is better approximated using a 

negative binomial distribution than a normal distribution, and can accurately describe 

both low-demand and high-demand items. 

! Bernoulli recording: recording of demand is modeled by sampling from a Bernoulli dis-

tribution with a fixed parameter pt, and therefore the recorded demand24 is a Negative Bi-

nomial-Bernoulli mixture. In Appendix C, this mixture is shown to be equivalent to a 

negative binomial distribution with modified parameters. 

                                                

 

23 Our autocorrelation testing procedure is described in Appendix B. 

24 Assuming the product is in stock. 
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! (R, s, S) order review policy chosen to reflect the policy implemented by the ADMs: dai-

ly periodic review, reorder-point, and order-up-to policy. The details of the policy are ex-

plained below. 

! All counts are perfect and reflect the true physical inventory25. 

! Time between counts is modeled either as a fixed parameter or sampled from a random 

variable, as follows: 

o Fixed: every 7, 14, or 21 days 

o Random Variable: sampled from a Gamma distribution (of which the exponential 

is a special case) or a Truncated Normal Distribution 

! Counting on replenishment: this is implemented as a sampling from a Bernoulli random 

variable. The model is exercised with a probability of counting on replenishment equal to 

zero or one. 

6.1.2 Model structure 
The model maintains two inventory views in parallel: the “physical view” and the “book view.” 

The physical view indicates the inventory quantity physically available, and the book view indi-

cates the inventory quantity recorded in the system, thus reflecting only recorded transactions.  

The model is based on four key processes that represent logistical activities (see Figure 6-1). 

Every two hours, the Demand process is called and generates the number of units of demand by 

sampling from a negative binomial distribution. If this quantity is greater than zero, a demand 

transaction is defined and the physical view inventory level is decremented by the quantity with-

                                                

 

25 This implies that imperfect counts could lead to lower service levels than those reported in this model. 
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drawn. Sampling from a Bernoulli distribution determines whether the demand transaction is re-

corded (i.e., typing errors in demand quantity are not considered). According to hospital data re-

cords, at least 70% of demand transactions were unit-sized, and this pattern was consistent across 

over 70% of SKUs, which suggests that this is a reasonable approximation for most products26. 

A Bernoulli trial determines this binary outcome with probability equal to an input parameter 

representing recording accuracy. If the outcome is positive, the book view inventory level is 

decremented by the quantity withdrawn (for instance, five units if demand was five units and the 

five units were physically available). If the quantity demanded is greater than the physical inven-

tory level, the demand will be only partially satisfied by whatever quantity is in the physical in-

ventory level. That quantity, called “sales” or “usage,” is subtracted from the physical inventory 

level and may be subtracted from the book view inventory level if the demand transaction is re-

corded. Any demand that is not satisfied by the physical inventory available is recorded as “lost 

sales.”  

 
 

Figure 6-1: Key processes used in the simulation. The clock signifies periodicity. 

                                                

 

26 Again, the usage data from the hospital are biased, so it is possible that the number of unit-sized transactions is 

overestimated if end-users only press the button once when they take multiple products at a time. However, most 

products, by the nature of their function, are only used in unit-sized quantities on a given patient. 
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The Review process is called at specific times throughout the week, which in the base case cor-

responds to one review per day. Orders can only be placed during a Review. Consistent with the 

policy implemented in the hospital by the ADM software, orders are placed according to an (s,S) 

policy (i.e., an order is placed if the current book inventory level plus the sum of the order quan-

tities of any unfilled orders is less than or equal to the reorder point, and the order size equals the 

order-up-to point minus the current book inventory level minus the sum of the order quantities of 

any unfilled orders). In this simulation, a fixed replenishment lead time is considered. Although 

the model is structured to allow for daily variation in time between reviews and replenishment 

lead times (for instance on weekends), it is exercised with constant time between reviews and re-

plenishment lead times. This choice is motivated by a desire to keep the model relatively simple 

and conservative (i.e., to avoid compounding the effects of inventory inaccuracy with variance in 

lead-time27). 

After the lead-time has passed, the Replenishment process increments the physical and book 

view inventory levels by the order quantity. Furthermore, eighteen months after introducing 

ADMs to manage its medical and surgical process, the hospital started training replenishment 

technicians to perform counts prior to replenishing ADMs. This option of activating a Count 

process during calls to the Replenishment process is signified by the dashed line in Figure 6-1. 

The implications of this policy, which is called “Count on Replenishment,” are discussed in sec-

tion 6.3.2 below. Furthermore, the model takes as input the probability of performing a count on 

a replenishment event, allowing the analyst to explore the effect of partial compliance with this 

policy by replenishment technicians. 

                                                

 

27 When we run the model based on a real hospital replenishment schedule, implying extended replenishment lead 

times on weekends, we find increased stock-outs frequencies and lower fill rates relative to this base case. This is 

not surprising as both the expected lead time and the variance of the lead time increase. 
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The Count process corresponds to the audit process and adjusts the book view inventory level to 

the physical view inventory level at the conclusion of each Count transaction. Perfect audits are 

assumed. 

6.1.3 Implementation 

In the model, events may occur at any time during the day, and the simulation uses a next-event 

time advance approach (Law, 2007). Although demand occurs at periodic intervals, it is a dis-

crete-event model as opposed to a discrete-time model. There are two reasons for this choice: 

first, some stochastic variables such as the time between successive counts are better modeled as 

continuous rather than discrete variables. This choice does not lead to any loss of functionality, 

as discrete-time models can be viewed as a particular case of discrete-event models where events 

occur with fixed periodicity. Second, a discrete-event framework facilitates modeling at a higher 

level of abstraction: instead of thinking at a time-step level, the researcher is enabled to code on-

ly what happens at each process step, which is more intuitive and aligned with supply chain 

thinking. Implementing this paradigm in a high-level language leads to source code that is more 

compact and, therefore, easier to understand, debug and extend. The simulation is coded in Py-

thon using the SimPy open-source discrete-event simulation library (Muller, 2004), and the 

source code is presented in Appendix D. 

Simulation outputs are written to a MySQL database and analyzed with the R statistical envi-

ronment, as explained in (Team, 2004). For each alternative configuration, the model is exer-

cised for 200 runs, each with a run length of 364 days (52 weeks). The run length was experi-

mented with and increased until the means of different performance metrics approximately 

reached a steady state (Law, 2007). The number of runs was gradually increased to achieve suf-

ficiently narrow confidence intervals on the difference between alternative configurations and 

the perfect recording case. 
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Consistent with the Common Random Numbers variance reduction technique, each random vari-

able in the simulation has its own random stream, and a unique seed that depends only on the 

trial number. This synchronization ensures that a specific random number used for a specific pur-

pose in one configuration is used for exactly the same purpose in all other configurations. 

Different performance metrics are computed over the entire length of the run (364 days) and av-

eraged across trials, which provides estimates of the steady-state behavior of those metrics. Al-

ternate configurations are compared using the nonparametric Wilcoxon signed-rank test. A non-

parametric test is essential because many performance metrics (such as the fill rate or in-stock 

probability) are unlikely to follow a normal distribution28. The Wilcoxon test applies to paired 

samples: each trial constitutes a pair of observations for the two configurations being compared. 

The test can be used to produce a confidence interval on the difference in the performance met-

ric. 

6.1.4 Base case 
The base case represents a medium-to-fast moving medical/surgical item, such as a catheter for 

use in an operating room. The base case parameters are set based on Lambda’s ADM data. The 

mean daily demand follows a negative binomial distribution, with a mean of one item per day 

and a variance-to-mean ratio of 1.667. There are no returns. Weekends are treated the same as 

weekdays. A Review is scheduled every day at 3 pm29. When an order is placed during a Re-

view, the shipment will arrive at the station 19 hours later, at 10 am the next day. This lead time 

reflects the proximity of the distributor’s warehouse at a distance of less than 50 miles away 

                                                

 

28 Or any specific distributional assumption. 

29 See previous footnote. 
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from the hospital and the distributor’s daily delivery policy. In the base case, all Replenishment 

transactions are recorded, and no counts take place upon replenishment. The reorder point is set 

to four units, the order-up-to level is set to ten units, and the initial inventory is set to seven units, 

consistent with the inventory policy parameters in place at the hospital for similar items. The ef-

fect of count periodicity and imperfect recording are explored through a full factorial design. The 

probability of accurately recording each demand takes values between 0.65 and 1.00, in 0.05 in-

crements. Count transactions are performed with a constant count periodicity of 7, 14, or 21 

days. This results in 24 alternative configurations being simulated. The sensitivity of the model 

was tested by exercising it at constant count periodicities of 4, 10, 28, 35, 42, or 56 days, result-

ing in a total of 72 configurations. The results did not differ qualitatively from the effects pre-

sented. The different input parameters and their respective base-case values are summarized in 

Table 6.1. 
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Recording Accuracy 65% – 100% 

Count periodicity 7, 14, or 21 days 

  

Initial inventory level 7 units 

Reorder point 4 units 

Order-up-to level 10 units 

Review event periodicity Daily, 3 pm daily 

Lead time 

 

19 hours 

(delivery at 10:00 am next day) 

Probability of performing a count 

on replenishment event 

0 or 1 

 

Mean demand 

(Negative Binomial distribution) 

1 unit / day 

 

Variance to mean ratio 

(Negative Binomial distribution) 

1.667 units 

 

Simulation Run Length 364 days  

Trials 200 

 
Table 6.1: Summary of input parameters and base case values. 

6.2 Effect of Imperfect Demand Recording on Service 
Level Metrics 
This section seeks to understand the effect of imperfect recording on physical service level met-

rics. The next section investigates whether imperfect recording introduces bias in service level 

metrics calculated from “book” (and hence potentially inaccurate) records. 
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Multiple potential service level metrics are used to explore these hypotheses. To choose service 

level metrics for the point-of-use availability of supplies, it is important to keep in mind the con-

text and specificities of the hospital environment. Because unfilled demand is typically not back-

logged30, the fill rate metric is particularly aligned with the experience of clinician end-users, 

who were considered “customers” of this particular supply chain. However, ADMs only record 

product withdrawals from the station and not actual demand, making the calculation of the fill 

rate from ADM data challenging. Agrawal & Smith (1996) propose a methodology for estimat-

ing the negative binomial demand in the presence of unobservable lost sales, which could be 

used to derive estimates of the fill rate. However, imperfect demand recording adds another layer 

of uncertainty and limits the applicability of this methodology. The average in-stock probability 

over the course of a simulation run is used as a substitute and corresponds to the probability that 

the product is in stock at a random point in time. This metric reflects the probability that a nurse 

will have to perform additional tasks to obtain the product. Because of this and the fact that, in 

the absence of inventory inaccuracies, in-stock probability can be computed from ADM data, it 

is a potential candidate for a level-of-service (LOS) metric. Another potential candidate is stock-

out frequency, which Lambda is currently using; it is reported by the Automated Dispensing Ma-

chine information system. This LOS metric is defined as the number of stock-out events (defined 

as instances when the book inventory level reaches zero) per period. A period is usually a week 

or a month. While stock-out frequency is imperfect in that it does not account for the duration of 

stock-out events, and therefore does not reflect the end-user experience, it is the only LOS metric 

available to hospital inventory managers, and therefore it is investigated in this study. 
                                                

 

30 The question of what happens during stock-outs is highly dependent on the medical context generating the product 

need, as well as product categories and local hospital policies. Depending on the situation, the product may be ob-

tained from another hospital ward, from a nearby hospital, express-shipped from the vendor, a substitute may be 

used, or more rarely, a procedure may be rescheduled. 
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By definition, the Type I service level is equal to the probability of stocking out during a replen-

ishment cycle. Therefore, it is equal to the average stock-out frequency divided by the average 

replenishment frequency, and can be estimated through simulation. Because its value depends on 

the replenishment frequency, it is not comparable across products with different replenishment 

frequencies. Moreover, for a single product, imperfect demand recording delays the triggering of 

replenishments and lowers the replenishment frequency, making the Type I service level metric 

less valid. It is considered here only for the purpose of comparing the results in this paper with 

that of existing literature. 

Subsection 6.2.1 reports the effect of imperfect recording on physical in-stock probability; the ef-

fect on the physical stock-out frequency is reported in 6.2.2. The results of this analysis are com-

pared with those of Morey (1985) in 6.2.3, and the effect of variance in count periodicity is dis-

cussed in 6.2.4. 

6.2.1 Fill rate and physical in-stock probability 
When imperfect recording is introduced, discrepancies arise between physical view and book 

view inventory levels. Book view inventory is always greater than or equal to physical view in-

ventory because it is assumed that there are no returns, that replenishments are always recorded 

and that imperfect demand recording is the only source of inventory inaccuracies (other sources 

are described and evaluated in section 5.1). 

As Recording Accuracy increases, in-stock probability increases, as shown in Figure 6-2, as well 

as the fill rate (Table 6.2). This effect is not only statistically significant, as shown in Table 6.2, 

it also has practical significance. For example, at a count periodicity of 14 days, increasing the 

recording accuracy from 80% to 100% increases the in-stock probability from 91% to 98.2%. 

The size of this effect is quantified by constructing confidence intervals on the difference in in-

stock probability between the current configuration and the configuration corresponding to per-
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fect recording accuracy using the nonparametric paired Wilcoxon signed-rank test (each test was 

conducted on 2 * 200 trial observations). These bounds are also reported in Table 6.2. 

This analysis suggests that unless mitigated by frequent inventory counts, lack of recording accu-

racy has severe detrimental effects on service levels, as measured by in-stock probability. 

 

Figure 6-2: Effect of Count Periodicity on In-Stock Probability  
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Table 6.2: Fill Rate and Physical In-stock Probability for different values of the Recording Accuracy and 

Count Periodicity31. 
                                                

 

31 Standard errors in parentheses. 95% confidence intervals estimate the service level degradation due to Imperfect 

Demand Recording. 

    

95% Confidence Interval on 
the In-stock Probability Dif-
ference with the Perfect Re-
cording Accuracy case  

Time Be-
tween 
Counts 
(days) 

Recording 
Accuracy Fill Rate 

Physical In-
stock Probabil-
ity 

Lower 
Bound 

Upper 
Bound p-value 

0.650 0.935 (0.024) 0.942 (0.017) -0.042 -0.038 <0.0001 
0.700 0.944 (0.022) 0.950 (0.016) -0.034 -0.030 <0.0001 
0.750 0.952 (0.019) 0.957 (0.013) -0.027 -0.023 <0.0001 
0.800 0.958 (0.017) 0.963 (0.012) -0.020 -0.017 <0.0001 
0.850 0.965 (0.015) 0.969 (0.010) -0.014 -0.011 <0.0001 
0.900 0.971 (0.014) 0.974 (0.009) -0.009 -0.007 <0.0001 
0.950 0.978 (0.012) 0.979 (0.007) -0.004 -0.003 <0.0001 

7 

1.000 0.982 (0.011) 0.982 (0.005) NA NA NA 
0.650 0.834 (0.042) 0.844 (0.039) -0.142 -0.132 <0.0001 
0.700 0.862 (0.039) 0.871 (0.035) -0.115 -0.105 <0.0001 
0.750 0.886 (0.037) 0.894 (0.030) -0.092 -0.083 <0.0001 
0.800 0.908 (0.033) 0.917 (0.027) -0.068 -0.060 <0.0001 
0.850 0.932 (0.028) 0.939 (0.023) -0.045 -0.039 <0.0001 
0.900 0.954 (0.023) 0.959 (0.018) -0.024 -0.020 <0.0001 
0.950 0.971 (0.016) 0.973 (0.011) -0.009 -0.006 <0.0001 

14 

1.000 0.982 (0.011) 0.982 (0.005) NA NA NA 
0.650 0.712 (0.054) 0.721 (0.056) -0.268 -0.252 <0.0001 
0.700 0.759 (0.051) 0.768 (0.056) -0.221 -0.205 <0.0001 
0.750 0.805 (0.050) 0.812 (0.050) -0.176 -0.162 <0.0001 
0.800 0.850 (0.045) 0.860 (0.044) -0.127 -0.114 <0.0001 
0.850 0.894 (0.041) 0.903 (0.037) -0.082 -0.072 <0.0001 
0.900 0.934 (0.032) 0.940 (0.028) -0.043 -0.036 <0.0001 
0.950 0.964 (0.020) 0.966 (0.016) -0.016 -0.011 <0.0001 

21 

1.000 0.982 (0.011) 0.982 (0.005) NA NA NA 
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6.2.2 Physical stock-out frequency 
A similar effect on the stock-out frequency is observed in Figure 6-4, which depicts the physical 

stock-out frequency as a function of recording accuracy and count periodicity: the physical 

stock-out frequency increases as the recording accuracy decreases. 

Another observation can be made from the simulation results. The Physical Stock-out Frequency 

metric is problematic because it does not vary strictly monotonically with fill rate, in-stock prob-

ability or recording accuracy. For instance, for a count periodicity of 21 days, while recording 

accuracy decreases from 70% to 65%, physical stock-out frequency stays virtually unchanged at 

0.403 stock-outs / week (Table 6.3). This is because additional stock-out events cannot take 

place once the physical inventory has already reached zero. Stock-out events are defined here as 

the time during which the on-hand inventory becomes equal to zero32. Meanwhile, the fill rate 

and in-stock probability are in fact deteriorating as a result of increasing stock-out duration. This 

increase in stock-out duration is because of the late detection of stock-outs, meaning that inven-

tory managers should avoid relying on this metric when it is possible that stock-out durations are 

large, for instance for slow-moving products with low safety stocks. 

                                                

 

32 However, from the perspective of an end-user, each time he/she goes to a station to get a unit of a particular SKU 

and this SKU is not available, this is perceived as a stock-out. 
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95% Confidence Interval on 
the Physical View Stock-out 
Frequency Difference with 
the Perfect Recording Accu-
racy case  

Time Between 
Counts (days) 

Recording 
Accuracy 

Physical View Stock-
out Frequency (# 
stock-outs / week) 

Lower 
Bound Upper Bound p-value 

0.650 0.281 (0.065)  0.135 0.154 <0.0001 
0.700 0.263 (0.069)  0.125 0.135 <0.0001 
0.750 0.243 (0.063)  0.096 0.115 <0.0001 
0.800 0.220 (0.060)  0.077 0.096 <0.0001 
0.850 0.197 (0.056)  0.058 0.077 <0.0001 
0.900 0.176 (0.051)  0.038 0.048 <0.0001 
0.950 0.155 (0.048)  0.019 0.029 <0.0001 

7 

1.000 0.135 (0.046)  NA NA NA 
0.650 0.391 (0.059)  0.250 0.269 <0.0001 
0.700 0.367 (0.067)  0.221 0.240 <0.0001 
0.750 0.343 (0.063)  0.202 0.212 <0.0001 
0.800 0.304 (0.061)  0.154 0.173 <0.0001 
0.850 0.267 (0.056)  0.125 0.135 <0.0001 
0.900 0.223 (0.061)  0.077 0.096 <0.0001 
0.950 0.177 (0.056)  0.038 0.048 <0.0001 

14 

1.000 0.135 (0.046)  NA NA NA 
0.650 0.404 (0.057)  0.260 0.279 <0.0001 
0.700 0.403 (0.060)  0.260 0.279 <0.0001 
0.750 0.384 (0.064)  0.240 0.260 <0.0001 
0.800 0.359 (0.067)  0.212 0.231 <0.0001 
0.850 0.321 (0.061)  0.173 0.192 <0.0001 
0.900 0.269 (0.063)  0.125 0.144 <0.0001 
0.950 0.200 (0.058)  0.067 0.077 <0.0001 

21 

1.000 0.135 (0.046)  NA NA NA 
Table 6.3: Physical View Stock-out Frequency (# stock-outs / week) for different values of the Recording Ac-

curacy and Count Periodicity33. 

                                                

 

33 Standard errors in parentheses. 95% confidence intervals estimate the service level degradation due to Imperfect 

Demand Recording. 
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6.2.3 Type I service level 
Type I service level is obtained from the simulation by dividing the Physical Stock-out Fre-

quency by the Replenishment Frequency for every simulation run, and then averaging this value 

across simulation runs, as displayed in Table 6.4. 

This average value is compared with the value obtained for the corresponding set of parameters 

using the analytical formula in Morey (1985). The simulation model results in Type I service le-

vels, which are 9%–22% lower than estimated using the Morey (1985) model, depending on the 

count periodicity and recording accuracy. Even with no inventory inaccuracies, the simulation 

model results in a Type I service level that is 12% lower than the Morey (1985) model, sug-

gesting that this difference is at least partially explained by the choice of a negative binomial 

demand distribution. The Type I Service Level is the percentile of the lead time demand distribu-

tion corresponding to a value equal to the reorder point. For low demand items, a negative bino-

mial distribution will have a lower corresponding percentile relative to a normal distribution of 

identical mean and variance. Another factor that may contribute to the gap in the presence of im-

perfect recording is that in the model physical inventory can never exceed book inventory (i.e., 

inventory errors can never improve the service level by adding excess inventory, whereas 

Morey’s model assumes that the distribution of errors is symmetric). 

Overall, this analysis shows that while Morey’s model strives to be conservative through the use 

of a lower bound, in a hospital context the effects of imperfect recording may be more severe 

than previously suggested. 
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95% Confidence 
Interval on the 
difference be-
tween the simu-
lated and analyti-
cal service level 

Count  
Periodicity 

Record-
ing Accu-
racy 

Physical 
Stock-out 
Frequency 
(# stock-outs / 
week) 

Replenish-
ment  
Frequency (# 
repl. / week) 

Simulated 
Type I  
Service Level 

Analyti-
cal Type I 
Service 
Level 

Delta 
(min) 

Delta 
(max) 

0.650 0.281 (0.065) 0.913 (0.051) 0.692 (0.070) 0.799 -0.117 -0.097 
0.700 0.263 (0.069) 0.934 (0.050) 0.718 (0.072) 0.823 -0.116 -0.094 
0.750 0.243 (0.063) 0.952 (0.053) 0.745 (0.064) 0.849 -0.113 -0.094 
0.800 0.220 (0.060) 0.970 (0.052) 0.774 (0.059) 0.876 -0.111 -0.094 
0.850 0.197 (0.056) 0.983 (0.053) 0.800 (0.056) 0.905 -0.114 -0.097 
0.900 0.176 (0.051) 0.994 (0.054) 0.823 (0.050) 0.935 -0.120 -0.106 
0.950 0.155 (0.048) 1.003 (0.058) 0.846 (0.047) 0.965 -0.125 -0.112 

7 

1.000 0.135 (0.046) 1.008 (0.059) 0.866 (0.044) 0.990 -0.131 -0.118 
0.650 0.391 (0.059) 0.771 (0.054) 0.491 (0.083) 0.671 -0.191 -0.169 
0.700 0.367 (0.067) 0.819 (0.053) 0.551 (0.083) 0.702 -0.163 -0.139 
0.750 0.343 (0.063) 0.861 (0.056) 0.601 (0.073) 0.737 -0.146 -0.126 
0.800 0.304 (0.061) 0.901 (0.057) 0.663 (0.067) 0.777 -0.126 -0.107 
0.850 0.267 (0.056) 0.941 (0.057) 0.716 (0.059) 0.823 -0.116 -0.100 
0.900 0.223 (0.061) 0.973 (0.055) 0.771 (0.061) 0.876 -0.115 -0.097 
0.950 0.177 (0.056) 0.996 (0.058) 0.822 (0.055) 0.935 -0.121 -0.105 

14 

1.000 0.135 (0.046) 1.008 (0.059) 0.866 (0.044) 0.990 -0.131 -0.118 
0.650 0.404 (0.057) 0.639 (0.061) 0.365 (0.084) 0.589 -0.238 -0.213 
0.700 0.403 (0.060) 0.703 (0.062) 0.423 (0.085) 0.620 -0.210 -0.186 
0.750 0.384 (0.064) 0.769 (0.063) 0.498 (0.083) 0.657 -0.171 -0.148 
0.800 0.359 (0.067) 0.832 (0.062) 0.568 (0.083) 0.702 -0.144 -0.121 
0.850 0.321 (0.061) 0.895 (0.059) 0.641 (0.067) 0.756 -0.125 -0.105 
0.900 0.269 (0.063) 0.950 (0.059) 0.716 (0.066) 0.823 -0.117 -0.097 
0.950 0.200 (0.058) 0.988 (0.059) 0.797 (0.057) 0.905 -0.116 -0.100 

21 

1.000 0.135 (0.046) 1.008 (0.059) 0.866 (0.044) 0.990 -0.131 -0.118 
 

Table 6.4: Simulated Type I Service Level (Probability of stock-out in a replenishment cycle) for different 

values of the Recording Accuracy and Count Periodicity, as well as predicted Type I Service Levels according 

to Morey (1985) model. 
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6.2.4 Sensitivity to variability in Count Periodicity 
The previous analyses reflect the fact that the service level decreases with increasing count pe-

riodicity, i.e., the average length of time between count events. When count periodicity is low, 

inventory discrepancies are promptly corrected and recording inaccuracies have a minor impact 

on service level (Figure 6-3). The base case assumes that counts are equally spaced in time (e.g., 

they happen exactly every 7 days). However, in practice, count events do not occur exactly at the 

scheduled time, and variations in the time between count events occur. Therefore, the entire dis-

tribution of the times between count events can affect the service level. The simulation models 

the variance in inter-count times using a Gamma distribution. The results show that as the vari-

ance of the inter-count times increases, the average service level decreases. For instance, if the 

inter-count times follow a Gamma distribution with a mean equal to 21 days and a coefficient of 

variation equal to 1.0 (i.e., an exponential distribution), with Recording Accuracy equal to 90%, 

the physical in-stock probability decreases from 94% to 84% solely as a result of the variability 

in inter-count times (Figure 6-3). 
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Figure 6-3: Effect of Variability of Inter-Count Times on In-Stock Probability, with a count periodicity of 21 

days, a truncated normal distribution (C.V. = 0.5) and an exponential distribution (C.V. = 1) 

Note: the parameters of the truncated normal were adjusted to ensure that the mean was equal to 

21 days and the coefficient of variation was equal to 0.5. 
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6.3 Investigating the Bias in Book View Metrics 
This section focuses on the effect of Recording Accuracy on the “book view” service level met-

rics, which are calculated based on data from the ADM inventory system. Because these data are 

inaccurate and overstate inventory levels under imperfect recording, it is likely that these metrics 

are biased. By maintaining parallel “physical” and “book” inventory records, the simulation 

framework allows us to test this hypothesis and quantify this bias. 

6.3.1 Bias in the book view in-stock probability 
Table 6.5 shows how the “book view” in-stock probability varies under different scenarios, and 

displays a confidence interval on the bias of this metric relative to the “physical” in-stock prob-

ability. The analysis shows that the physical in-stock probability can degrade materially while 

the book in-stock probability shows only a modest decline. For instance, at a count periodicity of 

14 days and a recording accuracy of 65%, the physical in-stock probability is 84.4% and the 

book in-stock probability is 96.9%, implying a 12.5% bias. As shown by the confidence intervals 

of Table 6.5, this bias effect is statistically and materially significant, and increases as the physi-

cal in-stock probability decreases. Therefore, the book in-stock probability is severely mislead-

ing and will cause inventory managers relying on it to overestimate the service levels provided to 

end-users when recording accuracy is imperfect. 
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95% Confidence In-
terval on the metric 
bias 

Count Periodic-
ity 

Recording 
Accuracy 

Physical In-stock 
Probability 

Book In-stock 
Probability 

Delta 
(min) 

Delta 
(max) 

0.650 0.942 (0.017) 0.978 (0.006) 0.034 0.038 
0.700 0.950 (0.016) 0.980 (0.006) 0.029 0.032 
0.750 0.957 (0.013) 0.982 (0.005) 0.023 0.026 
0.800 0.963 (0.012) 0.983 (0.005) 0.019 0.021 
0.850 0.969 (0.010) 0.984 (0.005) 0.014 0.016 
0.900 0.974 (0.009) 0.984 (0.005) 0.009 0.010 
0.950 0.979 (0.007) 0.983 (0.005) 0.004 0.005 

7 

1.000 0.982 (0.005) 0.982 (0.005) 0.000 0.000 
0.650 0.844 (0.039) 0.969 (0.007) 0.119 0.129 
0.700 0.871 (0.035) 0.973 (0.006) 0.097 0.106 
0.750 0.894 (0.030) 0.977 (0.006) 0.078 0.086 
0.800 0.917 (0.027) 0.980 (0.005) 0.059 0.066 
0.850 0.939 (0.023) 0.983 (0.005) 0.041 0.047 
0.900 0.959 (0.018) 0.985 (0.005) 0.022 0.027 
0.950 0.973 (0.011) 0.984 (0.005) 0.009 0.011 

14 

1.000 0.982 (0.005) 0.982 (0.005) 0.000 0.000 
0.650 0.721 (0.056) 0.965 (0.005) 0.235 0.250 
0.700 0.768 (0.056) 0.969 (0.005) 0.192 0.207 
0.750 0.812 (0.050) 0.973 (0.005) 0.153 0.167 
0.800 0.860 (0.044) 0.978 (0.005) 0.111 0.122 
0.850 0.903 (0.037) 0.982 (0.005) 0.072 0.081 
0.900 0.940 (0.028) 0.984 (0.005) 0.038 0.046 
0.950 0.966 (0.016) 0.985 (0.005) 0.015 0.018 

21 

1.000 0.982 (0.005) 0.982 (0.005) 0.000 0.000 
 

Table 6.5: Physical and Book View In-stock Probability for different values of the Recording Accuracy and 

Count Periodicity 
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6.3.2 Bias in the book view stock-out frequency 
The analysis shows that under periodic counts, the book view underestimates stock-out events 

and, therefore, also introduces significant bias in the stock-out frequency metric.  

Table 6.6 shows an example of this bias at a count periodicity of 14 days. If replenishment oc-

curs after a physical stock-out event but before the book view inventory level reaches zero (ei-

ther through recorded demand or a count), the book view inventory record is increased, and a 

stock-out event has been missed. 

 

Figure 6-4: Physical and Book Stock-out Frequencies as a function of Recording Accuracy, at a Count 

Periodicity of 14 days. 



Impact of Inventory Inaccuracies on System Performance 117 

 

117 

 

 

    

95% Confidence Interval on 

the metric bias 

Count Periodic-

ity 

Recording 

Accuracy 

Physical View 

Stock-out Fre-

quency (# stock-

outs / week) 

Book View 

Stock-out Fre-

quency (# stock-

outs / week) 

Delta (min) Delta (max) 

0.650 0.281 (0.065) 0.136 (0.047) –0.154 –0.135 
0.700 0.263 (0.069) 0.125 (0.047) –0.144 –0.135 
0.750 0.243 (0.063) 0.116 (0.046) –0.135 –0.115 
0.800 0.220 (0.060) 0.106 (0.043) –0.115 –0.106 
0.850 0.197 (0.056) 0.103 (0.043) –0.096 –0.087 
0.900 0.176 (0.051) 0.108 (0.042) –0.067 –0.067 
0.950 0.155 (0.048) 0.120 (0.043) –0.038 –0.038 

7 

1.000 0.135 (0.046) 0.135 (0.046) 0.000 0.000 
0.650 0.391 (0.059) 0.194 (0.048) –0.202 –0.192 
0.700 0.367 (0.067) 0.166 (0.045) –0.202 –0.192 
0.750 0.343 (0.063) 0.143 (0.042) –0.202 –0.192 
0.800 0.304 (0.061) 0.119 (0.042) –0.192 –0.173 
0.850 0.267 (0.056) 0.100 (0.039) –0.173 –0.154 
0.900 0.223 (0.061) 0.095 (0.041) –0.135 –0.125 
0.950 0.177 (0.056) 0.105 (0.044) –0.077 –0.067 

14 

1.000 0.135 (0.046) 0.135 (0.046) 0.000 0.000 
0.650 0.404 (0.057) 0.223 (0.035) –0.192 –0.173 
0.700 0.403 (0.060) 0.196 (0.040) –0.212 –0.192 
0.750 0.384 (0.064) 0.165 (0.036) –0.231 –0.212 
0.800 0.359 (0.067) 0.136 (0.039) –0.231 –0.212 
0.850 0.321 (0.061) 0.110 (0.038) –0.221 –0.202 
0.900 0.269 (0.063) 0.095 (0.039) –0.183 –0.163 
0.950 0.200 (0.058) 0.098 (0.038) –0.106 –0.096 

21 

1.000 0.135 (0.046) 0.135 (0.046) 0.000 0.000 
 

Table 6.6: Physical and Book View Stock-out Frequency (# stock-outs / week) for different values of the Re-

cording Accuracy and Count Periodicity 

Furthermore, as shown in Figure 6-4, the book stock-out frequency is not a monotonic function 

of Recording Accuracy. For instance, at a count periodicity of 14 days, for high Recording Accu-
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racy (e.g., 95%) the book stock-out frequency is low and close to the physical stock-out fre-

quency. As the Recording Accuracy level decreases toward 90%, the book stock-out frequency 

decreases toward its minimum. As the Recording Accuracy decreases further below 90%, the 

book stock-out frequency increases again. This result is robust across different count peri-

odicities, as shown in Figure 6-5 and Table 6.6, and explained further below. 

 

Figure 6-5: Stock-Out Detection Rate as a function of Recording Accuracy, at different Count Periodicities. 

To understand this pattern, it is useful to recognize the book stock-out frequency (BSOF) as the 

product of the physical stock-out frequency (PSOF) and the stock-out detection rate (SDR). 

BSOF = PSOF * SDR 
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To qualitatively understand how the book stock-out frequency is affected by changes in Record-

ing Accuracy, we focus on the behavior of the stock-out detection rate as Recording Accuracy 

changes34. Recall that physical stock-outs can be detected and recorded as book stock-outs either: 

! (A) when the physical stock-out takes place (i.e., when there are no errors in the inven-

tory record); 

! (B) after the physical stock-out takes place, through a periodic count; 

! (C), not at all. When (C) occurs, a stock-out takes place, stays undetected and replenish-

ment brings the physical view inventory back to a positive value before the periodic 

count. 

In other words: 

SDR = 1 – P(C) = P(A) + P(B) 

If Recording Accuracy is perfect, P(A) = 1. In fact, the probability of detecting the stock-out ex-

actly as it occurs, as a function of Recording Accuracy, follows a power law: 

P(A) = Prob(No Inventory Error) 

P(A) = (Recording Accuracy)^(Product usage between the last count event and the physical stock-out) 

                                                

 

34 The physical stock-out frequency increases as Recording Accuracy decreases, so it is not sufficient to focus on the 

stock-out detection rate to fully conclude the behavior of the function. In most cases, the relative changes in the 

stock-out detection rate dominate the changes in the physical stock-out frequency. More importantly, our intent is to 

present insight into the effect presented rather than a mathematical proof of the simulated results. 
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When Recording Accuracy is high but not perfect (e.g., 95%), P(A), the probability of detecting 

a stock-out as it takes place, decreases sharply relative to the perfect recording case. Meanwhile, 

P(B), the probability of detecting a stock-out during a periodic count is low because stock-out 

durations are small relative to the periodicity of counts. Therefore, the stock-out detection rate 

(SDR) decreases sharply relative to the perfect recording case. On the other hand, when Record-

ing Accuracy is low (e.g. 65%), the probability of detecting a stock-out as it occurs (A) is small, 

but the stock-out duration is much higher relative to the previous case. The stock-out duration is 

higher because the reorder point is triggered based on the book inventory, which is depleted 

based on recorded demand, and thus is triggered late. Therefore, P(B), the probability that a 

stock-out is detected through a periodic count, becomes larger, and so does the stock-out detec-

tion rate (SDR). This explains why the stock-out detection rate is not a monotonic function of 

Recording Accuracy. Because the variations in the stock-out detection rate (SDR) often domi-

nate the change in the physical stock-out frequency (PSOF), the book stock-out frequency 

(BSOF) is often not a monotonic function of Recording Accuracy. 

The fact that the book stock-out frequency is not a monotonic function of Recording Accuracy 

(or the physical stock-out frequency) implies that it is not a reliable indicator of relative perform-

ance over time (i.e., it can provide the wrong answer as to whether this month’s service level is 

better or worse than last month’s). 

The previous analysis shows that a periodic count policy, while mitigating the effect of imperfect 

recording by periodically correcting inventory inaccuracies, results in large inaccuracies in both 

the in-stock probability and stock-out frequency metrics. 

6.3.3 Counting on replenishment policy 
This section explores the effect of a simple count policy change implemented by the hospital. 

The change consists of counting the inventory prior to every replenishment transaction, in addi-

tion to periodic counts. For instance, inventory is counted every other Monday at 4 pm (14 days 
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periodicity). As replenishment takes place on Thursday morning, the technician counts the inven-

tory just prior to adding the delivered quantity, and adjusts the book inventory record if a dis-

crepancy is found. If the physical inventory is found to be equal to zero, a book stock-out event 

is recorded. 

The hospital introduced this change to systematize inventory counts, as periodic counts were ex-

ecuted to a varying extent depending on the station and replenishment technicians. Based on the 

results of interviews, hospital managers were not focused on the problem of undetected stock-out 

events. 

Figure 6-6 compares the scenario of section 6.3.3 with this suggested policy. As expected, be-

cause the average count frequency is increased, the number of physical stock-out events dimin-

ishes, and the gap between the book and physical stock-out frequencies is virtually eliminated. 

However, while in steady state no stock-out events are missed, a (variable) delay subsists be-

tween the time at which the stock-out event takes place and when it is detected35. For instance, 

consider the case of a stock-out taking place on July 25th. It is detected as a book view stock-out 

during the next periodic count on August 4th, and therefore is attributed to the month of August. 

                                                

 

35 Because the simulation is only an approximation of the steady state, this delay explains the very small gap be-

tween Physical and Book views when always counting on replenishment. 
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Figure 6-6: Physical and Book Stock-out Frequencies under two scenarios: no counting on replenishment and 

always counting on replenishment. 

Therefore, when calculated every month (or at any periodic interval), the book stock-out fre-

quency metric may reflect stock-out events that occurred the previous month and omit some 

stock-outs that took place during the period. 

6.4 Evaluation of Strategies to Improve Product 
Availability 
A primary advantage of simulation models is that a wide range of policies for inventory inaccu-

racy mitigation can be tested, both alone and in combination with other policies. To understand 
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the effects of these policies for a variety of products with different characteristics, a representa-

tive panel of products was selected from the set of products used at Lambda. 

6.4.1 Scenario definition and performance metrics 
Multiple possible scenarios were built around Prevention, Correction and Integration strategies, 

as summarized in the table below: 

Lever Control Variable # of 
Scenarios 

Description 

Prevention Recording Accu-
racy 

2 Baseline value 
Improved accuracy = average(baseline,100%) 

Count On Replen-
ishment (COR) 

3 False. Never count on replenishment 
Partial. Count on 50% of replenishments 
Full. Always count on replenishment 

Correction 

Count Timing 
- Mean 
- Variability 

7 Historical Count Sequence 
Baseline Gamma Distribution 
Reduced Variability Gamma Distribution 
Decreased Mean, Reduced Variability Gamma 
Distribution 
Increased Mean Gamma Distribution 
Increased Mean, Reduced Variability Gamma 
Distribution 

Integration Dynamic Inven-
tory Policy 

2 Baseline: not implemented 
Active: implemented 

 

Table 6.7: Scenario characteristics. All combinations of the scenarios above were simulated for each item in 

the panel, corresponding to 84 total inventory inaccuracy mitigation policies. 

A full factorial design was employed to explore interaction effects between different scenarios, 

resulting in 84 alternative configurations. The full results for all products, with all configurations 

and multiple performance metrics are reported in Appendix I. 
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Improved Recording Accuracy 

The baseline recording accuracy was estimated for each product from ADM transactional data, 

using the single-item methodology described in section 5.4.2. The improved recording accuracy 

scenario was defined by dividing the recording accuracy error in half: 

Improved Recording Accuracy = 1-[(1 – Baseline Recording Accuracy)/2] 

For example, a baseline recording accuracy of 80% would be increased to 90%, and a baseline 

recording accuracy of 90% would be increased to 95%. 

Count on Replenishment 

One policy that is sometimes implemented in the hospital is the practice of performing a Count 

immediately following a Replenishment transaction. Three scenarios are considered: (1) Count is 

never performed during Replenishment, (2) Count is performed during Replenishment 50% of 

the time (through random sampling), and (3) Count is always performed during Replenishment. 

The results indicate that Counting on Replenishment is an inefficient way of improving the Fill 

Rate compared to simply decreasing the average time between count transactions for the scenar-

ios tested and as shown below. 

Count Timing 

The time between count transactions (or inter-count time) is estimated from ADM transaction 

data and modeled using the Gamma distribution, thus allowing for different levels of variability 

in inter-count times. To validate this modeling choice, the historical count sequence from the 

ADM transactional data was replayed in the simulation. The system behavior and key service 

level metrics did not materially differ between these two sets of scenarios, indicating that the 

Gamma distribution is a good model of the dedicated Count schedule from the transactional data. 

In all other scenarios, inter-count times are drawn from a Gamma distribution where the mean 

and coefficient of variation are set equal to those measured from the 15-month transactional data, 
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after rounding the mean to the nearest nonzero multiple of 3.5 days in order to discretize the 

search space. Additionally, a “Reduced Variability” scenario is simulated by drawing inter-count 

times from a Gamma distribution with a coefficient of variation set equal to 0.25. The coefficient 

of variation of 0.25 is chosen based on the nonlinear effect of inter-count time variability de-

scribed in section 7.2.2. For this value, count variability has a minimal service level impact and 

allows for some operational flexibility in executing the count schedule. 

Dynamic Inventory Policy 

This section examines a simple Dynamic Inventory Policy (DIP) that increases the reorder point 

according to the calculated value of the average rate of stock loss and the time that has passed 

since the last confirmed Count event.  A confirmed Count event is defined as an instance of a 

Count on Replenishment when a discrepancy was detected, or as an instance of a scheduled 

Count event, whether or not a discrepancy was detected. Because it is unknown how often 

Counts are performed on Replenishments, a Count on Replenishment is assumed not to have oc-

curred unless a discrepancy is detected. At each confirmed Count event, two variables are up-

dated using an exponential moving average (EMA) with smoothing parameter alpha is set equal 

to 0.10: the average discrepancy size and the average time since between confirmed Count 

events.  

Average_Discrepancy_Size (t+1) = 

! *Observed_Discrepancy(t+1) + (1- !) * Average_Discrepancy_Size (t) 

Average_Time_Between_Conf_Counts (t+1) = 

! *Time_Since_Last_Conf_Count(t+1) + (1- !) * Average_Time_Between Conf_Counts (t) 

A discrepancy is defined as the difference between the book inventory level and the physical in-

ventory level. The exponential moving average allows the system to evolve rapidly in time be-

cause more recent values are given more weight than values in the past. Then, the average rate of 
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stock loss is updated by dividing the EMA of the discrepancy size by the EMA of the time be-

tween confirmed Count events. 

Average_Stock_Loss_Rate (t) = 

Average_Discrepancy_Size (t) / Average_Time_Between Conf_Counts (t) 

At each order review period, the expected stock loss is calculated by multiplying the average rate 

of stock loss by the time that has elapsed since the last confirmed Count event. The book inven-

tory position (i.e. the book inventory level plus any outstanding order quantities) is adjusted by 

subtracting the expected stock loss from the book inventory level, for the purpose of comparison 

with the reorder point and the calculation of the order size. The book inventory level is not modi-

fied. 

In a nutshell, the Dynamic Inventory Policy adjusts the book inventory level at the time of re-

view to account for an expected amount of stock loss, and updates the stock loss rate as informa-

tion becomes available during count events. It is preferable to increasing the reorder point be-

cause it only adds inventory when recording accuracy is low, not all of the time, as an increased 

reorder point does. This policy can be easily implemented in software given its very limited 

computational and memory requirements (i.e., it only stores and updates two parameters per Sta-

tion-SKU). 

6.4.2 Sample panel definition 
Because 84 alternative configurations are simulated for each Station-SKU, it is desirable to seg-

ment Station-SKUs, and to run the simulation on a representative panel of Station-SKUs. This 

step was performed after conducting the empirical and simulation analyses because they revealed 

new attributes that had a large effect on the system (e.g. Recording Accuracy). Commonly used 

techniques such as ABC segmentation focus on unit or dollar volume, which are only some of 

the attributes that are relevant in the context of the hospital. Based on the hospital materials man-
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ager interviews and the insights from the simulation study, the following attributes were consid-

ered: 

- At the SKU level: 

o Unit cost, 

o Commonality: number of stations in which the SKU is stocked, 

o Storage location: behind a closed cabinet door (CD) or on an open shelf with a ra-

dio-frequency button for recording demand (OS) 

- At the Station-SKU level: 

o Mean daily demand, 

o Coefficient of variation of the demand, 

o Recording Accuracy, 

o Mean inter-count time, 

o Coefficient of variation of the inter-count time 

The Partitioning Around Medoids36 (PAM) clustering algorithm was used to construct a panel of 

representative Station-SKUs using the R statistical package command pam.  This robust cluster-

ing technique minimizes the sum of dissimilarities within clusters and produces clusters defined 

by each of the representative medoids (Kaufman & Rousseeuw, 1990). In this analysis, the man-

hattan distance was used and the mean daily demand was log-transformed to be approximately 

                                                

 

36 “Medoids are representative objects of a data set whose average dissimilarity to all the objects in the cluster is 

minimal. It is similar in concept to means or centroids, but medoids are always members of the dataset.” (Wikipe-

dia, 2010) 
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normal, and all variables were standardized by calculating their z-score37. The resulting panel is 

displayed in Table 6.8 below. 

Item 
ID Station Description 

Storage 
Type 

Mean 
Daily  

Demand 
CV Daily 
Demand 

Recording  
Accuracy 

Mean 
IntCt  
Time 

CV 
IntCt 
Time 

63696 6SE 

Sodium Chloride 
1000ML .9% 
Bottle CD 0.228 2.704 0.957 49.848 0.919 

69111 7C 

Glove Esteem 
Nitrile Vinyl of 
LG OS 1.504 4.085 0.696 5.738 1.087 

64040 6SE 
Specimen Con-
tainer 4OZ CD 2.322 1.089 0.948 50.094 0.993 

10856 OR_SUT 
Vicryl Suture 3.0 
Box of 24 CD 2.002 1.530 0.798 10.499 0.818 

2326 5W Medivac Tubing OS 0.020 11.252 0.741 68.825 1.331 

56840 LITHO 
Stone Tipless Ex-
tractor CD 0.221 3.188 0.969 50.293 1.262 

57002 OR_GEN 
Cord Monopolar 
Reusable 10 FT CD 0.088 8.990 0.826 17.113 1.025 

65768 MICU_1 
Pack Vas Cath 
(very bulky) CD 0.081 3.945 0.876 25.778 2.465 

63795 7SE 
Bedpan Dispos-
able OS 0.295 2.503 0.798 22.545 2.039 

 

Table 6.8: Summary of Station-SKU Sample Panel (CD: Closed Door, OS: Open Shelf) 

                                                

 

37 i.e., the number of standard deviations above or below the mean of the variable. 
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6.4.3 Simulation results 
For each Station-SKU in the panel, the 84 alternative configurations were simulated with 50 tri-

als38 and a run length of 15 months to equal the length of the ADM data over which the baseline 

product characteristics were estimated. Because the focus of this section is on actionable recom-

mendations, the real reorder-point and order-up to levels used at Lambda were used, even if they 

are not optimal given the demand patterns.  

