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Abstract

Today’s data-rich platforms are reshaping the operations of urban transportation networks
by providing information and services to a large number of travelers. How can we model the
travelers’ strategic decisions in response to services provided by these platforms and develop
tools to improve the aggregate outcomes in a socially desirable manner? In this thesis,
we tackle this question from three aspects: 1) Game-theoretic analysis of the impact of
information platforms (navigation apps) on the strategic behavior and learning processes of
travelers in uncertain networks; 2) Market mechanism design for efficient carpooling and toll
pricing in the presence of autonomous driving technology ; 3) Security analysis and resource
allocation for robustness under random or adversarial disruptions.

Firstly, we present game-theoretic analysis to evaluate the impact of multiple heteroge-
neous information platforms on travelers’ selfish routing decisions, and the resulting network
congestion. We compare the value of information provided by multiple platforms to their
users, and capture the key trade-off between the gain from information about uncertain
network state and the congestion externality resulting from other users. We also design
an optimal information structure that induces socially preferred traffic flows. Next, we ex-
tend the static model to a dynamic setting that addresses the behavior of users who learn
and strategically act in an uncertain environment, while adapting their decisions to the
up-to-date information received from platforms. The resulting stochastic learning dynam-
ics requires analyzing strategic and adaptive (hence, endogenous and non i.i.d.) data. We
present new results for convergence and stability of such learning dynamics and develop
conditions for convergence to complete information equilibrium.

Secondly, we design a market mechanism that enables efficient carpooling and optimal
toll pricing in an autonomous transportation market. In this market, the transportation
authority sets toll prices on edges, and riders organize carpooled trips using driverless cars
and split payments. Riders have heterogeneous preferences, with the value of each trip
depending on the travel time of chosen route and rider-specific parameters that capture
their individual value of time and carpool disutilities. We identify sufficient conditions on
the network topology and travelers’ preferences under which a market equilibrium exists,
and carpooling trips can be organized in a socially optimal manner. We also present an
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algorithm that computes a set of equilibrium trips, toll prices and payments that maximize
rider utilities.

Finally, we analyze stylized game-theoretic models of attacker-defender interactions for
the purpose of evaluating security risks in transportation networks. Our equilibrium analysis
suggests an optimal resource allocation strategy to defend multiple infrastructure facilities
against an adversarial attacker. To evaluate robustness against random disturbances, we
also develop a class of machine learning models that predict the change of travelers’ usage
demand in congestion-prone multi-modal networks. These results have the potential to help
mitigate the impact of transportation network disruptions and limit security risks.
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Thesis Committee Member: Asuman Ozdaglar
Title: MathWorks Professor of Electrical Engineering and Computer Science

Thesis Committee Member: Patrick Jaillet
Title: Dugald C. Jackson Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

Transportation systems are rapidly embracing the era of digitalization. At the center of

digitalization are various platforms powered by rich sources of data and ever-growing com-

puting capabilities. These platforms inform decision-making of system operators, and create

new services (e.g. navigation, ride-hailing, etc.) for a large number of users. In fact, the

information and services provided by today’s platforms are already re-shaping the system

operations and travel patterns and thus have a significant impact on the performance and

robustness of transportation networks.

Despite the advanced technological capabilities, platforms can cause inefficiencies and

fragility to disruptions in transportation networks. For example, traffic information platforms

(navigation apps) such as Google Maps, Apple Maps, and Waze can aggravate congestion

in residential areas when many travelers follow the routing suggestions to take a shortcut

during morning rush hours (Foderaro [2017]). Ride-hailing platforms such as Uber and Lyft

contribute a significant proportion of total miles traveled in megacities as more and more

travelers are shifting from taking public transit to ride-hailing services (Hawkins [2019]).

Moreover, the increasingly deployed sensing and control units in infrastructures that support

these platforms are making our transportation networks more vulnerable to cyber-security

threats (Jacobs [2014]). These real-world issues bring forth the importance of understanding

the influence of platforms on users’ travel behavior, and their societal impacts.

This dissertation focus on two interrelated problems. First, we aim to understand the im-

pact of information platforms and autonomous carpooling services on users’ travel patterns,
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and the resulting performance of transportation networks. Second, we design information

and incentive guidelines for platforms to induce socially desirable outcomes such as system

efficiency and resiliency.

When studying the impact of platforms on travelers’ behavior and system performance,

we need to account for the following three key aspects (Fig 1-1):

1. Physical constraints and uncertainty of transportation networks. The usage and opera-

tions in transportation networks are subject to various physical constraints such as network

topology, capacity, maximum safety speed, etc. For example, the driving time from an origin

to a destination depends on the available routes, and the capacity of these routes; schedule

of a subway line depends on design of lines and stations, maximum train capacity, and speed

limits. These constraints are determined by the structure of the supporting infrastructure,

and thus are difficult or very expensive to change. Moreover, transportation systems often

suffer from uncertain disruptions including traffic accidents, random infrastructure failures,

natural disasters, and malicious cyber-physical attacks. These disruptions can compromise

the functionality of one or many critical facilities, and lead to efficiency and welfare loss.

2. Platforms and information technology. Information and services provided by platforms

rely on ubiquitous information technologies including data collection, computation and com-

munication in transportation networks. Information platforms use flow data collected from

embedded road loop detectors and traffic cameras, as well as crowd-sourcing data from users’

GPS-based phones. Powered by machine learning algorithms, these platforms provide their

users accurate measurement of traffic flows and travel time prediction. Additionally, mobil-

ity platforms are supported by the intelligent matching and dynamic pricing algorithm that

match trip requests and rider supply near real time. In the future, autonomous vehicles that

are equipped with various sensors, computing, and control units can drive with little or no

human interventions.

Moreover, system operators rely on information technologies to effectively manage traffic

flows. For example, adaptive ramp metering automatically adjusts the discharge rate of

on-ramp traffic into the main highway via traffic signals according to measured congestion

level on highways. Traditional tolling infrastructure such as toll booths and microwave-
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based gantries have been deployed at specific locations to manage traffic demand. New

satellite-based tolling technology does not require the installation of these expensive roadside

infrastructure. Instead, satellite-based tolling uses on-board units (OBU) to record the

vehicle location data, and charges distance- or time- based congestion pricing that precisely

reflects the externality caused by the vehicle’s travel pattern. In theory, such congestion

pricing can induce socially optimal travel behavior.

3. Strategic nature of human agents. The decisions made by human agents, including travel-

ers, service providers, and system operators, have substantial impacts on system performance

of transportation networks. Human agents often have heterogeneous preferences, and their

decisions are affected by the information environment, monetary incentives, as well as antic-

ipated decisions made by other agents in the system.

Aggregate travel patterns and the resulting system performance are governed by the

strategic interactions among human agents as well as the interaction between agents and

platforms. On one hand, services provided by various platforms influence the strategies

of users by re-shaping their information environment and incentives. For example, travel-

ers account for incident information and route suggestions provided by the navigation ser-

vices when planning their trips; commuters’ travel patterns including departure time, route

choices, and mode choices are influenced by toll prices and fees; riders make trips requests

and drivers accept or reject requests based on the prices and information of predicted pick-up

time provided by ride-hailing platforms. On the other hand, the technological capabilities

of platforms also depend on the usage behavior of agents. Such situation is particularly

relevant when the data acquired by platforms is crowd-sourced from users, or generated by

users’ decisions. In this case, platforms’ knowledge of uncertain network environment and

their operational decisions are in turn influenced by the decisions made by their users.

Classical methods in the field of economics and systems and control theory often capture

one or two of these features, but not all three: standard economics theory and models such as

games and mechanism design emphasize the strategic nature of human decision makers, but

do not fully address the dynamics and other physical constraints of transportation networks.

On the other hand, many well-known methods that are widely adopted to model and optimize

the system dynamics in control of transportation networks focus much less on the role of
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Figure 1-1: Platform-based services in transportation systems.

humans in the system and the impact of their strategic decisions.

This thesis contributes new models and design guidelines based on foundations in game

theory, incentive design, and network optimization. We build models that capture the inter-

action between platforms and strategic users under the physical constraints and uncertainty

in transportation networks. We also develop methods to analyze how the outcomes of strate-

gic interactions are shaped by the information environment and incentive mechanisms in both

static and dynamic settings.

This thesis consists of three parts: in the first part (Chapters 2 – 4), we focus on ana-

lyzing the role of information platforms on travelers’ strategic decision making and learning

processes; the second part (Chapter 5) designs an autonomous carpooling market; the third

part (Chapters 6 – 7) focuses on evaluating system resiliency against disruptions. We con-

clude and discuss future research directions in Chapter 8. In the remainder of this chapter,

we briefly discuss the main contributions in each of the parts.

1.1 Information Platforms

The first part of the thesis builds a new game-theoretic foundation to (i) evaluate the value of

information for travelers to make route choices in uncertain environment; (ii) design optimal

information structure; (iii) analyze the long-run outcomes of multi-agent learning dynamics.

16



Value of information in Bayesian routing games. Chapter 2 (Wu et al. [2017, 2020c])

develops a new Bayesian game approach to analyze the impact of information platforms

(navigation apps) on travelers’ routing decisions, and the resulting congestion costs in trans-

portation networks with uncertain state. This work is motivated by the increasing prevalence

of navigation services, which send information on traffic incidents, prediction of uncertain

travel time, and route suggestions to their users. A heterogeneous information environment

is created by multiple services with inherent technological differences in data collection and

analysis. Moreover, this information environment also endogenously depends on the market

shares of various platforms (i.e. the fraction of travelers with access to each information

platform) that are governed by travelers’ choices of platforms.

This Bayesian routing game model captures all three key aspects mentioned above:

Firstly, the uncertain and congestible nature of the physical traffic network is modeled by

the increasing edge cost functions that depend on the unknown network state. Secondly,

the technological capabilities of information platforms are represented by the game common

prior, which is induced from the heterogeneous and potentially correlated distributions of

signals sent by platforms. Thirdly, travelers are strategic in choosing information platforms,

and making routing decisions based on received information of the uncertain state. Their

decisions govern the aggregate traffic loads and congestion.

Classical congestion games with complete information do not account for network un-

certainty and heterogeneous information environment. We developed a new approach to

characterize Bayesian Wardrop equilibrium for general network topology and information

environment. This approach depends on (i) showing that the Bayesian routing game has a

weighted potential function, where the weights are derived from the distribution of signals;

(ii) applying techniques in sensitivity analysis to study the change of Bayesian Wardrop

equilibrium with user sizes of information platforms.

Our approach leads to analysis of the relative value of information between any pair

of information platforms evaluated by the difference of travel time costs of their respective

users for any market share. Furthermore, we characterize the equilibrium market shares of

different platforms in situations when travelers choose platforms by comparing the values of

information.
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Information design. Chapter 3 (Wu and Amin [2019a]) extends Chapter 2 to study the

problem of information design for inducing socially preferred traffic flows. In our setup, a

traffic authority send signals about the uncertain network state to travelers according to a

designed information structure. Travelers can choose whether or not to receive the signal,

and they make routing decisions to minimize their travel time costs based on the information

of the state.

Our model extends classical Bayesian persuasion (Kamenica and Gentzkow [2011]) to

incorporate agents’ choice of information (i.e. the decision or receiving the signal or not).

Given any information structure, travelers’ routing strategy is a Bayesian Wardrop equilib-

rium in the heterogeneous information environment that is endogenously determined by the

persuasion signal and travelers’ choice of information. We provide an analytical characteri-

zation of the optimal information structure for any fraction of travelers receiving the signal.

We find that under travelers’ choice of information, the optimal information structure can

induce the preferred traffic flow with only a fraction (less than 1) of travelers receiving the

signal.

Multi-agent strategic learning. In Chapter 4 (Wu and Amin [2019b], Wu et al. [2020a,b]),

we extend Chapters 2 and 3 to study the role of information platforms in a learning dynam-

ics induced by multiple strategic agents who repeatedly interact in games with unknown

payoff-relevant parameters. An information platform repeatedly updates a Bayesian belief

estimate of the unknown parameter based on the crowd-sourced history of players’ realized

strategies and payoffs, and provide the belief to all players for updating their strategies for

future rounds of play. One application of such dynamics is learning in repeated routing

games on transportation networks with uncertain state. In this application, the traffic infor-

mation platform repeatedly updates the estimate of the latent network condition based on

collected data on edge loads and travel time. Travelers adjust their routing decisions based

on the updated estimates. The long-run outcomes of the dynamics are governed by the joint

evolution of information update of the unknown environment on the platform and players’

strategy updates in games.

Our work is motivated by the need to formulate a learning foundation that analyzes

the long-run outcomes and efficiency for learning on information platforms based on crowd-
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sourcing data generated by players’ repeated interactions. In this learning dynamics, agents

are strategic and myopic in maximizing their stage-wise utilities based on the most recently

updated information of the payoff distribution and their knowledge of opponents’ play. Since

learning of the unknown parameter is based on the observed strategies and payoffs, whether

or not the information platform can identify the true parameter is subject to the endogenous

data generating process of strategies and payoffs. In the application of repeated routing

games, the platform can only observe the travel time of the set of edges that are utilized, and

this set depends on the network topology and travelers’ routing strategies. The travel time

distribution of the remaining edges may not be consistently estimated. As a result, learning

may not identify the true parameter even if the platform has the computing capability to

process data sets with infinite sizes.

The main contribution of our work is to develop a new stochastic systems approach

to study the long-run properties – convergence and stability (both local and global) – of

Bayesian beliefs and strategies. Although there is rich literature on Bayesian learning (Ace-

moglu et al. [2011], Jadbabaie et al. [2013]) and learning in games (Fudenberg et al. [1998]),

the coupled dynamics of beliefs and strategies have not been thoroughly studied in game-

theoretic settings. We show that, with probability 1, the beliefs and strategies converge to

a fixed point, which may or may not identify the true parameter. We find conditions, under

which learning converges to a complete information equilibrium with probability 1. We also

derive sufficient conditions that ensure robustness of fixed points under local perturbations

of both beliefs and strategies. In the application of repeated routing games, we show that

when learning does not lead to complete information equilibrium, the system suffers from

long-run inefficiency in that the social cost of a fixed point is higher than that of a complete

information equilibrium.

1.2 Autonomous Carpooling Market

We have studied the impact of information and information design on agents’ strategic de-

cisions in transportation networks with uncertainty. In Chapter 5 (Amin et al. [2021]), we

study welfare-improving incentive design in autonomous transportation networks. Partic-
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ularly, we focus on designing an autonomous carpooling market that incentivizes riders to

take carpooled trips and share network capacity in a socially optimal manner. In this mar-

ket, a transportation authority sets toll prices on edges, and riders organize carpooled trips

using driverless cars. A market equilibrium corresponds to the situation where no rider has

an incentive to deviate from the organized trips or opt-out, and riders’ payments cover the

toll prices plus the trip costs. A market equilibrium, when it exists, organizes trips that

maximize social welfare.

This autonomous carpooling market model again addresses the above-mentioned three

key features: First, the routes taken by carpooling trips are subject to the topology and

capacity constraints of the physical road network. Second, the market design leverages the

advanced ability of autonomous driving technology in enabling frictionless carpooling, and

micro-tolling technologies (specifically satellite-based tolling) that are increasingly deployed

(Yu [2020]). Third, riders make strategic decisions when participating the market, and taking

carpooled trips.

The key challenge is that the carpooling market needs to satisfy incentive constraints of

all riders, who have heterogeneous preferences (in terms of value of time and disutilities of

sharing carpooled trips), while accounting for the topology and capacity constraints of the

transportation network. In classical settings of market design, the price of a commodity is

an invisible hand that balances the market demand and supply. In our setting, the toll set

on each edge (which can be viewed as the price of a unit capacity on that edge) influences

the trip organization on any route going through that edge. Therefore, the toll price on each

edge not only affects the traffic demand on that edge, but also governs how capacities are

shared in all neighboring edges.

We develop a new approach to analyze market equilibrium that accounts for the network

constraints by combining ideas from market design (Kelso Jr and Crawford [1982], Gul

and Stacchetti [1999]) and network flow optimization (Dantzig and Fulkerson [2003]). Our

work makes two contributions: (i) We characterize sufficient conditions on network topology

and riders’ carpool preferences that guarantee the existence of market equilibrium. These

conditions provide important guidelines for the system designers and policy makers on how

to deploy infrastructure facilities that support an efficient and stable autonomous carpooling
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service. (ii) We provide an algorithm that enables a carpooling platform to implement a

market equilibrium efficiently. In this equilibrium, riders are incentives to truthfully report

their private preferences to the platform, and only pay for the minimum tolls compared to

all other equilibria.

1.3 System Resilience

The final part of this thesis focuses on improving the resiliency of transportation networks.

We provide game-theoretic analysis to design an optimal security strategy to protect critical

infrastructure facilities against malicious disruption. We also develop a machine learning

approach to predict the aggregate demand shift between modes – driving and public transit

– in response to recurrent congestion in transportation networks. These results are useful

for preparing the operators and travelers in face of non-recurrent (random or malicious) and

recurrent disturbances.

Optimal security resource allocation. Chapter 6 (Wu and Amin [2018]) formulates a

two-player game to model the strategic interaction between a system operator (defender)

and a malicious adversary (attacker). In this game, the defender allocates security resources

on a set of infrastructure to prevent it from being compromised by the attacker. A facility

will be compromised if it is attacked but not secured, and the consequence of a compromised

facility is evaluated by the loss of system performance. In this model, we represent the

system performance as a generic value associated to each scenario of a compromised facility

and the scenario where no facility is compromised. We emphasize that, practically, system

performance depends on the network structure of of infrastructure facilities, and the change

of aggregate usage behavior of humans in the system.

We capture the defender and attacker’s technological capabilities by their cost of defending

and attacking a single facility. We parametrically characterize the optimal security strategy

for the defender with respect to the defense and attack costs. We also provide precise

conditions on cost parameters under which the defender can completely deter the attacker

by proactively allocating security resources. These results enable the defender to assess the

relative risks of multiple facilities, and deploy security resources in a manner that minimizes
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the total loss of system efficiency in face of an attack.

Aggregate demand prediction. Chapter 7 (Brenner* et al. [2021]) develops a class of

machine learning methods to predict the aggregate demand ratio between driving and taking

public transit in a transportation network. This work is motivated by the need to evaluate

system efficiency when experiencing recurrent disturbances such as seasonal weather, demand

fluctuations, nominal freeway operations, etc. (Skabardonis et al. [2003]) Since the system

performance largely depends on travelers’ decisions, it is crucial to predict how the aggregate

behavior changes with those disturbances.

We predict the aggregate demand ratio based on the input data of travel time costs on all

(road and transit) segments in the entire network. Due to the high dimensionality of input

data, our prediction model combines a logistic regression with a class of dimension reduction

techniques including naive subset variable selection, LASSO, Ridge, principal component

analysis, and random forest (Friedman et al. [2001]). Our prediction method achieves less

than 2% Root Mean Squared Error in predicting the share of driving demand (relative to

the subway ridership) in San Francisco Bay area during morning rush hours.
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Chapter 2

Value of Information in Bayesian

Routing Games

2.1 Introduction

Travelers are increasingly relying on traffic navigation services (information platforms) to

make their route choice decisions. In the past decade, numerous services have come to

the forefront, including Waze/Google maps, Apple maps, INRIX, etc. These platforms

provide their subscribers with costless information about the uncertain network condition

(state), which affects the travel time costs. The network state is typically influenced by

exogenous factors such as weather, incidents, and road conditions. The information provided

by the platforms can be especially useful in making travel decisions. Experiential evidence

suggests that the accuracy levels of information platforms are less than perfect, and exhibit

heterogeneities due to the inherent technological differences in data collection and analysis

procedures. Moreover, travelers may use different information platforms or choose not to use

them at all, depending on factors such as marketing, usability, and availability. Therefore,

we can reasonably expect that travelers face an environment of asymmetric and incomplete

information about the network state.

Importantly, information heterogeneity can directly influence the travelers’ route choice

decisions, and the resulting congestion externalities. Consider an example where some trav-

elers are informed by their platforms that a certain route has an incident. Taking a detour
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Figure 2-1: Impact of traffic information platforms on strategic routing decisions and network
congestion.

based on this information may not only reduce their own travel time, but also benefit the

uninformed travelers by shifting traffic away from the affected route. However, if too many

travelers take the detour, then this alternate route will also start getting congested, limiting

the benefits of information. Thus, the question arises as to how the heterogeneous information

environment impacts the travelers’ strategic route choices and the resulting costs?

This chapter formulates a Bayesian routing game to study this question. In this game

(demonstrated in Fig. 2-1), multiple information platforms send private signals of the un-

known network state to their respective traveler (user) population. These signals create a

heterogeneous information environment that is captured by the common prior of the Bayesian

game. In equilibrium, travelers of each population make selfish route choices in network that

minimize their costs based on the receive private signals. The aggregate route choices deter-

mine the edge loads and congestion costs.

Our model builds a game-theoretic foundation for analyzing the impact of heterogeneous

information environment on travel behavior and network congestion. Prior work that studied

the effects of information on travelers’ departure time or route choices have mainly considered

simple information environments (i.e. one population being completely informed and the

other being uninformed, Arnott et al. [1991], Ben-Akiva et al. [1991]) or focused on specific

network structures (Acemoglu et al. [2016]). Our Bayesian routing game model is general in
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that we make no assumptions on the topology of the traffic network or the cost functions, and

the signals can be realized from any distribution with or without correlation. In Chapters 3

– 4, we further extend this Bayesian routing game model. Particularly, Chapter 3 studies the

design of information structure that governs the signal distribution with the goal of inducing

socially desirable Bayesian equilibrium route flows. Chapter 4 extends this static games

to a stochastic dynamics to analyze the role of information platforms in strategic learning

processes.

In this chapter, we develop a new approach to fully characterize equilibrium routing

strategies for general networks and information environment. This approach leads to a

precise evaluation of how the relative value of information provided by different apps change

with their market shares – sizes of travelers who use each app. Moreover, our results can

be applied to predict the market shares of both existing and new apps, based on how the

relative accuracies of information provided by them shape the overall network congestion.

Our results extend the rich literature on congestion games with complete information to

the setting with heterogeneous information environment. The well-known results include the

equivalence between complete information congestion games and potential games (Rosenthal

[1973], Monderer and Shapley [1996b], and Sandholm [2001]), analysis of equilibrium and

inefficiency (Roughgarden and Tardos [2004], Koutsoupias and Papadimitriou [1999], Correa

et al. [2007], Acemoglu and Ozdaglar [2007], and Nikolova and Stier-Moses [2014]). In

our setting, populations hold different estimate of expected costs of routes due to their

heterogeneous private beliefs, which are derived from the common prior according to Bayes’

rule. This feature makes our Bayesian routing game equivalent to a weighted potential

game, where the weights are derived from the common prior that describes the information

environment. We analyze the change of equilibrium structure and the value of information

with respect to population sizes through sensitivity analysis of the convex optimization

problem that minimizes the weighted potential function.

Finally, our work also contributes to the study of value of information in the theory of

economics. In a classical paper, Blackwell [1953] showed that for a single decision maker,

more informative signal always results in higher expected utility. In game-theoretic settings,

it is generally difficult to determine whether the value of information in equilibrium for
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individual players and/or society is positive, zero or negative (see Hirshleifer [1971], and

Haenfler [2002]). However, the value of information is guaranteed to be positive when certain

conditions are satisfied; see for example Neyman [1991], and Lehrer and Rosenberg [2006].

Since travelers are non-atomic players in our game, the relative value of information between

any two information platforms is equivalent to the value of information for an individual

traveler when her usage of platforms changes unilaterally. We give precise conditions on

the population sizes under which the value of information in our Bayesian routing game is

positive, zero, or negative.

This chapter is organized as follows: Sec. 2.2 presents the equilibrium analysis in an

illustrative example, where two populations (one population is completely informed, and the

other population is uninformed) make routing decisions on a two route network. Sec. 2.3

introduces the general Bayesian routing game and the notion of Bayesian Wardrop equilib-

rium. We provide equilibrium characterization in Sec. 2.4, and the analysis of relative value

of information in Sec. 2.5. We characterize the market share of information platforms in

Sec. 2.6. The proofs of all results are in Appendix A.

2.2 An Illustrative Example

In this section, we motivate our analysis using a simple game of two traveler populations

routing over a network of two parallel routes 𝑅 = {𝑟1, 𝑟2} (Fig. 2-2a). The network state 𝑠

is uncertain, and it belongs to the set 𝑆 = {a,n}, where state a (“accident”) corresponds to

an incident on 𝑟1; and state n (“nominal”) indicates no incident on 𝑟1. Route 𝑟2 is not prone

to incidents. The state is drawn from a prior probability distribution 𝜃.

The cost (travel time) of each route 𝑟 ∈ 𝑅 is an affine increasing function of the route

flow 𝑓𝑟. The cost function of 𝑓1 depends on the network state 𝑠, and the cost function of 𝑟2

is state-independent (Fig. 2-2b). The cost functions are given by:

𝑐𝑠1(𝑓1) =

⎧⎨⎩ 𝛼a
1𝑓1 + 𝑏1, if 𝑠 = a,

𝛼n
1 𝑓2 + 𝑏2, if 𝑠 = n,

(2.1a)

𝑐2(𝑓2) = 𝛼2𝑓2 + 𝑏2. (2.1b)
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For ease of presentation, we assume that 𝑟1 is “shorter” than 𝑟2 in that its free-flow travel

time is smaller, i.e. 𝑏1 < 𝑏2. In addition, the rate of congestion in 𝑟1 is smaller than 𝑟2 in

state n, but larger in state a, i.e. 𝛼a
1 > 𝛼2 > 𝛼n

1 .

(a) (b)

Figure 2-2: (a) Two route network; (b) Cost functions.

The network faces travelers with total demand of 𝐷. To avoid triviality, we assume that

the demand is sufficiently high so that players do not take one route exclusively:

𝐷 >
𝑏2 − 𝑏1
𝛼n
1

. (2.2)

Travelers are separated into two populations, and they are heterogeneously informed:

Population 1 receives a signal 𝑡1 ∈ 𝑇 1 = {a,n} from their information platform, which has

complete information of the uncertain state, i.e. 𝑝(𝑡1 = 𝑠|𝑠) = 1 for both 𝑠 = a and 𝑠 = n.

Population 2 has no information of the state. The size of population 1 is 𝜆1𝐷 and the size

of population 2 is 𝜆2𝐷 with 𝜆2 = 1− 𝜆1.

In this example, we represent travelers’ routing strategy profile as 𝑞 = (𝑞1𝑟(a), 𝑞
1
𝑟(n), 𝑞

2
𝑟)𝑟∈𝑅,

where 𝑞1𝑟(a) (resp. 𝑞1𝑟(n)) is the traffic demand of population 1 that uses route 𝑟 given the

signal a (resp. n), and 𝑞2𝑟 is the demand of population 2 on route 𝑟. The aggregate flow on

each route is 𝑓𝑟(𝑡1) = 𝑞1𝑟(𝑡
1) + 𝑞2𝑟 for 𝑡1 ∈ 𝑇 1.

This routing game with heterogeneously informed traveler populations admits a Bayesian

Wardrop equilibrium, which will be defined formally in Section 2.3. We denote 𝑞* =

(𝑞1*𝑟 (a), 𝑞1*𝑟 (n), 𝑞2*𝑟 )𝑟∈𝑅 as an equilibrium strategy profile, and 𝑓 * = (𝑓 *
𝑟 (𝑡

1))𝑟∈𝑅,𝑡1∈𝑇 1 as an

induced equilibrium flow vector. In equilibrium, the self-interested travelers take routes that
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minimize their travel time costs. Since population 1 has complete information, their trav-

elers know the exact travel time costs in both states. However, population 2 travelers are

uninformed, and they make their route choices based on the expected cost of each route,

evaluated according to the prior distribution of states. Travelers in each population, given

the signal it receives, can either exclusively take one of the two routes that has a lower cost,

or split on both routes when the two routes have identical costs. Thus, there are 33 = 27

possible cases as follows:

𝑐a1(𝑓
*
1 (a))

⎧⎪⎪⎪⎨⎪⎪⎪⎩
< 𝑐2(𝑓

*
2 (a)), ⇒ 𝑞1*1 (a) = 𝜆1𝐷, 𝑞1*2 (a) = 0,

= 𝑐2(𝑓
*
2 (a)), ⇒ 𝑞1*1 (a) ∈ [0, 𝜆1𝐷], 𝑞1*2 (a) = 𝜆1𝐷 − 𝑞1*1 (a),

> 𝑐2(𝑓
*
2 (a)), ⇒ 𝑞1*1 (a) = 0, 𝑞1*2 (a) = 𝜆1𝐷,

𝑐n1 (𝑓
*
1 (n))

⎧⎪⎪⎪⎨⎪⎪⎪⎩
< 𝑐2(𝑓

*
2 (n)), ⇒ 𝑞1*1 (n) = 𝜆1𝐷, 𝑞1*2 (n) = 0,

= 𝑐2(𝑓
*
2 (n)), ⇒ 𝑞1*1 (n) ∈ [0, 𝜆1𝐷], 𝑞1*2 (n) = 𝜆1𝐷 − 𝑞1*1 (n),

> 𝑐2(𝑓
*
2 (n)), ⇒ 𝑞1*1 (n) = 0, 𝑞1*2 (n) = 𝜆1𝐷,

E𝜃[𝑐𝑠1(𝑓 *
1 (𝑡

1))]

⎧⎪⎪⎪⎨⎪⎪⎪⎩
< E𝜃[𝑐2(𝑓 *

2 (𝑡
1))], ⇒ 𝑞2*1 = 𝜆2𝐷, 𝑞2*2 = 0,

= E𝜃[𝑐2(𝑓 *
2 (𝑡

1))], ⇒ 𝑞2*1 ∈ [0, 𝜆2𝐷], 𝑞2*2 = 𝜆2𝐷 − 𝑞2*1 ,

> E𝜃[𝑐2(𝑓 *
2 (𝑡

1))], ⇒ 𝑞2*1 = 0, 𝑞2*2 = 𝜆2𝐷.

where E𝜃[𝑐𝑠1(𝑓 *
1 (𝑡

1))] =
∑︀

𝑠∈𝑆 𝜃(𝑠)𝑐
𝑠
1(𝑓

*
1 (𝑠)) and E𝜃[𝑐𝑠2(𝑓 *

2 (𝑡
1))] =

∑︀
𝑠∈𝑆 𝜃(𝑠)𝑐2(𝑓

*
2 (𝑠)).

The rest of this chapter develops an approach to characterize how the equilibrium strate-

gies and route flows change with population sizes (i.e. 𝜆1 varies from 0 to 1). In this example,

we find that there exists a threshold size of population 1, 0 < 𝜆1 = (𝛼2𝐷+𝑏2−𝑏1)
𝐷

(︁
1

𝛼n
1+𝛼2

− 1
𝛼a
1+𝛼2

)︁
<

1, such that the qualitative structure of equilibrium routing strategies is different based on

whether 𝜆1 ∈ [0, 𝜆1) or 𝜆1 ∈ [𝜆1, 1].1

When 𝜆1 ∈ [0, 𝜆1), the game admits a unique equilibrium:

𝑞1*1 (a) = 0, 𝑞1*1 (n) = 𝜆1𝐷, and 𝑞2*1 =
𝛼2𝐷 + 𝑏2 − 𝑏1

�̄�1 + 𝛼2

− 𝜆1𝐷𝜃(n)(𝛼
n
1 + 𝛼2)

�̄�1 + 𝛼2

,

where �̄�1 = 𝜃(a)𝛼a
1 + 𝜃(n)𝛼n

1 . This equilibrium corresponds to the following outcome: in

1Detailed analysis for this simple routing game and some interesting variants are available in Wu et al.
[2017].
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state n (resp. state a), all travelers in population 1 exclusively take route 𝑟1 (resp. route

𝑟2), and travelers in population 2 take both routes. The induced equilibrium flow on 𝑟1 is

given by 𝑓 *
1 = 𝑞2*1 in state a, and 𝑓 *

1 = 𝜆1𝐷 + 𝑞2*1 in state n. The remaining demand is the

flow on route 𝑟2.

On the other hand, when 𝜆1 ∈ [𝜆1, 1], the equilibrium set may not be singleton, and can

be represented as follows:

𝑞1*1 (a) = 𝜒, 𝑞1*1 (n) = 𝜆1𝐷 + 𝜒, and 𝑞2*1 =
𝛼2𝐷 + 𝑏2 − 𝑏1

𝛼a
1 + 𝛼2

− 𝜒,

where

max

{︂
0, 𝜆1𝐷 − 𝛼a

1𝐷 + 𝑏1 − 𝑏2
𝛼a
1 + 𝛼2

}︂
≤ 𝜒 ≤ min

{︂
𝛼2𝐷 + 𝑏2 − 𝑏1

𝛼a
1 + 𝛼2

, 𝜆1𝐷 − 𝜆1𝐷
}︂
.

In this case, both populations split their demand on the two routes. Moreover, the equilib-

rium route flow on each route is unique and it does not change with 𝜆1: 𝑓 *
1 = 𝛼2𝐷+𝑏2−𝑏1

𝛼a
1+𝛼2

if

𝑡1 = a, and 𝑓 *
1 = 𝛼2𝐷+𝑏2−𝑏1

𝛼n
1+𝛼2

if 𝑡1 = n.

From the characterized equilibrium, we obtain the following two observations: Firstly,

when 𝜆1 ∈ [0, 𝜆1), we have 𝑞1*1 (n) − 𝑞1*1 (a) = 𝜆1𝐷, i.e. population 1 shifts all its demand

to 𝑟2 when receiving the signal about the incident on 𝑟1. However, if 𝜆1 ∈ [𝜆1, 1], we have

𝑞1*1 (n)− 𝑞1*1 (a) = 𝜆1𝐷 < 𝜆1𝐷, i.e. the change in the received signal only influences a part of

travelers in population 1. One can say that the information impacts the entire demand of

population 1 in the first regime, but not in the second regime.

Secondly, for any feasible 𝜆 = (𝜆1, 𝜆2), we can calculate the equilibrium population costs,

denoted 𝐶𝑖*(𝜆). If 𝜆1 ∈ [0, 𝜆1), it is easy to check that 𝐶2*(𝜆) − 𝐶1*(𝜆) > 0, i.e. when the

state information is only available to a small fraction of travelers, the informed travelers have

an advantage over the uninformed ones (i.e. information has positive value). In this case,

travelers prefer to receive information of the unknown state. On the other hand, if the size

of informed population exceeds the threshold 𝜆1, then 𝐶1*(𝜆) = 𝐶2*(𝜆). Thus, all travelers

face identical cost in equilibrium. The advantage of being informed is zero (i.e. information

has zero value).

The two observations in this example show that the equilibrium structure and the ad-
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vantage of receiving information depends on the size of the informed population. When

information is only received by a small fraction of travelers, these travelers can exclusively

take the shorter route in nominal state, and shift to the other route to avoid incident when it

happens. This gives them the advantage over the remaining uninformed travelers who must

take both routes in both states and thus experience higher cost. However, when the state

information is shared with a sufficiently high fraction of travelers, the cost of 𝑟2 becomes high

when too many informed travelers take it in incident state. Therefore, informed travelers

can no longer exclusively take 𝑟2 to avoid the incident due to the congestion imposed by

others who have the same state information. Consequently, travelers in both populations

experience the same cost in equilibrium.

The rest of the chapter extends the observations in this example to general settings with

multiple (heterogeneous and possibly correlated) information platforms and general network

topology. Our analysis reveals the fundamental trade-off faced by travelers between the gain

of receiving information of the unknown state and the congestion externality imposed by

others with the same information. This trade-off governs how equilibrium structure and the

value of information change with population sizes.

We illustrate the equilibrium strategy profile, equilibrium route flows and equilibrium

costs for any population size 𝜆1 ∈ [0, 1] in Fig. 2-3 using the following parameters: 𝛼n
1 = 1,

𝛼a
1 = 3, 𝛼2 = 2, 𝑏1 = 𝑏2 = 20, 𝐷 = 1, and 𝜃(a) = 0.2. The costs are normalized by the

socially optimal cost, denoted 𝐶𝑠𝑜, which is the minimum cost achievable by a social planner

with complete information of the state. The population size threshold 𝜆1 = 4
15

. We can

see that for 𝜆1 ∈ [0, 𝜆1), the equilibrium strategy profile is unique, the equilibrium route

flows change with population sizes and population 1 experiences lower cost than population

2. For 𝜆1 ∈ [𝜆1, 1], the set of equilibria is a one-dimensional subset of strategy profiles,

the equilibrium route flows do not depend on population sizes, and the two populations

experience the same costs.
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Figure 2-3: Effects of varying population 1 size on equilibrium structure and costs: (a)
Population strategies, (b) Flow on route 𝑟1, (c) Population costs.

2.3 Model

2.3.1 Environment

To generalize the simple routing game in Section 2.2, we consider a transportation network

modeled as a directed graph. For ease of exposition, we assume that the network has a single

origin-destination pair. All our results apply to networks with multiple origin-destination

pairs. Let 𝐸 denote the set of edges and 𝑅 denote the set of routes. The finite set of net-

work states, denoted 𝑆, represents the set of possible network conditions, such as incidents,

weather, etc. The network state, denoted 𝑠, is randomly drawn by a fictitious player “Na-

ture” from 𝑆 according to a distribution 𝜃 ∈ Δ(𝑆), which determines the prior probability

of each state. For any edge 𝑒 ∈ 𝐸 and state 𝑠 ∈ 𝑆, the state-dependent edge cost function

𝑐𝑠𝑒(·) is a positive, increasing, and differentiable function of the load through the edge 𝑒. The

state can impact the edge costs in various ways.

The network serves a set of non-atomic travelers with a fixed total demand 𝐷. We assume

that each traveler is subscribed exclusively to one of the traffic information platforms in the

set 𝐼 = {1, · · · , 𝐼}. We refer to the set of travelers subscribed to the platform 𝑖 ∈ 𝐼

as population 𝑖. All travelers within a population receive an identical signal from their

information platform. Let 𝜆𝑖 denote the ratio of population 𝑖’s size and the total demand 𝐷.

We also consider degenerate situations when the sizes of one or more populations approach

0. Thus, a vector of population sizes 𝜆 =
(︀
𝜆1, . . . , 𝜆𝐼

)︀
satisfies

∑︀
𝑖∈𝐼 𝜆

𝑖 = 1 and 𝜆𝑖 ≥ 0 for

any 𝑖 ∈ 𝐼. The size vector 𝜆 is considered as given in our analysis of equilibrium structure
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and costs (Sections 2.4 and 2.5). In Section 2.6 we consider a more general situation where

𝜆 results from the travelers’ choices of information platforms.

Each information platform 𝑖 ∈ 𝐼 sends a noisy signal 𝑡𝑖 of the state to population 𝑖. The

signal received by each population determines its type (private information). We assume that

the type space of population 𝑖 is a finite set, denoted as 𝑇 𝑖. Note that the type spaces 𝑇 𝑖 and

the state space 𝑆 need not be of the same size. Let 𝑡 Δ
=
(︀
𝑡1, 𝑡2, . . . , 𝑡𝐼

)︀
denote a type profile,

i.e. vector of signals received by the traveler populations; thus, 𝑡 ∈ 𝑇 Δ
=
∏︀

𝑖∈𝐼 𝑇
𝑖. The joint

probability distribution of the state 𝑠 and the vector of signals 𝑡 is denoted 𝜋 ∈ Δ(𝑆 × 𝑇 ),

and it is the common prior of the game. The marginal distribution of 𝜋 on states is consistent

with the common prior, i.e.
∑︀

𝑡∈𝑇 𝜋(𝑠, 𝑡) = 𝜃(𝑠) for all 𝑠 ∈ 𝑆. The conditional probability of

type profiles 𝑡 on the state 𝑠 is given by 𝑝(𝑡|𝑠) = 𝜋(𝑠,𝑡)
𝜃(𝑠)

, i.e. the joint distribution of signals

received by the populations when the network state is 𝑠. In our modeling environment, the

signals of different information platforms can be correlated, conditional on the state. Each

population 𝑖 generates a belief about the state 𝑠 and the other populations’ types 𝑡−𝑖 based

on the signal received from the information system 𝑖 ∈ 𝐼. We denote the population 𝑖’s belief

as 𝛽𝑖(𝑠, 𝑡−𝑖|𝑡𝑖) ∈ Δ(𝑆 × 𝑇−𝑖).

