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Abstract  

 

In the last 15 years, the use of rail infrastructure by different train operating companies 

(shared railway system) has been proposed as a way to improve infrastructure utilization 

and to increase efficiency in the railway industry. Shared use requires coordination 

between the infrastructure manager and multiple train operators. Such coordination 

requires capacity planning mechanisms that determine which trains can access the 

infrastructure at each time, capacity allocation, and the access charges they have to pay, 

capacity pricing. 

The objective of this thesis is to contribute to the field of shared railway systems 

coordination by 1) developing a framework to analyze the performance of shared railway 

systems under alternative capacity pricing and allocation mechanisms, and 2) using this 

framework to understand the implications of representative capacity pricing and 

allocation mechanisms in representative shared railway systems. 

There are strong interactions between capacity planning and infrastructure operations in 

the railway industry; the operations on the infrastructure determine the available capacity 

in the system. As a consequence, the framework developed in this thesis to evaluate the 

performance of shared railway systems under alternative capacity pricing and allocation 

consists of two models: 1) a train operator model and 2) an infrastructure manager model. 

The train operator model is a financial model that anticipates how train operators would 

respond to the capacity pricing and allocation mechanisms and determine their demand 

for infrastructure use. The infrastructure manager model is a network optimization model 

that determines the optimal train timetable (infrastructure manager’s decisions) that 

accommodates the train operators’ demands for scheduling trains, considering the 

topology of the system, safety constraints, and other technical aspects of the 

infrastructure for shared railway systems. To be able to solve the train timetabling 

optimization problem in meaningful instances, this thesis develops a novel approximate 

dynamic programming algorithm based on linear programming that extends previous 

algorithms proposed in the literature to effectively solve large network optimization 

problems. 

This thesis then uses the train operator model to compare the operational decisions of 

train operators in shared railway systems with the operational decisions of even-handed 
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integrated railway companies. We show that train operators in shared railway systems 

make the same operational decisions as an integrated railway company when variable 

access charges reflect variable infrastructure manager’s costs to operate trains on the 

infrastructure. We also identify two cases in which the train operators may have 

incentives to deviate from the integrated railway systems’ operational decisions: 1) when 

the infrastructure manager needs to recover part of the infrastructure management fixed 

costs, or 2) when the railway system is congested. This motivates the choice of the two 

case studies of this thesis, one based on the Central Corridor in Tanzania, and the other 

one based on the Northeast Corridor in the US.  

We then show how to use the framework proposed in this thesis to analyze the trade-offs 

associated with the use of alternative mechanisms in these two cases. To our knowledge, 

this is the first effort to compare alternative mechanisms to price and allocate capacity in 

the same shared railway system. The results of this thesis show that there are important 

trade-offs associated with each mechanism and none of them is superior to the other on 

all dimensions. We thus recommend that system stakeholders carefully analyze the 

implications of alternative capacity pricing and allocation mechanisms before locking the 

system into one of them. This is particularly important today since several countries are 

currently restructuring their railway sector to allow shared use. We claim that the 

improved understanding of the system performance gained with the framework proposed 

in this thesis is important to be able to design adequate capacity pricing and allocation 

mechanisms that can mitigate the coordination problems of shared railway systems while 

maintaining the benefits of shared infrastructure in the railway industry.  

 

Thesis Chair: Joseph M. Sussman 

Title: JR East Professor of Civil and Environmental Engineering and Engineering 

Systems, Massachusetts Institute of Technology 

 

Thesis Co-supervisor: Mort D. Webster 

Title: Associate Professor of Energy Engineering, John and Willie Leone Family 

Department of Energy and Mineral Engineering, College of Earth and Mineral Sciences, 

Penn-State University 
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Chapter 1 - Introduction 
 

 

“The more we share, the more we have” – L. Nimoy (1995) 

 

 

Infrastructures create the opportunity for essential services that should be put in 

place to enable economic activity, economic growth, and development (Munnell, 1992; 

World Bank, 2008). However, investment in infrastructure is extremely expensive, so 

high demand and strong business cases are typically necessary to justify such 

investments. In the past, large infrastructure systems were vertically integrated, i.e., the 

same entity was in charge of both managing and operating the system. The lack of 

competition and efficiency incentives of those entities erodes the performance of the 

system and has motivated over the years the introduction of new institutional structures. 

Shared infrastructure systems are widely proposed today as to 1) minimize the amount of 

infrastructure required to serve societal needs, and 2) achieve high levels of utilization 

and help recover the costs of the very high capital-intensive infrastructure in service 

systems such as the electric power sector, telecommunications, or transportation.  

The greatest challenge for shared infrastructures is managing and coordinating 

access of competitive agents to the infrastructure (Gomez-Ibanez, 2003). The key 

question is determining an appropriate mechanism for deciding which agents can access 

the infrastructure at each time (capacity allocation) and the access price that each agent 

should pay (capacity pricing). The benefits of sharing infrastructure are particularly 

substantial in railway systems, where the infrastructure represents around 40-60% of the 

total final service cost (Gomez-Ibanez, 2003), creating the potential for sizable savings. 
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However, the analysis and comparison of alternative capacity pricing and allocation 

mechanisms is particularly complex in railway systems, because there are strong 

interactions between capacity planning and infrastructure operations (Krueger et al., 

1999; Pouryousef and Lautala, 2015).  

The objective of this thesis is to analyze and compare alternative mechanisms for 

capacity pricing and allocation in shared railway systems according to several 

performance metrics. The main contribution of this thesis is the development of a 

framework to systematically analyze and compare alternative capacity pricing and 

allocation mechanisms. The results of this research are expected to be valuable for 

railway regulators, but also to infrastructure managers (IMs) and train operators (TOs), 

allowing them to better understand the implications of these mechanisms at the system 

level and to better plan shared-use railway systems by the implementation of appropriate 

capacity pricing and allocation mechanisms. This understanding will be valuable for 

other shared infrastructure systems as well.  

1.1 Shared Railway Systems: Promises and Challenges 
 

Recently, governments have started promoting the use of shared railway systems. 

Up until 1988, all major railways both managed the infrastructure and operated the trains, 

i.e., they were vertically integrated (Drew, 2006). In contrast, in shared railway systems, 

multiple TOs utilize the same infrastructure, i.e., there is some level of vertical separation 

between infrastructure management and train operations. Examples of shared railway 

systems are the Northeast Corridor (NEC) in the US and the railway system in most 

European countries. Several countries in Asia and Africa are also opening access to their 

railway systems.  
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Proponents of shared railway systems stress that the use of shared railway systems 

allows 1) a more efficient use of expensive railway infrastructure and 2) the introduction 

of competition. Achieving a more efficient use of current infrastructure is positive not 

only in cases when resources to invest in infrastructure are limited, but also in cases 

where additional deployment of infrastructure is simply not possible. Recovery of 

infrastructure investment is one of the main reasons behind the implementation of open-

access in Tanzania (Pena-Alcaraz et al., 2014; World Bank, 2014). The difficulties in 

adding additional capacity, especially near the densely populated area of Penn Station in 

New York City, are one of the main reasons why multiple TOs share existing railway 

infrastructure in the NEC (Gardner, 2013). According to (Gomez-Ibanez, 2003), rail 

infrastructure is a natural monopoly but the train operations business is not. As a result, 

with shared use and open access, new competitors would be able to enter the train 

operations business with its consequent benefits for the end users. This is the main 

rationale behind the European Union railway packages (Perennes, 2014).  

As mentioned above, however, shared railway systems can only provide these 

benefits when there is a strong coordination between the IM and the TOs (Gomez-Ibanez, 

2003). Such coordination, in turn, requires capacity planning mechanisms that determines 

which trains can access the infrastructure at each time, capacity allocation, and the access 

price they need to pay, capacity pricing (Pena-Alcaraz, 2015). It is important to maintain 

transparency when the IM is also one of the TOs. 

There is a broad literature that has explored various capacity pricing and 

allocation mechanisms for railways (Affuso, 2003; Crozet, 2004; Gibson, 2003; Nash, 

2005; Perennes, 2014). In general, different countries have promoted different 
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mechanisms for capacity pricing and allocation, with differing objectives. Studies have 

tended to focus on one mechanism and evaluated it according to performance metrics 

unique to that mechanism, making the comparison across different mechanisms to price 

and allocate railway capacity quite difficult and the implications for other systems 

ambiguous.  

The objective of this research is to analyze and compare alternative mechanisms 

for capacity pricing and allocation in shared railway systems according to several 

performance metrics. We consider multiple criteria to analyze the performance of 

capacity pricing and allocation mechanisms from the perspective of the IM (cost 

recovery, capacity utilization), the TOs (access charges, trains scheduled), and the end 

users (number of services, passenger fares or freight shipping rates). This thesis 

hypothesizes that alternative capacity pricing and allocation mechanisms would perform 

well for some metrics, but there is no silver-bullet mechanism that would perform well in 

all the metrics for every shared railway system. A better understanding of these trade-offs 

in performance is of particular importance today (Drew and Nash, 2011; Nash, 2010), 

since several countries are restructuring their railway sector to allow shared use. This 

understanding would allow the regulators of each country to design the most appropriate 

capacity pricing and allocation mechanisms to unlock the benefits of shared use in their 

railway system. 

1.2 Literature Review 
 

As noted earlier, the objective of this thesis is to analyze and compare alternative 

mechanisms for capacity pricing and allocation in shared railway systems. This section 

presents an overview of the main capacity pricing and allocation mechanisms proposed in 
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the literature, and discusses the experiences in shared railway systems for different 

countries. This section also summarizes some lessons from other network industries that 

are then used as guiding principles in this research. 

1.2.1 Capacity Pricing and Allocation Mechanisms 

There are three main types of mechanisms to price and allocate capacity: 

negotiation-based, administrative-based, and market-based mechanisms. Under 

negotiation-based mechanisms, the TOs and the IM negotiate to determine which trains 

can access the infrastructure and at what price. The main drawback of negotiations is that 

they can be very complex and time consuming (Nash, 2003). In addition, they often result 

in non-transparent bilateral contracts that prevent adaptation to future needs or create 

barriers to new operators. Under administrative-based mechanisms, the regulator 

establishes access rules and oversees the capacity pricing and allocation process. The 

regulator punishes (e.g. fines) any deviation from the rules. The use of these types of 

mechanisms relies on the ability of the regulator to gather information from the TOs and 

the IM to eliminate information asymmetries. These mechanisms are also slow to adapt to 

new system needs. 

The shortcomings of negotiation-based and administrative-based mechanisms, 

together with the need for transparency and non-discriminatory access have motivated the 

introduction of market-based mechanisms for capacity pricing and allocation. In the 

NEC, for instance, with current bilateral infrastructure access contracts, 1) the price that 

each TO pays to access the infrastructure depends on the time at which the contract was 

signed (companies who signed their agreements when there was still plenty of excess 

capacity are paying much less than other companies to operate the same type of services), 
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2) access charges and slots are rigid (none of the companies want to lose their current 

slots and it is difficult to make room for new trains because multiple contracts would 

need to be renegotiated), and 3) the IM is not able to raise enough revenues to afford 

basic maintenance of the lines (this has contributed to the current backlog in maintenance 

in the NEC) (Gardner, 2013). As a result, the Federal Railroad Administration (FRA) 

requires all the railroads to agree on a market-based mechanism for pricing and allocating 

capacity to substitute for the current negotiation-based mechanism (PRIIA, 2008). 

According to (Gibson, 2003), there are two main types of market-based mechanisms for 

capacity pricing and allocation: 1) price-based and 2) capacity-based.  

Price-based mechanisms are those that determine the price at which capacity will 

be offered, and let TOs decide whether they are willing to access the infrastructure or not. 

Price-based mechanisms are typically complemented with priority rules that allow the IM 

to decide which train to schedule when there are conflicts (multiple TOs willing to pay 

the predetermined access charges). An example of a price-based mechanism would be a 

cost-allocation mechanism that assigns infrastructure-related cost proportionally to the 

volume of infrastructure use (Crozet, 2004; Nash, 2005; Lopez-Pita, 2014; Texeira and 

Prodan, 2014). The access charge could also be adjusted considering the TOs’ demand 

for scheduling trains (e.g. introducing congestion prices). These charges could also be 

adjusted with a base tariff that allows the IM to recover infrastructure costs that are fixed 

in nature.  

Capacity-based mechanisms are those that determine the amount of capacity that 

will be offered, and let the TOs reveal the price that they are willing to pay to use that 

capacity, e.g. an auction (Affuso, 2003; McDaniel, 2003; Newbury, 2003; Perennes, 
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2014; Stern and Turvey, 2003). There are multiple types of auctions: simple auctions in 

which TOs bid to get some predefined slots (either in a segment of the infrastructure or 

for the full path) or submit their desired timetable when they bid, and combinatorial 

auctions where the TOs’ bid depends on the result of the auction. Capacity-based 

mechanisms have been widely studied in the literature but have not yet been implemented 

on the railway system in any country. 

1.2.2 International Context 

As Table 1-1 shows, shared railway systems are not an isolated phenomenon in 

the NEC. Starting in 1991 several countries have started opening access to their railway 

systems. However, different countries have adopted very different mechanisms to price 

and allocate railway capacity. The US uses negotiation-based, Australia and India 

administrative-based and European Union countries market-based mechanisms to allocate 

capacity.  

Capacity pricing also varies from country to country. Although most IMs charge 

TOs the marginal cost of operating the train on the infrastructure (Nash, 2003), the 

calculation of the marginal cost of operating one more train on the infrastructure is based 

on several assumptions. As a result, (Nash, 2005; Lopez-Pita, 2014; Texeira and Prodan, 

2014) conclude that charging mechanisms in shared railway corridors are getting more 

heterogeneous. 

Furthermore, different countries design capacity planning mechanisms with 

different objectives and evaluate those using different metrics. As a result, the 

comparative performance of different mechanisms is still unclear (Drew and Nash, 2011; 

Nash, 2010). According to Nash (2003), “it is important to recognize that the concept of 
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multiple operators may be relatively new for railroads: This means that the institutional 

framework has not been developed, and the intellectual understanding may not be in 

place, to facilitate planning and operating the shared-use system.” The authors warn 

against moving ahead quickly with the design of pricing and allocation mechanisms 

before understanding the implications of such mechanisms for all stakeholders. 

Table 1-1 Railway systems international organization around the world (Source: author, based on 

(ADB, 2014; Agosta, 2015; Gomez-Ibanez and de Rus, 2006; Levy, 2015; Olievschi, 2013; Pozzo di 

Borgo, 2005; Sakamoto, 2012; Texeira and Prodan, 2014; The Economist, 2015)) 

Area Railway System Characteristics 

Africa 

Seven African countries present vertically-integrated railway systems (Algeria, Botswana, 

Egypt, Morocco, Namibia, South Africa, and Tunisia). 

In the rest of Africa, most railway systems were concessioned between mid-1990s and 2010 

(e.g. Burkina Faso, Cameroon, Ivory Coast, Mozambique, Senegal, Tanzania, and Togo). 

Starting in 2010, there has been a promotion of open-access and shared corridors, especially 

in those countries were concessions failed (e.g. Guinea and Tanzania) 

North and 

South 

America 

Canada and the US present vertical integration in their freight railway system. In both 

countries, private freight operators have to accommodate passenger operators on the tracks. 

Other countries like Cuba and Honduras also have a vertically-integrated railway system. 

Argentina has recently announced that the railway system will be nationalized and vertically 

integrated by the end of 2015.  

The railway system is currently vertically separated and concessioned in most countries in 

Latin America (e.g. Argentina, Brazil, Chile, Colombia, and Mexico). 

In the US there is an important shared railway system, the NEC. A similar shared system has 

been proposed now in California (blended system) to accommodate high-speed rail (HSR) 

and commuter services. 

Asia 

The railway system is vertically integrated in countries like China, India, Indonesia, Japan, 

Malaysia, etc.  

Starting in 2013, Indian railways changed the regulation to allow for open access and shared 

use in the new dedicated freight corridor. There is also open-access in Russia and 

Kazakhstan (freight cars only). Mongolia and Uzbekistan are also implementing open-access 

railway policies.   

Europe 

Most European countries have implemented open-access and shared railway use for freight 

following the EU first railway package of 1991.  

The passenger railway system in Europe is also vertically separated in most countries, also 

moving to open-access and shared use. By 2014 only Italy already had competition on the 

tracks, with two competing HSR companies offering services, although other countries like 

Romania, Spain, and Ukraine are also moving towards the introduction of competition.  

Oceania 

The railway system in New Zealand was renationalized and vertically integrated in 2008.  

The railway system in Australia is vertically separated and operates with open-access and 

shared use policies. 
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The power sector, the telecommunication sector, and the aviation industry have 

made significant progress sharing infrastructure as compared to the railway industry. The 

experience in these networks show that: 1) marginal access pricing have significant 

advantages over other capacity pricing mechanisms in most circumstances, 2) capacity 

pricing and allocation are complementary problems, and 3) price-based and capacity-

based mechanisms often yield equivalent results. First, marginal access pricing ensures 

that vertically-separated agents’ operational decisions match the decisions of an 

integrated company. In addition, (Perez-Arriaga and Olmos, 2009; Perez-Arriaga, 2013; 

Rubio, 1999) show that marginal access pricing allows the IM to recover fixed 

infrastructure costs when there is no lumpiness in infrastructure investment, no 

uncertainty, no information asymmetry, and when the operators do not have market 

power. Note that those conditions never occur in reality. However, the economic results 

are still useful when there are small deviations from these conditions (e.g. operators do 

not have strong market power). Second, capacity pricing and capacity allocation are two 

sides of the same coin in shared corridors. For instance, if access charges are low, the 

demand may exceed the available capacity, as occurred in US airports after the Airline 

Deregulation Act of 1978 (Vaze, 2011). In these cases, a capacity allocation mechanism 

is needed. Conversely, the number and type of slots available affect the operators’ 

willingness to pay to access the infrastructure (Laffont and Tirole, 1993; Laffont and 

Tirole, 2000; Vazquez, 2003). Third, there is no difference between price-based and 

capacity-based mechanisms to price and allocate capacity if there is perfect information 

and no uncertainty according to (Weitzman, 1974). However, under imperfect 
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information and uncertainty the specific design influences the performance of the system 

(Czerny, 2010). 

As mentioned before, however, there is an important difference between the 

railway industry and other network industries. In shared railway systems, capacity 

planning at the strategic level is tightly coupled with infrastructure operations at the 

tactical level (Krueger et al., 1999; Pouryousef and Lautala, 2015). The understanding of 

the implications of pricing and allocation mechanisms thus requires 1) determining the 

TOs’ demand for scheduling trains and 2) designing the optimal train timetable to 

determine whether the TOs’ demand for scheduling trains can be accommodated on the 

infrastructure. Consequently, it is difficult to predict whether the conclusions from other 

network industries will apply in this case. This thesis addresses these questions and uses 

the lessons from other network industries as guiding principle for the research, when 

appropriate. 

1.3 Thesis Contributions 
 

The objective of this thesis is to contribute to the field of shared railway systems 

coordination by 1) developing a framework to analyze the performance of shared railway 

systems under alternative capacity pricing and allocation mechanisms, and 2) using this 

framework to understand the implications of representative capacity pricing and 

allocation mechanisms in representative shared railway systems.  

There are strong interactions between capacity planning and infrastructure 

operations in the railway industry; the operations on the infrastructure determine the 

available capacity in the system. The framework developed in this thesis to evaluate the 

performance of shared railway systems under alternative capacity pricing and allocation 
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consists of two models: 1) a financial model that anticipates how TOs would respond to 

the capacity pricing and allocation mechanisms and determine their demand for 

infrastructure use, and 2) a network optimization model that determines the optimal train 

timetable (IM’s decisions) that accommodates the TO demand for scheduling trains, 

considering the topology of the line, safety constraints, and other technical aspects of the 

infrastructure. We use this framework to analyze the trade-offs associated with the use of 

alternative mechanisms in the context of the national rail system for Tanzania, which is 

implementing a new open-access model, and in the context of the NEC in the US, where 

the FRA is now trying to develop a new capacity pricing and allocation mechanism. 

The main contributions of this thesis are: 

1. Formulation of a TO Model to anticipate the response of TOs to capacity 

pricing. 

2. Formulation of the train timetabling problem (IM Model) for capacity 

allocation in shared railway systems to model interactions between capacity 

planning and infrastructure operations.  

3. Development of an approximate dynamic programming algorithm based on 

linear programming to be able to solve the train timetabling problem in 

relevant instances.  

4. Identification of cases in which traditional capacity pricing mechanisms result 

in sub-optimal operational decisions, with an illustration of this problem in 

case studies based on the Central Corridor in Tanzania and the Northeast 

Corridor in the US.  
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5. Comparison of two representative capacity pricing and allocation mechanisms 

in those systems, concluding that there are important trade-offs between them.  

The first contribution of this thesis is the formulation of a financial model to 

capture how rational TOs would behave under a capacity pricing and allocation 

mechanism, given the institutional and regulatory framework and the technical 

characteristics of the specific type of railway service that they provide (see Chapter 2). 

The model analyzes three main operational decisions: 1) the TO’s demand for scheduling 

trains, 2) the TO’s willingness to pay to access the infrastructure, and 3) the passenger 

fare or freight shipping rate they would charge to end users. The first two operational 

decisions are then used as inputs for the IM Model. The model proposed is simple by 

design. The main objective is to allow the regulator and the IM to anticipate the response 

of the TOs to alternative capacity pricing and allocation mechanisms. More detailed 

models would rely on extensive information about the TOs that is not readily available to 

the regulator or the IM (Levy et al., 2015).  

The results obtained in Chapter 2 show that while the estimates of the fares 

charged to end users are sensitive to the demand curve and elasticity assumptions; the 

TOs’ willingness to pay for access estimates are robust to model assumptions. This 

suggests that the level of detail of the model is adequate to capture the interactions 

between the TOs and the IM. This model analyzes each TO independently of other TOs. 

Once we know all of the TOs’ demands for scheduling trains, we need to determine if 

there is capacity available to schedule all the services.  

The second contribution of this thesis is the formulation of a train timetabling 

model for shared railway systems. The train timetabling problem has been widely studied 
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in the literature (Cacchiani et al., 2010; Caimi et al., 2009; Caimi et al., 2011; Caprara et 

al., 2002; Caprara et al., 2011; Castillo et al., 2009; Cordeau et al., 1998; Ghoseiri et al., 

2004; Liebchen, 2008; Liebchen and Peeters, 2009; Pena-Alcaraz et al., 2011; Zhou and 

Zhong, 2005). However, we argue in Chapter 3 that traditional train timetabling models 

cannot be used to analyze capacity planning mechanisms in shared railway systems for 

three reasons. First, most models assume a fixed number of trains to be scheduled on the 

infrastructure. However, the number of trains to schedule is the main decision variable of 

the capacity allocation problem in shared railway systems. Second, most approaches also 

assume a single TO that tries to schedule trains. This TO could iteratively solve the train 

timetabling problem, introducing small modifications in each train’s desired timetable 

until the resulting timetable meets its needs. In shared railway systems, in contrast, 

multiple TOs request access to the infrastructure and the TO is informed afterwards 

whether its train can be scheduled or not. We argue that consequently, TOs have 

incentives to be flexible in shared railway systems to ensure that most of their trains get 

scheduled in the first iteration. Third, most of these models assume that all trains follow 

the same path. Again, this assumption does not hold when the nature of the services 

operated in the shared railway system is different. For example, commuter services are 

typically scheduled around metropolitan areas, whereas intercity and freight operators 

offer services between cities.  

Chapter 3 of this thesis presents a train timetabling problem formulation for 

shared railway systems that explicitly considers a variable number of trains, with large 

flexibility margins, traveling along different paths. This approach 1) introduces a discrete 

variable that indicates whether a train can be scheduled or not, 2) uses flexibility margins 
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to ease conflicts, making fast trains travel slowly when there are slow trains ahead and 

making slow trains wait at sidetracks when fast trains overtake them, and 3) specifies 

safety constraints (spacing of the trains) for each train path.  

These three additional considerations make the train timetabling problem for 

shared railway corridors very difficult to solve. From a computational standpoint, the size 

of the model increases rapidly (more than linear) with the number of stations and the 

number of trains to schedule. As a result, commercial solvers are only able to solve the 

problem for a relatively small number of trains. Furthermore, most of the techniques 

developed in the train timetabling literature are designed for traditional single-operator 

train timetabling problems and cannot be used in this case. Most classical decomposition 

approaches do not work because of the large number of discrete variables needed to 

specify which trains are scheduled and the order in which trains go through each station. 

Any technique that exogenously fixes train order cannot be used here because of the large 

flexibility margins and because train spacing constraints are specific to each individual 

train.  

As a result, this thesis proposes an alternative class of solution algorithms using 

approximate dynamic programming techniques (Bertsekas and Tsitsiklis, 1996; 

Bertsekas, 2006; Powell, 2007) to be able to solve the problem in meaningful instances. 

The third contribution of this thesis is the development of a novel Q-factor Adaptive 

Relaxed Linear Programming (QARLP) algorithm that extends previous algorithms 

developed by (Farias and Van Roy, 2003; Farias and Van Roy, 2004). This algorithm 

allows us to decompose and solve large problems that are intractable with MILP 

commercial solvers while still converging to a solution within an optimality gap (Pena-
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Alcaraz et al., 2015a). This is the main contribution of this thesis because this algorithm 

makes it possible to analyze price-based and capacity-based mechanisms considering 

interactions between infrastructure operations and capacity available.  

The fourth contribution of this thesis spans Chapters 2, 4, and 5. Chapter 2 

compares the operational decisions of an integrated railway company with the operational 

decisions of vertically-separated TOs under different institutional and regulatory 

environments. It shows that both vertically-separated perfectly-competitive and 

vertically-separated regulated monopolistic TOs would make the same operational 

decisions as an integrated railway company when variable access charges reflect variable 

IM costs to operate trains on the infrastructure. Not surprisingly, the capacity pricing 

literature (Lopez-Pita, 2014; Nash, 2003; Texeira and Prodan, 2014) recommends the use 

of access charges equal to the infrastructure marginal costs of operating the train. 

However, Chapter 2 also shows that this approach cannot be used in two cases: 1) when 

the IM needs to recover part of the infrastructure management fixed costs, or 2) when the 

railway system is congested (overcrowded or overloaded with traffic). Most railway 

systems fall into at least one of these two categories.  

We illustrate the first case in Chapter 4 in the case of the Central Corridor in 

Tanzania. The Central Corridor goes from the port (Dar es Salaam) to an inland container 

terminal (Isaka) that serves as a dry port for Rwanda, Burundi, Uganda, and the Eastern 

portion of Democratic Republic of Congo. The infrastructure is owned by RAHCO, a 

publicly owned company. TRL is the only current TO; it operates around six trains per 

week. Although the corridor is single track, there is plenty of spare capacity that could be 

used by multiple private companies that have expressed interest in starting operating new 
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services between Dar es Salaam and Isaka (Pena-Alcaraz et al., 2014; World Bank, 

2014). Due to the low number of trains that operate in the system, the infrastructure 

maintenance costs do not increase (for all practical purposes) when more trains are 

operated. As a result, maintenances costs are assumed fixed.  

If access charges are set following the traditional approach (access charges equal 

to the variable costs of managing and maintaining infrastructure), TOs would pay zero (0) 

access charges to access the infrastructure and the IM would not collect any revenues. 

However, it is critical to ensure that the IM is able to raise revenues to maintain the 

infrastructure and keep the system operational. As a result, the IM has to allocate 

infrastructure fixed costs among TOs through the access charges. Chapter 4 shows that 

the introduction of (non-zero, in this case) variable access charges distorts the operational 

decision of TOs. Chapter 4 then discusses how to avoid this problem with other price-

based mechanisms such as the introduction of fixed access charges and how to allocate 

infrastructure costs among different types of TOs. Chapter 4 also analyzes the potentials 

of capacity-based mechanisms and shows that they would not allow the IM to recover 

infrastructure costs. Because the Central Corridor is currently not congested, capacity 

pricing and allocation can be solved independently. In other words, it is easy to analyze 

each TO independently because there is enough spare capacity to schedule all the trains. 

Chapter 5 discusses how to analyze alternative capacity pricing and allocation 

mechanisms in the context of the NEC, a very congested shared railway system. In this 

case, we need both the TO Model to anticipate how each TO will respond to the 

mechanism and the IM Model to determine the final allocation of infrastructure capacity. 

The main spine of the NEC stretches from Boston, MA to Washington, DC. This segment 



 35 

is shared by several passenger and freight TOs: an intercity passenger TO that operates 

around 150 trains per day, eight commuter TOs that operate over 2,000 trains per day, 

and several freight TOs that operate around 70 trains per day. Until now, capacity pricing 

and allocation in the corridor has been managed via bi-lateral contracts negotiated 

between the IM and the TOs. However, the limitations of this negotiation-based 

mechanism motivated the FRA’s request to Amtrak and the rest of the commuters and 

freight railway companies to agree on a new capacity pricing and allocation mechanism 

by the end of 2015 (PRIIA, 2008). Chapter 5 analyzes the performance of the system 

under two proposed capacity pricing and allocation mechanisms: a price-based (cost-

allocation and priority-rule) mechanism proposed by Amtrak (Gardner, 2013; NEC 

Commission, 2014) and a capacity-based (auction) mechanism (Affuso, 2003; Perennes, 

2014). 

The results of Chapter 5 show that the capacity-based mechanism considered 

could result in almost 20% more IM cost recovery and 20% more trains scheduled as 

compared to the price-based mechanism considered in the NEC. The price-based 

mechanism, on the other hand, ensures higher profits for the TOs, making them more 

resilient to uncertainty in end users’ transportation demand. However, this mechanism is 

not very resilient to uncertainty in infrastructure capacity availability. Under the capacity-

based mechanism, NEC intercity TOs are in a better position than commuter TOs to 

access the tracks with current levels of service. The priority level of each TO is a design 

choice in price-based mechanisms. This choice, however, has important implications for 

NEC commuter and intercity passengers and TOs, especially if the IM does not have 

access to sophisticated methods to solve the train timetabling problem. To our 
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knowledge, this is the first effort to compare a price-based mechanism and a capacity-

based mechanism in the same shared railway system. The results show that there are very 

important trade-offs among them and that none of them is superior to the other in all 

dimensions.  

1.4 Thesis Organization 
 

The main body of this thesis consists of five chapters: Chapter 2 presents the TO 

Model used 1) to compare the operational decisions of an integrated railway company 

with the operational decisions of vertically-separated TOs considering the institutional 

and regulatory environments and the technical characteristics of the service, and 2) to 

anticipate the TO response to alternative capacity pricing and allocation mechanisms.  

Chapter 3 describes the IM Model. It presents first the formulation used to 

determine the optimal train timetable in shared railway systems. This model considers 

TOs’ demand for scheduling trains and determines the optimal train timetable; i.e., the 

optimal IM decision regarding which trains to schedule and their timetable. Chapter 3 

then describes the algorithm proposed to solve the train timetabling problem in large-

scale systems and analyzes the results obtained in different cases.  

Chapter 4 uses the TO Model to analyze alternative capacity pricing mechanisms 

in the context of the Central Corridor in Tanzania. This chapter discusses the main policy 

implications of this research for shared railway systems where the IM has to assign fixed 

costs among different types of railway services. 