The performance of the different strategies was measured using two metrics: the fill rate and the 

total count frequency (the sum of the number of periodic counts and counts on replenishment per 

week). The total count frequency is a proxy for the labor cost of the counting process. The plots 

in Figures 6-6 to 6-9 make it possible to visualize the tradeoff between the service level and the 

cost for different strategies, and to determine an efficiency frontier. 

Based on the simulation results on different products, multiple insights stand out. First, the Re-

duced Count Variability strategy consistently results in large service level improvements relative 

to other strategies. Second, when the fill rate is above 99% in the base line because the reorder 

point is high relative to demand and the recording accuracy is >95%, reducing count variability, 

improving recording accuracy or implementing the DIP have minimal effects.  In this case, the 

system is offering the required service level to caregivers, and a possible course of action is to 

optimize costs by considering a moderate reduction in counting frequency and/or the safety 

stock. Third, when faced with the choice between increasing periodic count frequency or imple-

                                                

 

38 Since the purpose of the simulation was not to construct confidence intervals between different configurations but 

to assess how the different strategies performed for different types of products, the number of trials was reduced 

from 200 in the base case to 50 trials, while computing the variance of the estimates to ensure statistical signifi-

cance. 
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menting count on replenishment, it is a better use of labor to increase the periodic count fre-

quency. Figures 6-7, 6-8 and 6-9 in the following pages illustrate those results for different prod-

ucts. 

Reduced Count Variability 

Given that a particular item has sufficient safety stock and good recording accuracy (>80%), the 

most important corrective measure that can be taken is to reduce the variability in the Inter-count 

times, i.e. to perform dedicated Counts consistently at some target frequency. 

In order to facilitate the visualization of the results, only configurations where the mean inter-

count time is equal to the baseline are shown in the plots below, reducing the number of points to 

2 x 3 x 2 x 2 = 24 configurations (or 12 configurations when the reduced count variability is not 

considered). 

For example, item 63795, which corresponds to a disposable bed pan is considered in Figure 6-7. 

The three vertical clusters of points represent the different Count on Replenishment (COR) lev-

els: as the COR variable increases from 0% to 50% and finally 100%, the total count frequency 

increases (moving points to the right of the figure) and the fill rate increases (moving points up 

on the figure). Improving the recording accuracy increases the fill rate by ~ 20 percentage points 

across the different scenarios. Implementing the DIP further increases the fill rate by another 10 

to 20 percentage points across the different scenarios.  
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Figure 6-7: Efficiency frontier for item 63795: Disposable Bed Pan. 

Figure 6-8 adds the points corresponding to reduced variability to Figure 6-7, and depicts them 

using full symbols. Reducing the variability of the inter-count times increases the fill rate from 

the baseline more than increasing the recording accuracy or implementing DIP, and raises it to a 

fill rate greater than that achieved by both improving accuracy and implementing DIP. 
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Figure 6-8: Efficiency frontier for item 63795: Disposable Bed Pan. Reduced count variability scenarios are 

depicted with full symbols. 

On the other hand, when the recording accuracy is already very high, the different policies have 

limited effects. For instance, for item 56840, a tipless stone extractor used in Urology, (Figure 

6-9), the fill rate for the base scenario is quite high, at 94% when never counting on replenish-

ment, because the baseline recording accuracy is equal to 97%. Reducing the variability of the 

inter-count times increases the fill rate to 97% (Figure 6-9). Increasing recording accuracy from 

97% to 98.5% may be very difficult to achieve, while decreasing the inter-count variability may 

be achieved more easily, therefore reducing inter-count variability should be the focus of im-

provement policies. 
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Figure 6-9: Efficiency frontier for item 56840: Stone Tipless Extractor. Reduced count variability scenarios 

are depicted with full symbols. 

 

Count on Replenishment as An Inefficient Strategy 

While Counting on Replenishment removes bias in the (book) stock out frequency metric, its ef-

fect on the service level should be compared to the alternative option of increasing the periodic 

count frequency. Theoretical reasons suggest that Counting on Replenishment is less efficient 

relative to increasing the periodic count frequency. First, a count performed during replenish-

ment is less likely to detect a discrepancy than a periodic Count because, on average, less time 

has elapsed since the last count event. Replenishments occur after an order is placed, and in order 
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for an order to have been placed, the book inventory level must be have been at or below the re-

order point, which often occurs as the result of a periodic count event. Second, Counting on Re-

plenishment ensures that the book inventory level is accurate when the physical inventory level 

is at its highest point. Stock outs are likely to occur when the physical inventory is low. Correct-

ing the book inventory level when physical inventory level is high still allows discrepancies to 

accumulate before the physical inventory level reaches the reorder point. 

The simulation model allows us to consider the tradeoff between increasing Count on Replen-

ishment and increasing Count Frequency. To simplify the visualization, the Dynamic Inventory 

Policy has been omitted from Figure 6-9, although the conclusions are not changed when it is 

considered. The scenarios where the mean time between counts have been increased or decreased 

were added to the base line. The figure shows how periodic counts dominate counting on replen-

ishment (i.e. they are further left and further up on the figure), particularly when the variability 

of the time between counts is reduced (full symbols).  
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Figure 6-10: Efficiency frontier for item 63795: Disposable Bed Pan. Reduced count variability scenarios are 

depicted with full symbols. 

6.5 Summary 
This chapter presents a discrete-event simulation model of the hospital supply chain in the pres-

ence of inventory inaccuracies. Exercising the model under a range of Recording Accuracy val-

ues and counting assumptions shows that imperfect demand recording causes a large reduction in 

product availability unless it is mitigated by frequent counts. The tradeoff between the count fre-
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quency and the service level is assessed using the model. Variability in the time between counts 

is identified as a factor that reduces product availability and is investigated in the next chapter. 

Second, imperfect demand recording is identified as an important source of bias in performance 

metrics, causing managers to rely on overly optimistic metrics. Table 6.9 summarizes the situa-

tion for different metrics, depending on whether counts occur on replenishment. 

Counting on 

Replenishment 

Book view Metric 

No Yes 

Stock-Out Frequency Biased 

Doesn’t account for 

Stock-out Duration 

Unbiased 

Doesn’t account for 

Stock-out Duration 

In-Stock Probability Severely Biased Severely Biased 

 

Table 6.9: Summary of the bias in different product availability metrics. 
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Chapter 7 

Variability in Cycle Counting 
In the previous chapter, simulation analysis identified the detrimental effect that variability in 

cycle counting times has on service levels. This chapter generalizes this insight using an analyti-

cal model and quantifies the impact of variability. 

To mitigate the detrimental effect of inventory inaccuracies on service levels, managers often re-

sort to cycle counts given their simplicity of implementation. In a standard cycle count program, 

items are assigned a count frequency based on ABC segmentation. This frequency determines 

the schedule of counts. After each count, the counted quantity is compared with the book value 

and if a discrepancy is found, the inventory is recounted and the inventory record is adjusted 

(Piasecki, 2003). Cycle counts are increasingly being used to address inventory accuracy chal-

lenges, with the proportion of retailers intending to perform “more cycle counts” rising from 

46% to 78% between 2001 and 2003 (CSA, 2001, 2003). In fact, the proportion of retailers who 

performed more than ten cycle counts per year increased from 25% in 2004 to 37% in 2005 

(Foundation & BearingPoint, 2005). Moreover, DeHoratius & Raman (2008) show using a re-
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gression analysis of retail data suggesting that stores which are counted annually have 12% 

greater inaccuracy39 than stores counted semi-annually. 

While managers are correct in believing that increasing count frequencies should in theory cor-

rect inaccuracies more promptly and therefore improve service levels, this strategy requires addi-

tional resources and increases counting costs. Furthermore, Millet (1994) reports how in a ware-

housing context, increasing count frequency failed to produce results because operators did not 

perform counts as diligently as the count frequency increased, and misled management by report-

ing improved, but ultimately incorrect, accuracy figures. This suggests that behavioral factors 

play an important role in the successful execution of cycle count programs. 

A cycle count program includes a schedule of counts, which may be followed more or less rigor-

ously by materials management staff. This chapter investigates how variability in inter-count 

times affects product availability and provides empirical data from Lambda documenting such 

variability. 

The outline of this chapter is as follows. Section 7.1 presents the model and demonstrates that if 

counts are performed independent of the state of the inventory, then for a given target average 

count frequency, exactly equally spaced counts are optimal in terms of service level. A distribu-

tion-free bound is obtained on the optimality gap caused by inter-count time variability in section 

7.2.1 and, in section 7.2.3, the performance of this bound as an approximation is evaluated 

through a numerical simulation. Section 7.3 describes the practical importance of these theoreti-

cal findings and shows, using empirical data from a hospital setting, that large variability in in-

ter-count times occurs in practice. Whether this variability could result from dynamic counting 

                                                

 

39 After controlling for all other factors at their mean. 
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policies40 is also investigated, as this would violate the assumptions made in section 7.1. Finally, 

those results are summarized and their managerial implications are discussed in the following 

chapter (section 8.1.2). 

7.1 Service Level Optimality of Equally-Spaced 
Counts 
This section shows that for a fixed number of counts, the optimal timing of counts that maxi-

mizes the service level is deterministic and corresponds to equally-spaced counts. 

7.1.1 Assumptions and notations 
The following five assumptions are made. 

A1. The time between successive inventory counts is a positive, i.i.d. random variable T, with fi-

nite mean and variance. This assumption requires independence of the state of the inventory (ei-

ther book or physical), i.e. that no dynamic counting policy is in place40. 

A2. Counts are perfectly accurate: i.e., immediately after a count the physical and book inventory 

levels are always equal. Combined with A1, this is equivalent to saying that counts occur accord-

ing to a renewal process. 

                                                

 

40 Dynamic counting policies are contingent on the state of the inventory, and can include counting items whose 

book inventory level is below a threshold or adjusting the inventory record of items found to be out of stock upon 

visual inspection (Zero Balance Walk). 
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A3. Inventory inaccuracies have non-negative mean, i.e. on average, the book inventory over-

states or is equal to the physical inventory. 

This assumption is well justified empirically. Stock loss and theft have been documented in sev-

eral industries (Kang & Gershwin, 2005) and have the effect of making the book inventory over-

state the physical inventory. Furthermore, it seems unlikely that inventory discrepancies, defined 

as the difference between the book inventory and physical inventory, are on average negative in 

most practical situations41. In their empirical analysis of retail inventory inaccuracy, DeHoratius 

& Raman (2008) find that only one in 37 stores studied had more negative discrepancies than 

positive discrepancies42. The analysis of hospital inventory records showed similar results: nega-

tive discrepancies represented on average 7.6% of total discrepancies across 108 stations, with 

this percentage varying between 0.0% and 28.0%, depending on the station. 

A4. The system has reached a steady state. In other words, in evaluating the service level, the av-

erage over all initial states is taken (see for instance Hadley & Whitin (1961)). Because of this 

assumption, the average service level since the last count is defined as s(t), a function of the time 

since the last count t. 

A5. The inventory model is based on the (R, nQ) model described in Hadley & Whitin (1961), 

where R represents the reorder point and Q the minimum order quantity. 
                                                

 

41 This is theoretically possible, for instance if the only source of inaccuracy is unrecorded product returns. 

42 From Table C2 of the e-companion provided by these authors, we compute for each store the percentage of re-

cords with a positive discrepancy, the percentage of records with a negative discrepancy and calculate the difference 

(average difference across 37 stores = 11.7%, median = 10.3%, standard deviation = 6.4%). For store 35, 45.8% of 

records were accurate, 27.0% were positive discrepancies and 27.2% were negative discrepancies, therefore yielding 

a difference of –0.2%. 
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This thesis considers the continuous review limiting case. If the book inventory position yB (book 

inventory on hand plus on-order minus backorders) is equal to or less than the reorder point R, 

nQ units are ordered, such that yB + (n-1)Q < R + Q #  yB + nQ. 

Demand over the lead-time L is i.i.d. Poisson distributed with mean $L and is backordered (i.e. 

there are no lost sales). Inventory inaccuracies per unit time are i.i.d. and are modeled as the dif-

ference of two independent Poisson random variables, which results in a Skellam distribution 

(Skellam, 1946). This discrete distribution was used in previous studies of inventory inaccuracy 

(DeHoratius, et al., 2008), and has the advantage of allowing for both positive and negative inac-

curacies and being easily fitted through the method of moments. Furthermore, recent extensions 

show that the Skellam distribution can also be interpreted as the difference between two corre-

lated Poisson variables, allowing for the modeling of correlation between positive and negative 

inaccuracies through the use of modified parameters (Karlis & Ntzoufras, 2006). 

The following notations are used: 
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T – Time between successive count events 

7.1.2 Derivation 
The derivation is structured in two parts: first, for the inventory model assumed in A5, the in-

stock probability is shown to be a decreasing function of the time since the last count t; this result 

and Jensen’s inequality are then used to show that equally spaced counts maximize the service 

level. 

Result 1: If R > $L#, then p(t), the probability of having positive physical on-hand inventory as 

a function of the time since the last count t, is a decreasing function for the assumed inventory 

model. 
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Observation 1: Service level, defined as the percentage of time in stock, can be expressed as a 

function of p(t): 

 

For the Poisson demand model assumed in (A5), Poisson arrivals see time averages and therefore 

S(T) also corresponds to the demand fill rate. 

When safety stock is positive (i.e., R > $L), the inequality R > $L# is satisfied. It is therefore not 

a restricting condition because inventory systems generally require positive safety stocks in order 

to ensure a high service level. 

Based on the results of the extensive numerical simulations performed, it is conjectured that if 

A1–A4 hold, then result 1 holds for a variety of other ordering policies, including in the presence 

of lost sales, as long as inventory inaccuracies have a nonpositive mean43. 

!"#$%&'$()*(+*,"-./'*0*

For any time t, Hadley & Whitin (1961) show that the inventory position is uniformly distributed 

over [R + 1, R + Q]44. Because all decisions are based on the book inventory position, under the 

assumption that inventory inaccuracies are not affected by stock-outs, this result is still valid. 

                                                

 

43 Intuitively, if inventory inaccuracies have a positive mean, then the service level increases as the time since the 

last count increases, causing excess inventory. 

44 The authors derive this result for the inventory position immediately after the review, but here we consider the 

limiting case of continuous review. 
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Physical inventory on hand is equal to book inventory on hand plus the accumulated inventory 

inaccuracies since the last count, as follows. 

! !

DL follows a Poisson distribution with rate $L. Positive (X1) and negative (X2) inventory inaccu-

racies are assumed to be independent of each other and of the demand over the lead time DL. Ac-

cumulated inventory inaccuracies are therefore distributed according to a Skellam distribution, 

i.e., the difference between a Poisson random variable of rate t%1 and an independent Poisson 

random variable with rate t%2. Because the sum of two independent Skellam distributions is a 

Skellam distribution with parameters respectively equal to the sums of the original parameters, 

 is Skellam distributed with parameters ($L +  t%2, t%1) and c.d.f. 

. Because the timing of the inventory counts is independent of inventory levels, 

the in-stock probability p(t) is equal to: 

 

From the expression above, when inventory inaccuracies can only be negative (i.e.,  and 

), N(t) is a Poisson distribution with rate . The Poisson distribution is strictly sto-

chastically ordered using the usual stochastic order, as defined below. 
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N(t1) ~ Poisson !L + t1"2[ ]
N(t2) ~ Poisson !L + t2"2[ ]
t2 > t1
#$x % &',+'[ ],FN ( t2 )(x) < FN ( t1 )(x)
# N(t1) ! N(t2)

 

In this simplified case, Result 1 follows from this sufficient condition. 

However, assumption A3 is more general in that inventory inaccuracies are nonpositive on aver-

age. The case in which positive inventory inaccuracies as well as negative inventory inaccuracies 

occur is now considered, i.e., . Unfortunately, first-order stochastic ordering is not 

conserved in this case45, thus the proof of Result 1 in this general case relies on careful analysis 

of the cumulative distribution function and probability density function of the Skellam distribu-

tion, which is provided in Appendix E. 

 

Result 2: For fixed , the service level is maximized for this inventory model when cy-

cle counts are deterministic and equally spaced ( ). 

Intuitively, the service optimality of equally spaced counts can be understood using a single-

period model, with a period length of $ time units. A budget of two counts for the entire period is 

set, and the first count must occur at the beginning of the period (therefore, the period starts with 

no inventory inaccuracies). The timing of the second count divides the time interval into two 
                                                

 

45 It was verified numerically that for instance, when , N(t1) is not 

stochastically greater than N(t2). 
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subperiods. If they are of unequal length, service levels suffer in two ways: first, one subperiod is 

longer and therefore inventory inaccuracies are more likely to have a detrimental effect; second, 

the likelihood of correcting an error at the end of the shorter subperiod is reduced (Figure 7-1). 

 

Figure 7-1: Simplified timeline of count events 

Since the time of the second count t can vary, it can be set to maximize the average service level 

s. 

  

The mean inter-count time µ is fixed as it does not depend on t, but the variance of inter-count 

times %2 is a function of t: 

 

The average service level during the period is now considered. 

0 

Count 

t 

Count 

$ 
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!

Because the service level p is a strictly decreasing function of t, t* = $ / 2 maximizes the average 

expected in-stock probability over the period. 

*

!"#$%&'$()*(+*,"-./'*1*

For notation convenience, let  be the average inter-count time. 

Let . By noting that r’’= p’ and that p is decreasing (Result 1), it follows 

that r is concave and therefore Jensen’s inequality applies: 

 

This concludes the proof of the optimality by showing that the service level achieved with 

equally spaced counts (corresponding to the left term in the inequality above) is always larger 

than the service level S(T). The optimum is unique when p is strictly decreasing because of the 

strict concavity of r. Beyond Result 1, the proof relies on assumptions A1–A4 about the nature of 
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the inventory inaccuracies and the count process, but not directly on the specifics of the inven-

tory model used. 

7.2 Quantifying the Service Level Deterioration Re-
sulting From Variability in Inter-count Times 
This section seeks to quantify analytically the service level deterioration as a result of the vari-

ability in inter-count times. The approach seeks a bound on S(T) as a function of the mean and 

variance of T using convexity. The tightness of the bound obtained is then investigated using a 

numerical analysis. 

7.2.1 Derivation 
From Jensen’s inequality, Agnew (1972) shows the following theorem: 

“Let X be a nonnegative random variable with E (X) = µ > 0 

and E (X2) = $ = µ2 + s2 < +". 

Suppose that f: [0, +") –> R with f (0) = 0 and g (x) = f (x) / x convex on (0, +"). 

Then, E (f (X)) > = µg ($ / µ) = (µ2 / l) f ($ / µ) and the bound is sharp.”46 

                                                

 

46 Note that in this citation of Agnew (1972), $ is only a notation for E (X2) and is not related to the demand rate 

previously modeled. 
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If X = T, f = r (respectively –r) is chosen, it can be verified that f satisfies the hypotheses of the 

above theorem iff s is convex (respectively concave). If s: t !  is convex, 

then: 

!

with the inequality reversed if s is concave. 

Renewal theory suggests that this bound is also an approximation of S(T). Let m be the mean re-

sidual time between the instant an inaccuracy is introduced to the instant it is corrected through a 

count; µ is the mean and CV is the coefficient of variation of the inter-count times. Renewal the-

ory of “recurrence times” states (Cox, 1962): 

 

=
µeq

2
 

The service level can be approximated by s(µeq) under the additional assumption that the service 

level only depends on the mean residual time of an inventory inaccuracy m, as opposed to the 

full distribution of inter-count times. 

The lower (upper) bound result depends on s being convex (concave). To determine whether the 

service level is above or below the bound s(µeq), the convexity of the average in-stock probabil-

ity s as a function of the time since the last count event needs to be examined. For (R, Q) inven-

tory policies and in the absence of inventory inaccuracies, Zipkin (1986) shows that average out-
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standing backorders are jointly convex in order size, reorder point and standard deviation of lead 

time demand. To the best of this thesis’ author knowledge, the literature does not consider the 

convexity of service level metrics under inventory inaccuracy. 

Convexity of s means that the average service level deteriorates slower as the time since the last 

count t increases, while concavity implies faster deterioration as t increases. Therefore, if average 

service level has diminishing marginal deterioration in t (s is convex over the range spanned by 

the distribution of inter-count times), then the average service level is superior to the service 

level obtained for equally spaced counts for µeq, which is the equivalent count periodicity in the 

absence of variability. It is reasonable to expect that s reaches a limit as the time since the last 

count approaches infinity, and since it is a decreasing function, it is likely, although not mathe-

matically necessary, that it is convex over a domain [tcritical, +!"). 

In Appendix F, this result is demonstrated analytically for a well-cited closed-form model of 

service level under inventory inaccuracies: the Minimum Actual Protection Level (MAPL) de-

veloped by Morey (1985). A simple closed-form expression for tcritical is obtained, which depends 

only on two parameters that have a practical interpretation: the target Type I service level in the 

absence of inventory inaccuracies, !, and the ratio of the variance of lead time demand to the va-

riance of inventory inaccuracies, . Based on this result, it is conjectured that, in most 

operational settings, s(µeq) constitutes a lower bound to the actual service level. This conjecture 

is subsequently verified through a numerical analysis, which is reported in Appendix G. 

7.2.2 Count Inefficiency metric 

The lower bound s(µeq) only uses a modified inter-count time to account for the effect of vari-

ability. This means that the Count Inefficiency, defined as the percentage of counts that could 

have been avoided if all counts were equally spaced, can be expressed as a function of the square 

of the coefficient of variation alone, and follows an S-curve shape: 
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Figure 7-2: Count Inefficiency as a function of Count Variability, showing an S-curve pattern 

The Count Inefficiency formula provides managers with a rapid estimate of how count variabil-

ity reduces their efficiency in the sense that the same result could have been achieved with fewer 

equally spaced counts. The relationship between the coefficient of variation of inter-count times 

Count 

Inefficiency 
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and Count Inefficiency is nonlinear: Count Inefficiency increases slowly for CV < 0.2, reaches 

20% for CV = 0.5, and is as high as 50% for CV = 1.0 (see Figure 7-2). 

7.2.3 Numerical study 
This section attempts to quantify the service level impact of inter-count time variability and sepa-

rates the effect of inventory inaccuracy and imperfect timing of cycle counts. Morey’s Minimum 

Average Protection Level (MAPL)47 is used as a service level metric (i.e., s = sMAPL), and the ex-

pected service level sMAPL(T) is compared with its bound s(µeq) for different scenarios using 

Monte Carlo simulation. The scenarios reflected a wide range of operational parameters span-

ning those found in the hospital data. 

The parameters are normalized to simplify the analysis. Let: 

- !: target MAPL (i.e., Type I service level) in the absence of inventory inaccuracies 

- µ: mean time between counts 

- CV: coefficient of variation of the time between counts 

-  

- &: ratio of the variance of the inventory discrepancy %'
2 to the variance of the lead time 

demand %DL
2 

                                                

 

47 The MAPL is defined as the probability that the sum of the lead time demand and maximal inventory inaccuracy 

during the replenishment cycle does not exceed the reorder point. Therefore, it is a conservative estimate of the Type 

I Service level. It is described formally in Appendix F. 
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Therefore, by adapting the expression given in Morey (1985), key expressions can be rewritten 

as follows. 

!

Using common random numbers for each configuration (Law, 2007), 10,000 inter-count times 

are sampled from a Gamma distribution, which is a common two-parameter model of interarrival 

times. Figure 7-3 plots the simulated service level as a function of the mean time between counts 

for two different values of the coefficient of variation (CV). 

 

Figure 7-3: Service Level as a function of the Mean Time between Counts 

Then, a comparison is made among: 
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- !: target MAPL in the absence of inventory inaccuracies 

- SMAPL(µ): MAPL that would have been achieved without variation in the inter-count times 

- SMAPL(T): MAPL achieved with variation in the inter-count times, obtained through nu-

merical simulation 

- SMAPL (µeq): MAPL bound derived in section 7.2.1 

To simplify the presentation of results and reduce the number of parameters to investigate,  

K  =  & µ is held constant to maintain a constant service level assuming equally spaced counts for 

a given target service level !. This reflects managerial action, which aims to maintain an accept-

able service level by decreasing the average time between counts (m) as inventory inaccuracy (&) 

increases. Results for a value of K = 0.5, which is equivalent to counting exactly every 50 days 

when the variance of asset errors represents 1% of the variance of lead time demand48, are pre-

sented. Sensitivity analyses show that as K increases, the service level losses as a result of inven-

tory inaccuracy and count variability increase, as well as the gap between the service level 

achieved and the lower bound49. 

                                                

 

48 Also, Morey (1985) presents a numerical example for which K = 0.506, and the service level deteriorates from 

94.6% to 86.1% given inventory inaccuracy. 

49 Results for different values of K are presented in Appendix G. 
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Figure 7-4: Breakdown of Service Level into its different values as a function of Count Variability (K = 0.5, !  

= 0.95). As inter-count time variability increases, the service level impact of inequally spaced counts increases 

and the bound is less tight. 

The tightness of the bound SMAPL(µeq) is investigated and is found to provide a close approxima-

tion of SMAPL(T) as long as the coefficient of variation of inter-count times is below one, as seen 

in Table 7.1. When the coefficient of variability of inter-count times is around one, the service 

level degradation resulting from count variability is of the same order as the loss resulting from 

inventory inaccuracy (Table 7.1), showing that inter-count time variability can undermine counts 

as a mitigation mechanism. 
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Table 7.1: Service Level Breakdown for different values of ! ,  the target service level in the absence of inven-

tory inaccuracies (K = 0.5). 
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7.3 Empirical Study of Inter-count Times 
The theoretical work developed in the prior sections suggests that reducing the variability of in-

ter-count times is a significant opportunity for the efficiency of a cycle count program. This sec-

tion investigates variability in inter-count times using Lambda’s data in subsection 7.3.1, and 

studies it in more detail by focusing on the Cardiac Catheterization lab in subsection 7.3.2.  

However, the possibility exists that this variability results not from the imprecise execution of a 

cycle count program but rather from dynamic counting policies, which violate the assumptions of 

the analytical model presented in section 7.1 and can potentially improve performance 

(DeHoratius, et al., 2008; Kok & Shang, 2007). Ideally, one would like to quantify empirically 

the effect of inter-count time variability on service levels. Unfortunately, no reliable data on 

service levels were available to us because true inventory levels are only known at the time of 

counts; therefore, inventory inaccuracies themselves introduce bias in service level metrics cal-

culated from recorded data (see previous chapter). As an alternate approach, a statistical proce-

dure to test for the presence of a class of dynamic counting policies is proposed and implemented 

in subsection 7.3.3 

Finally, the potential for reducing the overall number of counts while maintaining current service 

levels is estimated in subsection 7.3.4. 

7.3.1 Measuring Inter-count Time Variability 
For each Station-SKU, the variability of inter-count times is characterized through its coefficient 

of variation. The coefficient of variation of inter-count times is not defined if less than three 

counts were performed during the study period (i.e. two time differences are available), and is 

not meaningful when it is calculated with less than 10 data points.  



Variability in Cycle Counting 158 

 

158 

 

Table 7.2 shows that a moderate increase in variability as the number of counts performed during 

the study period increases. Regardless of the cut-off criteria used, the average coefficient of 

variation was always above 0.8, which implies large values of the count inefficiency metric. 
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Table 7.2: Average Coefficient of Variation of inter-count times broken down by the number of cycle counts 

performed during the 15-month study period 

For the purpose of ensuring that a sufficient number of data points are used in estimating vari-

ability, Station-SKUs counted at least ten times during the 15-month study period (6,110 out of 

21,587) were selected. In this sample, a high level of variability of inter-count times was found, 

as shown by the histogram plot of the coefficient of variation in Figure 7-5. The distribution of 

the coefficient of variation across different Station-SKUs is bimodal, with a distinct first mode at 

CV = 0.5 and another mode at CV = 0.9. The first mode contains 954 Station-SKUs, of which 

922 belong to the three Cardiac Catheterization Lab stations that stock a total of 1,645 Station-

SKUs. 
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Figure 7-5: Histogram of the Coefficient of Variation (CV) of inter-count times for 6,110 hospital Station-

SKUs 
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7.3.2 The case of the Cardiac Catheterization lab 
This particular ward is studied to illustrate how variability in inter-count times occurs. Summary 

statistics on inter-count times in the Cardiac Catherization Lab are presented in Table 7.3.  
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Table 7.3: Summary statistics on the distribution of variability of inter-count times across different products 

in a station (one station-SKU = one observation) 

Analysis of count transactions data for specific Station-SKUs showed groups of counts being 

performed together at each station for different products on Wednesday and Friday around 6:00 

am, suggesting that a cycle-count program was implemented in this ward. This pattern is consis-

tent for most products at the different stations of the Cardiac Catheterization Lab, and can be 

seen in Figure 7-6. 
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Figure 7-6: Total number of Count, Demand and Replenishment transactions by day of the week over the 15-

month study period for Station A of the Cardiac Catheterization Lab50 

These results show a relatively lower level of variability in inter-count times in comparison with 

other wards at Lambda. Yet, the average of the coefficient of variation of inter-count times 

across SKUs stocked in Station A is 0.78, which is still high. If counts were always performed on 

schedule, the mean inter-count time would be 3.5 days and the coefficient of variation would be 

0.61. The additional mean inter-count time and variation comes from products counted less fre-

                                                

 

50 Highly similar patterns were found in Stations B and C, with counts predominantly taking place on Wednesday 

and Friday. The most notable difference was the absence of weekend activity in Stations B and C, as all weekend 

procedures were assigned to Room A. 
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quently, either because they are not part of the cycle-count program or because some of their 

counts were missed, which also explains the additional variability. 

The Cardiac Catheterization Lab schedule does not ensure that counts are equally spaced in time, 

and the distribution of inter-count times has a mode at two days and another mode at five days. 

While the analytical model shows that this is suboptimal, this could potentially be an adjustment 

designed to reflect the nonstationarity of demand patterns throughout the week, and thus achieve 

counts performed after a set number of demand transactions (Iglehart & Morey, 1972). The de-

mand and replenishment patterns throughout the week (Figure 7-6) show a reduced level of ac-

tivity during the weekend. Considering that all counts happen at the beginning of the work day, 

the Wednesday morning count covers the activity from Friday to Tuesday, totaling 29,494 de-

mand transactions annually, while the Friday morning count covers Wednesday and Thursday 

activity, which represents only 15,260 transactions annually. Thus, this example shows that the 

counts are unequally spaced even after adjusting for demand variations across the week. If the 

constraint of performing counts at the beginning of a weekday is kept, moving the Wednesday 

count to Tuesday morning would result in them being more equally spaced (see Table 7.4) both 

in terms of time and demand, and therefore would improve their effectiveness. 
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Table 7.4: Illustrative Inter-count Time CV and Inter-count Demand CV for different Count Days, taking 

into account nonstationarity of demand during the week. This table assumes that counts are executed before 

the work day on those dates. 

* Assuming deterministic demand following a weekly periodic pattern. 
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7.3.3 Testing for dynamic counting strategies 
Interviews with materials managers revealed that large differences in cycle count frequency and 

variability existed among different products and wards, and that no formal cycle counting policy 

existed across the hospital. Materials managers attributed different levels of count activity to the 

particular technicians assigned to specific wards, and to the existence of ward-specific efforts 

(e.g., in the Cardiac Catheterization Lab). Moreover, the hospital had experimented with dy-

namic counting strategies. For instance, replenishment technicians were instructed to perform 

counts and correct inventory inaccuracies during replenishment transactions to the extent that 

their workload allowed it and they were not preventing nurses from accessing supplies. Because 

these activities were outside of the scope of a cycle counting program and the execution of a 

count during replenishment was not measured, such replenishment transactions were excluded 

from the analysis51. 

In this subsection, whether the observed variability in inter-count times results from dynamic 

counting policies based on the book inventory state is investigated. It is possible that dynamic 

strategies could be based on other factors, in particular the actual inventory level52. However, 

physical inventory is only observed during inventory counts as opposed to during the entire pe-

riod of the study, making it difficult to test for the presence of strategies based on physical inven-

tory. 

                                                

 

51 Because Counting On Replenishment (COR) is a dynamic counting policy, it violates the assumptions made in 

this model. However, sensitivity analyses of the Discrete-Event Simulation model showed that the detrimental effect 

of cycle count time variability on the service level still occurs when the COR policy is implemented. 

52 An example of such a policy used by retailers in addition to cycle counting programs is the Zero Balance Walk. It 

consists of visually inspecting items with zero stock on hand and updating their records in the inventory system. 
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For each Station-SKU, the distribution of book inventory levels (a) as observed prior to each 

count was compared with (b) that as expected at a random point in time53. Specifically, the null 

hypothesis is: 

H0: the relative proportions of the inventory levels are independent of whether they are meas-

ured during inventory counts or at a random point in time. 

Some static cycle count programs (as opposed to dynamic counting strategies) could violate the 

null hypothesis, not because counts were triggered on the basis of the book inventory level, but 

rather as a result of a coincidence between the count scheduled time (e.g., Friday afternoons after 

the end of all operations) and particular levels of inventory given combinations of periodic de-

mand patterns and replenishment schedules. Because of this broad definition of the null hypothe-

sis, the procedure used is conservative in that correct rejection of the null does not necessarily 

indicate the presence of a dynamic inventory strategy. Since the expected values of the table cells 

were often below five, Fisher’s exact test was used54. Table 9.6 in Appendix H reports the results 

of hypothesis testing at the 0.01, 0.05 and 0.10 significance level in each station. 

At the 0.05 significance level, the null hypothesis is rejected for 1,579 Station-SKUs (i.e., the 

null hypothesis fails to reject in 73.9% of the 6,110 Station-SKUs considered). This suggests 

that, at least for some products, hospital materials managers may be triggering counts on the ba-

sis of their book inventory level. A reasonable assumption is that such dynamic strategies may be 
                                                

 

53 For each level of book inventory, the number of days spent with book inventory equal to that level is rounded and 

constitutes the expected count, thus defining the empirical distribution of inventory levels across time. This distribu-

tion was obtained using transaction data for 5,855 station-SKUs among a total of 6,110. 

54 P-value estimates were obtained through Monte Carlo simulation (using 20,000 trials) by the fisher.test() com-

mand of the R statistical package. 
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followed in certain wards (and thus stations) and not in others. For each station with more than 

50 station-SKUs, the proportion of SKUs for which the null is rejected at the 0.05 significance 

level is examined. In only eight out of 30 stations is this proportion greater than 50% (Table 7.5). 

In particular, in the Cardiac Catheterization ward (Stations S_CL_A, B, and C) described in the 

previous subsection, and where a cycle count program was described by materials managers dur-

ing interviews, the null hypothesis is rejected for only 6%, 4% and 10% of Station-SKUs, respec-

tively. 

This analysis of dedicated count transactions suggests that a large fraction of products exists for 

which the variability in inter-count times is not attributable to dynamic counting strategies based 

on book inventory, but rather on suboptimal timing of cycle counts. 

7.3.4 Estimating the count reduction potential at Lambda 
The Count Inefficiency metric is defined in 7.2.2 as the percentage reduction in the number of 

counts that would keep the service level unchanged if the variability of inter-count times were 

eliminated for a single Station-SKU. This section extends this definition to groupings of Station-

SKUs by applying the count inefficiency equation to calculate the absolute change in the number 

of counts55 for each individual Station-SKU, and then aggregating the results.  

Using this method on 6,110 Station-SKUs with more than ten counts, the total number of counts 

performed in the hospital during the study period could be reduced by 41.5% (i.e., from 261,934 

to 153,165), if all variability were eliminated, or by 34.8% if each Station-SKU had an inter-

                                                

 

55 i.e., a number of counts avoided, rounded to the lowest integer for conservativeness. 
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count time coefficient of variation of 0.2556. These figures suggest a large improvement opportu-

nity. 

                                                

 

56 These figures do not include the Station-SKUs for which the total number of counts performed was less than or 

equal to ten, which accounted for a total of 50,655 of the 312,589 counts performed (see Table 7.2). Conservatively 

assuming that the number of counts for these Station-SKUs is unchanged, the reduction would be 34.8% (target C.V. 

= 0.00) and 31.8% (target C.V. = 0.25). 
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Table 7.5: Proportion of products for which the null hypothesis is rejected at the 0.05 level (stations with less 

than 50 SKUs were excluded) 
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Chapter 8 

Managerial Implications 
The key issues for hospital materials managers faced with inventory inaccuracies are: (1) the 

identification of effective strategies to improve product availability and (2) the development of a 

holistic framework to implement and evolve these strategies over time. 

This chapter builds on the simulation study to summarize the benefits of different strategies, and 

discusses their feasibility in a Lambda’s hospital environment. An iterative framework for con-

tinuous improvement and the reduction of inventory inaccuracies is proposed and illustrated us-

ing a causal loop diagram.  

8.1 Evaluation of Inventory Inaccuracy Strategies 
This thesis considered four strategies for addressing the service level impact of inventory inaccu-

racy strategies, and their quantitative effects are reported in section 6.4: (1) Reducing Imperfect 

Demand Recording, (2) Counting More Frequently and Reducing Count Variability, (3) Count-

ing on Replenishment, and (4) following a Dynamic Inventory Policy. The benefits and opera-

tional implications of each strategy are discussed below.  

8.1.1 Reducing Imperfect Demand Recording 
This strategy consists of conducting process improvement efforts to ensure that product usage is 

properly recorded by end-users. In essence, this is a prevention strategy in that it attempts to ad-
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dress the root causes of inventory inaccuracy (DeHoratius, et al., 2008). This strategy was the 

one that Lambda pursued when this study was initiated. This strategy was being followed by the 

hospital for multiple reasons. 

First, achieving high Recording Accuracy guarantees that the product usage data can be accu-

rately tied to a particular patient and ward, and therefore enables billing integration. While be-

yond the direct scope of this thesis, the use of these data for billing integration is desirable be-

cause it enables the hospital to understand its cost structure with a high level of granularity (i.e., 

down to the patient, procedure and physician level). When the patient is insured, the hospital is 

paid a fixed fee per procedure. Therefore, detailed supply cost information is necessary to meas-

ure the profitability of different procedures. When the patient is uninsured, products above a 

critical threshold (e.g., $20) are billed to the patient’s account, and therefore accurate informa-

tion is desirable. When this research was initiated with Lambda, one of the goals of implement-

ing ADMs was to reduce inaccuracies to an acceptable level so that billing integration could be 

implemented. At the time of this writing, three and a half years after the ADM deployment began 

at Lambda, billing integration had not been activated because of Imperfect Demand Recording. 

Second, vendors of Automated Dispensing Machines recommend that hospitals focus on preven-

tion strategies and staff accountability to achieve high Recording Accuracy. However, process 

improvement and accountability are difficult to implement without detailed knowledge of the 

sources of inaccuracies, including the stations and the individuals responsible for them. Because 

the value proposition of ADMs rests heavily on the cost-saving potential of automation (Owens 

& Minor, 2005), and frequent inventory counting is typical when ADMs are not deployed, cor-

rection strategies were often perceived by hospital staff as a failure of the ADM system, and 

were not advocated by the vendor. This is because inventory counting is labor-intensive and 

erodes the labor savings that the vendor claims are achievable with ADM systems. Furthermore, 

introducing counting strategies constitutes a return to the prior process, as was suggested by a 

hospital manager during a visit: “If we still have to perform inventory counts, why do we need 

Automated Dispensing Machines?” 
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In summary, achieving and sustaining a high Recording Accuracy should be the medium- to 

long-term goal of the hospital managers to get the full benefits of Automated Dispensing Ma-

chines. 

8.1.2 Counting more frequently and reducing Count Variability 
Correcting the inventory record more frequently through physical audits improves service levels 

significantly57 and provides improved estimates of the recording accuracy58. This strategy is 

therefore important in that it offers immediate and large service level improvements when the re-

cording accuracy is low, and provides data to assist process improvement efforts. However, con-

ducting more inventory counts requires additional labor and therefore adds costs for the hospital.  

On the other hand, reducing cycle count variability improves the service level and has no impact 

on costs because the count frequency is unchanged. This finding offers an opportunity to main-

tain the current service level while reducing the number of counts by at least 31.8% across the 

entire hospital, and/or to achieve higher service levels without increasing costs59. 

At the scale of the hospital, this leads to an opportunity to reallocate counts freed by variability 

reduction to products that are currently not counted frequently enough. 

 
                                                

 

57 See Table 6.5: Physical and Book View In-stock Probability for different values of the Recording Accuracy and 

Count Periodicity. 

58 See section 5.4.1: Challenges to estimating Recording Accuracy from ADM data. 

59 See section 7.2.2 for the quantification of the possible reduction in counts and section 7.3.4 for its application to 

empirical hospital data. 
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8.1.3 Counting on Replenishment 
The simulation model demonstrated that Counting on Replenishment increases product availabil-

ity by increasing the total number of counts performed and removes the overly optimistic bias in 

the Book Stock-Out Frequency metric60, which is reported by Automated Dispensing Machines 

and was tracked by hospital managers throughout the study. This strategy was implemented by 

the hospital halfway through the study at the suggestion of the ADM vendor’s consulting staff, 

and prior to receiving knowledge of the results of this study. 

However, Counting on Replenishment suffers from severe operational drawbacks. First, it con-

centrates the workload of materials management technicians by adding a process step to the re-

plenishment, thus slowing down delivery of product to the stations in the morning. At Lambda, 

this resulted in increased complaints by end-users of not being able to access the machines as 

they were being replenished, as well as low labor utilization in the early afternoon. Second, con-

trary to a dedicated count transaction, it is impossible to monitor whether a count on replenish-

ment truly has been performed and to know with certainty the time of the last count. Finally, the 

simulation shows that counting on replenishment is less efficient than periodic counts; for a giv-

en total count budget, periodic counts alone achieve a higher service level. Intuitively, this can be 

understood easily, as counts performed during replenishment are less likely to prevent a stock 

out because they occur after the ordering decision has been made. 

For these reasons, alternative counting policies should be pursued in lieu of Counting on Replen-

ishment. 

                                                

 

60 The bias is removed if counts are performed at every replenishment, and is only removed in steady state, i.e. the 

stock outs are usually detected with a variable delay after which they took place. 
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8.1.4 Dynamic Inventory Policy 
The dynamic inventory policy presented in this thesis is an example of an integration strategy. It 

takes imperfect demand recording into account during the replenishment decision. While other 

integration strategies are more sophisticated in their theoretical grounding, the Dynamic Inven-

tory Policy heuristic developed in this thesis has the advantage of being computationally efficient 

and self-tuning. It updates itself as new information about inventory inaccuracy is obtained dur-

ing audits, thus avoiding the need for one-time parameter estimation. For instance, if Recording 

Accuracy drops, the heuristic detects this after the subsequent count and attempts to compensate 

for the drop without managerial intervention. 

Strategies that integrate inventory inaccuracy into inventory policy are very recent (DeHoratius, 

et al., 2008; Kok & Shang, 2007). That inventory managers may not yet readily understand them, 

as well as the need for sophisticated software, has so far limited their real-world applications. 

Furthermore, hospital materials managers are not able to experiment with inventory policy be-

yond adjusting its parameters because the ADM vendor designs and maintains the software. This 

presents both a challenge and a rare strategic opportunity, as it makes piloting new initiatives 

more difficult because of the need for the involvement of the ADM vendor. However, it is a sig-

nificant leverage point for facilitating the adoption of improved inventory policies. While the 

hospital industry is particularly fragmented, and disseminating innovations in healthcare is diffi-

cult (D. Berwick, 2003), only three main ADM vendors61 deploy and maintain ADM software in 

thousands of hospitals, which means that software innovations could potentially spread rapidly. 

                                                

 

61 See Supply Chain Automation Vendors, section 2.2.2: Stakeholders, page 35. 
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8.2 A Holistic and Iterative Framework for Improv-
ing Product Availability in the Hospital 
In the previous section, the benefits and drawbacks of different improvement strategies were dis-

cussed. This section proposes an iterative framework that takes into account the interdependency 

among these strategies. First, counting more often and more consistently provides more precise 

estimates of the Recording Accuracy, which are instrumental in identifying corrective actions 

and providing feedback to end-users to reduce Imperfect Demand Recording. Second, counting 

policies affect the bias and variance of service level estimates, which can become severely inac-

curate and give managers a false sense of security. 

For this reason, this thesis recommends that hospital managers avoid using current service level 

metrics to track the evolution of process improvement efforts, and rely instead on metrics that re-

flect the root cause of the problem, such as Recording Accuracy. 

8.2.1 Framework description 
This thesis proposes to initially focus on correction strategies prior to implementing prevention 

or integration strategies. This is consistent with the Statistical Process Control (SPC) literature, 

which recommends standardizing existing processes, defining precisely characteristics to be im-

proved, and collecting data and tracking these characteristics prior to conducting improvement 

activities (Carey & Lloyd, 1995). The proposed framework applies this principle to inventory in-

accuracies and combines Correction, Prevention, and Integration strategies in a sequential and it-

erative manner, as follows. 

1. Correction 

a. Setting a target cycle count frequency. For each station, define a cycle counting sche-

dule for the different SKUs based on the current Recording Accuracy levels. Several 

steps can facilitate a practical schedule: 
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i. Dedicating equally spaced time slots to cycle counts chosen at periods of low 

machine and labor utilization; 

ii. Choosing a limited number of cycle count frequencies, e.g., bi-weekly, week-

ly, bi-monthly, and monthly frequencies; 

iii. Adopting a computerized system to automatically generate lists of items that 

need to be counted each day. 

b. Counting consistently 

i. Using control charts to monitor the mean and standard deviation of inter-count 

times; 

ii. Actively investigating missing or ill-timed counts. 