The routing strategy of each population 𝑖 ∈ 𝐼 is a function of its type, denoted as

𝑞𝑖(𝑡𝑖) = (𝑞𝑖𝑟(𝑡
𝑖))𝑟∈𝑅. One way to describe the generation of routing strategies is that each

information platform 𝑖 ∈ 𝐼 sends a noisy signal 𝑡𝑖 of the state to its subscribed population,

and the individual route choices of non-atomic travelers results in an aggregate routing

strategy 𝑞𝑖(𝑡𝑖). An alternative viewpoint is that 𝑞𝑖(𝑡𝑖) is a direct result of strategy route

recommendations sent by each information platform to its subscribed population. That is,

each information platform 𝑖 ∈ 𝐼 routes travelers in population 𝑖 according to the function

𝑞𝑖(𝑡𝑖). For our purpose, these two viewpoints are equivalent in that given any population

𝑖 ∈ 𝐼, and any type 𝑡𝑖 ∈ 𝑇 𝑖, the demand of travelers on route 𝑟 ∈ 𝑅 is 𝑞𝑖𝑟(𝑡𝑖).

We say that a routing strategy profile 𝑞 Δ
= (𝑞𝑖)𝑖∈𝐼 is feasible if it satisfies the following

constraints:

∑︁
𝑟∈𝑅

𝑞𝑖𝑟(𝑡
𝑖) = 𝜆𝑖𝐷, ∀𝑡𝑖 ∈ 𝑇 𝑖, ∀𝑖 ∈ 𝐼, (2.4a)
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𝑞𝑖𝑟(𝑡
𝑖) ≥ 0, ∀𝑟 ∈ 𝑅, ∀𝑡𝑖 ∈ 𝑇 𝑖, ∀𝑖 ∈ 𝐼. (2.4b)

For a given size vector 𝜆, let 𝑄𝑖(𝜆) denote the set of all feasible strategies of population 𝑖.

From (2.4a)-(2.4b), we know that the set of feasible strategy profiles 𝑄(𝜆) Δ
=
∏︀

𝑖∈𝐼 𝑄
𝑖(𝜆) is a

convex polytope.

2.3.2 Bayesian Routing Games

The Bayesian routing game for a fixed size vector 𝜆 can be defined as Γ(𝜆) Δ
= (𝐼, 𝑆, 𝑇, 𝜋,𝑄(𝜆), 𝐶):

- 𝐼: Set of populations, 𝐼 = {1, 2, . . . , 𝐼}

- 𝑆: Set of states with prior distribution 𝜃 ∈ Δ(𝑆)

- 𝑇 =
∏︀

𝑖∈𝐼 𝑇
𝑖: Set of population type profiles with element 𝑡 = (𝑡𝑖)𝑖∈𝐼 ∈ 𝑇

- 𝜋 = (𝜋(𝑠, 𝑡))𝑠∈𝑆,𝑡∈𝑇 : Joint probability distribution of the state 𝑠 and the type profile 𝑡

- 𝑄(𝜆) =
∏︀

𝑖∈𝐼 𝑄
𝑖(𝜆): Set of feasible strategy profiles for a given size vector 𝜆, with

element 𝑞 = (𝑞𝑖)𝑖∈𝐼 ∈ 𝑄(𝜆)

- 𝐶 = {𝑐𝑠𝑒 (·)}𝑒∈𝐸,𝑠∈𝑆: Set of state-dependent edge cost functions

All parameters including the common prior 𝜋 are common knowledge, except that popu-

lations privately receive signals about the network state from their respective information

platform. The game is played as shown in Fig. 2-4.

∙
Nature draws 𝑠

Population 𝑖 receives 𝑡𝑖
∙

interim stage
Population 𝑖 ∈ 𝐼:

-obtains belief 𝛽𝑖(𝑠, 𝑡−𝑖|𝑡𝑖)
-plays strategy 𝑞𝑖

∙
ex post stage
Realize costs

Figure 2-4: Timing of the game Γ(𝜆).

For any 𝑖 ∈ 𝐼 and 𝑡𝑖 ∈ 𝑇 𝑖, the interim belief of population 𝑖 is derived from the common

prior:

𝛽𝑖(𝑠, 𝑡−𝑖|𝑡𝑖) = 𝜋(𝑠, 𝑡𝑖, 𝑡−𝑖)

Pr(𝑡𝑖)
, ∀𝑠 ∈ 𝑆, ∀𝑡−𝑖 ∈ 𝑇−𝑖, (2.5)
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where Pr(𝑡𝑖) =
∑︀

𝑠∈𝑆
∑︀

𝑡−𝑖∈𝑇−𝑖 𝜋(𝑠, 𝑡𝑖, 𝑡−𝑖). For a strategy profile 𝑞 ∈ 𝑄(𝜆), the induced route

flow is denoted 𝑓
Δ
= (𝑓𝑟(𝑡))𝑟∈𝑅,𝑡∈𝑇 , where 𝑓𝑟(𝑡) is the aggregate flow assigned to the route

𝑟 ∈ 𝑅 by populations with type profile 𝑡, i.e.

𝑓𝑟(𝑡) =
∑︁
𝑖∈𝐼

𝑞𝑖𝑟(𝑡
𝑖), ∀𝑟 ∈ 𝑅, ∀𝑡 ∈ 𝑇. (2.6)

Note that the dependence of 𝑓 on 𝑞 is implicit and is dropped for notational convenience.

Again, for the strategy profile 𝑞 ∈ 𝑄(𝜆), we denote the induced edge load as 𝑤 Δ
=

(𝑤𝑒(𝑡))𝑒∈𝐸,𝑡∈𝑇 , where 𝑤𝑒(𝑡) is the aggregate load on the edge 𝑒 assigned by populations with

type profile 𝑡:

𝑤𝑒(𝑡) =
∑︁
𝑟∋𝑒

∑︁
𝑖∈𝐼

𝑞𝑖𝑟(𝑡
𝑖)

(2.6)
=
∑︁
𝑟∋𝑒

𝑓𝑟(𝑡), ∀𝑒 ∈ 𝐸, ∀𝑡 ∈ 𝑇. (2.7)

The corresponding cost of edge 𝑒 ∈ 𝐸 in state 𝑠 ∈ 𝑆 is 𝑐𝑠𝑒(𝑤𝑒(𝑡)). Then, the cost of route

𝑟 ∈ 𝑅 in state 𝑠 ∈ 𝑆 can be obtained as: 𝑐𝑠𝑟(𝑞(𝑡)) =
∑︀

𝑒∈𝑟 𝑐
𝑠
𝑒(𝑤𝑒(𝑡)). Finally, the expected

cost of route 𝑟 for population 𝑖 ∈ 𝐼 can be expressed as follows:

E[𝑐𝑟(𝑞)|𝑡𝑖] =
∑︁
𝑠∈𝑆

∑︁
𝑡−𝑖∈𝑇−𝑖

∑︁
𝑒∈𝑟

𝛽𝑖(𝑠, 𝑡−𝑖|𝑡𝑖)𝑐𝑠𝑒(𝑤𝑒(𝑡𝑖, 𝑡−𝑖)), ∀𝑟 ∈ 𝑅, ∀𝑡𝑖 ∈ 𝑇 𝑖, ∀𝑖 ∈ 𝐼, (2.8)

The equilibrium concept for our game Γ(𝜆) is Bayesian Wardrop equilibrium.

Definition 2.1 (Bayesian Wardrop Equilibrium). A strategy profile 𝑞* ∈ 𝑄(𝜆) is a Bayesian

Wardrop equilibrium if for any 𝑖 ∈ 𝐼 and any 𝑡𝑖 ∈ 𝑇 𝑖:

∀𝑟 ∈ 𝑅, 𝑞𝑖*𝑟 (𝑡
𝑖) > 0 ⇒ E[𝑐𝑟(𝑞*)|𝑡𝑖] ≤ E[𝑐𝑟′(𝑞*)|𝑡𝑖], ∀𝑟′ ∈ 𝑅. (2.9)

That is, in a Bayesian Wardrop equilibrium, travelers in population 𝑖 with type 𝑡𝑖 only

take routes that have the smallest expected cost based on their interim belief 𝛽𝑖(𝑠, 𝑡−𝑖|𝑡𝑖).

We define the equilibrium population cost, denoted 𝐶𝑖*(𝜆), as the expected cost incurred

by a traveler of a given population across all types and network states in equilibrium:
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𝐶𝑖*(𝜆)
Δ
= 1

𝜆𝑖𝐷

∑︀
𝑡𝑖∈𝑇 𝑖 Pr(𝑡𝑖)

∑︀
𝑟∈𝑅 E[𝑐𝑟(𝑞*)|𝑡𝑖]𝑞𝑖*𝑟 (𝑡𝑖). In fact, from (2.9), we can write:

𝐶𝑖*(𝜆)
(2.9)
=

1

𝜆𝑖𝐷

∑︁
𝑡𝑖∈𝑇 𝑖

Pr(𝑡𝑖)

(︃∑︁
𝑟∈𝑅

𝑞𝑖*𝑟 (𝑡
𝑖)

)︃
min
𝑟∈𝑅

E[𝑐𝑟(𝑞*)|𝑡𝑖]
(2.4a)
=

∑︁
𝑡𝑖∈𝑇 𝑖

Pr(𝑡𝑖)min
𝑟∈𝑅

E[𝑐𝑟(𝑞*)|𝑡𝑖].

(2.10)

Note that 𝜆𝑖 = 0 is a degenerate case for population 𝑖 as its size approaches 0. In this

case, the cost 𝐶𝑖*(𝜆) can be viewed as the expected cost faced by an individual (non-atomic)

traveler who subscribes to the information platform 𝑖.

2.4 Equilibrium Characterization

In this section, we show that the game Γ(𝜆) is a weighted potential game. This property

enables us to express the sets of equilibrium strategy profiles and route flows as optimal

solution sets of certain convex optimization problems.

2.4.1 Equilibrium Strategy Profiles

Following Sandholm [2001], the game Γ(𝜆) is a weighted potential game if there exists a

continuously differentiable function Φ : 𝑄(𝜆)→ R and a set of positive, type-specific weights

{𝛾(𝑡𝑖)}𝑡𝑖∈𝑇 𝑖,𝑖∈𝐼 such that:

𝜕Φ(𝑞(𝑡))

𝜕𝑞𝑖𝑟(𝑡
𝑖)

= 𝛾(𝑡𝑖)E[𝑐𝑟(𝑞)|𝑡𝑖], ∀𝑟 ∈ 𝑅, ∀𝑡𝑖 ∈ 𝑇 𝑖, ∀𝑖 ∈ 𝐼. (2.11)

We show that our game Γ(𝜆) is a weighted potential game.

Lemma 2.1. Game Γ(𝜆) is a weighted potential game with the potential function Φ as

follows:

Φ (𝑞)
Δ
=
∑︁
𝑠∈𝑆

∑︁
𝑒∈𝐸

∑︁
𝑡∈𝑇

𝜋 (𝑠, 𝑡)

∫︁ ∑︀
𝑟∋𝑒

∑︀
𝑖∈𝐼 𝑞

𝑖
𝑟(𝑡

𝑖)

0

𝑐𝑠𝑒(𝑧)𝑑𝑧, (2.12)

and the positive type-specific weight is 𝛾(𝑡𝑖) = Pr(𝑡𝑖) for any 𝑡𝑖 ∈ 𝑇 𝑖 and any 𝑖 ∈ 𝐼.

Using (2.6) and (2.7), Φ can be equivalently expressed as a function of the route flow 𝑓
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or the edge load 𝑤 induced by a strategy profile 𝑞 ∈ 𝑄(𝜆):

̂︀Φ(𝑓) Δ
=
∑︁
𝑠∈𝑆

∑︁
𝑒∈𝐸

∑︁
𝑡∈𝑇

𝜋 (𝑠, 𝑡)

∫︁ ∑︀
𝑟∋𝑒 𝑓𝑟(𝑡)

0

𝑐𝑠𝑒(𝑧)𝑑𝑧 (2.13)̂︀
Φ(𝑤)

Δ
=
∑︁
𝑠∈𝑆

∑︁
𝑒∈𝐸

∑︁
𝑡∈𝑇

𝜋 (𝑠, 𝑡)

∫︁ 𝑤𝑒(𝑡)

0

𝑐𝑠𝑒(𝑧)𝑑𝑧. (2.14)

Thus, for any feasible strategy profile 𝑞 ∈ 𝑄(𝜆), we can write Φ(𝑞) ≡ ̂︀Φ(𝑓) ≡ ̂︀Φ(𝑤), where 𝑓

and 𝑤 are the route flow and edge loads induced by the strategy profile 𝑞. In addition,
̂︀
Φ(𝑤)

satisfies the following property:

Lemma 2.2. The function
̂︀
Φ(𝑤) is twice continuously differentiable and strictly convex in

𝑤.

Our first result provides a characterization of the set of equilibrium strategy profiles:

Theorem 2.1. A strategy profile 𝑞 ∈ 𝑄(𝜆) is a Bayesian Wardrop equilibrium if and only if

it is an optimal solution of the following convex optimization problem:

min Φ(𝑞), 𝑠.𝑡. 𝑞 ∈ 𝑄(𝜆), (OPT-𝑄)

where 𝑄(𝜆) is the set of feasible strategy profiles. The equilibrium edge load vector 𝑤*(𝜆) is

unique.

The existence of Bayesian Wardrop equilibrium follows directly from Theorem 2.1. For

any size vector 𝜆, we denote the set of Bayesian Wardrop equilibria for the game Γ(𝜆)

as 𝑄*(𝜆). Importantly, since the equilibrium edge load 𝑤*(𝜆) is unique, the equilibrium

population cost 𝐶𝑖*(𝜆) for each population 𝑖 ∈ 𝐼 in (2.10) must also be unique for any 𝜆.

Thus, the equilibria of Γ(𝜆) can be viewed as essentially unique. We denote the optimal

value of (OPT-𝑄), i.e. the value of the weighted potential function Φ(𝑞) in equilibrium as

Ψ(𝜆).

The Lagrangian of (OPT-𝑄) that we use in proving Theorem 2.1 is given as follows:

ℒ(𝑞, 𝜇, 𝜈, 𝜆) = Φ(𝑞) +
∑︁
𝑖∈𝐼

∑︁
𝑡𝑖∈𝑇 𝑖

𝜇𝑡
𝑖

(︃
𝜆𝑖𝐷 −

∑︁
𝑟∈𝑅

𝑞𝑖𝑟(𝑡
𝑖)

)︃
−
∑︁
𝑟∈𝑅

∑︁
𝑖∈𝐼

∑︁
𝑡𝑖∈𝑇 𝑖

𝜈𝑡
𝑖

𝑟 𝑞
𝑖
𝑟(𝑡

𝑖), (2.15)
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where 𝜇 = (𝜇𝑡
𝑖
)𝑡𝑖∈𝑇 𝑖,𝑖∈𝐼 and 𝜈 = (𝜈𝑡

𝑖

𝑟 )𝑟∈𝑅,𝑡𝑖∈𝑇 𝑖,𝑖∈𝐼 are Lagrange multipliers associated with the

constraints (2.4a) and (2.4b), respectively. The next lemma shows that for any equilibrium

𝑞* ∈ 𝑄*(𝜆), the optimal Lagrange multipliers 𝜇* and 𝜈* in (2.15) associated with 𝑞* are

unique.

Lemma 2.3. The Lagrange multipliers 𝜇* and 𝜈* at the optimum of (OPT-𝑄) are unique:

𝜇𝑡
𝑖* = min

𝑟∈𝑅
Pr(𝑡𝑖)E[𝑐𝑟(𝑞*)|𝑡𝑖], ∀𝑡𝑖 ∈ 𝑇 𝑖, ∀𝑖 ∈ 𝐼 (2.16a)

𝜈𝑡
𝑖*
𝑟 = Pr(𝑡𝑖)E[𝑐𝑟(𝑞*)|𝑡𝑖]− 𝜇𝑡

𝑖*, ∀𝑟 ∈ 𝑅, ∀𝑡𝑖 ∈ 𝑇 𝑖, ∀𝑖 ∈ 𝐼. (2.16b)

This result follows from the fact that (OPT-𝑄) satisfies the Linear Independence Con-

straint Qualification (LICQ) condition (Wachsmuth [2013]), which ensures the uniqueness

of Lagrange multipliers at the optimum of (OPT-𝑄); see Lemma A.1 for the statement of

LICQ condition.

The value of 𝜇𝑡𝑖* relates the expected route costs for each type 𝑡𝑖 in equilibrium with

the sensitivity analysis of the Lagrangian with respect to population sizes at the optimum

of (OPT-𝑄). We will use this result in Section 2.5 for studying the relative ordering of

equilibrium population costs.

2.4.2 Equilibrium Route Flows

Our main question of interest is how the equilibria set 𝑄*(𝜆), i.e. optimal solution set of

(OPT-𝑄), and more importantly, the equilibrium edge load 𝑤*(𝜆), change with the pertur-

bations in the size vector 𝜆. However, characterizing the effect of 𝜆 directly from (OPT-𝑄)

is not so straightforward. Recall that in the simple routing game in Section 2.2, the effects

of perturbations in 𝜆 on the equilibrium route flow are relatively easier to describe in com-

parison to the effects on the set of equilibrium strategy profile — the equilibrium route flow

remains fixed in a certain range of 𝜆, whereas the set of equilibrium strategy profiles do not.

Thus, our approach involves studying how 𝜆 affects the set of equilibrium route flows. We

show two results in this regard: (i) The set of feasible route flows and the set of feasible

strategy profiles that induces a particular route flow can be both expressed as polytopes
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(Proposition 2.1); (ii) The set of equilibrium route flows is the optimal solution set of a

convex optimization problem (Proposition 2.2). These results enable us to evaluate how the

equilibrium edge load and population costs change with perturbations in 𝜆.

Let us start by introducing the set of route flows

𝐹 (𝜆)
Δ
= {𝑓 ∈ R|𝑅|×|𝑇 | |𝑓 satisfies (2.17a)-(2.17d)},

where the constraints are given by:

𝑓𝑟(𝑡
𝑖, 𝑡−𝑖)− 𝑓𝑟(𝑡

𝑖, 𝑡−𝑖) = 𝑓𝑟(𝑡
𝑖, 𝑡−𝑖)− 𝑓𝑟(𝑡

𝑖, 𝑡−𝑖), ∀𝑟 ∈ 𝑅, ∀𝑡𝑖, 𝑡𝑖 ∈ 𝑇 𝑖, and ∀𝑡−𝑖, 𝑡−𝑖 ∈ 𝑇−𝑖,∀𝑖 ∈ 𝐼,

(2.17a)∑︁
𝑟∈𝑅

𝑓𝑟(𝑡) = 𝐷, ∀𝑡 ∈ 𝑇, (2.17b)

𝑓𝑟(𝑡) ≥ 0, ∀𝑟 ∈ 𝑅, ∀𝑡 ∈ 𝑇, (2.17c)

𝐷 −
∑︁
𝑟∈𝑅

min
𝑡𝑖∈𝑇 𝑖

𝑓𝑟(𝑡
𝑖, 𝑡−𝑖) ≤ 𝜆𝑖𝐷, ∀𝑡−𝑖 ∈ 𝑇−𝑖, ∀𝑖 ∈ 𝐼. (2.17d)

The constraints (2.17a)-(2.17c) do not depend on the size vector 𝜆 and can be understood

as follows: (2.17a) captures the fact that the change in the flow through any route resulting

from change in the type of population 𝑖 ∈ 𝐼 does not depend on the particular types of

the remaining populations; (2.17b) ensures that all the demand 𝐷 is routed through the

network; and (2.17c) guarantees that the demand assigned to any route is nonnegative.

On the other hand, the constraints in (2.17d) depend on the size vector 𝜆, wherein the

size of each population 𝑖 ∈ 𝐼, 𝜆𝑖, appears linearly in the constraint corresponding to that

population. To further interpret (2.17d), we define the “impact of information” for any given

population as the maximum extent to which the signal received from its information platform

can influence the routing behavior of travelers within the population. Specifically, for any

strategy profile 𝑞 ∈ 𝑄(𝜆) and population 𝑖 ∈ 𝐼, we define the impact of information on

population 𝑖 ∈ 𝐼 as follows:

𝐽 𝑖(𝑞)
Δ
= 𝜆𝑖𝐷 −

∑︁
𝑟∈𝑅

min
𝑡𝑖∈𝑇 𝑖

𝑞𝑖𝑟(𝑡
𝑖). (2.18)

Using (2.4a), we can re-write (2.18) as: 𝐽 𝑖(𝑞) =
∑︀

𝑟∈𝑅max𝑡𝑖∈𝑇 𝑖

(︀
𝑞𝑖𝑟(̂︀𝑡𝑖)− 𝑞𝑖𝑟(𝑡𝑖))︀, where ̂︀𝑡𝑖 is
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an arbitrary type in 𝑇 𝑖. That is, for each population 𝑖 ∈ 𝐼, 𝐽 𝑖(𝑞) is the summation over all

routes of the maximum difference between the demands assigned to each route 𝑟 by the typê︀𝑡𝑖 and any other type 𝑡𝑖 ∈ 𝑇 𝑖. Using (2.6), we can alternatively express this metric in terms

of the flow 𝑓 induced by 𝑞:

̂︀𝐽 𝑖(𝑓) ≡ 𝐽 𝑖(𝑞)
(2.6)
=
∑︁
𝑟∈𝑅

max
𝑡𝑖∈𝑇 𝑖

(𝑓𝑟(̂︀𝑡𝑖,̂︀𝑡−𝑖)− 𝑓𝑟(𝑡𝑖,̂︀𝑡−𝑖)) (2.17b)
= 𝐷 −

∑︁
𝑟∈𝑅

min
𝑡𝑖∈𝑇 𝑖

𝑓𝑟(𝑡
𝑖,̂︀𝑡−𝑖), (2.19)

where (̂︀𝑡𝑖,̂︀𝑡−𝑖) is any type profile in 𝑇 . Now the constraints (2.17d) can be equivalently stated

as:

̂︀𝐽 𝑖(𝑓) ≤ 𝜆𝑖𝐷, ∀𝑖 ∈ 𝐼. (IIC)

These constraints ensure that the impact of signals on any population’s strategy is bounded

by its size. We will refer to them as information impact constraints (IIC). We use (IIC) and

(2.17d) interchangeably, and refer the constraint in (IIC) corresponding to population 𝑖 ∈ 𝐼

as (IIC𝑖). Also, it is easy to see that for each 𝑖 ∈ 𝐼, (IIC𝑖) can be written as a set of affine

inequalities:

𝐷 −
∑︁
𝑟∈𝑅

𝑓𝑟(𝑡
𝑖
𝑟,̂︀𝑡−𝑖) ≤ 𝜆𝑖𝐷, ∀𝑡𝑖1 ∈ 𝑇 𝑖, . . . ,∀𝑡𝑖|𝑅| ∈ 𝑇 𝑖. (2.21)

Thus, 𝐹 (𝜆) is a convex polytope. The following proposition relates the set of feasible strategy

profiles and the induced route flows.

Proposition 2.1. The set of feasible route flows is the convex polytope 𝐹 (𝜆). Furthermore,

for a given route flow 𝑓 ∈ 𝐹 (𝜆), any feasible strategy profile 𝑞 ∈ 𝑄(𝜆) that induces 𝑓 can be

expressed as:

𝑞𝑖𝑟(𝑡
𝑖) = 𝑓𝑟(𝑡

𝑖,̂︀𝑡−𝑖)− 𝑓𝑟(̂︀𝑡𝑖,̂︀𝑡−𝑖) + 𝜒𝑖𝑟, ∀𝑟 ∈ 𝑅, ∀𝑡𝑖 ∈ 𝑇 𝑖, ∀𝑖 ∈ 𝐼, (2.22)

where ̂︀𝑡 = (︀̂︀𝑡𝑖)︀
𝑖∈𝐼 is any type profile in 𝑇 , and 𝜒 = (𝜒𝑖𝑟)𝑟∈𝑅,𝑖∈𝐼 satisfies the following con-
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straints:

∑︁
𝑟∈𝑅

𝜒𝑖𝑟 = 𝜆𝑖𝐷, ∀𝑖 ∈ 𝐼, (2.23a)

∑︁
𝑖∈𝐼

𝜒𝑖𝑟 = 𝑓𝑟(̂︀𝑡), ∀𝑟 ∈ 𝑅, (2.23b)

𝜒𝑖𝑟 ≥ max
𝑡𝑖∈𝑇 𝑖

(︀
𝑓𝑟(̂︀𝑡𝑖,̂︀𝑡−𝑖)− 𝑓𝑟(𝑡𝑖,̂︀𝑡−𝑖))︀ , ∀𝑟 ∈ 𝑅, ∀𝑖 ∈ 𝐼. (2.23c)

The proof of this proposition is comprised of three steps: In Step I, we show that any

route flow that is induced by a feasible strategy profile must satisfy constraints (2.17a)-

(2.17d). In Step II, we show the converse: for any given 𝑓 , any feasible strategy profile 𝑞

that induces it must be given by (2.22), where 𝜒 is a vector satisfying (2.23). In Step III,

we prove that if 𝑓 satisfies (2.17a)-(2.17d), then we can indeed construct a vector 𝜒 that

satisfies (2.23), and the corresponding 𝑞 in (2.22) is a feasible strategy profile that induces

𝑓 . By combining Steps II and III, we can conclude that any 𝑓 satisfying (2.17a)-(2.17d) can

be induced by at least one feasible strategy profile, and thus is a feasible route flow.

The next proposition provides a characterization of the set of equilibrium route flows,

and is analogous to Theorem 2.1 which characterizes the set of equilibrium strategy profiles.

Proposition 2.2. A feasible route flow 𝑓 ∈ 𝐹 (𝜆) is an equilibrium route flow if and only if

𝑓 is an optimal solution of the following convex optimization problem:

min ̂︀Φ(𝑓), 𝑠.𝑡. 𝑓 ∈ 𝐹 (𝜆), (OPT-𝐹 )

where 𝐹 (𝜆) is the set of feasible route flow vectors, which satisfy constraints (2.17a) – (2.17d).

We denote the set of equilibrium route flows 𝑓 * in the game Γ(𝜆) as 𝐹 *(𝜆). From Theorem

2.1, equations (2.7) and (2.12), we know that for any size vector 𝜆, and any 𝑞* ∈ 𝑄*(𝜆), any

𝑓 * ∈ 𝐹 *(𝜆),

Ψ(𝜆) = Φ(𝑞*) = ̂︀Φ(𝑓 *) =

̂︀
Φ(𝑤*(𝜆)). (2.24)

Propositions 2.1 and 2.2 form the basis of our analysis of how the perturbations of size

vector effects the equilibrium structure and population costs.
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2.5 Pairwise Comparison of Populations

In this section, we first analyze the effects of perturbations in the relative sizes of any two

populations on the equilibrium structure. Next, we study how the cost difference between

any two populations depends on the population sizes.

2.5.1 Equilibrium Regimes

To study the effects of perturbations in the relative sizes of any two populations, we employ

the notion of directional perturbation of size vector 𝜆. In particular, for any two populations 𝑖

and 𝑗, we consider the |𝐼|-dimensional direction vector 𝑧𝑖𝑗 Δ
= (. . . 0 . . . , 1, . . . 0 . . . ,−1, . . . 0 . . . )

with 1 in the 𝑖-th position and −1 in the 𝑗-th position. When 𝜆 is perturbed in the direction

of 𝑧𝑖𝑗, the size of population 𝑖 (resp. population 𝑗) increases (resp. decreases), and the sizes

of the remaining populations do not change.

For any size vector 𝜆 and any two populations 𝑖 and 𝑗, let the vector of the remaining

populations’ sizes be denoted 𝜆−𝑖𝑗 Δ
=
(︀
𝜆𝑘
)︀
𝑘∈𝐼∖{𝑖,𝑗}. The total size of the remaining populations

is |𝜆−𝑖𝑗| Δ=
∑︀

𝑘∈𝐼∖{𝑖,𝑗} 𝜆
𝑘. For pairwise comparison, we only consider the case when the sizes of

both populations are strictly positive so that |𝜆−𝑖𝑗| < 1, and the range of the perturbations

in the population 𝑖’s size is (0, 1− |𝜆−𝑖𝑗|). We denote the set of admissible 𝜆−𝑖𝑗 as Λ−𝑖𝑗.

Now consider an optimization problem that is similar to (OPT-𝐹 ), except that the two

constraints in the (IIC) set corresponding to the populations 𝑖 and 𝑗 are replaced by a single

constraint:

min ̂︀Φ(𝑓), 𝑠.𝑡. (2.17a), (2.17b), (2.17c), (IIC)∖{𝑖, 𝑗}, (IIC𝑖𝑗), (OPT-𝐹 𝑖𝑗)

where the constraints (IIC)∖{𝑖, 𝑗} indicate that all but (IIC𝑖) and (IIC𝑗) from the original

set (IIC) are included, and the constraint (IIC𝑖𝑗) is defined as follows:

̂︀𝐽 𝑖(𝑓) + ̂︀𝐽 𝑗(𝑓) ≤ (︀1− |𝜆−𝑖𝑗|)︀𝐷. (IIC𝑖𝑗)

The constraint (IIC𝑖𝑗) ensures that the total impact of information on population 𝑖 and 𝑗

does not exceed their total demand. We denote the set of optimal solutions for (OPT-𝐹 𝑖𝑗)
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as 𝐹 𝑖𝑗,†. Analogously to Theorem 2.1, we can show that any 𝑓 𝑖𝑗,† ∈ 𝐹 𝑖𝑗,† induces a unique

edge load 𝑤𝑖𝑗,†, which can be obtained by (2.7); see Lemma A.2. Then, the optimal solution

set of (OPT-𝐹 𝑖𝑗) can be written as the following polytope:

𝐹 𝑖𝑗,† =

⎧⎨⎩𝑓
⃒⃒⃒⃒
⃒⃒ 𝑓 satisfies (2.17a), (2.17b), (2.17c), (IIC)∖{𝑖, 𝑗}, and (IIC𝑖𝑗),∑︀

𝑟∋𝑒 𝑓𝑟(𝑡) = 𝑤𝑖𝑗,†𝑒 (𝑡), ∀𝑒 ∈ 𝐸, ∀𝑡 ∈ 𝑇

⎫⎬⎭ . (2.25)

Note that both 𝐹 𝑖𝑗,† and 𝑤𝑖𝑗,† depend on 𝜆−𝑖𝑗 but do not depend on 𝜆𝑖 or 𝜆𝑗.

Before proceeding further, we need to define two thresholds for the size of one of the two

perturbed populations (say, population 𝑖):

𝜆𝑖
Δ
=

1

𝐷
min

𝑓 𝑖𝑗,†∈𝐹 𝑖𝑗,†

{︁ ̂︀𝐽 𝑖(𝑓 𝑖𝑗,†)}︁ , �̄�𝑖
Δ
=

1

𝐷
max

𝑓 𝑖𝑗,†∈𝐹 𝑖𝑗,†

{︁(︀
1− |𝜆−𝑖𝑗|

)︀
𝐷 − ̂︀𝐽 𝑗(𝑓 𝑖𝑗,†)}︁ , (2.26)

where ̂︀𝐽 𝑖(𝑓 𝑖𝑗,†) and ̂︀𝐽 𝑗(𝑓 𝑖𝑗,†) are the impact of information metrics for the population 𝑖 and

𝑗, respectively. We can check that 𝜆𝑖 and �̄�𝑖 are admissible thresholds:

Lemma 2.4. 0 ≤ 𝜆𝑖 ≤ �̄�𝑖 ≤ 1− |𝜆−𝑖𝑗|.

Additionally, (2.26) can be expressed as linear programming problems, see (A.7)-(A.8).

These two thresholds play a crucial role in our subsequent analysis.

We are now ready to introduce the equilibrium regimes that are induced by the relative

change in the sizes of populations 𝑖 and 𝑗 with fixed sizes of other populations 𝜆−𝑖𝑗 ∈ Λ−𝑖𝑗.

These regimes are defined by the following sets:

Λ𝑖𝑗1
Δ
= {
(︀
𝜆𝑖, 𝜆𝑗, 𝜆−𝑖𝑗

)︀ ⃒⃒
𝜆𝑖 ∈ (0, 𝜆𝑖)}, (2.27a)

Λ𝑖𝑗2
Δ
= {
(︀
𝜆𝑖, 𝜆𝑗, 𝜆−𝑖𝑗

)︀ ⃒⃒
𝜆𝑖 ∈ [𝜆𝑖, �̄�𝑖] ∖ {0, 1− |𝜆−𝑖𝑗|}}, (2.27b)

Λ𝑖𝑗3
Δ
=
{︀(︀
𝜆𝑖, 𝜆𝑗, 𝜆−𝑖𝑗

)︀ ⃒⃒
𝜆𝑖 ∈ (�̄�𝑖, 1− |𝜆−𝑖𝑗|)

}︀
. (2.27c)

We say that the population 𝑖 (resp. population 𝑗) is a “minor population” in regime Λ𝑖𝑗1

(resp. regime Λ𝑖𝑗3 ) because 𝜆𝑖 < 𝜆𝑖 (resp. 𝜆𝑗 < 1−|𝜆−𝑖𝑗|− �̄�𝑖). Moreover, neither population

is minor in regime Λ𝑖𝑗2 . Note that degenerate situations are possible. In particular, if either

one or both of the thresholds 𝜆𝑖 and �̄�𝑖 take values in the set {0, 1− |𝜆−𝑖𝑗|}, then from the
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regime definitions (2.27a)-(2.27c), the number of regimes are reduced to two (for example,

in the the simple routing game in Section 2.2) or even one regime (see Example A.2). The

following theorem describes the properties of equilibrium route flows in the regimes under

the directional perturbations in the size vector 𝜆.

Theorem 2.2. For any two populations 𝑖, 𝑗 ∈ 𝐼, and any given 𝜆−𝑖𝑗 ∈ Λ−𝑖𝑗, the set of

equilibrium route flows 𝐹 *(𝜆) when 𝜆 is in regime Λ𝑖𝑗1 or regime Λ𝑖𝑗3 can be expressed as

follows:

𝐹 *(𝜆) =

⎧⎨⎩argmin ̂︀Φ(𝑓)
⃒⃒⃒⃒
⃒⃒ 𝑠.𝑡. (2.17a), (2.17b), (2.17c), (IIC𝑖𝑗) and (IIC)∖{𝑗} if 𝜆 ∈ Λ𝑖𝑗1

𝑠.𝑡. (2.17a), (2.17b), (2.17c), (IIC𝑖𝑗) and (IIC)∖{𝑖} if 𝜆 ∈ Λ𝑖𝑗3

⎫⎬⎭
(2.28)

In regime Λ𝑖𝑗1 (resp. regime Λ𝑖𝑗3 ), the constraint (IIC𝑖) (resp. (IIC𝑗)) is tight in equilibrium.

Additionally, in regime Λ𝑖𝑗2 , we have 𝐹 *(𝜆) ⊆ 𝐹 𝑖𝑗,†.

Essentially, this result is based on how the impact of information on each perturbed

population compares with its size; i.e. whether or not the constraint (IIC𝑖) (resp. (IIC𝑗))

for the population 𝑖 (resp. populatiom 𝑗) is tight in equilibrium. In the first side regime

Λ𝑖𝑗1 , the constraint (IIC𝑖) is tight at optimum of (OPT-𝐹 ). This implies that the impact of

information extends to the entire demand of the minor population 𝑖. In fact, the threshold

𝜆𝑖 is the largest size of population 𝑖 for which the impact of information on itself is fully

attained. We can argue similarly for the other side regime Λ𝑖𝑗3 , where population 𝑗 is the

minor population; i.e. (IIC𝑗) is tight at optimum of (OPT-𝐹 ) and (1 − |𝜆−𝑖𝑗| − �̄�𝑖) is the

largest size of population 𝑗 such that the impact of information on itself is fully attained.

In contrast to the two side regimes, in the middle regime Λ𝑖𝑗2 , the sizes of both populations

𝑖 and 𝑗 are above the threshold sizes 𝜆𝑖 and (1 − |𝜆−𝑖𝑗| − �̄�𝑖), respectively. We can replace

the constraints (IIC𝑖) and (IIC𝑗) in the optimization problem (OPT-𝐹 ) by (IIC𝑖𝑗) without

changing its optimal value, i.e. the optimal value of (OPT-𝐹 𝑖𝑗) is equal to Ψ(𝜆). However,

since the set 𝐹 𝑖𝑗,† (as defined in (2.25)) contains all route flows that attain the optimal value

Ψ(𝜆) but may not necessarily satisfy the constraints (IIC𝑖) and (IIC𝑗), the equilibrium route

flow set 𝐹 *(𝜆) must be a subset of 𝐹 𝑖𝑗,†. In this regime, the impact of information on neither
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population is fully attained.

A specialized result derived from Theorem 2.2 and Proposition 2.1 is that in routing

games with two heterogeneously informed populations and a parallel-route network, the

equilibrium strategy profile in the regimes Λ12
1 and Λ12

3 is unique, see Corollary A.1.

Thanks to Theorem 2.2, we can analyze the monotonicity of the value of potential function

at equilibrium Ψ(𝜆) with respect to perturbations of 𝜆 in the direction 𝑧𝑖𝑗.

Proposition 2.3. For any two populations 𝑖, 𝑗 ∈ 𝐼, and any given 𝜆−𝑖𝑗 ∈ Λ−𝑖𝑗, under direc-

tional perturbations of 𝜆 along the direction 𝑧𝑖𝑗, the function Ψ(𝜆) monotonically decreases

in regime Λ𝑖𝑗1 , does not change in Λ𝑖𝑗2 , and monotonically increases in Λ𝑖𝑗3 . Furthermore, the

equilibrium edge load vector 𝑤*(𝜆) = 𝑤𝑖𝑗,† if and only if 𝜆 ∈ Λ𝑖𝑗2 .

Following Theorem 2.2, in the side regime Λ𝑖𝑗1 (resp. Λ𝑖𝑗3 ), the set of route flows which

satisfy the constraints of the optimization problem in (2.28) increases (resp. decreases) as 𝜆 is

perturbed in the direction 𝑧𝑖𝑗. Thus, the value of the potential function in equilibrium, Ψ(𝜆),

is non-increasing (resp. non-decreasing) in the direction 𝑧𝑖𝑗. In fact, since the constraint

(IIC𝑖) (resp. (IIC𝑗)) is tight in equilibrium, one can argue that Ψ(𝜆) strictly decreases (resp.

increases) in the direction 𝑧𝑖𝑗. In contrast, in the middle regime Λ𝑖𝑗2 , since 𝐹 *(𝜆) ⊆ 𝐹 𝑖𝑗,†, we

can conclude that 𝑤*(𝜆) = 𝑤𝑖𝑗,†. Therefore, Ψ(𝜆) =

̂︀
Φ(𝑤𝑖𝑗,†), which does not change when 𝜆

is perturbed in the direction 𝑧𝑖𝑗.

The necessary and sufficient condition for the invariance of 𝑤*(𝜆) under relative pertur-

bations in the sizes of any two populations in Proposition 2.3 is a direct consequence of the

monotonicity of Ψ(𝜆) and the uniqueness of 𝑤*(𝜆). This result is useful in determining the

relative ordering of population costs in equilibrium, as discussed next.

2.5.2 Relative Value of Information

We now study the difference between the equilibrium costs of any two populations under

perturbations in their relative sizes. For any two populations 𝑖, 𝑗 ∈ 𝐼 and size vector 𝜆,

we define the relative value of information, denoted 𝑉 𝑖𝑗*(𝜆), as the expected travel cost

saving that a traveler in population 𝑖 enjoys over a traveler in population 𝑗, i.e. 𝑉 𝑖𝑗*(𝜆)
Δ
=

𝐶𝑗*(𝜆) − 𝐶𝑖*(𝜆). Equivalently, 𝑉 𝑖𝑗*(𝜆) is the expected reduction in the cost faced by an
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individual traveler when her subscription unilaterally changes from platform 𝑖 to platform

𝑗, while the platform subscriptions of all other travelers remain unchanged. We say that the

information platform 𝑖 is relatively more valuable (resp. less valuable) than platform 𝑗 if

𝑉 𝑖𝑗*(𝜆) > 0 (resp. 𝑉 𝑖𝑗*(𝜆) < 0). Similarly, if 𝑉 𝑖𝑗*(𝜆) = 0, platform 𝑖 is said to be as valuable

as platform 𝑗.