Chapter 5 uses the TO and the IM Models to analyze and compare alternative 

capacity pricing and allocation mechanisms in the context of the NEC. This chapter 
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discusses the main policy implications of this research for railway systems in congested 

shared railway systems.  

Chapter 6 concludes this work by summarizing our finding and the main 

conclusions of our research. It also discusses the main policy implications and future 

directions of this research. 

We now begin with a discussion of the TO Model and the TO response to 

capacity pricing and allocation mechanisms within different institutional and regulatory 

environments.  
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Chapter 2 - The Train Operator Problem: Determining Train 

Operator Response to Alternative Capacity Pricing and 

Allocation Mechanisms 
 

 

“All models are wrong, but some are useful” – G.E.P. Box (1987)  

 

 

The introduction of shared railway systems requires the design and 

implementation of capacity pricing and allocation mechanisms. Chapter 1 shows that 

there are several alternative mechanisms to price and allocate railway capacity. The 

objective of this thesis is to analyze and compare such mechanisms. The improved 

understanding of the implications of different capacity pricing and allocation mechanisms 

would allow the stakeholders of shared railway systems to design and choose the 

mechanism that best fits their system needs and overarching goals. This chapter argues 

that while there is an extensive literature focused on the relation between capacity pricing 

and infrastructure costs, the response of train operators (TOs) to capacity pricing and 

allocation mechanisms is still unclear. The first step to analyze capacity pricing and 

allocation mechanisms is thus to anticipate how TOs respond to capacity pricing.  

This chapter proposes the use of a TO financial model (TO Model) to capture the 

interrelation between different TO’s operational decisions. The two main contributions of 

this chapter are 1) to demonstrate that the TO Model responses are robust to a broad set 

of model inputs; and 2) to compare the operational decisions of an integrated railway 

company with the operational decisions of vertically-separated TOs considering the 

institutional and regulatory environments and the technical characteristics of the service. 

The operational decisions of integrated railway companies are then used as a benchmark 
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to identify necessary conditions under which profit maximizing TOs would make 

operational decisions that also maximizes social welfare. An early version of this work is 

accepted for publication in Transportation Research Record (Levy, Pena-Alcaraz, Prodan, 

and Sussman, 2015). 

The rest of the chapter is structured as follows: Section 2.1 reviews the main 

studies that analyze how capacity pricing and allocation affects the performance of shared 

railway systems, summarizes the contributions of this chapter, and discusses the 

modeling assumptions. Section 2.2 presents the TO Model and introduces the cases in 

which the model will be discussed. Section 2.3 analyzes how the TOs’ estimated 

response changes with any changes in the TO Model inputs. Section 2.4 then uses the TO 

Model to compare the responses of TOs in different cases. All the results of this chapter 

are illustrated with examples based on the Northeast Corridor (NEC) in the US. Section 

2.5 concludes with some highlights and recommendations. 

2.1 Capacity Pricing and Allocation in Shared Railway Systems 
 

This section summarizes the literature on capacity pricing and allocation in shared 

railway systems, presents the main contributions of this chapter, and finishes presenting a 

discussion of the main modeling assumption. 

2.1.1 Literature Review 

This section summarizes the main findings of two different bodies of literature: 

one that studies capacity pricing in the railway industry from the perspective of the 

infrastructure manager (IM) and other that studies the financial performance of TOs.  

The capacity pricing literature in the railway industry focuses on the potentials for 

infrastructure cost recovery (Nash, 2005; Texeira and Lopez-Pita, 2012; Lopez-Pita, 
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2014; Texeira and Prodan, 2014). However, there are two main challenges to being able 

to relate infrastructure costs with capacity utilization in the railway industry: the nature of 

railway infrastructure costs and the nature of railway capacity. First, (NEC Commission, 

2014) shows that different types of infrastructure costs vary with different operational 

variables (trains, trains-miles, gross-ton-miles, frequency of service, etc.). Second, the 

available capacity in the railway industry depends on infrastructure operations (Krueger 

et al., 2009; Pouryousef and Lautala, 2015). To understand infrastructure operations we 

need to be able to anticipate TOs operational decisions. According to (Nash et al., 2004; 

Drew and Nash, 2011), the impact of capacity pricing and allocation mechanisms on the 

TO operational decisions are still inconclusive (Nash et al., 2004; Drew and Nash, 2011).  

There is also a broad literature that describes the TO revenues and costs for 

different operational decisions (Belli et al., 2001; Martland, 2011; PPIAF et al., 2011). 

These financial models pay little attention to access charges, since the need to establish 

capacity pricing and allocation mechanisms on the railway systems is still relatively new 

(Nash, 2003). Moreover, these models are usually descriptive, and they are rarely used to 

estimate TO operational decisions. For these reasons, TO financial models have not yet 

been used to anticipate how TOs respond to different pricing mechanisms. This literature 

gap prevents us from understanding the implications of capacity pricing and allocation 

mechanisms for shared railway systems. 

2.1.2 Chapter Contributions 

The objective of this chapter is to help fill the identified literature gap by 1) 

developing a TO financial model (TO Model) that explicitly models the relation between 

TO operational decisions and access charges; 2) analyzing the sensitivity of the results of 
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the model to changes in the model inputs; and 3) proposing the use of the model to 

compare the behavior of TOs within different institutional and regulatory environments.  

First of all, this chapter proposes a TO Model that discusses the TOs’ response to 

alternative capacity pricing and allocation mechanisms as a function of the regulatory 

environment, the competitive landscape, and the characteristics of the type of railway 

service that each TO offers. The TOs’ response is characterized by: 1) the passenger fare 

or freight shipping rate charged to end users; 2) the number of trains operated; and 3) the 

access charges paid to the infrastructure manager to access the infrastructure. We call 

these variables operational decisions.  

Second, the objective of the TO Model is to allow regulators and IMs to anticipate 

the TO demand for scheduling trains and their ability to pay to access the infrastructure. 

In that sense, the TO Model is designed to rely only on public information about the TOs 

that is already available to the regulators and IMs. We need to be sure, though, that the 

estimates obtained without detailed TO information are accurate. This chapter carries out 

sensitivity analyses and studies the results obtained with different model inputs. We show 

that the TO demand for scheduling trains and the TO ability to pay to access the 

infrastructure are very robust to model inputs. In other words, the TO demand for 

infrastructure use does not change much with small changes in the inputs of the model 

(cost and demand estimates). This suggests that the level of detail of the model is 

adequate to capture the interactions between the TOs and the IM. 

Third, we use the TO Model to analyze the operational decisions of integrated 

railway companies. We use these results to compare those obtained within different 

institutional and regulatory environments. The results show that the operational decisions 
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of a profit-maximizing TO match the decisions of an even-handed integrated railway 

company when variable access charges reflect variable IM costs to operate trains on the 

infrastructure. This finding justifies the use of traditional mechanisms adopted in most 

countries to price and allocate capacity. However, the results also show that there are two 

cases in which these mechanisms cannot be used: 1) when the IM needs to recover part of 

the infrastructure management fixed costs; and 2) when the railway system is congested. 

Unfortunately, most railway systems fall into at least one of these two cases. This 

motivates the choice of the two cases studied later in this thesis: Chapter 4 studies the 

case of Tanzania where the IM needs to recover infrastructure costs and Chapter 5 studies 

the NEC, the most congested railway system in the US. 

2.1.3 Model Assumptions 

The TO Model proposed in this chapter assumes that: 1) TOs make operational 

decisions with the objective of maximizing profits; 2) each train serves a single origin-

destination (OD) pair; and 3) different types of services are not substitutable. This section 

explains why we make these assumptions, how we use them, and how we expect these 

assumptions to affect the results.  

The first assumption is necessary to determine TO operational decisions given the 

main revenue and cost streams. This is a standard assumption to replicate the decision 

process followed by private companies and is consistent with the privatization of TOs 

that has followed the implementation of many shared railway systems. This assumption 

allows us to determine the most likely TO operational decisions given revenues and costs. 

The second assumption is used to compute the demand transported, relating the 

end users’ demand for transport with the train capacity. We assume a single OD pair 
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because the data that TOs publish in their annual financial reports typically aggregates all 

the revenues obtained in the same corridor. As a result, we only have information about 

the fares and distance of an average trip. The impact of this assumption in the results 

depends on the nature of the services. In the NEC, where most trips occur between 

Boston and New York City, and New York City and Washington DC, this assumption 

leads us to underestimate the capacity of the trains. If most trips share a segment (as it 

does with trips from New York City to Philadelphia and New York City to Washington 

DC) this assumption would lead to overestimating train capacity. This bias could be 

corrected by (in order of increased complexity): adjusting the final number of trains in 

cases in which the capacity of the train is binding, adjusting the train capacity used as an 

input of the model, or including information of all OD pairs.  

The third assumption is used to be able to solve the TO Model independently for 

different types of services. If the TOs provides partially substitutable services (e.g. the 

case Amtrak’s high-speed service Acela and Amtrak’s regional service in the NEC that 

serve the same OD pairs with different speeds) then the access charges, number of 

services, and fares of these services should be determined at the same time considering 

all the costs and revenues related to these services in the TO Model. Otherwise, the end 

user’s demand may be overestimated.  

Note again that we use the TO Model to anticipate the TOs’ response to capacity 

pricing and allocation. In that sense, we are mostly interested in estimating the TO 

demand for scheduling trains and the TO ability to pay for access that we use as inputs of 

the IM Model in Chapter 3. Section 2.3 shows that these variables are very robust to 

model inputs. This finding suggests that the level of detail of the TO Model is adequate 
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for the purpose of this thesis. More sophisticated TO Models are necessary to address 

other research questions that require higher level of detail in the understanding of the TO 

operations or the TO–end user interactions.  

2.2 Train Operator Model 
 

The objective of this section is to discuss the operational decisions of rational TOs 

under a capacity pricing and allocation mechanism, given the institutional and regulatory 

framework and the technical characteristics of the specific type of railway service that 

they provide. As discussed above, there are three main operational decisions that TOs 

initially control: 1) the passenger fare or freight shipping rate charged to end users; 2) the 

number of trains operated; and 3) the access charges paid to the infrastructure manager to 

access the infrastructure.  

As was mentioned before, we assume that rational TOs are profit maximizing. In 

other words, they make operational decisions with the objective of maximizing profits. 

We also analyze whether TOs are medium term sustainable agents, i.e., whether they are 

able to ensure positive cash flows in the medium term. TO profits and cash flow can be 

determined by analyzing TO revenues and costs for a given number of trains. In the rest 

of the chapter we use capital letters to denote operational decisions (decision variables) 

and lower-case letters to denote model inputs (parameters):  

𝑁   number of trains services that the TO would like to schedule. 

There are three main types of costs that TOs face:  

𝐴𝐶   the cost of accessing the tracks or access charges if the TO schedules any trains. 

This cost often has a fixed and a variable component: 𝐴𝐶(𝑁 ≠ 0) = 𝐴𝐶𝑓 +
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𝐴𝐶𝑣 ⋅ 𝑁. 

𝑓𝑐  fixed costs, such as the cost of buildings and the cost of purchasing cars and 

locomotives in the medium term. 

𝑣𝑐  variable costs of operating a train, such as fuel, personnel, train maintenance, 

and train lease, if trains are being leased. 

TOs face fixed costs independently of any operational decision. These costs do 

not vary over the medium term. Variable costs depend on the number of trains operated. 

TOs know variable cost per train before they make operational decisions. Finally, TOs 

face access charges if they decide to schedule trains. The exact value of the access 

charges depend on the level of service. In general, TOs also know how much they will be 

charge as a function of their demand. This does not happen in the Netherlands, where the 

IM determines access charges once it knows all the trains scheduled (Texeira and Lopez-

Pita, 2012). Although determining access charges is a good way to ensure that all 

infrastructure costs are recovered; this practice is not recommended neither implemented 

in most countries because it increases the uncertainty faced by TOs. 

The two main sources of revenue come from transporting users (cargo or 

passenger) and from the government (subsidies). The revenues obtained from 

transporting users can be determined by multiplying the passenger fare or freight 

shipping rate by the demand transported. The demand transported is limited by either the 

capacity (reduced by a reasonable average loading factor) of the trains or by end users’ 

demand. According to literature, end users’ transportation demand depends 

fundamentally on the fare, the frequency of the service, and the travel time (Bebiano et 

al., 2014). While intercity passengers are typically more sensitive to the fare and the 
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travel time, commuter passengers are typically more sensitive to the fare and the 

frequency, and freight users tend to be sensitive to the fare. The frequency of the service 

is inversely proportional to the number of services when we assume a single OD pair and 

uniform services. Government subsidies depend in general on the demand transported 

too. 

𝐹   passenger fare or freight shipping rate. 

𝑠   government subsidies. 

𝑐  capacity of the trains (maximum number of passengers or net tons). 

𝑑  end users’ demand for transportation. 

𝑡𝑡  travel time. 

Summarizing, the costs and revenues of a TO can be determined using the 

following formulas: 

𝑐𝑜𝑠𝑡(𝑁, 𝐴𝐶) = 𝑓𝑐 + 𝑣𝑐 ⋅ 𝑁 + 𝐴𝐶(𝑁)  (2.1) 

𝑟𝑒𝑣𝑒𝑛𝑢𝑒𝑠(𝐹, 𝑁) = 𝑠(𝐹, 𝑁) + 𝐹 ⋅ 𝑚𝑖𝑛(𝑑(𝐹, 𝑁, 𝑡𝑡), 𝑁 ⋅ 𝑐)  (2.2) 

Note that some of these variables may be pre-determined or conditioned by regulations. 

For instance, the fare of commuter services is typically set by the government. Likewise, 

access charges under price-based mechanisms are fixed inputs for TOs.  

In order to characterize how TOs operate, we will use equations (2.1) and (2.2) to 

relate the TO operational decisions. For instance, given the access charges (AC), the TO 

demand for scheduling trains and the fares charged to the end users can be determined 

maximizing profits, max
𝑁,𝐹

[𝑟𝑒𝑣𝑒𝑛𝑢𝑒𝑠(𝐹, 𝑁) − 𝑐𝑜𝑠𝑡𝑠(𝑁)]: 

max
𝑁,𝐹

[𝑠(𝐹, 𝑁) + 𝐹 ⋅ min(𝑑(𝐹, 𝑁, 𝑡𝑡), 𝑐 ⋅ 𝑁) − 𝑓𝑐 − 𝑣𝑐 ⋅ 𝑁 − 𝑎𝑐(𝑁)]  (2.3) 
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Fixed costs do not depend directly on the number of trains operated or the fare. If 

the subsidy does not depend directly on the number of trains then equation (2.3) is 

equivalent to: max
𝑁,𝐹

[𝐹 ⋅ min(𝑑(𝐹, 𝑁, 𝑡𝑡), 𝑐 ⋅ 𝑁) − 𝑣𝑐 ⋅ 𝑁 − 𝑎𝑐(𝑁)]. 

Since the number of trains and the fares depend on the access charges, the access 

charges can be determined implicitly using sensitivity analysis. In general, the TO 

maximum willingness to pay to access the infrastructure can be determined considering 

that all variable costs should not exceed variable revenues (to ensure that the TO is 

interested in operating trains). The function that equation (2.3) maximizes depends on the 

number of trains. We know that if the TO decides not to operate any trains, the TO will 

not have any variable costs and it will not have to pay to access the infrastructure. 

Similarly, it will not receive any revenues from operations. However, in the medium 

term, the TO faces fixed costs 𝑓𝑐 independently of the decision of how many trains 𝑁 to 

operate and may sometimes receive a subsidy 𝑠(0) (typically 𝑠(0) = 0). As a result, the 

TO faces a profit of 𝑠(0) − 𝑓𝑐 when it does not operate any train. As a result, the TO 

would never operate a number of trains that results on smaller profits than 𝑠(0) − 𝑓𝑐, 

because it would be better off simply not operating any trains. In other words, the 

maximum of equation (2.3) can never be lower than 𝑠(0) − 𝑓𝑐 . As a result, the TO 

maximum willingness to pay to access the infrastructure as a function of 𝐹, 𝑁 is presented 

in equation (2.4).  

𝐴𝐶𝑣 ⋅ 𝑁 ≤ 𝜕𝑠(𝐹, 𝑁)
𝜕𝑁

⁄ ⋅ 𝑁 + 𝐹 ⋅ min(𝑑(𝐹, 𝑁, 𝑡𝑡), 𝑐 ⋅ 𝑁) − 𝑣𝑐 ⋅ 𝑁

𝐴𝐶𝑓 ≤ max(0, 𝑠(𝐹, 𝑁) + 𝐹 ⋅ min(𝑑(𝐹, 𝑁, 𝑡𝑡), 𝑐 ⋅ 𝑁) − 𝑣𝑐 ⋅ 𝑁 − 𝐴𝐶𝑣 ⋅ 𝑁)
  (2.4) 

The maximum willingness to pay to access the infrastructure for which the TO is 

sustainable in the medium term can be determined ensuring that the resulting cash flow is 
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positive, 𝑟𝑒𝑣𝑒𝑛𝑢𝑒𝑠 − 𝑐𝑜𝑠𝑡𝑠(𝐴𝐶) ≥ 0 . Although capital expenditures (CAPEX) and 

financing costs are also required to compute cash flows, we will initially assume that TOs 

have almost no CAPEX and negligible financing costs. As a result, the TOs willingness 

to pay to access the infrastructure as a function of the number of trains and the fares can 

be calculated using equation (2.5): 

𝐴𝐶(𝑛) ≤ 𝑠(𝑓, 𝑛) + 𝑓 ⋅ min(𝑑(𝑓, 𝑛, 𝑡𝑡), 𝑐 ⋅ 𝑛) − 𝑓𝑐 − 𝑣𝑐 ⋅ 𝑛  (2.5) 

The implications of equations (2.3), (2.4), and (2.5) depend on the context in 

which TOs operate. The context is determined by both the institutional and regulatory 

environment, and the technical characteristics of the type of railway service that the TO 

provides.  

2.2.1 Institutional and Regulatory Environment 

There are three main institutional factors that we have to consider to study 

equations (2.3), (2.4), and (2.5): the vertical structure of the system, the regulation of the 

TOs, and the competitive landscape. 

The vertical structure of the system determines whether the railway system is 

vertically integrated or vertically separated. Although capacity pricing and allocation 

mechanisms are critical when there is some level of vertical separation between the TO 

and the IM, we will also study the behavior of vertically-integrated railway systems as a 

basis of comparison for vertically-separated railway systems.  

The regulatory environment determines how much control the TOs have over the 

three operational decisions: 1) the passenger fare or freight shipping rate charged to end 

users; 2) the number of trains operated; and 3) the access charges paid to the 

infrastructure manager to access the infrastructure. This chapter distinguishes unregulated 
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and regulated systems. Within unregulated markets, the TO fully controls the first two 

decisions. The TO level of control over the access charges is affected by the capacity 

pricing and allocation mechanism in place. In regulated environments, a central planner 

controls the fares that end users pay or the rents that the TO extracts.  

Since the capacity pricing and allocation mechanism also impacts the interactions 

between the TOs and the IM, the mechanism itself informs us about the most relevant 

interactions to study. For instance, determining the TO willingness to pay to access 

infrastructure as a function of the number of trains scheduled is particularly relevant 

when capacity-based mechanisms are used to allocate and price capacity. Likewise, 

determining the number of trains that the TO is willing to provide given the access 

charges is particularly relevant to design price-based mechanisms.  

Finally, the competitive landscape also determines the response of the TOs to 

capacity pricing and allocation mechanisms. TOs will behave substantially different if 

they operate in monopolistic, oligopolistic, or a perfectly competitive market. 

2.2.2 Technical Characteristics 

The technical characteristics of the railway system determine the parameters of 

the model (cost, capacity of the trains). They also determine the nature of the demand. As 

was mentioned before, the end users’ transportation demand depends fundamentally on 

the fare, the frequency of the service (inversely proportional to the number of trains), and 

the travel time (Bebiano et al., 2014). While intercity passengers are typically more 

sensitive to the fare and the travel time, commuter passengers are typically more sensitive 

to the fare and the frequency, and freight users tend to be sensitive to the fare. The 

literature proposes three functional forms to capture the dependency of the demand on 
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these factors: linear demand function, isoelastic demand function, and bounded isoelastic 

demand function. In the three cases, the elasticity determines the relation between 

changes in demand as other factor (𝑥) changes: 𝑒 =  
Δ𝑑

𝑑0
⁄

Δ𝑥
𝑥0

⁄
, 𝑒 =

𝜕𝑑

𝜕𝑥
. 

Figure 2-1 shows a comparison of these functions in a case in which the demand 

depends only on the fare, for an elasticity value 𝑒 = −0.67, and an initial demand 𝑑0 =

31,250 for an initial fare 𝑓0 = $96.5. An isoelastic curve with these parameters indicates 

implies that there is an unlimited demand for the transportation service as the fares 

decrease. Similarly, it assumes that there are few passengers willing to pay extremely 

large fares. With these parameters, the isoelastic demand function indicates that there is 

at least one passenger willing to pay up to $481 million to travel by train. In practice, 

isoelastic demand functions approximate the end users’ demand well for intermediate 

values of fares; but it is unrealistic to assume that there are no end users’ demand or fare 

willingness to pay bounds. This thesis thus analyzes only linear and bounded isoelastic 

curves to capture the nature of end users’ transportation demand.  

Considering the combinations of institutional and regulatory, and technical factors 

we propose four main cases of study: 

1. Vertically-separated unregulated monopolistic train operator 

2. Vertically-separated regulated monopolistic train operator 

3. Vertically-separated perfectly competitive train operator 

4. Vertically-integrated railway company 
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Figure 2-1 Comparison of linear, isoelastic, and bounded isoelastic demand functions (assuming 

demand only depends on fare) (Source: author) 

2.3 Model Sensitivity to Inputs 
 

This section analyzes the behavior of vertically-separated unregulated 

monopolistic intercity passenger TOs in the context of the NEC for different model 

inputs to understand the robustness of the results. We first compare the results obtained 

for different end users’ demand functional forms and for different values of the elasticity. 

We then analyze the results obtained for different cost values. 

We use data published by the TOs in their annual financial plan to determine the 

inputs of the model. According to (Amtrak, 2014) a TO like Amtrak faces fixed 

operational (direct) costs of 𝑓𝑐 = $102.5𝑚 per year (𝑓𝑐 = $281𝑘 per day) and variable 

operational costs of 𝑣𝑐 = $1.25𝑚 per train and per year (𝑣𝑐 = $3,425 per train and per 

day). In 2013, Amtrak’s average fare were equal to 𝑓0 = $96.5, the number of trains 

averaged 𝑛 = 150 trains per day, with a realized demand of 𝑑0 = 11.4𝑚 passengers per 

year (𝑑0 = 31,250 passengers per day), and with an average train capacity of 𝑐 = 210 

passengers assuming a physical capacity of 250 seats with 85% load factor (Amtrak, 
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2014). No subsidies are required for the operations of intercity services in the NEC 

(Amtrak, 2010; Amtrak, 2012). We assume that end users’ demand for traveling on a 

specific type of intercity service depends mostly on the fare (and not that much on the 

frequency or small variations on travel time). According to (Morrison, 1990) the 

elasticity of the demand of intercity passengers in the NEC to the fare is equal to 𝑒 =

−0.67. We also assume that the access charges depend linearly on the number of trains: 

𝑎𝑐(𝑛) = 𝑎𝑐𝑓 + 𝑎𝑐𝑣 ⋅ 𝑛. 

2.3.1 Bounded Isoelastic Demand Function 

In this case we assume that the end users’ demand for rail services is a bounded:  

isoelastic curve that depends on the fare charged by the TO: 𝑑(𝑓) = min(�̅�, 𝑘𝑓𝑒) , 𝑓 ≤

𝑓.̅ The value of 𝑘 is equal to 𝑘 = 𝑑0𝑓0
−𝑒 for 𝑓 < 𝑓.̅ 𝑓,̅ �̅� are, respectively, the maximum 

fare and the maximum expected demand. 

Equation (2.3) can be used to determine the number of trains that the TOs would 

like to operate and the fare charged to end users given the access charges. From an 

analytic standpoint, it is easier to determine those numbers assuming that the number of 

trains that the TOs would like to operate is continuous (equal to 𝑛(𝑓) =
𝑑(𝑓)

𝑐⁄ ) and that 

the demand is isoelastic. In that case, if −1 < 𝑒 ≤ 0 , then the optimal fare 𝑓∗𝑐  is 

unbounded (the optimal solution is to charge end users as much as possible), and if 𝑒 ≤

−1, then the optimal fare is 𝑓∗𝑐 =
𝑣𝑐+𝑎𝑐𝑣

𝑐

𝑒

𝑒+1
. 

In practice, though, the TOs can only operate an integer number of trains and the 

demand is bounded by �̅�. Considering this, the optimal number of trains that the TOs 

could operate is: 
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𝑛∗ = 𝑚𝑖𝑛 (⌈
𝑑(𝑓∗𝑐)

𝑐
⌉ , ⌈

�̅�

𝑐
⌉) 𝑖𝑓

𝑣𝑐+𝑎𝑐𝑣

𝑓𝑐
≤

𝑑(𝑓∗𝑐)

𝑐
− ⌊

𝑑(𝑓∗𝑐)

𝑐
⌋

𝑛∗ = 𝑚𝑖𝑛 (⌊
𝑑(𝑓∗𝑐)

𝑐
⌋ , ⌈

�̅�

𝑐
⌉) 𝑖𝑓

𝑑(𝑓∗𝑐)

𝑐
− ⌊

𝑑(𝑓∗𝑐)

𝑐
⌋ <

𝑣𝑐+𝑎𝑐𝑣

𝑓𝑐
≤ 1

𝑛∗ = 0 𝑖𝑓 1 <
𝑣𝑐+𝑎𝑐𝑣

𝑓𝑐

   (2.6) 

Note that ⌈𝑥⌉  and ⌊𝑥⌋  represent the closest integer number over or under 𝑥 

respectively. The TO would decide whether to have some excess capacity or some unmet 

demand depending on the amount of exceeding capacity or unmet demand and the 

relation between variable costs and revenues. The TO will not operate any trains if 

variable costs are larger than the revenues. Considering this, the optimal fare (𝑓∗) would 

be: 

𝑓∗ = min (𝑑0
−

1

𝑒𝑓0, 𝑓)̅ 𝑖𝑓 −1 < 𝑒 ≤ 0

𝑓∗ = min ((
𝑛∗𝑐

𝑘
)

1

𝑒
, 𝑓)̅ 𝑖𝑓 𝑒 ≤ −1

   (2.7) 

Equation (2.7) shows that for elasticity values between −1 and 0 the TOs are 

better-off increasing the fare as much as they can, i.e. up to 𝑓 ̅in this case. 

Figure 2-2 shows the fare and number of trains that a TO would schedule as a 

function of the elasticity assuming 𝑓̅ = $200, �̅� = 62,500 (double the current demand). 

In this case, the fares range from $97 to $200, and the number of trains from 68 to 129 

trains per day when the IM does not charge any variable access charge per train. Note 

that both the fares and the number of trains to schedule are fairly robust when elasticity 

changes around 𝑒 = −0.67: the fares change less than 1%  and the number of trains 

change less than 10% for changes in elasticity of ±20%. 
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Figure 2-2  Fare and number of trains to be scheduled by a TO as a function of the elasticity 

assuming 0 access charges, maximum fares of $200, and a cost and revenue structure similar to 

Amtrak (Source: author) 

 

Figure 2-3 Fare and number of trains to be scheduled by a TO as a function of the variable access 

charges for different elasticity values assuming a cost and revenue structure similar to Amtrak 
(Source: author) 

As Figure 2-3 shows, the number of trains that the TO operates is robust for a 

large range of access-charge values too. When the elasticity values 𝑒 ∈ (−1,0) , the 

number of trains that the TO would operate (92 trains in this case for 𝑒 = −0.67) does 

not change when access charges increase (unless the TO has no incentive to operate trains 

and would then operate 0 trains). For elasticity values 𝑒 < −1, the number of trains 

would decrease as the variable access charges increase from $0 to $4,000 and does not 
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change afterwards (again, unless the TO has no incentive to operate trains and would then 

operate 0 trains). 

We can use equations (2.4) and (2.5) to determine the maximum variable charge 

that a TO would be able to pay to access the infrastructure. This maximum access charge 

is equal to 𝑎𝑐𝑣(𝑛 = 0) = $39,000  independently of the elasticity. If access charges 

increase over that value the TO would not operate any trains (see Figures 2-3, 2-4, and 2-

5). The maximum variable charges that TOs can sustainably pay in the medium term, i.e., 

the maximum variable access charges for which the TO has no profits neither losses after 

paying for capital at an adequate rate of return are 𝑎𝑐𝑣(𝜋 = 0) = 𝑎𝑐𝑣(𝑛 = 0) −
𝑓𝑐

𝑛∗⁄  , 

i.e., up to $35,000 for an elasticity value of 𝑒 = −0.67 (Figure 2-4) and up to $34,000 

for an elasticity value of 𝑒 = −1.2 (Figure 2-5).  

 

Figure 2-4 Profits and number of trains to be scheduled by a TO as a function of the variable access 

charges for elasticity value equal to -0.67 assuming a cost and revenue structure similar to Amtrak 
(Source: author) 
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Figure 2-5 Profits and number of trains to be scheduled by a TO as a function of the variable access 

charges for elasticity value equal to -1.2 assuming a cost and revenue structure similar to Amtrak 
(Source: author) 
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elasticity value assumed). The final point corresponds to the variable access charges 

($39,000 per train per day in both cases) for which the TO would not have any incentives 

to operate trains (since operating a train would increase the burden of the debt). 

If the demand increases year by year, the number of trains that operators want to 

schedule would increase by the same rate. However, the fares would not change if the 

elasticity of the demand to the fare is lower than −1. 

2.3.2 Linear Demand Function 

This case analyzes how the results presented in the previous cases would change 

when we assume that the demand is a linear function of the fare: 𝑑(𝑓) = 𝑒 ⋅
𝑑0

𝑓0
⋅ 𝑓 +

(1 − 𝑒) ⋅ 𝑑0 (to ensure that elasticity is 𝑒 =  
Δ𝑑

𝑑0
⁄

Δ𝑓
𝑓0

⁄
).  

The optimal number of trains and fare (𝑛∗, 𝑓∗) to maximize profits can also be 

determined using equation (2.3). The results show that the number of trains and the fares 

to maximize profits are either: 

𝑛∗ = ⌈
(1−𝑒)𝑑0

2𝑐
⌉ , 𝑓∗ =

(𝑒−1)𝑓0

2𝑒
, 

𝑛∗ =
(1−𝑒)𝑑0

2𝑐
+

𝑒𝑑0(𝑣𝑐+𝑎𝑐𝑣)

2𝑐2𝑓0
, 𝑓∗ =

𝑣𝑐+𝑎𝑐𝑣

2𝑐
+

(𝑒−1)𝑓0

2𝑒
, or  (2.8) 

𝑛∗ = 0, 𝑓∗ = 0  

Equation (2.8) implies that when variable costs are small with respect to the fares 

that end users can afford, the optimal solution is to maximize revenues and offer the 

minimum number of trains that allow serving all the demand for the optimal fare. 

However, when variable costs are comparable to the fares that end users can afford, the 

optimal solution is a trade-off between maximizing revenues and covering variable costs. 