2. Prevention 

a. Set a target Recording Accuracy for each station. 

b. Reporting estimates of Recording Accuracy to end-users: 

i. At frequent intervals, but only when the estimates are statistically valid62; 

ii. Separate different groups of products, e.g., Closed Door vs. Open Shelf; 

iii. Consider reporting Recording Accuracy on a modified scale consistent with 

the Defect Per Million convention to make the differences in Recording Accu-

racy meaningful to end-users (see section 5.3, The Role of Framing, page 76 

for a discussion of this issue). 

c. Conduct training sessions focused on problem areas to resolve technical and 

workflow problems (Loop B1 on Figure 8-1) 

                                                

 

62 More frequent estimates are based on fewer counts and therefore have higher variance. More frequent and consis-

tent counts reduce the variance of recording accuracy estimates. 
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d. Iterate by adjusting the target count frequency as Recording Accuracy evolves (Loop 

B2 on Figure 8-1) 

3. Integration 

Once robust counting processes and higher Recording Accuracy levels are achieved, dynamic 

ordering policies should be considered to improve the performance of the supply chain. 

The Correction and Integration steps can be summarized in the following Causal Loop Diagram: 

 

Figure 8-1: Causal Loop Diagram of the Iterative Improvement Framework 

The double slash indicates the delay between Imperfect Demand Recording and the Recording Accuracy es-

timate. 
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8.2.2 Discussion 
Contrary to intuition of eliminating directly the root causes, this framework starts with Correc-

tion strategies. In addition to the statistical process control analogy, specific behavioral and or-

ganizational reasons motivate this order. 

To the casual observer, Imperfect Demand Recording is a problem that can be solved simply 

through accountability, by defining it as an inappropriate behavior for which repeat offenders 

suffer harsh consequences. The literature on human factors has found this approach ineffective in 

many industries because a culture of blame prevents error reporting and improvement activities. 

This insight is being increasingly recognized in health care, including in the area of medication 

errors (D. M. Berwick, 1998; Fortescue, et al., 2003; Kaushal, et al., 2001; Leape, 2009). Fur-

thermore, compliance is practically difficult to enforce when Imperfect Demand Recording is 

widespread in a ward. 

On the other hand, achieving process control in correction activities poses fewer difficulties than 

for Imperfect Demand Recording, for the following reasons: (1) materials management techni-

cians are under the authority of a single manager for whom supply chain performance is a key 

objective, (2) the number of materials management technicians is small relative to the number of 

end-users (25 FTEs relative to 2,300 at Lambda), and (3) Automated Dispensing Machines track 

counting behavior at the individual level. 

Finally, it is important to note that counting consistently delivers a potential Pareto improvement 

in the form of service level increases with little to no incremental costs63. This creates an oppor-

                                                

 

63 When count frequency, which is the main driver of counting labor costs, is kept constant. Scheduling cycle counts 

may require additional resources but off-the-shelf software solutions should make this cost negligible.  
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tunity for hospital managers to optimize the allocation of their count budget across stations and 

products, as counts are no longer necessary because their variability has been reduced and can be 

allocated to products needing a higher count frequency, or can be eliminated altogether. Avoid-

ing increases in the overall counting workload of materials management technicians is important 

for two reasons: (1) it represents a cost to the hospital, and (2) increasing count frequency in a 

warehousing context resulted in decreased inventory accuracy because it is a tedious task and 

technicians did not truly execute the recommended counts, using the book inventory as a “maxi-

mum likelihood estimate” for the physical inventory (Millet, 1994). 

Finally, interviews with materials management technicians and end-users revealed that dynamic 

decisions could be a source of confusion. This observation fits within the literature on the value 

of consistency in decision-making (Bowman, 1963), which notes that consistent managerial de-

cisions over time can be more beneficial than explicit solutions to cost-models when intangibles 

such as stock out costs have to be estimated or assumed. When their variability is reduced, peri-

odic cycle counts satisfy this consistency property. 
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Chapter 9 

Conclusions & Contributions 

This chapter summarizes the conclusions reached in this research, starting with the characteriza-

tion of inventory inaccuracies in the hospital. The insights derived from the discrete-event simu-

lation model on the effects of Imperfect Demand Recording are presented, followed by their im-

plications for hospital inventory management and a discussion of the socio-technical aspects of 

the inventory inaccuracy problem. 

The contributions of this research to the hospital system domain, inventory management, and 

Engineering Systems are then presented, as well as suggestions for further research. 

9.1 Conclusions 

9.1.1 Characterization of Inventory Inaccuracies in the Hospital 

Analysis of Automated Dispensing Machine transaction data from a 300-bed New England hos-

pital (Lambda) showed that inventory inaccuracy is a significant issue in the hospital context. A 

typology of the sources of inventory inaccuracies was constructed and Imperfect Demand Re-
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cording, i.e., the act of not properly recording product usage, was identified as a key source of 

inventory inaccuracies. 

Existing metrics for inventory inaccuracy reported by Automated Dispensing Machines suffer 

from several problems that reduce their usefulness to managers: (1) they are affected by the 

number of counts performed in a given period, and therefore do not reflect the underlying behav-

ior of end-users, (2) they are skewed toward fast-moving products at the expense of slow-moving 

products, and (3) they are not robust to outlier observations. 

For these reasons, this thesis proposes Recording Accuracy as a new metric of Imperfect De-

mand Recording and provides methodology to estimate it from Automated Dispensing Machines 

count data. Its application to Lambda’s records shows that depending on the ward, between five 

and thirty percent of product usage is not recorded, i.e., Recording Accuracy ranges between 

70% and 95%. 

9.1.2 Drivers of Product Availability 
A discrete-event simulation model showed a large and statistically significant detrimental effect 

of Imperfect Demand Recording on product availability, which increased with increasing aver-

age time between inventory counts. For instance, assuming counts occur every three weeks, as 

Recording Accuracy drops from 100% to 85%, the fill rate declines from 98.2% to 89.4%. This 

same simulation scenario found that variability in the time between counts further reduces the fill 

rate by 5% to 15%. An analytical model confirmed that variability in cycle counting undermines 

the effectiveness of inventory counts under more general assumptions about inventory inaccura-

cies, and this effect was further quantified. 

9.1.3 Bias and Inadequacy of Existing Service Level Metrics 
Existing metrics of product availability available from Automated Dispensing Machine data 

were found to suffer from serious limitations. 
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First, the stock-out frequency metric, which is reported by ADMs and used by hospital manag-

ers, does not account for stock-out duration. Therefore, it does not reflect the experience of end-

users. The stock out frequency is not monotonic in the fill rate, as when the fill rate decreases to 

very low levels, the stock out frequency reaches a plateau or even decreases because items that 

are out of stock cannot go out of stock again. This first observation is general regardless of 

whether low service levels are caused by inventory inaccuracy or insufficient safety stock. 

Second, unless a count is performed immediately prior to the replenishment delivery, the book 

stock out frequency metric (calculated from ADM data) is biased and overly optimistic. For in-

stance, using the previous simulation scenario, the book stock out frequency is equal to 0.32 

stock out events per week when the physical (i.e., correct) stock out frequency is equal to 0.11 

stock out events per week. Moreover, the book view stock out frequency metric is not monotonic 

in the physical (i.e., true) stock out frequency. Finally, the book in-stock probability suffers from 

the same bias phenomenon. 

9.1.4 Implications for Hospital Inventory Management 
The previous findings suggest that managers should avoid using current service level metrics re-

ported by Automatic Dispensing Machines, since those metrics: (1) do not reflect the true service 

level experienced by caregivers; (2) are not a reliable proxy or performance indicator during im-

provement activities, as the metric can improve while the true situation is deteriorating. 

Instead, hospital managers should focus on measuring the root causes of inventory inaccuracies 

to drive their process improvement efforts. A sequential and iterative framework for improving 

product availability is proposed, as follows: (1) start by setting targets for the frequency of inven-

tory counts and increasing their effectiveness by reducing their variability, (2) obtain improved 

estimates of Recording Accuracy and use them to focus training and process improvement ef-

forts on problematic areas, and (3) iterate by adjusting the target count frequency as Recording 
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Accuracy evolves, creating a balancing loop that gradually reduces the resources devoted to in-

ventory counts. 

9.2 Contributions 
This study considered the hospital supply chain as an engineering system and investigated the 

role of inventory inaccuracies in its performance. Using a multimethod (i.e., combining inter-

views, econometric analysis of real-world data, discrete-event simulation, and analytical model-

ing) and multilevel (i.e., hospital, ward, and item levels) approach proved beneficial throughout 

this research. The results most relevant to the literature on inventory inaccuracies and variability 

are discussed first, followed by remarks pertinent to engineering systems. 

First, variability in the time between inventory cycle counts is empirically established in hospital 

Automated Dispensing Machine transaction data. Under the assumption of independence of 

count timing with the state of the inventory (which was tested using empirical data), this variabil-

ity property of the system is shown to reduce service levels. From a theoretical perspective, a dis-

tribution-free approximation of the cost of variability was derived and was found to be propor-

tional to a nonlinear S-curve. Practically, this implies that managers can improve service levels at 

no cost and/or reduce counting costs by ensuring that cycle counts are executed according to an 

equally spaced schedule. 

Second, hospital managers were found to rely on metrics from Automated Dispensing Machines 

that are misaligned with the experience of end-users and are biased by Imperfect Demand Re-

cording. This problematic situation is not accidental. It results from metrics and technical sys-

tems designed with incorrect assumptions about the compliance of individuals with prescribed 

processes. A sequential and iterative framework is proposed, which seeks to improve perform-

ance by taking a holistic approach using technology to detect changes in process compliance. 

These findings were presented at Lambda hospital at the end of this study and led to a shift in fo-

cus from biased service level metrics toward counting policies. 
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9.3 Suggestions for Future Research 
Three areas for further research stem from this thesis: 

- Field experiments evaluating interventions such as the ones proposed in this thesis, in-

cluding Prevention, Correction, and Integration strategies. However, gaining access to 

management and data, enforcing appropriate experimental controls, and ensuring external 

validity through the use of multiple sites make this a challenging task. 

- Theoretical and applied research on unbiased estimation methods for service level met-

rics, such as the in-stock probability or the fill rate in the presence of inventory inaccura-

cies. 

- More generally, empirical and theoretical research characterizing how human behavior 

deviates from assumptions embedded in socio-technical systems and evaluating the ef-

fects of such deviations on system performance to identify improvement opportunities.
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Appendix A. Interview list 

Title Organization 

Director of Purchasing Lambda 
Director of Materials Management Lambda 
VP of Supply Chain Lambda 
Nursing Manager Lambda 
Replenishment Technician 1 Lambda 
Replenishment Technician 2 Lambda 
OR Materials Support  Lambda 
Program Manager* Distributor and Lambda 

 
Technology Staff Specialist Boston-area hospital 1 
Director of Perioperative Services Boston-area hospital 2 
Director of Pharmacy Boston-area hospital 3 
Capital Equipment Purchaser Hopital Pitié-Salpétrière, 

Paris, France 
Director of Pharmacy (includes sterile med-
ical devices) 
 

Institut Gustave Roussy, 
Villejuif, France 

  
Director, Global Supply Chain Processes 
Medical Devices & Diagnostics Group 
 

Medical Device Manufacturer 

Regional Sales Manager 
 

Medical Device Manufacturer 

 

* Title altered to preserve confidentiality. 
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Appendix B. Investigation of Demand Autocorrelation 

The question of the presence of auto correlation in demand data is a recurring one in the inven-

tory control literature. While most authors generally accept this assumption in theoretical papers, 

it is still important to examine its validity in the context of the hospital. Potential sources of auto 

correlation of demand include:  

• Periodic patterns: there are likely to be periodic (daily, weekly and possibly annual) pat-

terns in the demand data. For instance, the activity of many wards of an hospital is typi-

cally lower during weekends. These patterns are a common occurrence and typically ma-

nifest themselves by an Auto Correlation Function (ACF) plot oscillating around zero. 

The traditional procedure is to deseasonalize the data, but for slow-moving items this is a 

difficult task due to a large fraction of zero observations. 

• Grouping of similar procedures through scheduling: many hospitals typically schedule 

similar procedures (for instance in an operating room) together in order to increase opera-

tional efficiency and safety. This may make the demand for certain operating-room re-

lated products to have positive serial correlation within the day.  

• Recurring use: some products (for instance pharmaceuticals) may be used as part of the 

treatment regimen for a particular patient. This can create some auto correlation, particu-

larly for slow-moving items where the impact of a single patient may be more important. 
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Auto correlation testing procedure 

To test for auto correlation in the data, we group the historical demand data in periods of length 

T, where T is expressed in days. In order to avoid taking into account products taken by mistake, 

the auto correlation test is conducted on the net sales (i.e. sales - returns during the period). Our 

procedure is then the following:  

a) For each product in a particular location, plot the Auto Correlation Function with lags of 

up to 14 days (two weeks).  

b) Inspect the graph for patterns of positive serial correlation.  

c) If the data has a periodic pattern, we can fit a seasonal model and conduct the test on the 

residuals of the model, making seasonal effects manageable by the model64.  

d) Conduct a Ljung-Box test with lags of up to 14 days. We choose the Ljung-Box test over 

the traditional Box-Pierce test because it has better performance for all sample sizes, par-

ticularly in small samples where the Box-Pierce test has poor performance. 

Adapted from Wikipedia, “Ljung-Box test”:  

The Ljung-Box test tests whether any group of autocorrelations of a time se-

ries are different from zero. Because it tests the randomness of the time series 

based on a number of lags, rather than at a specific lag, it is a portmanteau 

test. The null hypothesis is that the data are random, and the test statistic is:  

                                                

 

64 The Demand model with probabilistic recording is extended to the case when demand rates vary periodically in 

Appendix C (this results from the infinite divisibility property of the negative binomial). 
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with n being the sample size,  being the sample auto correlation coefficient 

at lag l, and L the total number of lags being tested.  

For a significance level #, the hypothesis of randomness is rejected if:  

 

 

with $1-#,L
2being the #-quantile of the chi-square distribution with L degrees of 

freedom.  

High p-values are desirable, and values above 0.05 signify that we cannot re-

ject the null hypothesis of independence of demand over time. 
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Appendix C. Analytical Model of Demand Recording 

In this section, the goal is to derive the conditional probability distribution of the inventory on 

the shelf (or the discrepancy, since the book inventory is known), conditioned on operationally 

observable variables (sales and/or time since the last count). This may yield to improved count-

ing and ordering heuristics. In this process, we verify that if the total demand is negative bino-

mial, and recording occurs according to a Bernoulli process, then the recorded demand is nega-

tive binomial as well. 

Notations and Assumptions 

• D daily demand distribution  

• p probability of each transaction being recorded  

• DR daily recorded demand distribution  

• DU daily unrecorded demand distribution  

• $ time since the last count event, in days  

• X accumulated total demand distribution since the last count event  

• Y accumulated discrepancy, defined as the difference between the book inventory and 

the physical inventory on hand  

• Z accumulated recorded demand distribution since the last count event 

We make the following assumptions:  

• The daily demand distribution follows a negative binomial distribution: 

• D ~ NegBin(%,u), i.i.d.  
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• We use the following parameterization of the Negative Binomial distribution NegBin(%,u) 

with probability mass function f:  

 
• All demand transactions are unit-sized.  

• The probability of a demand transaction being recorded is 0 < p < 1 and follows a Ber-

noulli distribution. It is independent of demand.  

• No product returns can take place.  

• All counts are perfect: they reflect the “true” physical inventory, and therefore set Y = 0.  

• The time since the last count is independent from the realized demand and the probability 

p, and is equal to $  

Results 

From assumptions 1-5, we can derive the following results:  

DR ~ NegBin(&,x), i.i.d., with  

DU ~ NegBin(&,y), i.i.d., with  

Additionally, using assumption 6:  

X ~ NegBin(&$,u), i.i.d.  

Y ~ NegBin(&$,y), i.i.d.  

Z ~ NegBin(&$,x), i.i.d. 
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If we assume that the original demand distribution is negative binomial, then the recorded and 

unrecorded demand also follows a negative binomial distribution with known assumptions. If the 

negative binomial distribution offers a good fit for the recorded demand distribution, it is plausi-

ble that the original demand distribution was also negative binomial.  

The main benefit of this model is that it allows to infer the probability distribution of Y, the ac-

cumulated inventory error, based on the estimate of p, the estimates of the demand distribution 

parameters % and x, the observed cumulative sales since the last count event Z, and the time since 

the last count event. 
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Derivation of Proposition 1 

 

With a change of variable i = n - k, we have:  

 

We apply the following changes of variables: & ‘= k + &, 1 - b = (1 - p)(1 - u),  

b = 1 - (1 - p)(1 - u) = p + u – pu 
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which is the p.d.f. of the NegBin(&,x) distribution.  

Derivation of other propositions 

Using p! = 1 -p and the result above, we derive Proposition 2 : DU ~ NegBin(&,y), i.i.d., with 

 

u and p can be expressed algebraically from x and y, and the proof of Propositions 3 and 4 is ob-

tained by substituting the expressions for x and y.  

Propositions 3-5 follow from the infinite divisibility property of the negative binomial distribu-

tion65.  

Proposition 6 requires further derivation. Using Bayes’ theorem: 

 

We can calculate the numerator and the summed term in the denominator of this expression: 

                                                

 

65 A formal derivation can be obtained using Moment Generating Functions and is in Appendix A (to be added). 
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Because it does not depend on m, the factor to the left of the expression is eliminated when tak-

ing the ratio:  

 

Extension for uneven demand rates across time 

We look at the original demand distribution D, but since the distribution of recorded demand is 

also negative binomial, the results carry over to the distribution of recorded demand DR. We 

make the following additional assumptions:  

The day is divided in n time buckets of equal length.  

Demand in each time bucket Di is independent from demand in all other time buckets.  

We relax the assumption that demand in all time buckets is identically distributed, and only re-

quire that:  
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#

Let , and let Gs(z) ,GDi(z) be the probability generating function of S and Di.  

Because the Di are independent, we have:  

 
Substituting the probability generating function of the negative binomial, we have:  

 

By identification of the probability generating function of the negative binomial, we have the de-

sired result. 
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Appendix D. Discrete-Event Simulation Model Code 

 

The following code is in the Python language, and uses the SimPy library for discrete-event si-

mulation and numpy for random variable generation. 

#from SimPy.SimPlot import * 
from SimPy.Simulation import * 
import sys, csv, time, math, random, numpy.random, gc 
import MySQLdb 
 
class StaSKU: 
    def __init__(self,L,seed,hashCode,trial): 
         
        self.hashCode = hashCode 
        self.seed = seed 
        self.trial = trial 
         
        # Activate processes              
        sd = SourceDemand() 
        activate(sd, sd.runSD(L, self)) 
         
        # Initialize the count process 
        # There are different possible values for the IntCt Field 
        # 0: [a number] Periodic counts. as a convention, enter 100000 
as a way to guarantee no periodic counts at all 
        # 1: [a distribution, such as "exp(4.0)" for exponentially 
distributed inter-count times with mean 4 
        # or "norm(mean,sd)" e.g. "norm(4;0.1)" Note the use of the 
semicolon to avoid problems with .csv files 
        # 2: [ a .csv file, in order to load historical data. 
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        # function(A,B), where function = norm(mean, std, trunc-at-
2*mean=True or False) ; exp(mean), unif(A,B) 
         
        # The line below is removed we may want to count on the book 
view inventory being  below the reorder point 
        # AND periodically as well 
        # if eval(L['CountLow']) == 0 
         
        if L['Inter-Count time'].endswith(".csv"): 
            # Historical inter count times are loaded from a .csv file 
            # If the sum of the inter-count times provided is below 
the length of the simulation run, 
            # the system will loop over the historical file 
            self.ctType = 2  
            f3 = open(L['Inter-Count time'], "rU") 
            self.historCtData = [] 
            for line in csv.reader(f3.readlines()[1:]): 
                self.historCtData.append(line) 
            f3.close() 
             
             
        elif L['Inter-Count time'].endswith(")"): 
   # We use a distribution in this case. 
   # The different types of distributions recognized are defined 
below 
   self.ctType = 1 
 
   # stream for the distribution of inter-count arrival times 
   self.IntCtRandom = random.Random(self.seed) 
    
   # Parse string to determine distribution time and parameters 
   self.IntCtDistType, sep, ab = L['Inter-Count time'][:-
1].partition('(') 
 
   self.IntCtA, sep, ab2 = ab.partition(';') 
   self.IntCtB, sep, self.IntCtC = ab2.partition(';') 
 
        elif eval(L['Inter-Count time']) > 0: 
            self.ctType = 0 
             
        else: 
            print("error: IntCt field syntax error") 
            sys.exit() 
         
         
        # Finally, initialize the count process 
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        sc = SourceCount() 
        activate(sc,sc.runSC(L,self),at=eval(L['Initial count time'])) 
         
         
         
        ord = Order() 
        activate(ord,ord.runO(L, self)) 
        rev = Review() 
        activate(rev,rev.runRev(L,self,ord)) 
 
         
        # Define levels, monitors, lists 
        self.realInvLev = Level(initialBuffered=eval(L['InitialIOH']), 
monitored=True) # Level indicates real  
        # inventory amount  
        self.monRealFull = Monitor(name='%s' %(L['Demand Error prob-
ability']),ylab ='real inv. level')  # monitor real inventory level 
over entire simulation  
        self.monReal = self.realInvLev.bufferMon # monitor real inven-
tory level over each statTimeRange 
        self.aveRealInv = [] # list of time-averaged real inv. level 
per statTimeRange  
         
        self.BVinv = eval(L['InitialIOH']) # book view inventory level 
        self.monBVFull = Monitor(name='%s' %(L['Demand Error probabil-
ity']),ylab = 'book inv. level' ) # monitor book view inventory level 
over entire simulation 
        self.monBV = Monitor() # monitor book view inventory level 
over each statTimeRange 
        self.aveBVInv = [] # list of time-averaged BV inv. level per 
statTimeRange  
         
        self.monRVSOFull = Monitor(ylab = 'RVSO') # monitor # of real 
stockouts over entire simulation 
        self.monRVSO = Monitor() # monitor # of real stockouts over 
each statTimeRange 
        self.sumRVSO = [] # list of sum of real stockouts per stat-
TimeRange 
         
        self.monBVSOFull = Monitor(ylab = 'BVSO') # monitor # of re-
corded stockouts (book view) over entire simulation 
        self.monBVSO = Monitor() # monitor # of recorded stockouts 
(book view) over each statTimeRange 
        self.sumBVSO = [] # list of sum of book view stockouts per 
statTimeRange 
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        self.monLostSaleFull = Monitor(ylab = 'LostSales') # monitor 
amt of lost sales over entire simulation 
        self.monLostSale = Monitor() # monitor amt of lost sales over 
entire each statTimeRange 
        self.sumLostSale = [] # list of sum of lost sales per stat-
TimeRange 
         
        self.monKilledFull = Monitor(ylab = '# Killed Orders') # moni-
tor # of killed orders over entire simulation 
        self.monKilled = Monitor() # monitor # of killed orders over 
each statTimeRange 
        self.sumKilled = [] # list of sum of killed orders per stat-
TimeRange 
         
        self.monRVDemFull = Monitor(ylab = 'RVDemand') # monitor quan-
tity demanded every time bucket  
        # over entire simulation 
        self.monRVDem = Monitor() # monitor quantity demanded every 
time bucket over each statTimeRange 
        self.sumRVDem = [] # list of sum of demand quantities per 
statTimeRange 
         
        self.monRVSalesFull = Monitor(ylab = 'RVSales') # monitor 
quantity removed from real inventory  
        # at each demand instance (sales) over entire simulation 
        self.monRVSales = Monitor() 
        self.sumRVSales = [] 
         
        self.monBVSalesFull = Monitor(ylab = 'BVSales') # monitor 
quantity recorded to have been  
        # removed from real inventory at each demand instance (sales) 
over entire simulation 
        self.monBVSales = Monitor() 
        self.sumBVSales = [] 
         
        # monitor number of times that the count transaction occurs 
        self.monNumCts = Monitor() 
        self.sumNumCts = [] 
         
        self.monNumReplFull = Monitor(ylab = 'NumReplenTrans') # moni-
tor number of times that  
        # the replenishment transaction occurs over entire simulation 
        self.monNumRepl = Monitor() 
        self.sumNumRepl = [] 
         
        self.BVavailFull = Monitor(name='BVavailfull, %s' %(L['Demand 
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Error probability'])) # monitor indicates non-zero real inventory (bi-
nary var) 
        # over entire simulation 
        self.BVavailMon = Monitor() # monitor indicates non-zero book 
view inventory (binary var), 
        # reset every statTimeRange 
        self.RVavailPerc = [] # list of % of time RV inventory is non-
zero 
         
        self.RVavailFull = Monitor(name='RVavailfull, %s' %(L['Demand 
Error probability'])) # monitor indicates non-zero book view inventory 
(binary var) 
        # reset every statTimeRange 
        self.RVavailMon = Monitor() # monitor indicates non-zero real 
inventory (binary var), 
        # reset every statTimeRange 
        self.BVavailPerc = [] # list of % of time BV inventory is non-
zero 
         
        self.BVnegMon= Monitor() 
        self.BVPercNeg = [] 
         
        self.lastRVSO = [] # keeps track of when the most recent RVSO, 
that did not happen concurrently with a BVSO, occurred  
         
        self.transQuant = Monitor() # monitor tracks the sales and re-
plenishment quantities, reset every statTimeRange 
        self.transQuantSum = [] # list of sums of transQuant every 
statTimeRange 
        self.absDiscrep = Monitor() # monitor tracks the absolute val-
ue of the discrepancies between the 
        # real and book view discovered during a Count, reset every 
statTimeRange 
        self.absDiscrepSum = [] # list of sums of absDiscrep every 
statTimeRange 
         
        self.demSinceCt = Monitor() # monitor tracks sales that have 
occurred since last Count event,  
        # reset every time Count is called 
        self.p_estDemMon = Monitor() 
        self.p_estDiscrepMon = Monitor() 
        self.p_estDemList = [] 
        self.p_estDiscrepList = [] 
         
        self.retSinceCt = Monitor() 
        self.CountRetMon = Monitor() 
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        self.replSinceCt = Monitor() 
        self.CountReplMon = Monitor() 
        self.RVRetMon = Monitor() 
        self.RVReplMon = Monitor() 
        self.BVRetMon = Monitor() 
         
         
        if eval(L['InitialIOH']) == 0: 
            self.tSinceRVSO = 0 
            self.tSinceBVSO = 0 
        else: 
            self.tSinceRVSO = None 
            self.tSinceBVSO = None          
        self.RVSOdurMon = Monitor() 
        self.RVSOdurList = [] 
        self.BVSOdurMon = Monitor() 
        self.BVSOdurList = [] 
         
        ts = timeStats() # Initialize process that resets short term 
monitors every statTimeRange 
        activate(ts,ts.runTS(self)) 
 
        self.activeOrders = [] # list of currently active orders 
         
##         Define variables specific to Station SKU and save in dic-
tionary "StaSKUvars" 
##        self.hashCode = hash(hash(str(time.time()))+hash(str(L))) # 
assign hash code that  
##         is unique to each Station SKU that is simulated.  The hash 
code is a function of the current time  
##         and of the dictionary of inputs. Therefore, different runs 
will not produce the same hash code. 
##         This code will be used to identify and index the simulated 
Station SKUs in the MySQL database. 
        self.runTime = str(time.ctime()) 
        self.StaSKUVars = {'FacilitySta-
tion':L['Station'],'Minimum':L['Minimum'],'Maximum':L['Maximum'],\ 
                           'Item 
Class':L['ItemClass'],'ItemID':L['ItemID'], 'Run Time':self.runTime}   
        # This dictionary is used to store the variables that are spe-
cific to a Station SKU, but do not change with each transaction  
         
        # Run method that will write all parameters, global and Sta-
tion-SKU specific, to an output file  
        pw = paramsWriter() 
        pw.pwRun(L,self) 
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        # Initialize random streams for each source of uncertainty 
        self.demRand = numpy.random.RandomState()  # This object ini-
tializes the random stream for the quantity 
        # demanded each time bucket.   
        self.demRand.seed(self.seed)  
        self.demRec = random.Random(self.seed)  # This object initial-
izes the random   
        # stream for the Demand Error (whether a Demand transaction is 
recorded)   
        self.replRand = random.Random(self.seed) # This object ini-
tializes the random   
        # stream for the Replenishment error (whether Count is called 
when an order is filled or not) 
        self.returnTime = random.Random(self.seed) # This object ini-
tializes the random   
        # stream for the time between a demand and return for each re-
turn transaction 
        self.returnRec = random.Random(self.seed) # This object ini-
tializes the random   
        # stream for the Return error (whether a Return is recorded or 
not) 
        self.returnProb = random.Random(self.seed) # This object ini-
tializes the random   
        # stream for whether each unit of sales is returned 
        self.CtOnLS = random.Random(self.seed) 
        # stream for whether a count takes place whenever there is a 
lost sale (i.e. unmet demand) 
         
         
 
            
        # Save transactional data in lists stored in the dictionary 
"transRec" 
        self.transRec = {'Hash-
Code':self.hashCode,'Seed':self.seed,'Time':[],'Transaction 
Type':[],'Quantity':[], 
                         'BV Expected Count':[], 'BV Actual 
Count':[],'BV End Count':[],'RV Expected Count':[],\ 
                         'RV End 
Count':[],'Recorded':[],'CountEventTrue':[],'BV StockoutEvent':[],\ 
                         'RV StockoutE-
vent':[],'BVSOlag':[],'Trial':self.trial} # This dictionary of lists 
is used to store all of the transactional data. 
 
#        This guaranteed that station SKU records got dumped to the 
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file periodically 
#        Now that we only run one station sku trial at a time, there 
is no point in using it 
#        lw = logWriter() 
#        activate(lw,lw.lwRun(self)) 
         
        self.startList =[] 
        self.endList = [] 
        self.CountRetSum = []; self.CountReplSum = []; self.RVReplSum 
= []; 
        self.RVRetSum = []; self.BVRetSum = [] 
         
         
class paramsWriter: 
    def pwRun(self,L,stasku): 
        constVars-
Rec.writerow(("\N",stasku.hashCode,stasku.StaSKUVars['FacilityStation'
], 
                       
stasku.StaSKUVars['ItemID'],stasku.StaSKUVars['Minimum'],stasku.StaSKU
Vars['Maximum'],\ 
                       stasku.runTime,stasku.StaSKUVars['Item 
Class'],L['InitialIOH'],L['Demand Lambda'],\ 
                       
L['a0'],L['a1'],L['a2'],L['a3'],L['a4'],L['a5'],L['a6'],L['a7'],\ 
                       L['a8'],L['a9'],L['a10'],L['a11'],L['Demand Er-
ror probability'],\ 
                       L['Initial count time'],L['Inter-Count 
time'],"\N",\ 
                       L['kill time'],L['Replenish Error probabil-
ity'],\ 
                       globalDict['Run length'],globalDict['Initial 
time bucket'],L['NegBinProb'],\ 
                       globalDict['Initial day of 
week'],"\N","\N","\N","\N","\N","\N",\ 
                       
"\N",L['LT1'],L['LT2'],L['LT3'],L['LT4'],L['LT5'],L['LT6'],L['LT7'],\ 
                       
L['ReturnProb'],L['ReturnMeanTime'],stasku.trial,stasku.seed,\ 
                       
L['R0'],L['R1'],L['R2'],L['R3'],L['R4'],L['R5'],L['R6'],\ 
                       globalDict['statTimeRange'],L['Return Error 
probability'],L['CountLow'],L['probCtOnLS'],globalDict['NumTrials'])) 
         
class logWriter(Process): 
    def lwRun(self,stasku): 
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        while True: 
            yield hold, self, 49 
            self.twrite(stasku) 
            self.swrite(stasku) 
    def twrite(self,stasku):         
        for m in range(len(stasku.transRec['Transaction Type'])): 
            if eval(globalDict['LagRec']) == 1: 
                transLog.writerow((stasku.transRec['HashCode'],\ 
                              
stasku.transRec['Time'][m],stasku.transRec['Transaction Type'][m],\ 
                              
stasku.transRec['Quantity'][m],stasku.transRec['BV Expected 
Count'][m],\ 
                              stasku.transRec['BV Actual 
Count'][m],stasku.transRec['BV End Count'][m],\ 
                              stasku.transRec['RV Expected 
Count'][m],stasku.transRec['RV End Count'][m],\ 
                              
stasku.transRec['Recorded'][m],stasku.transRec['CountEventTrue'][m],\ 
                              stasku.transRec['RV StockoutE-
vent'][m],stasku.transRec['BV StockoutEvent'][m],\ 
                              
"\N",stasku.transRec['BVSOlag'][m],stasku.trial)) 
            else: 
                transLog.writerow((stasku.transRec['HashCode'],\ 
                      
stasku.transRec['Time'][m],stasku.transRec['Transaction Type'][m],\ 
                      
stasku.transRec['Quantity'][m],stasku.transRec['BV Expected 
Count'][m],\ 
                      stasku.transRec['BV Actual 
Count'][m],stasku.transRec['BV End Count'][m],\ 
                      stasku.transRec['RV Expected 
Count'][m],stasku.transRec['RV End Count'][m],\ 
                      
stasku.transRec['Recorded'][m],stasku.transRec['CountEventTrue'][m],\ 
                      stasku.transRec['RV StockoutE-
vent'][m],stasku.transRec['BV StockoutEvent'][m],\ 
                      "\N","\N",stasku.trial)) 
        # Reinitialize all lists after written to csv file 
        stasku.transRec = {'Hash-
Code':stasku.hashCode,'Seed':stasku.seed,'Time':[],'Transaction 
Type':[],'Quantity':[], 
             'BV Expected Count':[], 'BV Actual Count':[],'BV End 
Count':[],'RV Expected Count':[],\ 
             'RV End Count':[],'Recorded':[],'CountEventTrue':[],'BV 
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StockoutEvent':[],\ 
             'RV StockoutEvent':[],'BVSOlag':[],'Trial':stasku.trial}  
    def swrite(self,stasku): 
        for i in range(len(stasku.sumBVSales)): 
            # Composite metrics: 
            if stasku.sumRVSales[i] != 0: 
                RecProb = 
float(stasku.sumBVSales[i]/stasku.sumRVSales[i]) 
                RVSOrate = 
float(stasku.sumRVSO[i]/stasku.sumRVSales[i])     
            else: 
                RecProb = "\N"; RVSOrate = "\N" 
            if stasku.sumBVSales[i] != 0: 
                BVSOrate = 
float(stasku.sumBVSO[i]/stasku.sumBVSales[i]) 
            else: 
                BVSOrate = "\N" 
            if stasku.sumRVDem[i] != 0: 
                FillRate = 1 - 
float(stasku.sumLostSale[i]/stasku.sumRVDem[i]) 
            else: 
                FillRate = "\N" 
            stats-
Rec.writerow((stasku.hashCode,stasku.startList[i],stasku.endList[i],st
asku.sumRVDem[i],stasku.sumLostSale[i],\ 
               
stasku.sumRVSales[i],stasku.sumBVSales[i],stasku.sumRVSO[i],stasku.sum
BVSO[i],stasku.sumNumCts[i],\ 
               
stasku.sumNumRepl[i],stasku.RVavailPerc[i],stasku.BVavailPerc[i],stask
u.aveRealInv[i],stasku.aveBVInv[i],\ 
               
stasku.sumKilled[i],RecProb,FillRate,RVSOrate,BVSOrate,"\N",stasku.tra
nsQuantSum[i],stasku.absDiscrepSum[i],\ 
               
stasku.p_estDemList[i],stasku.p_estDiscrepList[i],stasku.BVPercNeg[i],
stasku.CountRetSum[i],\ 
               
stasku.CountReplSum[i],stasku.RVReplSum[i],stasku.RVRetSum[i],stasku.B
VRetSum[i],\ 
               
stasku.RVSOdurList[i],stasku.BVSOdurList[i],stasku.trial))  
        stasku.startList = []; stasku.endList = []; stasku.sumRVDem = 
[]; stasku.sumLostSale = [];  
        stasku.sumRVSales = []; stasku.sumBVSales = []; stasku.sumRVSO 
= []; stasku.sumBVSO = []; stasku.sumNumCts = [];  
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        stasku.sumNumRepl = []; stasku.RVavailPerc = []; 
stasku.BVavailPerc = []; stasku.aveRealInv = []; stasku.aveBVInv = [];  
        stasku.sumKilled = []; stasku.transQuantSum = []; 
stasku.absDiscrepSum = [];  
        stasku.p_estDemList = []; stasku.p_estDiscrepList = []; 
stasku.BVPercNeg = []; 
        stasku.CountRetSum = []; stasku.CountReplSum = []; 
stasku.RVReplSum = []; 
        stasku.RVRetSum = []; stasku.BVRetSum = []; stasku.RVSOdurList 
= []; stasku.BVSOdurList = [] 
             
          
class timeStats(Process): 
    def runTS(self,stasku): 
        while True: 
            # For monitors of continuous variables (real and BV inven-
tory and availability), 
            # collect data points at the beginning and end of each 
statistical analysis period 
            # (called "statTimeRange) 
            stasku.monReal.observe(stasku.realInvLev.amount) 
            stasku.monBV.observe(stasku.BVinv) 
            if stasku.BVinv < 0: 
                stasku.BVnegMon.observe(1) 
            else: 
                stasku.BVnegMon.observe(0) 
            stasku.startList.append(now()) 
            yield hold, self, eval(globalDict['statTimeRange']) 
            stasku.endList.append(now()) 
            stasku.RVavailPerc.append(stasku.RVavailMon.timeAverage()) 
            stasku.BVavailPerc.append(stasku.BVavailMon.timeAverage()) 
            stasku.monReal.observe(stasku.realInvLev.amount) 
            stasku.aveRealInv.append(stasku.monReal.timeAverage()) 
            stasku.monBV.observe(stasku.BVinv) 
            stasku.aveBVInv.append(stasku.monBV.timeAverage()) 
            stasku.BVPercNeg.append(stasku.BVnegMon.timeAverage())  
            if len(stasku.RVSOdurMon) > 0 : 
                stasku.RVSOdurList.append(stasku.RVSOdurMon.mean())  
            else: 
                stasku.RVSOdurList.append("\N") 
            if len(stasku.BVSOdurMon) > 0: 
                stasku.BVSOdurList.append(stasku.BVSOdurMon.mean())   
            else: 
                stasku.BVSOdurList.append("\N") 
            # For monitors of flow variables (real and BV stockout 
events, demand quantities,  



Appendix D. Discrete-Event Simulation Model Code 216 

 

216 

 

            # lost sales, number count and replenishment transactions, 
and # of killed orders), 
            # collect sum of quantities over each statTimeRange 
            stasku.sumRVSO.append(stasku.monRVSO.total()) 
            stasku.sumBVSO.append(stasku.monBVSO.total()) 
            stasku.sumLostSale.append(stasku.monLostSale.total()) 
            stasku.sumRVDem.append(stasku.monRVDem.total()) 
            stasku.sumRVSales.append(stasku.monRVSales.total()) 
            stasku.sumBVSales.append(stasku.monBVSales.total()) 
            stasku.sumNumCts.append(stasku.monNumCts.total()) 
            stasku.sumNumRepl.append(stasku.monNumRepl.total()) 
            stasku.sumKilled.append(stasku.monKilled.total()) 
            # Performance metrics: 
            stasku.transQuantSum.append(stasku.transQuant.total()) 
            stasku.absDiscrepSum.append(stasku.absDiscrep.total()) 
            stasku.p_estDemList.append(stasku.p_estDemMon.total()) 
            
stasku.p_estDiscrepList.append(stasku.p_estDiscrepMon.total()) 
            stasku.CountRetSum.append(stasku.CountRetMon.total()) 
            stasku.CountReplSum.append(stasku.CountReplMon.total()) 
            stasku.RVReplSum.append(stasku.RVReplMon.total()) 
            stasku.RVRetSum.append(stasku.RVRetMon.total()) 
            stasku.BVRetSum.append(stasku.BVRetMon.total()) 
               
            # Reset each monitor each statTimeRange 
            stasku.RVavailMon.reset() 
            stasku.BVavailMon.reset() 
            stasku.monReal.reset() 
            stasku.monBV.reset() 
            stasku.monRVSO.reset() 
            stasku.monBVSO.reset() 
            stasku.monLostSale.reset() 
            stasku.monRVDem.reset() 
            stasku.monRVSales.reset() 
            stasku.monBVSales.reset() 
            stasku.monNumCts.reset() 
            stasku.monNumRepl.reset() 
            stasku.monKilled.reset()  
            stasku.transQuant.reset()   
            stasku.absDiscrep.reset() 
            stasku.p_estDemMon.reset() 
            stasku.p_estDiscrepMon.reset() 
            stasku.BVnegMon.reset()   
            stasku.CountRetMon.reset()  
            stasku.CountReplMon.reset() 
            stasku.RVReplMon.reset() 
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            stasku.RVRetMon.reset() 
            stasku.BVRetMon.reset() 
            stasku.RVSOdurMon.reset() 
            stasku.BVSOdurMon.reset() 
                 
class SourceDemand(Process): 
    def runSD(self,L,stasku): 
        # Generate instance of Demand every time bucket 
        while True: 
            d = Demand() 
            activate(d,d.runD(L,stasku)) 
            yield hold, self, tb 
 
class Demand(Process): 
    def runD(self,L,stasku): 
         
        # Demand Process Inputs 
        # Assuming negative binomial distribution for # of StaSKUs de-
manded every time bucket 
        # where the probability is constant but the number of trials 
changes as per the fraction of the  
        # daily demand for each time bucket 
        negBinP = eval(L['NegBinProb']) 
        sizeParam = eval(L['Demand Lambda'])*negBinP/(1-negBinP) # 
mean # of StaSKUs demanded every day 
        a = [eval(L['a0']),eval(L['a1']),eval(L['a2']),eval(L['a3']),\ 
             eval(L['a4']),eval(L['a5']),eval(L['a6']),eval(L['a7']),\ 
             ev-
al(L['a8']),eval(L['a9']),eval(L['a10']),eval(L['a11'])] # fraction of 

            # daily demand that occurs during each bucket (position in 
vector indicates time bucket) 
        if a[t] == 0: # negative binomial distribution does not apply 
when the number of trials is 0 
            Dt = 0 
        else: 
            Dt = 
stasku.demRand.poisson(stasku.demRand.gamma(sizeParam*a[t],(1-
negBinP)/negBinP)) # quantity demanded each time bucket 
        stasku.monRVDem.observe(Dt) 
        if eval(globalDict['Plot']) == 1: 
            stasku.monRVDemFull.observe(Dt) 
        p = eval(L['Demand Error probability']) # probability that de-
mand is not recorded, [0,1] 
        e = stasku.demRec.random() 
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        # Demand Process 
        qd = min(Dt,stasku.realInvLev.amount) # sales, quantity re-
moved from the machine 
        stasku.monRVSales.observe(qd) 
        if eval(globalDict['Plot']) == 1: 
            stasku.monRVSalesFull.observe(qd) 
        BVExpCt = stasku.BVinv # book view expected count (prior to 
demand transaction) 
        BVActCt = stasku.BVinv # book view actual count (same as ex-
pected for v2) 
        RVExpCt = stasku.realInvLev.amount # real view expected count 
(prior to demand transaction) 
        RVEndCt = RVExpCt - qd # real view end count 
        yield get, self, stasku.realInvLev, qd # remove sales from the 
real inventory level 
        if eval(globalDict['Plot']) == 1: 
            stasku.monRealFull.observe(stasku.realInvLev.amount) 
        if stasku.realInvLev.amount == 0: # real stockout event occurs 
            RVSOevent = 1 
        else: # real stockout event does NOT occur 
            RVSOevent = 0 
        if e >= p: # record the demand transaction 
            stasku.monBVSales.observe(qd) 
            stasku.demSinceCt.observe(qd) # record demand since last 
count event 
            stasku.transQuant.observe(qd) # record transaction quan-
tity             
            if eval(globalDict['Plot']) == 1: 
                stasku.monBVSalesFull.observe(qd) 
            recorded = 1 
            BVEndCt = BVExpCt - qd # book view end count 
            stasku.BVinv -= qd # remove sales from book view inventory 
level 
            stasku.monBV.observe(stasku.BVinv) 
            if eval(globalDict['Plot']) == 1: 
                stasku.monBVFull.observe(stasku.BVinv) 
            if BVEndCt <= 0: # book view stockout event occurs 
                BVSOevent = 1 
            else: # book view stockout event does not occur 
                BVSOevent = 0 
        else: # demand transaction is NOT recorded 
            recorded = 0 
            BVEndCt = BVExpCt # book view end count 
            BVSOevent = 0 
        if BVEndCt < 0: 
            stasku.BVnegMon.observe(1) 



Appendix D. Discrete-Event Simulation Model Code 219 

 

219 

 

        else: 
            stasku.BVnegMon.observe(0) 
        if Dt <= RVExpCt: 
            ls = 0 # if real inventory can satisfy demand, there is 0 
lost sales 
        else: 
            ls = Dt - qd # if real inventory cannot satisfy demand, 
lost sales is the difference  
            # between the quantity demanded and the sales supplied 
from the inventory 
        stasku.monLostSale.observe(ls) 
        if eval(globalDict['Plot']) == 1: 
            stasku.monLostSaleFull.observe(ls) 
        # If book view stockout begins, record start time     
        if BVExpCt > 0 and BVEndCt <= 0: 
            stasku.tSinceBVSO = now() 
        # If real view stockout begins, record start time     
        if RVExpCt > 0 and RVEndCt == 0: 
            stasku.tSinceRVSO = now() 
         
        # For each lost sales event, call a Count event with some 
probability    
        if ls > 0: 
            CET = 0 # Initialize CountEventTrue variable to 0 
            c_rand = stasku.CtOnLS.random() 
            BVActCtLS = BVExpCt 
            BVEndCtLS = BVExpCt 
            if c_rand <= eval(L['probCtOnLS']): 
                c = Count() 
                c.runC(L, stasku) 
                CET = 1 
                BVActCtLS = RVExpCt 
                BVEndCtLS = RVExpCt 
                          
        # Record transactional data for Demand and/or Lost Sales 
transactions 
        if qd > 0: # if sales > 0, record transaction in log 
            BVSOlag = "\N" 
            if RVSOevent == 1: 
                stasku.lastRVSO.append(now()) 
                if BVSOevent == 1: 
                    BVSOlag = 0 
            if eval(globalDict['LagRec']) == 1: 
                stasku.transRec['BVSOlag'].append(BVSOlag) 
            stasku.monRVSO.observe(RVSOevent)  
            stasku.monBVSO.observe(BVSOevent) 



Appendix D. Discrete-Event Simulation Model Code 220 

 