It turns out that, for any given size vector 𝜆, 𝑉 𝑖𝑗*(𝜆) is closely related to the sensitivity of

Ψ(𝜆) (i.e. the value of the potential function in equilibrium) with respect to the perturbation

in the relative sizes of populations 𝑖 and 𝑗.

Lemma 2.5. The value of the weighted potential function in equilibrium, Ψ(𝜆) as defined in

(2.24), is convex and directionally differentiable in 𝜆. For any 𝑖, 𝑗 ∈ 𝐼,

𝑉 𝑖𝑗*(𝜆) = − 1

𝐷
∇𝑧𝑖𝑗Ψ(𝜆), (2.29)

where ∇𝑧𝑖𝑗Ψ(𝜆)
Δ
= lim𝜖→0+

Ψ(𝜆+𝜖𝑧𝑖𝑗)−Ψ(𝜆)
𝜖

is the derivative of Ψ(𝜆) in the direction 𝑧𝑖𝑗.

The proof involves applying the results on sensitivity analysis of convex optimization

problems, as summarized in Lemmas A.3 and A.4; for a detailed background on these tech-

nical results, we refer the reader to Fiacco [2009], Fiacco and Kyparisis [1986], and Rockafellar

[1984].

Our next theorem provides the qualitative structure of relative value of information in

the three regimes (2.27a)-(2.27c).

Theorem 2.3. For any two populations 𝑖, 𝑗 ∈ 𝐼, and any 𝜆−𝑖𝑗 ∈ Λ−𝑖𝑗, the relative value of

information 𝑉 𝑖𝑗*(𝜆) is positive in regime Λ𝑖𝑗1 , zero in regime Λ𝑖𝑗2 , and negative in regime Λ𝑖𝑗3 .

Furthermore, 𝑉 𝑖𝑗*(𝜆) is non-increasing in the direction 𝑧𝑖𝑗.

Theorem 2.3 shows that one population has advantage over another population if and

only if it is the minor population of the two (see Fig. 2-5). For the two side regimes,

information impacts the entire demand of the minor population. As a result, in equilibrium,

the travelers in the minor population do not choose the routes with a high expected cost based

on the signal they receive from their platform; however, the travelers in the other population

may still choose these routes. On the other hand, in the middle regime, neither population
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has an advantage over the other one because the information only partially impacts each

population’s demand. Consequently, both populations route their demand in a manner such

that they face identical cost in equilibrium.

Figure 2-5: Relative value of information between population 𝑖 and 𝑗 in the three regimes

Additionally, the travel cost saving that population 𝑖 travelers enjoy over the population

𝑗 is the highest when population 𝑖 has few travelers. Intuitively, in each side regime, the

travelers in the non-minor population face a higher congestion externality relative to the

travelers in the minor population, because all travelers within a population are routed ac-

cording to the same strategy. Naturally, the difference in the equilibrium costs due to the

imbalance in congestion externality decreases as the size of the minor population increases,

and reduces to zero in the middle regime.

Furthermore, given any two populations 𝑖, 𝑗 ∈ 𝐼 and the sizes of all other populations 𝜆−𝑖𝑗

being fixed, Theorem 2.3 provides a computational approach to compare the equilibrium costs

of populations 𝑖 and 𝑗 for the full range of 𝜆𝑖 ∈ (0, 1− |𝜆−𝑖𝑗|) without explicit computation

of equilibrium set or equilibrium route flows for each 𝜆𝑖. This approach can be summarized

as follows: (i) Solve (OPT-𝐹 𝑖𝑗) to obtain an optimal solution 𝑓 𝑖𝑗,†; (ii) Compute 𝑤𝑖𝑗,† by

plugging 𝑓 𝑖𝑗,† into (2.7); (iii) Obtain 𝜆𝑖 and �̄�𝑖 by solving (2.26); and (iv) Find the relative

ordering of equilibrium costs of population 𝑖 and 𝑗 by checking which of the three possible

regimes the size vector 𝜆 belongs to.

Finally, we can specialize Theorem 2.3 to analyze situations when a population does

not have an access to a platform, or chooses not to use it at all. Formally, we say that a

population 𝑗 ∈ 𝐼 is uninformed if its type is independent with the network state and other

populations’ types, i.e. Pr(𝑡𝑗|𝑠, 𝑡−𝑗) = Pr(𝑡𝑗) for any 𝑡−𝑗 ∈ 𝑇−𝑗, any 𝑡𝑗 ∈ 𝑇 𝑗, and any 𝑠 ∈ 𝑆.
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Following (2.5), the uninformed population 𝑗’s interim belief can be written as follows:

𝛽𝑗(𝑠, 𝑡−𝑗|𝑡𝑗) (2.5)
=

𝜋(𝑠, 𝑡𝑗, 𝑡−𝑗)

𝑃𝑟(𝑡𝑗)
=
𝑃𝑟(𝑡𝑗|𝑠, 𝑡−𝑗) · 𝑃𝑟(𝑠, 𝑡−𝑗)

𝑃𝑟(𝑡𝑗)
= 𝑃𝑟(𝑠, 𝑡−𝑗) =

∑︁
𝑡𝑗∈𝑇 𝑗

𝜋(𝑠, 𝑡−𝑗, 𝑡𝑗),

(2.30)

That is, the interim belief 𝛽𝑗(𝑠, 𝑡−𝑗|𝑡𝑗) is identical for any signal 𝑡𝑗 ∈ 𝑇 𝑗 received by popula-

tion 𝑗, and is equal to the marginal probability of (𝑠, 𝑡−𝑗) calculated from the common prior

𝜋. Therefore, the uninformed population has no further information besides the common

knowledge. We show that the equilibrium cost of the uninformed travelers is no less than

the cost of any other population.

Proposition 2.4. Consider the game Γ(𝜆) in which population 𝑗 is uninformed. Then, for

any size vector 𝜆, the equilibrium cost of population 𝑗’s travelers 𝐶𝑗*(𝜆) ≥ 𝐶𝑖*(𝜆), where the

population 𝑖 is any other population (i.e. 𝑖 ∈ 𝐼 ∖ {𝑗}).

Indeed, if population 𝑗 is uninformed, we can argue that its equilibrium routing strategy

𝑞𝑗*(𝑡𝑗) must be identical for any 𝑡𝑗 ∈ 𝑇 𝑗. Consequently, from (2.18), the impact of informa-

tion metric for the population 𝑗 is ̂︀𝐽 𝑗(𝑞𝑗*) = 0, and perturbing the relative sizes of population

𝑗 and any other population 𝑖 ∈ 𝐼 ∖ {𝑗} never results in a regime in which population 𝑗 is

the minor population. Applying Theorem 2.3, we can conclude that the equilibrium cost of

population 𝑗 cannot be less than that of any other population.

We illustrate the results on equilibrium structure and relative value of information in the

following two examples:

Example 2.1. We consider a game with two populations on two parallel routes (𝑟1 and

𝑟2) with following parameters: 𝜃(𝑎) = 0.2, 𝐷 = 10, 𝑐n1 (𝑓1) = 𝑓1 + 15, 𝑐a1(𝑓1) = 3𝑓1 + 15,

𝑐2(𝑓2) = 2𝑓2+20. Types 𝑡1 and 𝑡2 are independent conditional on the state, i.e. Pr(𝑡1, 𝑡2|𝑠) =

Pr(𝑡1|𝑠) · Pr(𝑡2|𝑠). Population 1 has 0.8 chance of getting accurate information of the state,

and population 2 has 0.6 chance, i.e. Pr(𝑡1 = 𝑠|𝑠) = 0.8, and Pr(𝑡2 = 𝑠|𝑠) = 0.6. The value

of the potential function in equilibrium, equilibrium route flows and population costs are

shown in Fig. 2-6.

In this example, population 1 travelers receive more accurate state information than
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population 2 travelers. However, population 1 faces a higher cost than population 2 when its

size is sufficiently large, i.e., when 𝜆 is in regime Λ12
3 ; see Figure 2-6c. This is due to the fact

that in regime Λ12
3 , the population 1’s advantage of receiving more accurate information is

dominated by the congestion externality it faces due to its relatively large size, in comparison

to population 2.
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Figure 2-6: Effects of varying population sizes for Example 2.1: (a) Weighted potential
function in equilibrium, (b) Equilibrium route flows on 𝑟1, and (c) Equilibrium population
costs.

Example 2.2. Let us now consider the game with two populations on two parallel routes

(𝑟1 and 𝑟2) with the same cost functions, prior distribution 𝜃 and total demand 𝐷 as that

in Example 2.1. Both populations 1 and 2 have 0.75 chance of getting accurate information

about the state, i.e. Pr(𝑡𝑖 = 𝑠|𝑠) = 0.75 for any 𝑖 ∈ 𝐼 and any 𝑠 ∈ 𝑆. In Fig. 2-7, we

illustrate the equilibrium population costs in two cases: (i) Types 𝑡1 and 𝑡2 are perfectly

correlated, i.e. 𝑡1 = 𝑡2; (ii) Types 𝑡1 and 𝑡2 are independent conditional on the state, i.e.

Pr(𝑡1, 𝑡2|𝑠) = Pr(𝑡1|𝑠) · Pr(𝑡2|𝑠).

This example illustrates how the correlation among received signals (or lack thereof)

affects the equilibrium structure. Note that case (i) can be viewed as a single-population

game. This is because when 𝑡1 and 𝑡2 are perfectly correlated, there is no information

asymmetry among travelers. Thus, 𝜆1 has no impact on the equilibrium outcome, and

𝜆1 = 0, �̄�1 = 1 (Fig. 2-7a). However, case (ii) is not equivalent to a single-population game.

Although both populations have identical chance of getting accurate information about the

state, there is information heterogeneity among travelers of the two populations, i.e. travelers

in one population do not know the signals received by travelers in the other population, and
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thus the equilibrium outcome changes with the size 𝜆1 (Fig. 2-7b).
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Figure 2-7: Effects of varying population sizes on equilibrium population costs for Example
2.2: (a) Perfectly correlated types; (b) Conditional independent types.

We include two additional examples in Appendix A.2. Example A.1 shows that the

regime Λ12
3 can be empty even when population 2 is not an uninformed population. Thus,

an uninformed population 𝑗 is sufficient but not necessary for �̄�𝑖 = 1 − |𝜆−𝑖𝑗|. In Example

A.2, we present a situation when only single regime exists in equilibrium.

Our results so far focus on how equilibrium properties and population costs change with

the directional perturbation of the size vector 𝜆. We emphasize that given any 𝑖, 𝑗 ∈ 𝐼, the

thresholds 𝜆𝑖 and �̄�𝑖, as defined in (2.26), depend on the sizes of the remaining populations

𝜆−𝑖𝑗, and the populations’ interim beliefs (𝛽𝑖)𝑖∈𝐼 derived from the common prior 𝜋. Impor-

tantly, the qualitative structure of the equilibrium regimes resulting from perturbations in

the sizes of any two populations is applicable for any size vector 𝜆 and any common prior.

The main property that drives these results is that the equilibrium regimes only depend on

whether or not the impact of information on each population is fully attained.

2.6 General Properties of Equilibrium Outcome

In this section, we first extend our approach of pairwise comparison of populations to study

how the equilibrium outcome depends on population sizes in general. Then, we analyze the

adoption rates of information platforms in situations where travelers can choose platform

subscription.
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2.6.1 Size-Independence of Edge Load Vector

Our analysis in Section 2.5 showed that if perturbations in the relative sizes of any two

populations 𝑖, 𝑗 ∈ 𝐼 induce a middle regime Λ𝑖𝑗2 , then the equilibrium outcome in this regime

is independent of the sizes of the perturbed populations 𝑖 and 𝑗. A natural question to ask

is whether this result can be generalized; i.e., can we find a set of size vectors for which

the equilibrium edge load does not depend on the size of any population? The answer is

affirmative.

We now explicitly characterize the set of size vectors, denoted Λ†, for which the edge

load is size-independent. Since (OPT-𝐹 ) is a convex optimization problem, and (IIC) are

the only size-dependent constraints, we can equivalently view Λ† as the set of size vectors

for which all the IICs can be dropped from (OPT-𝐹 ) without changing its optimal value.

Hence, for any 𝜆 ∈ Λ†, the optimal value of (OPT-𝐹 ) is identical to that of the following

convex optimization problem:

min ̂︀Φ(𝑓), 𝑠.𝑡. (2.17a), (2.17b) and (2.17c). (2.31)

Let us denote the optimal solution set of (2.31) as 𝐹 †. Analogous to Theorem 2.1, one can

argue that any optimal solution 𝑓 † ∈ 𝐹 † induces a unique edge load 𝑤†, obtained from (2.7).

Thus, 𝐹 † can be written as the convex polytope:

𝐹 † =

⎧⎨⎩𝑓
⃒⃒⃒⃒
⃒⃒ 𝑓 satisfies (2.17a), (2.17b), (2.17c),

and
∑︀

𝑟∋𝑒 𝑓𝑟(𝑡) = 𝑤†
𝑒(𝑡), ∀𝑒 ∈ 𝐸, ∀𝑡 ∈ 𝑇

⎫⎬⎭ . (2.32)

Furthermore, since any route flow in the set 𝐹 † satisfies the constraints (2.17a)-(2.17c) –

but not necessarily (IIC) constraints – and also attains the optimal value of (OPT-𝐹 ), we

must have that for any 𝜆 ∈ Λ†, 𝐹 *(𝜆) ⊆ 𝐹 †. Therefore, for each 𝜆 ∈ Λ†, there must exist

a 𝑓 † ∈ 𝐹 † that is an equilibrium route flow, i.e. at least one 𝑓 † ∈ 𝐹 † satisfies the (IIC)

constraints corresponding to 𝜆:

Λ† Δ
=

⎧⎨⎩𝜆
⃒⃒⃒⃒
⃒⃒
∑︀

𝑖∈𝐼 𝜆
𝑖 = 1; 𝜆𝑖 ≥ 0, ∀𝑖 ∈ 𝐼;

∃𝑓 † ∈ 𝐹 † s.t. ̂︀𝐽 𝑖(𝑓 †) ≤ 𝜆𝑖𝐷, ∀𝑖 ∈ 𝐼

⎫⎬⎭ (2.33)
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Figure 2-8: Choice of information platforms

The following proposition shows the properties of equilibrium edge load and the value of

potential function in the set Λ†:

Proposition 2.5. The set Λ† is convex, and attains the minimum of Ψ(𝜆), i.e. Λ† =

argmin𝜆Ψ(𝜆). The equilibrium edge load vector 𝑤*(𝜆) is size-independent, and is equal to

𝑤† if and only if 𝜆 ∈ Λ†.

This result shows that some of the properties of Ψ(𝜆) and the change of equilibrium edge

load vector under pairwise perturbation (Proposition 2.3) also hold for the more general case

of perturbation in sizes of multiple populations.

2.6.2 Adoption Rates under Choice of Information Platforms

Our analysis so far has focused on the equilibrium properties with fixed population sizes.

We now extend our results on the relative value of information (Section 2.5) and the size

independence of the equilibrium edge load vector (Section 2.6.1) to analyze travelers’ choice

of information subscription when they can choose to subscribe to any information platform

in the set 𝐼.

We model travelers’ choice of information platforms and the choice of routes as a two-stage

game (Fig. 2-8): In the first stage, travelers choose to subscribe to one information platform

from the set 𝐼. The induced size vector is 𝜆 = (𝜆𝑖)𝑖∈𝐼 , where 𝜆𝑖 is the fraction of travelers

who choose platform 𝑖. In the second stage, travelers play the Bayesian routing game Γ(𝜆).

Note that the size vector 𝜆 here is determined by the travelers’ choices of platforms in the

first stage, as opposed to being a parameter.

In equilibrium, a traveler who chooses platform 𝑖 experiences the expected cost 𝐶𝑖*(𝜆).

The travelers has no ex-ante incentive to unilaterally change her platform subscription if

and only if 𝐶𝑖*(𝜆) is the lowest across all 𝑖 ∈ 𝐼. Therefore, no traveler has the incentive to
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change her platform subscription if and only if:

𝜆𝑖 > 0 ⇒ 𝐶𝑖*(𝜆) = min
𝑗∈𝐼

𝐶𝑗*(𝜆), ∀𝑖 ∈ 𝐼. (2.34)

Such population size vector 𝜆 can be viewed as the vector of equilibrium adoption rates, one

for each platform. For any size vector that satisfies (2.34), all travelers experience identical

expected costs, and no traveler has the incentive to change her platform subscriptions.

Our next theorem shows that all size vectors 𝜆 ∈ Λ† are equilibrium adoption rates of

information platforms.

Theorem 2.4. The set of equilibrium adoption rates under the choice of information plat-

form is Λ†.

Note that the set Λ† is not a singleton set in general. Recall from Example 2.1, the set Λ† is

the range Λ12
2 , in which both platforms are chosen. Therefore, the equilibrium adoption rate

of each platform is not unique. However, since Λ† is a convex set, the equilibrium adoption

rate of each platform 𝑖 ∈ 𝐼 is in a continuous range, denoted [𝜆𝑖†𝑚𝑖𝑛, 𝜆
𝑖†
𝑚𝑎𝑥], where 𝜆𝑖†𝑚𝑖𝑛 =

min𝜆†∈Λ† 𝜆𝑖† (resp. 𝜆𝑖†𝑚𝑎𝑥 = 𝑚𝑎𝑥𝜆†∈Λ†𝜆𝑖†) is the minimum (resp. maximum) equilibrium

adoption rate. Furthermore, since the set Λ† is determined by the heterogeneous information

environment created by all information platforms, the equilibrium adoption rate of each

platform 𝑖 is not only determined by the distribution of its own signal, but is also related

to the distribution of other platform signals, and the possible correlations between signals

of different platforms.

Finally, Theorem 2.4 can be used to assess whether or not a set of information platforms

can induce a heterogeneous information environment. For any 𝜆† ∈ Λ†, the support set of

𝜆†, denoted 𝐼(𝜆†)
Δ
= {𝑖 ∈ 𝐼|𝜆𝑖† > 0}, represents the set of platforms chosen by travelers.

In particular, if |𝐼(𝜆†)| = 1, then all travelers choose to subscribe to a single platform even

though multiple platforms are available. Thus, the resulting information environment is

homogeneous; see Example A.2, where 𝜆1 = 1 and 𝜆2 = 0 is the only equilibrium adoption

rate. However, if |𝐼(𝜆†)| > 1, then more than one platforms are chosen, i.e., the heterogeneous

information environment is sustained. Moreover, if platform 𝑖 /∈ 𝐼(𝜆†) for any 𝜆† ∈ Λ†, then

this platform is redundant in that it is not chosen in equilibrium even if it is available to
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travelers.

2.7 Discussion

In this chapter, we study the equilibrium route choices and costs in a heterogeneous in-

formation environment, in which each population receives a private signal from their traffic

information platforms. Each population maintains a belief about the unknown network state

and about the signals received by other traveler populations. We focus on analyzing the equi-

librium structure under perturbations of population sizes, the relative value of information

between any pair of populations, as well as the equilibrium adoption rates when travelers

can choose their platform subscription.

The main ideas behind our analysis approach are: (i) Identification of qualitatively dis-

tinct equilibrium regimes based on whether or not the impact of information is fully attained;

(ii) Sensitivity analysis of the weighted potential function in equilibrium with respect to the

population size vector; and (iii) Characterization of adoption rates under the choice of in-

formation platforms. Our approach can be easily extended to games where the edge costs

are non-decreasing (rather than strictly increasing) in the edge loads. In particular, such a

game still admits a weighted potential function, although now the essential uniqueness only

applies to the equilibrium edge costs, rather than the loads. The qualitative properties of

equilibrium structure, results about the relative ordering of population costs, and adoption

rates can be extended as well. However, the characterization of regime thresholds in this

case is more complicated from a computational viewpoint due to the non-uniqueness of edge

load vector.

One future research question of interest is to analyze how the travelers’ expected cost and

platform adoption rates change when one or more information platforms make technological

changes to their service (for example, improving accuracy levels), or when a new informa-

tion platform is introduced. Addressing this problem would involve applying our results

to evaluate the value of information for each traveler population as well as the adoption

rates under the new information environment, and comparing them with that of the current

environment.
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Chapter 3

Information Design in Routing Games

3.1 Introduction

In Chapter 2, we developed a new game-theoretic approach to analyze the impact of hetero-

geneous information environment on travelers’ self-interested route choices and congestion

costs of the traffic network. This chapter extends Chapter 2 for designing an “optimal” infor-

mation structure that can be used to regulate traffic flows in a network with uncertain state.

We adopt the viewpoint of Bayesian persuasion and focus on identifying the distribution

of information signals (conditional on the state) to induce an equilibrium outcome that is

close to a target flow pattern which reflects the preference of a central authority (information

designer).

Practically, our setup is motivated by several concerns raised by city authorities and

residents of areas that have witnessed significant increase in traffic congestion in their neigh-

borhood streets due to route recommendations provided by the navigation apps (Bliss [2015],

Bagby [2016], and Foderaro [2017]). In some cases, these routes pass through school areas,

evacuation zones, construction sites, or active incidents. Increased traffic through these re-

gions naturally raises noise and safety concerns. In other cases, recommended routes are

often comprised of secondary streets that were not designed for heavy and prolonged rush

hour traffic. As a result, these streets can witness deterioration in infrastructure condition,

and further decrease in their traffic carrying capacity.

To address these concerns, cities and transportation agencies – henceforth jointly referred
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as central authority – are now playing an active role in communicating their preferred limits

on the usage of neighborhood streets to traffic information providers (Geha [2016], and Bar-

ragan [2015]). This raises the question: How can the central authority reduce traffic spillover

(average flow exceeding a specific threshold) on certain routes by designing the information

environment faced by travelers?

We present a stylized model to address this question. Our model captures an important

(and practically relevant) feature of traffic information design: not all travelers can or choose

to receive the signal sent by the central authority. For example, some travelers may not have

access to or choose not to use the information signal. We capture this feature in a Bayesian

routing game, where the heterogeneous information environment is determined not only by

the the signal sent by the central authority, but also due to the amount of travelers with

access to this signal. This game allows us to formulate and solve the information design

problem, in which the distribution of information signal is chosen by the central authority

to regulate the induced equilibrium traffic flows.

We consider the two-route transportation network presented in Sec. 2.2, where one route

is prone to a random capacity-reducing event (incident), and the other is not. Incident state

results in increased travel cost on the first route. The cost of each route is an increasing

(affine) function of the flow on that route. The central authority (information designer)

knows the true state (i.e., whether or not the incident happened), and chooses an information

structure that is used to send the signal to a fraction of travelers. Travelers are strategic

in that they choose routes with the minimum expected cost based on their information of

the state. The induced route flow is a Bayesian Wardrop equilibrium corresponding to the

information structure chosen by central authority. The objective of the central authority is

to minimize the average spillover (in Bayesian Wardrop equilibrium) on a pre-selected route

beyond a threshold flow (Fig. 3-1).

Our work contributes to the growing literature of information design. Previous work

includes optimal information design that sends public signals to all travelers in order to

minimize the overall traffic congestion (Das et al. [2017] and Tavafoghi and Teneketzis [2017]),

and private information design that incentives information sharing in repeated routing games

(Meigs et al. [2020]). The ideas used in our approach are built on the broader literature
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Figure 3-1: Information design in transportation networks with uncertain state.

on Bayesian persuasion; see Kamenica [2018] for a comprehensive review. These literature

studied Bayesian persuasion with multiple receivers (Bergemann and Morris [2016], Mathevet

et al. [2017]), and persuasion with private information (Kolotilin et al. [2017]).

Our information design model has two distinguishing features: Firstly, the objective of

the central authority in our setting is to minimize the average traffic spillover on chosen

route, instead of minimizing the average travel time; Secondly, travelers have the flexibility

to choose if they want to receive the public signals sent by the authority. Their choices of

information induce the heterogeneous information environment, and the equilibrium route

flows are evaluated in Bayesian Wardrop equilibrium following Chapter 2. In this chapter,

we characterize the optimal information structure for any fraction of travelers who receive

the signal. We show that our optimal information design can achieve the minimum traffic

spillover given travelers’ equilibrium choice of information. Under this optimal information

structure, all travelers (the ones who choose to receive the signal and the ones who do not)

experience the same expected travel time costs in equilibrium.

Rest of the chapter is organized as follows: In Sec. 3.2, we present the information

design problem. Sec. 3.3 characterizes the equilibrium flows under any information structure

designed by the traffic authority. Sec. 3.4 presents the optimal information structure for any

given threshold and any fraction of travelers with access to information signal, and Sec. 3.5

analyzes the impact of optimal information design on travelers’ costs and travelers’ choices

of information.
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3.2 Information Design Problem

We consider the same two route network as in Sec. 2.2. A single origin-destination pair

is connected by two parallel routes 𝑅 = {𝑟1, 𝑟2}, where the uncertain state is 𝑆 = {a,n}

and the cost function of each route is given by (2.1). The state is realized from a prior

𝜃 = (𝜃(a), 𝜃(n)). A set of non-atomic travelers with total demand of 𝐷 make route choices

in the network, and 𝐷 satisfies (2.2).

We introduce a central authority (city or transportation agency) who has complete knowl-

edge of the realized network state. This authority is an “information designer” in that she

has the ability to shape the travelers’ information about the state by way of sending them

a (noisy) signal 𝑡1 ∈ 𝑇 = {a,n} of the state. For example, in the context of transporta-

tion systems, the authority can influence travelers’ knowledge of route conditions through

advanced traveler information platforms.

Furthermore, in practice, it is reasonable to expect that some travelers may not have

access to or choose not to use the signal sent by the authority. We refer the mass of travelers

who receive the signals as population 1, and the remaining travelers who do not have access

to signals as population 2. In our problem of optimal information design (Sec. 3.4), the

fraction of population 1, denoted 𝜆1 ∈ [0, 1], is taken as an exogenous parameter.

The authority chooses an information structure 𝑝 = (𝑝(𝑡1|𝑠))𝑡1∈𝑇 1,𝑠∈𝑆, where 𝑝(𝑡1|𝑠) is the

probability of sending signal 𝑡1 when the state is 𝑠. Let 𝒫 be the set of feasible information

structures satisfying the following constraints:

𝑝(𝑡1|𝑠) ≥ 0, ∀𝑡1 ∈ 𝑇 1, and ∀𝑠 ∈ 𝑆, (3.1a)∑︁
𝑡1∈𝑇 1

𝑝(𝑡1|𝑠) = 1, ∀𝑠 ∈ 𝑆, (3.1b)

𝑝(n|n) ≥ 𝑝(n|a), (3.1c)

Constraints (3.1a) - (3.1b) ensure that (𝑝(a|𝑠), 𝑝(n|𝑠)) is a feasible probability vector for

any 𝑠 ∈ 𝑆. Constraint (3.1c) ensures that the signal n is more likely to be sent in state n

than in state a. Constraints (3.1b) and (3.1c) also imply that signal a is more likely to be

sent in state a than in state n, i.e. 𝑝(a|a) ≥ 𝑝(a|n). We use (3.1c) to avoid duplication
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of equivalent information structures. Note that one information structure becomes another

equivalent structure by switching the signals a and n.

The signal sent by the authority creates a heterogeneous information environment for

travelers to make routing decisions. Following Sec. 2.3, we model travelers’ routing decisions

under the heterogeneous information environment as a Bayesian routing game. The common

prior of the game is 𝜋 = (𝜋(𝑠, 𝑡1))𝑠∈𝑆,𝑡1∈𝑇 , where 𝜋(𝑠, 𝑡1) = 𝜃(𝑠)𝑝(𝑡1|𝑠). Additionally, the

marginal probability of each signal 𝑡1 ∈ 𝑇 1 is 𝜓(𝑡1) =
∑︀

𝑠∈𝑆 𝜃(𝑠)𝑝(𝑡
1|𝑠).

The Bayesian equilibrium routing strategy profile defined in Definition 2.1 is 𝑞* = (𝑞1*𝑟 (a),

𝑞1*𝑟 (n), 𝑞2*𝑟 )𝑟∈𝑅, which is dependent on the information structure 𝑝 designed by the authority

and the population size 𝜆. Then, 𝑓 * = (𝑓 *
𝑟 (𝑡

1))𝑟∈𝑅,𝑡1∈𝑇 is the induced route flow vector,

where 𝑓 *
𝑟 (𝑡

1) = 𝑞1*𝑟 (𝑡1) + 𝑞2*𝑟 .

The goal of the central authority is to reduce the average amount of traffic that exceeds

a given threshold (traffic spillover) on one of the two routes. The authority may select the

route(s) and threshold(s) for regulating traffic flows based on factors such as desirable or

enforced capacity limits and/or maximum admissible flow through various routes, to limit

direct impact (e.g., congestion) or indirect impact (e.g., noise or safety concerns) of traffic

flow. For ease of exposition, we assume that the authority chooses an information structure

that minimizes the average spillover on 𝑟2 given a fixed threshold 𝜏 on the route flow.1

Therefore, the design of optimal information structure 𝑝* can be formulated as the following

optimization problem:

min
𝑝

𝐿(𝑝, 𝑓 *)
Δ
=
∑︁
𝑡1∈𝑇 1

𝜓(𝑡1)(𝑓 *
2 (𝑡

1)− 𝜏)+

𝑠.𝑡. 𝑝 satisfies (3.1),

𝑓 * is an equilibrium route flow vector in corresponding to 𝑝 and 𝜆.

(OPT-Info)

where (𝑓 *
2 (𝑡

1)− 𝜏)+ = max{𝑓 *
2 (𝑡

1)− 𝜏, 0} is the amount of traffic that exceeds the threshold

𝜏 on 𝑟2 when the signal is 𝑡1.

1Our subsequent analysis can also be applied to address the spillover on 𝑟1 and/or arrive at a trade-off
between desirable flows on 𝑟1 and 𝑟2.
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3.3 Equilibrium Flows

To solve for the optimal information structure in (OPT-Info), we first parametrically char-

acterizes the unique equilibrium route flow vector 𝑓 * for any information structure 𝑝 and

any population size 𝜆1 ∈ [0, 1]. This result follows from our approach of Bayesian Wardrop

equilibrium characterization developed in Chapter 2. We find that given any information

structure 𝑝, the properties of 𝑓 * depends on the relative size between 𝜆1 and the value of a

function 𝑔 : 𝑝→ [0, 1] defined as follows:

𝑔(𝑝)
Δ
=

𝛼2𝐷 + 𝑏2 − 𝑏1
(𝛼1(𝛽(n)) + 𝛼2)𝐷

− 𝛼2𝐷 + 𝑏2 − 𝑏1
(𝛼1(𝛽(a)) + 𝛼2)𝐷

, (3.2)

where 𝛼1(𝛽(𝑡
1)) = 𝛼a

1𝛽(a|𝑡1) + 𝛼n
1𝛽(n|𝑡1), and 𝛽(𝑠|𝑡1) is the posterior belief of state 𝑠 when

receiving signal 𝑡1. This posterior belief is obtained from the common prior 𝜋 using Bayes’

rule:

𝛽(𝑠|𝑡1) = 𝜃(𝑠)𝑝(𝑡1|𝑠)
𝜃(a)𝑝(𝑡1|a) + 𝜃(n)𝑝(𝑡1|n)

. (3.3)

Since 𝑝 satisfies (3.1c), we can check that 𝛽(a|a) ≥ 𝛽(a|n) and 𝛽(n|n) ≥ 𝛽(n|a), i.e. the

belief of state 𝑠 when receiving signal 𝑡1 = 𝑠 is higher than that with the other signal. Since

we consider two routes, and the central authority aims at minimizing the traffic spillover on

𝑟2, we only present the equilibrium route flow on 𝑟2. The flow on 𝑟1 is 𝑓 *
1 (𝑡

1) = 𝐷 − 𝑓 *
2 (𝑡

1)

for any 𝑡1 ∈ 𝑇 1.

Proposition 3.1. For any 𝑝 and 𝜆1, the equilibrium route flow is unique and satisfies the

following properties:

- [𝑔(𝑝) ≥ 𝜆1.] Population 1 exclusively takes 𝑟1 when they receive signal n, and 𝑟2 with

signal a; population 2 splits on the two routes. The flow on 𝑟2 is:

𝑓 *
2 (n) = 𝐷 − 𝛼2𝐷 + 𝑏2 − 𝑏1 + 𝜆1𝐷𝜓(a) (𝛼1(𝛽(a)) + 𝛼2)

𝛼1(𝜃) + 𝛼2

(3.4a)

𝑓 *
2 (a) = 𝑓 *

2 (n) + 𝜆1𝐷, (3.4b)

where 𝛼1(𝜃) = 𝜃(a)𝛼a
1 + 𝜃(n)𝛼n

1 .
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- [𝑔(𝑝) < 𝜆1.] Both populations split on the two routes. The flow on 𝑟2 is:

𝑓 *
2 (n) = 𝐷 − 𝛼2𝐷 + 𝑏2 − 𝑏1

𝛼1(𝛽(n)) + 𝛼2

, (3.5a)

𝑓 *
2 (a) = 𝐷 − 𝛼2𝐷 + 𝑏2 − 𝑏1

𝛼1(𝛽(a)) + 𝛼2

. (3.5b)

The proof of this result follows from the discussion of the two route example in Sec. 2.2,

and Theorems 2.1 – 2.2 in Chapter 2. From Proposition 3.1, we know that for any population

size 𝜆1, the set of feasible information structures can be partitioned into two sets as follows:

𝒫1 Δ
=
{︀
𝒫|𝑔(𝑝) ≥ 𝜆1

}︀
, 𝒫2 Δ

=
{︀
𝒫|𝑔(𝑝) < 𝜆1

}︀
, (3.6)

and the impact of 𝑝 on 𝑓 * for the case when 𝑝 ∈ 𝒫1 is distinct from 𝑝 ∈ 𝒫2:

For 𝑝 ∈ 𝒫1, all travelers in population 1 deviate from choosing 𝑟1 to 𝑟2 when the received

signal changes from n to a. From (3.4), the change of flow on 𝑟2 induced by the change

of signal is 𝑓 *
2 (a) − 𝑓 *

2 (n) = 𝜆1𝐷, which does not depend on the information structure 𝑝.

Moreover, as 𝜆1 increases, 𝑓 *
2 (n) decreases and 𝑓 *

2 (a) increases.

For 𝑝 ∈ 𝒫2, both populations split on the two routes. From (3.5), the change of flow

on 𝑟2 induced by the change of signal is 𝑓 *
2 (a) − 𝑓 *

2 (n) = 𝑔(𝑝). The value of 𝑔(𝑝) in (3.2)

increases in 𝛽(a|a) − 𝛽(a|n), which evaluates the relative difference between the beliefs of

state a given the two signals.

Furthermore, for any 𝑝 ∈ 𝒫2, the equilibrium route flows in (3.5) do not change with 𝜆1.

This implies that any equilibrium outcome when only 𝜆1 fraction of travelers receive signal

𝑡1 according to 𝑝 ∈ 𝒫2 is equivalent to the case where all travelers receive the signal. This

property will be used in Sec. 3.4 for identifying an interval of 𝜆1, for which the optimal

information structure and the equilibrium outcome do not depend on 𝜆1.

Finally, note that the information structure 𝑝 affects the value of 𝑔(𝑝) in (3.2), and

the equilibrium route flows in (3.4) - (3.5) through the posterior beliefs and the marginal

probability of signals defined as follows:

𝛽
Δ
= (𝛽(a), 𝛽(n)), 𝜓

Δ
= (𝜓(a), 𝜓(n)),
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Then, we can re-write 𝐿(𝑝, 𝑓 *) in (OPT-Info) as a function of (𝛽, 𝜓), denoted �̄�(𝛽, 𝜓), and

𝑔(𝑝) as a a function of 𝛽, denoted 𝑔(𝛽). The characterization of how the equilibrium route

flow depends on (𝛽, 𝜓) and the fraction 𝜆1 is crucial for our approach for solving the optimal

information design problem in the next section.

3.4 Optimal Information Design

In this section, we present the optimal information structure 𝑝*, and analyze how 𝑝* changes

with the fraction 𝜆1 and the flow threshold 𝜏 .

Due to the space limit, we only present the optimal information structure for cases where

the threshold 𝜏 satisfies the following constraint:

𝐷 − 𝛼2𝐷 + 𝑏2 − 𝑏1
𝛼n
1 + 𝛼2

≤ 𝜏 ≤ 𝐷 − 𝛼2𝐷 + 𝑏2 − 𝑏1
𝛼a
1 + 𝛼2

. (3.7)

The lower (resp. upper) bound of 𝜏 is the equilibrium route flow on 𝑟2 when all travelers

have complete information of the state n (resp. a). Therefore, (3.7) means that in complete

information environment, the spillover is positive in state a, but zero in state n. Our solution

approach can be easily extended to the cases where 𝜏 is outside of this range.

We first obtain that if the prior probability of state a is low, then the optimal information

structure is to provide no information of the state.

Proposition 3.2. If 𝜃(a) ≤ 𝜂, where

𝜂 =
1

𝛼a
1 − 𝛼n

1

(︂
𝛼2𝐷 + 𝑏2 − 𝑏1

𝐷 − 𝜏
− 𝛼2 − 𝛼n

1

)︂
,

then the optimal information structure is to provide no information of the state, i.e. 𝑝*(𝑡1|𝑠) =

𝜓(𝑡1) for any 𝑡1 ∈ 𝑇 1 and 𝑠 ∈ 𝑆. The average traffic spillover is 𝐿(𝑝*, 𝑓 *) = 0.

From Proposition 3.1, we know that if 𝑝* does not provide state information, then 𝑔(𝑝*) =

0, and the equilibrium route flow is as follows:

𝑓 *
2 (𝑡

1) = 𝐷 − 𝛼2𝐷 + 𝑏2 − 𝑏1
𝛼1(𝜃) + 𝛼2

, ∀𝑡1 ∈ 𝑇 1. (3.8)
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The value of 𝜂 is the threshold of 𝑝 such that 𝑓 *
2 (𝑡

1) in (3.8) equals to 𝜏 . For any 𝜃(a) ≤ 𝜂,

𝑓 *
2 (𝑡

1) ≤ 𝜏 . Therefore, the objective function in (OPT-Info) is zero (attains the minimum)

when the information structure provides no information of the state. From (3.7), we know

that 𝜂 ∈ [0, 1].

For 𝜃(a) > 𝜂, based on Proposition 3.1, we can restate the optimal information design

problem (OPT-Info) as the following optimization problem:

min
𝑝

𝐿(𝑝, 𝑓 *) =
∑︁
𝑡1∈𝑇 1

𝜓(𝑡1)(𝑓 *
2 (𝑡

1)− 𝜏)+,

𝑠.𝑡.
𝑓 *
2 is in (3.4), if 𝑔(𝑝) ≥ 𝜆1,

𝑓 *
2 is in (3.5), if 𝑔(𝑝) < 𝜆1,

𝑝 satisfies (3.1),

(3.9)

where 𝑔(𝑝) is given by (3.2).

The optimization problem (3.9) is non-linear and non-convex in the information structure

𝑝. The key difficulties in solving (3.9) are: (i) the value of 𝑔(𝑝), and the equilibrium route

flows 𝑓 *
2 are nonlinear functions of (𝛽, 𝜓), which are again nonlinear functions of 𝑝; (ii)

the expressions of the equilibrium route flows are different for information structures in 𝒫1

and 𝒫2; (iii) the objective function is a piece-wise linear (instead of linear) function of the

equilibrium route flows.

We develop an approach to tackle these difficulties and solve the optimal information

structure analytically: First, we characterize the set of (𝛽, 𝜓) induced by information struc-

ture 𝑝 satisfying (3.1), which can be used to construct another optimization problem to solve

the optimal (𝛽*, 𝜓*) directly (Lemma 3.1). Second, we identify the range of 𝜆1 in which the

optimal information structure satisfies 𝑝* ∈ 𝒫1, and the equilibrium route flow is given by

(3.4) (Lemma 3.2). Third, we prove that the equilibrium flow on 𝑟2 under optimal informa-

tion structure is no less than 𝜏 ; thus 𝐿(𝑝, 𝑓 *) is equivalent to a linear function of 𝑓 * (Lemma

3.3).