In this case, the capacity should be optimized in such a way that most demand is served 
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without providing excess train capacity. Finally, in those cases in which the end users 

cannot viably accept a fare level that allows TOs to cover at least the variable costs, the 

TO should not operate any train. 

We also illustrate these results with an example inspired in the Amtrak intercity 

services of the NEC. Figure 2-6 shows the fare and number of trains that a TO would 

schedule as a function of the elasticity. In this case, the fares range from $97 to $298, 

and the number of trains from 87 to 149 trains per day when the IM does not charge any 

variable access charge per train. Again, for changes in elasticity of ±15%, the number of 

trains changes less than 5%, and the fares change less than 10%. When we compare these 

numbers with the ones obtained in Section 2.3.1 we see that the numbers of trains in this 

case differ less than 20% with respect to the bounded isoelastic demand. The fares 

however vary up to 50% with respect to the ones obtained in the bounded isoelastic 

demand case.  

 

Figure 2-6 Fare and number of trains to be scheduled by a TO as a function of the elasticity assuming 

0 access charges and a cost and revenue structure similar to Amtrak (Source: author) 
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Figure 2-7 represents the expected profits of the TO and optimal number of trains 

for different values of the variable access charges. In this case, the optimal operational 

decision is to operate 116 trains per day with fares on the order of $128 if access charges 

are low. If the access charges increase over $32,000 per train then the profit maximizing 

strategy suggest operating between 37 and 0 trains. The TO would not operate any trains 

if the access charges are over $47,000 per train. The access charges willingness to pay is 

within 20% of the value obtained in Section 2.3.1. The number of trains is also within 

20% of the values obtained in Section 2.3.1 for most access charges. The fares, however, 

vary considerably (over 35%) with respect to the bounded isoelastic demand case.  

 

Figure 2-7 Profits and number of trains to be scheduled by a TO as a function of the variable access 

charges for elasticity value equal to -0.67 assuming a cost and revenue structure similar to Amtrak 
(Source: author) 
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perceived as sunk costs and although they affect TO profit, they do not affect TO 

operational decisions. Second, and related to the previous point, fixed costs do not appear 

in equations (2.6), (2.7), and (2.8).  

Our second finding is that the results are also very robust to changes in the 

variable access charges. As mentioned above, current Amtrak’s variable costs are equal 

to 𝑣𝑐 = $3,425 per train and per day (Amtrak, 2014). Figure 2-8 shows that the fares and 

the number of trains do not vary for different variable access charges unless access 

charges increase 1,000%. In that case, variable costs would be so high that the TO would 

prefer not to operate trains. 

 

Figure 2-8 Fare and number of trains to be scheduled by a TO as a function of the variable costs 

assuming 0 access charges and a cost and revenue structure similar to Amtrak (Source: author) 
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Figure 2-9 Fare and number of trains to be scheduled by a TO as a function of the variable costs 

assuming 0 access charges and a cost and revenue structure similar to Amtrak (Source: author) 
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2.4 Model Results and Implications 
 

Section 2.3 shows that the TO Model estimates are robust to a broad set of model 

inputs. In this section, we use the TO Model to the behavior of TOs in different cases. We 

propose the study of TOs in both vertically-separated and vertically-integrated railway 

systems, within unregulated and regulated markets. Although each TO competes with 

other TOs to access the infrastructure, we distinguish whether each TO competes or not 

with other TOs to offer the same railway services to the end users (e.g., high-speed rail). 

Note that within the same vertically-separated railway system, different TOs providing 

different services may face different regulatory and competitive schemes. For instance, in 

shared systems like the NEC, one could argue that a private intercity passenger TO is best 

modeled as an unregulated monopoly, the commuter TOs are best modeled as regulated 

monopolies, and the freight TOs are best modeled as competitive TOs.  

2.4.1 Vertically-Separated Unregulated Monopolistic Train Operator 

This case assumes vertical separation between TO and the IM. It also assumes 

that although the TO may compete with other types of TOs to access the infrastructure, it 

is the only TO who provides a specific type of railway service to the end users. That is, 

the TO is a monopoly in its railway service market and there are no substitute services 

offered by other TOs. Unregulated refers to the fact that except for the constraints 

imposed by the capacity pricing and allocation mechanism in place, the TO has full 

control over the fares and the number of trains. Following the discussion that leads to 

equation (2.3), TOs in this case would determine its operational decisions with the 

objective of maximizing its profits given the access charges. Their willingness to pay to 

access the infrastructure is given by equations (2.4) and (2.5).  
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The two cases in this section analyze how an intercity passenger TO would 

respond to capacity pricing and allocation mechanisms. We assume here that end users’ 

demand for traveling on a specific type of intercity service depends mostly on the fare 

(and not that much on the frequency or small variations on travel time). We refer the 

reader to Sections 2.3.1 and 2.3.2 for a discussion of the TO behavior when the demand is 

modeled as a bounded isoelastic function and a linear function respectively. Section 

2.4.1.1 discusses the results obtained when the TO implement a revenue management 

mechanism. This case assumes that that the end users’ demand is a bounded isoelastic 

function. Section 2.4.1.2 compares the results obtained in the three vertically-separated 

unregulated monopolistic intercity TO. We assume again that there are no operations 

subsidies and that the access charges depend linearly on the number of trains: 𝑎𝑐(𝑛) =

𝑎𝑐𝑓 + 𝑎𝑐𝑣 ⋅ 𝑛.  

2.4.1.1 Intercity Passenger TO using Revenue Management Mechanisms with 

Bounded Isoelastic Demand Function 

This case proposes to study the behavior of TO assuming that the demand as a 

function of a fare behaves as a bounded isoelastic curve, that is, 𝑑(𝑓) = min (�̅�, 𝑘𝑓𝑒), for 

𝑓 < 𝑓.̅ This time we assume that the TO has a perfect revenue management mechanism 

in place that allows it to charge each end user the maximum fare that they are willing to 

pay.  

In this case, the optimal number of trains ( 𝑛∗ ) to maximize profits can be 

determined using equation (2.3). The results obtained show the number of trains to 

maximize profits is (depending on how the maximum fare compares to the variable 

costs): 
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𝑛∗ = 𝑘 ⋅ (𝑣𝑐 + 𝑎𝑐𝑣)𝑒 ⋅ 𝑐−1−𝑒 𝑖𝑓 𝑓 ⋅ 𝑐 > 𝑣𝑐 + 𝑎𝑐𝑣

𝑛∗ = 𝑘 ⋅ 𝑓
𝑒

𝑐−1 𝑜𝑟 𝑛∗ = 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (2.9) 

If the result is not an integer, it should be rounded to the immediate lower or 

upper integer (the one that maximizes profits). Figures 2-10 and 2-11 show the number of 

trains and the TO profits for different elasticity values with no access charges, and the 

number of trains and the TO profits for different variable access charges and elasticity 

value equal to −0.67  using the same Amtrak-inspired example used in the previous 

cases.  

 

Figure 2-10 TO profits and number of trains to be scheduled by a TO as a function of the elasticity 

assuming 0 access charges and a cost and revenue structure similar to Amtrak (Source: author) 
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train. Variable access charges should not be above $35𝑘  to ensure sustainable TO 

operations in the medium term. With these level of variable access charges TOs would 

still operate 92 to 95 trains.  

 

Figure 2-11 Profits and number of trains to be scheduled by a TO as a function of the variable access 

charges for elasticity equal to -0.67 assuming a cost and revenue structure similar to Amtrak  
(Source: author) 
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current number of trains operated if variable access charges exceed $10,000 to $15,000 

per train.  

Second, the results show that for variable access charges above $35,000 per train, 

the number of trains would importantly decrease over 85% with respect to current 

number of trains independently of the demand functional form assumed and fare 

mechanism in place. 

Third, the TO always operates more trains than in the case with revenue 

management as compared to the cases without revenue management. This makes sense 

since the utilization of revenue management mechanisms allows the TOs to charge 

different fares to end users. As a result, the TO has no need to reduce the number of trains 

to be able to increase fares. 

Finally, note again that the TO ability to pay to access the infrastructure is very 

robust to different model assumptions. The value of the maximum access charges over 

which the TO would not operate any trains varies less than 20% across these cases. This 

is very important, because the operations of a TO that implements revenue management 

mechanisms is very different that the operations of a TO that does not. 
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Figure 2-12 Number of trains to be scheduled by a TO as a function of the variable access charges for 

elasticity value equal to -0.67 for different demand functions and fare mechanisms (Source: author) 

 

Figure 2-13 Number of trains to be scheduled by a TO as a function of the variable access charges for 

elasticity value equal to -1.2 for different demand functions and fare mechanisms (Source: author) 
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2.4.2 Vertically-Separated Regulated Monopolistic Train Operator 

These cases assume again vertical separation between TO and the IM. We assume 

again that the TO is a monopoly in its railway service market and there are no substitute 

services offered by other TOs. Unlike the previous cases, these cases assume that TO 

operations are regulated to ensure that the TOs do not charge excessive fares to the end 

users. We analyze two main cases, one representative of an intercity passenger TO and 

one representative of a commuter TO.  

2.4.2.1 Intercity Passenger TO 

Section 2.3.1 analyzes the behavior of intercity passenger monopolistic 

unregulated TOs that determine the fares and number of trains with the objective of 

maximizing their profits (see equation (2.3)). In this case however we assume that there is 

an even-handed regulator that ensures that the TO optimizes service without extracting 

excessive rents from the end users. That is, we assume that the regulator tries to ensure 

that the TOs have zero profits (after reimbursing capital at an adequate rate of return). 

Although this regulation prevents the TOs from making large profits (as in the cases 

presented in Sections 2.3 and 2.4.1), it also ensures that the access charges that the TO 

pays to the IM are not excessive (i.e., profits will never be negative in this case, unlike 

what could happen in the cases presented in Sections 2.3 and 2.4.1). We assume from 

now on, that intercity passenger demand is a bounded isoelastic function on the fare. As a 

result, equation (2.3) has to be adjusted in this case.  

max
𝑁,𝐹

𝑁, 

s.t. 𝑠(𝐹, 𝑁) + 𝐹 ⋅ min(𝑑(𝐹), 𝑐 ⋅ 𝑁) − 𝑓𝑐 − 𝑣𝑐 ⋅ 𝑁 − 𝐴𝐶(𝑁) = 0  (2.10) 
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Assuming again that there are no subsidies and that access charges are linear, we 

first see that the average fare charged to the end users in this case has to be equal to the 

total costs divided by the total number of travelers. The optimization problem can then be 

solved by finding the maximum number of trains (𝑛∗) for which the TO can recover 

costs.  

Figures 2-14 and 2-15 show the solution of the optimization problem for different 

values of variable access charges and for two demand elasticity values (−0.67 and −1.2) 

assuming that no revenue management mechanism is in place. Figure 2-14 shows the 

number of trains that a regulated and an unregulated TO would operate and Figure 2-15 

shows the fares that they would charge to the end users. 

 

Figure 2-14 Number of trains to be scheduled by a (regulated vs. unregulated) TO as a function of 

the variable access charges for elasticity values of −𝟎. 𝟔𝟕 and -1.2 (Source: author) 
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Figure 2-15 Fares charged to the end users by a (regulated vs. unregulated) TO as a function of the 

variable access charges for elasticity values of −𝟎. 𝟔𝟕 and -1.2 (Source: author) 

There are two important take-away messages from these figures. First of all, as 

we may expect, regulated train operators operate more services and charge lower fares to 

the end users. The only exception comes when the variable access charges are so high 

that the TO is not able to sustainably operate any longer. Second, the demand for 

scheduling trains of a regulated intercity passenger TO in the NEC is higher than the 

current number of trains for variable access charges up to $15,000 per train. 

2.4.2.2 Commuter TO 

This case is inspired by the commuter TOs in the NEC and is different from the 

previous cases in two senses. First, it assumes that the TOs are regulated by imposing a 

fare limit. In other words, the regulator does not allow the TOs to change the fares they 

charge to the end users. Second, it assumes that the demand depends on the frequency of 

the service. According to (Lago et al., 1981), the demand for commuter services increases 

when the frequency of service increases and vice-versa.  

0

20

40

60

80

100

120

140

160

180

200

0 10,000 20,000 30,000 40,000 50,000

F
a

re
 [

$
]

Variable Access Charge [$]

Elasticity -0.67 Elasticity -1.2

Elasticity -0.67 (Unregulated) Elasticity -1.2 (Unregulated)



 71 

Since the fare is fixed, the elasticity of the demand to the frequency can be 

defined as 𝑒𝑛 =  
Δ𝑑

𝑑0
⁄

Δℎ
ℎ0

⁄
 where ℎ is the average headway between consecutive trains. Since 

the headway is proportional to 1
𝑛⁄ , the elasticity can also be computed as 𝑒𝑛 =

− 
(𝑑−𝑑0)⋅𝑛

(𝑛−𝑛0)⋅𝑑0
. Therefore, assuming a linear demand function on the frequency, the demand 

can be determined given the number of trains using 𝑑(𝑛) = (1 − 𝑒𝑛) ⋅ 𝑑0 +
𝑒𝑛⋅𝑑0⋅𝑛0

𝑛
. We 

can also write 𝑑(𝑛) = max (0, (1 − 𝑒𝑛) ⋅ 𝑑0 +
𝑒𝑛⋅𝑑0⋅𝑛0

𝑛
) to avoid negative demands for 

low number of services. 

The optimal number of trains (𝑛∗) to maximize profits can be determined using 

equation (2.3) considering that the fare is fixed in this case. Assuming again that access 

charges are linear (𝑎𝑐(𝑛) = 𝑎𝑐𝑓 + 𝑎𝑐𝑣 ⋅ 𝑛) and that the subsidy is a lump sum (paid by 

the commuter agency to the TO), we can determine that the optimal number of trains 

would be either:  

𝑛∗ = √−
𝑓⋅𝑒𝑛⋅𝑑0⋅𝑛0

𝑣𝑐+𝑎𝑐𝑣
, 

𝑛∗ =
(1−𝑒𝑛)⋅𝑑0

2⋅𝑐
−

√(1−𝑒𝑛)2⋅𝑑0
2−4⋅𝑐⋅𝑒𝑛⋅𝑑0⋅𝑛0

2𝑐
, or  (2.11) 

𝑛∗ = 0, 𝑛∗ =
(1−𝑒𝑛)⋅𝑑0

𝑐
  

The choice of one number of trains over other would depend on how revenues and 

cost compare. If revenues obtained from fares are much higher than variable costs, then 

the optimal strategy to maximize profit would be to maximize revenues. If revenues are 

comparable to variable costs, the optimal strategy would be to ensure that there is no 

excess-capacity on the trains. Finally, if variable costs are much higher than the revenues 
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per train, the TO should not operate any train.  

Note that this number of trains is independent of the level of subsides and the 

fixed costs (from operations and access-charges). These values would only affect whether 

the TO can sustainably operate in the medium term.  

As we mentioned before, this case is representative of the situation of the 

commuter rail TOs in the NEC. According to (MBTA, 2013a; MBTA, 2013b) a TO like 

the MBTA, the commuter operator in the Boston area, faces fixed operational (direct) 

costs of 𝑓𝑐 = $435.1𝑘 per day and variable operational costs of 𝑣𝑐 = $1,666 per train 

and per day. The elasticity of the demand with respect to the headway (frequency) is 

estimated by (Lago et al., 1981) to be equal to 𝑒 = −0.41. As expected, the elasticity is 

negative because demand increases when headway decreases (i.e., the number of services 

increases). In 2014, MBTA’s average fare ranged from 𝑓0 = $7 − $25 (we assume an 

average fare of 𝑓0 = $13), the number of trains averaged 𝑛0 = 485 trains per day, with a 

realized demand of 𝑑0 = 130.6𝑘  passengers per day. The train average capacity 

considered is 𝑐 = 350 passengers, with 80% + load factor. Subsidies 𝑠 = $234𝑘 per day 

are considered following (MBTA, 2013a). 

Figure 2-16 compares current MBTA profits with the expected profits when the 

profit maximizing strategy presented in equation 16 is used to determine the number of 

trains. The results show that higher profits can be unlocked by reducing the number of 

services, especially when variable costs increase due to access charges. Note that even 

under the profit maximizing strategy, the TO would not be able to operate if access 

charges exceed $2,500 per train per day, since the variable costs of operating the train 
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would be higher than the revenues obtained. In that case, operating a train would only 

increase the cost burden for the system. 

 

Figure 2-16 MBTA’s expected profits and number of trains for different variable access charges 
(Source: author) 
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profits; what justifies the use of these types of measures when the room to gain profits by 

the TOs are low.  

We also want to compare the variable access charges that a commuter TO could 

afford with the variable access charges than an intercity passenger TO could afford in the 

context of the NEC. The previous analysis show that the maximum variable access 

charges that a commuter TO could afford range between $1,500 and $2,800. We have 

also shown that the maximum variable access charges that an intercity passenger TO 

could afford up to $30,000 to $40,000. Our analysis shows that with variable access of 

$15,000 to $20,000, the number of trains offered by an intercity passenger TO would 

not be dramatically affected. So these results suggest that intercity TOs in the NEC are 

able to pay around 10 times higher variable access charges than commuter TOs.  

2.4.3 Vertically-Separated Perfectly Competitive Train Operator 

These cases assume again vertical separation between TO and the IM. This 

section assumes that the TOs operate in a perfectly competitive railway service market. 

An important discussion in these cases is whether TOs may face fixed costs or not. From 

a theoretical standpoint, if the TOs face any type of fixed costs, it would be more efficient 

to have a single TO than multiple TOs; and as a result, the market would not be perfectly 

competitive. Consequently these cases assume no operational fixed costs and no fixed 

access charges.  

The rest of this section presents the analysis for a perfectly competitive intercity 

passenger service market. Assuming again that the demand is a bounded isoelastic 

function on the fares, the number of trains and the fares (𝑛∗, 𝑓∗) that the TOs would offer 

in equilibrium and perfect competition can be determined considering that: 1) the optimal 
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number of trains in equilibrium would be the one at which no TO could be able to 

schedule an additional train without losing money; and 2) the optimal fares in equilibrium 

would be the ones at which the TOs would be indifferent between offering the services or 

not.  

Conditions 1) and 2) can be formalized in equation (2.12): 

max
𝑁,𝐹

𝑁, 

s.t. 𝑠(𝐹, 𝑁) + 𝐹 ⋅ min(𝑑(𝐹), 𝑐 ⋅ 𝑁) − 𝑣𝑐 ⋅ 𝑁 − 𝐴𝐶𝑣 ⋅ 𝑁 = 0  (2.12) 

Assuming no subsidies and a bounded isoelastic demand curve, we can 

analytically solve the problem stated in equation (2.12) to determine that 𝑛∗, 𝑓∗ are either: 

𝑓∗ =
𝑣𝑐+𝑎𝑐𝑣

𝑐
, 𝑛∗ = ⌊min (

𝑘⋅(𝑣𝑐+𝑎𝑐𝑣)𝑒

𝑐𝑒+1 ,
𝑑

𝑐
)⌋ 𝑖𝑓 𝑣𝑐 + 𝑎𝑐𝑣 ≤ 𝑐 ⋅ 𝑓

𝑓∗ = 0, 𝑛∗ = 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  (2.13) 

Figures 2-17 and 2-18 show the solution of the optimization problem in the 

Amtrak-inspired example for different values of variable access charges and for two 

demand elasticity values (−0.67 and −1.2). Figure 2-17 shows the number of trains that 

perfectly competitive TOs would operate and Figure 2-18 shows the fares that they would 

charge to the end users. These results are compared with the number of trains and fares of 

regulated and unregulated monopolistic TOs. The monopolistic TO’s number of trains 

and fares are slightly different from the ones presented in Sections 2.3.1 and 2.4.2.1, 

because they assume no fixed costs or access charges for comparability purposes. In 

particular, the number of trains that a regulated monopolistic TO would operate is slightly 

higher than the one in Sections 2.3.1 and 2.4.2.1, and the fares charged are slightly lower 

(since there is no fixed cost to recover).  
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Figure 2-17 Number of trains to be scheduled by (perfectly competitive vs. monopolistic) TOs as a 

function of the variable access charges for elasticity values of −𝟎. 𝟔𝟕 and -1.2 (Source: author) 

 

Figure 2-18 Fares charged to the end users by (perfectly competitive vs. monopolistic) TOs as a 

function of the variable access charges for elasticity values of −𝟎. 𝟔𝟕 and -1.2 (Source: author) 
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perfectly competitive market with slightly higher fares and lower train utilization rates. 

Note however, that an unregulated operator would always operate fewer trains and charge 

higher fares to the end users. As we showed in Section 2.4.2., the demand for scheduling 

trains of both regulated intercity passenger TOs and perfectly competitive intercity TOs 

in the NEC is higher the current number of trains when variable access charges are lower 

than or equal to $15,000 per train per day. In these cases, the TOs have incentives to 

operate trains as long as variable access charges are smaller than $38,550 per train. 

2.4.4 Vertically-Integrated Railway Company 

These cases analyze a vertically-integrated railway company. We use the results 

of this section as a benchmark for the previous cases. Equations (2.3), (2.4), and (2.5) 

have to be adjusted to analyze vertically-integrated systems because 1) a vertically-

integrated railway company also faces the infrastructure management costs; and 2) track 

access charges in this case are not necessary (transfer between the TO and the IM that 

cancels out in a vertically-integrated system).  

This section considers two main cases: one where the railway company offers 

only one type of railway service and another one where the railway company offers two 

types of (non-substitutable) railway services. 

2.4.4.1 Single Type of Service: Intercity Passenger Service 

We assume again that the intercity passenger service face a bounded isoelastic 

demand as a function of the fare charged to the end users. Apart from the pure 

operations-related costs discussed in Section 2.2, an integrated railway company also 

faces infrastructure-related costs. At a high level, the infrastructure costs of a railway 

company can be aggregated in fixed and variable costs. For the context of this research, 
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we consider fixed costs (𝑓𝑐𝐼𝑀) all costs that do not change in the medium term with the 

number of trains operated on the infrastructure. We consider variable costs (𝑣𝑐𝐼𝑀) all 

costs that depend on the number of trains operated on the infrastructure in the short or 

medium term horizon. As a first order approximation, we will assume that variable costs 

depend linearly on the number of trains operated.  

Equation (2.3) could be adapted to this case by including these costs and 

eliminating the access charges (internal transfer between the TO and the IM):  

max
𝑁,𝐹

[𝑠(𝐹, 𝑁) + 𝐹 ⋅ min(𝑑(𝐹, 𝑁, 𝑡𝑡), 𝑐 ⋅ 𝑁) − 𝑓𝑐 − 𝑣𝑐 ⋅ 𝑁 − 𝑓𝑐𝐼𝑀 − 𝑣𝑐𝐼𝑀 ⋅ 𝑁]  (2.14) 

Initially, the only difference between equations (2.3) and (2.14) is the fact that the 

access charges appear in place of the infrastructure related costs. This makes sense, 

because the objective of access charges is to pass the infrastructure costs on to the TO. As 

a result, if the access charges scheme just replicated the infrastructure cost scheme (i.e., 

𝐴𝐶𝑓 = 𝑓𝑐𝐼𝑀, 𝐴𝐶𝑣 = 𝑣𝑐𝐼𝑀 ), there would be no differences between the operational 

decisions of a vertically-separated TO and the operational decisions of an integrated 

company. In other words, the vertical separation of the system would introduce no 

distortion in the operational incentives. Consequently, depending on the regulatory and 

competitive environment, the integrated railway company would exhibit the same type of 

behavior than the vertically-separated TOs discussed in Sections 2.3, 2.4.2, and 2.4.3. 

This finding is consistent with the findings of other network industries (Gomez-Ibanez, 

2003; Laffont and Tirole, 1993; Laffont and Tirole, 2000; Perez-Arriaga, 2013). Not 

surprisingly, many countries have adopted infrastructure marginal costs to price 

infrastructure capacity (Texeira and Lopez-Pita, 2012; Texeira and Prodan, 2014).  
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If there are some differences though on the variable component (i.e., 𝐴𝐶𝑣 ≠

𝑣𝑐𝐼𝑀), then a vertically-separated TO would have incentives to operate more trains (if 

𝐴𝐶𝑣 < 𝑣𝑐𝐼𝑀) or fewer trains (if 𝐴𝐶𝑣 > 𝑣𝑐𝐼𝑀) than an integrated railway company. Figure 

2-19 shows how these differences would result in total utility losses.  

Figures 2-19 and 2-20 show the social utility, and the end users, TO, and IM 

utilities respectively for an integrated railway system, and compared them to those of 

vertically-separated systems as a function of the variable access charges. We assume 

𝑓𝑐𝐼𝑀 = $1𝑚, 𝑣𝑐𝐼𝑀 = $10,000. 

 

Figure 2-19 Total social utility associated with integrated and vertically-separated monopolistic 

(unregulated and regulated) TOs as a function of the variable access charges for elasticity values of 

−𝟎. 𝟔𝟕 and -1.2 (Source: author) 
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TOs, but also imposes losses in the total social utility driven by the lost demand from 

reduced number of trains. 

 

 

Figure 2-20 End users, TO, and IM’s utilities for vertically-separated monopolistic (unregulated and 

regulated) system as a function of the variable access charges for elasticity values of −𝟎. 𝟔𝟕 and -1.2 
(Source: author) 
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Chapter 4.  
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2.4.4.2 Several Types of Services 

This case considers not only the infrastructure-related costs (𝑓𝑐𝐼𝑀, 𝑣𝑐𝐼𝑀), but also 

the operations of different types of services 𝑖 (such as intercity passenger train services, 

commuter services, or different types of freight services). We assume that in general, the 

subsidies, fares, number of trains, infrastructure and operations related variable costs of 

different types of services may be different (and we indicate that by adding the subscript 

𝑖). Equation (2.3) could be adapted to this case:  

max
𝑁,𝐹

[∑ (𝑠𝑖(𝐹𝑖, 𝑁𝑖) + 𝐹𝑖 ⋅ min(𝑑(𝐹𝑖, 𝑁𝑖 , 𝑡𝑡𝑖), 𝑐𝑖 ⋅ 𝑁𝑖) − 𝑣𝑐𝑖 ⋅ 𝑁𝑖 − 𝑣𝑐𝐼𝑀𝑖 ⋅ 𝑁𝑖)𝑖 − 𝑓𝑐 − 𝑓𝑐𝐼𝑀]  

 (2.15) 

Initially, equation (2.15) can be solved independently for each i if: 1) we are able 

to ensure that there are no interdependencies between the best number of trains in 

different markets; and 2) we design a mechanism to allocate the fixed cost between the 

different services. In some instances we can guarantee these two conditions. For example, 

the optimal levels of service and fares of the various types of services are independent if 

there are no infrastructure capacity limitations and the services are not substitutes. 

Furthermore, we have shown that in unregulated monopolistic markets and in perfectly 

competitive market, the level of operations (provided that the TOs have incentives to 

operate trains) do not depend on the fixed costs. In this case, the results obtained match 

the results obtained in the previous sections.  

This discussion is further extended in the rest of the dissertation to discuss how 

the results change 1) when the IM needs to assign fixed costs among the different types 

of services and 2) when there are infrastructure capacity limitations. Unfortunately, most 

railway systems fall into those categories. The issues around infrastructure capacity 
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limitations are addressed by integrating the results of this chapter with the results of the 

infrastructure manager model from Chapter 3. We illustrate these issues in the context of 

the NEC (Chapter 5), where intercity passenger TOs, commuter TOs, and freight TOs 

compete to get access to the infrastructure. The issues around the allocation of 

infrastructure capacity fixed costs are in the context of the Central Corridor in Tanzania 

(Chapter 4) where different types of freight service TOs (general cargo and container 

TOs) share the same infrastructure. While (Laffont and Tirole, 1993; Laffont and Tirole, 

200; Perez-Arriaga, 2013) show that the use of marginal infrastructure costs to price 

capacity often allows for infrastructure cost recovery in other network industries, these 

results show that infrastructure cost recovery is not possible with marginal infrastructure 

cost pricing in most railway systems. 

2.5 Conclusions 
 

This chapter presents a simple TO Model based on standard TO financial models 

to discuss how TOs respond to alternative capacity pricing and allocation mechanisms as 

a function of the institutional and technical context in which the TOs operate. The TOs’ 

response is captured by analyzing three main operational decisions: 1) the passenger fare 

or freight shipping rate charged to end users; 2) the number of trains operated or number 

of trains; and 3) the access charges paid to the infrastructure manager to access the 

infrastructure. Understanding the TOs’ response to different access charges is an 

important step to analyze and compare alternative capacity pricing and allocation 

mechanisms. The model proposed allows regulators to robustly infer the TO demand for 

scheduling trains and their ability to pay to access the infrastructure with little 

information about the TO cost structure and the end users’ demand.  
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There are four main take-away messages from this analysis (in reversed order). 

First, if the access charges reflect the infrastructure-related costs associated with 

operations, a vertically-separated TO would make the same operational decisions as an 

integrated railway system. However, if the access charges do not reflect the costs in 

which the IM incurs as a result of the operations of trains in the system, the TO would 

have incentives to provide different levels of service. This often translates into a loss in 

the total welfare. These implications also stand when different TOs share the same 

infrastructure. In other words, the use of marginal infrastructure costs to price capacity 

ensures that TOs make the same decisions than an integrated railway company. However, 

these mechanisms cannot be used in all cases. Chapters 4 and 5 discuss how to analyze 

these issues in cases in which there is a need to recover infrastructure costs or when 

infrastructure capacity is limited.  

Second, the introduction of any type of TO regulation or the introduction of 

competition in the operations result in higher levels of service, lower fares for the end 

users, and higher levels of total welfare as compared to the operations of unregulated 

monopolistic operators. The operations of TOs in perfectly competitive markets and the 

operations of regulated monopolistic TOs are very similar. In some instances though, 

regulated TOs operate one more train because of the discrete nature of the number of 

trains. 

Third, the number of trains estimate produced by our models depends on the 

functional form of the demand assumed, on the elasticity, and on the existence of any 

type of revenue management mechanisms. Although the results obtained are pretty robust 

to model inputs, a good characterization of the users’ demand is important to accurately 



 84 

estimate the TOs operations. The evidence presented in the literature (Morrison, 1990) 

and the comparison of the results with current levels of service operated suggest that the 

demand of the NEC intercity passenger operators used as an example to illustrate the 

results in the different cases, is best characterized as a bounded isoelastic function of the 

fare. Nonetheless, the robustness of the results also justifies the approximation of the 

demand function by a linear function if this approximation simplifies the calculations.  

Finally, this research analyzes the maximum access charges that different types of 

TOs would be able to pay to access the infrastructure. These results are very robust across 

the different cases studied. The model also anticipates the TOs’ response (number of 

trains) to access charges. This information is used as inputs of the IM Model presented in 

Chapter 3, allowing the IM to anticipate and understand the operational goals and 

infrastructure needs of operators on their network. This information is also valuable for 

regulators, enabling them to understand the performance of the system under alternative 

mechanisms to price and allocate railway capacity. 
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Chapter 3 - The Infrastructure Manager Problem: 

Determining Train Timetable and Infrastructure Access 

Charges under Alternative Capacity Pricing and Allocation 

Mechanisms 
 

 

“You never change things by fighting the existing reality. To change something, 

build a new model that makes the existing model obsolete.” – B. Fuller (1981) 

 

 

The train operator (TO) Model proposed in Chapter 2 can be used to anticipate the 

demand of individual TOs to access the infrastructure under alternative capacity pricing 

and allocation mechanisms. In congested shared railway systems, there are often conflicts 

between the services that different TOs would like to operate within the existing 

infrastructure. The next step to evaluate capacity pricing and allocation mechanisms is 

thus to analyze which trains can be scheduled within available infrastructure capacity.   