220 

 

            if eval(globalDict['Plot']) == 1: 
                stasku.monRVSOFull.observe(RVSOevent)    
                stasku.monBVSOFull.observe(BVSOevent)        
            stasku.transRec['Time'].append(now()) 
            stasku.transRec['Transaction Type'].append(1) 
            stasku.transRec['Quantity'].append(qd) 
            stasku.transRec['BV Expected Count'].append(BVExpCt) 
            stasku.transRec['BV Actual Count'].append(BVActCt) 
            stasku.transRec['BV End Count'].append(BVEndCt) 
            stasku.transRec['RV Expected Count'].append(RVExpCt) 
            stasku.transRec['RV End Count'].append(RVEndCt) 
            stasku.transRec['Recorded'].append(recorded) 
            stasku.transRec['CountEventTrue'].append(0) 
            stasku.transRec['BV StockoutEvent'].append(BVSOevent) 
            stasku.transRec['RV StockoutEvent'].append(RVSOevent)             
        if ls > 0: # if lost sales > 0, record transaction in log 
            stasku.transRec['Time'].append(now()) 
            stasku.transRec['Transaction Type'].append(21) 
            stasku.transRec['Quantity'].append(ls) 
            # no exchange of items in lost sales transaction, no 
change made to inventory  
            # amounts below 
            stasku.transRec['BV Expected Count'].append(BVExpCt) 
            stasku.transRec['BV Actual Count'].append(BVActCtLS) 
            stasku.transRec['BV End Count'].append(BVEndCtLS) 
            stasku.transRec['RV Expected Count'].append(RVExpCt) 
            stasku.transRec['RV End Count'].append(RVEndCt) 
            stasku.transRec['Recorded'].append(0) # lost sales is not 
recorded in transaction log from machine 
            stasku.transRec['CountEventTrue'].append(CET) 
            stasku.transRec['BV StockoutEvent'].append(0) # this quan-
tity has no meaning for a lost sales transaction 
            stasku.transRec['RV StockoutEvent'].append(0) # this quan-
tity has no meaning for a lost sales transaction 
            stasku.transRec['BVSOlag'].append("\N") 
        # Determine how many items, of the sales quantity, will be re-
turned         
        if qd != 0: 
            qRet = 0 # initialize the number of items to be returned 
            for i in range(qd): 
                # Each unit of sales has probability of being re-
turned, independent of whether 
                # the other units of sales are returned 
                ret = stasku.returnProb.random() 
                if ret < eval(L['ReturnProb']): 
                    qRet += 1 
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            if qRet > 0: # if non-zero number of items are returned, 
call Return process 
                R = ReturnP() 
                activate(R,R.runRet(L,stasku,qRet)) 
                
        # Availability check 
        if stasku.realInvLev.amount == 0: 
            stasku.RVavailMon.observe(0) 
            if eval(globalDict['Plot']) == 1: 
                stasku.RVavailFull.observe(0) 
        else: 
            stasku.RVavailMon.observe(1) 
            if eval(globalDict['Plot']) == 1: 
                stasku.RVavailFull.observe(1) 
        if stasku.BVinv <= 0: 
            stasku.BVavailMon.observe(0) 
            if eval(globalDict['Plot']) == 1: 
                stasku.BVavailFull.observe(0) 
        else: 
            stasku.BVavailMon.observe(1) 
            if eval(globalDict['Plot']) == 1: 
                stasku.BVavailFull.observe(1) 
                 
class ReturnP(Process): 
    def runRet(self,L,stasku,r): 
        wT = stasku.returnTime.expovariate(lambd = 
float(1.0/eval(L['ReturnMeanTime']))) 
        yield hold, self, wT 
        RVExpCt = stasku.realInvLev.amount # real view expected count 
(prior to Return transaction) 
        BVExpCt = stasku.BVinv # book view expected count (prior to 
Return transaction) 
        BVActCt = stasku.BVinv # book view actual count (same as ex-
pected for v2) 
        RVEndCt = RVExpCt + r # real view end count 
           
        yield put, self, stasku.realInvLev, r 
        stasku.RVRetMon.observe(r) 
        if eval(globalDict['Plot']) == 1: 
            stasku.monRealFull.observe(stasku.realInvLev.amount) 
        rE = stasku.returnRec.random() # Determine if Return transac-
tion will be recorded 
        if rE >= eval(L['Return Error probability']): 
            stasku.transQuant.observe(r) 
            stasku.retSinceCt.observe(r) 
            stasku.BVRetMon.observe(r) 
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            BVEndCt = BVExpCt + r # book view end count 
            stasku.BVinv += r 
            stasku.monBV.observe(stasku.BVinv) 
            retRec = 1 
            if eval(globalDict['Plot']) == 1: 
                stasku.monBVFull.observe(stasku.BVinv) 
        else: 
            BVEndCt = BVExpCt # book view end count 
            retRec = 0 
        # If return transaction ends BV stockout, record BVSO duration 
        if BVExpCt <= 0 and BVEndCt > 0: 
            stasku.BVSOdurMon.observe(now() - stasku.tSinceBVSO) 
            stasku.tSinceBVSO = None 
        # If return transaction ends RV stockout, record RVSO duration 
        if RVExpCt == 0 and RVEndCt > 0: 
            stasku.RVSOdurMon.observe(now() - stasku.tSinceRVSO) 
            stasku.tSinceRVSO = None             
 
        # Record transactional data for Return transactions    
        stasku.transRec['Time'].append(now()) 
        stasku.transRec['Transaction Type'].append(3) # "Transaction 
Type" = 3 indicates Return transaction 
        stasku.transRec['Quantity'].append(r) 
        stasku.transRec['BV Expected Count'].append(BVExpCt) 
        stasku.transRec['BV Actual Count'].append(BVActCt) 
        stasku.transRec['BV End Count'].append(BVEndCt) 
        stasku.transRec['RV Expected Count'].append(RVExpCt) 
        stasku.transRec['RV End Count'].append(RVEndCt) 
        stasku.transRec['Recorded'].append(retRec) 
        stasku.transRec['CountEventTrue'].append(0) # For v2, assume 
that a Count never accompanies a Return 
        stasku.transRec['RV StockoutEvent'].append(0) # a stockout can 
never occur with a Return transaction 
        stasku.transRec['BV StockoutEvent'].append(0) # a stockout can 
never occur with a Return transaction 
        stasku.transRec['BVSOlag'].append("\N") 
         
         
class SourceCount(Process): 
     def runSC(self,L,stasku):  
         counter = 0 
         while True: 
            BVExpCt = stasku.BVinv # book view expected count (prior 
to Count transaction) 
            BVerror = stasku.realInvLev.amount - stasku.BVinv # dis-
crepancy between real and book view inventory levels 
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            BVActCt = stasku.BVinv + BVerror # book view actual count, 
fix discrepancy 
            BVEndCt = BVActCt # book view end count 
            RVExpCt = stasku.realInvLev.amount # real view expected 
count (prior to Count transaction) 
            RVEndCt = RVExpCt # real view end count 
            # record book view stockout only if the book view level is 
changed to 0 as a result of this count event. 
            # the book view level will only be changed to 0 if it is 
currently not at 0, and the real view currently 
            # is at a level of 0 
            BVSOlag = "\N" 
            if stasku.realInvLev.amount == 0 & 
stasku.realInvLev.amount != stasku.BVinv: 
                BVSOevent = 1 
                if eval(globalDict['LagRec']) == 1: 
                    BVSOlag = now()-stasku.lastRVSO.pop()   
                stasku.monBVSO.observe(BVSOevent) 
                if eval(globalDict['Plot']) == 1: 
                    stasku.monBVSOFull.observe(BVSOevent) 
            else: # conditions not met, do NOT record a book view 
stockout 
                BVSOevent = 0  
            c = Count() 
            c.runC(L, stasku) 
             
            # Record transactional data for Count transactions (only 
when called by SourceCount) 
            stasku.transRec['Time'].append(now()) 
            stasku.transRec['Transaction Type'].append(4) # "Transac-
tion Type" = 4 indicates Count transaction 
            stasku.transRec['Quantity'].append(0) # quantity has no 
meaning for Count transaction 
            stasku.transRec['BV Expected Count'].append(BVExpCt) 
            stasku.transRec['BV Actual Count'].append(BVActCt) 
            stasku.transRec['BV End Count'].append(BVEndCt) 
            stasku.transRec['RV Expected Count'].append(RVExpCt) 
            stasku.transRec['RV End Count'].append(RVEndCt) 
            stasku.transRec['Recorded'].append(1) # assume that Count 
transaction is always recorded 
            stasku.transRec['CountEventTrue'].append(1) 
            stasku.transRec['RV StockoutEvent'].append(0) 
            stasku.transRec['BV StockoutEvent'].append(BVSOevent) 
            if eval(globalDict['LagRec']) == 1: 
                stasku.transRec['BVSOlag'].append(BVSOlag) 
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            # Check if counts have fixed periodicity or just happen at 
predetermined inter-count times. 
            if stasku.ctType == 2: 
                # If we have looped through all inter-count times, 
then we go back to the beginning 
                if counter == len(stasku.historCtData): 
                    counter = 0 
                    print("Run length is greater than sum of loaded 
InterCount times --> looping through them.") 
                timetohold = eval(stasku.historCtData[counter][0]) 
                counter += 1 
            elif stasku.ctType == 1: 
                # Parse string to determine distribution time and pa-
rameters 
                if stasku.IntCtDistType == "norm": 
                    truncatecondition = True 
                         
                    while truncatecondition: 
                        # We truncate the normal by resampling when-
ever it is value is below zero or above 2 times its mean, in order to 
control for changes in the mean 
                        timetohold = 
stasku.IntCtRandom.normalvariate(float(eval(stasku.IntCtA)),float(eval
(stasku.IntCtB))) 
                        if stasku.IntCtC == "True": 
                            truncatecondition = (timetohold < 0) | 
(timetohold > 2*float(eval(stasku.IntCtA))) 
                        else: 
                            truncatecondition = (timetohold < 0) 
                elif stasku.IntCtDistType == "exp": 
                    timetohold = 
stasku.IntCtRandom.expovariate(float(1.0/eval(stasku.IntCtA))) 
                elif stasku.IntCtDistType == "unif": 
                    timetohold = 
stasku.IntCtRandom.uniform(max(float(eval(stasku.IntCtA)),0.0),max(flo
at(eval(stasku.IntCtB)),0.0)) 
                    print("IntCt Parameter in uniform dist takes on 
negative value, adjusted to zero") 
                else: 
                    print("Error in parsing the function expression 
for IntCt time") 
                    print(stasku.transRec) 
                    timetohold = -1 
            else: 
                timetohold = eval(L['Inter-Count time']) # hold for 
fixed time between count events 
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            #print timetohold 
            # Yield for timetohold 
            yield hold,self,timetohold 
             
class SourceCountLow: 
     def runSCL(self,L,stasku):   
            BVExpCt = stasku.BVinv # book view expected count (prior 
to Count transaction) 
            BVerror = stasku.realInvLev.amount - stasku.BVinv # dis-
crepancy between real and book view inventory levels 
            BVActCt = stasku.BVinv + BVerror # book view actual count, 
fix discrepancy 
            BVEndCt = BVActCt # book view end count 
            RVExpCt = stasku.realInvLev.amount # real view expected 
count (prior to Count transaction) 
            RVEndCt = RVExpCt # real view end count 
            # record book view stockout only if the book view level is 
changed to 0 as a result of this count event. 
            # the book view level will only be changed to 0 if it is 
currently not at 0, and the real view currently 
            # is at a level of 0 
            BVSOlag = "\N" 
            if BVExpCt <= eval(L['Minimum']): # Only perform count and 
log count transaction if expected book view  
            # inventory level is at or below the reorder point 
                if stasku.realInvLev.amount == 0 & 
stasku.realInvLev.amount != stasku.BVinv: 
                    BVSOevent = 1   
                    if eval(globalDict['LagRec']) == 1: 
                        BVSOlag = now()-stasku.lastRVSO.pop()   
                    stasku.monBVSO.observe(BVSOevent) 
                    if eval(globalDict['Plot']) == 1: 
                        stasku.monBVSOFull.observe(BVSOevent) 
                else: # conditions not met, do NOT record a book view 
stockout 
                    BVSOevent = 0  
                c = Count() 
                c.runC(L, stasku) 
                # Record transactional data for Count transactions 
                stasku.transRec['Time'].append(now()) 
                stasku.transRec['Transaction Type'].append(4) # 
"Transaction Type" = 4 indicates Count transaction 
                stasku.transRec['Quantity'].append(0) # quantity has 
no meaning for Count transaction 
                stasku.transRec['BV Expected Count'].append(BVExpCt) 
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                stasku.transRec['BV Actual Count'].append(BVActCt) 
                stasku.transRec['BV End Count'].append(BVEndCt) 
                stasku.transRec['RV Expected Count'].append(RVExpCt) 
                stasku.transRec['RV End Count'].append(RVEndCt) 
                stasku.transRec['Recorded'].append(1) # assume that 
Count transaction is always recorded 
                stasku.transRec['CountEventTrue'].append(1) 
                stasku.transRec['RV StockoutEvent'].append(0) 
                stasku.transRec['BV StockoutEvent'].append(BVSOevent) 
                if eval(globalDict['LagRec']) == 1: 
                    stasku.transRec['BVSOlag'].append(BVSOlag) 
                        
class Count: 
    def runC(self,L,stasku):  
        # Increase or decrease the book view inventory level depending 
upon whether the real  
        # inventor level is higher or lower than the book view inven-
tory level, respectively.  
        discrep = 0 
        stasku.monNumCts.observe(1) 
        if (stasku.realInvLev.amount < stasku.BVinv):  
            stasku.absDiscrep.observe(stasku.BVinv-
stasku.realInvLev.amount) # Record absolute value of discrepancy 
            discrep = stasku.realInvLev.amount-stasku.BVinv 
            # If Count transaction creates BV stockout, record BVSO 
start time 
            if stasku.BVinv > 0 and discrep == -stasku.BVinv: 
                stasku.tSinceBVSO = now() 
            # Increase book view inventory level is real view is high-
er than the book view 
            stasku.BVinv -= stasku.BVinv - stasku.realInvLev.amount  
            stasku.monBV.observe(stasku.BVinv) 
            if eval(globalDict['Plot']) == 1: 
                stasku.monBVFull.observe(stasku.BVinv) 
        elif (stasku.realInvLev.amount > stasku.BVinv): 
            stasku.absDiscrep.observe(stasku.realInvLev.amount-
stasku.BVinv) # Record absolute value of discrepancy 
            discrep = stasku.realInvLev.amount-stasku.BVinv 
            # If Count transaction ends BV stockout, record BVSO dura-
tion time 
            if stasku.BVinv <= 0 and discrep > -stasku.BVinv: 
                stasku.BVSOdurMon.observe(now() - stasku.tSinceBVSO) 
                stasku.tSinceBVSO = None 
            # Decrease book view inventory level is real view is lower 
than the book view 
            stasku.BVinv += stasku.realInvLev.amount - stasku.BVinv 



Appendix D. Discrete-Event Simulation Model Code 227 

 

227 

 

            stasku.monBV.observe(stasku.BVinv) 
            if eval(globalDict['Plot']) == 1: 
                stasku.monBVFull.observe(stasku.BVinv) 
        stasku.p_estDemMon.observe(stasku.demSinceCt.total()) 
        stasku.p_estDiscrepMon.observe(discrep) 
        stasku.demSinceCt.reset() 
        stasku.CountRetMon.observe(stasku.retSinceCt.total()) 
        stasku.CountReplMon.observe(stasku.replSinceCt.total()) 
        stasku.retSinceCt.reset() 
        stasku.replSinceCt.reset() 
            
class Review(Process):   
    def runRev(self,L,stasku,order): 
         
        # Construct vector, 'IRt', of inter-review times for the cor-
responding day of the 
        # week (e.g. IRt[0] is the time between the review on Monday, 
and the next review). 
        # Negative values in the vector indicate that no review occurs 
on that day. 
        R = ['R0','R1','R2','R3','R4','R5','R6'] 
        timeAdd = 1  
        IRt = []    
        for i in range(7): 
            if eval(L[R[i]]) < 0: 
                IRt.append(-1)                
            else:  
                if i < 6: 
                    next = i+1 
                else: 
                    next = 0       
                while eval(L[R[next]]) < 0: 
                    timeAdd += 1 
                    if next < 6: 
                        next += 1  
                    else: 
                        next = 0  
                IR = eval(L[R[next]])-eval(L[R[i]])+timeAdd 
                IRt.append(IR)      
                timeAdd = 1  
         
        # Must start review cycle on a day at a scheduled review time 
        startDay = d 
        firstRevDay = d 
        daysTilReview = 0 
        startTime = eval(globalDict['Initial time bucket'])*tb 
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        # If review held on day that simulation started, and the re-
view time has not passed, start review cycle 
        # in the review period that same day 
        if eval(L[R[startDay]]) > 0 and startTime < ev-
al(L[R[startDay]]): 
            yield hold, self, eval(L[R[startDay]])-startTime 
        else: 
            # If review time has passed for that day or there is no 
review period scheduled for that day,  
            # wait to start review cycle at least until midnight (t=0) 
of the following day 
            if startTime > eval(L[R[startDay]]): 
                yield hold, self, 1-startTime 
                if firstRevDay < 6: 
                    firstRevDay += 1 
                else: 
                    firstRevDay = 0 
            # If no review period occurs on the current day, cycle 
through days of week until find the 
            # day where the next review period occurs.  If cycle 
through the week and find no scheduled 
            # review periods, print error message. 
            while eval(L[R[firstRevDay]]) < 0: 
                daysTilReview += 1 
                if firstRevDay < 6: 
                    firstRevDay += 1 
                else: 
                    firstRevDay = 0 
                if firstRevDay == startDay: 
                    print "review does not occur on any day of the 
week" 
                    exit() 
            # After finding next review period, wait the calculated 
number of days until that period, 
            # and the fraction of the day past midnight on which the 
review occurs 
            yield hold, self, daysTilReview+eval(L[R[firstRevDay]]) 
         
        while True: 
            # if want to count only products that are at or below re-
order point, schedule Count 
            # event immediately before Review event (so that any inac-
curacies in the book view  
            # level will be fixed before the order, so that the order 
will be the correct size) 
            if eval(L['CountLow']) == 1: 
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                scl = SourceCountLow() 
                scl.runSCL(L, stasku) 
            # Order may only be signaled if inventory level after de-
mand satisfied is less than or  
            # equal to the reorder point  
            if stasku.BVinv + sum(stasku.activeOrders) <= ev-
al(L['Minimum']):  
                reactivate(order) 
            yield hold, self, IRt[d] # hold for time between reviews 
(1 = daily) 
 
             
                         
class Order(Process): 
    def runO(self,L,stasku): 
        s = eval(L['Minimum']) # reorder point 
        S = eval(L['Maximum']) # restock level 
        while True: 
            yield passivate, self # Wait for Review to reactivate                  
            orderSize = S - stasku.BVinv - sum(stasku.activeOrders)# 
order up to restock level 
            stasku.activeOrders.append(orderSize) 
            r = Replenish() 
            activate(r,r.runR(L,stasku,self)) 
                
class Replenish(Process): 
    def runR(self,L,stasku,order):  
         
        # Replenish Process Inputs  
        lt = [eval(L['LT1']), eval(L['LT2']), eval(L['LT3']), ev-
al(L['LT4']), eval(L['LT5']), eval(L['LT6']), eval(L['LT7'])] 
        t = lt[d] # lead time (days), for v2, assume deterministic 
lead time that is function of day of week 
        k = eval(L['kill time']) # kill time (days) 
        p = eval(L['Replenish Error probability']) # probability that 
count is NOT called 
        e = stasku.replRand.random() 
         
        if t <= 0: 
            print "lead time cannot be less than or equal to 0, re-
enter inputs" 
            exit() 
        else: 
            # Replenish Process 
            if t <= k: # lead time is less than or equal to kill time, 
order will be filled 
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                yield hold, self, t # wait lead time 
                BVExpCt = stasku.BVinv # book view expected count 
(prior to replenishment transaction) 
                RVExpCt = stasku.realInvLev.amount # real view ex-
pected count (prior to replenishment transaction) 
                RVEndCt = RVExpCt + stasku.activeOrders[0] # real view 
end count (after replenishment transaction)   
                BVSOlag = "\N"        
                if e >= p: # Discrepancy between real and book view 
fixed before Replenishment occurs 
                    BVerror = RVExpCt - BVExpCt 
                    BVActCt = BVExpCt + BVerror 
                    if BVActCt == 0 and BVExpCt > 0:    
                        BVSOevent = 1   
                        if eval(globalDict['LagRec']) == 1: 
                            BVSOlag = now()-stasku.lastRVSO.pop() 
                    else: 
                        BVSOevent = 0 
                    c = Count() 
                    c.runC(L, stasku) 
                    CET = 1 # CountEventTrue 
                else: # Discrepancy not fixed 
                    CET = 0 # CountEventTrue 
                    BVActCt = BVExpCt 
                    BVSOevent = 0 
                 
                stasku.monBVSO.observe(BVSOevent) 
                if eval(globalDict['Plot']) == 1: 
                    stasku.monBVSOFull.observe(BVSOevent) 
                 
                BVEndCt = BVActCt + stasku.activeOrders[0] # book view 
end count (after replenishment transaction) 
                # If replenishment transaction ends BV stockout, re-
cord BVSO duration 
                if BVActCt <= 0 and BVEndCt > 0: 
                    stasku.BVSOdurMon.observe(now() - 
stasku.tSinceBVSO) 
                    stasku.tSinceBVSO = None 
                # If replenishment transaction ends RV stockout, re-
cord RVSO duration 
                if RVExpCt == 0 and RVEndCt > 0: 
                    stasku.RVSOdurMon.observe(now() - 
stasku.tSinceRVSO) 
                    stasku.tSinceRVSO = None                 
                 
                yield put, self, stasku.realInvLev, 
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stasku.activeOrders[0] # update real inventory level with received or-
der quantity 
                if eval(globalDict['Plot']) == 1: 
                    
stasku.monRealFull.observe(stasku.realInvLev.amount) 
                # for v2 assume that Replenishment is always recorded 
accurately 
                stasku.BVinv += stasku.activeOrders[0] # update book 
view inventory level with received order quantity 
                stasku.transQuant.observe(stasku.activeOrders[0]) # 
record transaction quantity 
                stasku.RVReplMon.observe(stasku.activeOrders[0]) 
                stasku.replSinceCt.observe(stasku.activeOrders[0]) 
                stasku.monBV.observe(stasku.BVinv) 
                stasku.monNumRepl.observe(1) 
                if eval(globalDict['Plot']) == 1: 
                    stasku.monBVFull.observe(stasku.BVinv) 
                    stasku.monNumReplFull.observe(1) 
                # Record transactional data for Replenishment transac-
tions 
                stasku.transRec['Time'].append(now()) 
                stasku.transRec['Transaction Type'].append(2) # 
"Transaction Type" = 2 indicates Replenish (filled order) transaction 
                
stasku.transRec['Quantity'].append(stasku.activeOrders[0]) # order 
size of most recent order 
                stasku.transRec['BV Expected Count'].append(BVExpCt) 
                stasku.transRec['BV Actual Count'].append(BVActCt) 
                stasku.transRec['BV End Count'].append(BVEndCt) 
                stasku.transRec['RV Expected Count'].append(RVExpCt) 
                stasku.transRec['RV End Count'].append(RVEndCt) 
                stasku.transRec['Recorded'].append(1) 
                stasku.transRec['CountEventTrue'].append(CET) 
                stasku.transRec['RV StockoutEvent'].append(0) 
                stasku.transRec['BV StockoutEvent'].append(BVSOevent) 
                if eval(globalDict['LagRec']) == 1: 
                    stasku.transRec['BVSOlag'].append(BVSOlag) 
     
                stasku.activeOrders.pop(0) # remove order from active 
orders list             
                stasku.monKilled.observe(0) 
                if eval(globalDict['Plot']) == 1: 
                    stasku.monKilledFull.observe(0) 
            else: # order is killed 
                yield hold, self, k 
                stasku.activeOrders.pop(0) # remove order from active 
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orders list  
                stasku.monKilled.observe(1) 
                if eval(globalDict['Plot']) == 1: 
                    stasku.monKilledFull.observe(1) 
         
def main(): 
    global globalDict,d, t, tb, transLog, constVarsRec, statsRec 
## Database Parameters------------------------- 
    # Define access parameters for the database here 
    dbhost = "localhost" 
    dbport = int("3306") 
    dbuser = "******" 
    dbpass = "******" 
     
    #dbname = "david_validation" 
 
## Filenames 
    params_input_file = "v5input_validation_63940.csv" 
    #params_input_file = "v5input_filename.csv" 
    #global_input_file = "globalvarsinput_batch9.csv" 
    global_input_file = "globalvarsinput_v5.csv" 
     
     
    trans_output_file = "v5output_validation_63940.csv" 
    params_output_file = "v5staskuvars_validation_63940.csv" 
    stats_output_file = "v5stats_validation_63940.csv"     
 
 
 
 
## Import of Simulation Parameters-------------------------     
    # Import & read file containing input per simulation 
    f2 = open(global_input_file, "rU") 
    dreader2 = csv.DictReader(f2) 
    # Store global variables in dictionary, labeled according to first 
row in .csv file 

    globalDict =  
    globalDict.update(dreader2.next()) 
    d = eval(globalDict['Initial day of week']) 
     
    # Import & read file containing input per StaSKU 
    f1 = open(params_input_file, "rU") 
    dreader1 = csv.DictReader(f1) 
     
    inputList = [] # initiate list of dictionaries of inputs  
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    for L in dreader1: # StaSKU-specific variables stored in diction-
ary, 
        # labeled according to first row in .csv file             
        alphaSum = ev-
al(L['a0'])+eval(L['a1'])+eval(L['a2'])+eval(L['a3'])+\ 
            eval(L['a4'])+eval(L['a5'])+eval(L['a6'])+eval(L['a7'])+\ 
            eval(L['a8'])+eval(L['a9'])+eval(L['a10'])+eval(L['a11'])        
        if math.fabs(alphaSum-1) > 0.01: # verify that daily demand 
fractions sum to 1 
            print "Error: Demand Fraction do not sum to 1" 
            exit()             
        else: 
            inputList.append(L) # Store dictionaries in list 
     
 
 
     
    f1.close() 
    f2.close()  
     
    of1 = open(trans_output_file,"wb") 
    transLog = csv.writer(of1,dialect='excel')     
    # Write column headers   
    transLog.writerow(('HashCode','Time','Transaction 
Type','Quantity',\ 
                     'BV Expected Count','BV Actual Count','BV End 
Count','RV Expected Count',\ 
                     'RV End Count','Recorded','CountEventTrue','RV 
StockoutEvent',\ 
                     'BV StockoutEvent','ID','BVSOlag','Trial')) 
     
    # Output variables constant per Station SKU 
    of2 = open(params_output_file,"wb") 
    constVarsRec = csv.writer(of2,dialect='excel') 
    # Write column headers      
    constVars-
Rec.writerow(('ID','HashCode','FacilityStation','ItemID','Minimum','Ma
ximum',  
                           'RunDateTime','Item 
Class','InitialIOH','MeanDailyDemand','TB1frac','TB2frac','TB3frac',\ 
                           
'TB4frac','TB5frac','TB6frac','TB7frac','TB8frac','TB9frac',\ 
                           
'TB10frac','TB11frac','TB12frac','DemandError','InitialCount','inter-
count',\ 
                           'InitialRe-
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view','KillTime','ReplenishError','MaxSimTime','InitTimeBucket',\ 
                           'NegBin-
Prob','InitialDayOfWeek','IRt1','IRt2','IRt3','IRt4','IRt5',\ 
                           
'IRt6','IRt7','LT1','LT2','LT3','LT4','LT5','LT6','LT7','ReturnProb',\ 
                           'ReturnMean-
Time','Trial','Seed','R0','R1','R2','R3','R4','R5','R6','statTimeRange
',\ 
                           'ReturnEr-
ror','CountLow','probCtOnLS','NumTrials')) 
     
    # Output simulation statistics 
    of3 = open(stats_output_file,"wb") 
    statsRec = csv.writer(of3,dialect='excel') 
    # Write column headers   
    stats-
Rec.writerow(('HashCode','StartPeriod','EndPeriod','RVDemand','LostSal
es','RVSales',\ 
                   
'BVSales','RVSO','BVSO','NumCts','NumRepl','RVPercAv','BVPercAv',\ 
                   'AveRV-
Inv','AveBVInv','NumKilledOrd','RecProb','FillRate','RVSOrate','BVSOra
te','ID',\ 
                   'TransQuant-
Sum','AbsDiscrepSum','CountDemSum','DiscrepSum','BVPercNeg','CountRetS
um',\ 
                   'Coun-
tReplSum','RVReplSum','RVRetSum','BVRetSum','RVSOdur','BVSOdur','Trial
')) 
 
## Model/Experiment ------------------------------ 
#    startTimeCounter = time.time()    
    # Station SKUs are simulated one at a time 
    lw = logWriter() 
    for L in inputList: 
        hashCode = hash(hash(str(time.time()))+hash(str(L))) 
        j = 1 
        while j <= eval(globalDict['NumTrials']): 
            initialize() 
            dow = DayOfWeek() # Initialize day of week counter process 
            activate(dow,dow.runDOW(L)) 
            TBproc = TimeBucket() # Initialize time bucket counter 
process 
            activate(TBproc,TBproc.runTB()) 
            #gaCo = GarbCollect() # Initialize periodic garbage col-
lection process 
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            #activate(gaCo,gaCo.runGC()) 
             
            seed = eval(globalDict['Seed'])+j 
            trial = j 
            # Pass input variables to new instance of StaSKU object 
            s = StaSKU(L,seed,hashCode,trial) 
             
            simulate(until=eval(globalDict['Run length'])) 
 
            ## Output of Results ------------------------------         
            # Output transaction log 
            lw.twrite(s) 
            lw.swrite(s) 
             
            print time.time(),",the time is now,", now(), "days" 
            gc.collect() 
            j += 1 
         
    of1.close() 
    of2.close() 
    of3.close() 
     
    # Export results to MySQL Database 
    # Connect to MySQL server 
    
db=MySQLdb.connect(host=dbhost,port=dbport,user=dbuser,passwd=dbpass,d
b=dbname) 
    dbc=db.cursor();   
    dbc.execute("""LOAD DATA LOW_PRIORITY LOCAL INFILE %s INTO TABLE 
simruns_results  
        FIELDS TERMINATED BY ',' LINES TERMINATED BY '\r\n' IGNORE 1 
LINES;""", (trans_output_file,)) 
    dbc.execute("""LOAD DATA LOW_PRIORITY LOCAL INFILE %s INTO TABLE 
simruns_params 
        FIELDS TERMINATED BY ',' LINES TERMINATED BY '\r\n' IGNORE 1 
LINES;""", (params_output_file,))    
    dbc.execute("""LOAD DATA LOW_PRIORITY LOCAL INFILE %s INTO TABLE 
simruns_stats 
        FIELDS TERMINATED BY ',' LINES TERMINATED BY '\r\n' IGNORE 1 
LINES (Hash-
Code,StartPeriod,EndPeriod,RVDemand,LostSales,RVSales,BVSales,RVSO,BVS
O,NumCts,NumRepl,RVPercAv,BVPercAv,AveRVInv,AveBVInv,NumKilledOrd,RecP
rob,FillRate,RVSOrate,BVSOrate,ID,TransQuantSum,AbsDiscrepSum,CountDem
Sum,DiscrepSum,BVPercNeg,CountRetSum,CountReplSum,RVReplSum,RVRetSum,B
VRetSum,RVSOdur,BVSOdur,Trial);""", (stats_output_file,))    
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    db.commit() 
    db.close() 
 
class DayOfWeek(Process): 
    def runDOW(self,L): 
        global d 
        # This process keeps track of which day of the week it is 
        # d=0: Monday, d=1: Tuesday, d=2:Wednesday, d=3: Thursday, 
d=4: Friday, d=5: Saturday, d=6: Sunday 
        yield hold, self, 1-(eval(globalDict['Initial time buck-
et'])/12.0) 
        if d < 6: 
            d += 1 
        elif d == 6: 
            d = 0  
        while True: 
            yield hold, self, 1 
            if d < 6: 
                d += 1 
            elif d == 6: 
                d = 0  
 
class TimeBucket(Process): 
    def runTB(self): 
        global tb, t 
        # This process keeps track of what time bucket the simulation 
is in 
        tb = (1.0/12.0) # each "time bucket" is 2 hrs = 1/12 of a day 
        t = eval(globalDict['Initial time bucket']) # initialize time 
bucket 
        while True: 
            yield hold, self, tb 
            # advance to next time bucket 
            if t < 11: 
                t += 1 
            elif t == 11: 
                t = 0 
                 
class GarbCollect(Process): 
    def runGC(self): 
        while True: 
            # Call garbage collect periodically to reduce memory used, 
but not so 
            # often that it takes much longer to run 
            yield hold, self, 364 
            print time.time(),",the time is now,", now(), "days" 
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            gc.collect() 
             
 
          
if __name__ == '__main__': main() 
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Appendix E.Study of p for Two-Sided Inaccuracies 

In order to characterize how p varies as the time since the last count t increases, it is useful to 

rewrite the cumulative distribution function using its characteristic function 

 through the inversion formula (Davies, 1973): 

!
Where x is a non-negative integer. 

The Skellam distribution has the following characteristic function , which is differenti-

able in t: 

 

Therefore, is also differentiable in t and therefore so is the function p. 
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!

The sign of this derivative is a sufficient condition to conclude on the monotonicity of p: 

 

 

Using the following change of variables, we can rewrite the inequality:  

 



Appendix E. Study of p for Two-Sided Inaccuracies 240 

 

240 

 

 

We can express g as a function of the other variables:
!

!

!

The ratio of modified Bessel functions of the first kind is bound by a lower and upper bound: 

(Amos, 1974): 

 

The upper bound yields a sufficient condition for p decreasing: 



Appendix E. Study of p for Two-Sided Inaccuracies 241 

 

241 

 

 

Since u(x,m) is decreasing in x: 

 

 

Since , we have the desired result: 
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Appendix F. Study of the Convexity of MAPL 

To examine the convexity of the expected in-stock probability, we consider the lower bound on 

the expected in-stock probability obtained by Morey (1985). He defines the Minimum Actual 

Protection Level (MAPL) as the probability of the sum of the demand DL and maximum inven-

tory inaccuracy during the period Mt being below the reorder point B, as a function of the num-

ber of periods since the last count t: 

 

Under the assumptions of approximately normal lead time demand and independence of lead 

time demand and maximum inventory inaccuracy between counts66, he obtains an analytical ex-

pression for the Minimum Actual Protection Level (MAPL): 

 

Because this expression is a lower bound (hence the use of the word “Minimum”) on the average 

expected in-stock probability, we have: 

                                                

 

66 Morey treats the case of non-zero mean inventory inaccuracies by including their mean in the demand, which 

makes the problem tractable as long as the maximum inventory inaccuracies during the period can still be consid-

ered independent of lead-time demand. 
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We now consider sMAPL as an approximation of s. We consider rMAPL: t ! t sMAPL(t) and verify 

that it is strictly concave over [0,+!"), by observing that rMAPL is twice differentiable over this in-

terval and calculating its second derivative: 

 

Therefore, the results of section 1 apply, i.e. the optimal service level is achieved for equally 

spaced counts: 

 

We examine the convexity of sMAPL:!
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!

Therefore, sMAPL is convex iff: 

!

The strict convexity of sMAPL for all non-negative values of t is equivalent to: 

 

Under the assumption of normally distributed lead time demand, tcritical can be expressed as a 

function of the target Type I service level !, i.e. the probability of not stocking out during a re-

plenishment cycle in the absence of inventory inaccuracy: 
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!

This analysis shows that the convexity of Morey’s MAPL is guaranteed for all distributions if the 

target service level is below , as well as all distributions of T which take values 

above tcritical. In the next section, we consider different numerical applications to show that in 

most operational contexts the Minimum Actual Protection Level (MAPL) exhibits diminishing 

marginal decreases and that therefore sMAPL(µeq) is a lower bound on the service level. 
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Appendix G. Sensitivity Analysis for Parameter K 
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Table 9.1: Service Level Breakdown for different values of K, (!  = 0.80) 
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Table 9.2: Service Level Breakdown for different values of K, (!  = 0.90) 
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Table 9.3: Service Level Breakdown for different values of K, (!  = 0.95) 
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! $%+(# # # # # #
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! ! "#%&! #$)+%#" #$###*" #$##((" #$#*(*"
! ! "#&"! #$)'*," #$##'#" #$#'*-" #$#-&("
! ! $#""! #$,+)'" #$##+&" #$#*#*" #$'#(+"
! *# # # # # #
! ! "#$"! #$)-)*" !#$###'" #$#'#%" #$#'#*"
! ! "#%&! #$)*(+" #$###," #$#*(-" #$#*(*"
! ! "#&"! #$,%&(" #$##--" #$#+%+" #$#-&("
! ! $#""! #$%,+&" #$#'%," #$#%'-" #$'#(+"
! *%(# # # # # #
! ! "#$"! #$)+-(" #$###'" #$#*+#" #$#'#*"
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! ! "#&"! #$,'-'" #$#'%#" #$#)++" #$#-&("
! ! $#""! #$%##)" #$#&,)" #$'&&," #$'#(+"

Table 9.4: Service Level Breakdown for different values of K, (!  = 0.98)  

Note: Small negative differences between the simulated Actual Service Level and the Lower 

Bound may be due to non-convexity of the service level function for these parameters, as de-

scribed in Chapter 7.2.1. 
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Table 9.5: Service Level Breakdown for different values of K, (!  = 0.99)  

Note: Small negative differences between the simulated Actual Service Level and the Lower 

Bound may be due to non-convexity of the service level function for these parameters, as de-

scribed in Chapter 7.2.1. 
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Table 9.6: Average of Mean Inter-Count Time, Average of C.V., Number of SKUs, and Number of SKUs for 

which we reject the null at the 0.01, 0.05 and 0.10 significance levels 

Note: This table presents Station-SKUs for which there was sufficient data to conduct the Fischer 

test of independence. This required more than ten counts during the study period and sufficient 

transaction data to build a histogram of the steady state distribution of the book inventory and 

perform the Fischer test of independence. 255 Station-SKUs (6,110 – 5,855) were omitted be-