Lemma 3.1. A tuple (𝛽, 𝜓) can be induced by a feasible information structure 𝑝 if and only
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if (𝛽, 𝜓) satisfies:

𝛽(a|a) · Pr(a) + 𝛽(a|n) · Pr(n) = 𝑝, (3.10a)

𝛽(a|a) ≥ 𝛽(a|n), (3.10b)

𝛽(n|a) + 𝛽(a|a) = 1, 𝛽(a|a), 𝛽(n|a) ≥ 0, (3.10c)

𝛽(n|n) + 𝛽(a|n) = 1, 𝛽(n|n), 𝛽(a|n) ≥ 0, (3.10d)

Pr(a) + Pr(n) = 1, Pr(a),Pr(n) ≥ 0. (3.10e)

The idea of the proof follows Proposition 1 in Kamenica and Gentzkow [2011].

Constraint (3.10a) ensures that 𝛽 is derived from 𝜃 and 𝑝 as in (3.3). Constraint (3.10b)

results from (3.1c) to exclude beliefs that are induced by equivalent information structures.

Constraints (3.10c) – (3.10e) ensure that 𝛽 and 𝜓 are feasible probability vectors.

Based on Lemma 3.1 and following (3.9), we can solve for the optimal (𝛽*, 𝜓*) from the

following optimization problem:

min
𝛽,𝜓

�̄�(𝛽, 𝜓) =
∑︁
𝑡1∈𝑇 1

Pr(𝑡1)(𝑓 *
2 (𝑡

1)− 𝜏)+,

𝑠.𝑡.
𝑓 *
2 is in (3.4), if 𝑔(𝛽) ≥ 𝜆1,

𝑓 *
2 is in (3.5), if 𝑔(𝛽) < 𝜆1,

(𝛽, 𝜓) satisfies (3.10),

(3.11)

where 𝑔(𝛽) is a function of 𝛽 as in (3.2). We use both (3.9) and (3.11) for designing the

optimal information structure.

Next, we identify a threshold ̃︀𝜆1 ∈ (0, 1) as follows:

̃︀𝜆1 = 1− 𝛼2𝐷 + 𝑏2 − 𝑏1
(𝛼a

1 + 𝛼2)𝐷
− 𝜏

𝐷
. (3.12)

Lemma 3.2. For any 𝜃(a) > 𝜂, and any 𝜆1 < ̃︀𝜆1, the optimal information structure 𝑝* ∈ 𝒫1,

i.e. 𝑔(𝑝*) ≥ 𝜆1, where 𝑔(𝑝*) is in (3.2). The equilibrium route flow is given by (3.4).

Furthermore, we show that given the optimal information structure, 𝑓 *
2 (𝑡

1) is no less than

the threshold 𝜏 for any 𝑡1 ∈ 𝑇 1.
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Lemma 3.3. For any 𝜃(a) > 𝜂 and any 𝜆1 ∈ [0, 1], the equilibrium route flows induced by

the optimal information structure must satisfy 𝑓 *
2 (𝑡

1) ≥ 𝜏 for any 𝑡1 ∈ 𝑇 1.

Lemma 3.3 shows that the objective function in (3.9) can be simplified as a linear function

of 𝑓 *:

𝐿(𝑝, 𝑓 *) = 𝜓a(𝑓 *
2 (a)− 𝜏) + 𝜓n(𝑓 *

2 (n)− 𝜏)

= 𝜓a𝑓 *
2 (a) + 𝜓n𝑓 *

2 (n)− 𝜏. (3.13)

We are now ready to derive the optimal information structure 𝑝*. We find that 𝑝* is

different for 𝜆1 in three regimes: Λ*
1 : 𝜆1 ∈ [0, 𝜆̃︀1); Λ*

2 : 𝜆1 ∈ [𝜆̃︀1, ̃︀𝜆1), and Λ*
3 : 𝜆 ∈ [̃︀𝜆1, 1].

The threshold 𝜆̃︀1 is given by:

𝜆̃︀1 = (𝐷 − 𝜏) (𝛼1(𝜃) + 𝛼2)− 𝛼2𝐷 − 𝑏2 + 𝑏1
𝐷𝜃(a)(𝛼a

1 + 𝛼2)
, (3.14)

and ̃︀𝜆1 is given by (3.12).2 Since 𝜏 satisfies (3.7) and 𝜃(a) > 𝜂, we can check that 0 < 𝜆̃︀1 <̃︀𝜆1 < 1. Therefore, the three regimes are well-defined intervals of 𝜆1.

Based on Proposition 3.1 and Lemmas 3.1 – 3.3, we characterize the optimal information

structure in each regime. We also present the equilibrium route flow and the average traffic

spillover in each regime.

Theorem 3.1. For any 𝜃(a) > 𝜂, in regime Λ*
1, the optimal information structure is:

𝑝*(a|n) = 0, 𝑝*(n|n) = 1, (3.15a)

𝑝*(a|a) = 1, 𝑝*(n|a) = 0. (3.15b)

The equilibrium route flow is:

𝑓 *
2 (n) = 𝐷 − 𝛼2𝐷 + 𝑏2 − 𝑏1 + 𝜆1𝐷𝜃(a)(𝛼a

1 + 𝛼2)

𝛼1(𝜃) + 𝛼2

2The thresholds 𝜆̃︀1, ̃︀𝜆1 and the regimes Λ*
1, Λ*

2, Λ*
3 are defined to distinguish different qualitative properties

of the optimal information structure 𝑝*. These thresholds and regimes are different from that in Chapter 2.
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𝑓 *
2 (a) = 𝑓 *

2 (n) + 𝜆1𝐷.

The average traffic spillover decreases in 𝜆1:

𝐿(𝑝*, 𝑓 *) = 𝐷 − 𝜏 − 𝛼2𝐷 + 𝑏2 − 𝑏1
𝛼1(𝜃) + 𝛼2

− 𝜃(a)𝜃(n)(𝛼a
1 − 𝛼n

1 )𝜆
1𝐷

𝛼1(𝜃) + 𝛼2

.

In regime Λ*
2, the optimal information structure is:

𝑝*(a|n) = 0, 𝑝*(n|n) = 1, (3.16a)

𝑝*(a|a) = (𝐷 − 𝜏)(𝛼1(𝜃) + 𝛼2)− 𝛼2𝐷 − 𝑏2 + 𝑏1
𝜆1𝐷(𝛼a

1 + 𝛼2)𝜃(a)
, (3.16b)

𝑝*(n|a) = 1− 𝑝*(a|a). (3.16c)

The equilibrium route flow is:

𝑓 *
2 (n) = 𝜏, 𝑓 *

2 (a) = 𝜏 + 𝜆1𝐷.

The average traffic spillover does not change with 𝜆1:

𝐿(𝑝*, 𝑓 *) =
(𝐷 − 𝜏)(𝛼1(𝜃) + 𝛼2)− 𝛼2𝐷 − 𝑏2 + 𝑏1

𝛼a
1 + 𝛼2

. (3.17)

In regime Λ*
3, the optimal information structure is:

𝑝*(a|n) = 0, 𝑝*(n|n) = 1, (3.18a)

𝑝*(a|a) = (𝐷 − 𝜏)(𝛼1(𝜃) + 𝛼2)− 𝛼2𝐷 − 𝑏2 + 𝑏1
((𝐷 − 𝜏)(𝛼a

1 + 𝛼2)− 𝛼2𝐷 − 𝑏2 + 𝑏1) 𝜃(a)
, (3.18b)

𝑝*(n|a) = 1− 𝑝*(a|a). (3.18c)

The equilibrium route flow is:

𝑓 *
2 (n) = 𝜏, 𝑓 *

2 (a) = 𝐷 − 𝛼2𝐷 + 𝑏2 − 𝑏1
𝛼a
1 + 𝛼2

. (3.19a)
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The average traffic spillover 𝐿(𝑝*, 𝑓 *) is as in (3.17).

Now we discuss the properties of optimal information structure in detail. Firstly, in state

n, the signal provides complete state information, i.e. 𝑝*(n|n) = 1. This is because when the

cost on 𝑟1 is low in state n, sending signal a will unnecessarily increase the traffic spillover on

𝑟2. In state a, the signal provides complete state information when the fraction of population

1 is smaller than 𝜆̃︀1, but only provides partial state information (𝑝*(a|a) < 1) if 𝜆1 > 𝜆̃︀1 to

avoid sending large flow to 𝑟2.

Secondly, the average spillover decreases with 𝜆1 in regime Λ*
1 (𝜆1 < 𝜆̃︀1), and does not

change with 𝜆1 in regimes Λ*
2 and Λ*

3 (𝜆1 ≥ 𝜆̃︀1). This implies that the minimum average

traffic spillover can be achieved by the optimal information structure as long as the fraction

of travelers receiving the signal exceeds the threshold 𝜆̃︀1, which is smaller than 1. Moreover,

if 𝜆1 ≥ 𝜆̃︀1, then the spillover is only positive in state a, i.e. traffic flow on 𝑟2 only exceeds

the threshold flow 𝜏 if there is an incident. The probability of positive spillover with optimal

information structure (𝑝*(a|a) · 𝜃(a)) is smaller than that in the case where travelers have no

state information (the spillover probability is 1) and the case where travelers have complete

state information (the spillover probability is 𝜃(a)).

Thirdly, ̃︀𝜆1 is the threshold fraction beyond which the optimal information structure 𝑝*

and the equilibrium route flow 𝑓 * do not depend on 𝜆1. Additionally, ̃︀𝜆1 is the maximum

impact of the signal on route flows, i.e. the maximum fraction of travelers who change routing

decisions with the received signals. For any 𝜆1 ≤ ̃︀𝜆1, 𝑝* ∈ 𝒫1 and the signal influences the

routing decisions of all travelers in population 1 (𝜆1 < ̃︀𝜆1 fraction). On the other hand,

for any 𝜆1 > ̃︀𝜆1, 𝑝* ∈ 𝒫2. Then, regardless of the fraction of population 1, ̃︀𝜆1 fraction of

travelers change their routing decisions with the signal.

Finally, we find that the regime boundaries 𝜆̃︀1 and ̃︀𝜆1 in (3.14) and (3.12) decrease as

𝜏 increases. Practically, this implies that if more traffic can be routed on 𝑟2 (i.e. 𝜏 is

larger), then the minimum average spillover can be achieved by sending signals to a smaller

fraction of travelers (𝜆̃︀1) according to the optimal information structure. Additionally, the

maximum fraction of travelers who change routing decisions with the received signals (̃︀𝜆1)
is also smaller.
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3.5 Impact of Information Design on Travel Costs

We now analyze how the optimal information structure designed for minimizing the spillover

affects the travelers’ cost in equilibrium. Recall that the equilibrium population cost 𝐶𝑖*(𝜆1)

is the average travel time costs experienced by travelers in each population in equilibrium as

in (2.10). Then, the equilibrium average cost of all travelers as 𝐶*(𝜆1) = 𝜆1𝐶1*(𝜆1) + (1 −

𝜆1)𝐶2*(𝜆1).

For any 𝜃(a) ≤ 𝜂, we know from Proposition 3.2 that the optimal information structure

provides no state information to travelers. Hence, the information structure has no impact

on the travelers’ equilibrium costs.

For any 𝜃(a) > 𝜂, we can compute the equilibrium population costs and the equilibrium

average cost based on Proposition 3.1 and Theorem 3.1.

Proposition 3.3. Given the optimal information structure 𝑝*, 𝐶1*(𝜆1) ≤ 𝐶2*(𝜆1) if 𝜆1 ∈

[0, ̃︀𝜆1), and 𝐶1*(𝜆1) = 𝐶2*(𝜆1) if 𝜆1 ∈ [̃︀𝜆1, 1]. Furthermore, as 𝜆1 increases, 𝐶*(𝜆1) mono-

tonically decreases in regime Λ*
1, increases in regime Λ*

2, does not change in regime Λ*
3.

Proposition 3.3 shows that the signal sent by the central authority gives travelers in

population 1 an advantage over population 2 in terms of the average costs if 𝜆1 < ̃︀𝜆1, and

the two populations experience the same cost if 𝜆1 ≥ ̃︀𝜆1. Furthermore, Theorem 3.1 and

Proposition 3.3 show that in regime Λ*
1, increasing 𝜆1 reduces both the traffic spillover on 𝑟2

and the equilibrium average cost. However, if 𝜆1 increases beyond 𝜆̃︀1, then the average cost

increases, while the average spillover does not change.

One can interpret these insights in the context of two practical situations – the fraction

𝜆1 is induced by travelers’ choice of accessing to the signal versus chosen by the designer

versus. In both situations, the average traffic spillover is the same.

If travelers can choose whether or not to get access to signals – the information, then the

fraction of population 1 will be higher or equal to ̃︀𝜆1. This is because travelers in population

2 will continue to switch to population 1 until the costs of two populations are the same.

Hence, the optimal information structure 𝑝* is given by (3.18).

On the other hand, if the designer can choose the fraction 𝜆1 as well as the information

structure 𝑝, then it is optimal for the authority to provide complete state information as in
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(3.15) to 𝜆̃︀1 fraction of travelers in order to achieve the minimum average spillover and the

minimum average cost. However, in this case, 𝐶1*(𝜆1) < 𝐶2*(𝜆1). Therefore, the resulting

information structure favors the set of travelers who receive the signals.

We illustrate our results in the following example.

Example 3.1. The cost functions of the network are 𝑐a1(𝑓1) = 3𝑓1+15, 𝑐𝑛1 (𝑓1) = 𝑓1+15, and

𝑐2(𝑓2) = 2𝑓2 + 20. The total demand 𝐷 = 10, and the threshold 𝜏 = 2.5. The probability of

state a is 𝜃(a) = 0.3. From (3.14) and (3.12), the thresholds are 𝜆̃︀1 = 0.133, and ̃︀𝜆1 = 0.25.

Fig. 3-2a shows 𝑝*(a|a) for 𝜆1 ∈ [0, 1]. Fig. 3-2b shows the resulting equilibrium cost

of each population. Fig. 3-2c and Fig. 3-2d compare the average traffic spillover and the

equilibrium average cost under the optimal information structure with the corresponding

costs in two situations: (1) the central authority provides no information to travelers; (2)

complete information of the state is provided to 𝜆1 fraction of travelers.

In this example, the minimum average spillover can be achieved as long as more than

13.3% of travelers have access to the signal (Fig. 3-2c). If the fraction increases over 25%,

then the optimal information design does not depend on 𝜆1 (Fig. 3-2a). Moreover, the

optimal information structure achieves 18% lower spillover in comparison to the case of no

information, and 47% lower spillover in comparison to providing complete state information

to all travelers. This demonstrates that the central authority achieves non-trivial reduction

in average spillover by optimal information design even when a high fraction of travelers do

not have access to the information signal.

Additionally, Fig. 3-2b shows that in this example population 1 enjoys reduction of cost

by 7% compared with population 2 if 𝜆1 = 𝜆̃︀1, which is the fraction that minimizes the

average spillover and the average cost. Finally, from Fig. (3-2d), we see that the equilibrium

average cost under optimal information structure is lower than that in the case with no state

information, but the minimum cost under optimal information structure (when 𝜆1 = 𝜆̃︀1) is

slightly (1%) higher than the minimum cost in the case where the signal provides complete

state information.
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Figure 3-2: Congestion costs under optimal information structure: (a) Probability of ac-
cident signal in state a; (b) Equilibrium population costs; (c) Average spillover on 𝑟2; (d)
Equilibrium average cost.
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Chapter 4

Multi-agent Bayesian Learning with Best

Response Strategies

4.1 Introduction

In Chapters 2 and 3, we have studied the impact of information platforms on players’ strategic

decision making in static settings. In practice, strategic players often need to engage in

repeated interactions with each other while learning an unknown environment that impacts

their payoffs. The goal of this chapter is to build a stochastic learning dynamics that analyzes

the role of information platforms in the process of learning the unknown environment and

adjusting strategies.

Major disruptions in transportation networks such as random infrastructure breakdowns,

natural disasters and security attacks often lead to a sudden change in the latent network

condition that influences travel costs on one or more network edges. After the 2007 collapse

of I-35W bridge over Mississippi River in Minneapolis, data collected from the loop detectors

showed that the flow patterns in the surrounding area experienced high fluctuation for several

weeks (Fig. 4-1a, Zhu et al. [2010]). This suggests that the change of the network condition

triggered a learning process of the new condition, and adjustment of travel decisions. In this

process, information platforms repeatedly provide estimates of the new network condition

to travelers based on the collect data on traffic flows and travel time costs (Fig. 4-1b).

Similar situations also arise in other settings. For example, buyers and sellers repeatedly
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(a) (b)

Figure 4-1: (a) Comparison of flow fluctuations before and after the collapse of the Mississippi
River Bridge in 2007 (Source: Zhu et al. [2010]); (b) Learning unknown network condition
with strategic travelers.

make their transaction decisions while learning the latent market condition on online market

platforms. The market condition is unknown, and it governs the price distribution. The price

distribution is updated based on the previous transactions and buyer reviews on platforms

such as Amazon, eBay, and Airbnb (Moe and Fader [2004], Acemoglu et al. [2017]). The

users’ decisions and realized prices drive the learning of the overall latent market condition,

which further impacts the subsequent transactions.

Our work is motivated by the need of establishing a learning foundation that captures how

self-interested players adaptively adjust their strategies while learning the uncertain environ-

ment through an information platform. The distinguishing feature of the learning process is

that players’ strategic decisions (route choices in transportation networks or purchases and

sales on online platforms) influence the learning of the unknown environment (latent net-

work or market condition), which then impact the players’ future decisions. Therefore, the

long-run outcome of strategic interactions among players is governed by the joint evolution

of stage-wise decisions made by the players and learning of the unknown environment.

In this chapter, we first present a generic learning dynamics that captures this joint

evolution in a game-theoretic setting. In this dynamics, strategic agents (players) repeatedly

play a game with an unknown payoff-relevant parameter vector belonging to a finite set.

A public information platform updates and broadcasts a Bayesian estimate of the payoff

parameter based on stage-wise game outcomes (i.e. strategies and randomly realized payoffs)
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to all players. Players update their strategies by incorporating a best response strategy based

on the updated belief and the opponents’ play.

We develop a new approach to analyze the long-run outcomes – convergence and stability

properties (both local and global) – of the beliefs and strategies induced by the interplay

of Bayesian updates and best response dynamics. We show that, with probability 1, beliefs

and strategies converge to a fixed point, where the belief consistently estimates the payoff

distribution for the strategy, and the strategy is an equilibrium corresponding to the belief.

However, learning may not always identify the unknown parameter because the belief esti-

mate relies on the game outcomes that are endogenously generated by players’ strategies.

We obtain sufficient and necessary conditions, under which learning leads to a globally sta-

ble fixed point that is a complete information Nash equilibrium. We also provide sufficient

conditions that guarantee local stability of fixed point beliefs and strategies. Our techni-

cal results are useful to study other types of learning dynamics, such as learning with two

timescales, and learning under non-Bayesian estimates of the unknown parameter.

Next, we apply our analysis to repeated routing games, in which travelers adjust their

route choices based on the belief estimate of unknown edge cost parameters provided by a

traffic information platform. The information platform repeatedly updates belief estimates

of edge cost distributions based on traffic flows and realized costs. We show that travelers

eventually form consistent estimates of costs on edges with positive flows, but may overesti-

mate the costs on unused edges. Therefore, learning does not necessarily lead to a complete

information equilibrium unless certain conditions are satisfied. We also show that the long-

run average travel cost is higher when learning fails to converge to complete information

equilibrium.

Our model and analysis extend the results on learning in games with complete information

to situations when long-run outcomes depend on learning of an unknown parameter. Past

literature has addressed convergence analysis of discrete and continuous time best response

dynamics (Milgrom and Roberts [1990], Monderer and Shapley [1996b], Hofbauer and Sorin

[2006]), fictitious play (Fudenberg and Kreps [1993], Monderer and Shapley [1996a]) and

stochastic fictitious play (Benaim and Hirsch [1999], Hofbauer and Sandholm [2002]) in

complete information environment.
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The key distinction between our learning dynamics and classical best response dynamics

is that, in our model, players are imperfectly informed about the payoff-relevant parameter,

and their strategy updates in each stage rely on the updated Bayesian belief. Our approach to

studying the convergence and stability properties of the coupled belief and strategy dynamics

combines ideas from Bayesian learning and analysis of best response dynamics in complete

information games. Furthermore, our conditions that guarantee fixed point stability can be

viewed as natural extensions of the stability conditions for both best response dynamics and

evolutionary dynamics in games with complete information (Smith and Price [1973], Taylor

and Jonker [1978], Samuelson and Zhang [1992], Matsui [1992], Hofbauer and Sandholm

[2009], Sandholm [2010]).

Additionally, the notion of fixed point in our learning dynamics is similar to the self-

confirming equilibrium introduced in Fudenberg and Levine [1993] for extensive-form games.1

At a self-confirming equilibrium, players maintain consistent beliefs of their opponents’

strategies at information sets that are reached, but the beliefs of strategies can be incor-

rect at unreached information sets. In our model, a fixed point can be different from a

complete information equilibrium due to the incorrect estimates on the unobserved game

outcomes formed by the beliefs. In general, these incorrect estimates may never be corrected

by the learning dynamics because information of game outcomes is endogenously acquired

based on the chosen strategies in each stage.2

Finally, our application in routing games also contributes to the extensive literature

on other types of learning dynamics: log-linear learning (Blume et al. [1993], Marden and

Shamma [2012], Alós-Ferrer and Netzer [2010]), regret-based learning (Hart and Mas-Colell

[2003], Foster and Young [2006], Marden et al. [2007], Daskalakis et al. [2011]), payoff-based

learning (Cominetti et al. [2010], Marden et al. [2009]), and replicator dynamics (Beggs

[2005], Hopkins [2002]). These dynamics typically prescribe the manner in which the players

adjust their strategies based on the randomly realized payoffs in each stage. On the other

hand, the strategy updates in our learning dynamics capture a rational behavioral adjustment

1Similar concepts include conjectural equilibrium in Hahn [1978] and subjective equilibrium in Kalai and
Lehrer [1993] and Kalai and Lehrer [1995].

2The phenomenon that endogenous information acquisition leads to incomplete learning is also central
to multi-arm bandit problems Rothschild [1974], Easley and Kiefer [1988] and endogenous social learning
Duffie et al. [2009], Acemoglu et al. [2014], Ali [2018].
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of self-interested players in an imperfect information environment.

This chapter is organized as follows: Section 4.2 describes the generic learning model for

continuous games, and Section 4.3 details the convergence and stability properties. In Section

4.4, we discuss the extensions of our main results to other types of learning dynamics such

as two-timescale learning, and learning with maximum a posteriori or least square estimates.

We present the application of repeated routing games in Sec. 4.5. All proofs are included in

Appendix B.

4.2 Model of Learning Dynamics in Continuous Games

Our learning dynamics is induced by strategic players in a finite set 𝐼 who repeatedly play

a game 𝐺 for an infinite number of stages. The players’ payoffs in game 𝐺 depend on an

unknown parameter vector 𝑠 belonging to a finite set 𝑆. The true parameter is denoted

𝑠* ∈ 𝑆. Learning is mediated by a public information platform (or an aggregator) that

repeatedly updates and broadcasts a belief estimate 𝜃 = (𝜃(𝑠))𝑠∈𝑆 ∈ Δ(𝑆) to all players,

where 𝜃(𝑠) denotes the estimated probability of parameter 𝑠.

In game 𝐺, the strategy of each player 𝑖 ∈ 𝐼 is a finite dimensional vector 𝑞𝑖 in a

convex and continuous strategy set 𝑄𝑖. The players’ strategy profile is denoted 𝑞 = (𝑞𝑖)𝑖∈𝐼 ∈

𝑄
Δ
=
∏︀

𝑖∈𝐼 𝑄𝑖. The payoff of each player is realized randomly according to a probability

distribution. Specifically, the distribution of players’ payoffs 𝑦 = (𝑦𝑖)𝑖∈𝐼 for any strategy

profile 𝑞 ∈ 𝑄 and any parameter 𝑠 ∈ 𝑆 is represented by the probability density function

𝜑𝑠(𝑦|𝑞). We assume that 𝜑𝑠(𝑦|𝑞) is continuous in 𝑞 for all 𝑠 ∈ 𝑆. Without loss of generality,

we write the player 𝑖’s payoff 𝑦𝑖 for any 𝑠 ∈ 𝑆 as the sum of an average payoff 𝑢𝑠𝑖 (𝑞) that is

a continuous function of 𝑞 and a noise term 𝜖𝑠𝑖 (𝑞) with zero mean:

𝑦𝑖 = 𝑢𝑠𝑖 (𝑞) + 𝜖𝑠𝑖 (𝑞). (4.1)

The noise terms (𝜖𝑠𝑖 (𝑞))𝑖∈𝐼 can be correlated across players.

In game 𝐺 with belief 𝜃, each player 𝑖’s best response correspondence given their oppo-

nents’ strategies 𝑞−𝑖 = (𝑞𝑗)𝑗∈𝐼∖{𝑖} is the set of strategies that maximize their expected utility,
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i.e. BR𝑖(𝜃, 𝑞−𝑖)
Δ
= argmax𝑞𝑖∈𝑄𝑖

E𝜃 [𝑢𝑠𝑖 (𝑞𝑖, 𝑞−𝑖)] = argmax𝑞𝑖∈𝑄𝑖

∑︀
𝑠∈𝑆 𝜃(𝑠)𝑢

𝑠
𝑖 (𝑞𝑖, 𝑞−𝑖). Addition-

ally, the set of equilibrium strategies for any belief 𝜃 is a non-empty set EQ(𝜃).

Our learning model can be specified as a discrete-time stochastic dynamics, with state

comprising of the belief estimate of unknown parameter and the players’ strategies:3 In each

stage 𝑘 ∈ N+, the information platform broadcasts the current belief estimate 𝜃𝑘; the players

act according to a strategy profile 𝑞𝑘 =
(︀
𝑞𝑘𝑖
)︀
𝑖∈𝐼 ; and the payoffs 𝑦𝑘 =

(︀
𝑦𝑘𝑖
)︀
𝑖∈𝐼 are realized

according to 𝜑𝑠(𝑦𝑘|𝑞𝑘) when the parameter is 𝑠 ∈ 𝑆. The state of learning dynamics in stage

𝑘 is
(︀
𝜃𝑘, 𝑞𝑘

)︀
∈ Δ(𝑆)×𝑄.

The initial belief 𝜃1 in our learning dynamics does not exclude any possible parameter,

i.e. 𝜃1(𝑠) > 0 for all 𝑠 ∈ 𝑆, and the initial strategy 𝑞1 ∈ 𝑄 is feasible. The evolution of states(︀
𝜃𝑘, 𝑞𝑘

)︀∞
𝑘=1

is jointly governed by belief and strategy updates, which we introduce next.

Belief update. In our model, the belief is updated intermittently and infinitely. The

stages at which the information platform updates the belief can be deterministic or random,

denoted by the subsequence (𝑘𝑡)
∞
𝑡=1. In update stage 𝑘𝑡+1, the previous belief estimate 𝜃𝑘𝑡 is

updated using the observed players’ strategy profile
(︀
𝑞𝑘
)︀𝑘𝑡+1−1

𝑘=𝑘𝑡
and realized payoffs

(︀
𝑦𝑘
)︀𝑘𝑡+1−1

𝑘=𝑘𝑡

between the stages 𝑘𝑡 and 𝑘𝑡+1 according to the Bayes’ rule:

𝜃𝑘𝑡+1(𝑠) =
𝜃𝑘𝑡(𝑠)

∏︀𝑘𝑡+1−1
𝑘=𝑘𝑡

𝜑𝑠(𝑦𝑘|𝑞𝑘)∑︀
𝑠′∈𝑆 𝜃

𝑘𝑡(𝑠′)
∏︀𝑘𝑡+1−1

𝑘=𝑘𝑡
𝜑𝑠′(𝑦𝑘|𝑞𝑘)

, ∀𝑠 ∈ 𝑆. (𝜃-update)

Strategy update. Players update their strategies in each stage based on the updated

belief and the current strategies played by their opponents. Given any 𝜃𝑘+1 and any 𝑞𝑘−𝑖 =(︀
𝑞𝑘𝑗
)︀
𝑗∈𝐼∖{𝑖}, we generically denote the strategy update for each 𝑖 ∈ 𝐼 as a set-valued function

𝐹𝑖
(︀
𝜃𝑘+1, 𝑞𝑘−𝑖

)︀
: Δ (𝑆)×𝑄−𝑖 ⇒ 𝑄𝑖:

𝑞𝑘+1
𝑖 ∈ 𝐹𝑖

(︀
𝜃𝑘+1, 𝑞𝑘−𝑖

)︀
, ∀𝑖 ∈ 𝐼. (𝑞-update)

In particular, we consider the following three types of best response update rules for 𝐹𝑖:

3In this chapter, we follow the terminology of stochastic dynamical systems and refer the state as the
stage-wise belief and strategy. This terminology is different from that in Bayesian routing game adopted by
Chapters 2 – 3, where the state is the unknown network cost parameter.
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1. Simultaneous best response dynamics. Each player chooses a strategy that is in the

best response correspondence given their opponents’ strategies and the updated belief:

𝐹𝑖(𝜃
𝑘+1, 𝑞𝑘−𝑖) = BR𝑖(𝜃

𝑘+1, 𝑞𝑘−𝑖), ∀𝑖 ∈ 𝐼. (Simultaneous-BR)

2. Sequential best response dynamics. In each stage, exactly one player updates their

strategy as the best response strategy given the new belief. Players sequentially updates

their strategies:

𝐹𝑖(𝜃
𝑘+1, 𝑞𝑘−𝑖) =

⎧⎨⎩ BR𝑖(𝜃
𝑘+1, 𝑞𝑘−𝑖), if 𝑘 mod |𝐼| = 𝑖,{︀

𝑞𝑘𝑖
}︀
, otherwise.

(Sequential-BR)

3. Linear best response dynamics. Each player updates their strategy as a linear combi-

nation of their current strategy and a best response strategy given the updated belief:

𝐹𝑖(𝜃
𝑘+1, 𝑞𝑘−𝑖) = (1− 𝛼𝑘)𝑞𝑘𝑖 + 𝛼𝑘BR𝑖(𝜃

𝑘+1, 𝑞𝑘−𝑖), ∀𝑖 ∈ 𝐼, ∀𝑘, (Linear-BR)

where 𝛼𝑘 ∈ [0, 1] is the rate of strategy update in stage 𝑘.

Next, we present few remarks about our learning dynamics: Firstly, players are strategic

in that their strategy updates utilize a best response strategy that maximizes their expected

utilities given the latest belief estimate of the unknown parameter and the strategies played

by their opponents. If all players know the true parameter 𝑠*, then the three strategy

updates reduce to the classical best response dynamics in the corresponding game with

complete information.

Secondly, the three types of strategy updates differ in the timing and the extent at which

best response is incorporated in the updated strategy: All players update their strategies in

every stage in (Simultaneous-BR) and (Linear-BR), while only one player updates strategy

in (Sequential-BR). While players entirely adopt the new best response strategy in updates

of (Simultaneous-BR) and (Sequential-BR), in (Linear-BR) each player weighs their best

response strategy according to the strategy update rate.

Thirdly, the belief updates can occur less frequently than the strategy updates since the
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subsequence of belief update stages satisfy 𝑘𝑡+1 − 𝑘𝑡 ≥ 1. Here, we assume that 𝑘𝑡+1 − 𝑘𝑡
is finite with probability (w.p.) 1; i.e., both belief and strategy updates follow the same

timescale. In Sec. 4.4, we extend our analysis to the case when belief updates occur at a

slower timescale in comparison to strategy updates, i.e. lim𝑡→∞ 𝑘𝑡+1 − 𝑘𝑡 =∞.

Fourthly, our learning dynamics considers Bayesian estimate of the unknown parameter.

In Sec. 4.4, we also argue that our results hold under other types of parameter estimates

such as the maximum a posteriori (MAP) estimate, and the ordinary least square (OLS)

estimate.

Finally, we show in Appendix B.3 that our convergence and stability results also apply

to learning the unknown parameter in games with finite action (pure strategy) set, where

players choose mixed strategies. As a special case, for games with finite strategies, the linear

best response dynamics (Linear-BR) with update rates 𝛼𝑘 = 1
𝑘

for all 𝑘 is equivalent to

fictitious play with repeatedly updated belief estimates.

4.3 Main Results

4.3.1 Convergence

Before introducing our convergence result, we introduce two necessary definitions.

Definition 4.1 (Kullback–Leibler (KL)-divergence). For a strategy profile 𝑞 ∈ 𝑄, the KL

divergence between the distributions of observed payoffs 𝑦 with parameters 𝑠 and 𝑠* ∈ 𝑆 is

defined as:

𝐷𝐾𝐿

(︀
𝜑𝑠

*
(𝑦|𝑞)||𝜑𝑠(𝑦|𝑞)

)︀ Δ
=

⎧⎨⎩
∫︀
𝑦
𝜑𝑠

*
(𝑦|𝑞) log

(︁
𝜑𝑠

*
(𝑦|𝑞)

𝜑𝑠(𝑦|𝑞)

)︁
𝑑𝑦, if 𝜑𝑠*(𝑦|𝑞)≪ 𝜑𝑠(𝑦|𝑞),

∞ otherwise.

Here 𝜑𝑠*(𝑦|𝑞) ≪ 𝜑𝑠(𝑦|𝑞) means that the distribution 𝜑𝑠
*
(𝑦|𝑞) is absolutely continuous

with respect to 𝜑𝑠(𝑦|𝑞), i.e. 𝜑𝑠(𝑦|𝑞) = 0 implies 𝜑𝑠*(𝑦|𝑞) = 0 w.p. 1.

Definition 4.2 (Payoff-equivalent parameters). A parameter 𝑠 ∈ 𝑆 is payoff-equivalent to

the true parameter 𝑠* for a strategy 𝑞 ∈ 𝑄 if 𝐷𝐾𝐿

(︀
𝜑𝑠

*
(𝑦|𝑞)||𝜑𝑠(𝑦|𝑞)

)︀
= 0. For a given
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strategy profile 𝑞 ∈ 𝑄, the set of parameters that are payoff-equivalent to 𝑠* is defined as:

𝑆*(𝑞)
Δ
= {𝑆|𝐷𝐾𝐿

(︀
𝜑𝑠

*
(𝑦|𝑞)||𝜑𝑠(𝑦|𝑞)

)︀
= 0}.

The KL-divergence between any two distributions is non-negative, and is equal to zero if

and only if the two distributions are identical. For a given strategy profile 𝑞, if a parameter

𝑠 is in the payoff-equivalent parameter set 𝑆*(𝑞), then the distributions of the observed

payoffs are identical for parameters 𝑠 and 𝑠*, i.e. 𝜑𝑠*(𝑦|𝑞) = 𝜑𝑠(𝑦|𝑞) for all 𝑦. In this case,

the observed payoffs cannot be used by the information platform to distinguish 𝑠 and 𝑠* in the

belief update (𝜃-update) (since the belief ratio 𝜃𝑘(𝑠)
𝜃𝑘(𝑠*)

remains unchanged w.p. 1). Also note

that the set 𝑆*(𝑞) can vary with strategy profile 𝑞, and hence a payoff-equivalent parameter

for a given strategy profile may not be payoff-equivalent for another strategy profile.

We need the following assumption on the strategy updates.

Assumption 1. For any initial strategy 𝑞1, the sequence of strategies induced by (𝑞-update)

under any constant belief 𝜃𝑘 = 𝜃 ∈ Δ(𝑆) for all 𝑘 converges to an equilibrium strategy profile

in EQ(𝜃).

This assumption requires that the strategy updates converge to an equilibrium strategy

when the belief is held constant (instead of being repeatedly updated). Without this as-

sumption, strategies may fail to converge even in games with complete information (Shapley

[1964]). Thus, Assumption 1 is a basic requirement to guarantee the convergence of states

in our learning dynamics.

Assumption 1 is satisfied by the best response dynamics (Simultaneous-BR), (Sequential-BR)

and (Linear-BR) in a variety of games with complete information, including potential games,

zero sum games, and dominance solvable games (Milgrom and Roberts [1990], Monderer

and Shapley [1996b], Hofbauer and Sorin [2006], Fudenberg and Kreps [1993], Monderer

and Shapley [1996a]). Under Assumption 1, the sequence of states (beliefs and strategies)

induced by our stochastic learning dynamics converges to a fixed point.

Theorem 4.1. For any initial state (𝜃1, 𝑞1) ∈ Δ(𝑆)×𝑄, under Assumption 1, the sequence

of states (𝜃𝑘, 𝑞𝑘)∞𝑘=1 induced by (𝜃-update) and (𝑞-update) converges to a fixed point (𝜃, 𝑞)
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w.p. 1, and
(︀
𝜃, 𝑞
)︀

satisfies:

[𝜃] ⊆ 𝑆*(𝑞), (4.2a)

𝑞 ∈ EQ(𝜃), (4.2b)

where [𝜃]
Δ
= {𝑆|𝜃(𝑠) > 0}, and EQ(𝜃) is the set of equilibrium strategies corresponding to

belief 𝜃.

Moreover, for any 𝑠 ∈ 𝑆 ∖ 𝑆*(𝑞), if 𝜑𝑠*(𝑦|𝑞) ≪ 𝜑𝑠(𝑦|𝑞), then 𝜃𝑘(𝑠) converges to 0 expo-

nentially fast:

lim
𝑘→∞

1

𝑘
log(𝜃𝑘(𝑠)) = −𝐷𝐾𝐿(𝜑

𝑠*(𝑦|𝑞)||𝜑𝑠(𝑦|𝑞)), 𝑤.𝑝. 1. (4.3)

Otherwise, there exists a positive integer 𝐾* <∞ such that 𝜃𝑘(𝑠) = 0 for all 𝑘 > 𝐾* w.p. 1.

From Theorem 4.1, the following properties must hold at a fixed point
(︀
𝜃, 𝑞
)︀
:

(1) Belief 𝜃 identifies the true parameter 𝑠* in the payoff-equivalent set 𝑆*(𝑞) corresponding

to fixed point strategy 𝑞. Therefore, the belief forms a consistent estimate of the payoff

distribution at the fixed point. To see this, let us denote the estimated distribution of

the observed payoff 𝑦 as 𝜇(𝑦|𝜃, 𝑞). Then,

𝜇(𝑦|𝜃, 𝑞) Δ
=
∑︁
𝑠∈𝑆

𝜃(𝑠)𝜑𝑠(𝑦|𝑞) (4.2a)
=

∑︁
𝑠∈𝑆*(𝑞)

𝜃(𝑠)𝜑𝑠(𝑦|𝑞) =
∑︁

𝑠∈𝑆*(𝑞)

𝜃(𝑠)𝜑𝑠
*
(𝑦|𝑞) = 𝜑𝑠

*
(𝑦|𝑞).

(4.4)

(2) Players have no incentive to deviate from fixed point strategy profile 𝑞 because it is an

equilibrium of the game 𝐺 with fixed point belief 𝜃.

We prove Theorem 4.1 in three steps: Firstly, we prove that the sequence of beliefs
(︀
𝜃𝑘
)︀∞
𝑘=1

converges to a fixed point belief 𝜃 ∈ Δ(𝑆) w.p. 1 by applying the martingale convergence

theorem (Lemma 4.1). Secondly, we show that under Assumption 1, the strategies
(︀
𝑞𝑘
)︀∞
𝑘=1

in our learning dynamics with belief updates also converge. This convergent strategy is an

equilibrium corresponding to the belief 𝜃 (Lemma 4.2). Finally, we prove that the belief of any
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𝑠 ∈ 𝑆 that is not payoff-equivalent to 𝑠* given 𝑞 must converge to 0 with rate of convergence

governed by (4.3) (Lemma 4.3). Hence, we can conclude that beliefs and strategies induced

by the learning dynamics converge to a fixed point
(︀
𝜃, 𝑞
)︀

that satisfies (4.2) w.p. 1. The

formal proofs of Lemmas 4.1 – 4.3 are in Appendix B.

Lemma 4.1. lim𝑘→∞ 𝜃𝑘 = 𝜃 w.p. 1, where 𝜃 ∈ Δ(𝑆).