However, capacity availability in the railway industry cannot be known in the 

absence and understanding of infrastructure operations. Therefore assessment of capacity 

requires the determination of the train timetable, which eliminates any potential conflicts 

between the TOs’ requests to use infrastructure capacity. Although there is a broad 

literature that proposes train timetabling methods for dedicated railway systems, there are 

few models that can be used for shared competitive railway systems.  

This chapter proposes a train timetabling model for shared railway systems 

explicitly considering a variable number of trains, with large flexibility margins (TOs’ 

willingness to deviate from their desired timetable), and a variety of train services 

traveling along different paths. The TOs’ demand for scheduling trains is assumed to be 

exogenous (input from Chapter 2). The model is formulated and solved both as a mixed 

integer linear programming (MILP) problem (using a commercial solver) and as a 
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dynamic programming (DP) problem. We solve the DP formulation with a novel 

algorithm based on a linear programming (LP) approach to approximate dynamic 

programming (ADP) that can solve much larger problems than commercial MILP 

solvers.  

This model can be used to evaluate the best possible train timetable under 

alternative capacity pricing and allocation mechanism. We use the results to understand 

the interactions between capacity planning and capacity operations in shared railway 

systems. Understanding these interactions is important to be able to design effective 

capacity pricing and allocation mechanisms. Part of this work has been submitted for 

publication (Pena-Alcaraz, Webster, and Ramos, 2015a). 

The rest of the chapter is structured as follows: Section 3.1 reviews the train 

timetabling literature in shared railway systems and summarizes the main contributions 

of this chapter. Section 3.2 describes and formulates the train timetabling problem in 

shared railway systems, and motivates the assumptions of the chapter. Section 3.3 

presents a DP formulation of the problem, and describes the LP-based ADP solution 

algorithm. Section 3.4 compares the computational performance of the ADP algorithm 

with the performance of commercial MILP solvers and illustrates the insights obtained 

using the algorithm to design shared railway systems’ timetables for several cases with 

traffic patterns similar to the traffic of the Northeast Corridor (NEC) in the US. Section 

3.5 summarizes the main implications of the results obtained with the model and 

concludes. 
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3.1 Train Timetabling Problem for Shared Railway Systems 
 

As mentioned above, the design, assessment, and implementation of capacity 

pricing and allocation mechanisms at the strategic level are tightly coupled with the 

infrastructure operations at the tactical level. In other words, capacity utilization cannot 

be determined in the absence of infrastructure operations because available railway 

capacity depends on how the infrastructure is operated (Krueger et al., 1999; Pouryousef 

and Lautala, 2015). The operations in the railway industry are defined by the train 

timetable that determines the arrival and departure time at every station of all trains 

scheduled. As a result, the design of the train timetable is a critical step in any capacity 

planning mechanism. The timetable specifies how the competing demands for 

infrastructure access are coordinated to meet the infrastructure manager (IM)’s objectives 

and constraints. 

The train timetabling problem has been widely studied in the literature. There are 

two main approaches to design the best train timetable that meets a set of operational 

constraints, both based on MILP formulations. (Castillo et al., 2009; Ghoseiri et al., 2004; 

Liebchen, 2008; Liebchen and Peeters, 2009; Pena-Alcaraz et al., 2011; Zhou and Zhong, 

2005) present formulations to compute the train arrival and departure times. 

Traditionally, these models have been called multi-mode resource constrained project 

scheduling models. (Cacchiani et al., 2010; Caimi et al., 2009; Caimi et al., 2011; 

Caprara et al., 2002; Caprara et al., 2011; Cordeau et al., 1998) present formulations that 

represent the final timetable as a collection of nodes and arcs. Each arc represents 

possible train arrival and departure times at stations. Infrastructure and operational 
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constraints are imposed by determining subsets of compatible and incompatible arcs. 

Traditionally, these models have been called multi-commodity flow models.  

We argue, however, that these models cannot be used to analyze capacity 

planning mechanisms in shared railway systems for three reasons. First, with the 

exception of (Caprara et al., 2011), the approaches above assume a fixed number of trains 

to be scheduled on the infrastructure. However, the number of trains to schedule is the 

main decision variable of the capacity allocation problem in shared railway systems. 

Second, with the exception of (Caprara et al., 2011) again, the approaches above assume 

a single TO that tries to schedule trains. This TO could iteratively solve the train 

timetabling problem, introducing small modifications in each train desired timetable until 

the resulting timetable meets its needs. In shared railway systems, however, multiple TOs 

request access to the infrastructure. To ensure that the TOs reveal the value to themselves 

of each train to be scheduled and to avoid strategic behavior, the IM accepts inputs from 

the TOs only at specified time-points. As a result, TOs have incentives to provide large 

flexibility margins around the desired train timetables requested to ensure that the trains 

they value are scheduled even when there are small conflicts with other trains. The 

flexibility margin determines how much time TOs are willing to deviate from the desired 

timetable. Third, most of these models assume that all trains follow the same path. Again, 

this assumption does not hold when the nature of the services operated in the shared 

railway system is different. For example, commuter services are typically scheduled 

around the metropolitan areas, whereas intercity and freight TOs offer services between 

cities.  
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This chapter presents a multi-mode resource constrained project schedule 

formulation for shared railway systems that explicitly considers a variable number of 

trains, with large flexibility margins, traveling along different paths. This approach 1) 

introduces a discrete variable that indicates whether a train can be scheduled or not, 2) 

uses flexibility margins to ease conflicts, making fast trains travel slowly when there are 

slow trains ahead and making slow trains wait at sidetracks when fast trains overtake 

them, and 3) specifies safety constraints (spacing of the trains) for each train path.  

These additional considerations make the problem very difficult to solve. From a 

computational standpoint, the size of the model increases exponentially with the number 

of stations and the number of trains to schedule. As a result, commercial solvers are only 

able to solve the problem for small number of trains. Furthermore, most of the techniques 

developed in the train timetabling literature are designed for traditional single-operator 

train timetabling problems and cannot be used in this case. Most classical decomposition 

approaches do not work because of the large number of discrete variables needed to 

specify which trains are scheduled and to pinpoint the order in which trains go through 

each station. Any technique that exogenously fixes train order cannot be used here 

because of the large flexibility margins and because train spacing constraints are specific 

to each individual train.   

To be able to solve the problem in meaningful instances, we propose an 

alternative class of solution algorithms using ADP techniques (Bertsekas and Tsitsiklis, 

1996; Bertsekas, 2006; Powell, 2007). This research develops a novel Q-factor Adaptive 

Relaxed Linear Programming (QARLP) algorithm that extends previous algorithms 

developed by (Farias and Van Roy, 2003; Farias and Van Roy, 2004). This algorithm 



 90 

allows us to decompose and solve large problems that are intractable with MILP 

commercial solvers while still converging to a solution within an optimality gap. 

In summary, the introduction of shared railway systems requires the design, 

assessment, and implementation of capacity planning mechanisms to coordinate multiple 

TOs and the IM. The use of this novel algorithm allow us to solve the train timetabling 

problem in shared railway systems considering a large number of trains (100 to 150 

trains). As a result, we are able to determine the optimal capacity allocation plan given 

the TO’s demand for capacity under alternative capacity pricing and allocation 

mechanisms. We can use these results to anticipate the answers to relevant policy-type 

questions such as: how much should intercity TOs pay to be able to schedule services that 

conflict with commuter train services; whether freight TOs would be able to schedule any 

trains on the infrastructure, etc. The answers to these questions are central to our ability 

to design effective capacity pricing and allocation mechanisms. 

This research makes both methodological and railway systems-specific 

contributions. From a methodological standpoint, we present a model that explicitly 

considers the relevant characteristics of shared railway systems, and offers a novel ADP 

algorithm for solving this complex train timetable problem for large system sizes that are 

computationally intractable using commercial software. From a transportation standpoint, 

the modeling framework and the algorithm developed enable us to simulate optimal 

decisions by an IM for shared railway systems. These results can be used to answer 

relevant policy-type questions to design appropriate pricing and allocation mechanisms 

and to understand the implications of infrastructure shared use.  
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3.2 Mixed-Integer Programming Formulation 
 

In this section, we formulate the train timetabling problem for shared railway 

systems under capacity pricing and allocation mechanisms. As we discussed in Chapter 1, 

there are two main types of market-based mechanisms for capacity pricing and allocation: 

1) mechanisms that determine the price at which capacity will be offered, and let TOs 

decide whether they are willing to access the infrastructure or not (price-based 

mechanisms); and 2) mechanisms that determine the amount of capacity that will be 

offered, and let the TOs reveal the price that they are willing to pay to use that capacity 

(capacity-based mechanisms or auctions) (Gibson, 2003). Price-based mechanisms are 

typically complemented with priority rules that allow the IM to decide which train to 

schedule when there are conflicts (multiple TOs willing to pay the predetermined access 

charges). 

The model presented here determines the optimal set of trains that the IM can 

accommodate, assuming that an auction mechanism is implemented. Under an auction, at 

some predetermined frequency, the TOs will have the opportunity to submit bids. Each 

bid will consist of a list of the trains that the TO wants to schedule on the infrastructure, 

the desired timetable for each train, and the access charges they are willing to pay to 

schedule each train. The IM will then determine the set of trains that can actually be 

scheduled, their timetable, and the access charges that the TOs will pay. We assume that 

the IM’s objective is to maximize revenue and cannot restrict access to the infrastructure 

beyond the infrastructure constraints (e.g., safety, infrastructure maintenance plans). This 

thesis assumes that the IM is government owned and not for profit, or in other words, that 

it does not uses it market power to restrict the access to the infrastructure to the TOs. 
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We also discuss below how to modify the model to determine the optimal set of 

trains that the IM can accommodate under alternative price-based mechanisms. The 

differences between the IM models for each mechanism affect mainly the definition of 

the parameters and the choice of the objective function. The constraints however are 

related to the physical characteristics of the infrastructure and remain unchanged across 

mechanisms. The model formulation is discussed below. 

3.2.1 Sets 

𝑖, 𝑖 ∈ {1, … , 𝐼}   train services proposed by the TOs in the bidding process. 

𝑗, 𝑗 ∈ {1, … , 𝐽}   railway system stations. 

3.2.2 Parameters 

We use again lower-case letters to denote parameters. The information that the 

TOs provide in the bidding process for every train 𝑖 is: 

𝑖𝑛𝑖𝑖𝑗  a Boolean matrix that indicates the initial station 𝑗  from which train 𝑖 

departs. 

𝑓𝑖𝑛𝑖𝑗   a Boolean matrix that indicates the final destination (station 𝑗) of train 𝑖. 

𝑎𝑖  the maximum access price (access charge) that the TO is willing to pay if 

train 𝑖 is scheduled. For price-based mechanisms the access price will be 

predetermined (using, for example, a model to allocate infrastructure-

related costs proportionally to infrastructure use) and fixed by the IM 

depending on the characteristics of the service. It is important to note that 

the TO will only operate a train if that price is less than or equal to its 

willingness to pay determined in Chapter 2. 

𝑡𝑖𝑗
𝑎𝑟𝑟 , 𝑡𝑖𝑗

𝑑𝑒𝑝
  the desired arrival and departure time of train 𝑖 at every station 𝑗 in the path 
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of train 𝑖. 

Δ𝑡𝑑𝑖 , 𝑝𝑖
Δ𝑡𝑑  maximum acceptable translation, defined as the maximum acceptable 

difference between the desired timetable and the actual timetable at the 

initial station (see Figure 3-1) of train 𝑖 and penalty imposed by the TO if 

the IM translates the train over the desired timetable. The penalty specifies 

the reduced access price that the TO is willing to pay. 

Δ𝑡𝑟𝑖, 𝑝𝑖
Δ𝑡𝑟  maximum acceptable change in train 𝑖 total travel time (see Figure 3-1) and 

penalty imposed by the TO if the IM increases the travel time of train 𝑖 at 

any station with respect to the desired timetable. 

 

Figure 3-1 Time-space diagram representation of possible changes with respect to the desired 

timetable (Source: author) 

The information about the topology of the line and the type of service is 

represented by the following two matrices: 

𝑠𝑡𝑎𝑡𝑖𝑗  a Boolean matrix that indicates whether train 𝑖 travels through station 𝑗 or not. 

𝑛𝑒𝑥𝑡𝑖𝑗𝑗′   a Boolean matrix that indicates for each train 𝑖 the station 𝑗′ that train 𝑖 will 

visit immediately after station 𝑗. Train 𝑖 may not stop at station 𝑗′. 
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In addition, the topology of the tracks and the signaling system will determine the 

minimum safe headway (time elapsed) between consecutive maneuvers at every station: 

ℎ𝑗
𝑎𝑟𝑟 , ℎ𝑗

𝑑𝑒𝑝
  minimum headway between consecutive arrivals/departures to/from station 𝑗. 

In some cases the minimum safe headway depends also on the type of service and 

on the characteristics of the rolling stock. If that is the case, the former parameters will 

have different values for each train pair. The IM can set larger minimum headway to 

ensure the reliability of the timetable (including time-slack to recover delays in the 

system). 

3.2.3 Variables 

We use capital letters for variables. The endogenous decision variables of this 

problem are: 

𝑆𝑖  binary variable that indicates whether train 𝑖 is scheduled. 

𝑇𝑖𝑗
𝑎𝑟𝑟 , 𝑇𝑖𝑗

𝑑𝑒𝑝
   final arrival and departure time (timetable) of every train 𝑖 scheduled at 

every station 𝑗 in the path of the train. 

Δ𝑇𝐷𝑖 ,Δ𝑇𝑅𝑖𝑗  final train 𝑖 translation and increment of travel time per station 𝑗. Note 

that these variables can be determined knowing 𝑇𝑖𝑗
𝑎𝑟𝑟 , 𝑇𝑖𝑗

𝑑𝑒𝑝
 and vice 

versa. This research assumes Δ𝑇𝑅𝑖𝑗 ≥ 0  to ensure that the resulting 

train timetable is feasible. Δ𝑇𝐷𝑖 can either be positive or negative; so 

we define the auxiliary positive variable Δ𝑇𝐷𝑖
+ as the absolute value of 

Δ𝑇𝐷𝑖. 

𝑂𝑖𝑖′𝑗  binary disjunctive variable with value 1 if train 𝑖 departs before train 𝑖′ 

at station 𝑗 and value 0 otherwhise. 
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3.2.4 Objective Function 

As discussed before, the objective of the problem is to determine which trains 

should be scheduled and when, in order to maximize the IM’s revenue: 

𝑚𝑎𝑥[∑ 𝑎𝑖𝑆𝑖𝑖 −  𝑝𝑖
Δ𝑡𝑑Δ𝑇𝐷𝑖

+ − 𝑝𝑖
Δ𝑡𝑟 ∑ 𝛥𝑇𝑅𝑖𝑗𝑗 ] (3.1) 

Alternative objective functions could be defined for different capacity pricing and 

allocation mechanisms. For example, the functions: 

𝑚𝑎𝑥[∑ 𝑆𝑖𝑖 ]  (3.2) 

𝑚𝑎𝑥[∑ 𝑝𝑟𝑖𝑆𝑖𝑖 ] (3.3) 

could be used to maximize the number of trains scheduled or the number of priority trains 

scheduled respectively under price-based mechanisms. In this case 𝑝𝑟𝑖  would be a 

parameter that indicates the priority level of each train 𝑖 . This priority level can, for 

example, be proportional to the number of passengers times the miles of the service. 

3.2.5 Constraints 

The first set of constraints establishes the relation between the desired timetable 

and the final timetable of every train scheduled:  

The departure time from the first station can be determined as: 

𝑇𝑖𝑗
𝑑𝑒𝑝 = 𝑡𝑖𝑗

𝑑𝑒𝑝 + Δ𝑇𝐷𝑖 , ∀𝑖, 𝑗: 𝑖𝑛𝑖𝑖𝑗 (3.4) 

The travel time between intermediate stations can be determined as: 

𝑇
𝑖𝑗′
𝑑𝑒𝑝

− 𝑇𝑖𝑗
𝑑𝑒𝑝 = 𝑡

𝑖𝑗′
𝑑𝑒𝑝

− 𝑡𝑖𝑗
𝑑𝑒𝑝 + Δ𝑇𝑅𝑖𝑗 , ∀𝑖, 𝑗, 𝑗′: 𝑛𝑒𝑥𝑡𝑖𝑗𝑗′ , 𝑓𝑖𝑛𝑖𝑗′ = 0 (3.5) 

At the final station, the travel time can be determined using: 

𝑇𝑖𝑗′
𝑎𝑟𝑟 − 𝑇𝑖𝑗

𝑑𝑒𝑝 = 𝑡𝑖𝑗′
𝑎𝑟𝑟 − 𝑡𝑖𝑗

𝑑𝑒𝑝 + Δ𝑇𝑅𝑖𝑗, ∀𝑖, 𝑗, 𝑗′: 𝑛𝑒𝑥𝑡𝑖𝑗𝑗′ , 𝑓𝑖𝑛𝑖𝑗′   (3.6) 

Note that the arrival time at the initial station is not defined in the timetable, nor is 

the departure time from the last station.  
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To ensure that the timetable is feasible, the scheduled stopping and travel time at 

each station must be greater than or equal to the stopping and travel time in the desired 

timetable:  

𝑇𝑖𝑗
𝑑𝑒𝑝 − 𝑇𝑖𝑗

𝑎𝑟𝑟 ≥ 𝑡𝑖𝑗
𝑑𝑒𝑝 − 𝑡𝑖𝑗

𝑎𝑟𝑟 , ∀𝑖, 𝑗: 𝑠𝑡𝑎𝑡𝑖𝑗 , 𝑖𝑛𝑖𝑖𝑗 + 𝑓𝑖𝑛𝑖𝑗 = 0 (3.7) 

𝑇𝑖𝑗′
𝑎𝑟𝑟 − 𝑇𝑖𝑗

𝑑𝑒𝑝 ≥ 𝑡𝑖𝑗′
𝑎𝑟𝑟 − 𝑡𝑖𝑗

𝑑𝑒𝑝 , ∀𝑖, 𝑗: 𝑛𝑒𝑥𝑡𝑖𝑗′𝑗 , 𝑓𝑖𝑛𝑖𝑗 = 0 (3.8) 

The maximum translation and increment of travel time for which the TO receives 

a discount is constrained for each train scheduled. The allowable translation of a train is 

bounded by a maximum translation defined by the TO: 

−Δ𝑡𝑑𝑖 ≤ Δ𝑇𝐷𝑖 ≤ Δ𝑡𝑑𝑖, ∀𝑖 (3.9) 

In addition, the absolute value of the translation (Δ𝑇𝐷𝑖
+ = |Δ𝑇𝐷𝑖|) is determined 

using the following linear constraints: 

Δ𝑇𝐷𝑖
+ ≥ Δ𝑇𝐷𝑖 , Δ𝑇𝐷𝑖

+ ≥ −Δ𝑇𝐷𝑖  ∀𝑖 (3.10) 

The maximum change on travel time is bounded by the maximum increment on 

travel time specified by the TO: 

∑ Δ𝑇𝑅𝑖𝑗𝑗:𝑠𝑡𝑎𝑡𝑖𝑗
≤ Δ𝑡𝑟𝑖 , ∀𝑖 (3.11) 

The TO may impose additional conditions within the bid to define the acceptable 

changes with respect to the desired timetable. That happens when the TO is not interested 

in operating the train if the departure from or the arrival at one major station is changed. 

In this case, additional constraints are included to ensure that the timetable respects the 

TO’s requests if the train is scheduled.  

The final set of constraints ensures that the timetable proposed by the IM can be 

accommodated by the existing infrastructure. The IM must ensure first that the difference 
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between the departure times of every pair of trains scheduled is greater than or equal to 

the minimum safe headway, so at least one of the following equations must hold: 

𝑇𝑖𝑗
𝑑𝑒𝑝 − 𝑇

𝑖′𝑗

𝑑𝑒𝑝
≥ ℎ𝑗

𝑑𝑒𝑝
 (3.12) 

𝑇
𝑖′𝑗

𝑑𝑒𝑝
− 𝑇𝑖𝑗

𝑑𝑒𝑝 ≥ ℎ𝑗
𝑑𝑒𝑝

 (3.13) 

These conditions can be expressed using the following disjunctive constraints: 

𝑇𝑖𝑗
𝑑𝑒𝑝 − 𝑇

𝑖′𝑗

𝑑𝑒𝑝
≥ ℎ𝑗

𝑑𝑒𝑝 − 𝑀𝑖𝑖′𝑗(𝑂𝑖𝑖′𝑗 + 2 − 𝑆𝑖 − 𝑆𝑖′), ∀𝑖, 𝑖′, 𝑗: 𝑖 < 𝑖′, 𝑠𝑡𝑎𝑡𝑖𝑗 , 𝑠𝑡𝑎𝑡𝑖′𝑗 (3.14) 

𝑇
𝑖′𝑗

𝑑𝑒𝑝
− 𝑇𝑖𝑗

𝑑𝑒𝑝 ≥ ℎ𝑗
𝑑𝑒𝑝 − 𝑀𝑖𝑖′𝑗(3 − 𝑂𝑖𝑖′𝑗 − 𝑆𝑖 − 𝑆𝑖′), ∀𝑖, 𝑖′, 𝑗: 𝑖 < 𝑖′, 𝑠𝑡𝑎𝑡𝑖𝑗 , 𝑠𝑡𝑎𝑡𝑖′𝑗 (3.15) 

In these equations 𝑀
𝑖𝑖′𝑗

 is a “big enough” number to ensure that one and only 

one of the equations (3.12) and (3.13) holds. In this formulation we use 𝑀
𝑖𝑖′𝑗

= ℎ𝑗
𝑑𝑒𝑝 +

𝑡
𝑖′𝑗

𝑑𝑒𝑝
− 𝑡𝑖𝑗

𝑑𝑒𝑝 +Δ𝑡𝑑
𝑖′

+Δ𝑡𝑑𝑖 + max(Δ𝑡𝑟𝑖,Δ𝑡𝑟
𝑖′

) , which is the smallest possible 

𝑀
𝑖𝑖′𝑗

 that can be chosen for this problem. The binary disjunctive variable 𝑂
𝑖𝑖′𝑗

 is used 

to automatically activate only one of the constraints depending on the value of the other 

variables. 𝑂
𝑖𝑖′𝑗

 has value 1 if train 𝑖 departs before train 𝑖′ at station 𝑗. This problem 

has on the order of 𝑂(𝐼2𝐽) binary variables and is very difficult to solve for large 𝐼 

(number of trains) or 𝐽 (number of stations) due to a large integrality gap.  

Similar constraints are included for inter-arrival times to ensure that the order of 

the trains is preserved between stations. 

𝑇𝑖𝑗+1
𝑎𝑟𝑟 − 𝑇𝑖′𝑗+1

𝑎𝑟𝑟 ≥ ℎ𝑗+1
𝑎𝑟𝑟 − 𝑀𝑖𝑖′𝑗(𝑂𝑖𝑖′𝑗 + 2 − 𝑆𝑖 − 𝑆𝑖′), ∀𝑖, 𝑖′, 𝑗: 𝑖 < 𝑖′, 𝑠𝑡𝑎𝑡𝑖𝑗+1 , 𝑠𝑡𝑎𝑡𝑖′𝑗+1(3.16) 

𝑇𝑖′𝑗+1
𝑎𝑟𝑟 − 𝑇𝑖𝑗+1

𝑎𝑟𝑟 ≥ ℎ𝑗+1
𝑎𝑟𝑟 − 𝑀𝑖𝑖′𝑗(3 − 𝑂𝑖𝑖′𝑗 − 𝑆𝑖 − 𝑆𝑖′), ∀𝑖, 𝑖′, 𝑗: 𝑖 < 𝑖′, 𝑠𝑡𝑎𝑡𝑖𝑗+1 , 𝑠𝑡𝑎𝑡𝑖′𝑗+1(3.17) 

For these constraints, a value of 𝑀
𝑖𝑖′𝑗

= ℎ𝑗+1
𝑎𝑟𝑟 + 𝑡

𝑖′ 𝑗

𝑎𝑟𝑟 − 𝑡𝑖𝑗
𝑎𝑟𝑟 +Δ𝑡𝑑

𝑖′ 
+

Δ𝑡𝑑𝑖 + max(𝛥𝑡𝑟𝑖, 𝛥𝑡𝑟
𝑖′ 

) is used.  
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We emphasize that this formulation for shared railway systems differs in three 

aspects from traditional train timetabling problem formulations. First, it introduces the 

discrete variable 𝑆𝑖 that indicates whether train 𝑖 can be scheduled or not, which adds to 

the complexity of the problem. In contrast, the timetabling problem for a vertically-

integrated railway will assume that all trains will be scheduled. Second, it uses flexibility 

margins Δ𝑡𝑑𝑖, 𝛥𝑡𝑟𝑖 to alleviate conflicts. This is necessary because when different TOs 

are requesting trains, these conflicts are more likely to occur. Large flexibility margins 

result on high values of 𝑀𝑖𝑖′𝑗, making the problem hard to solve. Third, this formulation 

specifies safety constraints (spacing of the trains) for each train path, requiring the 

definition of the matrices 𝑠𝑡𝑎𝑡𝑖𝑗, 𝑖𝑛𝑖𝑖𝑗 , 𝑓𝑖𝑛𝑖𝑗 , 𝑛𝑒𝑥𝑡𝑖𝑗′𝑗. 

This model is generalizable to other shared railway systems. The same equations 

will apply, with different parameter values to capture the system-specific information 

about the topology of the infrastructure, the path of the trains, the safe headways imposed 

by the signaling system, etc.  

3.3 Linear Programming Approach for Approximate Dynamic 

Programming 
 

As discussed above, the size of the MILP model proposed in Section 3.2 increases 

rapidly as a function of the number of stations and trains to schedule. We propose a novel 

solution algorithm using ADP techniques (Bertsekas and Tsitsiklis, 1996; Bertsekas, 

2006; Powell, 2007) to tractably solve large timetabling problems in shared railway 

systems. 

Specifically, we propose a Q-factor Adaptive Relaxed Linear Programming 

(QARLP) algorithm that extends the Approximate Linear Programming (ALP) and the 
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Relaxed Linear Programming (RLP) algorithms developed by (Farias and Van Roy, 

2003; Farias and Van Roy, 2004). QARLP introduces three main innovations with 

respect to ALP and RLP algorithms: 1) it incorporates the possibility of learning from 

previous solutions, allowing the algorithm to improve the solution obtained by refining 

the sampling strategy in subsequent iterations, 2) it formulates the Bellman equation 

using Q-factors, and 3) it implicitly samples through the state-action space, enabling the 

indirect identification of promising areas in the solution space, which is very difficult for 

large multidimensional problems. This approach decreases the solution time compared to 

a MILP commercial solver while still ensuring convergence to the optimal solution 

within a specified optimality gap. 

3.3.1 Dynamic Programming Formulation 

The problem defined in Section 3.2 can be reformulated as follows. 

3.3.1.1 Stages 

There are 𝑖 = 1, … , 𝐼  decision stages (one for each train proposed to be 

scheduled), and a terminal stage 𝑖 = 𝐼 + 1. 

3.3.1.2 State 

The Markovian state variable is the timetable of the trains scheduled so far; that 

is, a matrix with the departure and the arrival times from/to the stations of all the trains 

scheduled so far: 

𝑥𝑖 = {𝑡𝑖𝑚𝑒𝑡𝑎𝑏𝑙𝑒𝑖−1}, ∀𝑖 (3.18) 

The timetable is defined as 𝑡𝑖𝑚𝑒𝑡𝑎𝑏𝑙𝑒𝑖−1 = [𝑇𝑖1𝑗
𝑎𝑟𝑟, 𝑇𝑖1𝑗

𝑑𝑒𝑝
; 𝑇𝑖2𝑗

𝑎𝑟𝑟, 𝑇𝑖2𝑗
𝑑𝑒𝑝

; … ] , ∀𝑗,

𝑖1, 𝑖2, … : 𝑆𝑖𝑘
= 1, 𝑖𝑘 < 𝑖. 
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3.3.1.3 Control 

At every stage, the control variable indicates whether the IM decides to schedule 

train 𝑖 or not, and, if scheduled, the specific timetable of train 𝑖 at all stations 𝑗 in the 

path.  

𝑢𝑖 = {𝑆𝑖, 𝑇𝑖𝑗
𝑎𝑟𝑟 , 𝑇𝑖𝑗

𝑑𝑒𝑝} ∈ 𝑈(𝑥𝑖), ∀𝑖, 𝑗: 𝑖 𝐼, 𝑠𝑡𝑎𝑡𝑖𝑗 (3.19) 

A train can only be scheduled if it does not present any conflict with the trains 

already scheduled. As we discuss in Section 3.4.1., the present and future value of 

scheduling each train ensures that the order in which the trains are visited (stages) does 

not affect the solution obtained.  

3.3.1.4 State Transition Function 

Given the state and the control at one decision stage, the state in the following 

decision stage can be computed, which incorporates the timetable of the new train if it is 

scheduled.  

𝑥𝑖+1 = 𝑓(𝑥𝑖, 𝑢𝑖) = {
𝑡𝑖𝑚𝑒𝑡𝑎𝑏𝑙𝑒𝑖−1                          𝑖𝑓 𝑆𝑖 = 0

[𝑡𝑖𝑚𝑒𝑡𝑎𝑏𝑙𝑒𝑖−1; 𝑇𝑖𝑗
𝑎𝑟𝑟 , 𝑇𝑖𝑗

𝑑𝑒𝑝]  𝑖𝑓 𝑆𝑖 = 1
, ∀𝑖 ≤ 𝐼 (3.20) 

3.3.1.5 Cost Function 

The cost associated with a state-control pair is the sum of the penalties minus the 

revenue obtained if train 𝑖 is finally scheduled. The sign of the cost function has been 

chosen to formulate a minimization problem. The cost associated with each state-action 

pair is evaluated using: 

𝑔(𝑥𝑖, 𝑢𝑖) = 𝑔(𝑢𝑖) = −𝑎𝑖𝑆𝑖 + |Δ𝑇𝐷𝑖|𝑝𝑖
Δ𝑡𝑑 + ∑ Δ𝑇𝑅𝑖𝑗𝑗 𝑝𝑖

Δ𝑡𝑟 , ∀𝑖 ≤ 𝐼 (3.21) 
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3.3.1.6 Bellman Equation 

The policy that minimizes the sum of current and future costs at every decision 

stage can be determined by solving the Bellman equation and calculating the cost-to-go 

or value function: 

𝐽𝑖
∗(𝑥𝑖) = min

𝑢𝑖

𝑔(𝑢𝑖) + 𝐽𝑖+1
∗ (𝑓(𝑥𝑖, 𝑢𝑖)) , ∀𝑖 ≤ 𝐼 (3.22) 

𝐽𝐼+1
∗ (𝑥𝐼+1) = 0  (3.23) 

This equation can be reformulated using Q-factors, which represent the cost-to-go 

for every feasible state-control pair: 

𝑄𝑖
∗(𝑥𝑖, 𝑢𝑖) = 𝑔(𝑢𝑖) + min

𝑢𝑖+1

𝑄𝑖+1
∗ (𝑓(𝑥𝑖, 𝑢𝑖), 𝑢𝑖+1) , ∀𝑖 ≤ 𝐼 (3.24) 

𝑄𝐼+1
∗ (𝑥𝐼+1, 𝑢𝐼+1) = 0  (3.25) 

The relation between the cost-to-go function and the Q-factor is: 

𝐽𝑖
∗(𝑥𝑖) = min

𝑢𝑖

𝑄𝑖
∗(𝑥𝑖, 𝑢𝑖) , ∀𝑖  (3.26) 

The optimal policy (timetable) can be determined solving the Bellman equation or 

the Q-factor Bellman equation using backward induction. However, when the dimension 

of the state space and/or the dimension of the control space increase, the solution of the 

exact DP program becomes impracticable because the size of the problem grows 

exponentially. The benefit of reformulating the MILP model as a DP problem is that we 

can apply efficient solution algorithms such as the one proposed later in this chapter. 