cause of insufficient transaction data. 
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1 10856 Acc GfitIC DIP COR0 0.79794 Adjust(48;0.1;1) 1 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 1.000 0.000 0.659 0.087 0.522 0.038 58.895 1.106 62.592 1.109
2 10856 Acc GfitIC DIP COR100 0.79794 Adjust(48;0.1;1) 0 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 1.000 0.000 1.185 0.103 0.525 0.039 59.365 0.561 61.231 0.616
3 10856 Acc GfitIC DIP COR50 0.79794 Adjust(48;0.1;1)0.5 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 1.000 0.000 0.916 0.095 0.524 0.038 59.173 0.747 61.870 0.729
4 10856 Acc GfitIC noDIP COR0 0.79794 48 1 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 1.000 0.000 0.659 0.087 0.505 0.037 55.485 0.885 59.181 0.479
5 10856 Acc GfitIC noDIP COR100 0.79794 48 0 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 1.000 0.000 1.175 0.103 0.516 0.037 56.373 0.673 58.378 0.513
6 10856 Acc GfitIC noDIP COR50 0.79794 48 0.5 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 1.000 0.000 0.911 0.094 0.512 0.037 55.935 0.763 58.752 0.444
7 10856 Acc HighMeanICDIP COR0 0.79794 Adjust(48;0.1;1) 1 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 1.000 0.000 0.492 0.067 0.521 0.034 59.152 1.035 63.887 1.397
8 10856 Acc HighMeanICDIP COR100 0.79794 Adjust(48;0.1;1) 0 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 1.000 0.000 1.015 0.083 0.524 0.040 59.596 0.632 61.604 0.737
9 10856 Acc HighMeanICDIP COR50 0.79794 Adjust(48;0.1;1)0.5 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 1.000 0.000 0.748 0.075 0.523 0.037 59.431 0.830 62.614 1.030
10 10856 Acc HighMeanICnoDIP COR0 0.79794 48 1 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 1.000 0.000 0.492 0.067 0.500 0.036 54.576 1.053 59.311 0.471
11 10856 Acc HighMeanICnoDIP COR100 0.79794 48 0 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 1.000 0.000 1.007 0.085 0.515 0.041 56.119 0.663 58.361 0.496
12 10856 Acc HighMeanICnoDIP COR50 0.79794 48 0.5 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 1.000 0.000 0.742 0.075 0.509 0.038 55.455 0.890 58.812 0.455
13 10856 Acc HighMeanRedVarICDIP COR0 0.79794 Adjust(48;0.1;1) 1 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 1.000 0.000 0.492 0.019 0.522 0.038 58.958 0.697 62.000 0.743
14 10856 Acc HighMeanRedVarICDIP COR100 0.79794 Adjust(48;0.1;1) 0 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 1.000 0.000 1.015 0.039 0.523 0.038 59.255 0.673 61.194 0.674
15 10856 Acc HighMeanRedVarICDIP COR50 0.79794 Adjust(48;0.1;1)0.5 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 1.000 0.000 0.748 0.047 0.523 0.038 59.092 0.698 61.570 0.727
16 10856 Acc HighMeanRedVarICnoDIP COR0 0.79794 48 1 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 1.000 0.000 0.492 0.019 0.507 0.034 56.122 0.834 59.164 0.515
17 10856 Acc HighMeanRedVarICnoDIP COR100 0.79794 48 0 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 1.000 0.000 1.004 0.037 0.512 0.035 56.458 0.741 58.516 0.552
18 10856 Acc HighMeanRedVarICnoDIP COR50 0.79794 48 0.5 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 1.000 0.000 0.743 0.045 0.510 0.034 56.331 0.782 58.849 0.541
19 10856 Acc HistIC DIP COR0 0.79794 Adjust(48;0.1;1) 1 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 1.000 0.000 0.682 0.000 0.521 0.038 59.107 0.711 62.622 0.781
20 10856 Acc HistIC DIP COR100 0.79794 Adjust(48;0.1;1) 0 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 1.000 0.000 1.207 0.037 0.525 0.037 59.416 0.586 61.270 0.658
21 10856 Acc HistIC DIP COR50 0.79794 Adjust(48;0.1;1)0.5 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 1.000 0.000 0.937 0.050 0.523 0.039 59.272 0.690 61.956 0.732
22 10856 Acc HistIC noDIP COR0 0.79794 48 1 1.000 0.001 0.001 0.003 0.001 0.003 1.000 0.002 1.000 0.001 0.682 0.000 0.508 0.036 55.674 0.790 59.189 0.495
23 10856 Acc HistIC noDIP COR100 0.79794 48 0 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 1.000 0.000 1.197 0.039 0.515 0.039 56.505 0.691 58.559 0.588
24 10856 Acc HistIC noDIP COR50 0.79794 48 0.5 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 1.000 0.000 0.932 0.049 0.512 0.037 56.075 0.691 58.848 0.547
25 10856 Acc LowMeanICDIP COR0 0.79794 Adjust(48;0.1;1) 1 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 1.000 0.000 0.986 0.112 0.521 0.039 58.964 0.711 61.507 0.697
26 10856 Acc LowMeanICDIP COR100 0.79794 Adjust(48;0.1;1) 0 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 1.000 0.000 1.510 0.130 0.524 0.038 59.170 0.565 60.725 0.587
27 10856 Acc LowMeanICDIP COR50 0.79794 Adjust(48;0.1;1)0.5 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 1.000 0.000 1.242 0.115 0.523 0.039 59.055 0.671 61.039 0.695
28 10856 Acc LowMeanICnoDIP COR0 0.79794 48 1 1.000 0.000 0.000 0.002 0.000 0.002 1.000 0.000 1.000 0.000 0.986 0.112 0.513 0.036 56.655 0.747 59.197 0.511
29 10856 Acc LowMeanICnoDIP COR100 0.79794 48 0 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 1.000 0.000 1.505 0.128 0.519 0.038 57.018 0.514 58.647 0.479
30 10856 Acc LowMeanICnoDIP COR50 0.79794 48 0.5 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 1.000 0.000 1.239 0.116 0.516 0.037 56.896 0.580 58.961 0.483
31 10856 Acc LowMeanRedVarICDIP COR0 0.79794 Adjust(48;0.1;1) 1 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 1.000 0.000 0.996 0.032 0.523 0.036 59.125 0.425 60.623 0.472
32 10856 Acc LowMeanRedVarICDIP COR100 0.79794 Adjust(48;0.1;1) 0 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 1.000 0.000 1.520 0.050 0.523 0.038 59.187 0.446 60.404 0.493
33 10856 Acc LowMeanRedVarICDIP COR50 0.79794 Adjust(48;0.1;1)0.5 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 1.000 0.000 1.252 0.055 0.523 0.036 59.139 0.452 60.511 0.483
34 10856 Acc LowMeanRedVarICnoDIP COR0 0.79794 48 1 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 1.000 0.000 0.996 0.032 0.516 0.033 57.642 0.546 59.139 0.474
35 10856 Acc LowMeanRedVarICnoDIP COR100 0.79794 48 0 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 1.000 0.000 1.513 0.047 0.516 0.034 57.671 0.531 58.871 0.479
36 10856 Acc LowMeanRedVarICnoDIP COR50 0.79794 48 0.5 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 1.000 0.000 1.250 0.053 0.516 0.033 57.647 0.534 59.006 0.474
37 10856 Acc RedVarIC DIP COR0 0.79794 Adjust(48;0.1;1) 1 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 1.000 0.000 0.657 0.024 0.526 0.040 58.979 0.585 61.301 0.588
38 10856 Acc RedVarIC DIP COR100 0.79794 Adjust(48;0.1;1) 0 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 1.000 0.000 1.183 0.050 0.526 0.042 59.154 0.516 60.796 0.523
39 10856 Acc RedVarIC DIP COR50 0.79794 Adjust(48;0.1;1)0.5 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 1.000 0.000 0.914 0.051 0.525 0.041 59.009 0.542 61.013 0.590
40 10856 Acc RedVarIC noDIP COR0 0.79794 48 1 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 1.000 0.000 0.657 0.024 0.511 0.039 56.884 0.786 59.206 0.519
41 10856 Acc RedVarIC noDIP COR100 0.79794 48 0 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 1.000 0.000 1.172 0.050 0.514 0.042 56.977 0.781 58.677 0.610
42 10856 Acc RedVarIC noDIP COR50 0.79794 48 0.5 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 1.000 0.000 0.907 0.049 0.512 0.042 56.951 0.766 58.968 0.565
43 10856 IAcc GfitIC DIP COR0 0.89897 Adjust(48;0.1;1) 1 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 1.000 0.000 0.659 0.087 0.522 0.038 58.993 0.878 60.780 0.871
44 10856 IAcc GfitIC DIP COR100 0.89897 Adjust(48;0.1;1) 0 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 1.000 0.000 1.181 0.102 0.521 0.037 59.309 0.693 60.189 0.682
45 10856 IAcc GfitIC DIP COR50 0.89897 Adjust(48;0.1;1)0.5 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 1.000 0.000 0.915 0.095 0.522 0.038 59.280 0.800 60.553 0.847
46 10856 IAcc GfitIC noDIP COR0 0.89897 48 1 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 1.000 0.000 0.659 0.087 0.517 0.040 57.207 0.711 58.994 0.526
47 10856 IAcc GfitIC noDIP COR100 0.89897 48 0 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 1.000 0.000 1.179 0.107 0.520 0.040 57.806 0.594 58.717 0.535
48 10856 IAcc GfitIC noDIP COR50 0.89897 48 0.5 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 1.000 0.000 0.914 0.096 0.518 0.040 57.477 0.680 58.789 0.488
49 10856 IAcc HighMeanICDIP COR0 0.89897 Adjust(48;0.1;1) 1 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 1.000 0.000 0.492 0.067 0.521 0.037 59.088 0.956 61.396 1.085
50 10856 IAcc HighMeanICDIP COR100 0.89897 Adjust(48;0.1;1) 0 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 1.000 0.000 1.014 0.084 0.522 0.038 59.597 0.686 60.608 0.722
51 10856 IAcc HighMeanICDIP COR50 0.89897 Adjust(48;0.1;1)0.5 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 1.000 0.000 0.747 0.074 0.521 0.038 59.355 0.786 60.942 0.866
52 10856 IAcc HighMeanICnoDIP COR0 0.89897 48 1 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 1.000 0.000 0.492 0.067 0.517 0.040 56.836 0.830 59.144 0.539
53 10856 IAcc HighMeanICnoDIP COR100 0.89897 48 0 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 1.000 0.000 1.012 0.083 0.520 0.040 57.707 0.599 58.748 0.521
54 10856 IAcc HighMeanICnoDIP COR50 0.89897 48 0.5 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 1.000 0.000 0.746 0.074 0.518 0.037 57.288 0.735 58.896 0.507
55 10856 IAcc HighMeanRedVarICDIP COR0 0.89897 Adjust(48;0.1;1) 1 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 1.000 0.000 0.492 0.019 0.520 0.039 58.895 0.511 60.424 0.571
56 10856 IAcc HighMeanRedVarICDIP COR100 0.89897 Adjust(48;0.1;1) 0 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 1.000 0.000 1.013 0.041 0.521 0.040 59.077 0.474 60.034 0.500
57 10856 IAcc HighMeanRedVarICDIP COR50 0.89897 Adjust(48;0.1;1)0.5 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 1.000 0.000 0.747 0.047 0.522 0.041 58.957 0.488 60.199 0.515
58 10856 IAcc HighMeanRedVarICnoDIP COR0 0.89897 48 1 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 1.000 0.000 0.492 0.019 0.519 0.039 57.443 0.645 58.972 0.485
59 10856 IAcc HighMeanRedVarICnoDIP COR100 0.89897 48 0 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 1.000 0.000 1.011 0.042 0.519 0.040 57.741 0.564 58.740 0.459
60 10856 IAcc HighMeanRedVarICnoDIP COR50 0.89897 48 0.5 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 1.000 0.000 0.748 0.046 0.520 0.041 57.584 0.623 58.840 0.468
61 10856 IAcc HistIC DIP COR0 0.89897 Adjust(48;0.1;1) 1 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 1.000 0.000 0.682 0.000 0.520 0.036 59.120 0.659 60.839 0.733
62 10856 IAcc HistIC DIP COR100 0.89897 Adjust(48;0.1;1) 0 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 1.000 0.000 1.202 0.036 0.520 0.036 59.314 0.585 60.261 0.650
63 10856 IAcc HistIC DIP COR50 0.89897 Adjust(48;0.1;1)0.5 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 1.000 0.000 0.937 0.051 0.519 0.036 59.234 0.616 60.540 0.705
64 10856 IAcc HistIC noDIP COR0 0.89897 48 1 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 1.000 0.000 0.682 0.000 0.519 0.036 57.270 0.820 58.990 0.558
65 10856 IAcc HistIC noDIP COR100 0.89897 48 0 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 1.000 0.000 1.203 0.038 0.521 0.038 57.710 0.633 58.673 0.510
66 10856 IAcc HistIC noDIP COR50 0.89897 48 0.5 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 1.000 0.000 0.937 0.049 0.519 0.037 57.476 0.701 58.785 0.531
67 10856 IAcc LowMeanICDIP COR0 0.89897 Adjust(48;0.1;1) 1 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 1.000 0.000 0.986 0.112 0.523 0.038 59.011 0.562 60.259 0.558
68 10856 IAcc LowMeanICDIP COR100 0.89897 Adjust(48;0.1;1) 0 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 1.000 0.000 1.510 0.127 0.524 0.037 59.192 0.536 59.917 0.542
69 10856 IAcc LowMeanICDIP COR50 0.89897 Adjust(48;0.1;1)0.5 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 1.000 0.000 1.243 0.116 0.523 0.037 59.142 0.543 60.104 0.547
70 10856 IAcc LowMeanICnoDIP COR0 0.89897 48 1 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 1.000 0.000 0.986 0.112 0.519 0.038 57.792 0.654 59.041 0.517
71 10856 IAcc LowMeanICnoDIP COR100 0.89897 48 0 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 1.000 0.000 1.506 0.128 0.520 0.036 58.011 0.557 58.770 0.490
72 10856 IAcc LowMeanICnoDIP COR50 0.89897 48 0.5 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 1.000 0.000 1.241 0.115 0.520 0.037 57.924 0.617 58.910 0.539
73 10856 IAcc LowMeanRedVarICDIP COR0 0.89897 Adjust(48;0.1;1) 1 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 1.000 0.000 0.996 0.032 0.520 0.038 59.028 0.442 59.792 0.533
74 10856 IAcc LowMeanRedVarICDIP COR100 0.89897 Adjust(48;0.1;1) 0 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 1.000 0.000 1.516 0.052 0.520 0.037 59.018 0.477 59.627 0.522
75 10856 IAcc LowMeanRedVarICDIP COR50 0.89897 Adjust(48;0.1;1)0.5 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 1.000 0.000 1.252 0.054 0.520 0.037 59.024 0.469 59.711 0.540
76 10856 IAcc LowMeanRedVarICnoDIP COR0 0.89897 48 1 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 1.000 0.000 0.996 0.032 0.518 0.037 58.204 0.465 58.968 0.427
77 10856 IAcc LowMeanRedVarICnoDIP COR100 0.89897 48 0 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 1.000 0.000 1.515 0.053 0.518 0.037 58.220 0.484 58.830 0.468
78 10856 IAcc LowMeanRedVarICnoDIP COR50 0.89897 48 0.5 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 1.000 0.000 1.250 0.053 0.518 0.038 58.212 0.483 58.905 0.458
79 10856 IAcc RedVarIC DIP COR0 0.89897 Adjust(48;0.1;1) 1 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 1.000 0.000 0.657 0.024 0.520 0.037 58.983 0.536 60.131 0.582
80 10856 IAcc RedVarIC DIP COR100 0.89897 Adjust(48;0.1;1) 0 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 1.000 0.000 1.180 0.046 0.522 0.039 59.072 0.520 59.890 0.548
81 10856 IAcc RedVarIC DIP COR50 0.89897 Adjust(48;0.1;1)0.5 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 1.000 0.000 0.914 0.048 0.521 0.039 59.029 0.523 60.019 0.552
82 10856 IAcc RedVarIC noDIP COR0 0.89897 48 1 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 1.000 0.000 0.657 0.024 0.517 0.040 57.922 0.570 59.070 0.489
83 10856 IAcc RedVarIC noDIP COR100 0.89897 48 0 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 1.000 0.000 1.176 0.049 0.518 0.041 58.021 0.553 58.845 0.496
84 10856 IAcc RedVarIC noDIP COR50 0.89897 48 0.5 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 1.000 0.000 0.912 0.049 0.518 0.039 57.996 0.567 58.981 0.481
1 56840 Acc GfitIC DIP COR0 0.96875 Adjust(4;0.1;1) 1 0.947 0.098 0.075 0.055 0.029 0.022 0.967 0.091 0.996 0.003 0.142 0.058 0.822 0.109 4.907 0.798 5.490 0.491
2 56840 Acc GfitIC DIP COR100 0.96875 Adjust(4;0.1;1) 0 0.975 0.042 0.041 0.023 0.041 0.023 0.988 0.037 0.995 0.003 0.987 0.102 0.844 0.079 5.593 1.226 5.684 1.268
3 56840 Acc GfitIC DIP COR50 0.96875 Adjust(4;0.1;1)0.5 0.975 0.042 0.044 0.025 0.039 0.023 0.987 0.037 0.995 0.004 0.565 0.084 0.843 0.077 5.537 1.224 5.668 1.260
4 56840 Acc GfitIC noDIP COR0 0.96875 4 1 0.942 0.101 0.090 0.072 0.032 0.024 0.965 0.091 0.996 0.003 0.142 0.058 0.813 0.109 4.633 0.732 5.216 0.093
5 56840 Acc GfitIC noDIP COR100 0.96875 4 0 0.973 0.043 0.048 0.028 0.048 0.028 0.987 0.037 0.995 0.004 0.979 0.104 0.837 0.079 5.101 0.221 5.188 0.061
6 56840 Acc GfitIC noDIP COR50 0.96875 4 0.5 0.963 0.077 0.053 0.031 0.046 0.026 0.977 0.073 0.995 0.004 0.557 0.094 0.828 0.099 5.012 0.434 5.189 0.062
7 56840 Acc HighMeanICDIP COR0 0.96875 Adjust(4;0.1;1) 1 0.947 0.101 0.075 0.062 0.029 0.021 0.965 0.093 0.996 0.003 0.134 0.058 0.821 0.110 4.887 0.799 5.504 0.517
8 56840 Acc HighMeanICDIP COR100 0.96875 Adjust(4;0.1;1) 0 0.975 0.047 0.040 0.024 0.040 0.024 0.987 0.040 0.995 0.003 0.977 0.104 0.843 0.080 5.644 1.471 5.745 1.539
9 56840 Acc HighMeanICDIP COR50 0.96875 Adjust(4;0.1;1)0.5 0.974 0.048 0.043 0.028 0.040 0.026 0.987 0.040 0.996 0.003 0.556 0.087 0.843 0.080 5.575 1.464 5.727 1.532
10 56840 Acc HighMeanICnoDIP COR0 0.96875 4 1 0.941 0.103 0.092 0.079 0.032 0.023 0.962 0.093 0.996 0.003 0.134 0.058 0.815 0.110 4.599 0.744 5.215 0.089
11 56840 Acc HighMeanICnoDIP COR100 0.96875 4 0 0.972 0.048 0.048 0.028 0.048 0.028 0.986 0.041 0.995 0.004 0.970 0.106 0.836 0.082 5.095 0.235 5.189 0.059
12 56840 Acc HighMeanICnoDIP COR50 0.96875 4 0.5 0.962 0.079 0.052 0.031 0.045 0.026 0.976 0.074 0.995 0.003 0.548 0.095 0.828 0.102 5.004 0.443 5.193 0.058
13 56840 Acc HighMeanRedVarICDIP COR0 0.96875 Adjust(4;0.1;1) 1 0.970 0.037 0.057 0.037 0.033 0.022 0.984 0.032 0.996 0.003 0.125 0.012 0.838 0.076 5.081 0.197 5.367 0.241
14 56840 Acc HighMeanRedVarICDIP COR100 0.96875 Adjust(4;0.1;1) 0 0.975 0.036 0.042 0.026 0.042 0.026 0.987 0.033 0.995 0.004 0.968 0.082 0.843 0.080 5.293 0.302 5.384 0.308
15 56840 Acc HighMeanRedVarICDIP COR50 0.96875 Adjust(4;0.1;1)0.5 0.974 0.036 0.044 0.029 0.040 0.025 0.986 0.033 0.995 0.004 0.547 0.067 0.843 0.079 5.264 0.299 5.390 0.311
16 56840 Acc HighMeanRedVarICnoDIP COR0 0.96875 4 1 0.969 0.039 0.064 0.041 0.037 0.024 0.983 0.033 0.995 0.003 0.125 0.012 0.835 0.077 4.911 0.270 5.198 0.057
17 56840 Acc HighMeanRedVarICnoDIP COR100 0.96875 4 0 0.973 0.038 0.048 0.028 0.048 0.028 0.986 0.034 0.995 0.004 0.963 0.081 0.838 0.079 5.095 0.200 5.188 0.060
18 56840 Acc HighMeanRedVarICnoDIP COR50 0.96875 4 0.5 0.972 0.039 0.050 0.030 0.046 0.027 0.985 0.034 0.995 0.004 0.544 0.066 0.838 0.079 5.059 0.202 5.189 0.059
19 56840 Acc HistIC DIP COR0 0.96875 Adjust(4;0.1;1) 1 0.964 0.054 0.067 0.049 0.029 0.022 0.980 0.046 0.996 0.003 0.152 0.000 0.832 0.089 5.180 0.771 5.673 0.830
20 56840 Acc HistIC DIP COR100 0.96875 Adjust(4;0.1;1) 0 0.978 0.031 0.039 0.025 0.039 0.025 0.991 0.023 0.996 0.003 0.996 0.080 0.844 0.080 5.508 0.450 5.584 0.463
21 56840 Acc HistIC DIP COR50 0.96875 Adjust(4;0.1;1)0.5 0.974 0.052 0.042 0.029 0.038 0.025 0.987 0.045 0.996 0.004 0.571 0.070 0.840 0.090 5.437 0.483 5.577 0.452
22 56840 Acc HistIC noDIP COR0 0.96875 4 1 0.952 0.062 0.085 0.062 0.036 0.021 0.972 0.053 0.995 0.003 0.152 0.000 0.819 0.089 4.719 0.456 5.204 0.055
23 56840 Acc HistIC noDIP COR100 0.96875 4 0 0.972 0.054 0.049 0.028 0.049 0.028 0.986 0.046 0.995 0.004 0.988 0.089 0.837 0.089 5.096 0.247 5.190 0.059
24 56840 Acc HistIC noDIP COR50 0.96875 4 0.5 0.968 0.056 0.053 0.030 0.047 0.024 0.984 0.047 0.995 0.003 0.568 0.070 0.834 0.090 5.042 0.272 5.191 0.058
25 56840 Acc LowMeanICDIP COR0 0.96875 Adjust(4;0.1;1) 1 0.949 0.095 0.084 0.061 0.030 0.020 0.969 0.082 0.996 0.003 0.154 0.057 0.822 0.098 4.831 0.696 5.403 0.272
26 56840 Acc LowMeanICDIP COR100 0.96875 Adjust(4;0.1;1) 0 0.977 0.037 0.040 0.024 0.040 0.024 0.989 0.034 0.995 0.003 0.998 0.101 0.843 0.076 5.571 1.131 5.660 1.169
27 56840 Acc LowMeanICDIP COR50 0.96875 Adjust(4;0.1;1)0.5 0.977 0.037 0.044 0.027 0.040 0.026 0.988 0.034 0.995 0.004 0.576 0.082 0.845 0.074 5.516 1.110 5.640 1.146
28 56840 Acc LowMeanICnoDIP COR0 0.96875 4 1 0.944 0.096 0.095 0.072 0.032 0.021 0.967 0.082 0.996 0.003 0.154 0.057 0.818 0.099 4.638 0.691 5.210 0.087
29 56840 Acc LowMeanICnoDIP COR100 0.96875 4 0 0.975 0.039 0.048 0.028 0.048 0.028 0.988 0.034 0.995 0.004 0.993 0.104 0.839 0.077 5.107 0.205 5.188 0.061
30 56840 Acc LowMeanICnoDIP COR50 0.96875 4 0.5 0.965 0.073 0.052 0.031 0.046 0.027 0.980 0.064 0.995 0.004 0.570 0.092 0.832 0.094 5.027 0.393 5.189 0.060
31 56840 Acc LowMeanRedVarICDIP COR0 0.96875 Adjust(4;0.1;1) 1 0.972 0.032 0.058 0.034 0.035 0.023 0.986 0.025 0.995 0.003 0.147 0.014 0.839 0.074 5.100 0.150 5.340 0.217
32 56840 Acc LowMeanRedVarICDIP COR100 0.96875 Adjust(4;0.1;1) 0 0.977 0.028 0.044 0.025 0.044 0.025 0.988 0.024 0.995 0.003 0.992 0.078 0.845 0.075 5.266 0.215 5.345 0.236
33 56840 Acc LowMeanRedVarICDIP COR50 0.96875 Adjust(4;0.1;1)0.5 0.977 0.029 0.047 0.026 0.042 0.023 0.988 0.025 0.995 0.003 0.570 0.064 0.844 0.074 5.233 0.225 5.345 0.231
34 56840 Acc LowMeanRedVarICnoDIP COR0 0.96875 4 1 0.970 0.034 0.062 0.038 0.038 0.024 0.985 0.027 0.995 0.004 0.147 0.014 0.835 0.075 4.955 0.262 5.194 0.053
35 56840 Acc LowMeanRedVarICnoDIP COR100 0.96875 4 0 0.975 0.030 0.047 0.028 0.047 0.028 0.988 0.025 0.995 0.004 0.987 0.079 0.840 0.076 5.108 0.162 5.189 0.061
36 56840 Acc LowMeanRedVarICnoDIP COR50 0.96875 4 0.5 0.975 0.030 0.051 0.030 0.045 0.025 0.987 0.026 0.995 0.004 0.566 0.064 0.839 0.075 5.072 0.198 5.190 0.060
37 56840 Acc RedVarIC DIP COR0 0.96875 Adjust(4;0.1;1) 1 0.971 0.032 0.059 0.036 0.034 0.023 0.985 0.027 0.996 0.003 0.135 0.013 0.842 0.078 5.092 0.205 5.349 0.215
38 56840 Acc RedVarIC DIP COR100 0.96875 Adjust(4;0.1;1) 0 0.977 0.029 0.044 0.025 0.044 0.025 0.988 0.027 0.995 0.003 0.980 0.082 0.845 0.078 5.277 0.251 5.362 0.258
39 56840 Acc RedVarIC DIP COR50 0.96875 Adjust(4;0.1;1)0.5 0.976 0.030 0.046 0.025 0.042 0.023 0.988 0.027 0.995 0.003 0.557 0.065 0.844 0.076 5.245 0.244 5.367 0.261
40 56840 Acc RedVarIC noDIP COR0 0.96875 4 1 0.969 0.034 0.063 0.039 0.037 0.024 0.984 0.028 0.995 0.004 0.135 0.013 0.835 0.077 4.944 0.265 5.201 0.058
41 56840 Acc RedVarIC noDIP COR100 0.96875 4 0 0.975 0.030 0.048 0.028 0.048 0.028 0.988 0.028 0.995 0.004 0.974 0.080 0.839 0.077 5.105 0.173 5.189 0.060
42 56840 Acc RedVarIC noDIP COR50 0.96875 4 0.5 0.973 0.032 0.051 0.031 0.046 0.026 0.987 0.028 0.995 0.004 0.554 0.066 0.838 0.077 5.068 0.190 5.192 0.062
43 56840 IAcc GfitIC DIP COR0 0.98437 Adjust(4;0.1;1) 1 0.973 0.027 0.062 0.042 0.032 0.023 0.991 0.008 0.996 0.003 0.142 0.058 0.840 0.077 5.089 0.575 5.382 0.468
44 56840 IAcc GfitIC DIP COR100 0.98437 Adjust(4;0.1;1) 0 0.983 0.018 0.041 0.025 0.041 0.025 0.995 0.004 0.995 0.004 0.993 0.100 0.850 0.077 5.596 1.027 5.628 1.051
45 56840 IAcc GfitIC DIP COR50 0.98437 Adjust(4;0.1;1)0.5 0.982 0.018 0.042 0.026 0.040 0.025 0.994 0.004 0.995 0.003 0.569 0.081 0.852 0.077 5.556 0.992 5.605 1.017
46 56840 IAcc GfitIC noDIP COR0 0.98437 4 1 0.972 0.030 0.066 0.045 0.034 0.024 0.990 0.008 0.996 0.003 0.142 0.058 0.837 0.075 4.904 0.383 5.197 0.056
47 56840 IAcc GfitIC noDIP COR100 0.98437 4 0 0.981 0.019 0.046 0.027 0.046 0.027 0.994 0.004 0.995 0.004 0.988 0.102 0.845 0.076 5.162 0.059 5.190 0.056
48 56840 IAcc GfitIC noDIP COR50 0.98437 4 0.5 0.980 0.021 0.049 0.030 0.045 0.026 0.994 0.005 0.995 0.003 0.565 0.085 0.845 0.075 5.143 0.081 5.192 0.057
49 56840 IAcc HighMeanICDIP COR0 0.98437 Adjust(4;0.1;1) 1 0.974 0.028 0.062 0.045 0.032 0.022 0.990 0.010 0.996 0.003 0.134 0.058 0.842 0.076 5.081 0.620 5.396 0.516
50 56840 IAcc HighMeanICDIP COR100 0.98437 Adjust(4;0.1;1) 0 0.983 0.018 0.039 0.026 0.039 0.026 0.995 0.004 0.995 0.004 0.984 0.101 0.850 0.079 5.637 1.153 5.670 1.188
51 56840 IAcc HighMeanICDIP COR50 0.98437 Adjust(4;0.1;1)0.5 0.983 0.019 0.040 0.027 0.038 0.026 0.995 0.004 0.995 0.003 0.558 0.083 0.850 0.079 5.593 1.132 5.647 1.163
52 56840 IAcc HighMeanICnoDIP COR0 0.98437 4 1 0.971 0.031 0.070 0.048 0.034 0.023 0.989 0.010 0.996 0.003 0.134 0.058 0.839 0.076 4.881 0.408 5.197 0.050
53 56840 IAcc HighMeanICnoDIP COR100 0.98437 4 0 0.981 0.019 0.045 0.028 0.045 0.028 0.994 0.004 0.995 0.004 0.979 0.101 0.845 0.077 5.161 0.060 5.190 0.056
54 56840 IAcc HighMeanICnoDIP COR50 0.98437 4 0.5 0.980 0.021 0.048 0.030 0.044 0.026 0.994 0.005 0.995 0.003 0.557 0.085 0.846 0.077 5.139 0.081 5.194 0.055
55 56840 IAcc HighMeanRedVarICDIP COR0 0.98437 Adjust(4;0.1;1) 1 0.980 0.022 0.050 0.033 0.037 0.024 0.993 0.005 0.995 0.003 0.125 0.012 0.845 0.075 5.148 0.184 5.278 0.171
56 56840 IAcc HighMeanRedVarICDIP COR100 0.98437 Adjust(4;0.1;1) 0 0.982 0.019 0.041 0.026 0.041 0.026 0.995 0.004 0.995 0.004 0.973 0.079 0.848 0.077 5.272 0.217 5.300 0.232
57 56840 IAcc HighMeanRedVarICDIP COR50 0.98437 Adjust(4;0.1;1)0.5 0.982 0.020 0.043 0.028 0.040 0.026 0.994 0.004 0.995 0.004 0.550 0.066 0.848 0.076 5.253 0.213 5.300 0.229
58 56840 IAcc HighMeanRedVarICnoDIP COR0 0.98437 4 1 0.979 0.023 0.054 0.034 0.040 0.024 0.993 0.006 0.995 0.003 0.125 0.012 0.842 0.075 5.064 0.145 5.193 0.051
59 56840 IAcc HighMeanRedVarICnoDIP COR100 0.98437 4 0 0.981 0.019 0.045 0.027 0.045 0.027 0.994 0.004 0.995 0.004 0.971 0.078 0.846 0.076 5.162 0.060 5.189 0.055
60 56840 IAcc HighMeanRedVarICnoDIP COR50 0.98437 4 0.5 0.981 0.021 0.047 0.028 0.045 0.026 0.994 0.004 0.995 0.004 0.548 0.065 0.846 0.076 5.145 0.074 5.192 0.055
61 56840 IAcc HistIC DIP COR0 0.98437 Adjust(4;0.1;1) 1 0.975 0.023 0.056 0.037 0.032 0.023 0.992 0.006 0.996 0.003 0.152 0.000 0.839 0.074 5.155 0.275 5.407 0.307
62 56840 IAcc HistIC DIP COR100 0.98437 Adjust(4;0.1;1) 0 0.982 0.019 0.039 0.026 0.039 0.026 0.995 0.004 0.995 0.004 0.997 0.078 0.846 0.078 5.407 0.342 5.438 0.365
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63 56840 IAcc HistIC DIP COR50 0.98437 Adjust(4;0.1;1)0.5 0.982 0.020 0.041 0.027 0.039 0.025 0.995 0.004 0.996 0.003 0.574 0.068 0.845 0.077 5.377 0.310 5.430 0.341
64 56840 IAcc HistIC noDIP COR0 0.98437 4 1 0.974 0.025 0.065 0.046 0.036 0.022 0.991 0.007 0.996 0.003 0.152 0.000 0.840 0.075 4.945 0.256 5.197 0.052
65 56840 IAcc HistIC noDIP COR100 0.98437 4 0 0.981 0.019 0.046 0.027 0.046 0.027 0.994 0.004 0.995 0.004 0.997 0.077 0.845 0.077 5.162 0.063 5.191 0.057
66 56840 IAcc HistIC noDIP COR50 0.98437 4 0.5 0.980 0.021 0.048 0.030 0.045 0.026 0.994 0.005 0.995 0.003 0.574 0.066 0.845 0.076 5.140 0.081 5.193 0.055
67 56840 IAcc LowMeanICDIP COR0 0.98437 Adjust(4;0.1;1) 1 0.973 0.026 0.066 0.046 0.032 0.022 0.990 0.008 0.996 0.003 0.154 0.057 0.838 0.073 4.979 0.402 5.292 0.196
68 56840 IAcc LowMeanICDIP COR100 0.98437 Adjust(4;0.1;1) 0 0.983 0.018 0.040 0.026 0.040 0.026 0.995 0.004 0.995 0.004 1.003 0.101 0.849 0.077 5.544 0.909 5.575 0.929
69 56840 IAcc LowMeanICDIP COR50 0.98437 Adjust(4;0.1;1)0.5 0.983 0.018 0.042 0.028 0.040 0.026 0.994 0.004 0.995 0.004 0.578 0.083 0.848 0.076 5.503 0.868 5.555 0.896
70 56840 IAcc LowMeanICnoDIP COR0 0.98437 4 1 0.971 0.028 0.070 0.048 0.035 0.023 0.990 0.008 0.996 0.003 0.154 0.057 0.839 0.075 4.882 0.396 5.195 0.053
71 56840 IAcc LowMeanICnoDIP COR100 0.98437 4 0 0.981 0.019 0.046 0.027 0.046 0.027 0.994 0.004 0.995 0.004 1.000 0.103 0.846 0.077 5.161 0.065 5.190 0.056
72 56840 IAcc LowMeanICnoDIP COR50 0.98437 4 0.5 0.980 0.021 0.049 0.030 0.046 0.027 0.994 0.005 0.995 0.003 0.577 0.085 0.845 0.075 5.142 0.084 5.192 0.057
73 56840 IAcc LowMeanRedVarICDIP COR0 0.98437 Adjust(4;0.1;1) 1 0.979 0.023 0.050 0.030 0.037 0.023 0.993 0.005 0.995 0.003 0.147 0.014 0.845 0.074 5.145 0.114 5.253 0.119
74 56840 IAcc LowMeanRedVarICDIP COR100 0.98437 Adjust(4;0.1;1) 0 0.982 0.019 0.043 0.025 0.043 0.025 0.994 0.004 0.995 0.003 0.996 0.080 0.849 0.077 5.243 0.173 5.270 0.182
75 56840 IAcc LowMeanRedVarICDIP COR50 0.98437 Adjust(4;0.1;1)0.5 0.982 0.020 0.045 0.026 0.042 0.023 0.994 0.004 0.995 0.003 0.572 0.065 0.848 0.075 5.229 0.171 5.271 0.181
76 56840 IAcc LowMeanRedVarICnoDIP COR0 0.98437 4 1 0.978 0.023 0.052 0.032 0.039 0.023 0.993 0.005 0.995 0.003 0.147 0.014 0.843 0.075 5.087 0.120 5.195 0.051
77 56840 IAcc LowMeanRedVarICnoDIP COR100 0.98437 4 0 0.981 0.019 0.045 0.027 0.045 0.027 0.994 0.004 0.995 0.004 0.993 0.079 0.846 0.077 5.164 0.062 5.191 0.057
78 56840 IAcc LowMeanRedVarICnoDIP COR50 0.98437 4 0.5 0.981 0.020 0.047 0.028 0.043 0.024 0.994 0.004 0.995 0.004 0.569 0.065 0.845 0.076 5.151 0.068 5.193 0.056
79 56840 IAcc RedVarIC DIP COR0 0.98437 Adjust(4;0.1;1) 1 0.978 0.023 0.051 0.032 0.036 0.024 0.993 0.006 0.995 0.003 0.135 0.013 0.845 0.076 5.134 0.152 5.258 0.132
80 56840 IAcc RedVarIC DIP COR100 0.98437 Adjust(4;0.1;1) 0 0.982 0.019 0.043 0.026 0.043 0.026 0.994 0.004 0.995 0.003 0.982 0.078 0.847 0.075 5.250 0.184 5.278 0.192
81 56840 IAcc RedVarIC DIP COR50 0.98437 Adjust(4;0.1;1)0.5 0.981 0.020 0.044 0.027 0.042 0.025 0.994 0.004 0.995 0.003 0.559 0.067 0.848 0.075 5.237 0.179 5.280 0.190
82 56840 IAcc RedVarIC noDIP COR0 0.98437 4 1 0.978 0.022 0.053 0.033 0.038 0.024 0.992 0.006 0.995 0.003 0.135 0.013 0.843 0.077 5.071 0.137 5.195 0.054
83 56840 IAcc RedVarIC noDIP COR100 0.98437 4 0 0.981 0.019 0.045 0.028 0.045 0.028 0.994 0.004 0.995 0.004 0.981 0.078 0.845 0.076 5.163 0.062 5.191 0.057
84 56840 IAcc RedVarIC noDIP COR50 0.98437 4 0.5 0.980 0.021 0.047 0.029 0.044 0.026 0.994 0.005 0.995 0.003 0.558 0.067 0.846 0.075 5.147 0.076 5.194 0.057
1 2326 Acc GfitIC DIP COR0 0.7407 Adjust(0;0.1;1) 1 0.547 0.210 0.062 0.024 0.055 0.026 0.809 0.175 0.986 0.005 0.104 0.052 0.085 0.039 0.917 0.318 1.130 0.313
2 2326 Acc GfitIC DIP COR100 0.7407 Adjust(0;0.1;1) 0 0.550 0.209 0.061 0.024 0.058 0.025 0.813 0.168 0.985 0.005 0.191 0.066 0.087 0.041 0.942 0.348 1.124 0.312
3 2326 Acc GfitIC DIP COR50 0.7407 Adjust(0;0.1;1)0.5 0.546 0.212 0.061 0.024 0.057 0.025 0.809 0.175 0.986 0.005 0.151 0.060 0.085 0.039 0.916 0.314 1.115 0.273
4 2326 Acc GfitIC noDIP COR0 0.7407 0 1 0.519 0.209 0.065 0.028 0.061 0.030 0.786 0.203 0.985 0.006 0.104 0.052 0.076 0.029 0.787 0.203 0.985 0.006
5 2326 Acc GfitIC noDIP COR100 0.7407 0 0 0.519 0.209 0.065 0.028 0.061 0.030 0.786 0.203 0.985 0.006 0.179 0.063 0.076 0.029 0.787 0.203 0.985 0.006
6 2326 Acc GfitIC noDIP COR50 0.7407 0 0.5 0.519 0.209 0.065 0.028 0.061 0.030 0.786 0.203 0.985 0.006 0.145 0.060 0.076 0.029 0.787 0.203 0.985 0.006
7 2326 Acc HighMeanICDIP COR0 0.7407 Adjust(0;0.1;1) 1 0.534 0.210 0.059 0.023 0.054 0.026 0.802 0.177 0.986 0.005 0.099 0.053 0.082 0.040 0.891 0.316 1.110 0.309
8 2326 Acc HighMeanICDIP COR100 0.7407 Adjust(0;0.1;1) 0 0.537 0.209 0.059 0.023 0.056 0.025 0.802 0.177 0.986 0.005 0.183 0.067 0.084 0.042 0.909 0.345 1.105 0.303
9 2326 Acc HighMeanICDIP COR50 0.7407 Adjust(0;0.1;1)0.5 0.533 0.211 0.059 0.023 0.055 0.025 0.802 0.177 0.986 0.005 0.145 0.060 0.082 0.040 0.891 0.312 1.094 0.269
10 2326 Acc HighMeanICnoDIP COR0 0.7407 0 1 0.510 0.213 0.063 0.028 0.059 0.030 0.774 0.214 0.985 0.006 0.099 0.053 0.074 0.030 0.775 0.214 0.986 0.006
11 2326 Acc HighMeanICnoDIP COR100 0.7407 0 0 0.510 0.213 0.063 0.028 0.059 0.030 0.774 0.214 0.985 0.006 0.173 0.065 0.074 0.030 0.775 0.214 0.986 0.006
12 2326 Acc HighMeanICnoDIP COR50 0.7407 0 0.5 0.510 0.213 0.063 0.028 0.059 0.030 0.774 0.214 0.985 0.006 0.140 0.060 0.074 0.030 0.775 0.214 0.986 0.006
13 2326 Acc HighMeanRedVarICDIP COR0 0.7407 Adjust(0;0.1;1) 1 0.619 0.214 0.071 0.027 0.068 0.027 0.884 0.083 0.983 0.006 0.088 0.010 0.095 0.038 0.986 0.202 1.092 0.224
14 2326 Acc HighMeanRedVarICDIP COR100 0.7407 Adjust(0;0.1;1) 0 0.619 0.214 0.071 0.027 0.069 0.028 0.884 0.083 0.983 0.006 0.183 0.039 0.095 0.038 0.986 0.202 1.089 0.218
15 2326 Acc HighMeanRedVarICDIP COR50 0.7407 Adjust(0;0.1;1)0.5 0.619 0.214 0.071 0.027 0.069 0.028 0.884 0.083 0.983 0.006 0.142 0.028 0.095 0.038 0.986 0.202 1.090 0.221
16 2326 Acc HighMeanRedVarICnoDIP COR0 0.7407 0 1 0.598 0.214 0.075 0.029 0.073 0.029 0.878 0.088 0.982 0.006 0.088 0.010 0.088 0.029 0.879 0.088 0.983 0.006
17 2326 Acc HighMeanRedVarICnoDIP COR100 0.7407 0 0 0.598 0.214 0.075 0.029 0.073 0.029 0.878 0.088 0.982 0.006 0.176 0.031 0.088 0.029 0.879 0.088 0.983 0.006
18 2326 Acc HighMeanRedVarICnoDIP COR50 0.7407 0 0.5 0.598 0.214 0.075 0.029 0.073 0.029 0.878 0.088 0.982 0.006 0.138 0.025 0.088 0.029 0.879 0.088 0.983 0.006