To prove this property, we note that the subsequences of the belief ratios
(︁
𝜃𝑘𝑡 (𝑠)

𝜃𝑘𝑡 (𝑠*)

)︁∞
𝑡=1

is a

martingale for all 𝑠 ∈ 𝑆, and
(︀
𝜃𝑘𝑡(𝑠*)

)︀∞
𝑡=1

is a sub-martingale. From the martingale conver-

gence theorem,
(︁
𝜃𝑘𝑡 (𝑠)

𝜃𝑘𝑡 (𝑠*)

)︁∞
𝑡=1

and
(︀
𝜃𝑘𝑡(𝑠*)

)︀∞
𝑡=1

converge w.p. 1. Thus, the belief subsequence(︀
𝜃𝑘𝑡
)︀∞
𝑡=1

converges to a fixed point belief 𝜃 w.p. 1. Since 𝜃𝑘 = 𝜃𝑘𝑡 for any 𝑘 = 𝑘𝑡, . . . , 𝑘𝑡+1−1,

the sequence
(︀
𝜃𝑘
)︀∞
𝑘=1

must also converge to 𝜃.

Lemma 4.2. Under Assumption 1, lim𝑘→∞ 𝑞𝑘 = 𝑞 w.p. 1, where 𝑞 satisfies (4.2b).

In the proof of Lemma 4.2, for each stage 𝐾 = 1, 2, . . . , we construct an auxiliary strategy

sequence
(︀
𝑞𝑘
)︀∞
𝑘=1

such that the strategies in this sequence are identical to that in the original

sequence up to a certain stage 𝐾 (i.e. 𝑞𝑘 = 𝑞𝑘 for all 𝑘 = 1, . . . , 𝐾), and the remaining

strategies
(︀
𝑞𝑘
)︀∞
𝑘=𝐾+1

are induced by the best response update with the fixed point belief 𝜃

(instead of the repeatedly updated belief sequence
(︀
𝜃𝑘
)︀∞
𝑘=𝐾+1

). Under Assumption 1, the

auxiliary strategy sequence must converge to an equilibrium 𝑞 ∈ EQ(𝜃). Recall from Lemma

4.1, the beliefs converge to 𝜃. Moreover, since the expected utility function E𝜃 [𝑢𝑠𝑖 (𝑞)] of each

player 𝑖 ∈ 𝐼 is continuous in 𝜃 and 𝑞, we know from the Berge’s maximum theorem that

the best response correspondence BR𝑖 (𝜃, 𝑞) is upper hemicontinuous in 𝜃 and 𝑞 (Lemma B.1

in Appendix B). Thus, we can prove that as 𝐾 → ∞, the distance between the auxiliary

strategy sequence and the original strategy sequence converges to zero, which implies that

the original strategy sequence
(︀
𝑞𝑘
)︀∞
𝑘=1

also converges to 𝑞 ∈ EQ(𝜃) (i.e. 𝑞 satisfies (4.2b)).

Lemma 4.3. Any fix point
(︀
𝜃, 𝑞
)︀

satisfies (4.2a). Furthermore, for any 𝑠 ∈ 𝑆 ∖ 𝑆*(𝑞), if

𝜑𝑠
*
(𝑦|𝑞)≪ 𝜑𝑠(𝑦|𝑞), then 𝜃𝑘(𝑠) satisfies (4.3). Otherwise, there exists a finite positive integer

𝐾* such that 𝜃𝑘(𝑠) = 0 for all 𝑘 > 𝐾* w.p. 1.

Lemma 4.3 is based on Lemmas 4.1 and 4.2. Although the data of the realized payoffs(︀
𝑦𝑘
)︀∞
𝑘=1

is not independently and identically distributed (i.i.d.) due to players’ strategy up-

dates, we can show that since 𝑞𝑘 converge to 𝑞 (Lemma 4.2), the distribution of 𝑦𝑘 converges
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to an i.i.d. process with 𝜑𝑠(𝑦𝑘|𝑞), which is the payoff distribution given the fixed point

strategy 𝑞, for each parameter 𝑠 as 𝑘 →∞.

Finally, if the payoff distribution for the true parameter is absolutely continuous with

respect to any non-payoff-equivalent parameter 𝑠 ∈ 𝑆 ∖ 𝑆*(𝑞), then we show that the log-

likelihood ratio log
(︁
𝜃𝑘(𝑠)
𝜃𝑘(𝑠*)

)︁
converges to −∞ with an exponential rate given by the (non-

zero) KL-divergence between the distributions of realized payoff under parameters 𝑠 and 𝑠*.

Thus, the belief 𝜃𝑘(𝑠) converges to zero exponentially fast as in (4.3). On the other hand, if

𝜑𝑠(𝑦|𝑞) is not absolutely continuous with the true distribution 𝜑𝑠
*
(𝑦|𝑞), then we can find a

small neighborhood of 𝑞 such that, with positive probability, the realized payoff 𝑦 satisfies

𝜑𝑠(𝑦|𝑞) = 0 but 𝜑𝑠*(𝑦|𝑞) > 0 for 𝑞 in this neighborhood. In this case, the belief update

(𝜃-update) will assign probability 0 to the parameter 𝑠. From the Borel–Cantelli lemma,

the probability that 𝜃𝑘(𝑠) remains positive infinitely often is zero. Hence, there must exist a

finite stage 𝐾*, after which 𝜃𝑘(𝑠) remains to be zero with probability 1.

Complete information fixed points. From (4.2), we define the set of fixed points Ω as

follows:

Ω
Δ
=
{︀(︀
𝜃, 𝑞
)︀ ⃒⃒
[𝜃] ⊆ 𝑆* (𝑞) , 𝑞 ∈ EQ(𝜃)

}︀
. (4.5)

We denote the belief vector 𝜃* with 𝜃*(𝑠*) = 1 as the complete information belief, and any

strategy 𝑞* ∈ EQ(𝜃*) as a complete information equilibrium. Since [𝜃*] = {𝑠*} ⊆ 𝑆*(𝑞*), the

state (𝜃*, 𝑞*) is always a fixed point (i.e. (𝜃*, 𝑞*) ∈ Ω), and has the property that all players

have complete information of the true parameter 𝑠* and choose a complete information

equilibrium. Therefore, we refer to (𝜃*, 𝑞*) as a complete information fixed point.

Additionally, the set Ω may contain other fixed points
(︀
𝜃, 𝑞
)︀

that are not equivalent to the

complete information environment, i.e. 𝜃 ̸= 𝜃*. Such belief 𝜃 must assign positive probability

to at least one parameter 𝑠 ̸= 𝑠*. The property (4.2a) ensures that 𝑠 is payoff-equivalent to 𝑠*

given the fixed point strategy profile 𝑞, and hence the average payoff function in (4.1) satisfies

𝑢𝑠𝑖 (𝑞) = 𝑢𝑠
*
𝑖 (𝑞) for all 𝑖 ∈ 𝐼. However, for other strategies 𝑞 ̸= 𝑞, the value of 𝑢𝑠𝑖 (𝑞) may be

different from 𝑢𝑠
*
𝑖 (𝑞) for one or more players 𝑖 ∈ 𝐼. That is, belief 𝜃 consistently estimates

the payoff at a fixed point strategy 𝑞 but not necessarily at all 𝑞 ∈ 𝑄. Consequently, if one
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or more players had access to complete information of the true parameter 𝑠*, they may have

an incentive to deviate from the fixed point strategy; such a fixed point strategy profile 𝑞 is

not a complete information equilibrium.

We next present the sufficient and necessary condition under which all fixed points are

complete information fixed points. Besides, we derive a sufficient condition on the set of

fixed points Ω and the average payoff functions to ensure that the strategy played in the

fixed point is equivalent to a complete information equilibrium, although the fixed point

belief may not be a complete information belief.

Proposition 4.1. The fixed point set Ω ≡ {(𝜃*, 𝑞*) |𝑞* ∈ EQ(𝜃*)} if and only if [𝜃] ∖ 𝑆* (𝑞)

is a non-empty set for any 𝜃 ∈ Δ(𝑆) ∖ {𝜃*} and any 𝑞 ∈ EQ(𝜃).

Furthermore, for a fixed point
(︀
𝜃, 𝑞
)︀
, 𝑞 = 𝑞* if (i) There exists a positive number 𝜉 > 0

such that [𝜃] ⊆ 𝑆*(𝑞) for any ‖𝑞− 𝑞‖ < 𝜉; and (ii) The payoff function 𝑢𝑠𝑖 (𝑞𝑖, 𝑞−𝑖) is concave

in 𝑞𝑖 for all 𝑖 ∈ 𝐼 and all 𝑠 ∈ [𝜃].

Proposition 4.1 is intuitive: By definition (4.5), if all fixed points in Ω are complete infor-

mation fixed points, then any imperfect information belief 𝜃 ∈ Δ(𝑆) other than the complete

information belief 𝜃* cannot be a fixed point belief. Therefore, the set Ω is comprised of only

the complete information fixed points if and only if the support set of any 𝜃 ∈ Δ(𝑆) ∖ {𝜃*}

has at least one parameter that can be distinguished from the true parameter 𝑠* with an

equilibrium corresponding to 𝜃.

Besides, for any fixed point
(︀
𝜃, 𝑞
)︀
, since 𝑞𝑖 is a best response strategy of 𝑞−𝑖, 𝑞𝑖 is a

local maximizer of the expected payoff function E𝜃[𝑢𝑠𝑖 (𝑞𝑖, 𝑞−𝑖)]. Condition (i) in Proposition

4.1 ensures that the value of the expected payoff function is identical to that with the true

parameter 𝑠* for any 𝑞𝑖 belonging to a small neighborhood of 𝑞𝑖. Therefore, 𝑞𝑖 must be a

local maximizer of the payoff function with the true parameter 𝑢𝑠*𝑖 (𝑞𝑖, 𝑞−𝑖). Moreover, since

condition (ii) provides that payoffs are concave functions of 𝑞𝑖, 𝑞𝑖 must also be a global

maximizer of 𝑢𝑠*𝑖 (𝑞𝑖, 𝑞−𝑖). Thus, any fixed point strategy 𝑞 is an equilibrium of the game

with complete information of 𝑠*.

Next we present three illustrative examples to further discuss the properties of fixed

points in our learning dynamics.
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Example 4.1 (Cournot game). A set of 𝐼 firms produce an identical product and compete

in a market. In each stage 𝑘, firm 𝑖’s strategy is their production level 𝑞𝑘𝑖 ∈ [0, 3]. The

price of the product is 𝑝𝑘 = 𝛼𝑠 − 𝛽𝑠
(︀∑︀

𝑖∈𝐼 𝑞
𝑘
𝑖

)︀
+ 𝜖𝑠, where 𝑠 = (𝛼𝑠, 𝛽𝑠) is the unknown

parameter vector in the price function, and 𝜖 is a random variable with zero mean. The set

of parameter vectors is 𝑆 = {𝑠1, 𝑠2}, where 𝑠1 = (2, 1) and 𝑠2 = (4, 3). The true parameter

is 𝑠* = 𝑠1. The marginal cost of each firm is 0. Therefore, the payoff of firm 𝑖 in stage 𝑘 is

𝑦𝑘𝑖 = 𝑞𝑘𝑖
(︀
𝛼𝑠 − 𝛽𝑠

(︀∑︀
𝑘∈𝐾 𝑞

𝑘
𝑖

)︀
+ 𝜖𝑠

)︀
for each 𝑠 ∈ 𝑆. The information platform updates belief

𝜃𝑘 based on the total production
∑︀

𝑖∈𝐼 𝑞
𝑘
𝑖 and the realized price 𝑝𝑘.

This game has a potential function, and the best response correspondence BR(𝑞, 𝜃) is a

contraction mapping for all 𝑞 ∈ 𝑄 and all 𝜃 ∈ Δ(𝑆). Thus, all three types of best response

update rules satisfy Assumption 1.4 Thus, from Theorem 4.1, the states of the learning

dynamics converge to a fixed point with probability 1 with all three types of strategy updates.

The complete information fixed point is 𝜃* = (1, 0) and 𝑞* = (2/3, 2/3). Additionally,

𝜃† = (0.5, 0.5) and 𝑞† = (0.5, 0.5) ∈ EQ(𝜃†) is also a fixed point since [𝜃†] ⊆ 𝑆*(𝑞†) = {𝑠1, 𝑠2}.

Thus,
(︀
𝜃†, 𝑞†

)︀
is another fixed point. Note that at 𝑞†, the two parameters 𝑠1 and 𝑠2 lead to

identical price distribution, and thus cannot be distinguished.

In fact, since any 𝜃 ̸= 𝜃* must include 𝑠2 in the support set, one can show that 𝑞† =

(0.5, 0.5) is the only strategy profile for which 𝑠1 and 𝑠2 are payoff-equivalent. Thus,

there does not exist any other fixed points apart from (𝜃*, 𝑞*) and
(︀
𝜃†, 𝑞†

)︀
; i.e. Ω ={︀

(𝜃*, 𝑞*), (𝜃†, 𝑞†)
}︀
.

Example 4.2 (Zero sum game). Two players 𝑖 ∈ {1, 2} repeatedly play a zero-sum game

with identical convex and closed strategy sets 𝑄1 = 𝑄2 = [0, 6]. For any strategy profile 𝑞,

the payoff of each player is 𝑦1 = −𝑦2 = 𝑣𝑠(𝑞) + 𝜖𝑠, where

𝑣𝑠(𝑞) =
(︀
max

(︀
|𝑞𝑘1 − 𝑞𝑘2 |, 𝑠

)︀
− 𝑠
)︀2 − 2(𝑞𝑘1)

2,

and 𝑠 ∈ 𝑆 = {1, 3, 5} is the unknown parameter. The true parameter 𝑠* = 3. Belief is

4For any 𝜃 ∈ Δ(𝑆) and any 𝑞 ∈ 𝑄, the best response strategy is BR𝑖(𝜃, 𝑞) = { E𝜃[𝛼
𝑠]

2E𝜃[𝛽𝑠] −
1
2

∑︀
𝑗 ̸=𝑖 𝑞𝑗}, where

E𝜃[𝛼
𝑠] =

∑︀
𝑠∈𝑆 𝜃(𝑠)𝛼𝑠 and E𝜃[𝛽

𝑠] =
∑︀

𝑠∈𝑆 𝜃(𝑠)𝛽𝑠. Then, for any 𝑞, 𝑞′ ∈ 𝑄, we have ‖BR(𝜃, 𝑞)−BR(𝜃, 𝑞′)‖ <
1
4‖𝑞−𝑞′‖, i.e. BR(𝜃, 𝑞) is a contraction mapping. Thus, for each of the three best response dynamics, 𝐹 (𝜃, 𝑞)
is also a contraction mapping. Therefore, the sequence of strategies converges to the equilibrium strategy in
EQ(𝜃) under all three best response dynamics.
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updated by an information platform based on the observed strategy and the realized payoffs.

All three types of best response update rules satisfy Assumption 1 in this zero sum game.5

From Theorem 4.1, the learning dynamics under (Linear-BR) converges to a fixed point w.p.

1.

The set of complete information fixed points is 𝜃* = (0, 1, 0) and EQ(𝜃*) = {(𝑞*1, 𝑞*2) |𝑞*1 =

0, 𝑞*2 ≤ 3}. Apart from the complete information fixed points, any 𝜃† ∈ Δ(𝑆) ∖ {(0, 0, 1)}

and any 𝑞† ∈ {(𝑞1, 𝑞2) |𝑞†1 = 0, 𝑞†2 ≤ min{[𝜃†]}} is also a fixed point. This is because for

any belief 𝜃† that assigns positive probability on 𝑠 = 1 or 𝑠 = 3, 𝑞†1 = 0 and 𝑞†2 such that

|𝑞†2 − 𝑞
†
2| ≤ min{[𝜃†]} is an equilibrium corresponding to 𝜃†, and the two parameters 𝑠 = 1

and 𝑠 = 3 are payoff equivalent at 𝑞†.

Moreover, we can check that conditions (i) and (ii) in Proposition 4.1 are satisfied by

any fixed point
(︀
𝜃†, 𝑞†

)︀
. Thus, any fixed point strategy in the set {

(︁
𝑞†1, 𝑞

†
2

)︁
|𝑞†1 = 0, 𝑞†2 ≤

min{[𝜃†]}} is a complete information equilibrium although 𝜃† is not a complete information

belief.

Example 4.3 (Investment game). Two players repeatedly play an investment game. In each

stage 𝑘, the strategy 𝑞𝑘𝑖 ∈ [0, 1] is the non-negative level of investment of player 𝑖. Given the

strategy profile 𝑞𝑘 =
(︀
𝑞𝑘1 , 𝑞

𝑘
2

)︀
, the return of a unit investment is randomly realized according

to 𝑟𝑘 = 𝑠 + 𝑞𝑘1 + 𝑞𝑘2 + 𝜖𝑠, where 𝑠 ∈ 𝑆 = {0, 1, 2} is the unknown parameter that represents

the average baseline return and 𝜖𝑠 is the noise term. The true parameter is 𝑠* = 1. The

stage cost of investment for each player is 3
(︀
𝑞𝑘𝑖
)︀2. Therefore, the payoff of each player 𝑖 ∈ 𝐼

is 𝑦𝑘𝑖 = 𝑞𝑘𝑖 (𝑠 + 𝑞𝑘1 + 𝑞𝑘2 + 𝜖𝑠) − 3
(︀
𝑞𝑘𝑖
)︀2

= 𝑞𝑘𝑖 (𝑠 − 2𝑞𝑘𝑖 + 𝑞𝑘−𝑖 + 𝜖𝑠) for all 𝑠 ∈ 𝑆. In each stage

𝑘, the information platform updates belief 𝜃𝑘 based on the total investment 𝑞𝑘1 + 𝑞𝑘2 and the

unit investment return 𝑟𝑘.

This game is a supermodular game, and it is also dominance solvable. All three best

response dynamics satisfy Assumption 1.6 Thus, states in learning with converge to a fixed

5For any 𝜃 ∈ Δ(𝑆), 𝑞1 = 0 maximizes the expected utility of player 1. Thus, regardless of the sequence of
player 2’s strategies, the sequence of player 1’s strategy converges to 0 under all three best response dynamics.
Additionally, the sequence of player 2’s strategies converges to a best response strategy in BR2(𝜃, 0) =
{𝑄2|𝑞2 ≤ min{[𝜃]}}. Since EQ(𝜃) = {(𝑞1, 𝑞2) |𝑞1 = 0, 𝑞2 ≤ min{[𝜃]}}, the sequence of strategies converges to
an equilibrium strategy under all three best response dynamics.

6For any 𝜃 ∈ Δ(𝑆) and any 𝑞 ∈ 𝑄, the best response strategy is BR(𝜃, 𝑞) = {E𝜃[𝑠]+𝑞2
4 , E𝜃[𝑠]+𝑞1

4 }, where
E𝜃[𝑠] =

∑︀
𝑠∈𝑆 𝜃(𝑠)𝑠. Same as Example 1, for any 𝑞, 𝑞′ ∈ 𝑄, we have ‖BR(𝜃, 𝑞) − BR(𝜃, 𝑞′)‖ = 1

4‖𝑞 − 𝑞′‖ <
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point with probability 1. In this game, since 𝑆*(𝑞) = {𝑠* = 1} for any 𝑞 ∈ 𝑄, the unique fixed

point is the complete information fixed point, i.e. Ω = {(𝜃*, 𝑞*) = ((0, 1, 0) , (1/3, 1/3))}.

4.3.2 Stability

In this section, we analyze both global and local stability properties of fixed point belief 𝜃

and the associated equilibrium set EQ(𝜃).

Definition 4.3 (Global stability). A fixed point belief 𝜃 ∈ Δ(𝑆) and the associated equilib-

rium set EQ(𝜃) are globally stable if for any initial state (𝜃1, 𝑞1), the beliefs of the learning

dynamics
(︀
𝜃𝑘
)︀∞
𝑘=1

converge to 𝜃 and the strategies
(︀
𝑞𝑘
)︀∞
𝑘=1

converge to EQ(𝜃) with probability

1.

Thus, global stability requires that that the convergent fixed point belief and the corre-

sponding equilibrium set do not depend on the initial state.

We next introduce the definition of local stability. For any 𝜖 > 0, we define an 𝜖-

neighborhood of belief 𝜃 as 𝑁𝜖(𝜃)
Δ
=
{︀
𝜃
⃒⃒
‖𝜃 − 𝜃‖ < 𝜖

}︀
. For any 𝛿 > 0, we define the 𝛿-

neighborhood of equilibrium set as𝑁𝛿(EQ(𝜃))
Δ
=
{︀
𝑞
⃒⃒
𝐷
(︀
𝑞,EQ(𝜃)

)︀
< 𝛿

}︀
, where𝐷

(︀
𝑞,EQ(𝜃)

)︀
=

min𝑞′∈EQ(𝜃) ‖𝑞 − 𝑞′‖ is the Euclidean distance between 𝑞 and the set EQ(𝜃).

Definition 4.4 (Local stability). A fixed point belief 𝜃 ∈ Δ(𝑆) and the associated equilibrium

set EQ(𝜃) are locally stable if for any 𝛾 ∈ (0, 1) and any 𝜖, 𝛿 > 0, there exist 𝜖1, 𝛿1 > 0 such

that for the learning dynamics that starts with 𝜃1 ∈ 𝑁𝜖1(𝜃) and 𝑞1 ∈ 𝑁𝛿1(EQ(𝜃)), the following

holds:

lim
𝑘→∞

Pr
(︀
𝜃𝑘 ∈ 𝑁𝜖(𝜃), 𝑞

𝑘 ∈ 𝑁𝛿(EQ(𝜃))
)︀
> 𝛾. (4.6)

Thus, local stability requires that when the learning starts with an initial state that is

sufficiently close to a fixed point belief 𝜃 and the associated equilibrium set EQ(𝜃), then the

sequence of beliefs (resp. sequence of strategies) is guaranteed to be arbitrarily close to 𝜃

(resp. EQ(𝜃)), with arbitrarily high probability. In other words, when the belief 𝜃 and the

‖𝑞 − 𝑞′‖, i.e. BR(𝜃, 𝑞) is a contraction mapping. Thus, under any one of the three best response dynamics,
𝐹 (𝜃, 𝑞) is also a contraction mapping, and the sequence of strategies converges to an equilibrium strategy in
EQ(𝜃).
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equilibrium strategy set EQ(𝜃) are locally stable, the learning dynamics is robust to small

perturbations around 𝜃 and EQ(𝜃). On the other hand, if 𝜃 and EQ(𝜃) are locally unstable,

then there exists a non-zero probability 𝜄 > 0 such that the state of learning dynamics can

leave the neighborhood of 𝜃 and EQ(𝜃) with probability at least 𝜄 even when the initial belief

𝜃1 (resp. strategy 𝑞1) is arbitrarily close to 𝜃 (resp. EQ(𝜃)).

Note that both global and local stability notions are not defined for individual fixed

points, but rather for the tuple
(︀
𝜃,EQ(𝜃)

)︀
, i.e. the set of fixed points with an identical belief

𝜃. This is important when the game has multiple equilibria; i.e., EQ(𝜃) is not a singleton

set for some belief 𝜃 ∈ Δ(𝑆). That is, our stability notions do not hinge on the convergence

to a particular equilibrium in the fixed point equilibrium set EQ(𝜃).

we provide a necessary and sufficient condition for global stability:

Proposition 4.2. There exists a globally stable fixed point if and only if all fixed points are

complete information fixed points, i.e. Ω = {(𝜃*,EQ(𝜃*))}. In fact, in this case, all fixed

points in (𝜃*,EQ(𝜃*)) are globally stable.

This result is quite intuitive: If the set Ω contains another fixed point that is not a

complete information fixed point, then whether the states of learning dynamics converge

to the complete information fixed point or another fixed point depends on the initial state;

hence no fixed point in the set can be globally stable. Also recall from Proposition 4.1

that all fixed points being complete information fixed points is equivalent to the condition

that any parameter other than the true parameter 𝑠* can be distinguished from 𝑠* at the

equilibrium. From Proposition 4.2, we know that this condition is also equivalent to the

existence of globally stable fixed points.

To prove local stability, we assume that the following set of conditions hold:

Assumption 2. For a fixed point belief 𝜃 and the associated equilibrium set EQ(𝜃), ∃𝜖, 𝛿 > 0

such that the neighborhoods 𝑁𝜖

(︀
𝜃
)︀

and 𝑁𝛿

(︀
EQ(𝜃)

)︀
satisfy

(A2a) Local upper hemicontinuity: EQ(𝜃) is upper-hemicontinuous in 𝜃 for any 𝜃 ∈ 𝑁𝜖

(︀
𝜃
)︀
.

(A2b) Local invariance: Neighborhood 𝑁𝛿(EQ(𝜃)) is a locally invariant set of the best response

correspondence, i.e. BR(𝜃, 𝑞) ⊆ 𝑁𝛿(EQ(𝜃)) for any 𝑞 ∈ 𝑁𝛿

(︀
EQ(𝜃)

)︀
and any 𝜃 ∈ 𝑁𝜖

(︀
𝜃
)︀
.

(A2c) Local consistency: Fixed point belief 𝜃 forms a consistent payoff estimate in the local
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neighborhood 𝑁𝛿(𝐸𝑄(𝜃)), i.e. [𝜃] ⊆ 𝑆*(𝑞) for any 𝑞 ∈ 𝑁𝛿(𝐸𝑄(𝜃)).

Theorem 4.2. A fixed point belief 𝜃 ∈ Δ(𝑆) and the associated equilibrium set 𝐸𝑄(𝜃) is

locally stable under the learning dynamics (𝜃-update) and (𝑞-update) if Assumptions 1 and

2 are satisfied.

From Theorem 4.1, we know that Assumption 1 ensures the convergence of beliefs and

strategies under local perturbations. We now discuss the role of each of the three conditions

in Assumption 2 towards local stability. Firstly, the local upper hemicontinuity condition

(A2a) guarantees that the convergent equilibrium strategy remains close to the original fixed

point equilibrium when the belief is locally perturbed. Secondly, the local invariance condi-

tion (A2b) guarantees that the strategy sequence resulting from the strategy updates remains

within the local invariant neighborhood of the fixed point equilibrium. We remark that for

games with complete information, local invariance reduces to the standard condition on the

existence of invariant set for best response strategy updates under no parameter uncertainty,

and this property is sufficient to ensure the local stability of complete information equilib-

rium. Hence, the conditions of local upper hemicontinuity and local invariance conditions

together ensure that the strategy sequence in our learning dynamics does not leave the local

neighborhood of EQ(𝜃) so long as the perturbed beliefs remain close to 𝜃.

Finally, the local consistency condition (A2c) ensures that (𝜃-update) keeps the beliefs

close to 𝜃. Under this condition, any parameter in the support of 𝜃 remains to be payoff

equivalent to 𝑠* for any strategy in a local neighborhood of EQ(𝜃). That is, 𝜃 forms a

consistent estimate of players’ payoffs not just at fixed point strategy 𝑞, but also when the

strategy is locally perturbed around 𝑞. Therefore, the Bayesian belief update keeps the

beliefs of all parameters in [𝜃] close to their respective probabilities in 𝜃 when the strategies

are in the local neighborhood, and eventually any parameters that are not in [𝜃] are excluded

by the learning dynamics.

We now detail the proof ideas of Theorem 4.2 (the formal proof is given in Appendix B).

From Definition 4.4, to prove local stability, we need to characterize the local neighborhoods

𝑁𝜖1
(︀
𝜃
)︀

and 𝑁𝛿1
(︀
EQ(𝜃)

)︀
of the initial state (𝜃1, 𝑞1) such that (4.6) is satisfied. In our proof,

we first show via Lemma 4.4 that (4.6) is satisfied if the sequence of states – beliefs and
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strategies – remain with probability higher than 𝛾 in the specifically constructed neighbor-

hoods 𝑁𝜖

(︀
𝜃
)︀

and 𝑁𝛿

(︀
EQ(𝜃)

)︀
, respectively; here, 𝜖 ∈ (0, 𝜖) and 𝜖, and 𝛿 are chosen according

to Assumption 2. Subsequently, in Lemmas 4.5 and 4.6, we precisely characterize the neigh-

borhoods 𝑁𝜖1
(︀
𝜃
)︀

and 𝑁𝛿1
(︀
EQ(𝜃)

)︀
such that the sequence of beliefs and strategies starting

from initial state (𝜃1, 𝑞1) ∈ (𝑁𝜖1(𝜃) × 𝑁𝛿1(EQ(𝜃)) remain in the respective neighborhoods

𝑁𝜖(𝜃) and 𝑁𝛿(EQ(𝜃)) that we specifically construct in Lemma 4.4 with probability higher

than 𝛾.

In Lemma 4.4, parts (i) and (ii) show that under Assumption (A2a) – (A2b), the proper-

ties of local upper-hemicontinuity and local invariance hold in the neighborhoods 𝑁𝜖

(︀
𝜃
)︀

and

𝑁𝛿

(︀
EQ(𝜃)

)︀
. Additionally, part (iii) shows that if the belief sequence and strategy sequence

are in respective sets 𝑁𝜖(𝜃) and 𝑁𝛿(𝐸𝑄(𝜃)), then the convergent state must be in 𝑁𝜖(𝜃) and

𝑁𝛿

(︀
EQ(𝜃)

)︀
.

Lemma 4.4. Under Assumptions 1 and (A2a) – (A2b),

(i) For any 𝛿 > 0, ∃𝜖′ ∈ (0, 𝜖) such that any 𝜃 ∈ 𝑁𝜖′(𝜃) satisfies EQ(𝜃) ⊆ 𝑁𝛿(EQ(𝜃)).

(ii) For any 𝜖 > 0, BR(𝜃, 𝑞) ⊆ 𝑁𝛿(EQ(𝜃)) for all 𝑞 ∈ 𝑁𝛿(EQ(𝜃)) and all 𝜃 ∈ 𝑁𝜖

(︀
EQ(𝜃)

)︀
,

where 𝜖 = min{𝜖, 𝜖′, 𝜖}.

(iii) lim𝑘→∞ Pr
(︀
𝜃𝑘 ∈ 𝑁𝜖(𝜃), 𝑞𝑘 ∈ 𝑁𝛿(EQ(𝜃))

)︀
≥ Pr

(︀
𝜃𝑘 ∈ 𝑁𝜖(𝜃), 𝑞

𝑘 ∈ 𝑁𝛿(EQ(𝜃)), ∀𝑘
)︀
.

In Lemma 4.4, (i) follows from Assumption (A2a) that EQ(𝜃) is upper-hemicontinuous

in 𝜃 in the local neighborhood 𝑁𝜖

(︀
𝜃
)︀
. Then, we obtain (ii) from Assumption (A2b) that

𝑁𝛿

(︀
EQ(𝜃)

)︀
is an invariant set of the best response correspondence. Furthermore, if beliefs

are in 𝑁𝜖(𝜃) for all stages, then the convergent belief must also be in 𝑁𝜖(𝜃) ⊆ 𝑁𝜖(𝜃). Based

on Theorem 4.1, the sequence of strategies converges. Since 𝑁𝜖(𝜃) ⊆ 𝑁𝜖′(𝜃), we know from

(i) in Lemma 4.4 that the convergent strategy is an equilibrium in 𝑁𝛿(EQ(𝜃)). Thus, (iii)

holds.

Thanks to Lemma 4.4 (iii), to prove local stability as in (4.6), it remains to be estab-

lished that there exist 𝑁𝜖1(𝜃) and 𝑁𝛿1
(︀
EQ(𝜃)

)︀
for the initial belief 𝜃1 and strategy 𝑞1 such

that Pr
(︀
𝜃𝑘 ∈ 𝑁𝜖(𝜃), 𝑞𝑘 ∈ 𝑁𝛿(EQ(𝜃)), ∀𝑘

)︀
> 𝛾. In particular, 𝜃𝑘 ∈ 𝑁𝜖

(︀
𝜃
)︀

is guaranteed if

|𝜃𝑘(𝑠)− 𝜃(𝑠)| ≤ 𝜖
|𝑆| for all 𝑠 ∈ 𝑆. We separately analyze the beliefs of all 𝑠 ∈ 𝑆 ∖ [𝜃] (i.e. the
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set of parameters with zero probability in 𝜃) in Lemma 4.5, and that of 𝑠 ∈ [𝜃] in Lemma

4.6. Additionally, parts (a) and (b) in Lemma 4.4 are useful in Lemmas 4.5 and 4.6 for

constructing 𝜖1 and 𝛿1.

Before proceeding, we need to define the following thresholds:

𝜌1
Δ
= min

𝑠∈[𝜃]

{︂
(1− 𝛾)𝜃(𝑠)𝜖

(1− 𝛾 + |𝑆 ∖ [𝜃]|)(|𝑆 ∖ [𝜃]|+ 1)|𝑆|+ (1− 𝛾)𝜖

}︂
, (4.7a)

𝜌2
Δ
=

𝜖

(|𝑆 ∖ [𝜃]|+ 1)|𝑆|
, (4.7b)

𝜌3
Δ
= min

𝑠∈[𝜃]

{︃
𝜖− |𝑆 ∖ [𝜃]||𝑆|𝜌2𝜃(𝑠)
|𝑆| − |𝑆 ∖ [𝜃]||𝑆|𝜌2

,
𝜖

|𝑆|+ |𝑆 ∖ [𝜃]|
(︀
𝜃(𝑠)|𝑆|+ 𝜖

)︀ , 𝜃(𝑠)}︃ . (4.7c)

Lemma 4.5 below shows that if the initial belief 𝜃1 is in the neighborhood 𝑁𝜌1(𝜃), then

𝜃𝑘(𝑠) ≤ 𝜌2 for all 𝑠 ∈ 𝑆 ∖ [𝜃] in all stages of the learning dynamics with probability higher

than 𝛾. Note that 𝜃𝑘(𝑠) ≤ 𝜌2 ensures |𝜃𝑘(𝑠) − 𝜃(𝑠)| < 𝜖
|𝑆| since 𝜃(𝑠) = 0 for all 𝑠 ∈ 𝑆 ∖ [𝜃]

and 𝜌2 < 𝜖
|𝑆| . Additionally, the threshold 𝜌2 is specifically constructed to bound the beliefs

of the remaining parameters in [𝜃], which will be used later in Lemma 4.6.

Lemma 4.5. For any 𝛾 ∈ (0, 1), if the initial belief satisfies

𝜃1(𝑠) < 𝜌1, ∀𝑠 ∈ 𝑆 ∖ [𝜃], (4.8a)

𝜃(𝑠)− 𝜌1 < 𝜃1(𝑠) < 𝜃(𝑠) + 𝜌1, ∀𝑠 ∈ [𝜃], (4.8b)

then

Pr
(︀
𝜃𝑘(𝑠) ≤ 𝜌2, ∀𝑠 ∈ 𝑆 ∖ [𝜃], ∀𝑘

)︀
> 𝛾. (4.9)

In the proof of Lemma 4.5, we say that the belief 𝜃𝑘(𝑠) completes an upcrossing of the

interval [𝜌1, 𝜌2] if 𝜃𝑘(𝑠) increases from less than 𝜌1 to higher than 𝜌2. Note that if the belief of

a parameter 𝑠 ∈ 𝑆 ∖ [𝜃] is initially smaller than 𝜌1 but later becomes higher than 𝜌2 in some

stage 𝑘, then the belief sequence (𝜃𝑗(𝑠))
𝑘
𝑗=1 must have completed at least one upcrossing of

[𝜌1, 𝜌2] before stage 𝑘. Therefore, 𝜃𝑘(𝑠) ≤ 𝜌2 for all 𝑘 is equivalent to that the number of
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upcrossings completed by the belief is zero.

Additionally, by bounding the initial belief of parameters 𝑠 ∈ [𝜃] as in (4.8b), we construct

another interval
[︀
𝜌1/
(︀
𝜃(𝑠*)− 𝜌1

)︀
, 𝜌2
]︀

such that the number of upcrossings with respect

to this interval completed by the sequence of belief ratios
(︁
𝜃𝑘(𝑠)
𝜃𝑘(𝑠*)

)︁∞
𝑘=1

is no less than the

number of upcrossings with respect to interval [𝜌1, 𝜌2] completed by
(︀
𝜃𝑘(𝑠)

)︀∞
𝑘=1

. Recall

that the sequence of belief ratios
(︁
𝜃𝑘(𝑠)
𝜃𝑘(𝑠*)

)︁∞
𝑘=1

forms a martingale process (Lemma 4.1). By

applying Doob’s upcrossing inequality, we obtain an upper bound on the expected number

of upcrossings completed by the belief ratio corresponding to each parameter 𝑠 ∈ 𝑆 ∖ [𝜃],

which is also an upper bound on the expected number of upcrossings made by the belief of

𝑠. Using Markov’s inequality and the upper bound of the expected number of upcrossings,

we show that with probability higher than 𝛾, no belief 𝜃𝑘(𝑠) of any parameter 𝑠 ∈ 𝑆 ∖ [𝜃] can

ever complete a single upcrossing with respect to the interval [𝜌1, 𝜌2] characterized by (4.7a)

– (4.7b). Hence, 𝜃𝑘(𝑠) remains lower than the threshold 𝜌2 for all 𝑠 ∈ 𝑆 ∖ [𝜃] and all 𝑘 with

probability higher than 𝛾.

Furthermore, Lemma 4.6 utilizes another set of conditions on the initial belief and strat-

egy; these conditions ensure that the beliefs of the remaining parameters 𝑠 ∈ [𝜃] satisfy

|𝜃𝑘(𝑠)− 𝜃(𝑠)| < 𝜖
|𝑆| , and the strategy 𝑞𝑘 ∈ 𝑁𝛿

(︀
EQ(𝜃)

)︀
for all 𝑘 so long as 𝜃𝑘(𝑠) < 𝜌2 for any

parameter 𝑠 ∈ 𝑆 ∖ [𝜃]. Recall that 𝜃𝑘(𝑠) < 𝜌2 for all 𝑠 ∈ 𝑆 ∖ [𝜃] is satisfied with probability

higher than 𝛾 under the conditions provided in Lemma 4.5.

Lemma 4.6. Under Assumption (A2b) – (A2c), if |𝜃1(𝑠) − 𝜃(𝑠)| < 𝜌3 for all 𝑠 ∈ [𝜃] and

𝑞1 ∈ 𝑁𝛿

(︀
EQ(𝜃)

)︀
, then

Pr

⎛⎝ |𝜃𝑘(𝑠)− 𝜃(𝑠)| < 𝜖
|𝑆| , ∀𝑠 ∈ [𝜃], ∀𝑘

and 𝑞𝑘 ∈ 𝑁𝛿

(︀
EQ(𝜃)

)︀
, ∀𝑘

⃒⃒⃒⃒
⃒⃒ 𝜃𝑘(𝑠) < 𝜌2, ∀𝑠 ∈ 𝑆 ∖ [𝜃], ∀𝑘

⎞⎠ = 1. (4.10)

We prove this lemma by mathematical induction. Since 𝜌2 < 𝜖
|𝑆| as in (4.7b), under

the condition that 𝜃𝑘(𝑠) < 𝜌2 for all 𝑠 ∈ 𝑆 ∖ [𝜃] and all 𝑘, we know that 𝜃𝑘(𝑠) < 𝜖
|𝑆| for

all 𝑠 ∈ 𝑆 ∖ [𝜃] and all 𝑘. In any stage 𝑘, assume that |𝜃𝑘(𝑠) − 𝜃(𝑠)| < 𝜖
|𝑆| for all 𝑠 ∈ [𝜃]

and 𝑞𝑘 ∈ 𝑁𝛿

(︀
EQ(𝜃)

)︀
. Then, 𝜃𝑘 ∈ 𝑁𝜖

(︀
𝜃
)︀

in stage 𝑘. Additionally, under local consistency

condition in Assumption (A2c), 𝑠 ∈ [𝜃] remains to be payoff equivalent at 𝑞𝑘. Thus, we can
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show that the belief of the next stage must satisfy |𝜃𝑘(𝑠)− 𝜃(𝑠)| < 𝜖
|𝑆| for all 𝑠 ∈ [𝜃], which

ensures that 𝜃𝑘+1 ∈ 𝑁𝜖

(︀
𝜃
)︀
. Since 𝜖 ≤ 𝜖 as in part (ii) of Lemma 4.4, we know that the

updated strategy 𝑞𝑘+1 is in 𝑁𝛿

(︀
EQ(𝜃)

)︀
. Hence, we obtain (4.10) by induction.