3.3.2 Linear Programming Algorithm 

(Borkar, 1988; De Ghellinck, 1960; Manne, 1960) show that solving the Bellman 

equation (3.22) is equivalent to solving the LP problem proposed in equation (3.27) for 

any positive vector 𝑐 because the inequality 𝐽 ≤ 𝐽∗ holds for every feasible solution 𝐽 of 

the problem. The vector 𝑐 is called the state-relevance weight vector.  
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max 𝑐J, s.t. 𝑔𝑖(𝑢𝑖) + 𝛼J𝑖+1(𝑓𝑖(𝑥𝑖, 𝑢𝑖)) ≥ J𝑖(𝑥𝑖), ∀𝑖 ≤ 𝐼, 𝑥𝑖, 𝑢𝑖 ∈ 𝑈(𝑥𝑖) (3.27) 

Note that the original problem does not have any discount factor, so we will use 

𝛼 = 1 from now on. This LP problem has as many variables as possible states (value of 

the cost-to-go function at each state) and as many constraints as possible state-control 

pairs. When the state and control space of the problem are large, this results in a very 

large number of variables and constraints.  

(Schweitzer and Seidman, 1985; Farias and Van Roy, 2003) proposed a 

modification of the previous formulation called the Approximate Linear Problem (ALP): 

max 𝑐Φ𝑟, s.t. 𝑔𝑖(𝑢𝑖) + Φ𝑖+1(𝑓𝑖(𝑥𝑖, 𝑢𝑖))𝑟𝑖+1 ≥ Φ𝑖(𝑥𝑖)𝑟𝑖, ∀𝑖 ≤ 𝐼, 𝑥𝑖, 𝑢𝑖 ∈ 𝑈(𝑥𝑖)  (3.28) 

where the real value function 𝐽𝑖
∗  is approximated by a linear combination of basis 

functions 𝐽𝑖(𝑥𝑖) ≅ ∑ Φ𝑘𝑖(𝑥𝑖)𝑟𝑘𝑖𝑘=1,…,𝑅 =Φi(𝑥𝑖)𝑟𝑖. In this approximation, there are only 

𝑅 ⋅ 𝐼 variables (number of basis functions and number of stages). However, the number of 

constraints remains the same as in equation (3.27) (one constraint for each state-control 

pair).  

To reduce the number of constraints in this problem, (Farias and Van Roy, 2004) 

proposed a Relaxed Linear Problem (RLP) formulation. RLP proposes a strategy which 

samples constraints from the ALP formulation. Farias and Van Roy showed that for an 

appropriate probability distribution function Ψ over the set of state-control pairs, the 

number of constraints that must be sampled does not depend on the number of state-

control pairs. In particular, to obtain a solution close enough to the optimal solution 

obtained using the ALP formulation with 1 − 𝛿  confidence level ( Pr{|‖𝐽∗ −Φ

𝑟𝐴𝐿𝑃‖1,𝑐 − ‖𝐽∗ −Φ𝑟𝑅𝐿𝑃‖1,𝑐| < 𝜖} ≥ 1 − 𝛿), the number of samples required is on the 

order of a polynomial in the number of state variables, 1/𝜖, and log 1/𝛿. Note that these 
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convergence results are computed over the basis-function approximation, that is, the RLP 

formulation converges to the best approximation over the basis functions chosen with 

confidence level 1 − 𝛿 within a number of samples that does not depend on the number 

of state-action pairs. The RLP formulation is: 

max 𝑐Φ𝑟, s.t. 𝑔𝑖(𝑢𝑖) + Φ𝑖+1(𝑓𝑖(𝑥𝑖, 𝑢𝑖))𝑟𝑖+1 ≥ Φ𝑖(𝑥𝑖)𝑟𝑖, ∀𝑖 ≤ 𝐼, (𝑥𝑖, 𝑢𝑖) ∈ 𝑋  (3.29) 

where 𝑋 is the set of state-action pairs sampled.  

The main drawback of the RLP formulation presented in equation (3.29) is that 

the convergence results proved in (Farias and Van Roy, 2004) are based on an idealized 

choice of the probability distribution used to sample the constraints. In particular, the 

choice assumes knowledge of an optimal policy. Although it is unrealistic to assume that 

the optimal policy is known a priori, it is possible to obtain a reasonable approximation of 

the optimal policy by solving the RLP. Applying this idea, we propose the following 

Adaptive Relaxed Linear Programming (ARLP) algorithm: 

Step 0: Set 𝑡 = 0, and sample 𝑋0, giving each state-control pair equal probability to be 

sampled (Ψ0 uniform distribution).  

Step 1: Solve the problem max 𝑐Φ𝑟, 

s.t. 𝑔𝑖(𝑢𝑖) +Φ𝑖+1(𝑓𝑖(𝑥𝑖 , 𝑢𝑖))𝑟𝑖+1 ≥Φ𝑖(𝑥𝑖)𝑟𝑖, ∀𝑖 ≤ 𝐼, (𝑥𝑖, 𝑢𝑖) ∈ 𝑋𝑡  

Step 2: Set 𝑡 = 𝑡 + 1. Determine the optimal policy 𝜋𝑖𝑡 , ∀𝑖 according to the last problem 

solved (𝜋𝑖𝑡(𝑥𝑖) = argmin 𝑔𝑖(𝜋𝑡(𝑥𝑖)) +Φ𝑖+1 (𝑓𝑖(𝑥𝑖 , 𝜋𝑖𝑡(𝑥𝑖))) 𝑟𝑖+1 , ∀𝑖 ≤ 𝐼, 𝑥𝑖 ). Choose 

the next set of constraints sampled using a probability distribution function Ψ𝑡  that 

assigns higher probabilities to promising solutions considering the last iteration (i.e., the 

probability to sample (𝑥𝑖, 𝑢𝑖)  increases as Φ𝑖+1(𝑓𝑖(𝑥𝑖, 𝑢𝑖))𝑟𝑖+1/
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Φ𝑖+1 (𝑓𝑖(𝑥𝑖 , 𝜋𝑖𝑡(𝑥𝑖))) 𝑟𝑖+1  increases). In general, the variance of the probability 

distribution Ψ𝑡 will decrease with 𝑡.  

Step 3: If 𝑡 > 𝑇0 or the difference between the objective function is smaller than 𝜖, stop. 

Otherwise go to Step 1.  

Algorithm 3-1 Adaptive Relaxed Linear Programming (ARLP) algorithm 

The ARLP algorithm iteratively solves a sequence of RLP problems, each with a 

manageable number of variables and constraints. This approach takes advantage of the 

reduced dimensionality of the RLP formulation while incorporating a mechanism to 

refine the sampling strategy Ψ𝑡  using the best approximation of the optimal solution 

obtained so far. As a consequence, the convergence of the algorithm would not require 

the knowledge of the appropriate probability distribution function Ψ a priori.  

However, because the basis function approximation used reduces the 

dimensionality of the problem, finding the state-control pair (e.g., timetable) that 

corresponds to known basis function values becomes a challenge. In other words, 

although it is very easy to determine the value of each basis function for a given state-

control pair, solving the inverse problem (determining a state-control pair associated with 

a given basis function value) is extremely difficult in these cases. This is because the 

basis functions are a projection from the higher-dimensional state-action space to a 

lower-dimensional space, and the mapping from the low-dimensional projection back to 

the higher dimensional space is underdetermined. Therefore, there is no straightforward 

way to define Ψ𝑡 based on low-cost regions in the basis function space, and to sample 

state-action pairs from it.  

We solve this problem by 1) reformulating the algorithm using Q-factors instead 
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of the cost-to-go function, and 2) determining Ψ𝑡 implicitly using a Metropolis Hasting 

algorithm (Rubinstein and Kroese 2008) that accepts or rejects a state-control sample 

based on how promising the sample is according to the Q-factor best guess.  

To do that, we sample uniformly across the state-action space to determine a 

candidate state-action pair (𝑥𝑖
′, 𝑢𝑖

′), we compute the value of its associated Q-factor 

(Φ𝑖(𝑥𝑖
′, 𝑢𝑖

′)𝑟𝑖), and compute the ratio of this Q-factor with the range of possible Q-

factor values in the latest iteration (Φ𝑖(𝑥𝑖, 𝑢𝑖)𝑟𝑖,Φ𝑖(𝑥𝑖, 𝑢𝑖)𝑟𝑖):  

ϕ =
Φ𝑖(𝑥𝑖

′,𝑢𝑖
′)𝑟𝑖−Φ𝑖(𝑥𝑖,𝑢𝑖)𝑟𝑖

Φ𝑖(𝑥𝑖,𝑢𝑖)𝑟𝑖−Φ𝑖(𝑥𝑖,𝑢𝑖)𝑟𝑖
 (3.30) 

We then draw a sample 𝜉 from a probability distribution Ξ𝑡. We accept the state 

action pair if ϕ ≥ 𝜉. To ensure convergence to the optimal solution, the variance of the 

probability distribution Ξ𝑡 must decrease with 𝑡, the probability of accepting any sample 

must be strictly positive, and the probability of accepting any sample with associated ϕ ≥

1  must be 1. To ensure that these conditions hold, we determine the probability of 

accepting a proposed sample based on a sample drawn from Ξ𝑡~𝑈(−
1

𝑡
, 1). In other 

words, we accept a sample with probability 𝛼 = min (max(ϕ, 0) +
1

𝑡
, 1) . The 

performance of the algorithms improves when the state-control pairs associated with 

binding constraints in the previous iteration are retained in future iterations.  

We call this algorithm a Q-factor Adaptive Relaxed Linear Problem (QARLP) 

algorithm. 

Step 0: Set 𝑡 = 0, and sample 𝑋0, giving each state-control pair equal probability to be 

sampled (Ψ0 uniform distribution).  
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Step 1: Solve the problem max 𝑐Φ𝑟, 

s.t. 𝑔𝑖(𝑢𝑖) +Φ𝑖+1(𝑓𝑖(𝑥𝑖, 𝑢𝑖), 𝑢𝑖+1)𝑟𝑖+1 ≥Φ𝑖(𝑥𝑖 , 𝑢𝑖)𝑟𝑖, ∀𝑖 ≤ 𝐼, (𝑥𝑖, 𝑢𝑖 , 𝑢𝑖+1) ∈ 𝑋𝑡 

Step 2: Set 𝑡 = 𝑡 + 1. Determine the optimal policy according to the last problem solved. 

Repeatedly sample state-control pairs until one pair is accepted if the ratio of its 

associated Q-factor (Φ𝑖(𝑥𝑖, 𝑢𝑖)𝑟𝑖) and the range of possible Q-factor values in the latest 

iteration (𝜙) is greater than or equal to a draw of a probability distribution Ξ𝑡 (𝜉).  

Step 3: If 𝑡 > 𝑇0 or the difference between the objective function is smaller than 𝜖, stop. 

Otherwise save binding constraints from previous iterations and go to Step 1.  

Algorithm 3-2 Q-factor Adaptive Relaxed Linear Programming (QARLP) algorithm 

Note that in this algorithm 𝑐,Φ, 𝑟  have slightly different meanings than in 

Algorithm 3-1: 𝑐 is a positive constant for every state-control pair at every decision stage 

and Φ, 𝑟  are functions of the state-control pair (not only of the state: Φ, 𝑟 =Φ

, 𝑟𝑖(𝑥𝑖, 𝑢𝑖)).  

3.3.2.1 Capturing the problem structure: choosing basis functions 

The choice of basis functions that capture relevant information about the state and 

the action while at the same time decreasing the amount redundant information (and 

hence the dimensionality of the problem) is a critical design choice of these types of ADP 

algorithms. In this research, we use basis functions that capture: 1) the total number of 

trains scheduled, as well as the total changes in the TO’s desired timetable (state 

variable), 2) whether train 𝑖  is scheduled or not, and the total changes in its desired 

timetable (control), 3) the number of conflicts of the trains scheduled so far with the 

following trains to be scheduled, and 4) and a constant. This reduces the dimensionality 

of the approximate cost-to-function to 𝑅 = 8. That is, 
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Φ𝑖(𝑥𝑖, 𝑢𝑖) = (∑ 𝑆𝑖′ , ∑ Δ𝑇𝐷𝑖′𝑖′<𝑖 , ∑ Δ𝑇𝑅𝑖′𝑖′<𝑖 , 𝑆𝑖, Δ𝑇𝐷𝑖 , Δ𝑇𝑅𝑖𝑖′<𝑖 , 𝐶𝑖, 1)  (3.31) 

where 𝐶𝑖  is the number of conflicts of the trains scheduled so far with the following 

trains: 𝐶𝑖 = ∑ (𝑌
𝑖′

)𝑖′>𝑖 . The variable 𝑌
𝑖′

 has value 1 if the desired timetable of train 𝑖′ 

conflicts with the timetable of any train scheduled so far and 0 otherwise. These basis 

functions capture the most relevant features of the problem, and therefore enable us to 

achieve a low approximation error around the optimal solution and to differentiate 

promising solutions from solutions that are less promising while reducing the 

dimensionality.  

3.4 Results 
 

In this section, we present the results for the train timetabling problem from both 

the MILP and the ADP formulations. Section 3.4.1 presents the computational results of 

the chapter, comparing the solution times between the commercial MILP solver and the 

QARLP algorithm. Section 3.4.2 illustrates the insights gained by using the model to 

design different timetables for a shared railway system. 

3.4.1 Computational Results 

We begin by presenting the results obtained from solving the timetable problem 

for a railway system with the infrastructure represented in Figure 3-2. It consists of a 

double-track corridor with 12 stations. Stations 1 and 7 are terminal stations at both ends 

of the line. Stations 2-12, 3-11, 4-10, 5-9 and 6-8 represent five stations along the 

corridor. We use a different station number for each traffic direction. Traffic moves in the 

direction of increasing station numbers in a dedicated track per direction. As a result, 

traffic traveling in different directions only interacts at the stations. The system presented 

includes the critical characteristics required to represent a corridor such as the NEC, for 
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which the FRA is currently developing a new capacity pricing and allocation mechanism 

to foster rail efficiency (Gardner, 2013). 

 

Figure 3-2 Detailed corridor infrastructure (Source: author) 

Stations 1, 2 and 12 represent main stations in the same metropolitan area (e.g., 

Boston), stations 3, 4, 5, 9, 10 and 11 are all in another metropolitan area (e.g., New 

York), and stations 6, 7 and 8 are in yet a third distinct metropolitan area (e.g., 

Washington DC). Five types of services are considered: Boston commuter trains traveling 

around the Boston metropolitan area (stations 1, 2, and 12); New York commuter trains; 

DC commuter trains; and intercity and freight trains traveling between Boston and 

Washington DC. Intercity and freight trains may not stop at every station. Freight trains 

travel the line at speeds much lower than commuter and intercity trains. Intercity trains 

travel at higher speeds than commuter trains. 

At present, around 2,000 commuter trains, 150 intercity trains and 70 freight 

trains travel around the NEC every day (Amtrak, 2010; Gardner, 2013). In practice, most 

of the conflicts to schedule trains occur around peak hours; where the IM would have to 

control for conflicts within sets of around 100-250 trains to make changes in the 

timetable. 

We assume that the commuter TOs (one in each metropolitan area) request 

scheduling commuter trains every 30 minutes, and that one intercity TO requests 

operating a train every hour. The number of trains requested by TOs depends on the total 
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time horizon considered. 

The MILP formulation from Section 3.2 is implemented in GAMS 24.1.2 and 

solved using CPLEX 12.5 on a PC at 2.40 GHz, 4GB, intel core i7, under Microsoft 

Windows 7 64 bits. To reduce the size of the problem, when the desired arrival and 

departure times of two trains are very far apart, the value of the binary variable 𝑂
𝑖𝑖′𝑗

 is 

fixed a priori (since the relative order in which they pass through the station cannot 

change). We run CPLEX with options CHEAT = 0.05, 𝑅INSHeur = 50, Threads = −1 

for faster solution times, and use a 5% optimality gap. A smaller optimality gap may be 

required if the timetable problem has multiple near-optimal solutions with very different 

implications for different TOs in terms of which trains are scheduled to ensure that the 

IM’s choice of the trains to schedule is not arbitrary. In practice, for the cases solved for 

this research, the difference in the objective function between scheduling one additional 

train or not is large. As a consequence any solution within a 5% optimality gap of the 

optimal solution ensures that the set of trains scheduled is the same as the set of trains 

scheduled in the optimal solution unless there are twin trains (TOs willing to pay the 

same to operate trains with the exact same timetable). In that case neither CPLEX nor the 

QARLP algorithm would be able to distinguish those trains in the solution and the choice 

of one solution over other would be random.  

We then solve the identical problem using the QARLP algorithm proposed in the 

previous section. Although theoretically the relative order of the trains does not change 

the solutions obtained or the convergence speed of the algorithm to the optimal solution, 

in practice the relative order of the trains may speed up or slow down the process of 

finding the optimal solution. The results presented in this chapter correspond to cases in 
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which the relative train order (trains considered at each stage) was randomly assigned. 

Table 3-1 shows the number of equations, variables, and discrete variables for 

problems with several different numbers of requested commuter and intercity trains. 

Figure 3-3 presents the execution time and the number of iterations required to 

convergence (within 5% integrality gap) for the MILP and QARLP algorithms. We 

compute the QARLP algorithm integrality gap using the “best possible” solution bound 

generated by the MILP commercial software.  

Table 3-1 Train timetabling problem size for traffic patterns representative of the NEC Traffic 

(Source: author) 

Number of Trains Equations 
Number of 

Variables 
Discrete Variables 

15 970 510 91 

30 3,715 1,607 292 

60 14,533 5,565 919 

120 57,481 20,537 3,145 

Note that the QARLP execution time increases as a polynomial function of the 

number of trains to schedule. In contrast, the MILP solution times increase exponentially. 

In fact, solving the MILP problem with CPLEX for 75, 90, or 120 trains within a 5% 

convergence gap is computationally intractable. Extrapolating from a regression estimate 

(Figure 3-3), the solution time using CPLEX for 120 trains would be approximately 46 

days. The solutions obtained with the QARLP algorithm for 90 and 120 trains in 

approximately 20 minutes are better than those obtained for the MILP formulation with 

CPLEX after 20 hours and 35 hours respectively. In the cases with 15, 30, and 60 trains 

the solutions obtained with both methods are almost identical.  
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Figure 3-3 Comparison of the execution time and the iterations required to convergence (within 5% 

integrality gap) of the MILP approach and the QARLP algorithm (Source: author) 

3.4.2 Design of Timetables for Systems with Traffic Patterns similar to the US 

Northeast Corridor’s Traffic 

In this section, we are interested in analyzing the timetables designed for relevant 

cases that illustrate trade-offs involved in the capacity planning process in shared railway 

systems. We analyze the optimal capacity allocation plan (train timetable) to determine 

how to coordinate different TOs’ conflicting demand for scheduling trains. The ability to 

solve this allocation problem is critical for designing effective capacity pricing and 

allocation mechanisms. Figures 3-4, 3-5, 3-7, and 3-8 show time-space diagrams for 

timetables designed by the IM model for cases with different demands for accessing the 

infrastructure. The y-axes represent distance in miles from station 1 and the x-axes 

represent time in minutes at which different trains are scheduled to pass through each 
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point of the line (vs. desired scheduled in dashed line). The horizontal segments represent 

the stopping times at stations. We assume no interaction between trains traveling in 

different directions. 

Figures 3-4 and 3-5 show the timetable for a case with demand for scheduling an 

intercity train in the system when commuter trains around the three metropolitan areas 

operate every 30 minutes. Figure 3-7 shows a case in which two competing intercity TOs 

request scheduling intercity trains when commuter trains around the three metropolitan 

areas operate every 30 minutes. These two cases provide information about how much 

intercity TOs will have to pay to be able to schedule services that conflict with commuter 

train services. Figure 3-8 shows a case with demand for scheduling a freight train in the 

system when commuter trains around the three metropolitan areas operate every 1 hour. 

This case is designed to analyze whether freight TOs would be able to schedule any trains 

on the infrastructure. The IM model proposes the final timetable analyzing the trade-off 

between eliminating trains and readjusting the desired schedules, according to the 

objective function in (3.1).  

For this example, we assume that each commuter TO pays 1 unit to schedule a 

commuter service and gets a 3% discount from the original access charge for every minute 

that one of their train schedules is changed. To analyze the first case, we need to solve a 

train timetabling problem with 115 commuter trains and 1 intercity train. Figure 3-4 shows 

the timetable of all the trains scheduled. For clarity purposes, only the schedules of 

conflicting trains are shown in Figures 3-5, 3-7, and 3-8.  

Note that when the IM tries to schedule the intercity train, it will initially conflict 

with 14 commuter trains (see Figure 3-5). Rescheduling the commuter trains to 
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accommodate the intercity service requires that the commuter TOs receive a discount of 

2.1 units on their total access charges. As a result, the IM would only schedule the 

intercity train if it represents more than 2.1 units of revenue.  

 

Figure 3-4 Timetable proposed by IM to schedule an intercity train in a system with commuter trains 

operating every 30 minutes – including conflicting and non-conflicting trains (Source: author) 
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Figure 3-5 Timetable proposed by IM to schedule an intercity train in a system with commuter trains 

operating every 30 minutes (Source: author) 

If the frequency of commuter trains increases, for example to one commuter train 

every 15 minutes instead of every 30 minutes, the intercity train will initially conflict with 

22 commuter trains and will only be scheduled if it represents more than 3.6 units of 

revenue for the IM (i.e., if the intercity bid is higher than 3.6 units). Conversely, if the 

frequency of commuter trains decreases to one train every 60 minutes, the intercity train 

will be scheduled if it represents at least 1.5 units of revenue for the IM. The model can be 

used to quantify the trade-off between commuter and intercity trains for any other 

frequency of service (see Figure 3-6). The exact value of the trade-off for low frequencies 

of commuter services depends on whether there are conflicts among the desired timetables 
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function of the congestion of the line. This minimum intercity access charge reflects the 

congestion rent. The results show that greater cost recovery is expected in congested 

infrastructure. 

 

Figure 3-6 Intercity to commuter access charge ratio as a function of the commuter frequency 

(Source: author) 
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commuter timetable are much larger (because commuters are overtaken by two intercity 

trains) as compared to the previous case. As a result, the IM would only schedule the two 

intercity trains if they represent more than 4.0 units of revenue. If the revenue from 

scheduling the intercity trains represent between 2.1 and 4.0 units, at most one of the 

intercity trains would be scheduled.  

 

Figure 3-7 Timetable proposed by IM to schedule two intercity trains in a system with commuter 

trains operating every 30 minutes (Source: author) 

Furthermore, note that although both trains would like to depart station 1 at minute 
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their schedule is, 2) how much discount in the access charge they request if the schedule 

of the train is changed, and 3) how much they are willing to pay to access the 

infrastructure. This is important because the railway literature assumes that the value of 

scheduling trains for TOs can only be captured by combinatorial auctions (Perennes, 

2014). However, these results demonstrate that TOs can also avoid getting their trains 

scheduled right after other competing service in congested systems even when using 

simple auctions. 

The third case considered in this section analyzes whether a TO would be able to 

schedule trains in the system if it cannot afford to pay high access charges. This discussion 

can be particularly relevant to understand if freight TOs with low access charges 

willingness to pay may be able to access the infrastructure in shared railway systems. 

Figure 3-8 shows that a freight train could be scheduled paying the same access charges as 

commuter trains (with frequency one train pair hour) if the freight TO is very flexible (in 

terms of the total allowed translation and increment of travel time it accepts).  

The minimum access charge that a freight TO must pay when the line is more 

congested will depend on how many trains have to be rescheduled to eliminate conflicts. If 

the commuter TO wants to increase the frequency of commuter service from one train per 

hour to one train every 30 minutes, the freight train will only be scheduled if the net access 

charge that the freight TO is willing to pay represents more than 3 units of revenue for the 

IM (since three commuter services could not be operated). In general, the relative speeds 

among different types of services have a major impact on the capacity utilization of the 

system. 
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Figure 3-8 Timetable proposed by IM to schedule a freight train in a system with commuter trains 

operating every 60 minutes (Source: author) 
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3.5 Conclusions 
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problem. The MILP is solved using commercial software and the DP is solved using a 

novel algorithm for ADP. The timetables designed with the model are used to evaluate 

how capacity pricing and allocation may impact different railway system stakeholders. 

As a result, the contributions of this chapter are both methodological and domain 

specific.  

On the methodological side, the main contributions of the chapter include:  

1) The formulation of a train timetabling model for shared railway systems that 

would allow regulators and decision makers to determine the optimal use of railway 

infrastructure capacity. This model explicitly considers a variable number of trains, 

with large flexibility margins, traveling along different paths to analyze the 

interdependencies between operations and available infrastructure capacity and how 

they affect the coordination between the TOs and the IM. 

2) The development of a novel algorithm for rapidly solving the train timetable 

problem in shared railway systems, ensuring convergence to the optimal solution 

within a specified optimality gap. We obtain solutions within 5% of the optimal 

solution for problem sizes that cannot be solved within a 5% convergence gap using 

commercial MILP software.  

3) The algorithm developed, a Q-factor Adaptive Relaxed Linear Programming 

(QARLP) algorithm, extends the Approximate Linear Programming (ALP) and the 

Relaxed Linear Programming (RLP) algorithms developed by (Farias and Van Roy, 

2003; Farias and Van Roy, 2004). QARLP introduces three main innovations with 

respect to ALP and RLP algorithms: 1) it incorporates the possibility of learning from 

previous solutions, allowing the algorithm to improve the solution obtained by 
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refining the sampling strategy in subsequent iterations, 2) it formulates the Bellman 

equation using Q-factors, and 3) it implicitly samples through the state-action space, 

enabling the indirect identification of promising areas in the solution space, which is 

very difficult for large multidimensional problems. These ideas can be generalized to 

efficiently solve other large-scale network optimization problems. 

Moreover, the results of the train timetabling model can be used to simulate and 

evaluate the best possible behavior of the IM in shared railway systems under different 

capacity pricing and allocation mechanisms. The domain-specific contributions of this 

chapter are: 

4) The modeling framework and the algorithm developed in this chapter enable 

us to simulate optimal decisions by an IM for shared railway systems. These results 

can be used to answer relevant policy-type questions to understand the implications of 

infrastructure shared use.  

5) This chapter also shows that the implications of capacity planning 

mechanisms depend on the characteristics of the system and the TO demand for 

accessing the infrastructure. We propose the use of this model as a tool to allow 

regulators and decision makers to better understand the interactions between capacity 

planning and operations under alternative capacity pricing and allocation 

mechanisms.  

This chapter considers the TOs’ infrastructure access demand (characterized both 

as the demand for scheduling trains and the revealed willingness to pay to access the 

infrastructure) as exogenous to the problem. However, the TO’s infrastructure access 

demand depends on the capacity pricing and allocation mechanism. Section 5.1 (Chapter 
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5) discusses the integration of the IM model proposed in this chapter with the model of 

TO bidding behavior developed in Chapter 2 to better quantify the trade-offs between 

utilization and level of service on the one hand, and infrastructure cost recovered under 

different capacity pricing and allocation mechanisms. The rest of Chapter 5 uses that 

framework to analyze alternative capacity pricing and allocation mechanisms in the 

context of the NEC. These results are valuable to design and evaluate alternative capacity 

pricing and allocation mechanisms to effectively coordinate the TOs and the IM in shared 

railway system. 
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Chapter 4 - Policy Implications for the Central Corridor in 

Tanzania and Other Shared Railway Systems with 

Infrastructure Cost Recovery Constraints 
 

 

“If you want to travel fast, travel alone. If you want to travel far, travel together.” 

– African Proverb 

 

 

In 2013, Tanzania’s government committed to the implementation of one of the 

first shared railway systems in Africa (Big Results Now, 2013) as a way to ensure 

adequate level of rail service by 1) allowing efficient train operators (TOs) to access the 

infrastructure and operate train services through an open-access policy, and 2) providing 

sustainable resources through access charges to maintain the infrastructure and keep the 

system operative in the future. These objectives are critical to prevent future railway 

systems failures such as the 2001 and 2006 Tanzanian railway system concessions 

failures (Olievschi, 2013) that resulted in a major underinvestment in rail transportation 

in the country (Railistics, 2013). This underinvestment critically impacted the operating 

capacity and the reliability of the railway system, essential to improving accessibility to 

the East African landlocked countries: Rwanda, Burundi, Uganda, and Western 

Democratic Republic of Congo (AICD, 2008; Amjadi and Yeats, 1995; Arvis et al., 

2010; Raballand and Macchi, 2009). 

The implementation of a shared railway system requires new railway regulations 

that clarify the roles and responsibilities of railway institutions (Railistics, 2013; World 

Bank, 2014) as well as the design and implementation of a new mechanism to price and 

allocate railway capacity. This chapter analyzes how alternative capacity pricing and 

allocation mechanism for freight TOs would affect the performance of the Central 
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Corridor in Tanzania. We are particularly interested in the number of trains operated in 

the system and the revenues collected to maintain the infrastructure and recover capital 

costs. Chapter 2 shows that traditional approaches to price and allocate railway capacity 

may not work in two cases: 1) when the infrastructure manager (IM) needs to recover 

part of the infrastructure management fixed costs or 2) when the railway system is 

congested. Tanzania’s Central Corridor falls into the first case. As mentioned above, one 

of the main purposes of the introduction of shared use in Tanzania is to ensure that the 

IM is able to raise revenues to maintain the infrastructure and keep the system 

operational. 

An important characteristic of the Central Corridor is that it is not congested. The 

only current TO, TRL, operates around six trains per week, leaving plenty of spare 

capacity that could be used by other TOs (World Bank, 2014). As a result, allocating 

capacity is fairly easy and we can solve the capacity pricing problem independently of the 

capacity allocation one. In other words, we can use the TO Model to determine the TOs’ 

demand for scheduling trains on the infrastructure. This process can be done for each 

type of service independently, since there is enough infrastructure capacity to 

accommodate the demand of the all TOs (Pena-Alcaraz et al., 2014). 