19 2326 Acc HistIC DIP COR0 0.7407 Adjust(0;0.1;1) 1 0.580 0.228 0.060 0.024 0.056 0.023 0.836 0.167 0.985 0.005 0.106 0.000 0.095 0.042 1.066 0.468 1.277 0.449
20 2326 Acc HistIC DIP COR100 0.7407 Adjust(0;0.1;1) 0 0.581 0.227 0.060 0.023 0.059 0.023 0.839 0.167 0.985 0.005 0.202 0.042 0.096 0.042 1.078 0.454 1.241 0.376
21 2326 Acc HistIC DIP COR50 0.7407 Adjust(0;0.1;1)0.5 0.581 0.227 0.060 0.023 0.059 0.023 0.839 0.167 0.985 0.005 0.158 0.031 0.096 0.043 1.083 0.467 1.249 0.401
22 2326 Acc HistIC noDIP COR0 0.7407 0 1 0.534 0.227 0.066 0.028 0.065 0.028 0.798 0.189 0.983 0.006 0.106 0.000 0.081 0.028 0.799 0.189 0.984 0.006
23 2326 Acc HistIC noDIP COR100 0.7407 0 0 0.534 0.227 0.066 0.028 0.065 0.028 0.798 0.189 0.983 0.006 0.187 0.028 0.081 0.028 0.799 0.189 0.984 0.006
24 2326 Acc HistIC noDIP COR50 0.7407 0 0.5 0.534 0.227 0.066 0.028 0.065 0.028 0.798 0.189 0.983 0.006 0.150 0.023 0.081 0.028 0.799 0.189 0.984 0.006
25 2326 Acc LowMeanICDIP COR0 0.7407 Adjust(0;0.1;1) 1 0.554 0.207 0.062 0.023 0.057 0.025 0.820 0.167 0.986 0.005 0.108 0.055 0.086 0.037 0.943 0.334 1.141 0.331
26 2326 Acc LowMeanICDIP COR100 0.7407 Adjust(0;0.1;1) 0 0.559 0.205 0.063 0.024 0.060 0.024 0.824 0.162 0.985 0.005 0.196 0.069 0.088 0.040 0.967 0.369 1.135 0.336
27 2326 Acc LowMeanICDIP COR50 0.7407 Adjust(0;0.1;1)0.5 0.554 0.208 0.063 0.024 0.059 0.024 0.824 0.162 0.985 0.005 0.155 0.062 0.086 0.037 0.946 0.320 1.121 0.288
28 2326 Acc LowMeanICnoDIP COR0 0.7407 0 1 0.530 0.214 0.066 0.027 0.062 0.029 0.800 0.196 0.984 0.006 0.108 0.055 0.078 0.029 0.801 0.196 0.985 0.006
29 2326 Acc LowMeanICnoDIP COR100 0.7407 0 0 0.530 0.214 0.066 0.027 0.062 0.029 0.800 0.196 0.984 0.006 0.185 0.068 0.078 0.029 0.801 0.196 0.985 0.006
30 2326 Acc LowMeanICnoDIP COR50 0.7407 0 0.5 0.530 0.214 0.066 0.027 0.062 0.029 0.800 0.196 0.984 0.006 0.151 0.063 0.078 0.029 0.801 0.196 0.985 0.006
31 2326 Acc LowMeanRedVarICDIP COR0 0.7407 Adjust(0;0.1;1) 1 0.614 0.214 0.072 0.027 0.069 0.027 0.897 0.076 0.983 0.005 0.098 0.012 0.094 0.034 0.986 0.154 1.087 0.203
32 2326 Acc LowMeanRedVarICDIP COR100 0.7407 Adjust(0;0.1;1) 0 0.615 0.213 0.072 0.027 0.071 0.028 0.897 0.076 0.983 0.006 0.192 0.034 0.094 0.034 0.988 0.154 1.085 0.201
33 2326 Acc LowMeanRedVarICDIP COR50 0.7407 Adjust(0;0.1;1)0.5 0.614 0.214 0.072 0.027 0.070 0.027 0.897 0.076 0.983 0.005 0.150 0.025 0.094 0.034 0.987 0.154 1.085 0.201
34 2326 Acc LowMeanRedVarICnoDIP COR0 0.7407 0 1 0.593 0.219 0.074 0.029 0.072 0.029 0.893 0.083 0.982 0.006 0.098 0.012 0.088 0.029 0.893 0.083 0.983 0.006
35 2326 Acc LowMeanRedVarICnoDIP COR100 0.7407 0 0 0.593 0.219 0.074 0.029 0.072 0.029 0.893 0.083 0.982 0.006 0.185 0.030 0.088 0.029 0.893 0.083 0.983 0.006
36 2326 Acc LowMeanRedVarICnoDIP COR50 0.7407 0 0.5 0.593 0.219 0.074 0.029 0.072 0.029 0.893 0.083 0.982 0.006 0.147 0.025 0.088 0.029 0.893 0.083 0.983 0.006
37 2326 Acc RedVarIC DIP COR0 0.7407 Adjust(0;0.1;1) 1 0.614 0.218 0.070 0.027 0.068 0.027 0.891 0.077 0.983 0.006 0.092 0.010 0.093 0.035 0.991 0.187 1.094 0.234
38 2326 Acc RedVarIC DIP COR100 0.7407 Adjust(0;0.1;1) 0 0.614 0.218 0.070 0.027 0.069 0.028 0.891 0.077 0.983 0.006 0.185 0.036 0.093 0.035 0.991 0.187 1.093 0.234
39 2326 Acc RedVarIC DIP COR50 0.7407 Adjust(0;0.1;1)0.5 0.614 0.218 0.070 0.027 0.069 0.028 0.891 0.077 0.983 0.006 0.143 0.027 0.093 0.035 0.991 0.187 1.093 0.234
40 2326 Acc RedVarIC noDIP COR0 0.7407 0 1 0.589 0.224 0.073 0.028 0.072 0.029 0.888 0.078 0.982 0.006 0.092 0.010 0.087 0.029 0.889 0.078 0.983 0.006
41 2326 Acc RedVarIC noDIP COR100 0.7407 0 0 0.589 0.224 0.073 0.028 0.072 0.029 0.888 0.078 0.982 0.006 0.178 0.032 0.087 0.029 0.889 0.078 0.983 0.006
42 2326 Acc RedVarIC noDIP COR50 0.7407 0 0.5 0.589 0.224 0.073 0.028 0.072 0.029 0.888 0.078 0.982 0.006 0.140 0.026 0.087 0.029 0.889 0.078 0.983 0.006
43 2326 IAcc GfitIC DIP COR0 0.87035 Adjust(0;0.1;1) 1 0.581 0.211 0.071 0.031 0.069 0.032 0.868 0.182 0.983 0.007 0.104 0.052 0.089 0.033 0.912 0.224 1.027 0.135
44 2326 IAcc GfitIC DIP COR100 0.87035 Adjust(0;0.1;1) 0 0.581 0.211 0.071 0.031 0.069 0.032 0.868 0.182 0.983 0.007 0.193 0.064 0.089 0.033 0.912 0.224 1.027 0.135
45 2326 IAcc GfitIC DIP COR50 0.87035 Adjust(0;0.1;1)0.5 0.581 0.211 0.071 0.031 0.069 0.032 0.868 0.182 0.983 0.007 0.153 0.058 0.089 0.033 0.912 0.224 1.027 0.135
46 2326 IAcc GfitIC noDIP COR0 0.87035 0 1 0.575 0.211 0.073 0.031 0.071 0.032 0.867 0.182 0.983 0.007 0.104 0.052 0.086 0.032 0.868 0.182 0.984 0.006
47 2326 IAcc GfitIC noDIP COR100 0.87035 0 0 0.575 0.211 0.073 0.031 0.071 0.032 0.867 0.182 0.983 0.007 0.189 0.064 0.086 0.032 0.868 0.182 0.984 0.006
48 2326 IAcc GfitIC noDIP COR50 0.87035 0 0.5 0.575 0.211 0.073 0.031 0.071 0.032 0.867 0.182 0.983 0.007 0.151 0.059 0.086 0.032 0.868 0.182 0.984 0.006
49 2326 IAcc HighMeanICDIP COR0 0.87035 Adjust(0;0.1;1) 1 0.581 0.211 0.071 0.032 0.068 0.034 0.861 0.192 0.983 0.007 0.099 0.053 0.088 0.034 0.899 0.225 1.021 0.122
50 2326 IAcc HighMeanICDIP COR100 0.87035 Adjust(0;0.1;1) 0 0.581 0.211 0.071 0.032 0.068 0.034 0.861 0.192 0.983 0.007 0.187 0.066 0.088 0.034 0.899 0.225 1.021 0.122
51 2326 IAcc HighMeanICDIP COR50 0.87035 Adjust(0;0.1;1)0.5 0.581 0.211 0.071 0.032 0.068 0.034 0.861 0.192 0.983 0.007 0.147 0.061 0.088 0.034 0.899 0.225 1.021 0.122
52 2326 IAcc HighMeanICnoDIP COR0 0.87035 0 1 0.575 0.211 0.073 0.031 0.070 0.033 0.861 0.192 0.983 0.007 0.099 0.053 0.085 0.033 0.862 0.192 0.984 0.006
53 2326 IAcc HighMeanICnoDIP COR100 0.87035 0 0 0.575 0.211 0.073 0.031 0.070 0.033 0.861 0.192 0.983 0.007 0.184 0.066 0.085 0.033 0.862 0.192 0.984 0.006
54 2326 IAcc HighMeanICnoDIP COR50 0.87035 0 0.5 0.575 0.211 0.073 0.031 0.070 0.033 0.861 0.192 0.983 0.007 0.145 0.060 0.085 0.033 0.862 0.192 0.984 0.006
55 2326 IAcc HighMeanRedVarICDIP COR0 0.87035 Adjust(0;0.1;1) 1 0.639 0.215 0.078 0.031 0.077 0.031 0.933 0.064 0.981 0.006 0.088 0.010 0.097 0.037 0.988 0.158 1.037 0.177
56 2326 IAcc HighMeanRedVarICDIP COR100 0.87035 Adjust(0;0.1;1) 0 0.639 0.215 0.078 0.031 0.077 0.031 0.933 0.064 0.981 0.006 0.185 0.038 0.097 0.037 0.988 0.158 1.037 0.177
57 2326 IAcc HighMeanRedVarICDIP COR50 0.87035 Adjust(0;0.1;1)0.5 0.639 0.215 0.078 0.031 0.077 0.031 0.933 0.064 0.981 0.006 0.142 0.029 0.097 0.037 0.988 0.158 1.037 0.177
58 2326 IAcc HighMeanRedVarICnoDIP COR0 0.87035 0 1 0.628 0.212 0.079 0.031 0.079 0.031 0.933 0.064 0.981 0.006 0.088 0.010 0.094 0.031 0.934 0.064 0.982 0.006
59 2326 IAcc HighMeanRedVarICnoDIP COR100 0.87035 0 0 0.628 0.212 0.079 0.031 0.079 0.031 0.933 0.064 0.981 0.006 0.182 0.033 0.094 0.031 0.934 0.064 0.982 0.006
60 2326 IAcc HighMeanRedVarICnoDIP COR50 0.87035 0 0.5 0.628 0.212 0.079 0.031 0.079 0.031 0.933 0.064 0.981 0.006 0.140 0.026 0.094 0.031 0.934 0.064 0.982 0.006
61 2326 IAcc HistIC DIP COR0 0.87035 Adjust(0;0.1;1) 1 0.608 0.217 0.071 0.031 0.069 0.031 0.892 0.158 0.983 0.006 0.106 0.000 0.099 0.045 1.062 0.486 1.170 0.448
62 2326 IAcc HistIC DIP COR100 0.87035 Adjust(0;0.1;1) 0 0.608 0.217 0.070 0.031 0.070 0.030 0.893 0.158 0.983 0.006 0.205 0.046 0.099 0.046 1.070 0.490 1.166 0.446
63 2326 IAcc HistIC DIP COR50 0.87035 Adjust(0;0.1;1)0.5 0.608 0.217 0.070 0.031 0.070 0.030 0.893 0.158 0.983 0.006 0.162 0.033 0.099 0.046 1.070 0.490 1.166 0.446
64 2326 IAcc HistIC noDIP COR0 0.87035 0 1 0.585 0.217 0.075 0.033 0.075 0.034 0.881 0.170 0.982 0.007 0.106 0.000 0.090 0.034 0.882 0.170 0.983 0.007
65 2326 IAcc HistIC noDIP COR100 0.87035 0 0 0.585 0.217 0.075 0.033 0.075 0.034 0.881 0.170 0.982 0.007 0.196 0.034 0.090 0.034 0.882 0.170 0.983 0.007
66 2326 IAcc HistIC noDIP COR50 0.87035 0 0.5 0.585 0.217 0.075 0.033 0.075 0.034 0.881 0.170 0.982 0.007 0.157 0.027 0.090 0.034 0.882 0.170 0.983 0.007
67 2326 IAcc LowMeanICDIP COR0 0.87035 Adjust(0;0.1;1) 1 0.586 0.213 0.072 0.031 0.069 0.033 0.875 0.174 0.983 0.007 0.108 0.055 0.090 0.033 0.918 0.216 1.035 0.156
68 2326 IAcc LowMeanICDIP COR100 0.87035 Adjust(0;0.1;1) 0 0.586 0.213 0.072 0.031 0.070 0.032 0.875 0.174 0.983 0.007 0.198 0.066 0.090 0.033 0.924 0.218 1.031 0.148
69 2326 IAcc LowMeanICDIP COR50 0.87035 Adjust(0;0.1;1)0.5 0.586 0.213 0.072 0.031 0.070 0.032 0.875 0.174 0.983 0.007 0.158 0.061 0.090 0.033 0.923 0.217 1.031 0.146
70 2326 IAcc LowMeanICnoDIP COR0 0.87035 0 1 0.577 0.222 0.073 0.032 0.070 0.033 0.866 0.189 0.983 0.007 0.108 0.055 0.085 0.033 0.867 0.189 0.984 0.007
71 2326 IAcc LowMeanICnoDIP COR100 0.87035 0 0 0.577 0.222 0.073 0.032 0.070 0.033 0.866 0.189 0.983 0.007 0.193 0.068 0.085 0.033 0.867 0.189 0.984 0.007
72 2326 IAcc LowMeanICnoDIP COR50 0.87035 0 0.5 0.577 0.222 0.073 0.032 0.070 0.033 0.866 0.189 0.983 0.007 0.155 0.062 0.085 0.033 0.867 0.189 0.984 0.007
73 2326 IAcc LowMeanRedVarICDIP COR0 0.87035 Adjust(0;0.1;1) 1 0.639 0.208 0.078 0.030 0.077 0.030 0.941 0.065 0.981 0.006 0.098 0.012 0.096 0.033 0.992 0.127 1.039 0.181
74 2326 IAcc LowMeanRedVarICDIP COR100 0.87035 Adjust(0;0.1;1) 0 0.639 0.208 0.078 0.030 0.077 0.030 0.941 0.065 0.981 0.006 0.194 0.033 0.096 0.033 0.992 0.127 1.039 0.181
75 2326 IAcc LowMeanRedVarICDIP COR50 0.87035 Adjust(0;0.1;1)0.5 0.639 0.208 0.078 0.030 0.077 0.030 0.941 0.065 0.981 0.006 0.151 0.027 0.096 0.033 0.992 0.127 1.039 0.181
76 2326 IAcc LowMeanRedVarICnoDIP COR0 0.87035 0 1 0.629 0.205 0.080 0.031 0.079 0.031 0.940 0.066 0.981 0.007 0.098 0.012 0.094 0.031 0.941 0.066 0.982 0.006
77 2326 IAcc LowMeanRedVarICnoDIP COR100 0.87035 0 0 0.629 0.205 0.080 0.031 0.079 0.031 0.940 0.066 0.981 0.007 0.192 0.032 0.094 0.031 0.941 0.066 0.982 0.006
78 2326 IAcc LowMeanRedVarICnoDIP COR50 0.87035 0 0.5 0.629 0.205 0.080 0.031 0.079 0.031 0.940 0.066 0.981 0.007 0.150 0.026 0.094 0.031 0.941 0.066 0.982 0.006
79 2326 IAcc RedVarIC DIP COR0 0.87035 Adjust(0;0.1;1) 1 0.639 0.215 0.078 0.030 0.076 0.030 0.941 0.054 0.981 0.006 0.092 0.010 0.097 0.037 1.002 0.174 1.043 0.191
80 2326 IAcc RedVarIC DIP COR100 0.87035 Adjust(0;0.1;1) 0 0.639 0.215 0.078 0.030 0.076 0.030 0.941 0.054 0.981 0.006 0.188 0.039 0.097 0.037 1.002 0.174 1.043 0.191
81 2326 IAcc RedVarIC DIP COR50 0.87035 Adjust(0;0.1;1)0.5 0.639 0.215 0.078 0.030 0.076 0.030 0.941 0.054 0.981 0.006 0.145 0.029 0.097 0.037 1.002 0.174 1.043 0.191
82 2326 IAcc RedVarIC noDIP COR0 0.87035 0 1 0.627 0.212 0.079 0.031 0.078 0.031 0.940 0.054 0.981 0.007 0.092 0.010 0.093 0.031 0.941 0.054 0.982 0.006
83 2326 IAcc RedVarIC noDIP COR100 0.87035 0 0 0.627 0.212 0.079 0.031 0.078 0.031 0.940 0.054 0.981 0.007 0.185 0.034 0.093 0.031 0.941 0.054 0.982 0.006
84 2326 IAcc RedVarIC noDIP COR50 0.87035 0 0.5 0.627 0.212 0.079 0.031 0.078 0.031 0.940 0.054 0.981 0.007 0.143 0.027 0.093 0.031 0.941 0.054 0.982 0.006
1 64040 Acc GfitIC DIP COR0 0.94792 Adjust(16;0.1;1) 1 0.987 0.049 0.016 0.027 0.002 0.005 0.987 0.046 1.000 0.001 0.145 0.053 0.454 0.031 29.903 2.625 35.196 2.363
2 64040 Acc GfitIC DIP COR100 0.94792 Adjust(16;0.1;1) 0 1.000 0.000 0.001 0.003 0.001 0.003 1.000 0.000 1.000 0.000 0.606 0.056 0.461 0.018 31.555 0.581 32.394 0.567
3 64040 Acc GfitIC DIP COR50 0.94792 Adjust(16;0.1;1)0.5 1.000 0.001 0.002 0.006 0.000 0.002 1.000 0.000 1.000 0.000 0.374 0.047 0.461 0.018 31.404 0.671 33.175 0.732
4 64040 Acc GfitIC noDIP COR0 0.94792 16 1 0.941 0.086 0.042 0.033 0.009 0.010 0.941 0.084 0.999 0.002 0.145 0.053 0.427 0.049 25.289 2.888 30.399 1.041
5 64040 Acc GfitIC noDIP COR100 0.94792 16 0 1.000 0.000 0.000 0.002 0.000 0.002 1.000 0.000 1.000 0.000 0.605 0.057 0.460 0.018 29.627 0.432 30.497 0.373
6 64040 Acc GfitIC noDIP COR50 0.94792 16 0.5 0.998 0.008 0.005 0.010 0.002 0.005 0.998 0.008 1.000 0.000 0.373 0.047 0.459 0.018 28.836 0.638 30.647 0.351
7 64040 Acc HighMeanICDIP COR0 0.94792 Adjust(16;0.1;1) 1 0.983 0.058 0.018 0.024 0.003 0.006 0.983 0.055 1.000 0.001 0.132 0.050 0.452 0.034 29.818 2.742 35.439 2.551
8 64040 Acc HighMeanICDIP COR100 0.94792 Adjust(16;0.1;1) 0 1.000 0.000 0.000 0.002 0.000 0.002 1.000 0.000 1.000 0.000 0.593 0.055 0.461 0.018 31.562 0.529 32.418 0.531
9 64040 Acc HighMeanICDIP COR50 0.94792 Adjust(16;0.1;1)0.5 1.000 0.000 0.001 0.004 0.000 0.000 1.000 0.000 1.000 0.000 0.362 0.045 0.462 0.018 31.299 0.586 33.152 0.666
10 64040 Acc HighMeanICnoDIP COR0 0.94792 16 1 0.934 0.086 0.050 0.037 0.012 0.010 0.934 0.085 0.998 0.002 0.132 0.050 0.423 0.047 25.014 2.837 30.405 1.027
11 64040 Acc HighMeanICnoDIP COR100 0.94792 16 0 1.000 0.000 0.001 0.004 0.001 0.004 1.000 0.000 1.000 0.000 0.592 0.055 0.460 0.018 29.607 0.421 30.487 0.357
12 64040 Acc HighMeanICnoDIP COR50 0.94792 16 0.5 0.997 0.011 0.006 0.011 0.003 0.006 0.997 0.011 1.000 0.001 0.360 0.045 0.458 0.017 28.745 0.693 30.622 0.377
13 64040 Acc HighMeanRedVarICDIP COR0 0.94792 Adjust(16;0.1;1) 1 1.000 0.000 0.004 0.009 0.000 0.002 1.000 0.001 1.000 0.001 0.125 0.012 0.459 0.018 30.673 0.613 34.050 0.682
14 64040 Acc HighMeanRedVarICDIP COR100 0.94792 Adjust(16;0.1;1) 0 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 1.000 0.000 0.586 0.022 0.461 0.017 31.537 0.484 32.402 0.493
15 64040 Acc HighMeanRedVarICDIP COR50 0.94792 Adjust(16;0.1;1)0.5 1.000 0.000 0.001 0.004 0.000 0.002 1.000 0.000 1.000 0.000 0.354 0.039 0.460 0.019 31.150 0.585 32.957 0.645
16 64040 Acc HighMeanRedVarICnoDIP COR0 0.94792 16 1 0.999 0.002 0.015 0.018 0.002 0.005 0.999 0.002 1.000 0.001 0.125 0.012 0.455 0.018 27.729 0.749 31.099 0.429
17 64040 Acc HighMeanRedVarICnoDIP COR100 0.94792 16 0 1.000 0.000 0.001 0.003 0.001 0.003 1.000 0.000 1.000 0.000 0.586 0.022 0.461 0.018 29.617 0.447 30.503 0.369
18 64040 Acc HighMeanRedVarICnoDIP COR50 0.94792 16 0.5 1.000 0.001 0.005 0.008 0.003 0.006 1.000 0.001 1.000 0.000 0.353 0.038 0.458 0.018 28.863 0.620 30.723 0.368
19 64040 Acc HistIC DIP COR0 0.94792 Adjust(16;0.1;1) 1 0.966 0.043 0.030 0.022 0.008 0.008 0.965 0.043 0.998 0.002 0.121 0.000 0.441 0.027 28.025 1.264 33.513 0.737
20 64040 Acc HistIC DIP COR100 0.94792 Adjust(16;0.1;1) 0 1.000 0.000 0.001 0.003 0.001 0.003 1.000 0.000 1.000 0.000 0.583 0.018 0.461 0.018 31.606 0.590 32.470 0.593
21 64040 Acc HistIC DIP COR50 0.94792 Adjust(16;0.1;1)0.5 1.000 0.001 0.002 0.006 0.002 0.005 1.000 0.001 1.000 0.000 0.351 0.042 0.462 0.018 31.220 0.808 33.220 0.768
22 64040 Acc HistIC noDIP COR0 0.94792 16 1 0.958 0.043 0.046 0.026 0.012 0.009 0.957 0.043 0.998 0.002 0.121 0.000 0.433 0.024 25.299 1.463 30.773 0.718
23 64040 Acc HistIC noDIP COR100 0.94792 16 0 1.000 0.000 0.001 0.003 0.001 0.003 1.000 0.000 1.000 0.000 0.582 0.018 0.461 0.018 29.557 0.374 30.452 0.326
24 64040 Acc HistIC noDIP COR50 0.94792 16 0.5 0.996 0.017 0.005 0.009 0.003 0.006 0.996 0.016 1.000 0.001 0.349 0.043 0.458 0.020 28.549 0.919 30.585 0.443
25 64040 Acc LowMeanICDIP COR0 0.94792 Adjust(16;0.1;1) 1 0.991 0.037 0.013 0.024 0.002 0.005 0.990 0.038 1.000 0.001 0.156 0.057 0.457 0.026 30.222 2.413 35.143 2.187
26 64040 Acc LowMeanICDIP COR100 0.94792 Adjust(16;0.1;1) 0 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 1.000 0.000 0.616 0.061 0.460 0.018 31.554 0.532 32.400 0.546
27 64040 Acc LowMeanICDIP COR50 0.94792 Adjust(16;0.1;1)0.5 1.000 0.001 0.001 0.004 0.000 0.002 1.000 0.000 1.000 0.000 0.385 0.049 0.460 0.018 31.377 0.669 33.130 0.731
28 64040 Acc LowMeanICnoDIP COR0 0.94792 16 1 0.950 0.081 0.036 0.033 0.009 0.010 0.949 0.081 0.999 0.002 0.156 0.057 0.432 0.045 25.688 2.906 30.476 1.114
29 64040 Acc LowMeanICnoDIP COR100 0.94792 16 0 1.000 0.000 0.001 0.004 0.001 0.004 1.000 0.000 1.000 0.000 0.616 0.062 0.461 0.019 29.702 0.461 30.571 0.422
30 64040 Acc LowMeanICnoDIP COR50 0.94792 16 0.5 0.999 0.003 0.005 0.008 0.002 0.006 0.999 0.004 1.000 0.000 0.385 0.050 0.460 0.018 28.857 0.603 30.637 0.425
31 64040 Acc LowMeanRedVarICDIP COR0 0.94792 Adjust(16;0.1;1) 1 1.000 0.000 0.003 0.007 0.000 0.000 1.000 0.001 1.000 0.000 0.147 0.014 0.459 0.017 30.780 0.557 33.747 0.524
32 64040 Acc LowMeanRedVarICDIP COR100 0.94792 Adjust(16;0.1;1) 0 1.000 0.000 0.000 0.002 0.000 0.002 1.000 0.000 1.000 0.000 0.608 0.023 0.461 0.018 31.478 0.481 32.328 0.493
33 64040 Acc LowMeanRedVarICDIP COR50 0.94792 Adjust(16;0.1;1)0.5 1.000 0.000 0.001 0.004 0.000 0.002 1.000 0.000 1.000 0.000 0.377 0.038 0.461 0.018 31.292 0.627 32.937 0.640
34 64040 Acc LowMeanRedVarICnoDIP COR0 0.94792 16 1 0.999 0.001 0.010 0.011 0.001 0.003 0.999 0.001 1.000 0.000 0.147 0.014 0.458 0.017 28.133 0.681 31.099 0.426
35 64040 Acc LowMeanRedVarICnoDIP COR100 0.94792 16 0 1.000 0.000 0.001 0.003 0.001 0.003 1.000 0.000 1.000 0.000 0.607 0.023 0.460 0.018 29.685 0.422 30.550 0.411
36 64040 Acc LowMeanRedVarICnoDIP COR50 0.94792 16 0.5 1.000 0.001 0.004 0.007 0.002 0.005 1.000 0.001 1.000 0.000 0.376 0.037 0.459 0.019 29.101 0.625 30.763 0.406
37 64040 Acc RedVarIC DIP COR0 0.94792 Adjust(16;0.1;1) 1 1.000 0.000 0.003 0.008 0.001 0.003 1.000 0.001 1.000 0.000 0.135 0.013 0.459 0.018 30.635 0.551 33.755 0.611
38 64040 Acc RedVarIC DIP COR100 0.94792 Adjust(16;0.1;1) 0 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 1.000 0.000 0.597 0.022 0.461 0.018 31.536 0.474 32.377 0.501
39 64040 Acc RedVarIC DIP COR50 0.94792 Adjust(16;0.1;1)0.5 1.000 0.000 0.001 0.003 0.000 0.002 1.000 0.000 1.000 0.000 0.365 0.039 0.462 0.018 31.203 0.633 32.907 0.664
40 64040 Acc RedVarIC noDIP COR0 0.94792 16 1 0.999 0.002 0.011 0.015 0.001 0.004 0.999 0.001 1.000 0.000 0.135 0.013 0.457 0.017 27.980 0.730 31.100 0.345
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41 64040 Acc RedVarIC noDIP COR100 0.94792 16 0 1.000 0.000 0.001 0.003 0.001 0.003 1.000 0.000 1.000 0.000 0.595 0.023 0.460 0.019 29.634 0.412 30.509 0.378
42 64040 Acc RedVarIC noDIP COR50 0.94792 16 0.5 1.000 0.001 0.004 0.008 0.002 0.005 1.000 0.001 1.000 0.000 0.364 0.038 0.458 0.019 29.029 0.618 30.744 0.382
43 64040 IAcc GfitIC DIP COR0 0.97396 Adjust(16;0.1;1) 1 1.000 0.001 0.004 0.011 0.000 0.000 1.000 0.001 1.000 0.000 0.145 0.053 0.460 0.017 30.674 1.314 33.282 1.440
44 64040 IAcc GfitIC DIP COR100 0.97396 Adjust(16;0.1;1) 0 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 1.000 0.000 0.605 0.058 0.461 0.018 31.615 0.528 32.049 0.533
45 64040 IAcc GfitIC DIP COR50 0.97396 Adjust(16;0.1;1)0.5 1.000 0.000 0.001 0.003 0.000 0.002 1.000 0.000 1.000 0.000 0.375 0.047 0.461 0.017 31.413 0.615 32.299 0.643
46 64040 IAcc GfitIC noDIP COR0 0.97396 16 1 0.996 0.023 0.008 0.015 0.001 0.004 0.996 0.025 1.000 0.001 0.145 0.053 0.455 0.023 28.454 1.511 31.057 0.486
47 64040 IAcc GfitIC noDIP COR100 0.97396 16 0 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 1.000 0.000 0.604 0.057 0.459 0.017 30.352 0.441 30.795 0.374
48 64040 IAcc GfitIC noDIP COR50 0.97396 16 0.5 1.000 0.000 0.001 0.005 0.000 0.002 1.000 0.000 1.000 0.000 0.374 0.046 0.459 0.018 29.936 0.527 30.846 0.376
49 64040 IAcc HighMeanICDIP COR0 0.97396 Adjust(16;0.1;1) 1 1.000 0.002 0.004 0.013 0.000 0.000 1.000 0.001 1.000 0.000 0.132 0.050 0.460 0.018 30.716 1.273 33.529 1.488
50 64040 IAcc HighMeanICDIP COR100 0.97396 Adjust(16;0.1;1) 0 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 1.000 0.000 0.593 0.056 0.461 0.019 31.635 0.546 32.073 0.571
51 64040 IAcc HighMeanICDIP COR50 0.97396 Adjust(16;0.1;1)0.5 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 1.000 0.000 0.362 0.044 0.462 0.018 31.476 0.580 32.410 0.626
52 64040 IAcc HighMeanICnoDIP COR0 0.97396 16 1 0.994 0.030 0.014 0.022 0.001 0.003 0.994 0.031 1.000 0.000 0.132 0.050 0.456 0.024 28.208 1.546 31.012 0.462
53 64040 IAcc HighMeanICnoDIP COR100 0.97396 16 0 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 1.000 0.000 0.592 0.055 0.460 0.017 30.368 0.434 30.808 0.367
54 64040 IAcc HighMeanICnoDIP COR50 0.97396 16 0.5 1.000 0.000 0.001 0.003 0.000 0.000 1.000 0.000 1.000 0.000 0.362 0.045 0.460 0.017 29.896 0.519 30.860 0.372
55 64040 IAcc HighMeanRedVarICDIP COR0 0.97396 Adjust(16;0.1;1) 1 1.000 0.000 0.000 0.002 0.000 0.000 1.000 0.000 1.000 0.000 0.125 0.012 0.461 0.018 30.891 0.639 32.580 0.635
56 64040 IAcc HighMeanRedVarICDIP COR100 0.97396 Adjust(16;0.1;1) 0 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 1.000 0.000 0.586 0.022 0.461 0.018 31.522 0.581 31.956 0.586
57 64040 IAcc HighMeanRedVarICDIP COR50 0.97396 Adjust(16;0.1;1)0.5 1.000 0.000 0.000 0.002 0.000 0.000 1.000 0.000 1.000 0.000 0.355 0.039 0.460 0.018 31.264 0.552 32.173 0.562
58 64040 IAcc HighMeanRedVarICnoDIP COR0 0.97396 16 1 1.000 0.001 0.002 0.006 0.000 0.000 1.000 0.000 1.000 0.000 0.125 0.012 0.459 0.018 29.363 0.660 31.052 0.388
59 64040 IAcc HighMeanRedVarICnoDIP COR100 0.97396 16 0 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 1.000 0.000 0.585 0.023 0.460 0.018 30.350 0.446 30.797 0.377
60 64040 IAcc HighMeanRedVarICnoDIP COR50 0.97396 16 0.5 1.000 0.000 0.001 0.004 0.000 0.002 1.000 0.000 1.000 0.000 0.355 0.038 0.459 0.017 29.966 0.598 30.889 0.412
61 64040 IAcc HistIC DIP COR0 0.97396 Adjust(16;0.1;1) 1 0.999 0.003 0.010 0.016 0.001 0.004 0.999 0.002 1.000 0.000 0.121 0.000 0.459 0.017 29.706 0.810 32.564 0.560
62 64040 IAcc HistIC DIP COR100 0.97396 Adjust(16;0.1;1) 0 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 1.000 0.000 0.582 0.018 0.461 0.018 31.727 0.701 32.163 0.694
63 64040 IAcc HistIC DIP COR50 0.97396 Adjust(16;0.1;1)0.5 1.000 0.000 0.001 0.003 0.000 0.000 1.000 0.000 1.000 0.000 0.351 0.043 0.461 0.016 31.381 0.777 32.405 0.750
64 64040 IAcc HistIC noDIP COR0 0.97396 16 1 0.998 0.003 0.014 0.017 0.001 0.004 0.999 0.002 1.000 0.000 0.121 0.000 0.457 0.019 28.257 0.996 31.116 0.399
65 64040 IAcc HistIC noDIP COR100 0.97396 16 0 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 1.000 0.000 0.581 0.018 0.460 0.018 30.321 0.446 30.758 0.386
66 64040 IAcc HistIC noDIP COR50 0.97396 16 0.5 1.000 0.001 0.002 0.006 0.001 0.003 1.000 0.001 1.000 0.000 0.351 0.042 0.460 0.018 29.781 0.638 30.827 0.389
67 64040 IAcc LowMeanICDIP COR0 0.97396 Adjust(16;0.1;1) 1 1.000 0.001 0.002 0.009 0.000 0.000 1.000 0.001 1.000 0.000 0.156 0.057 0.460 0.018 30.754 1.258 33.175 1.334
68 64040 IAcc LowMeanICDIP COR100 0.97396 Adjust(16;0.1;1) 0 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 1.000 0.000 0.616 0.062 0.461 0.018 31.611 0.537 32.025 0.542
69 64040 IAcc LowMeanICDIP COR50 0.97396 Adjust(16;0.1;1)0.5 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 1.000 0.000 0.385 0.050 0.461 0.019 31.429 0.658 32.314 0.659
70 64040 IAcc LowMeanICnoDIP COR0 0.97396 16 1 0.997 0.017 0.007 0.016 0.001 0.004 0.997 0.018 1.000 0.001 0.156 0.057 0.458 0.021 28.633 1.284 31.052 0.421
71 64040 IAcc LowMeanICnoDIP COR100 0.97396 16 0 1.000 0.000 0.000 0.002 0.000 0.002 1.000 0.000 1.000 0.000 0.617 0.062 0.461 0.018 30.382 0.438 30.812 0.375
72 64040 IAcc LowMeanICnoDIP COR50 0.97396 16 0.5 1.000 0.000 0.001 0.005 0.000 0.002 1.000 0.000 1.000 0.000 0.385 0.049 0.460 0.018 29.950 0.555 30.858 0.381
73 64040 IAcc LowMeanRedVarICDIP COR0 0.97396 Adjust(16;0.1;1) 1 1.000 0.000 0.000 0.002 0.000 0.000 1.000 0.000 1.000 0.000 0.147 0.014 0.460 0.017 30.898 0.525 32.398 0.529
74 64040 IAcc LowMeanRedVarICDIP COR100 0.97396 Adjust(16;0.1;1) 0 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 1.000 0.000 0.608 0.024 0.461 0.018 31.464 0.492 31.884 0.501
75 64040 IAcc LowMeanRedVarICDIP COR50 0.97396 Adjust(16;0.1;1)0.5 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 1.000 0.000 0.376 0.038 0.460 0.018 31.287 0.573 32.104 0.589
76 64040 IAcc LowMeanRedVarICnoDIP COR0 0.97396 16 1 1.000 0.000 0.001 0.004 0.000 0.000 1.000 0.000 1.000 0.000 0.147 0.014 0.459 0.018 29.513 0.675 31.013 0.347
77 64040 IAcc LowMeanRedVarICnoDIP COR100 0.97396 16 0 1.000 0.000 0.000 0.002 0.000 0.002 1.000 0.000 1.000 0.000 0.607 0.023 0.460 0.018 30.336 0.458 30.765 0.432
78 64040 IAcc LowMeanRedVarICnoDIP COR50 0.97396 16 0.5 1.000 0.000 0.000 0.002 0.000 0.002 1.000 0.000 1.000 0.000 0.376 0.037 0.459 0.017 30.087 0.600 30.907 0.441
79 64040 IAcc RedVarIC DIP COR0 0.97396 Adjust(16;0.1;1) 1 1.000 0.000 0.000 0.002 0.000 0.000 1.000 0.000 1.000 0.000 0.135 0.013 0.460 0.018 30.861 0.518 32.448 0.517
80 64040 IAcc RedVarIC DIP COR100 0.97396 Adjust(16;0.1;1) 0 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 1.000 0.000 0.596 0.022 0.461 0.018 31.555 0.505 31.983 0.537
81 64040 IAcc RedVarIC DIP COR50 0.97396 Adjust(16;0.1;1)0.5 1.000 0.000 0.000 0.002 0.000 0.000 1.000 0.000 1.000 0.000 0.365 0.040 0.460 0.019 31.308 0.466 32.178 0.521
82 64040 IAcc RedVarIC noDIP COR0 0.97396 16 1 1.000 0.000 0.001 0.004 0.000 0.002 1.000 0.000 1.000 0.000 0.135 0.013 0.460 0.018 29.405 0.767 30.992 0.421
83 64040 IAcc RedVarIC noDIP COR100 0.97396 16 0 1.000 0.000 0.000 0.002 0.000 0.002 1.000 0.000 1.000 0.000 0.596 0.023 0.461 0.018 30.369 0.450 30.799 0.387
84 64040 IAcc RedVarIC noDIP COR50 0.97396 16 0.5 1.000 0.000 0.000 0.002 0.000 0.000 1.000 0.000 1.000 0.000 0.365 0.039 0.460 0.018 30.024 0.590 30.898 0.410
1 63795 Acc GfitIC DIP COR0 0.79794 Adjust(2;0.1;1) 1 0.831 0.125 0.126 0.046 0.035 0.023 0.859 0.118 0.994 0.004 0.339 0.150 0.392 0.069 4.127 1.352 6.622 1.657
2 63795 Acc GfitIC DIP COR100 0.79794 Adjust(2;0.1;1) 0 0.923 0.078 0.090 0.034 0.089 0.033 0.936 0.068 0.994 0.004 0.775 0.162 0.437 0.057 4.593 0.584 5.226 0.476
3 63795 Acc GfitIC DIP COR50 0.79794 Adjust(2;0.1;1)0.5 0.897 0.096 0.107 0.038 0.071 0.028 0.915 0.085 0.994 0.004 0.550 0.156 0.422 0.056 4.406 0.692 5.497 0.577
4 63795 Acc GfitIC noDIP COR0 0.79794 2 1 0.589 0.151 0.135 0.047 0.068 0.030 0.618 0.159 0.989 0.005 0.339 0.150 0.258 0.076 2.341 0.645 4.095 0.278
5 63795 Acc GfitIC noDIP COR100 0.79794 2 0 0.701 0.164 0.131 0.047 0.126 0.047 0.732 0.169 0.988 0.006 0.652 0.193 0.314 0.081 2.888 0.681 4.067 0.247
6 63795 Acc GfitIC noDIP COR50 0.79794 2 0.5 0.645 0.161 0.133 0.047 0.102 0.041 0.675 0.165 0.989 0.006 0.483 0.175 0.287 0.080 2.622 0.679 4.077 0.276
7 63795 Acc HighMeanICDIP COR0 0.79794 Adjust(2;0.1;1) 1 0.842 0.147 0.122 0.045 0.032 0.022 0.857 0.143 0.995 0.004 0.287 0.136 0.395 0.075 4.144 1.375 6.850 1.725
8 63795 Acc HighMeanICDIP COR100 0.79794 Adjust(2;0.1;1) 0 0.914 0.100 0.089 0.035 0.089 0.035 0.927 0.090 0.994 0.004 0.721 0.164 0.433 0.063 4.686 1.037 5.362 0.931
9 63795 Acc HighMeanICDIP COR50 0.79794 Adjust(2;0.1;1)0.5 0.893 0.116 0.103 0.039 0.070 0.028 0.902 0.106 0.995 0.004 0.496 0.149 0.421 0.062 4.432 1.079 5.635 0.996
10 63795 Acc HighMeanICnoDIP COR0 0.79794 2 1 0.581 0.163 0.136 0.050 0.060 0.025 0.589 0.161 0.989 0.005 0.287 0.136 0.254 0.080 2.213 0.648 4.102 0.310
11 63795 Acc HighMeanICnoDIP COR100 0.79794 2 0 0.688 0.166 0.129 0.047 0.123 0.047 0.702 0.164 0.988 0.005 0.594 0.186 0.306 0.083 2.761 0.672 3.982 0.237
12 63795 Acc HighMeanICnoDIP COR50 0.79794 2 0.5 0.644 0.171 0.129 0.047 0.097 0.038 0.655 0.168 0.989 0.005 0.434 0.163 0.286 0.084 2.537 0.691 4.021 0.291
13 63795 Acc HighMeanRedVarICDIP COR0 0.79794 Adjust(2;0.1;1) 1 0.933 0.041 0.112 0.038 0.047 0.023 0.956 0.028 0.993 0.004 0.280 0.018 0.437 0.044 4.256 0.222 4.988 0.226
14 63795 Acc HighMeanRedVarICDIP COR100 0.79794 Adjust(2;0.1;1) 0 0.939 0.043 0.101 0.031 0.100 0.030 0.960 0.028 0.992 0.005 0.723 0.050 0.442 0.043 4.389 0.233 4.844 0.233
15 63795 Acc HighMeanRedVarICDIP COR50 0.79794 Adjust(2;0.1;1)0.5 0.938 0.043 0.108 0.034 0.079 0.029 0.959 0.028 0.992 0.004 0.500 0.037 0.440 0.044 4.357 0.236 4.928 0.245
16 63795 Acc HighMeanRedVarICnoDIP COR0 0.79794 2 1 0.892 0.052 0.161 0.051 0.088 0.039 0.921 0.044 0.985 0.007 0.280 0.018 0.402 0.041 3.654 0.219 4.357 0.128
17 63795 Acc HighMeanRedVarICnoDIP COR100 0.79794 2 0 0.895 0.053 0.147 0.043 0.146 0.043 0.925 0.043 0.985 0.007 0.685 0.046 0.405 0.040 3.738 0.207 4.257 0.131
18 63795 Acc HighMeanRedVarICnoDIP COR50 0.79794 2 0.5 0.897 0.052 0.155 0.048 0.119 0.039 0.924 0.044 0.985 0.007 0.482 0.040 0.405 0.040 3.697 0.218 4.298 0.143
19 63795 Acc HistIC DIP COR0 0.79794 Adjust(2;0.1;1) 1 0.879 0.095 0.121 0.056 0.036 0.021 0.901 0.080 0.994 0.004 0.303 0.000 0.414 0.057 4.348 1.170 7.171 1.250
20 63795 Acc HistIC DIP COR100 0.79794 Adjust(2;0.1;1) 0 0.945 0.049 0.088 0.033 0.088 0.032 0.962 0.034 0.993 0.004 0.750 0.049 0.447 0.049 4.733 0.466 5.232 0.423
21 63795 Acc HistIC DIP COR50 0.79794 Adjust(2;0.1;1)0.5 0.925 0.068 0.108 0.045 0.072 0.028 0.939 0.056 0.993 0.004 0.518 0.044 0.435 0.048 4.520 0.700 5.582 0.615
22 63795 Acc HistIC noDIP COR0 0.79794 2 1 0.591 0.095 0.118 0.038 0.066 0.027 0.598 0.100 0.988 0.005 0.303 0.000 0.264 0.051 2.338 0.372 3.956 0.254
23 63795 Acc HistIC noDIP COR100 0.79794 2 0 0.681 0.140 0.118 0.043 0.117 0.042 0.692 0.149 0.987 0.006 0.611 0.065 0.308 0.065 2.777 0.611 3.965 0.243
24 63795 Acc HistIC noDIP COR50 0.79794 2 0.5 0.642 0.125 0.116 0.038 0.092 0.035 0.648 0.130 0.987 0.006 0.449 0.047 0.289 0.058 2.583 0.538 3.956 0.255
25 63795 Acc LowMeanICDIP COR0 0.79794 Adjust(2;0.1;1) 1 0.860 0.110 0.116 0.052 0.034 0.021 0.882 0.107 0.995 0.004 0.396 0.164 0.407 0.072 4.217 1.149 6.334 1.340
26 63795 Acc LowMeanICDIP COR100 0.79794 Adjust(2;0.1;1) 0 0.919 0.075 0.091 0.034 0.090 0.033 0.936 0.074 0.994 0.004 0.831 0.183 0.435 0.060 4.571 0.586 5.177 0.487
27 63795 Acc LowMeanICDIP COR50 0.79794 Adjust(2;0.1;1)0.5 0.904 0.084 0.104 0.040 0.071 0.031 0.918 0.081 0.994 0.004 0.610 0.169 0.428 0.059 4.357 0.610 5.392 0.544
28 63795 Acc LowMeanICnoDIP COR0 0.79794 2 1 0.633 0.135 0.137 0.049 0.066 0.029 0.652 0.139 0.988 0.005 0.396 0.164 0.280 0.067 2.499 0.597 4.114 0.256
29 63795 Acc LowMeanICnoDIP COR100 0.79794 2 0 0.731 0.139 0.128 0.043 0.124 0.043 0.754 0.146 0.989 0.006 0.726 0.198 0.330 0.074 2.983 0.616 4.038 0.224
30 63795 Acc LowMeanICnoDIP COR50 0.79794 2 0.5 0.687 0.137 0.131 0.049 0.097 0.038 0.708 0.142 0.989 0.006 0.552 0.187 0.308 0.072 2.770 0.618 4.072 0.227
31 63795 Acc LowMeanRedVarICDIP COR0 0.79794 Adjust(2;0.1;1) 1 0.947 0.030 0.109 0.036 0.064 0.028 0.968 0.018 0.991 0.005 0.393 0.017 0.445 0.051 4.313 0.154 4.833 0.210
32 63795 Acc LowMeanRedVarICDIP COR100 0.79794 Adjust(2;0.1;1) 0 0.948 0.031 0.103 0.040 0.103 0.040 0.970 0.018 0.991 0.005 0.838 0.049 0.444 0.048 4.365 0.156 4.737 0.181
33 63795 Acc LowMeanRedVarICDIP COR50 0.79794 Adjust(2;0.1;1)0.5 0.950 0.032 0.102 0.037 0.085 0.032 0.970 0.018 0.991 0.005 0.614 0.040 0.445 0.050 4.360 0.197 4.798 0.231
34 63795 Acc LowMeanRedVarICnoDIP COR0 0.79794 2 1 0.921 0.042 0.143 0.048 0.087 0.040 0.947 0.031 0.986 0.007 0.393 0.017 0.421 0.042 3.843 0.181 4.349 0.138
35 63795 Acc LowMeanRedVarICnoDIP COR100 0.79794 2 0 0.923 0.041 0.139 0.050 0.138 0.050 0.948 0.031 0.986 0.007 0.815 0.045 0.422 0.043 3.872 0.182 4.276 0.130
36 63795 Acc LowMeanRedVarICnoDIP COR50 0.79794 2 0.5 0.923 0.040 0.139 0.050 0.112 0.042 0.948 0.032 0.986 0.007 0.605 0.037 0.422 0.043 3.861 0.185 4.312 0.128
37 63795 Acc RedVarIC DIP COR0 0.79794 Adjust(2;0.1;1) 1 0.938 0.045 0.109 0.039 0.053 0.028 0.958 0.028 0.992 0.005 0.327 0.016 0.440 0.044 4.277 0.212 4.900 0.262
38 63795 Acc RedVarIC DIP COR100 0.79794 Adjust(2;0.1;1) 0 0.947 0.043 0.100 0.035 0.099 0.034 0.962 0.026 0.992 0.004 0.773 0.050 0.446 0.047 4.356 0.199 4.770 0.231
39 63795 Acc RedVarIC DIP COR50 0.79794 Adjust(2;0.1;1)0.5 0.946 0.042 0.104 0.038 0.080 0.036 0.962 0.025 0.992 0.005 0.549 0.035 0.446 0.046 4.332 0.221 4.837 0.253
40 63795 Acc RedVarIC noDIP COR0 0.79794 2 1 0.906 0.055 0.151 0.050 0.087 0.034 0.928 0.041 0.986 0.006 0.327 0.016 0.411 0.040 3.734 0.224 4.340 0.124