Finally, by setting 𝜖1 = min{𝜌1, 𝜌3} and 𝛿1 = 𝛿, where 𝜌1, 𝜌3 are as in (4.7a), (4.7c) and 𝛿

is given by Assumption 2, the initial state in 𝑁𝜖1(𝜃) and 𝑁𝛿1
(︀
EQ(𝜃)

)︀
satisfies the conditions

in Lemmas 4.5 and 4.6. Then, by combining (4.9) and (4.10), we obtain that all beliefs

and strategies are in the neighborhoods 𝑁𝜖

(︀
𝜃
)︀

and 𝑁𝛿

(︀
EQ(𝜃)

)︀
respectively with probability

higher than 𝛾. From (c) in Lemma 4.4, we know that lim𝑘→∞ Pr
(︀
𝜃𝑘 ∈ 𝑁𝜖(𝜃), 𝑞

𝑘 ∈ 𝑁𝛿(EQ(𝜃))
)︀
≥

𝛾. Thus, we have constructed the local neighborhoods of the initial state that satisfy (4.6),

and we conclude Theorem 4.2.

We discuss the local and global stability properties of the fixed points in Examples 1 – 3.

Example 4.4 (Cournot game continued). In Example 4.1, since the complete information

fixed point is not the unique fixed point, no fixed point is globally stable. We now show that

the complete information fixed point 𝜃* = (1, 0), 𝑞* = (2/3, 2/3) is locally stable. Consider

𝜖 = 1/3 and 𝛿 = 1. We can check that all three conditions in Assumption 2 are satisfied

in the neighborhoods 𝑁𝜖 (𝜃
*) and 𝑁𝛿 (𝑞

*), and thus this fixed point is locally stable. On

the other hand, the other fixed point 𝜃† = (0.5, 0.5) and 𝑞† = (0.5, 0.5) does not satisfy the

local consistency condition since the two parameters 𝑠1 and 𝑠2 can be distinguished when

the strategy is perturbed in local neighborhood of 𝑞†.

Example 4.5 (Zero sum game continued). In Example 4.2, since the complete information

fixed point is not the unique fixed point, no fixed point is globally stable. Moreover, by

setting 𝜖 = 1/2 and 𝛿 = 6, we can check that all fixed points in Ω satisfy the three conditions

in Assumption 2, and thus are locally stable.

Example 4.6 (Investment game continued). The unique fixed point of the investment game

in Example 4.3 is the complete information fixed point (𝜃*, 𝑞*) = ((0, 1, 0) , (1/2, 1/3)). From

Proposition 4.2, the complete information fixed point is globally stable.
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4.4 Extensions

In this section, we consider three types of extensions of the basic learning model introduced

in Sec. 4.2: (1) Learning with two timescales; (2) Learning with maximum a posteriori

probability (MAP) or ordinary least squares (OLS) estimates.

(1) Learning with two timescales. Consider the case where strategy update is at a faster

timescale compared with the belief updates, i.e. lim𝑡→∞ 𝑘𝑡+1 − 𝑘𝑡 = ∞ with probability 1.

Under Assumption 1, as 𝑡 → ∞, the strategies between two belief updates 𝑘𝑡 and 𝑘𝑡+1

converge to an equilibrium strategy profile in EQ
(︀
𝜃𝑘𝑡
)︀

before the next belief update in stage

𝑘𝑡+1. Then, the updated belief 𝜃𝑘𝑡+1 forms an accurate payoff estimate given the equilibrium

strategy. Our convergence result (Theorem 4.1) holds for this two timescale dynamics. The

local and global stability results in Theorem 4.2 and Proposition 4.2 also hold in an analogous

manner.

(2) MAP and OLS estimates. Now consider a continuous and bounded parameter set

𝑆, and that the initial belief 𝜃1(𝑠) is a probability density function of 𝑠 on the set 𝑆, and

𝜃1(𝑠) > 0 for all 𝑠 ∈ 𝑆. Since the unknown parameter 𝑠 is continuous, Bayesian belief update

in (𝜃-update) at stage 𝑘𝑡+1 is as follows:

𝜃𝑘𝑡+1(𝑠) =
𝜃𝑘𝑡(𝑠)

∏︀𝑘𝑡+1−1
𝑘=𝑘𝑡

𝜑𝑠(𝑦𝑘|𝑞𝑘)∫︀
𝑠∈𝑆 𝜃

𝑘𝑡(𝑠)
∏︀𝑘𝑡+1−1

𝑘=𝑘𝑡
𝜑𝑠(𝑦𝑘|𝑞𝑘)𝑑𝑠

, ∀𝑠 ∈ 𝑆.

Instead of computing the full posterior belief in each stage (which entails computing the

continuous integration in the denominator of the Bayesian update), we consider learning

with maximum a posteriori (MAP) estimator that maximizes the posterior belief of the

unknown parameter:

𝜃
𝑘𝑡+1

𝑀 (𝑠) = argmax
𝑠∈𝑆

𝜃𝑘𝑡+1(𝑠) = argmax
𝑠∈𝑆

𝜃𝑘𝑡(𝑠)

𝑘𝑡+1−1∏︁
𝑘=𝑘𝑡

𝜑𝑠(𝑦𝑘|𝑞𝑘). (𝜃𝑀 -update)

Note that if the initial belief 𝜃1 is a uniform distribution of all parameters, then the MAP

estimate is also a maximum likelihood estimate (MLE).

Our result on convergence of state (Theorem 1) can be directly extended to this case
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of learning with MAP estimate. In particular, under Assumption 1, the sequence of MAP

estimates converges to a payoff equivalent parameter 𝜃𝑀 ∈ 𝑆*(𝑞) given the fixed point

strategy profile, and the strategies converge to an equilibrium strategy 𝑞 ∈ EQ(𝜃𝑀) of game

𝐺 with parameter 𝜃𝑀 .

Moreover, under Assumptions 1 and 2, we can check that if the initial belief 𝜃1 is in

a small local neighborhood of the belief vector that assigns probability 1 to a fixed point

MAP estimate 𝜃𝑀 and the strategy profile is in a small local neighborhood of the equilibrium

EQ(𝜃𝑀), then the convergent belief remains in a small neighborhood of the singleton belief

vector so that the MAP estimate remains to be 𝜃𝑀 and the equilibrium set is EQ(𝜃𝑀).

Therefore, analogous to Theorem 4.2, we can conclude that
(︀
𝜃𝑀 ,EQ(𝜃𝑀)

)︀
is locally stable

under conditions given by Assumptions 1 and 2.

Finally, we consider a special case, where the average payoff functions are affine in strate-

gies:

𝑦𝑖 = (𝑞, 1) · 𝑠𝑖 + 𝜖𝑠𝑖 , ∀𝑖 ∈ 𝐼. (4.11)

The unknown parameter vector is 𝑠 = (𝑠𝑖)𝑖∈𝐼 , where 𝑠𝑖 has |𝑞| + 1 dimensions. The noise

term 𝜖𝑠𝑖 is realized from a normal distribution with zero mean and finite variance.

From stage 1 to 𝑘𝑡, player 𝑖’s realized payoff
(︀
𝑦𝑘𝑖
)︀𝑘𝑡
𝑘=1

can be written as a linear function

of the strategies
(︀
𝑞𝑘
)︀𝑘𝑡
𝑘=1

in the following matrix form:

⎛⎜⎜⎜⎜⎜⎜⎝
𝑦1𝑖

𝑦2𝑖
...

𝑦𝑘𝑡𝑖

⎞⎟⎟⎟⎟⎟⎟⎠
⏟  ⏞  

𝑌
𝑘𝑡
𝑖

=

⎛⎜⎜⎜⎜⎜⎜⎝
𝑞1, 1

𝑞2, 1
...

...

𝑞𝑘𝑡 , 1

⎞⎟⎟⎟⎟⎟⎟⎠
⏟  ⏞  

�̃�𝑘𝑡

𝑠𝑖 +

⎛⎜⎜⎜⎜⎜⎜⎝
𝜖1𝑖

𝜖2𝑖
...

𝜖𝑘𝑡𝑖

⎞⎟⎟⎟⎟⎟⎟⎠ .

The OLS estimate is 𝑠𝑘𝑡 =
(︀
𝑠𝑘𝑡𝑖
)︀
𝑖∈𝐼 where

𝑠𝑘𝑡𝑖 =

(︂(︁
�̃�𝑘𝑡
)︁′
�̃�𝑘𝑡

)︂−1 (︁
�̃�𝑘𝑡
)︁′
𝑌 𝑘𝑡
𝑖 , ∀𝑖 ∈ 𝐼, ∀𝑘𝑡. (𝑠 - update)
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In learning dynamics with OLS estimate, the convergence of the OLS estimates can be

viewed as a special case of learning with MAP estimator because 𝑠𝑘𝑡 is identical to the MLE

estimator 𝜃𝑘𝑡𝑀 when each player’s payoff as in (4.11) is an affine function of the strategy profile

plus a noise term with Normal distribution. Therefore, we obtain the same convergence result

in the learning with OLS estimate as in learning with MAP estimate. That is, the OLS

estimates converge to an estimate 𝑠 ∈ 𝑆 such that 𝑢𝑠𝑖 (𝑞) = 𝑢𝑠
*
𝑖 (𝑞) for all 𝑖 ∈ 𝐼, and strategies

converge to 𝑞 ∈ EQ(𝑠) with probability 1. Furthermore, as we have shown in Example 1,

when payoff functions are linear in players’ strategies, only the complete information fixed

point satisfies the locally consistency condition Assumption (A2c). Thus, no other fixed

point satisfies the sufficient conditions for local stability.

4.5 Applications in Routing Games

In this section, we apply our results to study the learning dynamics in which travelers

repeatedly play a routing game in a transportation network.

The setup of the network and travelers’ routing strategies follow from that in Chapter 2.

A set of non-atomic travelers with a total demand of 𝐷 repeatedly make routing decisions

in a network. The set of edges in the network is 𝐸, and the set of routes is 𝑅. In each stage

𝑘, travelers’ routing strategy is 𝑞𝑘 =
(︀
𝑞𝑘𝑟
)︀
𝑟∈𝑅, where 𝑞𝑘𝑟 is the demand of travelers who take

route 𝑟. Given 𝑞𝑘, the aggregate load of each edge 𝑒 is 𝑤𝑘𝑒 =
∑︀

𝑟∋𝑒 𝑞
𝑘
𝑟 .

The distribution of cost (travel time) on edges depends on an unknown parameter 𝑠 ∈ 𝑆

that represents the latent condition of the traffic network. In stage 𝑘, the cost of each edge

𝑒 ∈ 𝐸 is 𝑦𝑘𝑒 = ℓ𝑠𝑒(𝑤
𝑘
𝑒 ) + 𝜖𝑠𝑒(𝑤

𝑘
𝑒 ), where ℓ𝑠𝑒(𝑤𝑘𝑒 ) is an increasing function of the edge load 𝑤𝑘𝑒 ,

and the noise term 𝜖𝑠𝑒(𝑤
𝑘
𝑒 ) has zero mean. In each stage 𝑘, a public information platform

observes the edge load vector 𝑤𝑘 =
(︀
𝑤𝑘𝑒
)︀
𝑒∈𝐸 and the realized costs of edges that are taken by

travelers. That is, the observed edge cost vector is 𝑦𝑘 =
(︀
𝑦𝑘𝑒
)︀
𝑒∈𝐸𝑘 , where 𝐸𝑘 = {𝐸|𝑤𝑘𝑒 > 0}.

However, the costs are unknown on edges that are not taken by travelers.

Learning starts with an initial belief 𝜃1 and a routing strategy 𝑞1. The public traffic

information platform updates the belief based on the observed edge load vector 𝑤𝑘, and the

realized cost vector 𝑦𝑘 according to the Bayes’ rule, and broadcasts the updated belief to all
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travelers. Then, travelers update their routing strategy in stage 𝑘 as a Wardrop equilibrium

𝑞𝑘 ∈ EQ(𝜃𝑘) corresponding to the belief 𝜃𝑘. In this equilibrium, travelers take routes with

the minimum expected cost based on 𝜃𝑘. Since the edge cost functions are increasing in

the edge loads, the equilibrium is essentially unique in that the induced edge load vector

𝑤𝑘 is unique for all 𝑞𝑘 ∈ EQ(𝜃𝑘). This strategy update can be viewed as a two-timescale

learning, where individual travelers in the population change their own routing decisions

at a faster timescale compared with the belief update. Therefore, the traveler population’s

routing strategy arrives at an equilibrium in each stage before the belief is updated by the

information platform for the next stage.

Following Theorem 4.1, we know that the state of the learning dynamics – the belief 𝜃𝑘

and the routing strategy 𝑞𝑘 – converge to a fixed point
(︀
𝜃, 𝑞
)︀

w.p. 1. At a fixed point, the

belief 𝜃 consistently estimates the cost distribution of edges in �̄� = {𝐸|�̄�𝑒 =
∑︀

𝑟∋𝑒 𝑞𝑟 > 0}

that are taken by travelers in 𝑞, and the strategy 𝑞 is a Wardrop equilibrium corresponding

to 𝜃. Since �̄� is unique for each 𝜃, we also equivalently represent a fixed point as the tuple(︀
𝜃, �̄�

)︀
. The fixed point belief 𝜃 may not consistently estimates the costs on edges that are not

taken by any travelers. Thus, the fixed point strategy 𝑞 may not be a complete information

Wardrop equilibrium.

We next provide a set of conditions, under each of which the sequence of strategies

converges to a complete information Wardrop equilibrium with probability 1. We denote the

edge load vector induced by a complete information equilibrium as 𝑤*.

Proposition 4.3. For any true parameter 𝑠* ∈ 𝑆, the learning is complete, i.e. lim𝑘→∞𝑤𝑘* =

𝑤* with probability 1, if any of the following conditions is satisfied:

(1) Fully distinguishable parameters: For any 𝑤, any 𝑠 ∈ 𝑆 ∖ {𝑠*} is distinguishable from

𝑠* given the realized costs.

(2) Constant free flow travel time: For any 𝑒 ∈ 𝐸 and any 𝑠, 𝑠′ ∈ 𝑆, ℓ𝑠𝑒(0) = ℓ𝑠
′
𝑒 (0).

(3) All edges are utilized: 𝑤*
𝑒 > 0 for any 𝑒 ∈ 𝐸.

Each condition ensures that travelers repeatedly use the set of edges that should be taken

in complete information equilibrium. Then, travelers will eventually learn the costs on these

edges, and choose routes as if they know the true cost functions.
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In practice, condition (1) is relevant if the unknown network condition impacts the costs

on all edges. Condition (2) requires that the unknown condition only impacts the costs when

there is congestion (𝑤𝑒 > 0). For example, lane closure does not change the cost when there

is no traffic, but significantly aggravates congestion due to the loss of capacity. Condition

(3) requires that all edges are utilized regardless of the network condition. This will hold

when the traffic demand is high.

The average cost of the traveler population at a fixed point with 𝑞 is 𝐶(𝑞) Δ
=
∑︀

𝑒∈𝐸 �̄�𝑒ℓ
𝑠*
𝑒 (�̄�𝑒),

where �̄� is the edge load vector induced by 𝑞. Additionally, the average cost in the complete

information equilibrium 𝑞* is 𝐶(𝑤*)
Δ
=
∑︀

𝑒∈𝐸 𝑤
*
𝑒ℓ
𝑠*
𝑒 (𝑤

*
𝑒). The next proposition shows that

if the network is series-parallel (i.e. the network does not have an embedded wheatstone

network, see Milchtaich [2006]), then the average cost at any fixed point is no less than that

in complete information equilibrium.

Proposition 4.4. If the network is series-parallel, then 𝐶(�̄�) ≥ 𝐶(𝑤*) at any fixed point

(𝜃, �̄�) ∈ Ω.

In the proof of this result, we find that the edge load at any fixed point is equivalent to

the complete information equilibrium in a routing game on a subnetwork with edges in �̄�.

In other words, travelers make route choice as if they only know a subset of the available

edges in the original network. The result (Theorem 1) in Milchtaich [2006] shows that if

the network is series-parallel, then the equilibrium average cost on any subnetwork is no less

than that on the whole original network. Therefore, the equilibrium cost of any fixed point

must be higher or equal to the cost of the complete information equilibrium.

Furthermore, we note that any local perturbation of the fixed point strategy would enable

travelers to learn the realized costs on edges that are not taken (i.e. 𝐸∖�̄�), and to correct the

wrong estimates of costs on those edges. Therefore, for any fixed point that is not a complete

information fixed point, the belief does not satisfy Assumption (A2c) as presented in Sec.

4.3.2, and thus is not robust to local perturbations on the strategies. This implies that only

the complete information fixed point satisfies the sufficient conditions that guarantee local

stability.

Finally, we illustrate the learning dynamics in repeated routing games in the following
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example.

Example 4.7 (Routing game). Consider the three-edge series-parallel network with 𝑆 =

{𝑒1, 𝑒2, 𝑒3, ∅}, where 𝑠 = 𝑒 represents that edge 𝑒 is compromised, and 𝑠 = ∅ represents that

no edge is compromised. The cost of edge 𝑒 is ℓ𝑒(𝑤𝑒) if 𝑠 ̸= 𝑒, and ℓ⊗𝑒 (𝑤𝑒) if 𝑠 = 𝑒. See Fig.

4-2 for the network and cost functions. In this example, we assume that the noise term in

each stage is 𝜖𝑘 =
(︀
𝜖𝑘𝑒
)︀
𝑒∈𝐸 ∼ 𝒩 (0,Σ), where Σ is a three-dimensional identity matrix. The

total demand is 1.

Figure 4-2: Three-edge network

Let the true parameter be 𝑠* = ∅. The set of fixed points is as follows:

Ω =

⎧⎨⎩ 𝜃* = (0, 0, 0, 1),

𝑤* = (1, 0.5, 0.5)

⎫⎬⎭ ∪
⎧⎨⎩ 𝜃† = (0, 𝑥, 0, 1− 𝑥) 𝑠.𝑡. 𝑥 ≥ 0.2,

𝑤† = (1, 0, 1)

⎫⎬⎭
That is, apart from the complete equilibrium edge load 𝑤*, travelers may exclusively choose

the route 𝑒3 - 𝑒1 if they believe that the probability of 𝑠 = 𝑒2 is no less than 0.2. In this case,

the public information platform cannot distinguish parameter 𝑠 = 𝑒2 from the true parameter

𝑠* = ∅ based on the realized costs. We can check that 𝐶(𝑤*) = 11.5 < 𝐶(𝑤†) = 12.

We simulate the learning dynamics with the initial belief 𝜃1 = (1/4, 1/4, 1/4, 1/4). Fig-

ures 4-3a - 4-3b demonstrate the belief 𝜃𝑘 and the edge load 𝑤𝑘 in each stage for a realized

dynamics that converges to (𝜃*, 𝑤*), i.e. learning converges to a complete information equi-

librium. Figures 4-3c - 4-3d illustrate a realized dynamics that converges to (𝜃†, 𝑤†), where

𝜃† = (0, 1/2, 0, 1/2) and 𝑤† = (1, 0, 1), i.e. travelers exclusively take 𝑒3-𝑒1, and do not learn

the true parameter.

98



0 10 20 30 40 50

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a)

0 10 20 30 40 50

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b)

0 10 20 30 40 50

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c)

0 10 20 30 40 50

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(d)

Figure 4-3: Beliefs and edge load vectors in learning dynamics: (a) - (b) Learning converges
to a complete information fixed point (𝜃*, 𝑤*); (c) - (d) Learning converges to another fixed
point

(︀
𝜃†, 𝑤†)︀.
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4.6 Discussion

In this chapter, we study stochastic learning dynamics induced by a set of strategic players

who repeatedly play a game with an unknown parameter. We analyze the convergence of

beliefs and strategies induced by the stochastic dynamics, and derived conditions for local

and global stability of fixed points. We also apply the learning dynamics to study how

strategic travelers learn the uncertain network condition after infrastructure disruptions and

adjust their route choices with the access of a public information platform. We compare

the average cost at any fixed point routing strategy with that of a complete information

equilibrium, and provide conditions that guarantee complete learning in traffic networks.

A future research question of interest is to analyze the learning dynamics when players

seek to efficiently learn the true parameter by choosing off-equilibrium strategies. When

there are one or more parameters that are payoff equivalent to the true parameter at fixed

point, complete learning requires players to take strategies that may reduce their individual

payoffs in some stages. In our setup, if a player were to chooses a non-equilibrium strategy,

the information resulting from that player’s realized payoff would be incorporated into the

belief update, and the new belief is known to all players. Under what scenarios the utility-

maximizing players will choose their strategies to engage such explorative behavior is an

interesting question, and worthy of further investigation.

Another promising extension is to study multi-agent reinforcement learning problem from

a Bayesian viewpoint. In such settings, the unknown parameter changes over time according

to a Markovian transition process, and players may have imperfect or no knowledge of the

underlying transition kernel. The ideas presented in this article are useful to analyze how

players learn the belief estimates of payoffs that depend on the latent Markov state, and

adaptively adjust their strategies that converges to an equilibrium.
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Chapter 5

Efficient Carpooling and Toll Pricing for

Autonomous Transportation

5.1 Introduction

Autonomous transportation has the potential to significantly transform urban mobility when

the technology becomes mature enough for real-world deployment. A fleet of driverless

cars could be utilized to organize carpooled trips at a much cheaper price and in a more

flexible manner relative to the current mobility services that rely on human drivers. Whether

autonomous driving technology will relieve or aggravate congestion crucially depends on

how this technology would reshape the riders’ incentives to make trips and share cars (i.e.

carpooling). Thus, to fully exploit the potential of self-driving cars, we need to incentivize

efficient usage of limited road capacity by leveraging the flexibility of carpooling.

In Chapters 2 – 4, we have studied the impact of information on travelers’ routing be-

havior in both static and dynamic settings. We have also designed information structure for

platforms to induce socially desirable travel patterns. In this chapter, we explore the role

of incentive mechanisms on shaping travel behavior. Particularly, we seek to set tolls on

transportation networks that incentivize travelers (riders) to take carpooled trips and split

costs.

Toll pricing has been adopted worldwide as an effective way to manage traffic demand

and mitigate congestion in urban transportation networks (Santora [2017], and Arnold et al.
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[2010]). Previous work has demonstrated that properly designed toll prices can significantly

reduce congestion, or even induce socially optimal route choices (Pigou [1932], and de Palma

and Lindsey [2011]). This chapter shows that toll prices can also govern riders’ incentives of

participating carpooled trips.1

Ostrovsky and Schwarz [2019] have introduced a competitive market model to address

the complementarity between efficient carpooling and optimal tolling. In this model, the

transportation authority sets toll prices on edges with limited capacities. Riders with het-

erogeneous preferences organize carpooled trips and make payments to split the toll prices

and trip costs. A market outcome is defined by organized trips, riders’ payments, and edge

toll prices.

Building on Ostrovsky and Schwarz [2019], we consider that riders’ heterogeneous pref-

erences are represented by their valuations of carpooled trips that depend on the travel time

of the chosen route in network, and rider-specific parameters which capture their value of

time and carpool disutilities. Equilibrium of this carpooling market is defined as an out-

come in which no rider has an incentive to deviate from the organized trips or opt-out, and

riders’ payments cover the toll prices plus the trip costs. Additionally, trip organization at

equilibrium, if exists, ensures social efficiency (i.e., maximum social welfare). However, such

an equilibrium may not exist in general due to the integral nature of carpooled trips on gen-

eral networks and riders’ incentive constraints. Thus, the question of equilibrium existence

becomes central to the implementation of the autonomous carpooling market.

In this chapter, we identify sufficient conditions that guarantee the existence of market

equilibrium. Note that market equilibrium in our setting is challenging to analyze because

both trip organization and toll pricing are crucially influenced by the network topology.

Particularly, the trip organization is essentially a coalition formation problem on the network,

where any trip on a certain route consumes a unit capacity of all edges in that route.

Additionally, the toll price on a single edge can impact the coalition formation of all trips that

use routes going through that edge. Therefore, the classical methods in mechanism design

1For example, when toll prices are zero on all roads, all riders will choose to take solo trips on the shortest
route in the network, and the traffic load will exceed the capacity. As the toll prices of edges on this route
increase, riders will be incentivized to take carpooled trips in order to split the toll prices (or switch to longer
routes).
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and coalition games cannot be readily applied to address the impact of network topology. We

develop a new approach to analyze market equilibrium by extending the results in market

design (Kelso Jr and Crawford [1982], Gul and Stacchetti [1999], De Vries and Vohra [2003],

Leme [2017]) and network flow optimization (Dantzig and Fulkerson [2003]). Indeed, we find

that the equilibrium existence requires certain restrictions on network topology.

Another important question of organizing this carpooling market is efficient implemen-

tation of market equilibrium. We consider the situation, where the market is facilitated

by a neural mobility platform that collects riders’ reported preferences, organizes trips and

charge payments (Fig. 5-1). We identify a strategyproof market equilibrium under which

riders truthfully report their preferences so that this equilibrium can be implemented by the

platform. We find that in this equilibrium, riders’ payments are equal to their externalities

on other riders, and hence are equivalent to the payments in the classical Vickery-Clark-

Grove mechanism. This equilibrium also has the advantage of achieving the highest rider

utilities among all market equilibria, and only collecting the minimum total toll prices.

Figure 5-1: Platforms organize autonomous carpooling trips on networks with limited ca-
pacity.

Our model and results contribute to the growing literature on autonomous vehicle market

design and competition. The paper Siddiq and Taylor [2019] studied the impact of compe-

tition between two ride-hailing platforms on their choices of autonomous vehicle fleet sizes,

prices and wages of human drivers. The authors of Lian and van Ryzin [2020] studied the

prices in ride-hailing markets, where an uncertain aggregate demand is served by a fixed fleet

of autonomous vehicles and elastic supply of human drivers. They argue that the only design

that unambiguously reduces the service prices corresponds to the setting when the provision

of autonomous carpooled trips occurs in a competitive environment. This finding aligns well

with our focus on a competitive autonomous carpooling market. We show that by exploiting

the complementarity between carpooling and road pricing, we can achieve an equilibrium
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outcome that is socially optimal (when sufficient conditions for equilibrium existence are

satisfied).

This chapter is organized as follows: Sec. 5.2 describes the model of carpooling market.

Sec. 5.3 shows the primal and dual formulation of the optimal trip organization problem.

We introduce the sufficient conditions for equilibrium existence in Sec. 5.4, and presents

an algorithm for computing the equilibrium in Sec. 5.5. Sec. 5.6 identifies a strategyproof

market equilibrium that can be implemented by platform. We conclude this chapter in Sec.

5.7. All proofs are included in Appendix C.

5.2 A Market Model

5.2.1 Network, Riders, and Trips

Consider a traffic network modeled as a directed graph with a single origin-destination pair.

The set of edges in the network is 𝐸, and the capacity of each edge 𝑒 ∈ 𝐸 is a positive integer

𝑞𝑒 ∈ N+. The set of routes is 𝑅, where each route 𝑟 ∈ 𝑅 is a sequence of edges that form a

directed path from the origin to the destination. We denote the travel time of each edge 𝑒

as 𝑡𝑒 > 0, and the travel time of each route 𝑟 as 𝑡𝑟 =
∑︀

𝑒∈𝑟 𝑡𝑒.
2

A finite set of riders 𝑚 = 1, . . . ,𝑀 want to take autonomous carpool trips to travel

from the origin to the destination. A trip is defined as a tuple (𝑏, 𝑟), where 𝑏 is the group

of riders taking route 𝑟 during the trip.3 The maximum number of riders in any group

must be below the capacity of individual car, denoted 𝐴.4 Thus, the set of rider groups is

𝐵
Δ
=
{︀
2𝑀 | |𝑏| < 𝐴

}︀
, and the set of trips is (𝑏, 𝑟) ∈ 𝐵 × 𝑅. If the group 𝑏 in a trip (𝑏, 𝑟) is

a singleton set {𝑚}, then rider 𝑚 takes a solo trip on route 𝑟. Otherwise riders in 𝑏 share a

pooled trip. Each trip (𝑏, 𝑟) occupies a unit capacity for all edges in route 𝑟.

2Thus, in our setting, each edge has an L-shaped cost function: cost is a constant when the edge load is
below the edge capacity, and becomes extremely high once the load exceeds capacity. In the context of traffic
congestion: when the traffic load is below the road capacity, all vehicles pass through the segment at the
free-flow speed. However, when the traffic load exceeds the capacity, the travel time significantly increases
due to congestion. In our market mechanism, the toll prices are set to ensure that the load of each edge does
not exceed its capacity.

3All individuals in the set 𝑏 of an autonomous carpool trip are riders. On the other hand, in human-driven
carpool trips, we need to designate a driver in the set 𝑏, and match riders with drivers.

4For simplicity, we assume that cars are of homogeneous capacity.
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The value of each trip (𝑏, 𝑟) for a rider 𝑚 ∈ 𝑏, denoted as 𝑣𝑚𝑟 (𝑏), is given by:

𝑣𝑚𝑟 (𝑏) = 𝛼𝑚 − 𝛽𝑚𝑡𝑟 − 𝜋𝑚(|𝑏|)− 𝛾𝑚(|𝑏|)𝑡𝑟, ∀𝑏 ∈ {𝐵|𝑏 ∋ 𝑚}, ∀𝑚 ∈𝑀, ∀𝑟 ∈ 𝑅. (5.1)

Riders’ trip values equal to the value of arriving at the destination 𝛼𝑚 nets the cost of trip

time 𝛽𝑚𝑡𝑟 and the carpool disutility 𝜋𝑚(|𝑏|) + 𝛾𝑚(|𝑏|)𝑡𝑟. In particular, the parameter 𝛼𝑚 is

rider 𝑚’s value of arriving at the destination, 𝛽𝑚 is rider 𝑚’s value of time, 𝜋𝑚(|𝑏|) is rider

𝑚’s fixed disutility of carpooling with rider group of size |𝑏|, and 𝛾𝑚(|𝑏|) is the disutility of

sharing the vehicle with group size |𝑏| for a unit travel time. We define (𝛼𝑚, 𝛽𝑚, 𝜋𝑚, 𝛾𝑚) as

each rider 𝑚’s preference parameters, where 𝜋𝑚 = (𝜋𝑚(𝑑))𝐴𝑑=1 and 𝛾𝑚 = (𝛾𝑚(𝑑))𝐴𝑑=1.

The carpool disutility 𝜋𝑚(|𝑏|)+𝛾𝑚(|𝑏|)𝑡𝑟 represents the rider 𝑚’s inconvenience of sharing

the vehicle with other riders in the carpool group, potentially due to the need to share

space with others and time spent on taking detours and walking to pick-up location. Both

parameters 𝜋𝑚(|𝑏|) and 𝛾𝑚(|𝑏|) only depend on the group sizes rather than the identity of

riders in the group, riders’ values are identical for any two trips (𝑏, 𝑟) and (𝑏′, 𝑟) with the

same group sizes (i.e. |𝑏| = |𝑏′|) and the same route 𝑟. We consider that the carpool disutility

parameters 𝜋𝑚(|𝑏|), 𝛾𝑚(|𝑏|) ≥ 0 for all |𝑏| = 1, . . . , 𝐴, and the disutility of solo trip is zero, i.e.

𝜋𝑚(1), 𝛾𝑚(1) = 0 for all 𝑚 ∈𝑀 . Thus, all riders prefer to take solo trips rather than pooling

with other riders, and the carpool disutility increases in the trip travel time. Additionally,

the marginal disutilities 𝜋𝑚(|𝑏| + 1) − 𝜋𝑚(|𝑏|) and 𝛾𝑚(|𝑏| + 1) − 𝛾𝑚(|𝑏|) are non-decreasing

in the group size |𝑏| for all |𝑏| = 1, . . . , 𝐴− 1, i.e. the extra carpool disutility of adding one

rider to any trip (𝑏, 𝑟) is non-decreasing in the original trip size |𝑏|.

The cost of each trip includes the fuel charge and the cost of car’s wear and tear. We

simply assume that the cost of each trip (𝑏, 𝑟) ∈ 𝐵 × 𝑅 equals to the cost of driving one

rider 𝜎 + 𝛿𝑡𝑟 multiplied with the rider group size |𝑏|, i.e. 𝑐𝑟(𝑏) = (𝜎 + 𝛿𝑡𝑟) |𝑏|, and the cost

parameters 𝜎, 𝛿 ≥ 0.

The social value of each trip (𝑏, 𝑟) is the summation of the trip values for riders in 𝑏 nets

the cost of trip:

𝑉𝑟(𝑏) =
∑︁
𝑚∈𝑏

𝑣𝑚𝑟 (𝑏)− 𝑐𝑟(𝑏)

105



=
∑︁
𝑚∈𝑏

(𝛼𝑚 − 𝛽𝑚𝑡𝑟)−
∑︁
𝑚∈𝑏

(𝜋𝑚 + 𝛾𝑚(|𝑏|)𝑡𝑟)− (𝜎 + 𝛿𝑡𝑟) |𝑏|, ∀𝑏 ∈ 𝐵, ∀𝑟 ∈ 𝑅. (5.2)

5.2.2 Market Equilibrium

We now discuss how an efficient autonomous carpooling market can be organized. A trans-

portation authority sets non-negative toll prices 𝜏 = (𝜏𝑒)𝑒∈𝐸 ∈ R|𝐸|
≥0 on edges in the network,

where 𝜏𝑒 is the toll price of edge 𝑒. Riders form carpool trips. The trip vector is a binary vec-

tor 𝑥 = (𝑥𝑟(𝑏))𝑟∈𝑅,𝑏∈𝐵 ∈ {0, 1}|𝐵|×|𝑅|, where 𝑥𝑟(𝑏) = 1 if trip (𝑏, 𝑟) is organized and 𝑥𝑟(𝑏) = 0

if otherwise. A trip vector 𝑥 must satisfy the following feasibility constraints:

∑︁
𝑟∈𝑅

∑︁
𝑏∋𝑚

𝑥𝑟(𝑏) ≤ 1, ∀𝑚 ∈𝑀, (5.3a)

∑︁
𝑟∋𝑒

∑︁
𝑏∈𝐵

𝑥𝑟(𝑏) ≤ 𝑞𝑒, ∀𝑒 ∈ 𝐸, (5.3b)

𝑥𝑟(𝑏) ∈ {0, 1}, ∀𝑏 ∈ 𝐵, ∀𝑟 ∈ 𝑅, (5.3c)

where (5.3a) ensures that no rider takes more than 1 trip, and (5.3b) ensures that the total

number of trips that use any edge 𝑒 ∈ 𝐸 does not exceed the edge capacity.

Additionally, each rider 𝑚 ∈ 𝑀 makes a payment 𝑝𝑚 for covering the cost of their trip

and the toll prices of the taken edges. The payment vector is 𝑝 = (𝑝𝑚)𝑚∈𝑀 .

An outcome of the carpooling market is represented by the tuple (𝑥, 𝑝, 𝜏). Given any

(𝑥, 𝑝, 𝜏), the utility of each rider 𝑚 ∈ 𝑀 equals to the value of the trip that 𝑚 takes minus

the payment:

𝑢𝑚 =
∑︁
𝑟∈𝑅

∑︁
𝑏∋𝑚

𝑣𝑚𝑟 (𝑏)𝑥𝑟(𝑏)− 𝑝𝑚, ∀𝑚 ∈𝑀. (5.4)

We next define four properties of the market outcomes, namely individual rationality,

stability, budget balance, and market clearing. Firstly, an outcome (𝑥, 𝑝, 𝜏) is individually

rational if riders’ utilities are non-negative:

𝑢𝑚 ≥ 0, ∀𝑚 ∈𝑀. (5.5)
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That is, no rider has an incentive to opt-out of the market.

Secondly, an outcome (𝑥, 𝑝, 𝜏) is stable if there is no rider group in 𝐵 that can gain higher

utilities by organizing trips that are not included in 𝑥. Note that the total utility of all riders

in any group 𝑏 for organizing a trip (𝑏, 𝑟) cannot exceed the value of the trip minus the toll

price for route 𝑟, i.e. 𝑉𝑟(𝑏)−
∑︀

𝑒∈𝑟 𝜏𝑒. Thus, a stable market outcome (𝑥, 𝑝, 𝜏) requires that

the total utilities of riders in 𝑏 obtained using (5.4) is higher or equal to the total utility that

can be obtained from any feasible trip (𝑏, 𝑟):5

∑︁
𝑚∈𝑏

𝑢𝑚 ≥ 𝑉𝑟(𝑏)−
∑︁
𝑒∈𝑟

𝜏𝑒, ∀𝑏 ∈ 𝐵, ∀𝑟 ∈ 𝑅. (5.6)

Thirdly, an outcome (𝑥, 𝑝, 𝜏) is budget balanced if the total payments of each organized

trip is equal to the sum of the toll prices and the cost of the trip; and moreover a rider’s

payment is zero if they are not part of any organized trip, i.e.

𝑥𝑟(𝑏) = 1, ⇒
∑︁
𝑚∈𝑏

𝑝𝑚 =
∑︁
𝑒∈𝑟

𝜏𝑒 + 𝑐𝑟(𝑏), ∀𝑏 ∈ 𝐵, ∀𝑟 ∈ 𝑅, (5.7a)

𝑥𝑟(𝑏) = 0, ∀𝑟 ∈ 𝑅, ∀𝑏 ∋ 𝑚, ⇒ 𝑝𝑚 = 0, ∀𝑚 ∈𝑀. (5.7b)

Fourthly, an outcome (𝑥, 𝑝, 𝜏) is market-clearing if there are zero tolls on all edges whose

capacity limits are not met:

∑︁
𝑟∋𝑒

∑︁
𝑏∈𝐵

𝑥𝑟(𝑏) < 𝑞𝑒, ⇒ 𝜏𝑒 = 0, ∀𝑒 ∈ 𝐸. (5.8)

We define market equilibrium as an outcome that satisfies all four properties:

Definition 5.1. A market outcome (𝑥*, 𝑝*, 𝜏 *) is an equilibrium if it is individually rational,

stable, budget balanced and market clearing.

The autonomous carpooling market assumes a competitive environment in that riders

are free to join any trip and occupies a unit capacity on any route as long as their total

payments cover the trip cost and toll prices. From an implementation viewpoint, the process
5A stable market outcome (𝑥, 𝑝, 𝜏) is Pareto optimal in that no rider’s utility can be improved by orga-

nizing different trips that are not in 𝑥 without decreasing the utilities of other riders.

107



of trip organization and payment can be facilitated by introducing a market platform.6 to the

platform, and the platform assigns riders to trips according to the trip vector 𝑥*. Then, riders

make payments according to 𝑝* to the platform, and the platform pays for the toll prices 𝜏 *

and trip costs on the riders’ behalf. When the vector (𝑥*, 𝑝*, 𝜏 *) is a market equilibrium,

riders follow the trip assigned by the platform, the payments cover the toll prices and trip

costs, and toll prices are non-zero only on edges where the load meets the capacity. 7

In paper Ostrovsky and Schwarz [2019], the authors argued that such a transportation

market can be mapped into a standard competitive market, where the market equilibrium

defined in Definition 5.1 is equivalent to the standard concept of competitive equilibrium.

The key issue that we seek to investigate is that market equilibrium may not exist since the

edge capacities and riders are indivisible. On the other hand, if an equilibrium (𝑥*, 𝑝*, 𝜏 *)

exists, from the first welfare theorem, we conclude that the trip vector 𝑥* necessarily max-

imizes the total social welfare (Theorem 1 in Ostrovsky and Schwarz [2019]); i.e., 𝑥* is an

optimal solution of the following optimal trip organization problem:

max
𝑥

𝑆(𝑥) =
∑︁
𝑏∈𝐵

∑︁
𝑟∈𝑅

𝑉𝑟(𝑏)𝑥𝑟(𝑏)

𝑠.𝑡. 𝑥 satisfies (5.3a) – (5.3c),
(IP)

where 𝑆(𝑥) is the social welfare of all trips given by 𝑥.