The results of this chapter show that the introduction of variable access charges 

distorts the operational decision of TOs, as predicted in Chapter 2. We then discuss how 

to avoid this problem with other pricing mechanisms such as the introduction of fixed 

access charges. We also discuss how to allocate fixed access charges among multiple 

types of freight TOs and show the need for price discrimination in this context. The 

results also show that it is not possible to recover infrastructure costs from dedicated 
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container or general freight traffic in the context of the Central Corridor. However, the 

shared use of the infrastructure by container and general freight TOs allows the IM to 

fully recover infrastructure costs. This is one of the benefits of shared railway systems. 

This work is published in Network Industry Quarterly (Pena-Alcaraz, Perez-Arriaga, and 

Sussman, 2014).  

The rest of the chapter is structured as follows: Section 4.1 presents the main 

types of capacity pricing mechanisms and discusses how the TO Model presented in 

Chapter 2 can be used to determine the behavior of TOs under each mechanism. Section 

4.2 presents the resulting number of trains that container and general cargo freight TOs 

would operate under alternative capacity pricing mechanisms. Section 4.3 concludes with 

some recommendations for capacity pricing mechanisms in shared railway systems with 

infrastructure cost recovery constraints. 

4.1 Capacity pricing mechanisms for shared railway system 
 

The Central Corridor goes from the port (Dar es Salaam) to an inland container 

terminal (Isaka) that serves as a dry port for Rwanda, Burundi, Uganda, and the Eastern 

portion of Democratic Republic of Congo (see Figure 4-1). The infrastructure is owned 

by RAHCO, a publicly owned company. TRL is the only current TO; it operates around 

six trains per week. Although the corridor is single track, there is plenty of spare capacity 

that could be used by multiple private companies that have expressed interest in starting 

operating new services between Dar es Salaam and Isaka (Pena-Alcaraz et al., 2014; 

World Bank, 2014). 

As we discussed in Chapter 1, the implementation of a shared railway systems 

requires some level of vertical separation between the TOs that operate the trains in the 
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system and collect the revenues selling transportation services to the final customers and 

the IM that maintains and manages the infrastructure. Vertical separation requires the 

definition of a capacity pricing mechanism that determines the access charges that TOs 

pay to the IM to access and use the infrastructure (Gomez-Ibanez, 2003). The IM uses 

these revenues to cover infrastructure costs. The use of the state national budget to cover 

shortfalls is the last resort. 

 

Figure 4-1 Central Corridor (Source: United Nations, 2006, Map No. 3667 from (World Bank, 2014)) 
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The railway literature proposes capacity-based and price-based (also called cost-

based) mechanisms to price railway capacity (Gibson, 2003). Capacity-based 

mechanisms are those that determine the amount of capacity that will be offered, and let 

the TOs reveal the price that they are willing to pay to use that capacity. However, in 

cases like the Central Corridor with plenty of excess capacity, the TOs would be able to 

access the infrastructure paying very low access-charges. As a result, capacity-based 

mechanisms are not an option to recover infrastructure costs in non-congested systems. 

There are three cost-based capacity pricing mechanisms designed to allow the IM to 

recover maximum infrastructure costs: variable access charges, two-part tariffs (variable 

access charges plus a fixed access charge), and fixed access charges (Gibson, 2003). 

Under variable access charges, TOs pay some amount per train operated; the charge is in 

general a function of the type of train, distance, and tonnage. Under fixed access charges, 

each TO pays an annual lump sum to have a license to operate, regardless of the number 

of trains the TO operates during the year.  

The practice and the broad economic literature in the field recommend the use of 

variable access charges based on marginal cost plus mark-ups (DB, 2009; Lopez-Pita, 

2014; Nash, 2005; World Bank, 2014). However, from an engineering standpoint, 

infrastructure-related costs in Tanzania are mostly independent of the number of trains. 

Due to the low number of trains that operate in the system, the infrastructure maintenance 

costs do not increase (for all practical purposes) when more trains are operated. As a 

result, maintenances costs are assumed fixed. In other words, the short-term and long-

term infrastructure marginal costs are very low and high mark-ups are required to recover 
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infrastructure costs. This research analyzes the implications of resulting alternative 

pricing mechanisms for the system.  

For this analysis, we compare the behavior of vertically-separated TOs with the 

behavior of an integrated railway company (social planner). We assume that both the 

vertically-separated TOs and the integrated railway company are rational agents, i.e. they 

determine the number of services per direction per week to operate by maximizing the 

annual operating margin (operating profits). A vertically-separated TO would only be 

interested in operating trains if the average annual net cash flow is positive after 

remunerating any invested capital at an adequate rate of return (no operations subsidies).  

We use the financial TO Model developed in Chapter 2 to determine the 

integrated railway company, vertically-separated TO, and vertically-separated IM’s 

operating margin and cash flow for a representative year under different levels of service. 

See Chapter 2 for more details about the TO Model and (Pena-Alcaraz et al., 2014; 

PPIAF et al., 2011; World Bank, 2014) for detailed model assumptions. The integrated 

railway company faces capital costs associated with the investments in railway 

infrastructure, variable costs of operating trains (train lease, personnel, fuel), and obtains 

revenues from transporting freight. The vertically-separated case is similar: the TO faces 

cost of accessing the tracks (access charges), variable costs of operating trains, and 

obtains revenues from transporting freight. The IM faces investment costs in railway 

infrastructure, maintenance costs, and obtains revenues from access charges. 

Investment in railway infrastructure includes $300 million investment required to 

rehabilitate the current Tanzanian railway system (CPCS, 2013; World Bank, 2014) plus 

periodic investment in maintenance. The revenues of the TOs are determined multiplying 
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the cargo transported (minimum between the capacity of the trains operated and the 

demand) by the freight shipping rate. Due to the strong competition from trucks that offer 

door-to-door transportation services, railway companies have an upper limit on the 

freight shipping rate they may charge and they have low control over the demand that 

would likely shift to rail. The state should facilitate strong intermodal integration with the 

port and with truck companies that provide last mile transportation to/from the terminal 

rail station to make rail transportation more attractive and increase the utilization of the 

highly underused railway capacity. All the financial information used in this analysis is 

publicly available (World Bank, 2014). 

4.2 Discussion of the Results 
 

In this section, we discuss the main results obtained for alternative capacity 

pricing mechanisms designed to recover maintenance and financial infrastructure costs 

and to ensure that TOs can viably operate (positive profits) in Tanzania in two scenarios: 

1) considering only container TOs, and 2) considering both container and general cargo 

(non-containerized freight) TOs. 

4.2.1 Container Traffic 

Figure 4-2 shows the annual operating margin and the cash flow for a vertically-

separated container TO, for the IM, and for an integrated railway company in Tanzania 

under variable and fixed access charges when no other type of TO operate in the line. 

Both access charges have been calculated to recover as much of the infrastructure costs as 

possible, while ensuring that the operating margin and the net cash flow of the vertically-

separated TO are positive. Note that it is not possible to recover all the infrastructure cost 

($22.9 million per year in Tanzania) only with container services. The maximum charges 
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that a vertically-separated TO could viably pay are $0.035 per ton-km (variable, 

assuming the TO would operate four trains) or $19.1 million per year (fixed). We 

compute these numbers estimating the TO maximum revenues, the variable and fixed 

costs, and therefore the maximum fixed and variable access charges that the TO can 

viably pay to achieve an annual net cash flow equal to zero.  

The results also show that under variable access charges only, a rational 

vertically-separated TO would only operate two trains per direction per week while the 

social planner would operate four. This mismatch happens because when the social 

planner tries to maximize its operating margin, it operates a train when the additional 

revenues produced are higher than the additional variable costs (train lease, personnel and 

fuel). For the social planner, most infrastructure investment cost is a sunk cost: it is 

already made and it is independent of the number of trains operated in the system. Under 

variable access charges in contrast, the infrastructure costs are charged as variable costs 

for TOs. Therefore, a rational TO would only operate a train if the additional revenues 

produced are higher than the true variable costs plus a share of the infrastructure cost that 

appears now as an artificial variable cost (the variable access charge).  

Under fixed access charges, the infrastructure costs are charged as a fixed cost for 

TOs. Therefore, this cost will also be a sunk cost for the TO. Consequently, the TO will 

operate a train when additional revenues produced are higher than the true variable 

operational costs and there is no mismatch with the number of trains operated by the 

social planner.  
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Figure 4-2 Operating margin and cash flow for different levels of service with variable and fixed 

access charges (Source: author) 

4.2.2 Container and General Cargo Traffic 

The previous section considers container traffic because container shippers have 

high willingness to pay to ship containers. Nonetheless, there is plenty unused capacity in 

the Tanzanian railway system and there are other types of customers interested in 

transporting non-containerized freight (general cargo) along the corridor. We carried out 

a similar analysis of costs and revenues for general cargo services (World Bank, 2014) 

0.010 per ton-kilometer (variable) or $10.5 million per year (fixed). In both cases an 
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integrated railway company and a vertically-separated TO would operate ten services per 

week.  

Considering these numbers, the IM would need to charge a variable access charge 

of $0.023 per ton-kilometer (variable, assuming the TO would operate four services) or 

$12.4 million per year (fixed) to the container TO to recover all infrastructure costs. Note 

that if the container TO was charged only $10.5 million per year or $0.010 per ton-km it 

would not be able to recover infrastructure costs (only $21.0 and $15.9 million per year 

respectively, assuming that a TO would operate four trains with access charges of $0.010 

per ton-km). This shows, first of all, that discriminate pricing would be needed to recover 

infrastructure costs. Although a general cargo TO cannot viably pay as much as a 

container TO per ton to access the infrastructure, allowing access to the infrastructure to 

general cargo TOs 1) allows the IM to recover infrastructure costs (not possible only with 

container TOs), 2) allows container TOs to pay lower charges to access the infrastructure, 

and 3) improves welfare (for general cargo TOs and general cargo shippers) from a state 

point of view.  

Although these charges are consistent with the industry benchmark (World Bank, 

2014), a regulator needs considerable information (operational costs, demand estimates) 

to determine the maximum access charges that each TO is able to pay. Lower charges 

would not allow the IM to recover infrastructure costs; higher charges (particularly for 

general cargo in this case) would not allow TOs to viably operate trains in the system.  

With a variable access charge of $0.023 per ton-kilometer, a vertically-separated 

container TO would only operate three (note that the variable charges are now lower than 

in Section 4.3.1) train services per direction per week (instead of the four that a social 
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planner would operate). Under fixed access charges, the number of trains operated by 

vertically-separated TOs in equilibrium matches the number of trains that an integrated 

railway company would operate. The main challenge to implement fixed access charges 

in this case consists of determining the share of infrastructure costs ($22.9 million per 

year) that each TO should pay. Nonetheless, our computation shows that the number of 

trains operated by the TOs is robust when the distribution of fixed access charges change: 

the container and the general cargo TO would be able to pay up to $19.1 million and 

$10.5 million per year respectively while still being profitable. Any choice such that the 

annual fixed access charge for the container TO is lower than or equal to $19.1 million, 

for the general cargo TO is lower than or equal to $10.5 million, and the sum of both 

charges is $22.9 million would improve number of trains with respect to variable charges 

while enabling infrastructure cost recovery. This result has important implications: 1) it 

relaxes the constraint on how much information the regulator needs to determine fixed 

access charges, and 2) it allows the regulator to design the fixed charge level for TOs 

with different objectives: such as ensure equity, ensure efficiency, ensure general cargo 

services. 

Under fixed access charges with no variable charges per train, states could 

implement different mechanisms to allocate operating licenses among potential TOs. 

First, the regulator could determine a fee (fixed access charge) that a container and a 

general cargo TO would have to pay to get the license to recover infrastructure costs 

($22.9 million per year). If the charges allow the operators to viably operate, they would 

apply for the license and retain the additional profits ($19.1 or $10.5 million per year 

minus access charge for each type of TO). Second, when there are several companies 
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willing to operate trains, the state could implement an auction to allocate the license to 

operate in each market. If the license is awarded to the TO with higher willingness to pay 

at each market, the most efficient container and general cargo TOs would bid $19.1 and 

$10.5 million respectively. In this case, the publicly owned IM would obtain $29.6 

million per year (instead of $22.9). The IM can either use the additional revenues to 

invest in infrastructure in the future or transfer them to the government. If the license is 

awarded to the TOs that offer best freight shipping rate to customers provided that the IM 

can recover infrastructure costs, the IM would recover $22.9 million per year, the TOs 

would recover their costs with some return, and the customers would benefit from a 

discount in their shipping rate of $6.7 million per year ($29.6 minus $22.9). Table 4-1 

summarizes these results. Further options can be explored when more than one license 

per market (container and general cargo) are allocated. 

Table 4-1 Number of container and general cargo trains operated by TOs and revenues raised by IM 

for different variable and fixed access charges. These numbers are compared with the reference 

number of trains (operated by a social planner) and the IM costs (Source: author) 

variable access charges 

container TO general cargo TO IM 

acv 

[$ ton-km] 
n 

[trains] 
n reference 

[trains] 
acv 

[$ ton-km] 
n 

[trains] 
n reference 

[trains] 
revenues 

[$m] 
costs 

[$m] 

0.000 4 4 0.000 10 10 0.0 22.9 

0.010 3 4 0.010 10 10 14.5 22.9 

0.023 3 4 0.010 10 10 19.8 22.9 

0.030 2 4 0.010 10 10 18.6 22.9 

0.046 1 4 0.010 10 10 16.7 22.9 

0.092 1 4 0.010 10 10 22.9 22.9 

fixed access charges 

container TO general cargo TO IM 

acf 

[$m] 
n 

[trains] 
n reference 

[trains] 
acf 

[$m] 
n 

[trains] 
n reference 

[trains] 
revenues 

[$m] 
costs 

[$m] 

up to 19.1 4 4 up to 10.5 10 10 22.9 22.9 

4.3 Conclusions 
 

In this chapter, we analyze different capacity pricing mechanisms designed to 

recover infrastructure costs (periodic maintenance and financial costs) and to ensure that 
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TOs can viably operate (positive net cash flow) in Tanzania. The insights derived from 

this case are useful to design capacity pricing mechanisms for shared railway systems 

with infrastructure cost recovery objectives in other countries.  

First of all, we show that the adoption of variable access charges widely used in 

the railway industry may create incentives for rational TOs to operate fewer trains than an 

integrated railway company (social planner). This is consistent with the results of Chapter 

2. We show that the use of fixed access charges aligns the behavior of vertically-

separated firms with the behavior of an integrated railway company. This result is 

important in the railway industry because IMs faced important fixed costs, i.e., for the 

most part infrastructure costs do not vary with the number of trains operated in the 

system as is generally assumed.  

The results obtained also show that discriminate pricing may be needed to be able 

to recover infrastructure costs when different types of TOs face very different levels of 

cost and revenues. The results also show the benefits of sharing the infrastructure among 

different types of TOs: shared use allows for infrastructure cost recovery. 

This case also illustrates that regulators need considerable information about the 

sector (demand and cost) to determine adequate access charge levels that TOs can viably 

pay. A benefit of introducing fixed access charges is that the number of trains operated by 

TOs is robust for a wide range of fixed access fees. This relaxes the regulator information 

need. The ability to achieve a good level of service with a wide range of fixed access 

charges also allows the regulators and IMs to design effective pricing mechanisms with 

very different objectives and with very different implications in terms of the welfare 

distribution among stakeholders. This chapter also discusses why the use of capacity-
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based pricing mechanisms would not allow the IM to recover infrastructure costs in non-

congested railway systems. 

Future work should analyze further how to implement fixed access charges 

effectively, especially in cases with competing TOs in the same market to avoid barriers 

to entry. Future research should also determine how these conclusions change with 

demand uncertainty, elasticity in the demand, and imperfect information.  

In this chapter we are able to analyze the capacity pricing problem independently 

of the capacity allocation problem because the Central Corridor in Tanzania is not 

congested. Chapter 5 explores the performance of shared railway systems under 

alternative capacity pricing and allocation mechanisms in instances in which 

infrastructure capacity is limited and there are important interactions between capacity 

planning and infrastructure operations. 
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Chapter 5 - Policy Implications for the Northeast Corridor in 

the US and Other Congested Shared Railway Systems 
 

 

“Traffic congestion is caused by vehicles, not by people in themselves.”–  

J. Jacobs (2002), The Death and Life of Great American Cities 

 

 

This chapter focuses on the main spine of the Northeast Corridor (NEC) that 

stretches from Boston, MA to Washington, DC. With over 2,000 trains per day, the NEC 

is one of the most congested railway corridors in the US. Until now, capacity pricing and 

allocation in the corridor is managed via bi-lateral contracts. The price that each train 

operator (TO) pays to access the infrastructure and schedule their trains depends mostly 

on how much capacity was available when the contract was signed (Gardner, 2013). This 

imposes two challenges in today’s operations: 1) the revenues collected by the 

infrastructure manager (IM) represent a very small percentage (10%) of the costs in 

which the IM would need to incur to bring the infrastructure to a state-of-good-repair, 

and 2) the introduction of new services is extremely complicated. Even if the timetable of 

some train could be shifted to make room to schedule new trains, rescheduling those 

trains would require the renegotiation of the contracts. As a result, the FRA required 

Amtrak and the rest of the NEC commuters and freight railway companies to agree on a 

new capacity pricing and allocation mechanism (PRIIA, 2008).  

NEC stakeholders face two important questions: Which mechanism to price and 

allocate railway capacity should they implement? What are the implications of such 

mechanism for each of them and for the overall performance of the system? Chapter 2 

points out that in a congested railway systems like the NEC, traditional mechanisms that 

charge marginal infrastructure costs to TOs and impose simple priority rules to overcome 
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conflicts may not work. Chapter 1 shows that the implications for the system of 

alternative mechanisms to price and allocate capacity are still unclear. Furthermore, the 

interactions between infrastructure planning at the strategic level and infrastructure 

operations at the tactical level are particularly strong in congested railway systems.  

In this chapter, we utilize the framework developed in this thesis to evaluate the 

performance of the NEC considering both planning and operational aspects. As described 

above, this framework consists of two models: a TO Model presented in Chapter 2 and an 

IM Model presented in Chapter 3. The TO Model simulates the behavior of the TOs to 

determine their demand for scheduling trains on the infrastructure and their willingness to 

pay for access. The IM Model determines whether that demand can be scheduled in the 

existing infrastructure. The results obtained are the demand for scheduling trains, the 

access charges (capacity pricing), and the optimal train timetable (capacity allocation: set 

of trains scheduled and their timetable).  

We then use this information to analyze and compare the performance of a case 

based on the NEC under two alternative capacity pricing and allocation mechanisms: a 

price-based cost-allocation and priority-rule mechanism proposed by Amtrak (Crozet, 

2004; Gardner, 2013; Nash, 2005; NEC Commission, 2014; Lopez-Pita, 2014; Texeira 

and Prodan, 2014) and an auction mechanism widely proposed in the railway economic 

literature (Affuso, 2003; McDaniel, 2003; Newbury, 2003; Perennes, 2014). To 

understand the implications for various stakeholders, we measure performance from the 

perspective of the IM (cost recovery), the TOs (access charges, trains scheduled), and the 

end users (number of services, fares). This chapter focuses on the interactions between 
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intercity and commuter TOs that are responsible for most of the traffic during the very 

congested peak hours.  

The results of this chapter show that there are important trade-offs associated with 

each these two mechanisms and none of them is superior to the other on all dimensions. 

We argue that the trade-offs observed cannot be explained solely by the simplifications of 

this case study. As a result, we recommend NEC stakeholders that they analyze the 

implications of alternative pricing and allocation mechanisms in detail before locking the 

system into one of them. Part of this work has been submitted for publication (Pena-

Alcaraz, Sussman, Webster, and Perez-Arriaga, 2015b). 

The rest of the chapter is structured as follows: Section 5.1 describes the 

framework inputs and outputs, and discusses how to integrate the TO and the IM Models. 

Section 5.2 and 5.3 present the results obtained using that framework to evaluate the 

performance of the NEC under both price-based and capacity-based mechanisms. Section 

5.4 compares both mechanisms to price and allocate railway capacity in the context of the 

NEC. Section 5.5 summarizes the main conclusions of the chapter and identifies lines of 

future research.  

5.1 Shared Railway System Performance Evaluation Framework: Inputs, 

Outputs, and Model Integration 
 

The NEC (see Figure 5-1) is one of the railway corridors most widely studied in 

the literature (Archila, 2013; Clewlow, 2012; Kawakami, 2014; Pena-Alcaraz et al., 

2013; Sussman et al., 2012; Sussman et al., 2015). However, the implications of new 

mechanisms to price and allocate railway capacity in this system are still unclear. This 

section describes the inputs and outputs needed to evaluate the performance of shared 

railway systems using the framework proposed in this thesis. The main inputs required 
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include both the mechanisms to price and allocate capacity, and inputs of the TO Model 

and the IM Model. We then discuss how the inputs and outputs of the TO Model and the 

IM Model relate and how we integrate both models.  

 

Figure 5-1 Northeast Corridor (Source: NEC Infrastructure Master Plan Working Group 2010, from 

(Sussman et al., 2012)) 

5.1.1 Mechanisms Selection 

As we discuss in Chapter 1, there are three main types of mechanisms to price and 

allocate capacity: negotiation-based, administrative-based, and market-based 

mechanisms. The use of market-based mechanisms for capacity pricing and allocation is 
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preferred in systems like the NEC characterized by capacity scarcity (congestion) and 

conflicting demand (Perennes, 2014; PRIIA, 2008).  

According to (Gibson, 2003), the two main types of market-based mechanisms for 

capacity pricing and allocation for shared railway systems are 1) price-based and 2) 

capacity based. Price-based mechanisms are those that determine the price at which 

capacity will be offered, and let TOs decide whether they are willing to access the 

infrastructure or not. Price-based mechanisms are typically complemented with priority 

rules that allow the IM to decide which trains to schedule when there are conflicts 

(multiple TOs willing to pay the predetermined access charges to schedule conflicting 

services). This chapter studies a traditional price-based cost-allocation mechanism that 

assigns infrastructure-related costs proportionally to infrastructure use (Crozet, 2004; 

Nash, 2005; Lopez-Pita, 2014; Texeira and Prodan, 2014) complemented with priority 

rules for capacity allocation purposes. This mechanism was proposed by Amtrak and is 

currently being considered for implementation in the NEC (Gardner, 2013; NEC 

Commission, 2014).  

Capacity-based mechanisms are those that determine the amount of capacity that 

will be offered, and let the TOs reveal the price that they are willing to pay to use that 

capacity, e.g. an auction (Affuso, 2003; McDaniel, 2003; Newbury, 2003; Perennes, 

2014; Stern and Turvey, 2003). Auction mechanisms have been widely discussed in the 

literature but have not yet been implemented in any railway system. There are multiple 

ways to auction the access to the infrastructure (Vazquez, 2003). We could allow TOs to 

bid for the access to a segment of the infrastructure or for the access to different slots. 

Auctioning the access to segment presents two problems: 1) the value for a TO of 
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accessing a segment of the infrastructure is contingent on the TO’s ability to get access to 

the rest of the train path, and 2) TOs may engage in strategies to deliberately overbook 

some segments to restrict access to the system to other TOs, as occurred in France in 

2008 (Barrow, 2012). We also know that different types of trains in shared railway 

systems need different types of slots: commuter trains travel only around urban areas 

whereas intercity and freight trains travel between cities, and slow trains cannot use fast 

trains’ slots (and vice-versa). Auctioning slots thus requires the IM to predetermine how 

many types of slots to allocate to each type of service before receiving the TOs’ bids. In 

this chapter we thus assume that TOs bid for the desired timetable (along the whole train 

path) of the trains they would like to schedule over the next period of time (typically six 

months), for the access charges they are willing to pay, and for their flexibility to modify 

the desired timetable to accommodate other conflicting services. We assume that the TOs 

can only bid once per period (one-round auction) and they would pay the access charges 

they bid minus any compensation if the desired timetable is modified (first-price auction), 

i.e., we consider a complex one-round first-price auction. Having second bidding round 

would allow the TOs to use railway capacity still available after the first bidding round. 

This chapter studies a first round auction because in such an auction, TOs would have 

more incentives to reveal their willingness to pay to access the infrastructure. The 

literature proposes the use of second-price auctions to ensure that the auction is strategy-

proof and the TOs reveal their willingness to pay. However, the bids in this auction are 

complex and combinatorial (as mentioned above, each TO bids for a combination of 

timetable, access charges, and flexibility). As a result we cannot guarantee that we have 
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enough information from the submitted bids to determine the second best price from a 

similar service for each train scheduled.  

The objective of this chapter is to identify trade-offs in the choice among these 

two alternative capacity pricing and allocation mechanisms for shared railway systems in 

the context of congested railway systems, and in particular, in the NEC. This chapter 

focuses on how the introduction of alternative pricing and allocation mechanisms impacts 

the ability of intercity and commuter TOs to compete for the access to infrastructure 

capacity. With over 2,000 commuter trains and 150 intercity trains scheduled in the NEC 

per day (Gardner, 2013), the ability of commuter and intercity TOs to access the 

infrastructure has a direct impact on the NEC passengers.  

5.1.2 Models’ Inputs and Outputs 

To use the framework proposed we need information about the system to be able 

to use the TO and the IM Models. The information required for the models can be 

collected from the annual TOs’ financial reports and the IM’s network report. As 

mentioned before, this is a design choice of both models. A model that allows regulators 

to anticipate the system reaction to a capacity pricing and allocation mechanism should 

not require extensive information about the railway system that only the TOs and the IM 

possess.  

The main inputs of the TO Model are the TOs’ cost and revenue structure. In 

terms of the costs, the TO Model aggregates all cost sources into fixed and variable costs. 

In terms of the revenues, the TO Model uses information about subsidies (if any) and end 

user’s demand. According to (Gardner, 2013), there are currently one intercity TO 

(Amtrak), eight commuter TOs, and four active freight TOs sharing the infrastructure in 
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the NEC. This chapter focuses on the relation between intercity and commuter services 

during peak hours. We use data from Amtrak’s financial report to model the intercity 

TO’s profit structure. We assume that the profit structures of different commuter TOs are 

similar, so we use data from MBTA’s financial report as a proxy to understand the 

commuter TOs’ cost and revenue streams. 

As we mentioned in Chapter 2, an intercity TO like Amtrak operating in the NEC 

faces fixed operational (direct) costs of 𝑓𝑐 = $281𝑘  per day and variable operational 

costs of 𝑣𝑐 = $3,425 per train and day according to (Amtrak, 2014). In 2013, Amtrak’s 

average fare was equal to 𝑓0 = $96.5, the number of trains was 𝑛 = 150 trains per day in 

average, with a realized demand of 𝑑0 = 31,250 passengers per day. The average train 

capacity was 𝑐 = 210 passengers assuming a physical capacity of 250 seats with 85% 

load factor (Amtrak, 2014). No subsidies are required for the operations of intercity 

services in the NEC (Amtrak, 2010; Amtrak, 2012). We assume that the demand of 

intercity trains depends linearly on the fare, with an elasticity of −0.67 (Morrison, 1990). 

According to (MBTA, 2013a; MBTA, 2013b) a TO like the MBTA, the 

commuter TO in the Boston area, faces fixed operational (direct) costs of 𝑓𝑐 = $435𝑘 

per day and variable operational costs of 𝑣𝑐 = $1,666  per train and per day. The 

elasticity of the demand with respect to the headway (frequency) is estimated by (Lago et 

al., 1981) to be equal to −0.41. In 2013, MBTA’s average fare ranged from 𝑓0 = $7 −

$25 (average fare of 𝑓0 = $13 are considered), the number of trains averaged 𝑛0 = 485 

trains per day, with a realized demand of 𝑑0 = 130,600 passengers per day. The train 

average capacity considered is 𝑐 = 350 passengers, with 80% + load factor. Subsidies 

𝑠 = $234𝑘  per day are considered following (MBTA, 2013a). Commuter TOs in the 
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NEC are subjected to fare regulation, i.e. they cannot change the fares charged to the end 

users. 

The main inputs of the IM Model are the information about the infrastructure and 

the TOs’ demand for scheduling trains. To capture the main infrastructure characteristics 

of the NEC, we consider the system presented in Figure 5-2. It consists of a double-track 

corridor with 12 stations. Stations 1 and 7 represent terminal stations at both ends of the 

line (Boston and Washington DC respectively). Stations 2-12, 3-11, 4-10, 5-9 and 6-8 

represent five stations along the corridor. We use a different station number for each 

traffic direction. Traffic moves in the direction of increasing station numbers with a 

dedicated track per direction. As a result, traffic traveling in different directions only 

interacts at the stations. Stations 1, 2 and 12 represent main stations in the Boston 

metropolitan area, stations 3, 4, 5, 9, 10 and 11 are all in the New York metropolitan area, 

and stations 6, 7 and 8 are in the Washington DC metropolitan area. Five types of 

services can be considered: Boston commuter trains traveling around the Boston 

metropolitan area (stations 1, 2, and 12); New York commuter trains; Washington DC 

commuter trains; and intercity and freight trains traveling between Boston and 

Washington DC. Intercity and freight trains may not stop at every station. Intercity trains 

travel at higher speeds than commuter trains. The distance between Boston and 

Washington DC is approximately 450 miles, and the distance traveled by commuter TOs 

around each city ranges from 40 to 70 miles per direction. Note again that although the 

infrastructure considered is simple and does not include many intermediate stations such 

as Philadelphia, New Haven, etc., it contains all the important elements to capture the 
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dynamics of the interaction between commuter and intercity traffic under both capacity 

pricing and allocation mechanisms.  

 
Figure 5-2 Detailed corridor infrastructure (Source: author, Figure 3-2) 

The TO Model has two main outputs: the demand for scheduling trains (number 

of trains that each TO would like to schedule and the access charges that each TO is 

willing to pay to schedule them) and the fares the TOs would charge to the end users. The 

IM Model has two main outputs: the final access charges that each TO would pay and the 

final train timetable (set of trains scheduled and their timetable).  

5.1.3 Integration of the Train Operator and the Infrastructure Manager Model 

In Section 5.1.2 we mention that the demand for scheduling trains is both an 

output of the TO Model and an input of the IM Model. There are important differences 

however between them. Specifically, the demand for scheduling trains considered as an 

input of the IM Model includes five pieces of information: the number of trains that the 

TOs ask to schedule, the desired timetable of each train to schedule, the access charges 

that the TO would pay to schedule each of the trains, information about whether they are 

flexible to modify the timetable of the train (and by how much) in case of conflict with 

other train, and how much the IM should compensate them to modify the desired 

timetable. However the demand for scheduling trains that we get as an output of the TO 

Model only includes information about the maximum number of trains that each TO 

would like to schedule and the maximum access charges that each TO is willing to pay to 

schedule each of the trains.  



 146 

There are three important observations. First, the outputs of the TO Model are 

independent of the IM decisions. The TO Model characterizes the maximum number of 

trains and access charges that the TO would accept. The IM Model would never propose 

a solution in which the TOs schedule more trains or to pay more than that. In that sense, 

all the solutions of the IM Model are feasible from the TO perspective.  

Second, TOs have incentives to disclose their demand for scheduling trains and 

their maximum willingness to pay for access to the IM when they do not have market 

power. In other words, we can use the outputs of the TO Model as inputs of the IM 

Model. A very interesting line of future research should consider how TOs behave when 

they have market power and how this behavior will affect the performance of the system 

following the discussion of Section 5.1.1.  