41 63795 Acc RedVarIC noDIP COR100 0.79794 2 0 0.909 0.055 0.144 0.050 0.144 0.049 0.934 0.039 0.986 0.007 0.740 0.041 0.413 0.038 3.778 0.225 4.239 0.135
42 63795 Acc RedVarIC noDIP COR50 0.79794 2 0.5 0.908 0.055 0.147 0.050 0.116 0.040 0.932 0.039 0.986 0.007 0.534 0.037 0.412 0.040 3.754 0.225 4.284 0.143
43 63795 IAcc GfitIC DIP COR0 0.89897 Adjust(2;0.1;1) 1 0.864 0.127 0.105 0.047 0.039 0.026 0.882 0.134 0.994 0.004 0.339 0.150 0.406 0.072 4.025 1.163 5.302 1.137
44 63795 IAcc GfitIC DIP COR100 0.89897 Adjust(2;0.1;1) 0 0.949 0.051 0.082 0.035 0.081 0.035 0.965 0.048 0.993 0.005 0.782 0.160 0.443 0.050 4.778 0.788 5.079 0.767
45 63795 IAcc GfitIC DIP COR50 0.89897 Adjust(2;0.1;1)0.5 0.924 0.088 0.091 0.040 0.069 0.030 0.940 0.088 0.994 0.004 0.553 0.156 0.433 0.056 4.538 0.961 5.100 0.825
46 63795 IAcc GfitIC noDIP COR0 0.89897 2 1 0.754 0.135 0.136 0.051 0.062 0.033 0.780 0.139 0.990 0.005 0.339 0.150 0.345 0.071 3.072 0.649 4.210 0.220
47 63795 IAcc GfitIC noDIP COR100 0.89897 2 0 0.850 0.131 0.118 0.045 0.116 0.045 0.875 0.125 0.989 0.006 0.729 0.179 0.391 0.069 3.616 0.556 4.159 0.192
48 63795 IAcc GfitIC noDIP COR50 0.89897 2 0.5 0.816 0.142 0.129 0.049 0.102 0.039 0.844 0.137 0.989 0.006 0.528 0.165 0.374 0.073 3.427 0.623 4.175 0.196
49 63795 IAcc HighMeanICDIP COR0 0.89897 Adjust(2;0.1;1) 1 0.862 0.144 0.117 0.050 0.043 0.030 0.880 0.143 0.993 0.005 0.287 0.136 0.399 0.072 4.145 1.215 5.587 1.256
50 63795 IAcc HighMeanICDIP COR100 0.89897 Adjust(2;0.1;1) 0 0.942 0.065 0.086 0.029 0.085 0.030 0.955 0.063 0.993 0.005 0.727 0.152 0.440 0.052 4.840 0.889 5.181 0.842
51 63795 IAcc HighMeanICDIP COR50 0.89897 Adjust(2;0.1;1)0.5 0.930 0.088 0.097 0.038 0.073 0.033 0.944 0.081 0.993 0.005 0.501 0.142 0.432 0.051 4.649 0.941 5.229 0.875
52 63795 IAcc HighMeanICnoDIP COR0 0.89897 2 1 0.730 0.150 0.138 0.048 0.059 0.032 0.743 0.150 0.991 0.005 0.287 0.136 0.331 0.074 2.886 0.663 4.176 0.240
53 63795 IAcc HighMeanICnoDIP COR100 0.89897 2 0 0.843 0.143 0.119 0.042 0.115 0.043 0.854 0.148 0.989 0.006 0.674 0.176 0.387 0.074 3.529 0.610 4.130 0.201
54 63795 IAcc HighMeanICnoDIP COR50 0.89897 2 0.5 0.816 0.159 0.126 0.046 0.096 0.040 0.831 0.159 0.990 0.006 0.478 0.155 0.373 0.077 3.354 0.672 4.142 0.236
55 63795 IAcc HighMeanRedVarICDIP COR0 0.89897 Adjust(2;0.1;1) 1 0.948 0.036 0.102 0.041 0.065 0.038 0.969 0.025 0.990 0.006 0.280 0.018 0.443 0.049 4.245 0.192 4.577 0.212
56 63795 IAcc HighMeanRedVarICDIP COR100 0.89897 Adjust(2;0.1;1) 0 0.947 0.037 0.099 0.039 0.099 0.038 0.970 0.026 0.990 0.006 0.721 0.055 0.441 0.048 4.302 0.239 4.529 0.224
57 63795 IAcc HighMeanRedVarICDIP COR50 0.89897 Adjust(2;0.1;1)0.5 0.948 0.036 0.100 0.039 0.084 0.038 0.969 0.025 0.990 0.006 0.500 0.038 0.442 0.049 4.302 0.250 4.573 0.252
58 63795 IAcc HighMeanRedVarICnoDIP COR0 0.89897 2 1 0.940 0.039 0.122 0.048 0.080 0.040 0.962 0.031 0.988 0.007 0.280 0.018 0.435 0.044 3.990 0.194 4.319 0.127
59 63795 IAcc HighMeanRedVarICnoDIP COR100 0.89897 2 0 0.941 0.038 0.113 0.043 0.113 0.042 0.965 0.027 0.988 0.006 0.717 0.053 0.436 0.045 4.042 0.162 4.271 0.113
60 63795 IAcc HighMeanRedVarICnoDIP COR50 0.89897 2 0.5 0.942 0.038 0.117 0.043 0.098 0.040 0.964 0.028 0.988 0.006 0.497 0.038 0.437 0.045 4.024 0.178 4.292 0.118
61 63795 IAcc HistIC DIP COR0 0.89897 Adjust(2;0.1;1) 1 0.882 0.114 0.107 0.047 0.044 0.025 0.902 0.104 0.993 0.005 0.303 0.000 0.413 0.072 4.203 1.043 5.553 1.025
62 63795 IAcc HistIC DIP COR100 0.89897 Adjust(2;0.1;1) 0 0.941 0.060 0.088 0.039 0.088 0.038 0.956 0.053 0.992 0.006 0.741 0.051 0.438 0.051 4.611 0.540 4.909 0.504
63 63795 IAcc HistIC DIP COR50 0.89897 Adjust(2;0.1;1)0.5 0.916 0.091 0.094 0.043 0.074 0.039 0.933 0.076 0.992 0.005 0.514 0.047 0.426 0.061 4.441 0.687 4.975 0.617
64 63795 IAcc HistIC noDIP COR0 0.89897 2 1 0.740 0.123 0.133 0.056 0.065 0.029 0.754 0.115 0.989 0.005 0.303 0.000 0.342 0.069 2.963 0.451 4.100 0.210
65 63795 IAcc HistIC noDIP COR100 0.89897 2 0 0.848 0.136 0.118 0.048 0.117 0.048 0.864 0.136 0.988 0.007 0.694 0.070 0.391 0.070 3.574 0.568 4.113 0.193
66 63795 IAcc HistIC noDIP COR50 0.89897 2 0.5 0.797 0.139 0.120 0.054 0.095 0.042 0.814 0.135 0.988 0.006 0.487 0.052 0.368 0.077 3.316 0.581 4.114 0.217
67 63795 IAcc LowMeanICDIP COR0 0.89897 Adjust(2;0.1;1) 1 0.865 0.114 0.108 0.045 0.041 0.030 0.890 0.115 0.994 0.005 0.396 0.164 0.406 0.072 3.990 0.767 5.064 0.686
68 63795 IAcc LowMeanICDIP COR100 0.89897 Adjust(2;0.1;1) 0 0.932 0.075 0.086 0.036 0.085 0.036 0.950 0.070 0.993 0.005 0.836 0.182 0.440 0.059 4.536 0.524 4.875 0.425
69 63795 IAcc LowMeanICDIP COR50 0.89897 Adjust(2;0.1;1)0.5 0.904 0.100 0.096 0.041 0.072 0.032 0.925 0.090 0.993 0.005 0.607 0.177 0.425 0.067 4.307 0.653 4.874 0.455
70 63795 IAcc LowMeanICnoDIP COR0 0.89897 2 1 0.783 0.130 0.139 0.050 0.066 0.032 0.810 0.130 0.990 0.005 0.396 0.164 0.359 0.071 3.215 0.589 4.209 0.214
71 63795 IAcc LowMeanICnoDIP COR100 0.89897 2 0 0.872 0.104 0.122 0.045 0.119 0.045 0.897 0.099 0.989 0.006 0.799 0.188 0.403 0.060 3.718 0.436 4.180 0.167
72 63795 IAcc LowMeanICnoDIP COR50 0.89897 2 0.5 0.834 0.126 0.128 0.047 0.096 0.038 0.859 0.124 0.990 0.006 0.589 0.182 0.385 0.070 3.490 0.546 4.179 0.177
73 63795 IAcc LowMeanRedVarICDIP COR0 0.89897 Adjust(2;0.1;1) 1 0.956 0.029 0.105 0.043 0.075 0.035 0.975 0.020 0.990 0.006 0.393 0.017 0.448 0.047 4.230 0.141 4.485 0.179
74 63795 IAcc LowMeanRedVarICDIP COR100 0.89897 Adjust(2;0.1;1) 0 0.957 0.027 0.101 0.039 0.101 0.039 0.976 0.019 0.990 0.005 0.841 0.051 0.447 0.047 4.268 0.130 4.451 0.157
75 63795 IAcc LowMeanRedVarICDIP COR50 0.89897 Adjust(2;0.1;1)0.5 0.958 0.028 0.101 0.041 0.089 0.038 0.976 0.019 0.990 0.005 0.616 0.038 0.448 0.048 4.270 0.181 4.484 0.212
76 63795 IAcc LowMeanRedVarICnoDIP COR0 0.89897 2 1 0.948 0.034 0.114 0.048 0.083 0.038 0.972 0.021 0.988 0.006 0.393 0.017 0.439 0.046 4.069 0.183 4.321 0.124
77 63795 IAcc LowMeanRedVarICnoDIP COR100 0.89897 2 0 0.950 0.034 0.112 0.047 0.112 0.047 0.973 0.020 0.988 0.006 0.833 0.050 0.440 0.047 4.094 0.168 4.281 0.118
78 63795 IAcc LowMeanRedVarICnoDIP COR50 0.89897 2 0.5 0.950 0.033 0.112 0.047 0.097 0.038 0.973 0.021 0.988 0.006 0.612 0.036 0.440 0.046 4.079 0.172 4.293 0.118
79 63795 IAcc RedVarIC DIP COR0 0.89897 Adjust(2;0.1;1) 1 0.950 0.034 0.108 0.037 0.069 0.032 0.971 0.019 0.990 0.005 0.327 0.016 0.443 0.043 4.228 0.142 4.533 0.198
80 63795 IAcc RedVarIC DIP COR100 0.89897 Adjust(2;0.1;1) 0 0.953 0.033 0.105 0.038 0.105 0.038 0.971 0.019 0.989 0.005 0.773 0.050 0.445 0.047 4.279 0.151 4.486 0.193
81 63795 IAcc RedVarIC DIP COR50 0.89897 Adjust(2;0.1;1)0.5 0.952 0.034 0.106 0.038 0.090 0.039 0.972 0.019 0.989 0.005 0.548 0.035 0.444 0.045 4.272 0.188 4.524 0.240
82 63795 IAcc RedVarIC noDIP COR0 0.89897 2 1 0.942 0.039 0.126 0.050 0.085 0.039 0.963 0.027 0.988 0.007 0.327 0.016 0.436 0.041 4.029 0.176 4.332 0.111
83 63795 IAcc RedVarIC noDIP COR100 0.89897 2 0 0.945 0.039 0.120 0.049 0.120 0.049 0.964 0.027 0.987 0.007 0.765 0.047 0.438 0.043 4.061 0.182 4.275 0.122
84 63795 IAcc RedVarIC noDIP COR50 0.89897 2 0.5 0.944 0.039 0.122 0.048 0.105 0.044 0.965 0.026 0.988 0.007 0.545 0.035 0.437 0.042 4.046 0.179 4.295 0.121
1 57002 Acc GfitIC DIP COR0 0.82571 Adjust(3;0.1;1) 1 0.789 0.168 0.039 0.023 0.035 0.023 0.976 0.029 0.993 0.005 0.376 0.077 0.114 0.038 5.393 0.663 5.571 0.663
2 57002 Acc GfitIC DIP COR100 0.82571 Adjust(3;0.1;1) 0 0.790 0.168 0.038 0.022 0.038 0.023 0.976 0.029 0.993 0.005 0.491 0.089 0.115 0.038 5.403 0.652 5.557 0.667
3 57002 Acc GfitIC DIP COR50 0.82571 Adjust(3;0.1;1)0.5 0.790 0.168 0.038 0.022 0.037 0.023 0.976 0.029 0.993 0.005 0.439 0.084 0.115 0.038 5.402 0.653 5.562 0.664
4 57002 Acc GfitIC noDIP COR0 0.82571 3 1 0.775 0.171 0.042 0.026 0.039 0.026 0.975 0.029 0.993 0.005 0.376 0.077 0.108 0.033 5.072 0.287 5.250 0.235
5 57002 Acc GfitIC noDIP COR100 0.82571 3 0 0.775 0.171 0.042 0.026 0.042 0.026 0.975 0.029 0.993 0.005 0.484 0.086 0.108 0.033 5.073 0.287 5.228 0.258
6 57002 Acc GfitIC noDIP COR50 0.82571 3 0.5 0.775 0.171 0.042 0.026 0.040 0.026 0.975 0.029 0.993 0.005 0.436 0.083 0.108 0.033 5.072 0.287 5.234 0.252
7 57002 Acc HighMeanICDIP COR0 0.82571 Adjust(3;0.1;1) 1 0.777 0.171 0.036 0.024 0.033 0.023 0.971 0.045 0.994 0.005 0.319 0.070 0.113 0.036 5.394 0.897 5.637 0.906
8 57002 Acc HighMeanICDIP COR100 0.82571 Adjust(3;0.1;1) 0 0.778 0.171 0.037 0.024 0.036 0.024 0.971 0.044 0.994 0.005 0.432 0.080 0.113 0.037 5.364 0.672 5.580 0.688
9 57002 Acc HighMeanICDIP COR50 0.82571 Adjust(3;0.1;1)0.5 0.777 0.171 0.036 0.024 0.034 0.024 0.971 0.045 0.994 0.005 0.380 0.075 0.113 0.036 5.355 0.673 5.582 0.689
10 57002 Acc HighMeanICnoDIP COR0 0.82571 3 1 0.763 0.174 0.041 0.026 0.036 0.025 0.970 0.045 0.993 0.005 0.319 0.070 0.105 0.031 5.006 0.302 5.248 0.261
11 57002 Acc HighMeanICnoDIP COR100 0.82571 3 0 0.764 0.173 0.041 0.026 0.040 0.026 0.970 0.045 0.993 0.005 0.425 0.080 0.105 0.031 5.015 0.299 5.232 0.268
12 57002 Acc HighMeanICnoDIP COR50 0.82571 3 0.5 0.764 0.173 0.041 0.026 0.038 0.026 0.970 0.045 0.993 0.005 0.378 0.075 0.105 0.031 5.012 0.298 5.241 0.259
13 57002 Acc HighMeanRedVarICDIP COR0 0.82571 Adjust(3;0.1;1) 1 0.783 0.175 0.037 0.025 0.035 0.024 0.980 0.023 0.993 0.005 0.327 0.016 0.112 0.036 5.269 0.377 5.400 0.373
14 57002 Acc HighMeanRedVarICDIP COR100 0.82571 Adjust(3;0.1;1) 0 0.782 0.174 0.037 0.025 0.037 0.025 0.980 0.023 0.993 0.005 0.440 0.040 0.112 0.036 5.272 0.379 5.395 0.374
15 57002 Acc HighMeanRedVarICDIP COR50 0.82571 Adjust(3;0.1;1)0.5 0.783 0.175 0.037 0.025 0.036 0.025 0.980 0.023 0.993 0.005 0.390 0.030 0.112 0.036 5.270 0.375 5.399 0.373
16 57002 Acc HighMeanRedVarICnoDIP COR0 0.82571 3 1 0.778 0.175 0.039 0.027 0.037 0.026 0.980 0.023 0.993 0.005 0.327 0.016 0.109 0.034 5.133 0.235 5.265 0.225
17 57002 Acc HighMeanRedVarICnoDIP COR100 0.82571 3 0 0.778 0.174 0.039 0.027 0.039 0.027 0.980 0.023 0.993 0.005 0.437 0.038 0.109 0.034 5.135 0.231 5.259 0.225
18 57002 Acc HighMeanRedVarICnoDIP COR50 0.82571 3 0.5 0.778 0.175 0.039 0.027 0.037 0.026 0.980 0.023 0.993 0.005 0.388 0.030 0.109 0.034 5.134 0.232 5.264 0.224
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19 57002 Acc HistIC DIP COR0 0.82571 Adjust(3;0.1;1) 1 0.776 0.170 0.038 0.025 0.034 0.023 0.974 0.035 0.993 0.005 0.455 0.000 0.112 0.037 5.245 0.396 5.451 0.392
20 57002 Acc HistIC DIP COR100 0.82571 Adjust(3;0.1;1) 0 0.776 0.170 0.038 0.025 0.037 0.025 0.974 0.035 0.993 0.005 0.567 0.037 0.112 0.037 5.241 0.389 5.432 0.395
21 57002 Acc HistIC DIP COR50 0.82571 Adjust(3;0.1;1)0.5 0.776 0.170 0.038 0.025 0.036 0.025 0.974 0.035 0.993 0.005 0.517 0.028 0.112 0.037 5.241 0.390 5.435 0.394
22 57002 Acc HistIC noDIP COR0 0.82571 3 1 0.767 0.172 0.040 0.027 0.037 0.026 0.972 0.037 0.993 0.005 0.455 0.000 0.107 0.034 5.048 0.343 5.251 0.265
23 57002 Acc HistIC noDIP COR100 0.82571 3 0 0.767 0.172 0.040 0.027 0.040 0.027 0.972 0.037 0.993 0.005 0.562 0.034 0.107 0.034 5.054 0.338 5.243 0.262
24 57002 Acc HistIC noDIP COR50 0.82571 3 0.5 0.767 0.172 0.040 0.027 0.039 0.027 0.972 0.037 0.993 0.005 0.514 0.027 0.107 0.034 5.053 0.338 5.248 0.262
25 57002 Acc LowMeanICDIP COR0 0.82571 Adjust(3;0.1;1) 1 0.773 0.180 0.038 0.024 0.034 0.022 0.978 0.025 0.993 0.005 0.472 0.079 0.111 0.035 5.280 0.578 5.434 0.595
26 57002 Acc LowMeanICDIP COR100 0.82571 Adjust(3;0.1;1) 0 0.774 0.179 0.038 0.024 0.038 0.024 0.978 0.025 0.993 0.005 0.583 0.093 0.111 0.036 5.290 0.572 5.428 0.601
27 57002 Acc LowMeanICDIP COR50 0.82571 Adjust(3;0.1;1)0.5 0.774 0.179 0.038 0.024 0.036 0.023 0.978 0.025 0.993 0.005 0.533 0.087 0.111 0.036 5.287 0.573 5.431 0.599
28 57002 Acc LowMeanICnoDIP COR0 0.82571 3 1 0.767 0.178 0.041 0.026 0.038 0.024 0.977 0.025 0.993 0.005 0.472 0.079 0.107 0.034 5.067 0.298 5.225 0.261
29 57002 Acc LowMeanICnoDIP COR100 0.82571 3 0 0.768 0.177 0.041 0.026 0.041 0.026 0.977 0.025 0.993 0.005 0.578 0.092 0.107 0.034 5.080 0.286 5.221 0.265
30 57002 Acc LowMeanICnoDIP COR50 0.82571 3 0.5 0.768 0.177 0.041 0.026 0.039 0.025 0.977 0.025 0.993 0.005 0.531 0.087 0.107 0.034 5.076 0.287 5.227 0.260
31 57002 Acc LowMeanRedVarICDIP COR0 0.82571 Adjust(3;0.1;1) 1 0.779 0.175 0.039 0.025 0.038 0.025 0.983 0.017 0.993 0.005 0.492 0.019 0.110 0.036 5.241 0.301 5.343 0.320
32 57002 Acc LowMeanRedVarICDIP COR100 0.82571 Adjust(3;0.1;1) 0 0.779 0.175 0.039 0.025 0.039 0.025 0.983 0.017 0.993 0.005 0.602 0.043 0.110 0.036 5.241 0.301 5.341 0.320
33 57002 Acc LowMeanRedVarICDIP COR50 0.82571 Adjust(3;0.1;1)0.5 0.779 0.175 0.039 0.025 0.038 0.025 0.983 0.017 0.993 0.005 0.553 0.035 0.110 0.036 5.241 0.301 5.342 0.320
34 57002 Acc LowMeanRedVarICnoDIP COR0 0.82571 3 1 0.775 0.173 0.040 0.026 0.039 0.026 0.982 0.017 0.993 0.005 0.492 0.019 0.107 0.034 5.137 0.262 5.239 0.261
35 57002 Acc LowMeanRedVarICnoDIP COR100 0.82571 3 0 0.775 0.173 0.040 0.026 0.040 0.026 0.982 0.017 0.993 0.005 0.599 0.042 0.107 0.034 5.137 0.262 5.236 0.260
36 57002 Acc LowMeanRedVarICnoDIP COR50 0.82571 3 0.5 0.775 0.173 0.040 0.026 0.039 0.026 0.982 0.017 0.993 0.005 0.552 0.035 0.107 0.034 5.137 0.262 5.238 0.261
37 57002 Acc RedVarIC DIP COR0 0.82571 Adjust(3;0.1;1) 1 0.784 0.171 0.038 0.023 0.037 0.023 0.982 0.019 0.993 0.005 0.393 0.017 0.112 0.037 5.285 0.396 5.392 0.407
38 57002 Acc RedVarIC DIP COR100 0.82571 Adjust(3;0.1;1) 0 0.784 0.171 0.038 0.023 0.038 0.023 0.982 0.019 0.993 0.005 0.505 0.041 0.112 0.037 5.286 0.395 5.388 0.408
39 57002 Acc RedVarIC DIP COR50 0.82571 Adjust(3;0.1;1)0.5 0.784 0.171 0.038 0.023 0.037 0.023 0.982 0.019 0.993 0.005 0.456 0.032 0.112 0.037 5.285 0.396 5.389 0.408
40 57002 Acc RedVarIC noDIP COR0 0.82571 3 1 0.776 0.171 0.040 0.026 0.039 0.025 0.981 0.019 0.993 0.005 0.393 0.017 0.108 0.034 5.139 0.270 5.245 0.254
41 57002 Acc RedVarIC noDIP COR100 0.82571 3 0 0.776 0.171 0.040 0.026 0.040 0.026 0.981 0.019 0.993 0.005 0.502 0.039 0.108 0.034 5.140 0.270 5.240 0.254
42 57002 Acc RedVarIC noDIP COR50 0.82571 3 0.5 0.776 0.171 0.040 0.026 0.039 0.025 0.981 0.019 0.993 0.005 0.454 0.031 0.108 0.034 5.139 0.270 5.243 0.254
43 57002 IAcc GfitIC DIP COR0 0.91286 Adjust(3;0.1;1) 1 0.788 0.170 0.039 0.027 0.037 0.027 0.986 0.016 0.993 0.005 0.376 0.077 0.112 0.035 5.241 0.303 5.317 0.286
44 57002 IAcc GfitIC DIP COR100 0.91286 Adjust(3;0.1;1) 0 0.787 0.171 0.039 0.027 0.039 0.027 0.986 0.016 0.993 0.005 0.489 0.087 0.113 0.035 5.253 0.279 5.313 0.274
45 57002 IAcc GfitIC DIP COR50 0.91286 Adjust(3;0.1;1)0.5 0.787 0.171 0.039 0.027 0.038 0.027 0.986 0.016 0.993 0.005 0.438 0.085 0.113 0.035 5.252 0.280 5.315 0.270
46 57002 IAcc GfitIC noDIP COR0 0.91286 3 1 0.781 0.169 0.040 0.027 0.038 0.028 0.986 0.016 0.993 0.005 0.376 0.077 0.110 0.034 5.173 0.269 5.249 0.232
47 57002 IAcc GfitIC noDIP COR100 0.91286 3 0 0.781 0.169 0.040 0.027 0.039 0.027 0.986 0.016 0.993 0.005 0.486 0.086 0.110 0.034 5.181 0.246 5.242 0.224
48 57002 IAcc GfitIC noDIP COR50 0.91286 3 0.5 0.781 0.169 0.040 0.027 0.039 0.027 0.986 0.016 0.993 0.005 0.437 0.083 0.110 0.034 5.180 0.247 5.244 0.220
49 57002 IAcc HighMeanICDIP COR0 0.91286 Adjust(3;0.1;1) 1 0.783 0.167 0.038 0.027 0.036 0.027 0.987 0.018 0.993 0.005 0.319 0.070 0.112 0.034 5.206 0.253 5.286 0.262
50 57002 IAcc HighMeanICDIP COR100 0.91286 Adjust(3;0.1;1) 0 0.783 0.167 0.038 0.027 0.038 0.027 0.987 0.018 0.993 0.005 0.431 0.079 0.112 0.034 5.217 0.250 5.284 0.266
51 57002 IAcc HighMeanICDIP COR50 0.91286 Adjust(3;0.1;1)0.5 0.783 0.167 0.038 0.027 0.037 0.026 0.987 0.018 0.993 0.005 0.381 0.076 0.112 0.034 5.214 0.251 5.286 0.264
52 57002 IAcc HighMeanICnoDIP COR0 0.91286 3 1 0.776 0.167 0.040 0.027 0.038 0.027 0.987 0.018 0.993 0.005 0.319 0.070 0.109 0.033 5.155 0.259 5.235 0.255
53 57002 IAcc HighMeanICnoDIP COR100 0.91286 3 0 0.776 0.167 0.040 0.027 0.040 0.027 0.987 0.018 0.993 0.005 0.428 0.079 0.109 0.033 5.158 0.257 5.227 0.256
54 57002 IAcc HighMeanICnoDIP COR50 0.91286 3 0.5 0.776 0.167 0.040 0.027 0.038 0.027 0.987 0.018 0.993 0.005 0.380 0.076 0.109 0.033 5.155 0.259 5.230 0.253
55 57002 IAcc HighMeanRedVarICDIP COR0 0.91286 Adjust(3;0.1;1) 1 0.784 0.172 0.039 0.027 0.038 0.027 0.986 0.016 0.993 0.005 0.327 0.016 0.111 0.034 5.207 0.242 5.272 0.245
56 57002 IAcc HighMeanRedVarICDIP COR100 0.91286 Adjust(3;0.1;1) 0 0.783 0.172 0.039 0.027 0.039 0.027 0.986 0.016 0.993 0.005 0.438 0.038 0.111 0.034 5.209 0.244 5.269 0.245
57 57002 IAcc HighMeanRedVarICDIP COR50 0.91286 Adjust(3;0.1;1)0.5 0.784 0.172 0.039 0.027 0.038 0.027 0.986 0.016 0.993 0.005 0.388 0.031 0.111 0.034 5.208 0.239 5.271 0.244
58 57002 IAcc HighMeanRedVarICnoDIP COR0 0.91286 3 1 0.783 0.172 0.039 0.028 0.038 0.028 0.986 0.016 0.993 0.005 0.327 0.016 0.110 0.034 5.181 0.223 5.246 0.222
59 57002 IAcc HighMeanRedVarICnoDIP COR100 0.91286 3 0 0.782 0.172 0.039 0.028 0.039 0.028 0.986 0.016 0.993 0.005 0.438 0.038 0.110 0.034 5.183 0.221 5.244 0.222
60 57002 IAcc HighMeanRedVarICnoDIP COR50 0.91286 3 0.5 0.783 0.172 0.039 0.028 0.038 0.028 0.986 0.016 0.993 0.005 0.388 0.030 0.110 0.034 5.183 0.220 5.246 0.220
61 57002 IAcc HistIC DIP COR0 0.91286 Adjust(3;0.1;1) 1 0.783 0.170 0.039 0.027 0.038 0.027 0.985 0.020 0.993 0.005 0.455 0.000 0.112 0.034 5.231 0.249 5.313 0.257
62 57002 IAcc HistIC DIP COR100 0.91286 Adjust(3;0.1;1) 0 0.783 0.170 0.039 0.027 0.039 0.027 0.985 0.020 0.993 0.005 0.566 0.034 0.112 0.034 5.233 0.244 5.306 0.257
63 57002 IAcc HistIC DIP COR50 0.91286 Adjust(3;0.1;1)0.5 0.783 0.170 0.039 0.027 0.038 0.027 0.985 0.020 0.993 0.005 0.516 0.027 0.112 0.034 5.232 0.246 5.309 0.257
64 57002 IAcc HistIC noDIP COR0 0.91286 3 1 0.779 0.170 0.039 0.027 0.038 0.028 0.985 0.020 0.993 0.005 0.455 0.000 0.110 0.034 5.169 0.248 5.251 0.237
65 57002 IAcc HistIC noDIP COR100 0.91286 3 0 0.779 0.170 0.039 0.027 0.039 0.027 0.985 0.020 0.993 0.005 0.565 0.034 0.110 0.034 5.177 0.232 5.251 0.226
66 57002 IAcc HistIC noDIP COR50 0.91286 3 0.5 0.779 0.170 0.039 0.027 0.039 0.027 0.985 0.020 0.993 0.005 0.515 0.027 0.110 0.034 5.176 0.233 5.253 0.227
67 57002 IAcc LowMeanICDIP COR0 0.91286 Adjust(3;0.1;1) 1 0.781 0.172 0.038 0.026 0.037 0.026 0.986 0.016 0.993 0.005 0.472 0.079 0.111 0.034 5.193 0.238 5.267 0.251
68 57002 IAcc LowMeanICDIP COR100 0.91286 Adjust(3;0.1;1) 0 0.782 0.172 0.038 0.026 0.038 0.026 0.986 0.016 0.993 0.005 0.582 0.091 0.111 0.034 5.206 0.239 5.270 0.260
69 57002 IAcc LowMeanICDIP COR50 0.91286 Adjust(3;0.1;1)0.5 0.782 0.172 0.038 0.026 0.037 0.026 0.986 0.016 0.993 0.005 0.532 0.086 0.111 0.034 5.203 0.237 5.272 0.256
70 57002 IAcc LowMeanICnoDIP COR0 0.91286 3 1 0.776 0.171 0.039 0.026 0.037 0.026 0.986 0.016 0.993 0.005 0.472 0.079 0.110 0.034 5.155 0.242 5.229 0.225
71 57002 IAcc LowMeanICnoDIP COR100 0.91286 3 0 0.777 0.171 0.039 0.026 0.039 0.026 0.986 0.016 0.993 0.005 0.581 0.091 0.110 0.034 5.167 0.235 5.231 0.226
72 57002 IAcc LowMeanICnoDIP COR50 0.91286 3 0.5 0.777 0.171 0.039 0.026 0.038 0.026 0.986 0.016 0.993 0.005 0.532 0.086 0.110 0.034 5.164 0.233 5.233 0.222
73 57002 IAcc LowMeanRedVarICDIP COR0 0.91286 Adjust(3;0.1;1) 1 0.782 0.172 0.039 0.027 0.039 0.027 0.988 0.012 0.993 0.005 0.492 0.019 0.111 0.035 5.203 0.250 5.248 0.253
74 57002 IAcc LowMeanRedVarICDIP COR100 0.91286 Adjust(3;0.1;1) 0 0.782 0.172 0.039 0.027 0.039 0.027 0.988 0.012 0.993 0.005 0.602 0.042 0.111 0.035 5.203 0.250 5.247 0.253
75 57002 IAcc LowMeanRedVarICDIP COR50 0.91286 Adjust(3;0.1;1)0.5 0.782 0.172 0.039 0.027 0.039 0.027 0.988 0.012 0.993 0.005 0.553 0.035 0.111 0.035 5.203 0.250 5.247 0.253
76 57002 IAcc LowMeanRedVarICnoDIP COR0 0.91286 3 1 0.780 0.170 0.039 0.027 0.039 0.027 0.988 0.012 0.993 0.005 0.492 0.019 0.110 0.034 5.189 0.253 5.234 0.252
77 57002 IAcc LowMeanRedVarICnoDIP COR100 0.91286 3 0 0.780 0.170 0.039 0.027 0.039 0.027 0.988 0.012 0.993 0.005 0.602 0.042 0.110 0.034 5.189 0.253 5.233 0.252
78 57002 IAcc LowMeanRedVarICnoDIP COR50 0.91286 3 0.5 0.780 0.170 0.039 0.027 0.039 0.027 0.988 0.012 0.993 0.005 0.553 0.035 0.110 0.034 5.189 0.253 5.234 0.253
79 57002 IAcc RedVarIC DIP COR0 0.91286 Adjust(3;0.1;1) 1 0.785 0.169 0.039 0.027 0.039 0.027 0.988 0.012 0.993 0.005 0.393 0.017 0.112 0.035 5.228 0.264 5.270 0.274
80 57002 IAcc RedVarIC DIP COR100 0.91286 Adjust(3;0.1;1) 0 0.785 0.169 0.039 0.027 0.039 0.027 0.988 0.012 0.993 0.005 0.505 0.040 0.112 0.035 5.228 0.263 5.268 0.274
81 57002 IAcc RedVarIC DIP COR50 0.91286 Adjust(3;0.1;1)0.5 0.785 0.169 0.039 0.027 0.039 0.027 0.988 0.012 0.993 0.005 0.455 0.032 0.112 0.035 5.228 0.264 5.269 0.274
82 57002 IAcc RedVarIC noDIP COR0 0.91286 3 1 0.781 0.168 0.039 0.027 0.039 0.027 0.988 0.012 0.993 0.005 0.393 0.017 0.110 0.034 5.196 0.249 5.238 0.251
83 57002 IAcc RedVarIC noDIP COR100 0.91286 3 0 0.781 0.168 0.039 0.027 0.039 0.027 0.988 0.012 0.993 0.005 0.504 0.039 0.110 0.034 5.197 0.248 5.237 0.251
84 57002 IAcc RedVarIC noDIP COR50 0.91286 3 0.5 0.781 0.168 0.039 0.027 0.039 0.027 0.988 0.012 0.993 0.005 0.455 0.031 0.110 0.034 5.196 0.249 5.237 0.251
1 65768 Acc GfitIC DIP COR0 0.79794 Adjust(1;0.1;1) 1 0.799 0.173 0.104 0.050 0.039 0.024 0.823 0.167 0.994 0.004 0.289 0.145 0.419 0.152 2.596 4.673 3.486 4.733
2 65768 Acc GfitIC DIP COR100 0.79794 Adjust(1;0.1;1) 0 0.885 0.147 0.077 0.032 0.076 0.033 0.905 0.149 0.994 0.004 0.754 0.208 0.464 0.107 2.326 1.030 2.655 1.000
3 65768 Acc GfitIC DIP COR50 0.79794 Adjust(1;0.1;1)0.5 0.866 0.147 0.089 0.036 0.065 0.028 0.887 0.148 0.994 0.004 0.511 0.163 0.451 0.105 2.227 1.045 2.639 1.019
4 65768 Acc GfitIC noDIP COR0 0.79794 1 1 0.679 0.160 0.143 0.064 0.061 0.032 0.700 0.175 0.990 0.005 0.289 0.145 0.325 0.094 1.173 0.320 1.931 0.020
5 65768 Acc GfitIC noDIP COR100 0.79794 1 0 0.794 0.175 0.110 0.043 0.107 0.045 0.823 0.185 0.990 0.005 0.685 0.209 0.395 0.107 1.478 0.337 1.920 0.022
6 65768 Acc GfitIC noDIP COR50 0.79794 1 0.5 0.764 0.164 0.127 0.055 0.093 0.040 0.786 0.178 0.990 0.005 0.475 0.173 0.377 0.104 1.381 0.317 1.923 0.021
7 65768 Acc HighMeanICDIP COR0 0.79794 Adjust(1;0.1;1) 1 0.771 0.197 0.121 0.061 0.035 0.021 0.799 0.189 0.994 0.003 0.254 0.123 0.407 0.166 2.412 4.447 3.422 4.526
8 65768 Acc HighMeanICDIP COR100 0.79794 Adjust(1;0.1;1) 0 0.877 0.171 0.074 0.031 0.073 0.033 0.905 0.166 0.995 0.004 0.714 0.197 0.460 0.119 2.275 0.870 2.597 0.802
9 65768 Acc HighMeanICDIP COR50 0.79794 Adjust(1;0.1;1)0.5 0.851 0.182 0.089 0.037 0.062 0.028 0.882 0.173 0.995 0.004 0.471 0.149 0.441 0.117 2.153 0.902 2.612 0.841
10 65768 Acc HighMeanICnoDIP COR0 0.79794 1 1 0.640 0.184 0.148 0.076 0.054 0.030 0.666 0.191 0.991 0.005 0.254 0.123 0.304 0.098 1.101 0.345 1.936 0.021
11 65768 Acc HighMeanICnoDIP COR100 0.79794 1 0 0.763 0.201 0.110 0.046 0.106 0.048 0.795 0.209 0.990 0.006 0.629 0.194 0.375 0.117 1.426 0.377 1.924 0.024
12 65768 Acc HighMeanICnoDIP COR50 0.79794 1 0.5 0.736 0.192 0.130 0.062 0.092 0.044 0.763 0.199 0.990 0.006 0.430 0.153 0.358 0.114 1.331 0.348 1.927 0.023
13 65768 Acc HighMeanRedVarICDIP COR0 0.79794 Adjust(1;0.1;1) 1 0.920 0.047 0.118 0.044 0.068 0.031 0.952 0.032 0.989 0.006 0.244 0.016 0.464 0.074 1.871 0.140 2.095 0.179
14 65768 Acc HighMeanRedVarICDIP COR100 0.79794 Adjust(1;0.1;1) 0 0.930 0.044 0.101 0.035 0.101 0.035 0.959 0.029 0.990 0.006 0.718 0.080 0.474 0.075 1.934 0.140 2.087 0.170
15 65768 Acc HighMeanRedVarICDIP COR50 0.79794 Adjust(1;0.1;1)0.5 0.927 0.046 0.106 0.039 0.088 0.035 0.956 0.031 0.990 0.006 0.475 0.048 0.468 0.077 1.915 0.142 2.096 0.184
16 65768 Acc HighMeanRedVarICnoDIP COR0 0.79794 1 1 0.906 0.051 0.138 0.053 0.083 0.033 0.940 0.043 0.987 0.006 0.244 0.016 0.448 0.066 1.686 0.102 1.906 0.015
17 65768 Acc HighMeanRedVarICnoDIP COR100 0.79794 1 0 0.919 0.048 0.116 0.040 0.115 0.040 0.949 0.039 0.987 0.006 0.705 0.076 0.461 0.071 1.743 0.090 1.906 0.016
18 65768 Acc HighMeanRedVarICnoDIP COR50 0.79794 1 0.5 0.915 0.049 0.123 0.044 0.103 0.040 0.945 0.042 0.987 0.007 0.469 0.046 0.456 0.072 1.721 0.098 1.906 0.016
19 65768 Acc HistIC DIP COR0 0.79794 Adjust(1;0.1;1) 1 0.812 0.142 0.130 0.067 0.042 0.021 0.833 0.115 0.992 0.003 0.242 0.000 0.415 0.103 1.765 0.519 2.822 0.505
20 65768 Acc HistIC DIP COR100 0.79794 Adjust(1;0.1;1) 0 0.907 0.114 0.080 0.030 0.079 0.031 0.926 0.090 0.993 0.004 0.714 0.103 0.471 0.103 2.392 0.893 2.666 0.896
21 65768 Acc HistIC DIP COR50 0.79794 Adjust(1;0.1;1)0.5 0.881 0.111 0.091 0.031 0.070 0.026 0.900 0.093 0.992 0.004 0.466 0.056 0.450 0.095 2.196 0.528 2.590 0.490
22 65768 Acc HistIC noDIP COR0 0.79794 1 1 0.637 0.151 0.156 0.090 0.056 0.025 0.670 0.170 0.989 0.004 0.242 0.000 0.305 0.091 1.086 0.267 1.932 0.018
23 65768 Acc HistIC noDIP COR100 0.79794 1 0 0.785 0.180 0.112 0.044 0.111 0.045 0.805 0.197 0.989 0.005 0.633 0.110 0.390 0.110 1.455 0.365 1.919 0.021
24 65768 Acc HistIC noDIP COR50 0.79794 1 0.5 0.759 0.163 0.128 0.054 0.096 0.038 0.781 0.175 0.989 0.005 0.426 0.055 0.374 0.102 1.376 0.318 1.921 0.021
25 65768 Acc LowMeanICDIP COR0 0.79794 Adjust(1;0.1;1) 1 0.812 0.156 0.115 0.057 0.041 0.026 0.840 0.154 0.993 0.004 0.336 0.155 0.425 0.146 2.660 4.894 3.506 4.922
26 65768 Acc LowMeanICDIP COR100 0.79794 Adjust(1;0.1;1) 0 0.876 0.141 0.073 0.028 0.073 0.029 0.908 0.138 0.994 0.004 0.797 0.225 0.461 0.107 2.382 1.262 2.703 1.255
27 65768 Acc LowMeanICDIP COR50 0.79794 Adjust(1;0.1;1)0.5 0.864 0.143 0.089 0.042 0.064 0.029 0.893 0.142 0.994 0.004 0.552 0.177 0.448 0.105 2.283 1.286 2.709 1.277
28 65768 Acc LowMeanICnoDIP COR0 0.79794 1 1 0.696 0.146 0.149 0.065 0.062 0.035 0.726 0.161 0.990 0.006 0.336 0.155 0.335 0.101 1.212 0.308 1.929 0.022
29 65768 Acc LowMeanICnoDIP COR100 0.79794 1 0 0.801 0.161 0.112 0.042 0.108 0.044 0.830 0.168 0.990 0.005 0.734 0.223 0.398 0.109 1.500 0.303 1.920 0.021
30 65768 Acc LowMeanICnoDIP COR50 0.79794 1 0.5 0.782 0.155 0.124 0.049 0.095 0.038 0.810 0.163 0.990 0.005 0.525 0.181 0.384 0.105 1.437 0.298 1.921 0.021
31 65768 Acc LowMeanRedVarICDIP COR0 0.79794 Adjust(1;0.1;1) 1 0.926 0.046 0.117 0.037 0.075 0.031 0.953 0.028 0.989 0.005 0.327 0.016 0.464 0.076 1.852 0.115 2.036 0.150
32 65768 Acc LowMeanRedVarICDIP COR100 0.79794 Adjust(1;0.1;1) 0 0.932 0.048 0.102 0.032 0.102 0.032 0.960 0.027 0.989 0.005 0.802 0.083 0.475 0.081 1.895 0.118 2.028 0.134
33 65768 Acc LowMeanRedVarICDIP COR50 0.79794 Adjust(1;0.1;1)0.5 0.932 0.047 0.110 0.036 0.093 0.034 0.957 0.027 0.989 0.005 0.562 0.054 0.472 0.081 1.880 0.119 2.033 0.143
34 65768 Acc LowMeanRedVarICnoDIP COR0 0.79794 1 1 0.918 0.049 0.130 0.043 0.087 0.035 0.946 0.036 0.987 0.006 0.327 0.016 0.454 0.068 1.722 0.089 1.905 0.016
35 65768 Acc LowMeanRedVarICnoDIP COR100 0.79794 1 0 0.927 0.048 0.114 0.039 0.113 0.039 0.955 0.031 0.988 0.006 0.793 0.074 0.465 0.072 1.764 0.076 1.905 0.016
36 65768 Acc LowMeanRedVarICnoDIP COR50 0.79794 1 0.5 0.924 0.048 0.121 0.041 0.105 0.041 0.953 0.031 0.987 0.006 0.556 0.048 0.461 0.072 1.749 0.080 1.905 0.016
37 65768 Acc RedVarIC DIP COR0 0.79794 Adjust(1;0.1;1) 1 0.919 0.047 0.114 0.043 0.072 0.032 0.955 0.026 0.989 0.005 0.280 0.018 0.462 0.077 1.881 0.129 2.072 0.171
38 65768 Acc RedVarIC DIP COR100 0.79794 Adjust(1;0.1;1) 0 0.930 0.043 0.101 0.036 0.100 0.036 0.964 0.023 0.989 0.005 0.754 0.084 0.474 0.078 1.929 0.134 2.069 0.167
39 65768 Acc RedVarIC DIP COR50 0.79794 Adjust(1;0.1;1)0.5 0.925 0.046 0.105 0.037 0.089 0.035 0.961 0.026 0.989 0.005 0.511 0.051 0.469 0.080 1.911 0.133 2.070 0.170
40 65768 Acc RedVarIC noDIP COR0 0.79794 1 1 0.907 0.051 0.129 0.047 0.083 0.033 0.947 0.033 0.987 0.006 0.280 0.018 0.452 0.071 1.715 0.094 1.905 0.016
41 65768 Acc RedVarIC noDIP COR100 0.79794 1 0 0.921 0.046 0.113 0.040 0.113 0.040 0.957 0.030 0.988 0.006 0.745 0.080 0.465 0.074 1.760 0.079 1.905 0.016
42 65768 Acc RedVarIC noDIP COR50 0.79794 1 0.5 0.916 0.048 0.118 0.041 0.099 0.037 0.954 0.032 0.987 0.006 0.507 0.049 0.460 0.075 1.741 0.088 1.905 0.016
43 65768 IAcc GfitIC DIP COR0 0.89897 Adjust(1;0.1;1) 1 0.862 0.149 0.122 0.070 0.051 0.035 0.881 0.153 0.992 0.006 0.289 0.145 0.439 0.106 1.892 0.740 2.361 0.722
44 65768 IAcc GfitIC DIP COR100 0.89897 Adjust(1;0.1;1) 0 0.922 0.104 0.075 0.031 0.075 0.032 0.946 0.099 0.992 0.005 0.763 0.190 0.474 0.084 2.182 0.487 2.341 0.462
45 65768 IAcc GfitIC DIP COR50 0.89897 Adjust(1;0.1;1)0.5 0.918 0.111 0.088 0.039 0.072 0.034 0.940 0.100 0.992 0.006 0.520 0.159 0.469 0.087 2.124 0.494 2.326 0.474
46 65768 IAcc GfitIC noDIP COR0 0.89897 1 1 0.823 0.155 0.156 0.077 0.065 0.036 0.856 0.155 0.990 0.006 0.289 0.145 0.410 0.102 1.462 0.328 1.915 0.022
47 65768 IAcc GfitIC noDIP COR100 0.89897 1 0 0.896 0.134 0.103 0.040 0.102 0.041 0.927 0.118 0.989 0.007 0.740 0.191 0.451 0.091 1.723 0.225 1.908 0.020
48 65768 IAcc GfitIC noDIP COR50 0.89897 1 0.5 0.892 0.134 0.119 0.048 0.097 0.041 0.922 0.117 0.989 0.007 0.510 0.161 0.447 0.091 1.690 0.229 1.909 0.020
49 65768 IAcc HighMeanICDIP COR0 0.89897 Adjust(1;0.1;1) 1 0.834 0.179 0.130 0.067 0.050 0.033 0.866 0.169 0.992 0.005 0.254 0.123 0.422 0.112 1.804 0.759 2.345 0.728
50 65768 IAcc HighMeanICDIP COR100 0.89897 Adjust(1;0.1;1) 0 0.921 0.118 0.078 0.032 0.077 0.033 0.948 0.103 0.992 0.006 0.728 0.174 0.473 0.089 2.195 0.524 2.351 0.479
51 65768 IAcc HighMeanICDIP COR50 0.89897 Adjust(1;0.1;1)0.5 0.907 0.134 0.092 0.037 0.073 0.034 0.936 0.111 0.992 0.006 0.482 0.141 0.464 0.093 2.083 0.484 2.303 0.430
52 65768 IAcc HighMeanICnoDIP COR0 0.89897 1 1 0.793 0.183 0.160 0.085 0.062 0.033 0.833 0.176 0.990 0.006 0.254 0.123 0.391 0.108 1.406 0.372 1.919 0.023
53 65768 IAcc HighMeanICnoDIP COR100 0.89897 1 0 0.885 0.152 0.106 0.041 0.104 0.043 0.917 0.134 0.988 0.007 0.695 0.169 0.441 0.095 1.704 0.255 1.910 0.020
54 65768 IAcc HighMeanICnoDIP COR50 0.89897 1 0.5 0.876 0.154 0.119 0.047 0.096 0.042 0.910 0.133 0.988 0.007 0.469 0.140 0.435 0.096 1.668 0.256 1.911 0.021
55 65768 IAcc HighMeanRedVarICDIP COR0 0.89897 Adjust(1;0.1;1) 1 0.943 0.045 0.115 0.047 0.082 0.031 0.967 0.024 0.988 0.006 0.244 0.016 0.475 0.073 1.840 0.106 1.952 0.101
56 65768 IAcc HighMeanRedVarICDIP COR100 0.89897 Adjust(1;0.1;1) 0 0.946 0.042 0.100 0.037 0.100 0.037 0.972 0.022 0.988 0.006 0.724 0.081 0.480 0.077 1.880 0.099 1.958 0.112
57 65768 IAcc HighMeanRedVarICDIP COR50 0.89897 Adjust(1;0.1;1)0.5 0.945 0.044 0.106 0.040 0.094 0.034 0.969 0.025 0.988 0.006 0.478 0.051 0.477 0.075 1.863 0.102 1.953 0.099
58 65768 IAcc HighMeanRedVarICnoDIP COR0 0.89897 1 1 0.940 0.045 0.119 0.048 0.085 0.033 0.965 0.028 0.987 0.006 0.244 0.016 0.472 0.071 1.790 0.082 1.902 0.016
59 65768 IAcc HighMeanRedVarICnoDIP COR100 0.89897 1 0 0.943 0.043 0.104 0.039 0.104 0.039 0.970 0.026 0.987 0.006 0.721 0.081 0.477 0.076 1.822 0.071 1.902 0.017
60 65768 IAcc HighMeanRedVarICnoDIP COR50 0.89897 1 0.5 0.942 0.044 0.110 0.042 0.099 0.038 0.967 0.028 0.987 0.006 0.477 0.051 0.475 0.074 1.811 0.078 1.902 0.017
61 65768 IAcc HistIC DIP COR0 0.89897 Adjust(1;0.1;1) 1 0.882 0.114 0.127 0.082 0.049 0.027 0.898 0.134 0.992 0.004 0.242 0.000 0.445 0.092 1.938 0.598 2.467 0.559
62 65768 IAcc HistIC DIP COR100 0.89897 Adjust(1;0.1;1) 0 0.933 0.092 0.071 0.033 0.071 0.033 0.943 0.105 0.992 0.005 0.719 0.097 0.477 0.097 2.351 0.786 2.512 0.746
63 65768 IAcc HistIC DIP COR50 0.89897 Adjust(1;0.1;1)0.5 0.925 0.091 0.082 0.038 0.067 0.030 0.936 0.104 0.992 0.005 0.472 0.057 0.469 0.093 2.247 0.762 2.460 0.725