5.3 Primal and Dual Formulations

In this section, we show that there exists a market equilibrium if and only if the linear

relaxation of the optimal trip organization problem (IP) has integer optimal solutions. We

also show that the equilibrium outcomes can be derived from the optimal solutions from the

linear relaxation and its dual program.8

6For simplicity, we assume that this platform is a simple non-strategic market mediator and does not
charge a fee for organizing trips. However, a non-negative constant fee can be added to the model without
changing the results. In such an implementation, each rider 𝑚 ∈ 𝑀 reports their preference parameters
(𝛼𝑚, 𝛽𝑚, 𝜋𝑚, 𝛾𝑚)

7The computed market equilibrium depends on the reported preference parameters (𝛼, 𝛽, 𝛾). For simplic-
ity, we drop the dependence of (𝑥*, 𝑝*, 𝜏*) with respect to these parameters in notation.

8All results in this section hold for arbitrary trip values 𝑉 = (𝑉𝑟(𝑏))𝑏∈𝐵,𝑟∈𝑅.
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We first introduce the linear relaxation of (IP) and its dual formulation. The primal

linear program is as follows:

max
𝑥

𝑆(𝑥) =
∑︁
𝑏∈𝐵

∑︁
𝑟∈𝑅

𝑉𝑟(𝑏)𝑥𝑟(𝑏),

𝑠.𝑡.
∑︁
𝑟∈𝑅

∑︁
𝑏∋𝑚

𝑥𝑟(𝑏) ≤ 1, ∀𝑚 ∈𝑀, (LP.a)

∑︁
𝑟∋𝑒

∑︁
𝑏∈𝐵

𝑥𝑟(𝑏) ≤ 𝑞𝑒, ∀𝑒 ∈ 𝐸, (LP.b)

𝑥𝑟(𝑏) ≥ 0, ∀𝑏 ∈ 𝐵, ∀𝑟 ∈ 𝑅. (LP.c)

Note that the constraint 𝑥𝑟(𝑏) ≤ 1 is implicitly included in (LP.a), so it is omitted.

By introducing dual variables 𝑢 = (𝑢𝑚)𝑚∈𝑀 for constraints (LP.a) and 𝜏 = (𝜏𝑒)𝑒∈𝐸 for

constraints (LP.b), the dual program of (LP) can be written as follows:

min
𝑢,𝜏

𝑈(𝑢, 𝜏) =
∑︁
𝑚∈𝑀

𝑢𝑚 +
∑︁
𝑒∈𝐸

𝑞𝑒𝜏𝑒

𝑠.𝑡.
∑︁
𝑚∈𝑏

𝑢𝑚 +
∑︁
𝑒∈𝑟

𝜏𝑒 ≥ 𝑉𝑟(𝑏), ∀𝑏 ∈ 𝐵, ∀𝑟 ∈ 𝑅, (D.a)

𝑢𝑚 ≥ 0, 𝜏𝑒 ≥ 0, ∀𝑚 ∈𝑀, ∀𝑒 ∈ 𝐸. (D.b)

Theorem 5.1. A market equilibrium (𝑥*, 𝑝*, 𝜏 *) exists if and only if (LP) has an optimal

integer solution. Any optimal integer solution 𝑥* of (LP) is an equilibrium trip vector, and

any optimal solution (𝑢*, 𝜏 *) of (D) is an equilibrium utility vector and an equilibrium toll

vector. The equilibrium price vector 𝑝* is given by:

𝑝𝑚* =
∑︁
𝑟∈𝑅

∑︁
𝑏∋𝑚

𝑥*𝑟(𝑏)𝑣
𝑚
𝑟 (𝑏)− 𝑢𝑚, ∀𝑚 ∈𝑀. (5.11)

Thus, the question of existence of market equilibrium is equivalent to resolving whether

there exists an integer optimal solution for the LP relaxation of the optimal trip problem.

This result follows from the fact that the four properties of market equilibrium, namely

individual rationality, stability, budget balance, and market clearing are equivalent to the

constraints of (LP) and (D), and the complementary slackness conditions. From strong
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duality, a market equilibrium exists if and only if the optimality gap between the linear

relaxation (LP) and the integer problem (IP) is zero. Hence, the linear relaxation (LP) must

have an integer optimal solution, which is the equilibrium trip vector 𝑥*.

Theorem 5.1 turns the problem of finding sufficient conditions on the existence of market

equilibrium to finding conditions under which (LP) has optimal integer solutions. Moreover,

it enables us to compute market equilibrium as optimal solutions of (LP) and (D).

As a consequence, we obtain that the total toll prices of shorter routes (routes with lower

travel time) must be no less than that of the longer ones (routes with higher travel time).

Corollary 5.1. In any market equilibrium (𝑥*, 𝑝*, 𝜏 *), for any 𝑟, 𝑟′ ∈ 𝑅 such that 𝑡𝑟 ≥ 𝑡𝑟′,∑︀
𝑒∈𝑟 𝜏

*
𝑒 ≤

∑︀
𝑒∈𝑟′ 𝜏

*
𝑒 .

This result is intuitive since for all rider groups, taking a shorter route results in a higher

trip value than taking a longer route. Therefore, the toll price (which is charged per unit

capacity) of shorter routes must be no less than that of longer routes.

5.4 Existence of Market Equilibrium

We characterize the sufficient conditions on network topology and trip values under which

the there exists a market equilibrium. We first present an example when market equilibrium

does not exist on a wheatstone network.

Example 5.1. Consider the wheatstone network as in Fig. 5-2. The capacity of each edge

in the set {𝑒1, 𝑒2, 𝑒3, 𝑒4} is 1, and the capacity of edge 𝑒5 is 4. The travel time of each edge

is given by 𝑡1 = 1, 𝑡2 = 3, 𝑡3 = 3, 𝑡4 = 1, and 𝑡5 = 0.

The maximum capacity of vehicle is 𝐴 = 2. Three riders 𝑚 = 1, 2, 3 travel on this

network. Riders have identical reference parameters: value of trip 𝛼𝑚 = 7, value of time

𝛽𝑚 = 1, zero carpool disutility, i.e. 𝜋𝑚(𝑑) = 0 and 𝛾𝑚(𝑑) = 0 for any 𝑑 = 1, 2 and any

𝑚 ∈𝑀 , and zero trip cost parameters, i.e. 𝜎 = 0, 𝛿 = 0.

We define the route 𝑒1-𝑒2 as 𝑟1, 𝑒1-𝑒5-𝑒4 as 𝑟2, and 𝑒3-𝑒4 as 𝑟3. Then, trip values are:

𝑉1(𝑚) = 𝑉3(𝑚) = 3, and 𝑉2(𝑚) = 5 for all 𝑚 ∈ 𝑀 ; 𝑉1(𝑚,𝑚′) = 𝑉3(𝑚,𝑚
′) = 6, and

𝑉2(𝑚,𝑚
′) = 10 for all 𝑚,𝑚′ ∈ 𝑀 . The unique optimal solution of the linear program (LP)
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on this network is 𝑥*1(1, 2) = 𝑥*2(2, 3) = 𝑥*3(1, 3) = 0.5, and 𝑆(𝑥*) = 11. That is, (LP) does

not have an integer optimal solution, and market equilibrium does not exist (Theorem 5.1).

Figure 5-2: Wheatstone network

We define a network to be series-parallel if a Wheatstone structure as in Example 5.1 is

not embedded.

Definition 5.2 (Series-Parallel (SP) Network Milchtaich [2006]). A network is series-parallel

if there do not exist two routes that pass through an edge in opposite directions. Equivalently,

a network is series-parallel if and only if it is constructed by connecting two series-parallel

networks either in series or in parallel for finitely many iterations.

Our next theorem shows that market equilibrium is guaranteed to exist if the network is

series-parallel (i.e. the Wheatstone structure is not embedded) and riders have homogeneous

carpool disutilities.

Theorem 5.2. Market equilibrium (𝑥*, 𝑝*, 𝜏 *) exists if the network is series-parallel and all

riders have identical carpool disutility parameters, i.e.

𝜋𝑚(𝑑) = 𝜋(𝑑), 𝛾𝑚(𝑑) = 𝛾(𝑑), ∀𝑑 = 1, . . . , 𝐴, ∀𝑚 ∈𝑀. (5.12)

Theorem 5.2 shows that the sufficient conditions for equilibrium existence include (i)

network is series-parallel and (ii) riders have homogeneous levels of carpool disutility. We

emphasize that condition (ii) does not exclude heterogeneity in riders’ trip values since they

can still have different trip values and values of time. These two conditions provide useful

guidelines for designers of the autonomous transportation systems. Particularly, condition

(i) suggests that the transportation authority should avoid embedding a Wheatstone net-

work structure in designating a subset of routes for the autonomous carpooling service. On
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the other hand, condition (ii) implies that rider groups that can be differentiated due to dif-

ferent levels of carpool disutilities should be allocated to differently sized autonomous cars.

These guidelines ensure that the socially optimal trips can be organized through this market

mechanism.

Our proof of Theorem 5.2 has three parts: Firstly, we compute an integer route capacity

vector 𝑘* = (𝑘*𝑟)𝑟∈𝑅, where 𝑅* Δ
= {𝑅|𝑘*𝑟 > 0} is the set of routes that are assigned positive

capacity and 𝑘*𝑟 is the integer capacity of each route 𝑟. We show that when the network

is series-parallel, any optimal trip vector for the sub-network with routes 𝑅* and capacity

vector 𝑘* is also an optimal trip vector for the original network (Lemma 5.1).

Secondly, we argue that mathematically the problem of trip organization on the sub-

network with capacity vector 𝑘* can be viewed as a problem of allocating goods in an

economy with indivisible goods, and the existence of integer optimal solution is equivalent

to the existence of Walrasian equilibrium in the economy (Lemmas 5.2 and 5.3).

Thirdly, we show that when riders have homogeneous carpool disutility parameters, the

trip value functions satisfy gross substitutes condition. This condition is sufficient to ensure

the existence of Walrasian equilibrium in the equivalent economy (Lemmas 5.4 and 5.6).

These three parts ensure that the trip organization problem on the sub-network with

capacity vector 𝑘* has an integer optimal solution, and this solution is also an integer optimal

solution of (LP). From Theorem 5.1, we know that the existence of market equilibrium is

equivalent to the existence of integer optimal solution in (LP). Therefore, we can conclude

that a market equilibrium exists.

The rest of this section presents the lemmas corresponding to each of the three parts.

The proofs of these lemmas are included in Appendix C.1.

Part 1. We first compute the route capacity vector 𝑘* by a greedy algorithm (Algorithm 1).

The algorithm begins with finding a shortest route of the network 𝑟𝑚𝑖𝑛, and sets its capacity

as 𝑘*𝑟𝑚𝑖𝑛
= min𝑒∈𝑟𝑚𝑖𝑛

𝑞𝑒, which is the maximum possible capacity that can be allocated to

𝑟𝑚𝑖𝑛. After allocating the capacity 𝑘*𝑟𝑚𝑖𝑛
to route 𝑟𝑚𝑖𝑛, the residual capacity of each edge

on 𝑟𝑚𝑖𝑛 is reduced by 𝑘*𝑟𝑚𝑖𝑛
. We then repeat the process of finding the next shortest route

and allocating the maximum possible capacity to that route until there exists no route with

positive residual capacity in the network.
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Note that in each step of Algorithm 1, the capacity of at least one edge is fully allocated

to the route that is chosen in that step. Therefore, the algorithm must terminate in less than

|𝐸| number of steps. The algorithm returns the capacity vector 𝑘*, where 𝑅* = {𝑅|𝑘*𝑟 > 0} is

the set of routes allocated with positive capacity, and the capacity of each 𝑟 ∈ 𝑅* is 𝑘*𝑟 . The

remaining routes in 𝑅∖𝑅* are set with zero capacity. Since the network is series-parallel, the

total capacity given by the output of the greedy algorithm equals to the network capacity 𝐶

(Bein et al. [1985]), i.e.
∑︀

𝑟∈𝑅* 𝑘*𝑟 = 𝐶.

Moreover, the shortest path of the network in each step can be computed by Dijkstra’s

algorithm with time complexity of 𝑂(|𝑁 |2), where |𝑁 | is the number of nodes in the network.

Therefore, Algorithm 1 has time complexity of 𝑂(|𝑁 |2|𝐸|).

ALGORITHM 1: Greedy algorithm for computing route capacity
Initialize: Set 𝑘𝑒 ← 𝑞𝑒, ∀𝑒 ∈ 𝐸; 𝑘𝑟 ← 0, ∀𝑟 ∈ 𝑅; �̃� ← 𝐸;
(𝑡𝑚𝑖𝑛, 𝑟𝑚𝑖𝑛)← 𝑆ℎ𝑜𝑟𝑡𝑒𝑠𝑡𝑅𝑜𝑢𝑡𝑒(�̃�);

while 𝑡𝑚𝑖𝑛 <∞ do
𝑘*𝑟𝑚𝑖𝑛

← min𝑒∈𝑟𝑚𝑖𝑛
𝑘𝑒;

for 𝑒 ∈ 𝑟𝑚𝑖𝑛 do
𝑘𝑒 ← 𝑘𝑒 − 𝑘*𝑟𝑚𝑖𝑛

;
if 𝑘𝑒 = 0 then

�̃� ← �̃� ∖ {𝑒};
end

end
(𝑡𝑚𝑖𝑛, 𝑟𝑚𝑖𝑛)← 𝑆ℎ𝑜𝑟𝑡𝑒𝑠𝑡𝑅𝑜𝑢𝑡𝑒(�̃�);

end
Return 𝑘*

Next, we consider the sub-network comprised of routes in 𝑅* with corresponding route

capacities given by 𝑘*. Analogous to (LP), the linear relaxation of optimal trip organization

problem on this sub-network is given by:

max
𝑥

𝑆(𝑥) =
∑︁
𝑏∈𝐵

∑︁
𝑟∈𝑅*

𝑉𝑟(𝑏)𝑥𝑟(𝑏),

𝑠.𝑡.
∑︁
𝑟∈𝑅

∑︁
𝑏∋𝑚

𝑥𝑟(𝑏) ≤ 1, ∀𝑚 ∈𝑀, (LP𝑘*.a)

∑︁
𝑏∈𝐵

𝑥𝑟(𝑏) ≤ 𝑘*𝑟 , ∀𝑟 ∈ 𝑅*, (LP𝑘*.b)

113



𝑥𝑟(𝑏) ≥ 0, ∀𝑏 ∈ 𝐵, ∀𝑟 ∈ 𝑅*, (LP𝑘*.c)

where (LP𝑘*.a) ensures that each rider is in at most one trip, and (LP𝑘*.b) ensures that the

total number of trips in each route 𝑟 does not exceed the route capacity 𝑘*𝑟 given by 𝑘*.

Lemma 5.1. If the network is series-parallel, then any optimal solution of (LP𝑘*) is an

optimal solution of (LP).

To prove Lemma 5.1, we first prove that any feasible solution of (LP𝑘*) is also a feasible

solution of (LP) by showing that the capacity vector 𝑘* computed from Algorithm 1 satisfies∑︀
𝑟∋𝑒 𝑘

*
𝑟 ≤ 𝑞𝑒 for all 𝑒 ∈ 𝐸. Thus, the optimal value of (LP𝑘*) is no higher than that of

(LP).

Next, we argue that for a series-parallel network, the optimal value of (LP𝑘*) is no less

than that of (LP); hence, any optimal solution of (LP𝑘*) must also be an optimal solution

of (LP). We prove this argument by showing that for any optimal solution �̂�* of (LP), there

exists another trip vector 𝑥* such that 𝑥* is feasible in (LP𝑘*), and 𝑆(𝑥*) ≥ 𝑆(�̂�*). Hence,

𝑥* must be an optimal solution of (LP), and the optimal value of (LP𝑘*) is no less than that

of (LP).

The key step of the proof is to construct such 𝑥*. Given any optimal solution �̂�* of (LP),

we denote �̂� Δ
= {𝐵|

∑︀
𝑟∈𝑅 �̂�

*
𝑟(�̂�) > 0} as the set of rider groups with positive weights in �̂�*,

and 𝑓(�̂�) Δ
=
∑︀

𝑟∈𝑅 �̂�
*
𝑟(�̂�) is the flow of each rider group �̂� ∈ �̂� given �̂�*. From (5.2), we re-write

the trip value function as 𝑉𝑟(�̂�) = 𝑧(�̂�) − 𝑔(�̂�)𝑡𝑟, where 𝑧(�̂�) =
∑︀

𝑚∈�̂� (𝛼
𝑚 − 𝜋𝑚) − 𝜎|�̂�|, and

𝑔(�̂�) =
∑︀

𝑚∈�̂�

(︁
𝛽𝑚 + 𝛾𝑚(|�̂�|)

)︁
+ 𝛿|�̂�| can be viewed as group �̂�’s time sensitivity.

We construct 𝑥* by re-assigning the flows of rider groups in �̂� to routes in 𝑅*. The

re-assignment procedure selects rider groups in �̂� one-by-one in decreasing order of time

sensitivity 𝑔(�̂�). Flows of the selected rider groups are first assigned to the shortest routes

in 𝑅* until the capacity of the route given 𝑘* is fully used. Then, we proceed to assign the

flows of rider groups to the second shortest route in 𝑅*. This procedure is repeated until the

flows of all groups in �̂� are assigned to routes in 𝑅*.

The constructed trip vector 𝑥* is a feasible solution of (LP𝑘*) because rider groups are

assigned to the subnetwork with routes in 𝑅*, and the flow assigned to each route does not
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exceed the capacity given by 𝑘*. Moreover, the re-assignment procedure does not change

the set of organized rider groups �̂� given by �̂�* or the flow of these groups, but simply re-

distributing these flows on routes in 𝑅* in a way that enables rider groups with higher time

sensitivity to take shorter routes. We prove by mathematical induction that the constructed

𝑥* satisfies the inequality 𝑆(𝑥*) ≥ 𝑆(�̂�) when the network is series-parallel: If the inequality

holds on any two series-parallel networks, then it also holds on the network that is constructed

by connecting the two sub-networks in series or in parallel. Thus, we can conclude that the

optimal value of (LP𝑘*) and (LP) are equal, and any optimal solution of (LP𝑘*) is also an

optimal solution of (LP).

In part 1, Lemma 5.1 ensures that if (LP𝑘*) has an integer optimal solution, then that

solution must be an optimal integer solution of (LP). It remains to show that (LP𝑘*) indeed

has an integer optimal solution.

Part 2. In this part, we first construct an augmented trip value function that is monotonic

in the rider group. Then, we construct an auxiliary network comprised of parallel routes

with unit capacities based on the set of routes given by 𝑘*. We show that (LP𝑘*) has an

integer optimal solution if and only if the linear relaxation of the trip organization problem

on the auxiliary network with the augmented value function has integer optimal solution.

Moreover, the trip organization problem on the auxiliary network with the augmented value

function is equivalent to an allocation problem in an economy with indivisible goods. The

existence of optimal integer solution is equivalent to the existence of Walrasian equilibrium

in this economy.

To begin with, we introduce the definition of monotonic trip value function as follows:

Definition 5.3 (Monotonicity). For each 𝑟 ∈ 𝑅, the trip value function 𝑉𝑟 is monotonic if

for any 𝑏, 𝑏′ ∈ 𝐵, 𝑉𝑟(𝑏 ∪ 𝑏′) ≥ 𝑉𝑟(𝑏).

Monotonicity condition requires that adding any rider group 𝑏′ to a trip (𝑏, 𝑟) does not

reduce the trip’s value. The monotonicity condition may not be always satisfied in general

because of two reasons: First, if the size of riders |𝑏 ∪ 𝑏′| > 𝐴, then the trip (𝑏 ∪ 𝑏′, 𝑟) is

infeasible, and the trip value is not defined. Second, even when |𝑏 ∪ 𝑏′| ≤ 𝐴, the value

𝑉𝑟(𝑏 ∪ 𝑏′) may be less than 𝑉𝑟(𝑏) when the carpool disutility is sufficiently high.
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We augment 𝑉 : 𝐵 × 𝑅 → N to a monotonic value function 𝑉 : �̄� × 𝑅 → N, where

�̄�
Δ
= 2𝑀 is the set of all rider subsets (including the rider subsets with sizes larger than A).

The value of 𝑉 𝑟(�̄�) can be written as follows:

𝑉 𝑟(�̄�)
Δ
= max

𝑏⊆�̄�, 𝑏∈𝐵
𝑉𝑟(𝑏), ∀𝑟 ∈ 𝑅, ∀�̄� ∈ �̄�. (5.14)

That is, the value of any rider group �̄� ∈ �̄� on route 𝑟 equals to the maximum value of a

feasible trip (𝑏, 𝑟) where rider group 𝑏 is a subset of �̄�. The augmented value function 𝑉

satisfies the monotonicity condition.

We refer ℎ𝑟(�̄�)
Δ
= argmax𝑏⊆�̄�, 𝑏∈𝐵 𝑉𝑟(𝑏) as the representative rider group of �̄� for route

𝑟. From (5.2), we can re-write the augmented trip value function 𝑉 as a linear function of

travel time:

𝑉 𝑟(�̄�) =
∑︁

𝑚∈ℎ𝑟(�̄�)

(𝛼𝑚 − 𝛽𝑚𝑡𝑟)−
∑︁

𝑚∈ℎ𝑟(�̄�)

(︀
𝜋𝑚 + 𝛾𝑚(|ℎ𝑟(�̄�)|)𝑡𝑟

)︀
− (𝜎 + 𝛿𝑡𝑟) |ℎ𝑟(�̄�)|, ∀�̄� ∈ �̄�, ∀𝑟 ∈ 𝑅.

Next, we construct an auxiliary network given the set of routes 𝑅* with capacity vector

𝑘* output from Algorithm 1. Specifically, we convert each route 𝑟 ∈ 𝑅* with integer capacity

𝑘*𝑟 to the same number of parallel routes each with a unit capacity in the auxiliary network.

We denote the route set of the auxiliary network as 𝐿 = ∪𝑟∈𝑅*𝐿𝑟, where each set 𝐿𝑟 is 𝑘*𝑟
number of routes converted from route 𝑟.

We now consider the trip organization problem on the auxiliary network with the aug-

mented trip value function. For each 𝑙 ∈ 𝐿 and each �̄� ∈ �̄�, we define
(︀
�̄�, 𝑙
)︀

as an augmented

trip. In this trip, the rider group ℎ𝑟(�̄�) takes route 𝑙 of the auxiliary network, while the

remaining riders 𝑚 ∈ �̄� ∖ ℎ𝑟(�̄�) are not included in the trip. We denote the augmented

trip vector as 𝑦 =
(︀
𝑦𝑙(�̄�)

)︀
�̄�∈�̄�,𝑙∈𝐾 ∈ {0, 1}

|�̄�|×𝐿, where 𝑦𝑙(�̄�) = 1 if the augmented trip
(︀
�̄�, 𝑙
)︀

is organized, and 𝑦𝑙(�̄�) = 0 if otherwise. The value of the augmented trip is defined as

𝑊𝑙(�̄�) = 𝑉 𝑟(�̄�) for any �̄� ∈ �̄�, any 𝑙 ∈ 𝐿𝑟 and any 𝑟 ∈ 𝑅*.

For any 𝑦 ∈ {0, 1}|�̄�|×𝐿, we can compute a trip vector for the original optimal trip

organization problem 𝑥 = 𝜒(𝑦) ∈ {0, 1}|𝐵|×𝑅 such that the actually organized trips given

by 𝑥 = 𝜒(𝑦) are the same as that given by 𝑦. In particular, for each route 𝑟 ∈ 𝑅*, and
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each augmented trip
(︀
�̄�, 𝑙
)︀
∈ �̄� × 𝐿𝑟 such that 𝑦𝑙(�̄�) = 1, we choose a representative rider

group �̂� ∈ ℎ𝑟(�̄�) and set 𝑥𝑟(�̂�) = 1 for the original trip
(︁
�̂�, 𝑟
)︁

that represents the organized

augmented trip
(︀
�̄�, 𝑙
)︀
. We set 𝑥𝑟(𝑏) = 0 for all other trips. Thus, the trip vector 𝑥 = 𝜒(𝑦)

can be written as follows:

∀𝑟 ∈ 𝑅*, ∀
(︀
�̄�, 𝑙
)︀
𝑠.𝑡. 𝑦𝑙(�̄�) = 1, ∃�̂� ∈ ℎ𝑟(�̄�), 𝑠.𝑡. 𝑥𝑟(�̂�) = 1, and 𝑥𝑟(𝑏) = 0, ∀𝑏 ∈ 𝐵 ∖ {�̂�}

(5.15)

Hence, we write the linear relaxation of optimal trip organization problem on the auxiliary

network with the augmented trip value function as follows:

max
𝑦

𝑆(𝑦) =
∑︁
�̄�∈�̄�

∑︁
𝑙∈𝐿

𝑊𝑙(�̄�)𝑦𝑙(�̄�),

𝑠.𝑡.
∑︁
𝑙∈𝐿

∑︁
�̄�∋𝑚

𝑦𝑙(�̄�) ≤ 1, ∀𝑚 ∈𝑀, (LP-y.a)

∑︁
�̄�∈�̄�

𝑦𝑙(�̄�) ≤ 1, ∀𝑙 ∈ 𝐿, (LP-y.b)

𝑦𝑙(�̄�) ≥ 0, ∀�̄� ∈ �̄�, ∀𝑙 ∈ 𝐿, (LP-y.c)

Lemma 5.2. The linear program (LP𝑘*) has an integer optimal solution if and only if

(LP-y) has an integer optimal solution. Moreover, if 𝑦* is an integer optimal solution of

(LP-y), then 𝑥* = 𝜒(𝑦*) as in (5.15) is an optimal integer solution of (LP𝑘*).

This lemma shows that finding an optimal integer solution of (LP𝑘*) is equivalent to

finding an optimal integer solution of (LP-y).

We finally show that the augmented trip organization problem is mathematically equiva-

lent to an economy 𝒢 with indivisible goods, and the existence of market equilibrium in our

carpooling market is equivalent to the existence of Walrasian equilibrium of the economy.

In 𝒢, the set of indivisible “goods" is the rider set 𝑀 and the set of agents is the route set

𝐿 in the auxiliary network. Each agent 𝑙’s value of any good bundle �̄� ∈ �̄� is equivalent

to the augmented trip value function 𝑊𝑙(�̄�). Moreover, each good 𝑚’s price is equivalent to

rider 𝑚’s utility 𝑢𝑚. The vector of good allocation is 𝑦, where 𝑦𝑙(�̄�) = 1 if good bundle �̄�

is allocated to agent 𝑙. Given any 𝑦, for each 𝑙 ∈ 𝐿, we denote the bundle of goods that is
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allocated to 𝑙 as �̄�𝑙, i.e. 𝑦𝑙(�̄�𝑙) = 1. If no good is allocated to 𝑙 (i.e.
∑︀

�̄�∈�̄� 𝑦𝑙(�̄�) = 0), then

�̄�𝑙 = ∅. The Walrasian equilibrium of economy 𝒢 is defined as follows:

Definition 5.4 (Walrasian equilibrium Kelso Jr and Crawford [1982]). A tuple (𝑦*, 𝑢*) is a

Walrasian equilibrium if

(i) For any 𝑙 ∈ 𝐿, �̄�𝑙 ∈ argmax�̄�∈�̄�𝑊𝑙(�̄�) −
∑︀

𝑚∈�̄�𝑙 𝑢
𝑚, where �̄�𝑙 is the good bundle that is

allocated to 𝑙 given 𝑦*

(ii) For any 𝑚 ∈ 𝑀 that is not allocated to any agent, (i.e.
∑︀

𝑙∈𝐿
∑︀

�̄�∋𝑚 𝑦
*
𝑙 (�̄�) = 0),

𝑢𝑚* = 0.

In fact, we can show that (LP-y) has integer optimal solution if and only if Walrasian

equilibrium exists in this equivalent economy:

Lemma 5.3. The linear program (LP-y) has integer optimal solution if and only if a Wal-

rasian equilibrium (𝑦*, 𝑢*) exists in the equivalent economy. Furthermore, 𝑦* is an integer

optimal solution of (LP-y), and 𝑥* = 𝜒(𝑦*) as in (5.15) is an optimal integer solution of

(LP𝑘*).

In part 2, from Lemmas 5.2 – 5.3, we turn the problem of proving the existence of

integer optimal solution in (LP𝑘*) to proving that the equivalent economy 𝒢 has Walrasian

equilibrium.

Part 3. In this final part, we show that if the carpool disutility parameter 𝛾𝑚 is homogeneous

across all 𝑚 ∈ 𝑀 , then Walrasian equilibrium exists in the economy 𝒢 constructed in Part

2.

To begin with, we introduce the following definition of gross substitutes condition on

the augmented value function 𝑉 . In this definition, we utilize the notion of marginal value

function 𝑉 𝑟(�̄�
′|�̄�) = 𝑉 𝑟(�̄� ∪ �̄�′)− 𝑉 𝑟(�̄�) for all 𝑟 ∈ 𝑅 and all �̄�, �̄�′ ⊆𝑀 .

Definition 5.5 (Gross Substitutes Reijnierse et al. [2002]). For each 𝑟 ∈ 𝑅, the augmented

trip value function 𝑉 𝑟 is said to satisfy gross substitutes condition if

(a) For any �̄�, �̄�′ ⊆ �̄� such that �̄� ⊆ �̄�′ and any 𝑖 ∈𝑀 ∖ �̄�′, 𝑉 𝑟(𝑖|�̄�′) ≤ 𝑉 𝑟(𝑖|�̄�).
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(b) For all groups �̄� ∈ �̄� and any 𝑖, 𝑗, 𝑘 ∈𝑀 ∖ �̄�,

𝑉 𝑟(𝑖, 𝑗|�̄�) + 𝑉 𝑟(𝑘|�̄�) ≤ max
{︀
𝑉 𝑟(𝑖|�̄�) + 𝑉 𝑟(𝑗, 𝑘|�̄�), 𝑉 𝑟(𝑗|�̄�) + 𝑉 𝑟(𝑖, 𝑘|�̄�)

}︀
. (5.17)

In Definition 5.5, (a) requires that the augmented value function 𝑉 is submodular, i.e.

the marginal valuation of
(︀
�̄�, 𝑟
)︀

decreases in the size of group �̄�. Additionally, the gross sub-

stitutes condition also requires that the augmented value function satisfy (b). This condition

ensures that the sum of marginal values of {𝑖, 𝑗} and 𝑘 is not strictly higher than that of

both 𝑖, {𝑗, 𝑘} and 𝑗, {𝑖, 𝑘}.

The following lemma shows that the augmented trip value function 𝑉 satisfies gross

substitutes condition if all riders have a homogeneous carpool disutility.

Lemma 5.4. The augmented value function 𝑉 𝑟 satisfies gross substitutes for all 𝑟 ∈ 𝑅 if

all riders have homogeneous carpool disutility: 𝛾𝑚(𝑑) ≡ 𝛾(𝑑) for all 𝑑 = 1, . . . , 𝐴 and all

𝑚 ∈𝑀 .

In the economy 𝒢, since each agent 𝑙’s value function 𝑊𝑙(�̄�) = 𝑉 𝑟(�̄�) for all �̄� ∈ �̄� and

all 𝑙 ∈ 𝐿𝑟, the agents’ value functions 𝑊 satisfy gross substitutes under the condition in

Lemma 5.4. Moreover, the value functions 𝑊 are also monotonic. From the following result,

we know that a Walrasian equilibrium exists in economy with value functions that satisfy

monotonicity and gross substitutes conditions.

Lemma 5.5 (Bikhchandani and Mamer [1997]). If 𝑊𝑙 satisfies the monotonicity and gross

substitutes conditions for all 𝑙 ∈ 𝐿, then Walrasian equilibrium (𝑦*, 𝑢*) exists.

Based on Lemmas 5.3, 5.4 and 5.5, we conclude the following:

Lemma 5.6. The linear program (LP𝑘*) has an optimal integer solution if all riders have

homogeneous carpool disutilities, i.e. 𝛾𝑚(𝑑) ≡ 𝛾(𝑑) for all 𝑚 ∈𝑀 and all 𝑑 = 1, . . . , 𝐴.

Lemma 5.6 shows that (LP𝑘*) has an optimal integer solution. From Lemma 5.1, we know

that this solution is also an optimal integer solution of (LP). Therefore, we can conclude

Theorem 5.2 that market equilibrium exists when the network is series parallel and riders

have homogeneous carpool disutilities. In Sec. 5.5 and 5.6, we assume that the sufficient

conditions in Theorem 5.2 hold, and market equilibrium exists.
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5.5 Computing Market Equilibrium

In this section, we present an algorithm for computing the market equilibrium (𝑥*, 𝑝*, 𝜏 *).

The ideas behind the algorithm are based on Theorems 5.1, 5.2 and their proofs.

Computing optimal trip vector 𝑥*. To begin with, one can obtain the optimal trip

vector 𝑥* following the proof of Theorem 5.2. In particular, we compute the route capacity

vector 𝑘* from Algorithm 1. From Lemma 5.1, we know that the optimal trip assignment

vector 𝑥* is an optimal integer solution of (LP𝑘*). Moreover, from Lemmas 5.2 – 5.6, we

know that: (i) 𝑥* can be derived from optimal solution 𝑦* on the auxiliary network with the

augmented trip value function 𝑊 ; and (ii) 𝑦* is the same as the optimal good allocation in

Walrasian equilibrium of the equivalent economy 𝒢. We introduce the following well-known

Kelso-Crawford algorithm (Algorithm 2) for computing Walrasian equilibrium 𝑦*.

ALGORITHM 2: Kelso-Crawford Auction Kelso Jr and Crawford [1982]
Initialize: Set 𝑢𝑚 ← 0 ∀𝑚 ∈𝑀 ; �̄�𝑙 ← ∅, ∀𝑙 ∈ 𝐿;
while TRUE do

for 𝑙 ∈ 𝐿 do
𝐽𝑙 ← argmax𝐽⊆𝑀∖�̄�𝑙 𝜑𝑙(𝐽 |�̄�𝑙)

Δ
=
{︀
𝑊𝑙(𝐽 ∪ �̄�𝑙)−

∑︀
𝑚∈�̄�𝑙 𝑢

𝑚 −
∑︀

𝑚∈𝐽 (𝑢
𝑚 + 𝜖)

}︀
if 𝐽𝑙 = ∅, ∀𝑙 ∈ 𝐿 then

break
else

Arbitrarily pick �̂� with 𝐽�̂� ̸= ∅;
�̄��̂� ← �̄��̂� ∪ 𝐽�̂�;
�̄��̂� ← �̄��̂� ∖ 𝐽�̂�, ∀𝑙 ̸= �̂�;
𝑢𝑚 ← 𝑢𝑚 + 𝜖, ∀𝑚 ∈ 𝐽�̂�.

Return
(︀
�̄�𝑙
)︀
𝑙∈𝐿

Algorithm 2 begins with all riders having zero utilities 𝑢𝑚 = 0 and all routes in the

auxiliary network being empty �̄�𝑙 = ∅. In each iteration, we compute the set of riders 𝐽𝑙

who are currently not assigned to route 𝑙 and maximize the function 𝜑𝑙(𝐽𝑙|�̄�𝑙), which equals

to the trip value minus the riders’ utilities when the set 𝐽𝑙 is added to �̄�𝑙. If there exists a

route �̂� ∈ 𝐿 with 𝐽�̂� ̸= ∅, then we choose one of such route �̂�, and assign riders in 𝐽�̂� to �̂�. We

increase the utilities of these riders in 𝐽�̂� by a small number 𝜖.

Algorithm 2 terminates when 𝐽𝑙 = ∅ for all 𝑙 ∈ 𝐿. Given any 𝜖 < 1
2|𝑀 | , when the
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algorithm terminates, all routes are assigned with the rider set that maximizes its trip value

minus riders’ utilities. The trip vector based on
(︀
�̄�𝑙
)︀
𝑙∈𝐿 is given by:

𝑦*𝑙 (�̄�𝑙) = 1, and 𝑦*𝑙 (�̄�) = 0, ∀�̄� ∈ �̄� ∖ {�̄�𝑙}, ∀𝑙 ∈ 𝐿. (5.18)

The following lemma shows that 𝑦* is optimal under the conditions of monotonicity and

gross substitutes.

Lemma 5.7 (Kelso Jr and Crawford [1982]). For any 𝜖 < 1
2|𝑀 | , if the augmented value

function 𝑊 satisfies monotonicity and gross substitutes condition, then 𝑦* as in (5.18) is an

optimal integer solution of (LP-y).

Recall from Lemma 5.4, we know that when all riders have identical carpool disutility,

i.e. 𝛾𝑚(𝑑) = 𝛾(𝑑) for all 𝑑 = 1, . . . , 𝐴, then the augmented trip value function 𝑉 satisfies

gross substitutes condition. Since 𝑊𝑙(�̄�) = 𝑉 𝑟(�̄�) for all 𝑙 ∈ 𝐿𝑟 and all 𝑟 ∈ 𝑅, 𝑊 also satisfies

gross substitutes condition. Therefore, 𝑦* is a Walrasian equilibrium good allocation vector

in the equivalent economy 𝒢, and from Lemmas 5.1 – 5.3, the vector 𝑥* = 𝜒(𝑦*) as in (5.15)

is an optimal trip vector in market equilibrium.

In each iteration of Algorithm 2, we need to compute the set 𝐽𝑙 ∈ argmax𝐽⊆𝑀∖�̄�𝑙 𝜑𝑙(𝐽𝑙|�̄�𝑙)

for each 𝑙 ∈ 𝐿. Since the value function 𝑊𝑙(�̄�) is monotonic and satisfies gross substitutes

condition, 𝐽𝑙 can be computed by a greedy algorithm, in which riders are added to the set

𝐽𝑙 one by one in decreasing order of the difference between the rider’s marginal trip value

𝑊𝑙(𝑚|�̄�𝑙 ∪ 𝐽𝑙) = 𝑊𝑙({𝑚} ∪ �̄�𝑙 ∪ 𝐽𝑙)−𝑊𝑙(�̄�𝑙 ∪ 𝐽𝑙) and their utility 𝑢𝑚 (Kelso Jr and Crawford

[1982]). Since 𝑊𝑙(�̄�) = 𝑉 𝑟(�̄�) as in (5.14), and all riders have identical carpool disutility

parameter, we can write 𝑊𝑙(�̄�) as follows:

𝑊𝑙(�̄�) = 𝑉 𝑟(�̄�) =
∑︁

𝑚∈ℎ𝑟(�̄�)

(𝛼𝑚 − 𝛽𝑚𝑡𝑟)−
∑︁

𝑚∈ℎ𝑟(�̄�)

(︀
𝜋(|ℎ𝑟(�̄�)|) + 𝛾(|ℎ𝑟(�̄�)|)𝑡𝑟

)︀
− (𝜎 + 𝛿𝑡𝑟) |ℎ𝑟(�̄�)|

=
∑︁

𝑚∈ℎ𝑟(�̄�)

𝜂𝑚𝑟 − 𝜃(|ℎ𝑟(�̄�)|), ∀𝑙 ∈ 𝐿𝑟, ∀�̄� ∈ �̄�,

where 𝜂𝑚𝑟
Δ
= 𝛼𝑚 − 𝛽𝑚𝑡𝑟, and 𝜃(|ℎ𝑟(�̄�)|) =

(︀
𝜋(|ℎ𝑟(�̄�)|) + 𝜎

)︀
|ℎ𝑟(�̄�)| +

(︀
𝛾(|ℎ𝑟(�̄�)|) + 𝛿

)︀
|ℎ𝑟(�̄�)|𝑡𝑟.

The representative rider group ℎ𝑟(�̄�) for any trip
(︀
�̄�, 𝑟
)︀
∈ �̄� × 𝑅 can be constructed by
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selecting riders from �̄� in decreasing order of 𝜂𝑚𝑟 , and the last selected rider �̂� (i.e. the rider

in ℎ𝑟(�̄�) with the minimum value of 𝜂𝑚𝑟 ) satisfies:

𝜂�̂�𝑟 ≥ 𝜃(|ℎ𝑟(�̄�)|)− 𝜃(|ℎ𝑟(�̄�)| − 1).

Thus, adding rider �̂� to the set ℎ𝑟(�̄�) ∖ {�̂�} increases the trip value, but adding any other

riders decrease the trip value, i.e.

𝜂𝑚𝑟 < 𝜃(|ℎ𝑟(�̄�)|+ 1)− 𝜃(|ℎ𝑟(�̄�)|), ∀𝑚 ∈ �̄� ∖ ℎ𝑟(�̄�).