Third, there are three additional IM Model inputs that we cannot get directly from 

the TO Model: the desired timetable of the trains, how much TOs are willing to change 

that desired timetable in case of conflict, and how much compensation they should 

receive for their flexibility to do that. In this chapter we assume that passenger TOs in the 

NEC are willing to reschedule each train a maximum of 15 minutes and they require a 

reduction in the access charges of that train equal to 3% per minute modified. These 

numbers are based on the standards to define passenger train timetables “Introducing a 

timetable that is easy to remember on the most important lines […] long-distance trains 

that stops at the main stations only should arrive every 15 minutes” (Kroon et al., 2009), 

and on the definition of punctuality in in Europe and the US (FRA, 2009; Renfe, 2015). 

According to (FRA, 2009), an Acela (HSR) train is considered on-time if it arrives its 

endpoint terminal within 10 minutes of the scheduled arrival time. On the other hand, a 
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Northeast Regional (intercity) train is considered on-time if it arrives within 10 minutes 

for trips less than 250 miles, 15 minutes for trips between 251 and 350 miles, and 20 

minutes for trips between 351 and 450 miles. According to (Renfe, 2015), Renfe 

reimburses 50% of the ticket to HSR passengers that experience a delay of more than 15 

minutes.  

In terms of the desired timetable, once we know the departure time from the first 

station, we could use public information from the current timetable to determine the 

arrival and departure time to all the other stations. In Section 5.3.1 we show that in the 

NEC if 1) the frequency of commuter trains is higher than or equal to two trains per hour, 

and 2) TOs prefer to schedule trains uniformly, then the exact desired timetable does not 

affect the number of trains scheduled nor the access charges that each TO has to pay. 

This result is based on the fact that a perturbation on the desired timetable of the intercity 

trains does not affect how many commuter trains would conflict with the intercity train 

(see Figure 5-4) when the schedule is dense enough (i.e., when the frequency of the 

commuter is at least 2 commuters per hour). This is a very important result of this 

research. It suggests that the exact TO’s desired timetable affects the final timetable, but 

it does not affect the number of trains scheduled neither the access charges in many 

congested shared railway systems. In other words, the exact TO’s desired timetable will 

not be necessary to understand the implications of capacity pricing and allocation in 

many congested shared railway systems.  

5.2 Evaluation of a Price-Based Mechanism: Cost-Allocation and Priority-

Rules 
 

In this section we analyze the implications of the price-based cost-allocation and 

priority-rule mechanism defined in Section 5.1.1 for a shared railway system like the 
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NEC. We first use the TO Model to anticipate the number of trains that a TO would like 

to operate for different values of variable access charges and determine the resulting TO 

profits and IM revenues. We then use the IM Model to analyze if the TOs’ demand can 

be scheduled on the infrastructure.  

5.2.1 Train Operator Model Results 

Figure 5-3 shows the demand for scheduling train services of an intercity TO in 

the NEC with Amtrak’s cost structure and its resulting profits for different variable 

access charges. Figure 5-4 shows the demand for scheduling train services of a commuter 

TO in the NEC with MBTA’s cost structure and its resulting profits for different variable 

access charges. For clarity purposes, we do not show the fares in Figures 5-3 and 5-4 

although we use them to compute the profits of the TOs. For the intercity TO, the fares 

increase from $128 to $237 as access charges increase. For the commuter TO, the fares 

do not change because they are regulated. Figures 5-3 and 5-4 use a distance of 50 miles 

for commuter trains (Boston, MA to Cranston, RI) and a distance of 450 miles for 

intercity trains (Boston, MA to Washington, DC) to compute the variable access charges 

per mile (Gardner, 2013). We first see that the number of trains that the TO would like to 

schedule decreases as variable access charges increase. 

Figures 5-3 and 5-4 show the maximum variable access charges that both intercity 

and commuter TOs are able to pay. Table 5-1 summarizes this information. In particular, 

the maximum access-charge that an intercity TO like Amtrak would be able to pay is 

$102 per train-mile per day, which is equivalent to $46,000 per train per day for Boston 

to Washington. The maximum variable access charge that a commuter TO like MBTA 

would be able to pay is $52 per train-mile per day, which is equivalent to $2,578 per train 
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per day. With higher variable access charges the TOs would be better-off not operating 

any trains. That means that an intercity TO is able to pay two (2) times as much as a 

commuter TO in a per mile basis, or almost eighteen (18) times as much as a commuter 

TO in a per train basis. We also determine the maximum sustainable access charges 

(access charges for which the TOs would have 0 profits after reimbursing capital at an 

adequate rate of return). That means that their finances allow them to continue operations 

over the medium term without additional operational subsidies. 

 
Figure 5-3 NEC intercity TOs expected profits per day and number of trains per day for different 

variable access charges (Source: author) 

 
Figure 5-4 NEC commuter TOs expected profits and number of trains per day for different variable 

access charges (Source: author) 
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Table 5-1 TOs’ expected profits and number of trains to schedule per day for different variable 

access charges (Source: author) 

 
reference 

point 
no access charges maximum access charges 

maximum sustainable 

access charges 

 
profits 

(n=0) 

[$m] 

acv 

 

[$ tr-mi] 

N 

 

[trains] 

profits 

 

[$m] 

acv 

 

[$ tr-mi] 

N 

 

[trains] 

profits 

 

[$m] 

acv 

 

[$ tr-mi] 

n 

 

[trains] 

profits 

 

[$m] 

Intercity -0.28 0.00 116 2.47 102 1 -0.28 71 37 0.00 

Commuter -0.20 0.00 450 0.69 52 282 -0.20 40 303 0.00 

Although both figures only show the response of TOs to variable access charges 

(per train), we can use them to determine the response of the TOs to fixed access charges 

too. As discussed in Section 2.2 and equation (2.5), a fixed access charge in addition to 

the variable access charge would not change the TO operational decisions (number of 

trains and fares) as long as the resulting TO profits are greater than 𝑠(0) − 𝑓𝑐 , (the 

profits the TO would obtain operating 0 trains). If the resulting profits were lower than 

the profits operating no trains, a profit maximizing TO would be better off operating no 

trains (and paying no access charges). Otherwise, the TO would see the fixed access 

charge as a fixed lump sum that would not change the optimality conditions in the profit 

equation and as a result, would not change its operational decisions either.  

The maximum fixed access charges that the intercity TO would be willing to pay 

would be $2.75 million per day ($2.47 million + $0.28 million). With this access charge, 

it would still operate 116 trains, and its profits would be –$0.28 million. If the access 

charge increases beyond that point, the TO would not operate any trains. Likewise, the 

maximum fixed access charges that the Boston and Washington DC commuter TOs 

would be willing to pay are $0.99 million per day ($0.69 million + $0.43 million – $0.23 

million). The New York City commuter TO would be willing to pay up to $1.98 million 

per day (because the commuter trains around New York City travel double the distance 

than the commuter trains in Boston and Washington DC in the NEC, part in the New 
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York City – Boston and part in the New York City –Washington DC segment).  

According to (Gardner, 2013), the NEC should invest $51.9 billion (uninflated) from 

2010 to 2030 to bring the system to a state of good repair. That means that the IM would 

need to invest $7.10 million per day. That means that the maximum possible recovery 

with any mechanisms is $6.71 million per day ($2.75 million + 2×$0.99 million + 1.98 

million), i.e., the maximum possible recovery considering intercity traffic and commuter 

traffic around Boston, New York City, and Washington DC is 95%.  

The main advantages of including fixed access charges are that they allow for 

maximum IM revenue collection while they do not affect the TO’s operational decisions 

(Pena-Alcaraz et al., 2014). However, the use of fixed access charges may create barriers 

of entry for new competitors. Determining the right fixed access charges for different 

TOs is also challenging. The rest of this chapter thus assumes that there are no fixed 

access charges. Note again thought that as shown in Chapters 2 and 4, the use of variable 

access charges higher than the variable infrastructure maintenance costs would result in 

operational levels that are suboptimal from a social welfare standpoint. 

Table 5-2 shows these same results from the perspective of the IM. According to 

(Gardner, 2013), a cost-allocation model would allow the IM to charge TOs for the use of 

the infrastructure. The access charges would depend on the segment in which the trains 

are scheduled and on their infrastructure needs. The resulting access charges for intercity 

and commuter TOs would be comparable (as opposed to those of freight trains that do not 

use passenger stations). According to (Texeira and Prodan, 2014) variable access charges 

in other countries vary from $0 per train mile (e.g. Estonia and Norway) to $50 - $100 

per train mile (in France and Netherlands). 
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Table 5-2 IM expected revenues for different variable access charges and resulting TOs’ demand for 

scheduling trains per day assuming three commuter TOs (Source: author) 

acv 

[$ train-mi-day] 
revenues – IM 

[$m] 
n – intercity TO 

[trains] 
n – commuter TO 

[trains] 

currently 0.76 153 458 (x3) 

0 0.00 116 450 (x3) 

25 2.69 88 340 (x3) 

50 4.19 60 284 (x3) 

52 4.28 59 282 (x3) 

75 1.08 32 0 

100 0.23 5 0 

125 0.00 0 0 

We can see that the revenues that the IM obtains do not always increase when 

access charges increase, since the TOs’ demand for scheduling trains drop. These results 

suggest that the maximum revenues that the IM would be able to collect from these 

intercity and commuter TOs is $4.28 million per day when it charges $52 per train-mile. 

At this point, the intercity TO would be contributing $1.37 million, the Boston and 

Washington DC commuter TOs would be contributing $0.73 million each, and the New 

York commuter TO would be contributing $1.45 million (because New York commuter 

trains travel double the distance than Boston and Washington DC ones as mentioned 

above). Note that with the current pricing and allocation contracts, the IM revenues are 

equal to $0.76 million per day, so the IM raises revenues equal to only 10% of the basic 

infrastructure costs required to bring the system to a state of good repair. The results also 

show that this price-based mechanism would allow the IM to recover up to 60% of 

infrastructure costs ($4.28 million / $7.10 million per day).  

5.2.2 Infrastructure Manager Model Results 

The TO Model anticipates the response of the TOs when each of them optimizes 

their operational decisions on their own. As a result, the revenues and profit presented in 

Figures 5-3 and 5-4 and Tables 5-1 and 5-2 assume that the TOs are able to schedule all 
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the trains on the infrastructure. This may not be the case in a congested corridor like the 

NEC. In this case, however, Table 5-2 shows that TOs’ demand for scheduling trains 

under this mechanism is always lower than the current level of operations (presented in 

the first row of Table 5-2). In other words, we know that there is enough capacity in the 

corridor to schedule all the trains that TOs would like to schedule under this price-based 

mechanism. Consequently, when we use the IM Model in this case, we see that the IM 

should be able to schedule all the trains in the system if TOs are willing to adjust their 

desired schedule to accommodate conflicting trains. Note however that TOs with priority 

to access the infrastructure may not have incentives to be flexible on their trains 

scheduling preferences. In other words, when there are conflicts since they have priority 

to access the infrastructure, priority TOs know that their trains will be scheduled 

independently of their flexibility, whereas the trains of other TOs may only be scheduled 

if all TOs are flexible. This will thus have a direct impact on the other TOs ability to 

schedule trains in the system, their profits, and on the total revenues collected by the IM. 

The IM Model can thus be used to understand the implications of different priority rules 

for the system. This is an important consideration for this mechanism, because the 

priority rules grant some TOs priority over others. 

5.3 Evaluation of a Capacity-Based Mechanism: Auction 
 

In this section we analyze the implications of the auction mechanism defined in 

Section 5.1.1 for a shared railway system like the NEC. In this case we use first the IM 

Model to determine the minimum access charges that an intercity TO have to pay (as a 

function of the commuter TO access charges) to be able to schedule an intercity train as a 

function of the commuter frequency. We then use that information and the results from 
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the TO Model to estimate the number of trains that a TO would operate and the access 

charges it would pay. We use the results of both models to estimate the final TO profits 

and IM revenues.  

5.3.1 Infrastructure Manager Model Results 

We start analyzing the optimal capacity allocation plan (train timetable) to 

determine how to coordinate different TOs’ conflicting demands for scheduling trains. 

Figure 5-5 shows the time-space diagram for the optimal timetable designed using the IM 

Model in a case in which an intercity TO tries to schedule one train and three commuter 

TOs try to schedule commuter trains around Boston, New York, and Washington DC 

every 30 minutes. The y-axes represent distance in miles from station 1 and the x-axes 

represent time in minutes at which different trains are scheduled to pass through each 

point of the line (vs. the desired timetable in dashed line). There are no interactions 

between trains traveling in different directions. The IM Model proposes the final timetable 

analyzing the trade-off between eliminating trains and readjusting the desired timetable, 

according to the objective function in equation (3.1). We can use this information to 

determine how much intercity TOs will have to pay to be able to schedule services that 

conflict with commuter services. For this example, we need to solve a train timetabling 

problem with 115 commuter trains and 1 intercity train. For clarity purposes, only the 

schedules of conflicting trains are shown in Figure 5-5.  

As Figure 5-5 shows, the intercity train would initially conflict with 14 commuter 

trains. Rescheduling the commuter trains to accommodate the intercity service requires 

that the commuter TOs receive a total discount equivalent to the access charges of 2.1 

commuter trains. As a result, the IM would only schedule the intercity train if the intercity 



 155 

TO pays access charges higher than 2.1 commuter trains, i.e., if its bid is higher than 0.33 

times that of the commuter TOs per train-mile (considering the miles traveled by intercity 

and commuter trains). This number does not change with the desired timetable of the 

intercity train because the intercity train still conflict with 14 commuter trains. The same 

results are obtained when the frequency of commuter trains is higher than 2 trains per 

hour. For these frequencies, the number of conflicting trains does not depend on the 

intercity train desired timetable, nor the total discount that the commuter TOs should 

receive because the timetable is dense and uniform. That means that we do not need to 

know the exact desired timetable to determine the relationship between intercity and 

commuter train bids in the NEC if the frequency of commuters is greater than 2 trains per 

hour. 

 
Figure 5-5 Timetable proposed by IM to schedule an intercity train in a system with commuter trains 

operating every 30 minutes (Source: author, Figure 3-5) 
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If the frequency of commuter trains increases, for example to one commuter train 

every 15 minutes instead of every 30 minutes, the intercity train will initially conflict with 

22 commuter trains and will only be scheduled if the intercity TO pays access charges 

equivalent to the access charges of 5.3 commuter trains (i.e., if the intercity TO bid is 

higher than 0.82 times that of the commuter TOs’ per train-mile). Conversely, if the 

frequency of commuter trains decreases to one train every 60 minutes, the intercity train 

will be scheduled almost always (the IM would need to compensate the commuter TOs 

with a total compensation that ranges between 0 and 0.4 times the access charges paid by a 

commuter trains depending on the desired timetable, what translates in bids higher than 

0.00 or 0.06 times that of the commuter TOs per train mile). The model can be used to 

quantify the trade-off between commuter and intercity trains for any other frequency of 

service (see Table 5-3). 

Table 5-3 Minimum intercity to commuter access-charge per train-mile bid ratio to ensure that their 

train is scheduled as a function of the commuter frequency (Source: author) 

commuter frequency 

[minute] 
ratio 

[per train-mi] 

commuter trains 

scheduled 

[%] 

5 5.86 73% 

10 0.84 100% 

15 0.82 100% 

30 0.33 100% 

60 0.00-0.06 100% 

Table 5-3 shows that, when the system is congested, an intercity TO may have to 

pay more than a commuter TO to schedule a train: the intercity TO has to pay between 

0.82 and 5.86 times the access charges of commuter TOs per train-mile or between 5.27 

and 37.67 times the commuter TOs’ access charges per train. This minimum intercity 

access charge reflects the congestion rents. The results show that greater cost recovery is 

expected in congested infrastructure. The frequency of commuter services in the NEC 
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today ranges between 10 and 30 minutes. A first analysis of the results suggests that, with 

current levels of traffic, intercity TOs have an advantage over commuter TOs to access 

the infrastructure under this capacity-based mechanism. 

5.3.2 Train Operator Model Results 

How can we know whether commuter TOs would be able to compete to access 

the infrastructure with the intercity TO? Fortunately, we can use the TO model (equation 

(2.4)) to determine and compare the maximum access charges that each TO would be 

willing to pay as a function of the number of trains they want to schedule. Figure 5-6 

summarizes these results, the maximum variable access charges that an intercity and a 

commuter TO with the cost structure of Amtrak and MBTA respectively could bid as a 

function of the number of trains to schedule. Similarly to the cost-based approach, the 

results show that the intercity TO ability to pay to access the infrastructure is almost 

double that of the commuter TO counterparts. Note that the TOs’ willingness to pay to 

access the infrastructure decreases with the number of train services with the exception of 

the commuter TOs’ willingness to pay when they schedule between 0 and 280 train 

services. This happens because end users’ demand for commuter services is elastic to the 

frequency and increases substantially when more trains are scheduled (or decreases 

substantially when the frequency of commuter trains is very low). As a result, commuter 

TOs have incentives to ensure a minimum service frequency.   

We need to make one adjustment before we use these results as inputs of the IM 

Model. The TO Model assumes that all the trains have the same OD pair. However, the 

150 intercity services that (Gardner, 2013) mentions, include for instance Boston to New 

York services and New York to Washington DC services that we count in the IM Model 
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as a single service. They also average the number of trains during the day without 

considering differences between peak and off-peak hours. We use the following 

equivalences between frequency and number of trains: 118 intercity services in the TO 

Model are equivalent to 1 train per hour in the IM Model and 450 commuter services in 

the TO Model are equivalent to 6 commuter trains per hour in the IM Model (Amtrak, 

2014; Amtrak, 2015; MBTA, 2013a; MBTA, 2015).  

 

Figure 5-6 NEC intercity and commuter TOs maximum willingness to pay for access (maximum 

variable access charges) as a function of the number of trains to schedule (Source: author) 
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5-6. The first three columns show the bids of each commuter TO as a function of the 

0

20

40

60

80

100

120

0 50 100 150 200 250

V
a
ri

a
b

le
 A

cc
es

s 
C

h
a
rg

es
 

[$
 p

er
 t

ra
in

-m
i]

Number of Trains [# trains]

Intercity TO acv(n)

$ 68.05; 81 train services

$ 51.34; 118 train services

0

20

40

60

80

100

120

0 225 450 675 900 1125

V
a
ri

a
b

le
 A

cc
es

s 
C

h
a
rg

es
 

[$
 p

er
 t

ra
in

-m
i]

Number of Train Services [units]

Commuter TO acv(n)

$ 2.16; 160 train services

$ 51.55; 280 train services

$ 39.73; 450 train services

$ 11.54; 900 train

services



 159 

desired frequency (number of trains to schedule). The next three columns show the bid of 

an intercity TO that tries to schedule 1 train per hour. The last two columns determine 

how many trains of each type can be scheduled and compute the resulting revenues for 

the IM (again, assuming three commuter TOs, one in the Boston area, one in the New 

York City area, and one in the Washington DC area). 

Table 5-4 TOs’ demand for scheduling trains for different variable access charges and resulting IM 

expected revenues per day assuming three commuter TOs (Source: author) 

commuter 

frequency 

[minute] 

n 

commuter TO 

[trains] 

acv 

commuter TO 

[$ train-mi] 

n  

intercity TO 

[trains] 

acv 

intercity TO 

[$ train-mi] 

n commuter 

n intercity 
[trains] 

revenues 

IM 

[$m] 

5 900 12 81 68 657, 81 4.00 

10 450 40 118 51 450, 118 6.30 

15 300 51 118 51 300, 118 5.80 

16 280 52 118 51 280, 118 5.61 

28 160 2 118 51 160, 118 2.80 

30 150 0 118 51 0, 118 2.73 

Considering that the NEC infrastructure needs in the NEC amount to $ 7.10 

million per day from 2010 to 2030, the results for this mechanism show that the IM 

would be able to recover up to 89% ($6.30 million / $7.10 million) of infrastructure costs 

with intercity and commuter train services around Boston, New York City and 

Washington DC. This is a substantial recovery ration considering 1) that currently the IM 

only recovers 10% of infrastructure costs and 2) that the maximum potential for recovery 

with these services amounts to 95% as mentioned in Section 5.2.1. 

Note that the intercity to commuter TO bid ratio exceed the ratio presented in 

Table 5-3 when the commuters frequency (headway) is bigger than 5 minutes. In other 

words, the intercity TO is almost always able to schedule all the intercity services. These 

results confirm that the intercity TO in the NEC is usually in better position to access the 

tracks than the commuter TO under an auction mechanism with current levels of service. 

If the frequency of commuter trains were to increase by 85%, with 5 minutes headways, 
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the intercity TO would not be able to schedule trains if it bid less than $68 per train-mile 

(5.86 x $12 per train-mile). Using the TO Model, we can determine that the intercity TO 

is able to bid over $68 per train-mile if its demand for scheduling trains is equal to 81 

trains or less.  

In this case, the commuter TO would only be able to schedule 657 trains (73% of 

900). This equilibrium is stable because none of the TOs would want to schedule more 

trains. As Figure 5-6 shows, the commuter TO would be willing to pay higher access 

charges for 657 trains than for 900 trains. As a result, scheduling only 657 trains at the 

900-train access charge level translates to extra profit for the TO. Similar results are 

obtained for the intercity TO bids and for all other commuter TO bids with more than 280 

trains. Between 160 and 280 commuter trains the equilibrium is not stable because the 

demand for commuter services would significantly decrease due to the amount of service 

reduction, and also the commuter TO profits when not all trains are scheduled. 

5.4 Comparison of Price-Based and Capacity-Based Mechanisms in the 

Northeast Corridor 
 

The previous sections discuss the operational decisions of intercity and commuter 

TOs under a price-based (cost-allocation and priority-rule) mechanism and a capacity-

based (auction) mechanism in the NEC. The results are summarized in Tables 5-2 and 5-

4 respectively.  

Table 5-5 shows the number of trains that each TO scheduled and its profits for 

different access charges, together with the revenues raised by the IM under both 

mechanisms. Although there is not a one-to-one comparison between both mechanisms, 

we can compare both sides of the table.  
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Table 5-5 Distribution of revenues (rev., in $m), profits (π, in $m) and number of trains scheduled (n) 

per day comparison for different access charges (acv, in $ per train-mile) (Source: author) 

Price-Based Mechanism Capacity-Based Mechanism 

intercity TO commuter TO IM intercity TO commuter TO IM 

acv n 𝝅 acv n 𝝅 rev. acv n 𝝅 acv n 𝝅 rev. 

0.0 116 2.5 0.0 450 0.7 0.0 68.1 81 -0.3 11.6 657 0.2 4.0 

25.0 88 1.3 25.0 340 0.5 2.7 51.3 118 -0.3 25.0 640 -0.2 5.9 

50.0 60 0.5 50.0 284 -0.2 4.2 51.3 118 -0.3 50.0 325 -0.2 6.0 

51.3 59 0.4 51.3 282 -0.2 4.3 51.3 118 -0.3 51.3 297 -0.2 5.8 

51.6 59 0.4 51.6 282 -0.2 4.3 51.3 118 -0.3 51.6 280 -0.2 5.6 

53.3 57 0.4 53.3 0 -0.2 1.4 51.3 118 -0.3 51.6 280 -0.2 5.6 

These results show that the revenues collected by the IM under the capacity-based 

mechanism studied are higher than the revenues collected when a price-based mechanism 

with similar charges for intercity and commuter TOs is implemented. The capacity-based 

mechanism does not only allow the IM to collect higher revenues (around 20% more than 

using the price-based mechanism), but also results in higher number of trains scheduled 

(20% more) and higher total welfare (also 20% higher) as compared to the price-based 

mechanism. Note that these differences are significant considering the robustness of the 

TO Model (discussed in Chapter 2) and the precision of the IM Model (discussed in 

Chapter 3). These advantages, however, have a cost for the TOs, who receive much lower 

profit (losses in most cases). Consequently, the results of the auction mechanism are not 

resilient to uncertainty in transportation demand, since the TOs would prefer not to 

operate trains if the profits decrease even further. This auction mechanism may thus 

require the design of a procedure to redistribute revenues to ensure that TOs can 

sustainably operate over the medium term.  

5.4.1 Response to Uncertainty 

It is important to note that both the TO Model and the IM Model considered in 

this research are deterministic. They intend to capture the essence of a normal day of 

operations. However, the TOs and the IM face several sources of uncertainty when 
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making their operational decisions. The two most important sources of uncertainty in the 

NEC in the medium term are 1) the condition of the infrastructure, 2) the end users’ 

demand for transportation services.  

The first source of uncertainty is particularly critical until the NEC reaches a state 

of good repair that ensures that the infrastructure is reliable. With today’s backlog of 

maintenance work, the need of last-minute maintenance and interventions has a direct 

impact on the capacity on the corridor and on the TOs ability to schedule trains. This 

uncertainty gets amplified under price-based mechanisms. Any problems with 

infrastructure availability under price-based mechanisms would reduce the number of 

services operated by TOs that often operate the minimum number of services that allows 

them to be profitable. This lack of infrastructure capacity unevenly affects those TOs 

with lower priority assigned. Under capacity-based mechanisms, the TOs will still make 

profits even if some trains are not scheduled due to infrastructure availability problems. 

The IM under the auction mechanism studied would have important incentives to avoid 

uncertainty on the infrastructure capacity availability, since fewer trains scheduled would 

lower its ability to recover infrastructure costs as compared to the deterministic case.  

The uncertainty in the demand for transportation has a major impact on the 

expected revenues that the TOs would collect. The fact that the price-based mechanism 

ensures high TO profits makes this mechanism more resilient to demand uncertainty than 

the auction mechanism, where the TOs operational decision will probably change if the 

TOs expect a very uncertain demand. Note that there is also uncertainty in the demand 

distribution. Passengers do not arrive homogeneously during the day; they instead 

concentrate around some particular times. As a result we may expect TOs scheduling 
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some more trains than the ones that the model indicates. For example, while the 

commuter TO Model shows that the optimal number of trains to schedule is 397, MBTA 

currently runs 485 trains on the infrastructure. Although the model already considers a 

load factor of 80% to accommodate part of this demand, scheduling 485 commuter trains 

would result in an average load factor of 65% (industry benchmark for commuter 

services). This would result in a higher operational cost to accommodate the same 

demand. The need to offer 485 vs. 397 trains would depend on the exact distribution of 

the demand. The load factor of the model can be adjusted to consider this uncertainty. 

This uncertainty will propagate to the expected profits. As a result, we may expect to see 

a lower TOs’ willingness to pay to access the infrastructure even for the same number of 

trains to schedule, and hence a lower IM ability to recover infrastructure costs than in the 

deterministic case. 

5.4.2 Mechanism Implementation 

In terms of implementation, price-based mechanisms are easier to implement than 

capacity-based mechanisms. As mentioned above the priority rules have important 

implications for NEC commuter and intercity passengers and TOs, especially if the IM 

does not have access to sophisticated methods to solve the train timetabling problem. 

Nonetheless, determining which trains to schedule under a price-based mechanism, once 

the priority rules and the demand for scheduling trains are known, is easy to understand 

for all stakeholders. 

However, the implementation of an auction mechanism requires the IM to be able 

to solve the train timetable problem proposed in Chapter 3 to ensure transparency in the 

capacity allocation process. As we discussed in Chapter 3, solving the train timetabling 



 164 

problem is difficult in railway systems with large numbers of trains and stations. Note 

also that understanding the implications for infrastructure utilization of capacity rules 

also requires the IM to solve the optimal train timetable given the operators demand for 

scheduling trains. In other words, being able to solve the train timetabling problem is 

critical to evaluate both price-base and capacity-based mechanisms.  

5.4.3 Other Considerations: Gaming the Mechanisms 

As we mentioned before, these results also assume that TOs do not have market 

power or do not take advantage of their power to game the mechanism to their interest 

and disclose their willingness to pay to access the infrastructure. However, TOs often 

have market power in the railway industry. The results of this chapter show, for instance 

that commuter TOs’ ability to pay for access is much lower than the one of their intercity 

counterpart. This is particularly important under auction mechanisms where the TOs have 

incentives to keep lowering their bids while their trains get scheduled to maximize their 

profits. In particular, intercity TOs could use the framework proposed in this thesis using 

only publicly available data to replicate the results of Table 5-3 to understand that they 

could get their trains scheduled paying much less than their maximum willingness to pay. 

These aspects are beyond the research of this thesis. Note in any case, that the framework 

proposed in this chapter would allow the regulator to anticipate the results of the auction 

and to investigate any variation with respect to these numbers. 

5.5 Conclusions 
 

This chapter shows how to use the framework developed in Chapters 2 and 3 of 

this thesis to evaluate the performance of a congested shared railway system based on the 

NEC under two alternative capacity pricing and allocation mechanisms considering both 
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planning and operational aspects. The two alternative capacity pricing and allocation 

mechanisms evaluated are a cost-allocation and priority-rule mechanism, which was 

proposed by Amtrak and is currently being considered by the NEC Commission and the 

different TOs in the NEC, and a capacity based (auction) mechanism. Section 5.1.3 

discusses how to integrate both the TO Model and the IM Model to be able to anticipate 

the demand for scheduling trains, set the access charges (capacity pricing), and set the 

final train timetable (capacity allocation: set of trains scheduled and their timetable).  

The results of the chapter show that there are important trade-offs between the 

mechanisms analyzed. The capacity-based mechanism studied results in almost 20% 

more IM cost recovery and 20% more trains scheduled as compared to the price-based 

mechanism studied in the NEC. However, it also results in lower profits for the TOs. The 

price-based mechanism, on the other hand, is easy to implement (does not requires the 

IM’s ability to solve a sophisticated the train timetabling problem) and ensures higher 

profits for the TOs, making the TOs more resilient to uncertainty in end users’ 

transportation demand. Note again that this comes with a cost to end users (who will have 

fewer trains) and to the IM (who will obtain fewer revenues from access charges). The 

price-based mechanism is not very resilient to uncertainty in infrastructure capacity 

availability. Under the capacity-based mechanism, intercity TOs are in better position 

than commuter TOs to access the tracks with current NEC levels of service. The priority 

level of each TO is a design choice in price-based mechanisms, but this choice has 

important implications for NEC commuter and intercity passengers and TOs that need to 

be benchmarked against the optimal capacity allocation determined with the IM Model.  
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This analysis also benchmarks the IM cost recovery of the price-based mechanism 

and the capacity-based mechanism studied, 60% and 89% respectively, with the 

maximum IM cost recovery achievable with any capacity pricing and allocation 

mechanism and the current IM cost recover, 95% and 10% respective. This shows that 1) 

both mechanisms allow for much greater IM cost recovery than the current capacity 

pricing and allocation mechanism implemented, and 2) the capacity-based mechanism 

designed IM cost recovery level (89%) is very close to the maximum IM cost recovery 

achievable in the NEC (95%) considering intercity services and commuter services 

around Boston, New York City and Washington DC. Slightly higher IM cost recovery 

numbers could be achieved considering other commuter services in the NEC 

(Philadelphia, Connecticut) and freight services too.  

To our knowledge, this is the first research that compares the performance of 

price-based and capacity-based mechanisms in the same railway system. The results 

show that neither of these two mechanisms is superior to the other on all dimensions. A 

better understanding of these trade-offs is necessary to design effectively coordinate 

shared railway systems. We believe that the stakeholders in the NEC should carefully 

analyze the implications of alternative pricing and allocation mechanisms before locking 

the system into one of them.  