64 65768 IAcc HistIC noDIP COR0 0.89897 1 1 0.822 0.142 0.178 0.090 0.062 0.030 0.854 0.161 0.990 0.005 0.242 0.000 0.411 0.089 1.420 0.303 1.914 0.018
65 65768 IAcc HistIC noDIP COR100 0.89897 1 0 0.900 0.127 0.108 0.042 0.107 0.043 0.916 0.137 0.988 0.006 0.696 0.100 0.453 0.100 1.708 0.264 1.906 0.020
66 65768 IAcc HistIC noDIP COR50 0.89897 1 0.5 0.893 0.126 0.122 0.052 0.100 0.040 0.908 0.137 0.988 0.006 0.463 0.058 0.447 0.097 1.669 0.264 1.907 0.020
67 65768 IAcc LowMeanICDIP COR0 0.89897 Adjust(1;0.1;1) 1 0.879 0.129 0.125 0.066 0.055 0.036 0.903 0.136 0.991 0.006 0.336 0.155 0.447 0.106 1.958 0.815 2.386 0.781
68 65768 IAcc LowMeanICDIP COR100 0.89897 Adjust(1;0.1;1) 0 0.933 0.091 0.078 0.033 0.077 0.034 0.958 0.085 0.991 0.006 0.815 0.210 0.479 0.084 2.224 0.525 2.362 0.518
69 65768 IAcc LowMeanICDIP COR50 0.89897 Adjust(1;0.1;1)0.5 0.928 0.096 0.091 0.038 0.074 0.033 0.952 0.086 0.991 0.006 0.567 0.177 0.473 0.084 2.144 0.532 2.325 0.514
70 65768 IAcc LowMeanICnoDIP COR0 0.89897 1 1 0.838 0.141 0.158 0.078 0.069 0.039 0.870 0.144 0.989 0.007 0.336 0.155 0.416 0.103 1.498 0.316 1.914 0.023
71 65768 IAcc LowMeanICnoDIP COR100 0.89897 1 0 0.910 0.117 0.106 0.043 0.105 0.044 0.940 0.101 0.988 0.007 0.794 0.215 0.458 0.092 1.751 0.194 1.907 0.020
72 65768 IAcc LowMeanICnoDIP COR50 0.89897 1 0.5 0.905 0.118 0.120 0.054 0.097 0.041 0.934 0.100 0.988 0.007 0.559 0.178 0.452 0.090 1.712 0.210 1.907 0.019
73 65768 IAcc LowMeanRedVarICDIP COR0 0.89897 Adjust(1;0.1;1) 1 0.948 0.043 0.108 0.040 0.082 0.035 0.971 0.022 0.988 0.006 0.327 0.016 0.478 0.077 1.855 0.103 1.943 0.106
74 65768 IAcc LowMeanRedVarICDIP COR100 0.89897 Adjust(1;0.1;1) 0 0.950 0.043 0.097 0.037 0.097 0.037 0.975 0.020 0.988 0.006 0.808 0.083 0.481 0.080 1.880 0.094 1.946 0.107
75 65768 IAcc LowMeanRedVarICDIP COR50 0.89897 Adjust(1;0.1;1)0.5 0.949 0.042 0.101 0.037 0.091 0.038 0.973 0.021 0.988 0.006 0.563 0.051 0.479 0.079 1.870 0.099 1.945 0.106
76 65768 IAcc LowMeanRedVarICnoDIP COR0 0.89897 1 1 0.947 0.043 0.112 0.042 0.087 0.037 0.970 0.023 0.987 0.006 0.327 0.016 0.475 0.074 1.813 0.071 1.901 0.017
77 65768 IAcc LowMeanRedVarICnoDIP COR100 0.89897 1 0 0.949 0.043 0.102 0.040 0.102 0.040 0.973 0.021 0.987 0.007 0.806 0.080 0.479 0.078 1.836 0.058 1.901 0.017
78 65768 IAcc LowMeanRedVarICnoDIP COR50 0.89897 1 0.5 0.948 0.043 0.106 0.041 0.097 0.041 0.971 0.022 0.987 0.007 0.562 0.050 0.477 0.076 1.826 0.067 1.901 0.017
79 65768 IAcc RedVarIC DIP COR0 0.89897 Adjust(1;0.1;1) 1 0.939 0.050 0.107 0.040 0.080 0.036 0.969 0.024 0.988 0.006 0.280 0.018 0.473 0.077 1.850 0.105 1.946 0.101
80 65768 IAcc RedVarIC DIP COR100 0.89897 Adjust(1;0.1;1) 0 0.944 0.046 0.096 0.038 0.095 0.039 0.974 0.023 0.988 0.006 0.760 0.084 0.480 0.079 1.881 0.099 1.949 0.104
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81 65768 IAcc RedVarIC DIP COR50 0.89897 Adjust(1;0.1;1)0.5 0.943 0.045 0.099 0.039 0.090 0.036 0.973 0.022 0.988 0.006 0.516 0.054 0.479 0.079 1.872 0.101 1.948 0.102
82 65768 IAcc RedVarIC noDIP COR0 0.89897 1 1 0.937 0.052 0.110 0.043 0.084 0.037 0.968 0.026 0.987 0.006 0.280 0.018 0.472 0.076 1.806 0.077 1.902 0.017
83 65768 IAcc RedVarIC noDIP COR100 0.89897 1 0 0.943 0.047 0.100 0.042 0.100 0.042 0.972 0.024 0.988 0.006 0.758 0.084 0.478 0.078 1.832 0.063 1.902 0.017
84 65768 IAcc RedVarIC noDIP COR50 0.89897 1 0.5 0.942 0.047 0.103 0.042 0.094 0.039 0.971 0.024 0.988 0.006 0.515 0.053 0.477 0.078 1.825 0.067 1.902 0.017
1 63696 Acc GfitIC DIP COR0 0.95685 Adjust(6;0.1;1) 1 0.998 0.012 0.002 0.006 0.001 0.003 0.998 0.015 1.000 0.001 0.143 0.052 0.187 0.021 10.201 0.540 10.635 0.414
2 63696 Acc GfitIC DIP COR100 0.95685 Adjust(6;0.1;1) 0 1.000 0.000 0.001 0.004 0.001 0.004 1.000 0.001 1.000 0.000 0.332 0.061 0.189 0.021 10.751 1.447 10.902 1.438
3 63696 Acc GfitIC DIP COR50 0.95685 Adjust(6;0.1;1)0.5 1.000 0.000 0.001 0.004 0.001 0.004 1.000 0.001 1.000 0.000 0.239 0.049 0.189 0.020 10.675 1.427 10.890 1.411
4 63696 Acc GfitIC noDIP COR0 0.95685 6 1 0.998 0.012 0.002 0.006 0.001 0.003 0.998 0.015 1.000 0.001 0.143 0.052 0.186 0.022 9.963 0.579 10.397 0.294
5 63696 Acc GfitIC noDIP COR100 0.95685 6 0 1.000 0.000 0.001 0.004 0.001 0.004 1.000 0.001 1.000 0.000 0.330 0.062 0.188 0.021 10.146 0.383 10.296 0.306
6 63696 Acc GfitIC noDIP COR50 0.95685 6 0.5 1.000 0.000 0.001 0.004 0.001 0.004 1.000 0.001 1.000 0.000 0.238 0.050 0.188 0.021 10.108 0.402 10.321 0.304
7 63696 Acc HighMeanICDIP COR0 0.95685 Adjust(6;0.1;1) 1 0.997 0.017 0.002 0.008 0.001 0.004 0.997 0.018 1.000 0.001 0.132 0.047 0.188 0.019 10.281 0.812 10.724 0.723
8 63696 Acc HighMeanICDIP COR100 0.95685 Adjust(6;0.1;1) 0 1.000 0.000 0.001 0.004 0.001 0.004 1.000 0.001 1.000 0.000 0.322 0.057 0.190 0.021 10.867 1.745 11.002 1.737
9 63696 Acc HighMeanICDIP COR50 0.95685 Adjust(6;0.1;1)0.5 1.000 0.000 0.001 0.004 0.001 0.004 1.000 0.001 1.000 0.000 0.229 0.045 0.190 0.020 10.805 1.743 11.007 1.719
10 63696 Acc HighMeanICnoDIP COR0 0.95685 6 1 0.997 0.017 0.002 0.008 0.001 0.004 0.997 0.018 1.000 0.001 0.132 0.047 0.187 0.020 9.964 0.552 10.407 0.221
11 63696 Acc HighMeanICnoDIP COR100 0.95685 6 0 1.000 0.000 0.001 0.004 0.001 0.004 1.000 0.001 1.000 0.000 0.320 0.057 0.188 0.020 10.163 0.325 10.308 0.273
12 63696 Acc HighMeanICnoDIP COR50 0.95685 6 0.5 1.000 0.000 0.001 0.004 0.001 0.004 1.000 0.001 1.000 0.000 0.228 0.046 0.188 0.020 10.126 0.353 10.334 0.251
13 63696 Acc HighMeanRedVarICCOR50 0.95685 6 0.5 1.000 0.000 0.001 0.004 0.001 0.003 1.000 0.001 1.000 0.000 0.220 0.024 0.187 0.020 10.139 0.338 10.331 0.281
14 63696 Acc HighMeanRedVarICDIP COR0 0.95685 Adjust(6;0.1;1) 1 1.000 0.000 0.001 0.004 0.000 0.002 1.000 0.001 1.000 0.000 0.125 0.012 0.187 0.020 10.323 0.375 10.597 0.451
15 63696 Acc HighMeanRedVarICDIP COR100 0.95685 Adjust(6;0.1;1) 0 1.000 0.000 0.001 0.004 0.001 0.004 1.000 0.001 1.000 0.000 0.314 0.025 0.189 0.020 10.434 0.504 10.568 0.553
16 63696 Acc HighMeanRedVarICDIP COR50 0.95685 Adjust(6;0.1;1)0.5 1.000 0.000 0.001 0.004 0.001 0.003 1.000 0.001 1.000 0.000 0.221 0.024 0.188 0.020 10.370 0.356 10.556 0.427
17 63696 Acc HighMeanRedVarICnoDIP COR0 0.95685 6 1 1.000 0.002 0.001 0.004 0.001 0.003 0.999 0.004 1.000 0.000 0.125 0.012 0.186 0.021 10.099 0.371 10.373 0.275
18 63696 Acc HighMeanRedVarICnoDIP COR100 0.95685 6 0 1.000 0.000 0.001 0.004 0.001 0.004 1.000 0.001 1.000 0.000 0.313 0.026 0.188 0.020 10.162 0.338 10.300 0.292
19 63696 Acc HistIC DIP COR0 0.95685 Adjust(6;0.1;1) 1 1.000 0.001 0.001 0.004 0.001 0.003 1.000 0.003 1.000 0.001 0.136 0.000 0.186 0.020 10.548 0.988 10.886 1.028
20 63696 Acc HistIC DIP COR100 0.95685 Adjust(6;0.1;1) 0 1.000 0.000 0.001 0.003 0.001 0.003 1.000 0.000 1.000 0.000 0.324 0.021 0.188 0.021 10.692 0.806 10.823 0.856
21 63696 Acc HistIC DIP COR50 0.95685 Adjust(6;0.1;1)0.5 1.000 0.000 0.001 0.003 0.001 0.003 1.000 0.000 1.000 0.000 0.232 0.024 0.188 0.021 10.647 0.892 10.858 0.944
22 63696 Acc HistIC noDIP COR0 0.95685 6 1 1.000 0.002 0.002 0.005 0.001 0.004 0.999 0.003 1.000 0.001 0.136 0.000 0.186 0.020 10.036 0.371 10.375 0.199
23 63696 Acc HistIC noDIP COR100 0.95685 6 0 1.000 0.000 0.001 0.004 0.001 0.004 1.000 0.001 1.000 0.000 0.323 0.021 0.187 0.021 10.175 0.305 10.310 0.240
24 63696 Acc HistIC noDIP COR50 0.95685 6 0.5 1.000 0.000 0.001 0.004 0.001 0.003 1.000 0.001 1.000 0.000 0.232 0.024 0.187 0.021 10.118 0.324 10.328 0.208
25 63696 Acc LowMeanICDIP COR0 0.95685 Adjust(6;0.1;1) 1 0.999 0.005 0.002 0.005 0.001 0.003 0.998 0.012 1.000 0.000 0.155 0.052 0.188 0.020 10.245 0.516 10.635 0.418
26 63696 Acc LowMeanICDIP COR100 0.95685 Adjust(6;0.1;1) 0 1.000 0.000 0.001 0.004 0.001 0.004 1.000 0.001 1.000 0.000 0.344 0.060 0.189 0.020 10.660 1.075 10.794 1.071
27 63696 Acc LowMeanICDIP COR50 0.95685 Adjust(6;0.1;1)0.5 1.000 0.000 0.001 0.004 0.001 0.004 1.000 0.001 1.000 0.000 0.251 0.049 0.189 0.020 10.612 1.068 10.803 1.066
28 63696 Acc LowMeanICnoDIP COR0 0.95685 6 1 0.999 0.005 0.001 0.004 0.001 0.003 0.998 0.012 1.000 0.000 0.155 0.052 0.186 0.020 9.993 0.551 10.382 0.264
29 63696 Acc LowMeanICnoDIP COR100 0.95685 6 0 1.000 0.000 0.001 0.004 0.001 0.004 1.000 0.001 1.000 0.000 0.342 0.061 0.188 0.021 10.177 0.330 10.314 0.270
30 63696 Acc LowMeanICnoDIP COR50 0.95685 6 0.5 1.000 0.000 0.001 0.004 0.001 0.004 1.000 0.001 1.000 0.000 0.250 0.050 0.187 0.020 10.146 0.341 10.338 0.259
31 63696 Acc LowMeanRedVarICCOR50 0.95685 6 0.5 1.000 0.000 0.001 0.003 0.001 0.003 1.000 0.001 1.000 0.000 0.243 0.025 0.188 0.021 10.163 0.298 10.333 0.269
32 63696 Acc LowMeanRedVarICDIP COR0 0.95685 Adjust(6;0.1;1) 1 1.000 0.000 0.001 0.003 0.000 0.002 1.000 0.001 1.000 0.000 0.147 0.014 0.189 0.020 10.311 0.329 10.538 0.374
33 63696 Acc LowMeanRedVarICDIP COR100 0.95685 Adjust(6;0.1;1) 0 1.000 0.000 0.001 0.003 0.001 0.003 1.000 0.001 1.000 0.000 0.335 0.025 0.188 0.019 10.412 0.462 10.540 0.503
34 63696 Acc LowMeanRedVarICDIP COR50 0.95685 Adjust(6;0.1;1)0.5 1.000 0.000 0.001 0.003 0.001 0.003 1.000 0.001 1.000 0.000 0.244 0.025 0.189 0.020 10.366 0.349 10.531 0.398
35 63696 Acc LowMeanRedVarICnoDIP COR0 0.95685 6 1 1.000 0.000 0.001 0.003 0.000 0.002 1.000 0.001 1.000 0.000 0.147 0.014 0.188 0.021 10.148 0.286 10.375 0.243
36 63696 Acc LowMeanRedVarICnoDIP COR100 0.95685 6 0 1.000 0.000 0.001 0.003 0.001 0.003 1.000 0.001 1.000 0.000 0.335 0.027 0.188 0.021 10.175 0.291 10.306 0.272
37 63696 Acc RedVarIC DIP COR0 0.95685 Adjust(6;0.1;1) 1 1.000 0.000 0.001 0.003 0.000 0.002 1.000 0.001 1.000 0.000 0.135 0.013 0.187 0.021 10.283 0.325 10.539 0.362
38 63696 Acc RedVarIC DIP COR100 0.95685 Adjust(6;0.1;1) 0 1.000 0.000 0.001 0.003 0.001 0.003 1.000 0.001 1.000 0.000 0.323 0.027 0.188 0.022 10.400 0.491 10.533 0.517
39 63696 Acc RedVarIC DIP COR50 0.95685 Adjust(6;0.1;1)0.5 1.000 0.000 0.001 0.003 0.001 0.003 1.000 0.001 1.000 0.000 0.231 0.025 0.188 0.022 10.335 0.355 10.514 0.367
40 63696 Acc RedVarIC noDIP COR0 0.95685 6 1 1.000 0.001 0.001 0.004 0.001 0.003 1.000 0.001 1.000 0.000 0.135 0.013 0.187 0.020 10.118 0.327 10.374 0.262
41 63696 Acc RedVarIC noDIP COR100 0.95685 6 0 1.000 0.000 0.001 0.003 0.001 0.003 1.000 0.001 1.000 0.000 0.322 0.026 0.187 0.021 10.178 0.319 10.309 0.278
42 63696 Acc RedVarIC noDIP COR50 0.95685 6 0.5 1.000 0.000 0.001 0.003 0.001 0.003 1.000 0.001 1.000 0.000 0.231 0.025 0.187 0.021 10.150 0.324 10.333 0.274
43 63696 IAcc GfitIC DIP COR0 0.97843 Adjust(6;0.1;1) 1 1.000 0.000 0.001 0.004 0.000 0.002 1.000 0.000 1.000 0.000 0.143 0.052 0.188 0.021 10.282 0.428 10.502 0.435
44 63696 IAcc GfitIC DIP COR100 0.97843 Adjust(6;0.1;1) 0 1.000 0.000 0.001 0.003 0.001 0.003 1.000 0.000 1.000 0.000 0.332 0.061 0.189 0.021 10.706 1.470 10.764 1.476
45 63696 IAcc GfitIC DIP COR50 0.97843 Adjust(6;0.1;1)0.5 1.000 0.000 0.001 0.003 0.001 0.003 1.000 0.000 1.000 0.000 0.239 0.049 0.189 0.021 10.653 1.446 10.740 1.449
46 63696 IAcc GfitIC noDIP COR0 0.97843 6 1 1.000 0.000 0.001 0.004 0.000 0.002 1.000 0.000 1.000 0.000 0.143 0.052 0.187 0.022 10.125 0.430 10.345 0.244
47 63696 IAcc GfitIC noDIP COR100 0.97843 6 0 1.000 0.000 0.001 0.003 0.001 0.003 1.000 0.000 1.000 0.000 0.330 0.062 0.187 0.021 10.246 0.297 10.306 0.254
48 63696 IAcc GfitIC noDIP COR50 0.97843 6 0.5 1.000 0.000 0.001 0.003 0.001 0.003 1.000 0.000 1.000 0.000 0.239 0.050 0.187 0.021 10.224 0.309 10.310 0.247
49 63696 IAcc HighMeanICDIP COR0 0.97843 Adjust(6;0.1;1) 1 1.000 0.000 0.001 0.003 0.000 0.002 1.000 0.000 1.000 0.000 0.132 0.047 0.188 0.020 10.358 0.729 10.568 0.721
50 63696 IAcc HighMeanICDIP COR100 0.97843 Adjust(6;0.1;1) 0 1.000 0.000 0.000 0.002 0.000 0.002 1.000 0.000 1.000 0.000 0.320 0.057 0.188 0.020 10.805 1.772 10.860 1.777
51 63696 IAcc HighMeanICDIP COR50 0.97843 Adjust(6;0.1;1)0.5 1.000 0.000 0.000 0.002 0.000 0.002 1.000 0.000 1.000 0.000 0.228 0.045 0.188 0.020 10.767 1.764 10.850 1.764
52 63696 IAcc HighMeanICnoDIP COR0 0.97843 6 1 1.000 0.000 0.001 0.003 0.000 0.002 1.000 0.000 1.000 0.000 0.132 0.047 0.188 0.021 10.151 0.422 10.361 0.214
53 63696 IAcc HighMeanICnoDIP COR100 0.97843 6 0 1.000 0.000 0.000 0.002 0.000 0.002 1.000 0.000 1.000 0.000 0.319 0.058 0.187 0.021 10.273 0.255 10.327 0.236
54 63696 IAcc HighMeanICnoDIP COR50 0.97843 6 0.5 1.000 0.000 0.000 0.002 0.000 0.002 1.000 0.000 1.000 0.000 0.228 0.046 0.188 0.021 10.254 0.268 10.337 0.224
55 63696 IAcc HighMeanRedVarICDIP COR0 0.97843 Adjust(6;0.1;1) 1 1.000 0.000 0.000 0.002 0.000 0.002 1.000 0.000 1.000 0.000 0.125 0.012 0.187 0.021 10.347 0.318 10.469 0.398
56 63696 IAcc HighMeanRedVarICDIP COR100 0.97843 Adjust(6;0.1;1) 0 1.000 0.000 0.000 0.002 0.000 0.002 1.000 0.000 1.000 0.000 0.313 0.026 0.188 0.021 10.415 0.450 10.476 0.496
57 63696 IAcc HighMeanRedVarICDIP COR50 0.97843 Adjust(6;0.1;1)0.5 1.000 0.000 0.000 0.002 0.000 0.002 1.000 0.000 1.000 0.000 0.221 0.024 0.188 0.021 10.372 0.330 10.457 0.387
58 63696 IAcc HighMeanRedVarICnoDIP COR0 0.97843 6 1 1.000 0.000 0.000 0.002 0.000 0.002 1.000 0.000 1.000 0.000 0.125 0.012 0.187 0.021 10.223 0.263 10.345 0.244
59 63696 IAcc HighMeanRedVarICnoDIP COR100 0.97843 6 0 1.000 0.000 0.000 0.002 0.000 0.002 1.000 0.000 1.000 0.000 0.312 0.026 0.187 0.021 10.251 0.263 10.311 0.243
60 63696 IAcc HighMeanRedVarICnoDIP COR50 0.97843 6 0.5 1.000 0.000 0.000 0.002 0.000 0.002 1.000 0.000 1.000 0.000 0.221 0.024 0.187 0.021 10.239 0.269 10.325 0.240
61 63696 IAcc HistIC DIP COR0 0.97843 Adjust(6;0.1;1) 1 1.000 0.000 0.001 0.004 0.000 0.002 1.000 0.000 1.000 0.000 0.136 0.000 0.187 0.021 10.463 0.894 10.634 0.958
62 63696 IAcc HistIC DIP COR100 0.97843 Adjust(6;0.1;1) 0 1.000 0.000 0.001 0.003 0.001 0.003 1.000 0.000 1.000 0.000 0.324 0.022 0.188 0.022 10.528 0.735 10.593 0.798
63 63696 IAcc HistIC DIP COR50 0.97843 Adjust(6;0.1;1)0.5 1.000 0.000 0.001 0.003 0.001 0.003 1.000 0.000 1.000 0.000 0.232 0.024 0.188 0.022 10.509 0.772 10.607 0.846
64 63696 IAcc HistIC noDIP COR0 0.97843 6 1 1.000 0.000 0.001 0.004 0.000 0.002 1.000 0.000 1.000 0.000 0.136 0.000 0.187 0.021 10.161 0.346 10.332 0.221
65 63696 IAcc HistIC noDIP COR100 0.97843 6 0 1.000 0.000 0.001 0.003 0.001 0.003 1.000 0.000 1.000 0.000 0.323 0.021 0.187 0.021 10.236 0.290 10.305 0.245
66 63696 IAcc HistIC noDIP COR50 0.97843 6 0.5 1.000 0.000 0.001 0.003 0.001 0.003 1.000 0.000 1.000 0.000 0.232 0.024 0.187 0.021 10.220 0.309 10.318 0.240
67 63696 IAcc LowMeanICDIP COR0 0.97843 Adjust(6;0.1;1) 1 1.000 0.000 0.001 0.004 0.000 0.002 1.000 0.000 1.000 0.000 0.155 0.052 0.188 0.022 10.271 0.440 10.465 0.410
68 63696 IAcc LowMeanICDIP COR100 0.97843 Adjust(6;0.1;1) 0 1.000 0.000 0.001 0.003 0.001 0.003 1.000 0.000 1.000 0.000 0.343 0.062 0.188 0.022 10.584 1.080 10.637 1.088
69 63696 IAcc LowMeanICDIP COR50 0.97843 Adjust(6;0.1;1)0.5 1.000 0.000 0.001 0.003 0.001 0.003 1.000 0.000 1.000 0.000 0.251 0.050 0.188 0.022 10.553 1.071 10.627 1.079
70 63696 IAcc LowMeanICnoDIP COR0 0.97843 6 1 1.000 0.000 0.001 0.004 0.000 0.002 1.000 0.000 1.000 0.000 0.155 0.052 0.187 0.021 10.127 0.440 10.322 0.244
71 63696 IAcc LowMeanICnoDIP COR100 0.97843 6 0 1.000 0.000 0.001 0.003 0.001 0.003 1.000 0.000 1.000 0.000 0.342 0.062 0.187 0.021 10.248 0.303 10.300 0.263
72 63696 IAcc LowMeanICnoDIP COR50 0.97843 6 0.5 1.000 0.000 0.001 0.003 0.001 0.003 1.000 0.000 1.000 0.000 0.250 0.050 0.187 0.021 10.231 0.303 10.306 0.255
73 63696 IAcc LowMeanRedVarICDIP COR0 0.97843 Adjust(6;0.1;1) 1 1.000 0.000 0.000 0.002 0.000 0.002 1.000 0.000 1.000 0.000 0.147 0.014 0.187 0.021 10.319 0.307 10.419 0.336
74 63696 IAcc LowMeanRedVarICDIP COR100 0.97843 Adjust(6;0.1;1) 0 1.000 0.000 0.000 0.002 0.000 0.002 1.000 0.000 1.000 0.000 0.335 0.027 0.188 0.021 10.402 0.470 10.456 0.503
75 63696 IAcc LowMeanRedVarICDIP COR50 0.97843 Adjust(6;0.1;1)0.5 1.000 0.000 0.000 0.002 0.000 0.002 1.000 0.000 1.000 0.000 0.243 0.025 0.188 0.021 10.348 0.321 10.416 0.336
76 63696 IAcc LowMeanRedVarICnoDIP COR0 0.97843 6 1 1.000 0.000 0.000 0.002 0.000 0.002 1.000 0.000 1.000 0.000 0.147 0.014 0.187 0.021 10.236 0.265 10.336 0.239
77 63696 IAcc LowMeanRedVarICnoDIP COR100 0.97843 6 0 1.000 0.000 0.000 0.002 0.000 0.002 1.000 0.000 1.000 0.000 0.334 0.027 0.187 0.021 10.265 0.263 10.319 0.250
78 63696 IAcc LowMeanRedVarICnoDIP COR50 0.97843 6 0.5 1.000 0.000 0.000 0.002 0.000 0.002 1.000 0.000 1.000 0.000 0.243 0.025 0.187 0.021 10.255 0.263 10.326 0.245
79 63696 IAcc RedVarIC DIP COR0 0.97843 Adjust(6;0.1;1) 1 1.000 0.000 0.000 0.002 0.000 0.002 1.000 0.000 1.000 0.000 0.135 0.013 0.188 0.022 10.330 0.303 10.446 0.356
80 63696 IAcc RedVarIC DIP COR100 0.97843 Adjust(6;0.1;1) 0 1.000 0.000 0.000 0.002 0.000 0.002 1.000 0.000 1.000 0.000 0.323 0.027 0.188 0.022 10.398 0.465 10.456 0.495
81 63696 IAcc RedVarIC DIP COR50 0.97843 Adjust(6;0.1;1)0.5 1.000 0.000 0.000 0.002 0.000 0.002 1.000 0.000 1.000 0.000 0.231 0.025 0.188 0.022 10.350 0.336 10.430 0.357
82 63696 IAcc RedVarIC noDIP COR0 0.97843 6 1 1.000 0.000 0.000 0.002 0.000 0.002 1.000 0.000 1.000 0.000 0.135 0.013 0.187 0.021 10.228 0.259 10.344 0.230
83 63696 IAcc RedVarIC noDIP COR100 0.97843 6 0 1.000 0.000 0.000 0.002 0.000 0.002 1.000 0.000 1.000 0.000 0.322 0.027 0.187 0.021 10.260 0.260 10.317 0.243
84 63696 IAcc RedVarIC noDIP COR50 0.97843 6 0.5 1.000 0.000 0.000 0.002 0.000 0.002 1.000 0.000 1.000 0.000 0.231 0.025 0.187 0.021 10.240 0.266 10.323 0.236
1 69111 Acc GfitIC DIP COR0 0.69609 Adjust(20;0.1;1) 1 0.794 0.055 0.278 0.067 0.122 0.044 0.917 0.035 0.982 0.007 0.989 0.122 1.271 0.108 23.550 1.763 30.319 2.071
2 69111 Acc GfitIC DIP COR100 0.69609 Adjust(20;0.1;1) 0 0.819 0.045 0.257 0.062 0.256 0.061 0.932 0.028 0.978 0.007 2.316 0.158 1.327 0.120 24.469 1.088 27.330 0.964
3 69111 Acc GfitIC DIP COR50 0.69609 Adjust(20;0.1;1)0.5 0.809 0.050 0.273 0.068 0.204 0.058 0.925 0.032 0.980 0.008 1.645 0.148 1.307 0.119 23.794 1.170 28.002 1.067
4 69111 Acc GfitIC noDIP COR0 0.69609 20 1 0.703 0.059 0.344 0.068 0.194 0.053 0.845 0.054 0.967 0.009 0.989 0.122 1.012 0.082 18.006 1.377 23.973 0.388
5 69111 Acc GfitIC noDIP COR100 0.69609 20 0 0.741 0.061 0.308 0.066 0.306 0.066 0.871 0.052 0.966 0.009 2.081 0.166 1.092 0.095 19.653 1.273 23.556 0.361
6 69111 Acc GfitIC noDIP COR50 0.69609 20 0.5 0.727 0.062 0.323 0.067 0.260 0.054 0.861 0.053 0.967 0.008 1.525 0.155 1.062 0.078 18.999 1.355 23.733 0.361
7 69111 Acc HighMeanICDIP COR0 0.69609 Adjust(20;0.1;1) 1 0.777 0.056 0.307 0.076 0.102 0.039 0.895 0.040 0.984 0.006 0.658 0.101 1.278 0.115 23.017 2.017 33.132 2.945
8 69111 Acc HighMeanICDIP COR100 0.69609 Adjust(20;0.1;1) 0 0.819 0.047 0.255 0.054 0.255 0.053 0.923 0.030 0.981 0.007 2.006 0.159 1.348 0.120 24.656 1.375 28.063 1.402
9 69111 Acc HighMeanICDIP COR50 0.69609 Adjust(20;0.1;1)0.5 0.803 0.052 0.274 0.059 0.193 0.048 0.915 0.033 0.982 0.006 1.313 0.132 1.312 0.117 23.792 1.469 29.044 1.599
10 69111 Acc HighMeanICnoDIP COR0 0.69609 20 1 0.637 0.072 0.342 0.068 0.182 0.049 0.768 0.069 0.969 0.009 0.658 0.101 0.906 0.112 15.824 1.647 24.161 0.376
11 69111 Acc HighMeanICnoDIP COR100 0.69609 20 0 0.707 0.072 0.306 0.058 0.305 0.058 0.829 0.063 0.969 0.008 1.697 0.177 1.039 0.119 18.489 1.576 23.617 0.377
12 69111 Acc HighMeanICnoDIP COR50 0.69609 20 0.5 0.678 0.072 0.322 0.063 0.256 0.053 0.805 0.066 0.969 0.008 1.149 0.148 0.982 0.117 17.392 1.606 23.850 0.367
13 69111 Acc HighMeanRedVarICDIP COR0 0.69609 Adjust(20;0.1;1) 1 0.805 0.055 0.278 0.061 0.130 0.040 0.924 0.026 0.980 0.007 0.657 0.024 1.278 0.104 23.363 0.906 28.414 1.103
14 69111 Acc HighMeanRedVarICDIP COR100 0.69609 Adjust(20;0.1;1) 0 0.821 0.053 0.251 0.058 0.250 0.058 0.932 0.023 0.978 0.007 1.980 0.127 1.323 0.127 24.232 0.693 27.130 0.695
15 69111 Acc HighMeanRedVarICDIP COR50 0.69609 Adjust(20;0.1;1)0.5 0.814 0.055 0.262 0.054 0.198 0.049 0.928 0.025 0.979 0.007 1.312 0.085 1.307 0.124 23.774 0.811 27.627 0.845
16 69111 Acc HighMeanRedVarICnoDIP COR0 0.69609 20 1 0.744 0.057 0.348 0.074 0.205 0.048 0.885 0.035 0.967 0.008 0.657 0.024 1.069 0.089 19.133 0.941 23.839 0.317
17 69111 Acc HighMeanRedVarICnoDIP COR100 0.69609 20 0 0.766 0.059 0.318 0.062 0.318 0.062 0.898 0.032 0.967 0.008 1.787 0.109 1.130 0.103 20.193 0.833 23.494 0.340
18 69111 Acc HighMeanRedVarICnoDIP COR50 0.69609 20 0.5 0.754 0.057 0.331 0.065 0.272 0.055 0.891 0.033 0.966 0.008 1.209 0.074 1.098 0.096 19.714 0.835 23.663 0.331
19 69111 Acc HistIC DIP COR0 0.69609 Adjust(20;0.1;1) 1 0.806 0.049 0.284 0.067 0.145 0.042 0.924 0.021 0.977 0.007 1.121 0.000 1.281 0.113 23.793 1.419 29.684 1.558
20 69111 Acc HistIC DIP COR100 0.69609 Adjust(20;0.1;1) 0 0.827 0.046 0.251 0.055 0.249 0.055 0.937 0.020 0.975 0.007 2.448 0.115 1.327 0.115 24.462 0.888 26.967 0.904
21 69111 Acc HistIC DIP COR50 0.69609 Adjust(20;0.1;1)0.5 0.813 0.050 0.269 0.064 0.207 0.049 0.930 0.022 0.976 0.008 1.773 0.088 1.303 0.113 23.938 1.078 27.621 1.089
22 69111 Acc HistIC noDIP COR0 0.69609 20 1 0.718 0.057 0.343 0.073 0.205 0.056 0.854 0.046 0.964 0.011 1.121 0.000 1.026 0.084 18.423 1.153 23.674 0.316
23 69111 Acc HistIC noDIP COR100 0.69609 20 0 0.753 0.058 0.312 0.062 0.307 0.062 0.881 0.041 0.964 0.009 2.225 0.091 1.104 0.091 19.913 1.005 23.361 0.361
24 69111 Acc HistIC noDIP COR50 0.69609 20 0.5 0.739 0.059 0.325 0.068 0.265 0.059 0.869 0.044 0.964 0.010 1.661 0.078 1.076 0.089 19.328 1.083 23.481 0.355
25 69111 Acc LowMeanICDIP COR0 0.69609 Adjust(20;0.1;1) 1 0.818 0.043 0.282 0.077 0.172 0.056 0.935 0.022 0.975 0.009 1.992 0.193 1.288 0.101 23.559 0.863 27.045 0.857
26 69111 Acc LowMeanICDIP COR100 0.69609 Adjust(20;0.1;1) 0 0.828 0.043 0.263 0.064 0.263 0.064 0.941 0.019 0.974 0.008 3.301 0.226 1.309 0.106 24.033 0.623 26.134 0.584
27 69111 Acc LowMeanICDIP COR50 0.69609 Adjust(20;0.1;1)0.5 0.823 0.043 0.268 0.068 0.222 0.056 0.939 0.021 0.975 0.009 2.645 0.203 1.298 0.108 23.776 0.719 26.452 0.658
28 69111 Acc LowMeanICnoDIP COR0 0.69609 20 1 0.773 0.046 0.326 0.069 0.223 0.055 0.906 0.030 0.966 0.009 1.992 0.193 1.128 0.082 20.374 0.895 23.639 0.334
29 69111 Acc LowMeanICnoDIP COR100 0.69609 20 0 0.787 0.044 0.307 0.070 0.307 0.069 0.916 0.027 0.966 0.009 3.155 0.228 1.164 0.088 20.995 0.750 23.427 0.305
30 69111 Acc LowMeanICnoDIP COR50 0.69609 20 0.5 0.781 0.046 0.315 0.070 0.272 0.066 0.910 0.030 0.966 0.009 2.568 0.215 1.144 0.088 20.684 0.858 23.522 0.327
31 69111 Acc LowMeanRedVarICDIP COR0 0.69609 Adjust(20;0.1;1) 1 0.829 0.041 0.274 0.066 0.212 0.053 0.945 0.013 0.969 0.008 1.995 0.044 1.263 0.096 23.319 0.338 25.056 0.413
32 69111 Acc LowMeanRedVarICDIP COR100 0.69609 Adjust(20;0.1;1) 0 0.832 0.041 0.268 0.064 0.268 0.063 0.946 0.013 0.969 0.009 3.271 0.112 1.276 0.102 23.470 0.335 24.936 0.410
33 69111 Acc LowMeanRedVarICDIP COR50 0.69609 Adjust(20;0.1;1)0.5 0.831 0.041 0.271 0.064 0.241 0.056 0.946 0.013 0.969 0.008 2.633 0.079 1.273 0.099 23.408 0.326 24.995 0.412
34 69111 Acc LowMeanRedVarICnoDIP COR0 0.69609 20 1 0.809 0.043 0.304 0.068 0.238 0.057 0.937 0.014 0.963 0.009 1.995 0.044 1.182 0.080 21.756 0.499 23.449 0.341
35 69111 Acc LowMeanRedVarICnoDIP COR100 0.69609 20 0 0.813 0.042 0.299 0.067 0.299 0.067 0.939 0.014 0.963 0.009 3.190 0.096 1.195 0.085 21.932 0.464 23.367 0.345
36 69111 Acc LowMeanRedVarICnoDIP COR50 0.69609 20 0.5 0.811 0.043 0.302 0.068 0.271 0.063 0.938 0.014 0.963 0.009 2.592 0.073 1.190 0.084 21.841 0.479 23.404 0.347
37 69111 Acc RedVarIC DIP COR0 0.69609 Adjust(20;0.1;1) 1 0.816 0.046 0.272 0.059 0.161 0.046 0.932 0.019 0.976 0.007 0.996 0.032 1.281 0.105 23.360 0.583 26.829 0.775
38 69111 Acc RedVarIC DIP COR100 0.69609 Adjust(20;0.1;1) 0 0.827 0.045 0.258 0.059 0.258 0.059 0.936 0.020 0.975 0.007 2.308 0.121 1.312 0.121 23.807 0.565 26.275 0.615
39 69111 Acc RedVarIC DIP COR50 0.69609 Adjust(20;0.1;1)0.5 0.819 0.045 0.265 0.062 0.215 0.051 0.935 0.020 0.976 0.007 1.641 0.076 1.291 0.107 23.593 0.580 26.519 0.699
40 69111 Acc RedVarIC noDIP COR0 0.69609 20 1 0.775 0.048 0.323 0.066 0.215 0.059 0.911 0.025 0.966 0.009 0.996 0.032 1.125 0.085 20.403 0.689 23.676 0.286
41 69111 Acc RedVarIC noDIP COR100 0.69609 20 0 0.787 0.046 0.306 0.064 0.305 0.064 0.916 0.024 0.965 0.009 2.149 0.090 1.153 0.082 20.938 0.643 23.477 0.287
42 69111 Acc RedVarIC noDIP COR50 0.69609 20 0.5 0.780 0.047 0.314 0.064 0.264 0.064 0.913 0.024 0.966 0.009 1.567 0.069 1.136 0.081 20.677 0.631 23.575 0.274
43 69111 IAcc GfitIC DIP COR0 0.84805 Adjust(20;0.1;1) 1 0.809 0.049 0.282 0.074 0.158 0.048 0.933 0.025 0.977 0.008 0.989 0.122 1.249 0.088 23.167 1.217 26.815 1.241
44 69111 IAcc GfitIC DIP COR100 0.84805 Adjust(20;0.1;1) 0 0.827 0.044 0.250 0.060 0.249 0.059 0.942 0.023 0.973 0.008 2.267 0.151 1.278 0.092 24.086 0.655 25.709 0.700
45 69111 IAcc GfitIC DIP COR50 0.84805 Adjust(20;0.1;1)0.5 0.818 0.049 0.262 0.062 0.215 0.059 0.938 0.024 0.975 0.008 1.622 0.145 1.264 0.089 23.711 0.751 26.027 0.847
46 69111 IAcc GfitIC noDIP COR0 0.84805 20 1 0.767 0.062 0.320 0.073 0.192 0.052 0.905 0.038 0.970 0.009 0.989 0.122 1.139 0.090 20.164 1.205 23.588 0.371
47 69111 IAcc GfitIC noDIP COR100 0.84805 20 0 0.792 0.054 0.291 0.066 0.291 0.066 0.920 0.033 0.967 0.009 2.168 0.162 1.178 0.092 21.416 0.934 23.354 0.354
48 69111 IAcc GfitIC noDIP COR50 0.84805 20 0.5 0.782 0.059 0.300 0.069 0.252 0.056 0.914 0.035 0.968 0.008 1.572 0.149 1.162 0.092 20.931 1.041 23.443 0.371
49 69111 IAcc HighMeanICDIP COR0 0.84805 Adjust(20;0.1;1) 1 0.802 0.056 0.275 0.067 0.135 0.046 0.921 0.035 0.979 0.007 0.658 0.101 1.254 0.106 23.285 1.658 28.417 1.868
50 69111 IAcc HighMeanICDIP COR100 0.84805 Adjust(20;0.1;1) 0 0.823 0.049 0.244 0.055 0.244 0.055 0.934 0.030 0.975 0.006 1.942 0.146 1.284 0.099 24.327 0.900 26.303 0.908
51 69111 IAcc HighMeanICDIP COR50 0.84805 Adjust(20;0.1;1)0.5 0.814 0.049 0.261 0.059 0.207 0.050 0.928 0.031 0.976 0.007 1.292 0.132 1.270 0.110 23.755 0.981 26.696 1.008
52 69111 IAcc HighMeanICnoDIP COR0 0.84805 20 1 0.734 0.075 0.322 0.072 0.179 0.052 0.867 0.065 0.971 0.008 0.658 0.101 1.082 0.103 18.901 1.680 23.613 0.330
53 69111 IAcc HighMeanICnoDIP COR100 0.84805 20 0 0.776 0.062 0.288 0.062 0.288 0.062 0.898 0.051 0.968 0.007 1.812 0.153 1.154 0.103 20.804 1.277 23.349 0.366
54 69111 IAcc HighMeanICnoDIP COR50 0.84805 20 0.5 0.761 0.069 0.300 0.066 0.249 0.055 0.890 0.054 0.969 0.007 1.223 0.131 1.129 0.111 20.176 1.463 23.412 0.293
55 69111 IAcc HighMeanRedVarICDIP COR0 0.84805 Adjust(20;0.1;1) 1 0.821 0.047 0.275 0.068 0.170 0.049 0.940 0.022 0.975 0.007 0.657 0.024 1.266 0.104 23.281 0.710 25.859 0.780
56 69111 IAcc HighMeanRedVarICDIP COR100 0.84805 Adjust(20;0.1;1) 0 0.832 0.044 0.253 0.061 0.253 0.061 0.945 0.020 0.973 0.007 1.938 0.106 1.281 0.106 23.882 0.541 25.412 0.626
57 69111 IAcc HighMeanRedVarICDIP COR50 0.84805 Adjust(20;0.1;1)0.5 0.828 0.045 0.264 0.063 0.218 0.054 0.942 0.022 0.973 0.008 1.293 0.077 1.274 0.101 23.610 0.610 25.584 0.686
58 69111 IAcc HighMeanRedVarICnoDIP COR0 0.84805 20 1 0.792 0.052 0.316 0.078 0.209 0.053 0.926 0.026 0.968 0.009 0.657 0.024 1.170 0.090 20.947 0.943 23.440 0.351
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59 69111 IAcc HighMeanRedVarICnoDIP COR100 0.84805 20 0 0.804 0.050 0.296 0.070 0.295 0.070 0.930 0.026 0.966 0.009 1.852 0.099 1.194 0.095 21.628 0.828 23.276 0.361
60 69111 IAcc HighMeanRedVarICnoDIP COR50 0.84805 20 0.5 0.799 0.050 0.302 0.072 0.260 0.064 0.929 0.025 0.967 0.009 1.251 0.075 1.183 0.097 21.386 0.831 23.350 0.348
61 69111 IAcc HistIC DIP COR0 0.84805 Adjust(20;0.1;1) 1 0.818 0.048 0.281 0.064 0.171 0.048 0.937 0.022 0.973 0.008 1.121 0.000 1.255 0.102 23.293 1.077 26.348 1.053
62 69111 IAcc HistIC DIP COR100 0.84805 Adjust(20;0.1;1) 0 0.829 0.044 0.258 0.056 0.257 0.056 0.944 0.018 0.971 0.008 2.400 0.111 1.278 0.111 24.007 0.839 25.437 0.824
63 69111 IAcc HistIC DIP COR50 0.84805 Adjust(20;0.1;1)0.5 0.825 0.046 0.267 0.058 0.220 0.050 0.942 0.018 0.972 0.008 1.756 0.088 1.268 0.106 23.655 0.913 25.671 0.904
64 69111 IAcc HistIC noDIP COR0 0.84805 20 1 0.780 0.056 0.324 0.076 0.208 0.058 0.909 0.035 0.966 0.010 1.121 0.000 1.144 0.097 20.482 0.996 23.409 0.367
65 69111 IAcc HistIC noDIP COR100 0.84805 20 0 0.801 0.051 0.295 0.066 0.293 0.067 0.924 0.029 0.965 0.009 2.309 0.103 1.188 0.103 21.551 0.802 23.243 0.353
66 69111 IAcc HistIC noDIP COR50 0.84805 20 0.5 0.792 0.054 0.308 0.069 0.256 0.062 0.919 0.031 0.965 0.009 1.708 0.081 1.169 0.103 21.078 0.860 23.295 0.384
67 69111 IAcc LowMeanICDIP COR0 0.84805 Adjust(20;0.1;1) 1 0.828 0.041 0.273 0.069 0.204 0.055 0.947 0.017 0.970 0.008 1.992 0.193 1.259 0.095 23.416 0.620 25.123 0.654
68 69111 IAcc LowMeanICDIP COR100 0.84805 Adjust(20;0.1;1) 0 0.834 0.039 0.264 0.067 0.264 0.067 0.950 0.015 0.969 0.009 3.264 0.222 1.272 0.101 23.732 0.438 24.811 0.485
69 69111 IAcc LowMeanICDIP COR50 0.84805 Adjust(20;0.1;1)0.5 0.832 0.040 0.267 0.066 0.237 0.059 0.950 0.016 0.970 0.009 2.629 0.207 1.268 0.103 23.594 0.480 24.913 0.554
70 69111 IAcc LowMeanICnoDIP COR0 0.84805 20 1 0.811 0.043 0.304 0.074 0.231 0.058 0.938 0.020 0.965 0.009 1.992 0.193 1.202 0.083 21.741 0.719 23.410 0.329
71 69111 IAcc LowMeanICnoDIP COR100 0.84805 20 0 0.818 0.041 0.291 0.068 0.291 0.068 0.942 0.018 0.965 0.009 3.208 0.223 1.217 0.088 22.132 0.579 23.279 0.325
72 69111 IAcc LowMeanICnoDIP COR50 0.84805 20 0.5 0.816 0.042 0.295 0.070 0.262 0.061 0.941 0.019 0.965 0.009 2.601 0.206 1.213 0.085 21.954 0.608 23.327 0.343
73 69111 IAcc LowMeanRedVarICDIP COR0 0.84805 Adjust(20;0.1;1) 1 0.833 0.040 0.275 0.066 0.233 0.058 0.952 0.011 0.966 0.009 1.995 0.044 1.254 0.094 23.226 0.321 24.082 0.361
74 69111 IAcc LowMeanRedVarICDIP COR100 0.84805 Adjust(20;0.1;1) 0 0.835 0.039 0.271 0.064 0.271 0.064 0.953 0.012 0.966 0.009 3.254 0.106 1.259 0.096 23.314 0.300 24.033 0.338
75 69111 IAcc LowMeanRedVarICDIP COR50 0.84805 Adjust(20;0.1;1)0.5 0.834 0.040 0.273 0.064 0.251 0.058 0.952 0.011 0.966 0.009 2.624 0.079 1.255 0.093 23.272 0.320 24.060 0.351
76 69111 IAcc LowMeanRedVarICnoDIP COR0 0.84805 20 1 0.825 0.042 0.289 0.067 0.245 0.061 0.950 0.012 0.963 0.010 1.995 0.044 1.217 0.087 22.453 0.462 23.294 0.342
77 69111 IAcc LowMeanRedVarICnoDIP COR100 0.84805 20 0 0.828 0.040 0.287 0.066 0.287 0.066 0.950 0.012 0.963 0.009 3.221 0.102 1.226 0.091 22.558 0.432 23.267 0.338
78 69111 IAcc LowMeanRedVarICnoDIP COR50 0.84805 20 0.5 0.826 0.041 0.289 0.067 0.266 0.061 0.950 0.012 0.963 0.009 2.606 0.075 1.221 0.089 22.503 0.448 23.283 0.349
79 69111 IAcc RedVarIC DIP COR0 0.84805 Adjust(20;0.1;1) 1 0.827 0.044 0.267 0.062 0.192 0.054 0.946 0.017 0.971 0.008 0.996 0.032 1.260 0.090 23.255 0.416 25.006 0.541
80 69111 IAcc RedVarIC DIP COR100 0.84805 Adjust(20;0.1;1) 0 0.832 0.041 0.260 0.063 0.260 0.063 0.948 0.016 0.970 0.008 2.269 0.091 1.273 0.091 23.565 0.380 24.797 0.504
81 69111 IAcc RedVarIC DIP COR50 0.84805 Adjust(20;0.1;1)0.5 0.829 0.042 0.262 0.062 0.227 0.057 0.947 0.017 0.970 0.008 1.630 0.074 1.266 0.092 23.388 0.394 24.886 0.508
82 69111 IAcc RedVarIC noDIP COR0 0.84805 20 1 0.809 0.046 0.302 0.070 0.225 0.062 0.939 0.019 0.967 0.009 0.996 0.032 1.198 0.085 21.700 0.629 23.406 0.310
83 69111 IAcc RedVarIC noDIP COR100 0.84805 20 0 0.815 0.044 0.291 0.066 0.291 0.067 0.941 0.019 0.965 0.009 2.203 0.087 1.207 0.083 22.052 0.575 23.304 0.331
84 69111 IAcc RedVarIC noDIP COR50 0.84805 20 0.5 0.812 0.046 0.292 0.065 0.256 0.059 0.940 0.019 0.966 0.009 1.600 0.072 1.203 0.083 21.906 0.580 23.360 0.316