Although this chapter focuses on the interactions between intercity and commuter 

TOs, the framework proposed is valid to analyze other questions such as the implications 

of the mechanisms for freight TOs, for the end users, or for the whole system. Future 

research should consider the variety of services operated in the NEC (services with 

different speeds and stops, serving different OD pairs), the distribution of the revenues 
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collected by the IM among the different NEC infrastructure owners, and the effects of 

TO’s market power to refine the understanding of the trade-offs among alternative 

pricing and allocation mechanisms. Future research should also analyze how these results 

change in the context of other congested and non-congested shared railway systems. 
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Chapter 6 - Conclusions 
 

 

“If we knew what we were doing, it would not be called research.” – attributed to 

A. Einstein 

 

 

In this thesis we developed a framework to analyze the performance of shared 

railway systems under alternative capacity pricing and allocation mechanisms. We then 

use this framework to understand the implications of representative capacity pricing and 

allocation mechanisms in the Central Corridor in Tanzania and the Northeast Corridor in 

the US. In this chapter Section 6.1 summarizes the work presented in this thesis and the 

main findings of our research, Section 6.2 presents the main conclusions and 

recommendations, and Section 6.3 describes possible directions for extensions and 

further research. 

6.1 Summary of Thesis 
 

Recently, governments have started promoting the use of shared railway systems. 

Shared use allows for a more efficient utilization of existing railway infrastructure but 

requires a strong coordination between the infrastructure manager (IM) and the train 

operators (TOs). Such coordination, in turn, requires capacity planning mechanisms that 

determine which trains can access the infrastructure at each time, capacity allocation, and 

the access price they need to pay, known as capacity pricing. This is particularly 

challenging in the railway industry because there are strong interactions between capacity 

planning and infrastructure operations.  

We start in Chapter 1 by presenting a literature review of alternative capacity 

pricing and allocation mechanisms. We draw two important conclusions in relation to the 
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existing research in shared railway systems at a macroscopic level. First, we conclude 

that capacity pricing and allocation mechanisms used for coordination purposes in shared 

railway corridors are getting more heterogeneous. Second, we observe that different 

mechanisms are evaluated using different metrics. As a result, the comparative 

performance of different mechanisms to price and allocate railway capacity is still 

unclear. This thesis aims to help fill this literature gap by 1) developing a framework to 

evaluate the performance of shared railway systems under alternative capacity pricing 

and allocation mechanisms (Chapters 2 and 3), and 2) using this framework to understand 

the implications of representative capacity pricing and allocation mechanisms in the 

Central Corridor in Tanzania (Chapter 4) and the Northeast Corridor (NEC) in the US 

(Chapter 5). This thesis does not answer the question of which capacity pricing and 

allocation is best, because there is no unambiguous answer. The selection of the most 

appropriate mechanism to price and allocate railway capacity depends on the shared 

railway systems goals.  

Chapter 2 presents a TO Model that anticipates TOs’ demands for infrastructure 

use under alternative capacity pricing and allocation mechanisms. The focus of this thesis 

is in the interactions between railway infrastructure operations and available 

infrastructure capacity. As a result, the TO Model proposed is simple by design. The 

main objective is to allow the regulator and the IM to anticipate the response of the TOs 

relying only on information that is readily available to them. Nonetheless, the structure of 

the model is consistent with the standard financial models of TOs used to analyze 

investments in the railway industry. The results obtained in Chapter 2 show that the TO 

demand for infrastructure use estimates are robust to model inputs. In other words, the 
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TOs’ demand for using the infrastructure does not change much with small changes in the 

inputs of the model (cost and demand estimates). This suggests that the level of detail of 

the model is adequate to capture the interactions between the TOs and the IM. This model 

analyzes each TO independently of other TOs. Once we know TOs’ demand for 

scheduling trains, we need to determine if there is capacity available to schedule all the 

services. We deal with this question in Chapter 3.  

Chapter 3 presents train timetabling problem for shared railway systems that 

determines which of these trains can be scheduled on the tracks considering the topology 

of the line, safety constraints, and other technical aspects of the infrastructure. This model 

explicitly captures the interrelation between infrastructure operations and available 

infrastructure capacity. From a computational standpoint, the size of the IM Model 

increases rapidly with the number of stations and the number of trains to schedule. This 

thesis proposes a novel solution algorithm based on a linear programming approach to 

approximate dynamic programming (QARLP algorithm) to be able to solve the problem 

in meaningful instances. This algorithm allows us to decompose and solve large problems 

that are intractable with MILP commercial solvers while still converging to a solution 

within an optimality gap. 

The economic literature have long suggested the use of traditional mechanisms 

that price capacity with the marginal infrastructure costs and use simple priority rules to 

allocate capacity in case of conflict. In Chapter 2 we compare the operational decisions of 

vertically-integrated railway systems with those of a vertically-separated profit-

maximizing TO. We show that the operational decisions of a profit-maximizing TO 

match the decisions of an even-handed railway industry regulator when variable access 
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charges reflect variable IM costs to operate trains on the infrastructure. These results 

justify the use of traditional mechanisms to price and allocate capacity that have been 

adopted in most countries.  

However, Chapter 2 also shows that there are two cases in which these 

mechanisms cannot be used: 1) when the IM needs to recover part of the infrastructure 

management fixed costs as it happens in Tanzania, or 2) when the railway system is 

congested as it happens in many US corridors. In fact, most railway systems fall into at 

least one of these two categories. This motivates the choice of the two case studies of this 

thesis and the use of the framework developed to understand the trade-offs associated 

with the use of alternative mechanisms in these cases. To our knowledge, this is the first 

effort to compare alternative mechanisms to price and allocate capacity in the same 

shared railway system. 

We illustrate the first case in Chapter 4 in the case of the Central Corridor in 

Tanzania. Due to the low number of trains operated in the system today, infrastructure 

maintenance costs do not increase (for all practical purposes) when more trains are 

operated. Therefore, maintenances costs are assumed fixed. If access charges are set 

following the traditional approach, operators would not have to pay to access the 

infrastructure. However, it is critical to ensure that the IM is able to raise revenues to 

maintain the infrastructure and keep the system operational. As a result, the IM has to 

allocate infrastructure fixed costs among TOs through the access charges. Chapter 4 first 

shows that the introduction of variable access charges distorts the operational decision of 

TOs and then discusses how to avoid this problem with other price-based mechanisms 

such as the introduction of fixed access charges. We also discuss how to allocate 
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infrastructure costs among different types of TOs and conclude that charging different 

access charges to different types of TOs is beneficial for all the stakeholders. Chapter 4 

also discusses why the introduction of capacity-based mechanisms in non-congested 

shared railway systems does not allow the IM to recover costs.  

Chapter 5 then analyzes alternative capacity pricing and allocation mechanisms in 

the context of the very congested NEC, in the US. In this case, we need both the TO 

Model to anticipate how each TO will respond to capacity pricing and allocation 

mechanisms and the IM Model to determine the final allocation of infrastructure 

capacity. Until now, capacity pricing and allocation in the corridor has been managed via 

bi-lateral contracts negotiated between the IM and the TOs. However, the limitations of 

this negotiation-based mechanism motivated the FRA’s request to Amtrak and the rest of 

the commuters and freight railway companies to agree on a new capacity pricing and 

allocation mechanism by the end of 2015. Chapter 5 considers two representative 

mechanisms to price and allocate railway capacity: a price-based (cost-allocation and 

priority-rule) mechanism proposed by Amtrak and a capacity-based (auction) mechanism. 

The results of Chapter 5 show that there are important trade-offs associated with each 

mechanism and none of them is superior to the other on all dimensions. NEC 

stakeholders should carefully analyze the implications of alternative capacity pricing and 

allocation mechanisms before locking the system into one of them. 

6.2 Conclusions and Recommendations 
 

At the beginning of this thesis we mentioned that the implementation of shared 

railway systems requires the design and implementation of capacity pricing mechanisms. 

These mechanisms are the rules needed for coordinating the multiple agents that share the 
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infrastructure. In this thesis, we analyze the performance of shared railway systems under 

alternative mechanisms to price and allocate railway capacity. This section summarizes 

three main conclusions of this work and recommends some courses of action bases on 

these conclusions.  

The first conclusion of this research is that the implications of capacity pricing 

and allocation mechanisms for shared railway systems are still unclear. While this thesis 

tries to offer clarity in this area, there is still much work to be done. In that sense, we join 

(Drew and Nash, 2011; Nash, 2010) in recommending to academics that they invest in 

this research topic. Any progress in research that contributes to a better understanding of 

the implications of alternative mechanisms to price and allocate capacity could 

immensely help practitioners and policy makers. This is particularly important in a 

context in which several countries are currently restructuring their railway sector to allow 

shared use. 

The second conclusion of this research is that sharing railway infrastructure 

capacity is not straightforward. In the railway industry, as compared to other network 

industries, there are very strong interactions between capacity planning and infrastructure 

operations. Chapter 5 shows that capturing this interactions is critical to implement 

capacity-based mechanisms and to understand the implications of price-based 

mechanisms in the railway industry. Despite these differences, regulators and policy 

makers rely on the lessons learned from other network industries. Although these lessons 

are useful and can serve as guiding principles to design mechanisms to price and allocate 

railway capacity, Chapter 2 shows that they often do not work in the railway industry. 

We thus recommend that policy makers are cautious and question the validity of 
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assumptions based on other industries. We also recommend to academics that they reach 

other communities beyond their domains doing research in these topics. A better 

understanding of what works and what does not work across network industries and why 

would also be very valuable for practitioners and policy makers. 

The third conclusion, on a more positive note, is that the implementation of 

adequate capacity pricing and allocation mechanisms can mitigate the coordination 

problems of shared railway systems while maintaining the benefits of shared 

infrastructure use in the railway industry. Chapter 2 shows that the introduction of TO 

competition enabled by shared use may have similar effects to the introduction of 

regulation to ensure that TOs behave as even-handed integrated railway companies. 

Chapter 4 shows that shared use may allow the IM to recover more infrastructure costs 

than those recovered in dedicated corridors by enabling the entrance of new TOs that 

offer profitable services that the current TO does not provide. In a context in which the 

NEC and many other systems are moving ahead with the implementation of new capacity 

pricing and allocation mechanisms, we conclude with three more recommendations. This 

research shows important trade-offs among alternative mechanisms to price and allocate 

railway capacity. We recommend the use of the framework developed in this thesis to 

identify personalized mechanisms to price and allocate capacity, aimed at the specific 

characteristics of the systems. At the same time, we recommend that practitioners and 

policy makers consider alternative mechanisms to price and allocate railway capacity 

before locking their system into one of them. Even if those cases where stakeholders have 

to make a decision soon, we recommend that they allow for some flexibility to adapt the 

mechanism implemented as they gather more information and better understand the 
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implications of alternative mechanisms for their systems. Finally, we recommend railway 

companies and regulators that they measure the performance of their systems using a 

wide variety of performance metrics and to share information and best practices with 

other railway systems. The data form these experiments will contribute to the improved 

understanding and management of shared railway systems. 

6.3 Future Research 
 

In this section we identify four lines of future research that we find particularly 

relevant to better understand the implications of capacity pricing and allocation 

mechanisms in shared railway systems. These lines include 1) additional validation of the 

framework developed, 2) the extension of the models and algorithms proposed, 3) the 

utilization of the framework developed to answer other related and relevant shared 

railway systems research questions, and 4) the development of a broader understanding 

of capacity pricing and allocation across network industries. 

There are three different ways to validate the framework developed in this thesis. 

First we could validate the models with the results obtained. This thesis uses current 

operational data to calibrate the models. This prevents us from using that same data to 

validate the models. Nonetheless, this thesis extensively discusses the results obtained, 

compares it with industry benchmarks, and carries out multiple sensitivity analysis to 

understand the sensitivity of the results to the models’ inputs. Second, we could validate 

the models comparing them to other models already validated in the field. In that sense, 

the TO Model presented is based on a TO financial model used extensively to analyze 

investments on the railway system. The IM Model presented is also based on train 

timetable models widely adopted in the railway industry. Third, we could further validate 
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the models using them to analyze additional capacity pricing and allocation mechanisms 

in other shared railway systems. In this direction, the author collaborates with other 

students in the MIT Regional Transportation and HSR Research group that are using a 

similar framework to analyze the performance of shared railway systems in California 

and in Europe. California is working towards the implementation of a blended HSR 

system in which commuters and high-speed trains will share the infrastructure in San 

Francisco (Levy, 2015). Many European countries have experienced changes in the 

mechanisms to price and allocate railway capacity in the last 10 years (Prodan, 2015) and 

thus represent excellent natural experiments to calibrate and further validate the 

framework proposed in this thesis. The author has also participated in studies to 

implement shared railway systems in Tanzania and India in collaboration with the World 

Bank. Future data from any of these projects would be useful to further validate this 

framework and to improve our understanding of the implications of capacity pricing and 

allocation mechanisms for shared railway systems. 

The results of the thesis show that there are important trade-offs between 

alternative mechanisms. Consequently, we recommend shared railway systems’ 

stakeholders that they carefully analyze the implications of alternative capacity pricing 

and allocation mechanisms before locking their system into one of them. We discuss 

three possible directions to extend the models and the algorithm developed in this thesis 

to further analyze these issues, together with the main challenges that we envision: 

 The TO Model proposed can be extended to capture more institutional, 

technical, and operational details of the shared railway systems. This 

extensions could consider, for instance, the effects of modeling multiple OD 
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pairs, substitutable services, different time periods during the day, more 

detailed demand models, minimum number of service constraints imposed by 

Public Service Obligations, maximum number of services due to rolling stock 

limitations, funding availability, etc. As we discuss in Chapter 2, these 

extensions would require more information about TOs’ costs and revenues 

and about the end users’ transportation demand. However, they would also 

allow us to anticipate TOs’ operational decisions with more accurate estimates 

of the train capacity and the interactions between services. The extensions 

discussed would not impose a challenge to solve the underlying TO Model 

optimization problem and determine the TO operational decisions. This thesis 

solves this problem analytically. Most of the extensions discussed would 

facilitate the determination of the operational decisions by imposing bounds 

on the feasible space. Others may require the use of numerical optimization 

methods, but there is ample room to add complexity to this model from a 

computational standpoint. This thesis focuses on the TO-IM relation to 

capture the interactions between infrastructure operations and available 

infrastructure capacity. These extensions would connect this work with a 

broad field of research that studies the details of the end users-TO relation 

(Bebiano et al., 2014; Ben-Akiva and Lerman, 1985; Lago et al., 1981; 

Morrison, 1990).  

 While the IM Model proposed is fairly comprehensive, this thesis uses it to 

analyze the allocation of capacity in simple instances (the infrastructure 

details are aggregated and only consider a few stations). The IM Model can be 
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easily parameterized to consider the topology of the infrastructure in more 

detail. However, the size of the model increases rapidly with the number of 

stations and services. The instances analyzed in this thesis are at the limit of 

what current MILP commercial solvers can handle. The two main options to 

handle this increased dimensionality are 1) to use the timetables in simple 

instances as a starting point to develop more detailed timetables and 2) to use 

the novel algorithm proposed in Chapter 3 to solve the resulting optimization 

problem. 

 Finally, in this direction, the algorithm proposed in Chapter 3 has proven 

promising to solve large scale network optimization problems. Chapter 3 

shows that choice of the basis functions takes advantage of the problem 

structure and is thus problem specific. Further research to study this 

algorithm, to develop principles to choose the basis functions, and to 

incorporate the algorithm in commercial packages that could be used by 

practitioners would be extremely useful to efficiently solve the train 

timetabling problem and other large network optimization problems.  

This thesis presents a framework that allows regulators, IMs, and TOs to analyze 

and compare alternative capacity pricing and allocation mechanisms. This framework 

could be used in the future to analyze two other related and relevant aspects of shared 

railway systems. From a prescriptive standpoint, the ability to analyze and understand 

alternative mechanisms to price and allocate railway capacity is critical to design 

effective mechanisms to coordinate shared railway systems. From a descriptive 

standpoint, the extension of the results of this thesis considering that TOs in railway 
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systems generally have market power is also critical to analyze, compare, and design 

capacity pricing and allocation mechanisms. 

There is a broad field of research that analyzes the design of mechanisms to price 

and allocate capacity in network industries (Affuso, 2003; Greve and Pollitt, 2013; 

McDaniel, 2003; Newbury, 2003; Parkes, 2001; Perennes, 2014; Stern and Turvey, 2003; 

Vazquez, 2003). The desirable properties of a good mechanism to price and allocate 

railway capacity are: strategy proofness, allocative efficiency, individual rationality, 

budget balance (Greve and Pollitt, 2013), and transparency (Vazquez, 2003). This thesis 

shows that the important interactions between infrastructure operations and available 

infrastructure capacity affect the performance of shared railway system under alternative 

capacity pricing and allocation mechanisms. As a result, it is important to design 

mechanisms that consider these interactions and respond to the overarching goals of the 

system’s stakeholders (Perennes, 2014), and to use the framework proposed in this thesis 

together with the expertise of the mechanism design field to the implications of such 

mechanisms for the performance of shared railway systems.  

With respect to the second question, the integration of the models developed in 

this thesis assumes that TOs reveal the IM their real demand for scheduling trains and 

their willingness to pay for access. As discussed in Chapter 5, this assumption is not valid 

when TOs and IMs exercise market power. The framework proposed in this thesis could 

be complemented with game theory and industrial organization concepts to analyze the 

performance of shared railway systems under mechanisms to price and allocate capacity 

when TOs and IMs exercise their market power. This line of research would rely on 

behavioral economic models of the TOs and IMs to capture their response. These models 
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would determine how the outputs of the TO Model relate with the inputs of the IM Model 

in equilibrium. The comparison of these results with the results obtained in this thesis are 

important to understand the impact of the market power of railway system stakeholders in 

the performance of shared railway systems. These findings will also have important 

implications for the design of efficient mechanisms to price and allocate railway capacity.  

Finally, the work of this thesis is part of a larger research field that analyzes 

infrastructure planning, management, and operations in different network industries 

(Gomez-Ibanez, 2003; Jacquillat, 2015; Laffont and Tirole, 1993; Laffont and Tirole, 

200; Perez-Arriaga, 2013; Sussman, 2000; Vaze, 2011). Although the practical 

experiences of regulators in one network industry are used in practice when regulating 

other network industries; the research bodies on different network industries are mostly 

disconnected. Any efforts 1) to identify lessons that are transferable among industries and 

2) to understand how differences in the institutions and in the characteristics of the 

physical systems among industries translate into modeling differences would be very 

useful to further connect these bodies of research. We envision that these efforts could be 

both deductive, using conceptual models of different network industries to analyze the 

responses of such industries to alternative capacity pricing and allocation mechanisms; 

and inductive, analyzing the response to alternative capacity pricing and allocation 

mechanisms in different case studies across network industries. 

In a context in which shared-use is becoming more relevant in our economies, this 

thesis analyzes the prospects to effectively share railway infrastructure. We discuss that 

while sharing railway infrastructure is not straightforward; understanding alternative 

rules to coordinate agents is a first step to being able to design adequate rules that unlock 
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the potential benefits of shared use. We thank readers for their attention and hope that 

some parts of this thesis can help in the design and analysis of effective rules to share 

infrastructure in network industries.  
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Appendix A - The Infrastructure Manager Problem: Detailed Train Timetable 
 

This appendix includes the detailed timetable of the first case study presented in Chapter 3 and represented in Figures 3-4 and 3-5.  

Intercity train timetable 

Table A-1 Intercity train timetable. 12:00pm corresponds to minute 0 in Figures 3-4 and 3-5 (Source: author) 

 

 

Station Train 1

Station 1 12:00 PM

Station 2 12:25 PM

Station 3 12:50 PM

Station 4 1:15 PM

Station 5 1:40 PM

Station 6 2:05 PM

Station 7 2:30 PM

Station 8 2:55 PM

Station 9 3:20 PM

Station 10 3:45 PM

Station 11 4:10 PM

Station 12 4:35 PM

Station 1 4:55 PM

Intercity
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Commuter train timetable 

Table A-2 Commuter train timetable. 12:00pm corresponds to minute 0 in Figures 3-4 and 3-5 (Source: author) 

 

 

Station Train 1 Train 2 Train 3 Train 4 Train 5 Train 6 Train 7 Train 8 Train 9 Train 10 Train 11 Train 12 Train 13 Train 14 Train 15 Train 16 Train 17 Train 18

Station 1 8:48 AM 9:20 AM 9:52 AM 10:24 AM 10:56 AM 11:28 AM 12:08 PM 12:32 PM 1:04 PM 1:36 PM 2:08 PM 2:40 PM 3:12 PM 3:44 PM 4:16 PM 4:48 PM 5:20 PM 5:52 PM

Station 2 10:24 AM 10:56 AM 11:28 AM 12:00 PM 12:32 PM 1:04 PM 1:44 PM 2:08 PM 2:40 PM 3:12 PM 3:44 PM 4:16 PM 4:48 PM 5:20 PM 5:52 PM 6:24 PM 6:56 PM 7:28 PM

Station 12 10:40 AM 11:12 AM 11:44 AM 12:16 PM 12:48 PM 1:20 PM 1:58 PM 2:24 PM 2:56 PM 3:28 PM 4:00 PM 4:32 PM 5:04 PM 5:36 PM 6:08 PM 6:40 PM 7:12 PM 7:44 PM

Station 1 12:16 PM 12:48 PM 1:20 PM 1:52 PM 2:24 PM 2:56 PM 3:34 PM 4:00 PM 4:32 PM 5:04 PM 5:36 PM 6:08 PM 6:40 PM 7:12 PM 7:44 PM 8:16 PM 8:48 PM 9:20 PM

Station Train 19 Train 20 Train 21 Train 22 Train 23 Train 24 Train 25 Train 26 Train 27 Train 28 Train 29 Train 30 Train 31 Train 32 Train 33 Train 34 Train 35 Train 36

Station 1 6:24 PM 6:56 PM 7:28 PM 8:00 PM 8:32 PM 9:04 PM 9:36 PM 10:08 PM 10:40 PM 11:12 PM 11:44 PM 12:16 AM 12:56 AM 1:20 AM 1:52 AM 2:24 AM 2:56 AM 3:28 AM

Station 2 8:00 PM 8:32 PM 9:04 PM 9:36 PM 10:08 PM 10:40 PM 11:12 PM 11:44 PM 12:16 AM 12:48 AM 1:20 AM 1:52 AM 2:32 AM 2:56 AM 3:28 AM 4:00 AM 4:32 AM 5:04 AM

Station 12 8:16 PM 8:48 PM 9:20 PM 9:52 PM 10:24 PM 10:56 PM 11:28 PM 12:00 AM 12:32 AM 1:04 AM 1:36 AM 2:08 AM 2:48 AM 3:12 AM 3:44 AM 4:16 AM 4:48 AM 5:20 AM

Station 1 9:52 PM 10:24 PM 10:56 PM 11:28 PM 12:00 AM 12:32 AM 1:04 AM 1:36 AM 2:08 AM 2:40 AM 3:12 AM 3:44 AM 4:24 AM 4:48 AM 5:20 AM 5:52 AM 6:24 AM 6:56 AM

Commuter_1

Station Train 1 Train 2 Train 3 Train 4 Train 5 Train 6 Train 7 Train 8 Train 9 Train 10 Train 11 Train 12 Train 13 Train 14 Train 15 Train 16 Train 17 Train 18 Train 19 Train 20 Train 21 Train 22

Station 3 5:04 AM 5:36 AM 6:08 AM 6:40 AM 7:12 AM 7:44 AM 8:16 AM 8:48 AM 9:20 AM 9:52 AM 10:24 AM 10:56 AM 11:28 AM 12:00 PM 12:32 PM 1:04 PM 1:36 PM 2:08 PM 2:48 PM 3:12 PM 3:44 PM 4:16 PM

Station 4 6:56 AM 7:28 AM 8:00 AM 8:32 AM 9:04 AM 9:36 AM 10:08 AM 10:40 AM 11:12 AM 11:44 AM 12:16 PM 12:48 PM 1:20 PM 1:52 PM 2:24 PM 2:56 PM 3:28 PM 4:08 PM 4:40 PM 5:04 PM 5:36 PM 6:08 PM

Station 5 8:32 AM 9:04 AM 9:36 AM 10:08 AM 10:40 AM 11:12 AM 11:44 AM 12:16 PM 12:48 PM 1:20 PM 1:52 PM 2:24 PM 2:56 PM 3:28 PM 4:00 PM 4:32 PM 5:04 PM 5:44 PM 6:16 PM 6:40 PM 7:12 PM 7:44 PM

Station 9 8:48 AM 9:20 AM 9:52 AM 10:24 AM 10:56 AM 11:28 AM 12:00 PM 12:32 PM 1:04 PM 1:36 PM 2:08 PM 2:40 PM 3:12 PM 3:44 PM 4:16 PM 4:48 PM 5:20 PM 6:00 PM 6:32 PM 6:56 PM 7:28 PM 8:00 PM

Station 10 10:40 AM 11:12 AM 11:44 AM 12:16 PM 12:48 PM 1:20 PM 1:52 PM 2:24 PM 2:56 PM 3:28 PM 4:00 PM 4:32 PM 5:04 PM 5:36 PM 6:08 PM 6:40 PM 7:12 PM 7:52 PM 8:24 PM 8:48 PM 9:20 PM 9:52 PM

Station 11 12:16 PM 12:48 PM 1:20 PM 1:52 PM 2:24 PM 2:56 PM 3:28 PM 4:00 PM 4:32 PM 5:04 PM 5:36 PM 6:08 PM 6:40 PM 7:12 PM 7:44 PM 8:16 PM 8:48 PM 9:28 PM 10:00 PM 10:24 PM 10:56 PM 11:28 PM

Station Train 23 Train 24 Train 25 Train 26 Train 27 Train 28 Train 29 Train 30 Train 31 Train 32 Train 33 Train 34 Train 35 Train 36 Train 37 Train 38 Train 39 Train 40 Train 41 Train 42 Train 43

Station 3 4:48 PM 5:20 PM 5:52 PM 6:24 PM 7:04 PM 7:28 PM 8:00 PM 8:32 PM 9:04 PM 9:36 PM 10:08 PM 10:40 PM 11:12 PM 11:44 PM 12:16 AM 12:48 AM 1:20 AM 1:52 AM 2:24 AM 2:56 AM 3:28 AM

Station 4 6:40 PM 7:12 PM 7:44 PM 8:16 PM 8:56 PM 9:20 PM 9:52 PM 10:24 PM 10:56 PM 11:28 PM 12:00 AM 12:32 AM 1:04 AM 1:36 AM 2:08 AM 2:40 AM 3:12 AM 3:44 AM 4:16 AM 4:48 AM 5:20 AM

Station 5 8:16 PM 8:48 PM 9:20 PM 9:52 PM 10:32 PM 10:56 PM 11:28 PM 12:00 AM 12:32 AM 1:04 AM 1:36 AM 2:08 AM 2:40 AM 3:12 AM 3:44 AM 4:16 AM 4:48 AM 5:20 AM 5:52 AM 6:24 AM 6:56 AM

Station 9 8:32 PM 9:04 PM 9:36 PM 10:08 PM 10:48 PM 11:12 PM 11:44 PM 12:16 AM 12:48 AM 1:20 AM 1:52 AM 2:24 AM 2:56 AM 3:28 AM 4:00 AM 4:32 AM 5:04 AM 5:36 AM 6:08 AM 6:40 AM 7:12 AM

Station 10 10:24 PM 10:56 PM 11:28 PM 12:08 AM 12:40 AM 1:04 AM 1:36 AM 2:08 AM 2:40 AM 3:12 AM 3:44 AM 4:16 AM 4:48 AM 5:20 AM 5:52 AM 6:24 AM 6:56 AM 7:28 AM 8:00 AM 8:32 AM 9:04 AM

Station 11 12:00 AM 12:32 AM 1:04 AM 1:44 AM 2:16 AM 2:40 AM 3:12 AM 3:44 AM 4:16 AM 4:48 AM 5:20 AM 5:52 AM 6:24 AM 6:56 AM 7:28 AM 8:00 AM 8:32 AM 9:04 AM 9:36 AM 10:08 AM 10:40 AM

Commuter_2

Station Train 1 Train 2 Train 3 Train 4 Train 5 Train 6 Train 7 Train 8 Train 9 Train 10 Train 11 Train 12 Train 13 Train 14 Train 15 Train 16 Train 17 Train 18

Station 7 8:48 AM 9:20 AM 9:52 AM 10:24 AM 10:56 AM 11:28 AM 12:00 PM 12:32 PM 1:04 PM 1:36 PM 2:08 PM 2:40 PM 3:12 PM 3:44 PM 4:16 PM 4:56 PM 5:20 PM 5:52 PM

Station 8 10:24 AM 10:56 AM 11:28 AM 12:00 PM 12:32 PM 1:04 PM 1:36 PM 2:08 PM 2:40 PM 3:12 PM 3:44 PM 4:16 PM 4:48 PM 5:20 PM 5:52 PM 6:32 PM 6:56 PM 7:28 PM

Station 6 10:40 AM 11:12 AM 11:44 AM 12:16 PM 12:48 PM 1:20 PM 1:52 PM 2:24 PM 2:56 PM 3:28 PM 4:00 PM 4:32 PM 5:04 PM 5:36 PM 6:08 PM 6:48 PM 7:12 PM 7:44 PM

Station 7 12:16 PM 12:48 PM 1:20 PM 1:52 PM 2:24 PM 2:56 PM 3:28 PM 4:00 PM 4:32 PM 5:04 PM 5:36 PM 6:08 PM 6:40 PM 7:12 PM 7:44 PM 8:24 PM 8:48 PM 9:20 PM

Station Train 19 Train 20 Train 21 Train 22 Train 23 Train 24 Train 25 Train 26 Train 27 Train 28 Train 29 Train 30 Train 31 Train 32 Train 33 Train 34 Train 35 Train 36

Station 7 6:24 PM 6:56 PM 7:28 PM 8:08 PM 8:32 PM 9:04 PM 9:36 PM 10:08 PM 10:40 PM 11:12 PM 11:44 PM 12:16 AM 12:48 AM 1:20 AM 1:52 AM 2:24 AM 2:56 AM 3:28 AM

Station 8 8:00 PM 8:32 PM 9:04 PM 9:44 PM 10:08 PM 10:40 PM 11:12 PM 11:44 PM 12:16 AM 12:48 AM 1:20 AM 1:52 AM 2:24 AM 2:56 AM 3:28 AM 4:00 AM 4:32 AM 5:04 AM

Station 6 8:16 PM 8:48 PM 9:20 PM 10:00 PM 10:24 PM 10:56 PM 11:28 PM 12:00 AM 12:32 AM 1:04 AM 1:36 AM 2:08 AM 2:40 AM 3:12 AM 3:44 AM 4:16 AM 4:48 AM 5:20 AM

Station 7 9:52 PM 10:24 PM 10:56 PM 11:36 PM 12:00 AM 12:32 AM 1:04 AM 1:36 AM 2:08 AM 2:40 AM 3:12 AM 3:44 AM 4:16 AM 4:48 AM 5:20 AM 5:52 AM 6:24 AM 6:56 AM

Commuter_3
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