Therefore, the set ℎ𝑟(�̄�) includes all riders with 𝜂𝑚𝑟 ≥ 𝜂�̂�𝑟 in �̄�.

We can compute the set 𝐽𝑙 ← argmax𝐽⊆𝑀∖�̄�𝑙 𝜑𝑙(𝐽 |�̄�𝑙) in each iteration of Algorithm 2

using Algorithm 3. In this algorithm, we first compute the size of the representative rider

group ℎ̃ = |ℎ𝑟(�̄�𝑙)|, then we add riders not in �̄�𝑙 into 𝐽𝑙 greedily according to their marginal

trip value minus utility. Note that for computing marginal trip value, we do not need to

compute the augmented trip value function 𝑊𝑙(�̄�), but simply need to keep track of the

representative rider group size ℎ̃.

ALGORITHM 3: Computing 𝐽𝑙
Initialize: Set 𝐽𝑙 ← ∅, ℎ̃← 0, �̃�𝑙 ← �̄�𝑙;
while TRUE do

�̂�← argmax𝑚∈�̃�𝑙 𝜂
𝑚
𝑙 ;

if 𝜂�̂�𝑙 <
(︁
𝜃(ℎ̃+ 1)− 𝜃(ℎ̃)

)︁
𝑡𝑙 then

break
else

ℎ̃← ℎ̃+ 1, �̃�𝑙 ← �̃�𝑙 ∖ {�̂�}

while TRUE do
�̂� ← argmax𝑗∈𝑆∖(�̄�𝑙∪𝐽𝑙) 𝜂

𝑗
𝑙 − 𝑢𝑗;

if 𝜂�̂�𝑙 − 𝑢�̂� <
(︁
𝜃(ℎ̃+ 1)− 𝜃(ℎ̃)

)︁
𝑡𝑙 then

break
else

ℎ̃← ℎ̃+ 1, 𝐽𝑙 ← 𝐽𝑙 ∪ {�̂�}
Return 𝐽𝑙

We next discuss the time complexity of Algorithm 2. The time complexity of computing
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𝐽𝑙 as in Algorithm 3 is 𝑂(|𝑀 |) for each 𝑙 ∈ 𝐿 (each rider is counted at most once in Algorithm

3). Additionally, we know from Sec. 5.4 that the sum of route capacities given 𝑘* equals to

the maximum capacity of the network 𝐶. Thus |𝐿| = 𝐶, and the time complexity of each

iteration of Algorithm 2 is 𝑂(|𝑀 |𝐶). Moreover, riders’ utilities are non-decreasing and at

least one rider increases their utility by 𝜖 in each iteration. Besides, riders’ utilities can not

exceed the maximum trip value 𝑉𝑚𝑎𝑥, because otherwise 𝐽𝑙 = ∅ for all 𝑙 ∈ 𝐿 regardless of

the assigned set �̄�𝑙; thus Algorithm 2 must terminate before the utility exceeds 𝑉𝑚𝑎𝑥. We

can conclude that Algorithm 2 terminates in less than 𝑀𝑉𝑚𝑎𝑥/𝜖 iterations, and its time

complexity is 𝑂
(︀
𝑉𝑚𝑎𝑥

𝜖
|𝑀 |2𝐶

)︀
.

We summarize that 𝑥* is computed in the following two steps:

Step 1: Compute the optimal route capacity vector 𝑘* from Algorithm 1. 9

Step 2: Compute 𝑦* from Algorithm 2. Derive the optimal trip organization vector 𝑥* =

𝜒(𝑦*).

Computing equilibrium payments 𝑝* and toll prices 𝜏 *. Given the optimal trip

vector 𝑥*, we compute the set of rider payments 𝑝* and toll prices 𝜏 * such that (𝑥*, 𝑝*, 𝜏 *) is

a market equilibrium. Recall from Theorem 5.1, the riders’ utilities and toll prices (𝑢*, 𝜏 *) in

any market equilibrium are optimal solutions of the dual program (D). Sec. 5.4 constructed

the augmented trip value function 𝑉 , which satisfies monotonicity and gross substitutes

conditions. Following the same proof ideas as in Theorem 5.1, we can show that the utility

vector 𝑢* and toll prices 𝜏 * also can be solved from the following dual program with the

augmented trip value function:

min
𝑢,𝜏

𝑈(𝑢, 𝜏) =
∑︁
𝑚∈𝑀

𝑢𝑚 +
∑︁
𝑒∈𝐸

𝑞𝑒𝜏𝑒

𝑠.𝑡.
∑︁
𝑚∈�̄�

𝑢𝑚 +
∑︁
𝑒∈𝑟

𝜏𝑒 ≥ 𝑉 𝑟(�̄�), ∀�̄� ∈ �̄�, ∀𝑟 ∈ 𝑅, (D.a)

𝑢𝑚 ≥ 0, 𝜏𝑒 ≥ 0, ∀𝑚 ∈𝑀, ∀𝑒 ∈ 𝐸. (D.b)

The linear program (D) has |𝑀 |+|𝐸| number of variables and |𝑅|×|�̄�| number of constraints.

This linear program can be solved by the ellipsoid method. In each iteration of this method,

9If the network is parallel, then this step can be omitted, and the vector 𝑘* = (𝑞𝑟)𝑟∈𝑅.
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we need to solve a separation problem to decide whether or not a solution (𝑢, 𝜏) is feasible,

and if not find the constraint that it violates. Since the trip value function 𝑉 is monotonic and

satisfies the gross substitutes condition, we can solve the separation problem using Algorithm

3. For each route 𝑟 ∈ 𝑅, we compute �̄�𝑟 ∈ argmax�̄�∈�̄�{𝑉 𝑟(�̄�) −
∑︀

𝑚∈�̄� 𝑢
𝑚} = argmax�̄�∈�̄�

using the same greedy algorithm as in Algorithm 3. Then, by checking whether or not∑︀
𝑚∈�̄�𝑟 𝑢

𝑚 +
∑︀

𝑒∈𝑟 𝜏𝑒 ≥ 𝑉 𝑟(�̄�𝑟), we can determine if the constraint (D.a) is satisfied for all

route 𝑟 ∈ 𝑅. In this way, we solve the separation problem in time polynomial in |𝑀 | and |𝑅|.

Thus, the optimal solution of (D) can also be solved by ellipsoid method in time polynomial

in |𝑀 | and |𝑅|.

Finally, given any optimal solution (𝑢*, 𝜏 *), the riders’ payment vector 𝑝* can be obtained

from (5.4). Thus, we obtain (𝑥*, 𝑝*, 𝜏 *) as a market equilibrium.

Notice that the set of equilibrium utility and toll prices (𝑢*, 𝜏 *) may not be single-

ton. From strong duality theory, we know that the sum of riders’ equilibrium utilities and

toll prices, must equal to the optimal social welfare given the organized trips in 𝑥*, i.e.∑︀
𝑚∈𝑀 𝑢𝑚* +

∑︀
𝑒∈𝐸 𝑞𝑒𝜏

*
𝑒 = 𝑆(𝑥*). Therefore, different market equilibria can result in differ-

ent splits of social welfare between the riders’ utilities and the collected toll prices. Next, we

highlight a specific market equilibrium that provides the maximum share of social welfare to

riders and collects the minimum tolls.

5.6 Strategyproofness and Maximum Rider Utilities

In this section, we consider the situation where the market is facilitated by a platform that

implements a market equilibrium based on the reported preferences of each rider. Two

questions arise in this situation: The first is whether or not riders truthfully report their

preference parameters to the platform. The second is which market equilibrium is imple-

mented and how it determines the splits between riders’ utilities and collected tolls. We

show that there exists a strategyproof market equilibrium under which riders truthfully re-

port their preferences. Moreover, this market equilibrium also achieves the maximum utility

for all riders and the total toll is the minimum.

We first introduce the definition of strategyproofness. To distinguish between the true
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preference parameters and the reported preference parameters, we denote the reported pa-

rameters as 𝛼′ and 𝛽
′ .10 The corresponding market equilibrium is denoted

(︀
𝑥*

′
, 𝑝*

′
, 𝜏 *

′)︀.
The utility vector under market equilibrium with the true preference parameters (resp. re-

ported preference parameters) 𝑢* (resp. 𝑢*
′) can be computed as in (5.4). We say that a

market equilibrium is strategyproof if no rider can gain higher utility by mis-reporting their

preference parameters.

Definition 5.6 (Strategyproofness). A market equilibrium (𝑥*, 𝑝*, 𝜏 *) is strategyproof if for

any preference parameters 𝛼′ ̸= 𝛼 and 𝛽 ′ ̸= 𝛽, 𝑢𝑚* ≥ 𝑢𝑚*′ for all 𝑚 ∈𝑀 .

We next define the Vickery-Clark-Grove (VCG) Payment vector. For each 𝑚 ∈ 𝑀 ,

we denoted 𝑥−𝑚* as the optimal trip vector when rider 𝑚 is not present. The social wel-

fare for riders in 𝑀 ∖ {𝑚} given the optimal trip vector 𝑥−𝑚* is denoted 𝑆−𝑚(𝑥−𝑚*) =∑︀
𝑏∈𝐵
∑︀

𝑟∈𝑅 𝑉𝑟(𝑏)𝑥
−𝑚*
𝑟 (𝑏) , and the social welfare for riders in 𝑀 ∖{𝑚} with 𝑥* is 𝑆−𝑚(𝑥

*) =

𝑆(𝑥*)−
∑︀

𝑏∋𝑚
∑︀

𝑟∈𝑅 𝑣
𝑚
𝑟 (𝑏)𝑥

*
𝑟(𝑏).

Definition 5.7. A VCG payment vector 𝑝† =
(︀
𝑝𝑚†)︀

𝑚∈𝑀 is given by:

𝑝𝑚† = 𝑆−𝑚(𝑥
−𝑚*)− 𝑆−𝑚(𝑥

*), ∀𝑚 ∈𝑀. (5.20)

In VCG payment vector (5.20), each rider 𝑚’s payment is the difference of the total trip

values for all other riders with and without rider 𝑚, i.e. 𝑝𝑚† is the externality of each rider

𝑚 on all other riders. Under the optimal trip vector 𝑥* and the VCG payment vector 𝑝†, the

utility vector 𝑢† =
(︀
𝑢𝑚†)︀

𝑚∈𝑀 is given by:

𝑢𝑚† (5.4)
=
∑︁
𝑏∋𝑚

∑︁
𝑟∈𝑅

𝑉𝑟(𝑏)𝑥
*
𝑟(𝑏)− 𝑝𝑚† (5.20)

= 𝑆(𝑥*)− 𝑆−𝑚(𝑥
*
−𝑚), ∀𝑚 ∈𝑀. (5.21)

That is, the utility of each rider 𝑚 ∈ 𝑀 is the difference of the optimal social welfare with

and without rider 𝑚.

Lemma 5.8 (Vickrey [1961]). A market equilibrium is strategyproof if the payment vector

is 𝑝†.
10We assume that riders have homogeneous carpool disutility that is known by the platform.

125



The next theorem shows that there exists a strategyproof market equilibrium
(︀
𝑥*, 𝑝†, 𝜏 †

)︀
,

in which the equilibrium payment vector is 𝑝† and the riders’ utility vector is 𝑢†. Moreover, all

riders’ utilities in this equilibrium are higher than that under any other market equilibrium,

and the total collected tolls is the minimum.

Theorem 5.3. A strategyproof market equilibrium
(︀
𝑥*, 𝑝†, 𝜏 †

)︀
exists, and the equilibrium

utility vector is 𝑢†. Moreover, given any other market equilibrium (𝑥*, 𝑝*, 𝜏 *),

𝑢𝑚† ≥ 𝑢𝑚*, ∀𝑚 ∈𝑀, and
∑︁
𝑒∈𝐸

𝑞𝑒𝜏
†
𝑒 ≤

∑︁
𝑒∈𝐸

𝑞𝑒𝜏
*
𝑒 .

We denote the set of 𝑢* in the optimal solutions of the dual problem (D) as 𝑈*. From

Theorem 5.1, we know that the strategyproof equilibrium exists if and only if there exists a

toll price vector 𝜏 † such that
(︀
𝑢†, 𝜏 †

)︀
is an optimal solution of (D), i.e. 𝑢† given by (5.21)

is in 𝑈*. Moreover, to show that 𝑢† achieves the maximum equilibrium utility, we need to

further prove that 𝑢† is the maximum component in the set 𝑈*.

We proceed in three steps: Firstly, Lemma 5.9 shows that the set 𝑈* is equivalent to the

set of utility vectors in the optimal solution set of the dual program of (LP𝑘*). Secondly,

the set of optimal utility vectors in the dual program of (LP𝑘*) is the same as the set of

prices in Walrasian equilibrium of the equivalent economy constructed in Sec. 5.4 (Lemma

5.10). Finally, the set of good prices in Walrasian equilibrium is a complete lattice, and the

maximum component is 𝑢† as in (5.21) (Lemma 5.11). Therefore, we can conclude that 𝑈*

is a complete lattice, and 𝑢† is the maximum component in 𝑈*.

We now present the formal statements of these lemmas and their proof ideas. The proofs

are included in Appendix C.3.

Lemma 5.9. A utility vector 𝑢* ∈ 𝑈* if and only if there exists vector 𝜆* = (𝜆*𝑟)𝑟∈𝑅 such

that (𝑢*, 𝜆*) is an optimal solution of the following linear program:

min
𝑢,𝜆

∑︁
𝑚∈𝑀

𝑢𝑚 +
∑︁
𝑟∈𝑅*

𝑘*𝑟𝜆𝑟,

𝑠.𝑡.
∑︁
𝑚∈𝑏

𝑢𝑚 + 𝜆𝑟 ≥ 𝑉𝑟(𝑏) ∀𝑟 ∈ 𝑅*, ∀𝑏 ∈ 𝐵, (D𝑘*.a)

𝑢𝑚 ≥ 0, 𝜆𝑟 ≥ 0, ∀𝑚 ∈𝑀, ∀𝑟 ∈ 𝑅*, (D𝑘*.b)
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where 𝜆𝑟 is the dual variable of constraint (LP𝑘*.b) for each 𝑟 ∈ 𝑅.

In (D𝑘*), the dual variable 𝜆𝑟 can be viewed as the toll price set on each route 𝑟 ∈ 𝑅*.

We note that (D𝑘*) is less restrictive than (D), which is the dual program on the original

network, in two respects: Firstly, constraints (D𝑘*) are only set for the set of routes 𝑅* of

the sub-network rather than on all routes in the whole network. Secondly, the toll prices

𝜆 in (D𝑘*) are set on routes instead of on edges as in 𝜏 of (D). Any edge toll price vector

can be equivalently represented as toll prices on routes by summing the tolls of all edges on

any route. Therefore, given any feasible solution (𝑢, 𝜏) of (D), (𝑢, 𝜆) where 𝜆𝑟 =
∑︀

𝑒∈𝑟 𝜏𝑒 for

each 𝑟 ∈ 𝑅* is also feasible in (D𝑘*).

We can check that for any optimal solution (𝑢*, 𝜏 *) of (D), the vector (𝑢*, 𝜆*) – where

𝜆*𝑟 =
∑︀

𝑒∈𝑟 𝜏
*
𝑒 for each 𝑟 ∈ 𝑅* – must also be optimal in (D𝑘*). That is, the set 𝑈* is a subset

of the optimal utility vectors in (D𝑘*). This result follows from strong duality theory and

Lemma 5.1: From the strong duality theory, the optimal values of the objective function in

(D𝑘*) (resp. (LP)) equals to the optimal value of the primal problems (LP) (resp. (LP𝑘*)).

From Lemma 5.1, we know that the optimal trip organization vector is the same in both

(LP) and (LP𝑘*). Thus, the optimal value of (D) is the same as that of (LP𝑘*). Since

the value of the objective function with (𝑢*, 𝜏 *) equals to that with (𝑢*, 𝜆*), we know that

(𝑢*, 𝜆*) must be an optimal solution of (D𝑘*).

Furthermore, we can show that for any optimal solution 𝑢* of (D𝑘*), there must exist an

edge toll vector 𝜏 * such that (𝑢*, 𝜏 *) is an optimal solution of (D). That is, any equilibrium

utility vector with route toll prices on the sub-network can also be induced by edge toll prices

on the original network. This result relies on the fact that the network is series parallel, and

it is proved by mathematical induction.

Lemma 5.9 enables us to characterize the riders’ utility set 𝑈* using the less restrictive

dual program (D𝑘*). Recall that in Sec. 5.4, we have shown that the trip organization prob-

lem on the constructed augmented network with the augmented value function is equivalent

to an economy with indivisible goods (Lemma 5.3). The next lemma shows that the set 𝑈*

is the same as the set of Walrasian equilibrium prices in the equivalent economy.

Lemma 5.10. A utility vector 𝑢* ∈ 𝑈* if and only if there exists 𝑦* such that (𝑦*, 𝑢*) is a
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Walrasian equilibrium of the economy.

Moreover, since the augmented trip value function 𝑊 is monotonic and satisfies gross

substitutes condition, the set of Walrasian equilibrium price vectors is a lattice, and has a

maximum component.

Lemma 5.11 (Gul and Stacchetti [1999]). If the value function 𝑊 satisfies the monotonicity

and gross substitutes conditions, then the set of Walrasian equilibrium prices is a lattice and

has a maximum component 𝑢† =
(︀
𝑢𝑚†)︀

𝑚∈𝑀 as in (5.21).

From Lemmas 5.9 – 5.11, we know that 𝑢† is the maximum component in the set 𝑈*.

That is, there exists a toll price vector 𝜏 † =
(︀
𝜏 †𝑒
)︀
𝑒∈𝐸 such that

(︀
𝑢†, 𝜏 †

)︀
is an optimal solution

of (D), and hence
(︀
𝑥*, 𝑝†, 𝜏 †

)︀
is a market equilibrium. From Lemma 5.8, we know that this

market equilibrium is strategyproof. Moreover, all riders achieve the maximum equilibrium

utilities in the equilibrium. Since
∑︀

𝑚∈𝑀 𝑢𝑚*+
∑︀

𝑒∈𝐸 𝑞𝑒𝜏
*
𝑒 = 𝑆(𝑥*) for any market equilibrium

(𝑥*, 𝑢*, 𝜏 *), this also implies that the total amount of tolls
∑︀

𝑒∈𝐸 𝑞𝑒𝜏
†
𝑒 that is collected in

market equilibrium
(︀
𝑥*, 𝑝†, 𝜏 †

)︀
is the minimum. We thus conclude Theorem 5.3.

Finally, we discuss the computation of the market equilibrium
(︀
𝑥*, 𝑝†, 𝜏 †

)︀
. In particular,

the optimal trip assignment 𝑥* can be computed in two steps described in Sec. 5.5 using

Algorithms 1 – 2. Then, we re-run Algorithm 2 given 𝑘* and rider set 𝑀 ∖ {𝑚} to compute

𝑥−𝑚* for each 𝑚 ∈ 𝑀 . We compute the utility vector 𝑢† (resp. payment vector 𝑝†) as in

(5.21) (resp. (5.20)).

For any 𝑒 ∈ 𝐸, we set 𝜏 †𝑒 = 0 if
∑︀

𝑏∈𝐵
∑︀

𝑟∋𝑒 𝑥
*
𝑟(𝑏) < 𝑞𝑒. From (D), we know that 𝜏 † is any

vector that satisfies the following constraints:

∑︁
𝑒∈𝑟

𝜏 †𝑒 = max
�̄�∈�̄�

𝑉 𝑟(�̄�)−
∑︁
𝑚∈�̄�

𝑢𝑚†, ∀𝑟 ∈ 𝑅*,

∑︁
𝑒∈𝑟

𝜏 †𝑒 ≥ max
�̄�∈�̄�

𝑉 𝑟(�̄�)−
∑︁
𝑚∈�̄�

𝑢𝑚†, ∀𝑟 ∈ 𝑅 ∖𝑅*.
(5.23)

Finding a vector 𝜏 † that satisfies constraints in (5.23) is equivalent to solving a linear program

with a constant objective function and feasibility constraints (5.23). This linear program can

be computed by the ellipsoid method, in which the separation problem in each iteration is to

check whether or not the toll price vector 𝜏 † satisfies the feasible constraints in (5.23). Since
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the augmented trip value function 𝑉 satisfies monotonicity and gross substitutes condition,

we can compute the right-hand-side value of the constraint in (5.23) using Algorithm 3 in

time 𝑂(|𝑀 |) for each 𝑟 ∈ 𝑅. That is, the separation problem in each iteration can be

computed in polynomial time of |𝑀 | and |𝑅|. Therefore, a toll vector 𝜏 † that satisfies (5.23)

can be computed in polynomial time of |𝑀 | and |𝑅|.

5.7 Discussion

In this chapter, we studied the existence and computation of market equilibrium for organiz-

ing socially efficient carpooled trips over a transportation network using autonomous cars.

We also identified a market equilibrium that is strategyproof and maximizes riders’ utilities.

Our approach can be used to analyze incentive mechanisms for sharing limited resources in

networked environment.

One interesting direction for future work is to characterize equilibrium in a transporta-

tion market when riders belong to different classes that are differentiated by their carpool

disutility levels. In this situation, riders with different carpool disutilies may be grouped

into trips that are organized using different vehicle sizes to reflect the riders’ car sharing

preferences.

A more general problem is to design market with both autonomous and human-driven

carpooled trips, wherein riders may have different preferences of over these service types. A

pre-requisite to the design of such a market is quantitative evaluation of how autonomous and

human-driven vehicles differ in terms of their utilization of road capacity and the incurred

route travel times Jin et al. [2020]. Analysis of differentiated pricing and tolling schemes

corresponding to trip assignments between the two service types is an interesting and relevant

problem for future work.

Finally, the study of equilibrium outcomes and welfare implications when the autonomous

carpooling market is not perfectly competitive is important from both market design and

implementation viewpoints. When a few major entities (or platforms) control the provision

of autonomous mobility services, it is important to study how the competition among these

platforms affects the usage of road capacity, efficiency of carpooled trips, and toll prices
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needed to relieve network congestion. The results presented here can serve as a benchmark

for evaluating the impacts of imperfect market competition in transportation markets enabled

by autonomous cars.
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Chapter 6

Security Analysis of Transportation

Systems

6.1 Introduction

Transportation systems are undergoing a paradigm shift, thanks to the advances in comput-

ing and networking technologies that have enabled a range of functionalities for both infras-

tructure operators and travelers. The operations of information technologies and platform-

based services featured in Chapters 2 – 5 rely on ubiquitous sensing and actuation capabil-

ities, mobile and embedded computing with smartphones, and deep penetration of wireless

communications networks. However, a significant drawback of information modernization is

lowered security of transportation systems, caused by the exposure to cyber insecurities.

In recent years, several hacking incidents have been reported on transportation systems.

For example, in December 2011, hackers executed an attack on the Northwest railway system

for two days according to an official agency memo (Zetter [2017]). Hacking incidents to sub-

way systems (both real and staged) have been also reported on the Toronto transit message

system (Rosencrance [2006]), the ticketing systems on the Moscow subway (Owana [2012])

and the Bay Area Transit Systems (Hackett [2016]). More recently, successful cyber attacks

have been demonstrated on traffic monitoring sensors (Zetter [2017], Reilly et al. [2015]),

dynamic message signs (Mettler [2016]), traveler information systems (Bonaventure [2016]),

and signal controllers (Jacobs [2014], Ghena et al. [2014]). Additionally, the emergence of
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network-based, (semi-)autonomous vehicle applications is expected to bring such threats to

the forefront (Lowy [2015], Petit and Shladover [2015]), especially since most automobile

manufacturers currently lack the capability to fully protect vehicle control systems against

hacking.

Two of the well-recognized security concerns faced by infrastructure operators are: (i)

How to prioritize investments among facilities that are heterogeneous in terms of the impact

that their compromise can have on the overall efficiency (or usage cost) of the system? and

(ii) Whether or not an attacker can be fully deterred from launching an attack by proactively

securing some of the facilities?

In this chapter, we address these questions by focusing on the most basic form of strate-

gic interaction between the system operator (defender) and an attacker. In particular, the

attacker incurs a cost in compromising a facility and chooses among a set of critical facil-

ities, possibly in a randomized manner. On the other hand, the defender faces the choice

of which facilities to secure and with what level of security investment cost. The costs

of attack/defense reflect the attacker/defender’s technological capabilities in launching an

attack/defense. If an undefended facility is targeted by the attacker, its functionality is

compromised, and the outcome is evaluated as a reduction in the overall user welfare of the

physical infrastructure system. Naturally, the defender aims to maintain a low usage cost,

while the attacker wishes to increase the usage cost.

We model the attack and defense as a normal form (simultaneous) or a sequential (Stack-

elberg) game. The normal form game is relevant to situations in which the attacker cannot

directly observe the chosen security plan, whereas the sequential game applies to situations

where the defender proactively secures some facilities, and the attacker can observe the de-

fense strategy. In both games, we provide a complete characterization of the equilibrium

structure in terms of the relative vulnerability of different facilities and the costs of de-

fense/attack. These results add value to the study on the allocation of defense resources on

facilities against strategic adversaries (Powell [2007], Bier et al. [2007], Bell et al. [2008], Bier

and Hausken [2013], Alderson et al. [2011], and Brown et al. [2006]).

Furthermore, we find that the defender’s utility in the sequential game is no less than

that in the normal form game. This phenomena has been long identified as the first mover
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advantage in two player games with mixed strategies (Basar and Olsder [1998] (pp. 126),

Von Stengel and Zamir [2004]). We characterize the precise conditions on the attack and

defense costs for which the first mover advantage for the defender is strictly positive. That is,

we identify situations in which the defender can secure better system performance against the

attacker or even completely deter the attack by proactively allocating security investments

according to the equilibrium strategy.

The chapter is structured as follows: In Sec. 6.2, we introduce the model of both games,

and discuss the modeling assumptions. We provide preliminary results to facilitate our

analysis in Sec. 6.3. Sec. 6.4 characterizes NE, and Sec. 6.5 characterizes SPE. Sec. 6.6

compares both games. All proofs are included in Appendix D.

6.2 Model

6.2.1 Attacker-Defender Interaction: Normal Form versus Sequen-

tial Games

Consider an infrastructure system modeled as a set of components (facilities) 𝐸. To defend

the system against an external malicious attack, the system operator (defender) can secure

one or more facilities in 𝐸 by investing in appropriate security technology. The set of facili-

ties in question can include cyber or physical elements that are crucial to the functioning of

the system. These facilities are potential targets for a malicious adversary whose goal is to

compromise the overall functionality of the system by gaining unauthorized access to certain

cyber-physical elements. The security technology can be a combination of proactive mecha-

nisms (authentication and access control) or reactive ones (attack detection and response).

Since our focus is on modeling the strategic interaction between the attacker and defender

at a system level, we do not consider the specific functionalities of individual facilities or the

protection mechanisms offered by various technologies.

We now introduce our game theoretic model. Let us denote a pure strategy of the

defender as 𝑠𝑑 ⊆ 𝐸, with 𝑠𝑑 ∈ 𝑆𝑑 = 2𝐸. The cost of securing any facility is given by the

parameter 𝑝𝑑 ∈ R>0. Thus, the total defense cost incurred in choosing a pure strategy 𝑠𝑑 is
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|𝑠𝑑| ·𝑝𝑑, where |𝑠𝑑| is the cardinality of 𝑠𝑑 (i.e., the number of secured facilities). The attacker

chooses to target a single facility 𝑒 ∈ 𝐸 or not to attack. We denote a pure strategy of the

attacker as 𝑠𝑎 ∈ 𝑆𝑎 = 𝐸 ∪ {∅}. The cost of an attack is given by the parameter 𝑝𝑎 ∈ R>0,

and it reflects the effort that attacker needs to spend in order to successfully targets a single

facility and compromise its operation.

We assume that prior to the attack, the usage cost of the system is 𝐶∅. This cost

represents the level of efficiency with which the defender is able to operate the system for its

users. A higher usage cost reflects lower efficiency. If a facility 𝑒 is targeted by the attacker

but not secured by the defender, we consider that 𝑒 is compromised and the usage cost of

the system changes to 𝐶𝑒. Therefore, given any pure strategy profile (𝑠𝑑, 𝑠𝑎), the usage cost

after the attacker-defender interaction, denoted 𝐶(𝑠𝑑, 𝑠𝑎), can be expressed as follows:

𝐶(𝑠𝑑, 𝑠𝑎) =

⎧⎨⎩ 𝐶𝑒, if 𝑠𝑎 = 𝑒, and 𝑠𝑑 ̸∋ 𝑒,

𝐶∅, otherwise.
(6.1)

To study the effect of timing of the attacker-defender interaction, prior literature on

security games has studied both normal form game and sequential games (Alpcan and Baysar

[2010]). We study both models in our setting. In the normal form game, denoted Γ, the

defender and the attacker move simultaneously. On the other hand, in the sequential game,

denoted ̃︀Γ, the defender moves in the first stage and the attacker moves in the second stage

after observing the defender’s strategy. We allow both players to use mixed strategies. In Γ,

we denote the defender’s mixed strategy as 𝜎𝑑
Δ
= (𝜎𝑑(𝑠𝑑))𝑠𝑑∈𝑆𝑑

∈ Δ(𝑆𝑑), where 𝜎𝑑(𝑠𝑑) is the

probability that the set of secured facilities is 𝑠𝑑. Similarly, a mixed strategy of the attacker

is 𝜎𝑎
Δ
= (𝜎𝑎(𝑠𝑎))𝑠𝑎∈𝑆𝑎

∈ Δ(𝑆𝑎), where 𝜎𝑎(𝑠𝑎) is the probability that the realized action is

𝑠𝑎. Let 𝜎 = (𝜎𝑑, 𝜎𝑎) denote a mixed strategy profile. In ̃︀Γ, the defender’s mixed strategỹ︀𝜎𝑑 Δ
= (̃︀𝜎𝑑(𝑠𝑑))𝑠𝑑∈𝑆𝑑

∈ Δ(𝑆𝑑) is defined analogously to that in Γ. The attacker’s strategy is a

map from Δ(𝑆𝑑) to Δ(𝑆𝑎), denoted by ̃︀𝜎𝑎(̃︀𝜎𝑑) Δ
= (̃︀𝜎𝑎(𝑠𝑎, ̃︀𝜎𝑑))𝑠𝑎∈𝑆𝑎

∈ Δ(𝑆𝑎), where ̃︀𝜎𝑎(𝑠𝑎, ̃︀𝜎𝑑)
is the probability that the realized action is 𝑠𝑎 when the defender’s strategy is ̃︀𝜎𝑑. A strategy

profile in this case is denoted as ̃︀𝜎 = (̃︀𝜎𝑑, ̃︀𝜎𝑎(̃︀𝜎𝑑)).
The defender’s utility is comprised of two parts: the negative of the usage cost as given

in (6.1) and the defense cost incurred in securing the system. Similarly, the attacker’s utility
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is the usage cost net the attack cost. For a pure strategy profile (𝑠𝑑, 𝑠𝑎), the utilities of

defender and attacker can be respectively expressed as follows:

𝑢𝑑(𝑠𝑑, 𝑠𝑎) = −𝐶(𝑠𝑑, 𝑠𝑎)− 𝑝𝑑 · |𝑠𝑑|, 𝑢𝑎(𝑠𝑑, 𝑠𝑎) = 𝐶(𝑠𝑑, 𝑠𝑎)− 𝑝𝑎 · 1{𝑠𝑎 ̸= ∅}.

For a mixed strategy profile (𝜎𝑑, 𝜎𝑎), the expected utilities can be written as:

𝑈𝑑(𝜎𝑑, 𝜎𝑎) =
∑︁
𝑠𝑑∈𝑆𝑑

∑︁
𝑠𝑎∈𝑆𝑎

𝑢𝑑(𝑠𝑑, 𝑠𝑎) · 𝜎𝑎(𝑠𝑎) · 𝜎𝑑(𝑠𝑑) = −E𝜎[𝐶]− 𝑝𝑑 · E𝜎𝑑 [|𝑠𝑑|], (6.2a)

𝑈𝑎(𝜎𝑑, 𝜎𝑎) =
∑︁
𝑠𝑑∈𝑆𝑑

∑︁
𝑠𝑎∈𝑆𝑎

𝑢𝑎(𝑠𝑑, 𝑠𝑎) · 𝜎𝑎(𝑠𝑎) · 𝜎𝑑(𝑠𝑑) = E𝜎[𝐶]− 𝑝𝑎 · E𝜎𝑎 [|𝑠𝑎|], (6.2b)

where E𝜎[𝐶] is the expected usage cost, and E𝜎𝑑 [|𝑠𝑑|] (resp. E𝜎𝑎 [|𝑠𝑎|]) is the expected number

of defended (resp. targeted) facilities, i.e.:

E𝜎[𝐶] =
∑︁
𝑠𝑎∈𝑆𝑎

∑︁
𝑠𝑑∈𝑆𝑑

𝐶(𝑠𝑑, 𝑠𝑎) · 𝜎𝑎(𝑠𝑎) · 𝜎𝑑(𝑠𝑑),

E𝜎𝑑 [|𝑠𝑑|] =
∑︁
𝑠𝑑∈𝑆𝑑

|𝑠𝑑|𝜎𝑑(𝑠𝑑), E𝜎𝑎 [|𝑠𝑎|] =
∑︁
𝑒∈𝐸

𝜎𝑎(𝑒).

An equilibrium outcome of the game Γ is defined in the sense of Nash Equilibrium (NE).

A strategy profile 𝜎* = (𝜎*
𝑑, 𝜎

*
𝑎) is a NE if:

𝑈𝑑(𝜎
*
𝑑, 𝜎

*
𝑎) ≥ 𝑈𝑑(𝜎𝑑, 𝜎

*
𝑎), ∀𝜎𝑑 ∈ Δ(𝑆𝑑),

𝑈𝑎(𝜎
*
𝑑, 𝜎

*
𝑎) ≥ 𝑈𝑎(𝜎

*
𝑑, 𝜎𝑎), ∀𝜎𝑎 ∈ Δ(𝑆𝑎).

In the sequential game ̃︀Γ, the solution concept is that of a Subgame Perfect Equilibrium

(SPE), which is also known as Stackelberg equilibrium. A strategy profile ̃︀𝜎* = (̃︀𝜎*
𝑑, ̃︀𝜎*

𝑎(̃︀𝜎𝑑))
is a SPE if:

𝑈𝑑(̃︀𝜎*
𝑑, ̃︀𝜎*

𝑎(̃︀𝜎*
𝑑)) ≥ 𝑈𝑑(̃︀𝜎𝑑, ̃︀𝜎*

𝑎(̃︀𝜎𝑑)), ∀̃︀𝜎𝑑 ∈ Δ(𝑆𝑑), (6.3a)

𝑈𝑎(̃︀𝜎𝑑, ̃︀𝜎*
𝑎(̃︀𝜎𝑑)) ≥ 𝑈𝑎(̃︀𝜎𝑑, ̃︀𝜎𝑎(̃︀𝜎𝑑)), ∀̃︀𝜎𝑑 ∈ Δ(𝑆𝑑), ∀̃︀𝜎𝑎(̃︀𝜎𝑑) ∈ Δ(𝑆𝑎). (6.3b)

Since both 𝑆𝑑 and 𝑆𝑎 are finite sets, and we consider mixed strategies, both NE and SPE
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exist.

6.2.2 Model Discussion

One of our main assumptions is that the attacker’s capability is limited to targeting at

most one facility, while the defender can invest in securing multiple facilities. Although this

assumption appears to be somewhat restrictive, it enables us to derive analytical results

on the equilibrium structure for a system with multiple facilities. The assumption can be

justified in situations where the attacker can only target system components in a localized

manner. Thus, a facility can be viewed as a set of collocated components that can be

simultaneously targeted by the attacker. For example, in a transportation system, a facility

can be a vulnerable link (edge), or a set of links that are connected by a vulnerable node (an

intersection or a hub). In Sec. 6.7, we briefly discuss the issues in solving a more general

game where multiple facilities can be simultaneously targeted by the attacker.

Secondly, our model assumes that the costs of attack and defense are identical across

all facilities. We make this assumption largely to avoid the notational burden of analyzing

the effect of facility-dependent attack/defense cost parameters on the equilibrium structures.

In fact, as argued in Sec. 6.7, the qualitative properties of equilibria still hold when cost

parameters are facility-dependent. However, characterizing the equilibrium regimes in this

case can be quite tedious, and may not necessarily provide new insights on strategic defense

investments.

Thirdly, we allow both players to choose mixed strategies. Indeed, mixed strategies are

commonly considered in security games as a pure NE may not always exists. A mixed

strategy entails a player’s decision to introduce randomness in her behavior, i.e. the manner

in which a facility is targeted (resp. secured) by the attacker (resp. defender). Consider for

example, the problem of inspecting a transportation network facing risk of a malicious attack.

In this problem, a mixed strategy can be viewed as randomized allocation of inspection effort

on subsets of facilities. Mixed strategy of the attacker can be similarly interpreted.

Fourthly, we assume that the defender has the technological means to perfectly secure

a facility. In other words, an attack on a secured facility cannot impact its operation. As

we will see in Sec. 6.3, the defender’s mixed strategy can be viewed as the level of security
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effort on each facility, where the effort level 1 (maximum) means perfect security, and 0

(minumum) means no security. Under this interpretation, the defense cost 𝑝𝑑 is the cost

of perfectly securing a unit facility (i.e., with maximum level of effort), and the expected

defense cost is 𝑝𝑑 scaled by the security effort defined by the defender’s mixed strategy.

Fifthly, we do not consider a specific functional form for modeling the usage cost. In our

model, for any facility 𝑒 ∈ 𝐸, the difference between the post-attack usage cost 𝐶𝑒 and the

pre-attack cost 𝐶∅ represents the change of the usage cost of the system when 𝑒 is compro-

mised. This change can be evaluated based on the type of attacker-defender interaction one

is interested in studying. For example, in situations when attack on a facility results in its

complete disruption, one can use a connectivity-based metric such as the number of active

source-destination paths or the number of connected components to evaluate the usage cost

(Dziubiński and Goyal [2013] and Dziubiński and Goyal [2017]). On the other hand, in situ-

ations when facilities are congestible resources and an attack on a facility increases the users’

cost of accessing it, the system’s usage cost can be defined as the average cost for accessing

(or routing through) the system. This cost can be naturally evaluated as the user cost in

a Wardrop equilibrium (Bier and Hausken [2013]), although socially optimal cost has also

been considered in the literature (Alderson et al. [2017]).

Finally, we note that for the purpose of our analysis, the usage cost as given in (6.1)

fully captures the impact of player’ actions on the system. For any two facilities 𝑒, 𝑒′ ∈ 𝐸,

the ordering of 𝐶𝑒 and 𝐶𝑒′ determines the relative scale of impact of the two facilities. As

we show in Sec. 6.4–6.5, the order of cost functions in the set {𝐶𝑒}𝑒∈ℰ plays a key role in

our analysis approach. Indeed the usage cost is intimately linked with the network structure

and way of operation (for example, how individual users are routed through the network and

how their costs are affected by a compromised facility). Barring a simple (yet illustrative)

example, we do not elaborate further on how the network structure and/or the functional

form of usage cost changes the interpretations of equilibrium outcome. We also do not discuss

the computational aspects of arriving at the ordering of usage costs.
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6.3 Rationalizable Strategies and Aggregate Defense Ef-

fort

We introduce two preliminary results that are useful in our subsequent analysis. Firstly,

we show that the defender’s strategy can be equivalently represented by a vector of facility-

specific security effort levels. Secondly, we identify the set of rationalizable strategies of both

players.

For any defender’s mixed strategy 𝜎𝑑 ∈ Δ(𝑆𝑑), the corresponding security effort vector

is 𝜌(𝜎𝑑) = (𝜌𝑒(𝜎𝑑))𝑒∈𝐸, where 𝜌𝑒(𝜎𝑑) is the probability that facility 𝑒 is secured:

𝜌𝑒(𝜎𝑑) =
∑︁
𝑠𝑑∋𝑒

𝜎𝑑(𝑠𝑑). (6.4)

In other words, 𝜌𝑒(𝜎𝑑) is the level of security effort exerted by the defender on facility

𝑒 under the security plan 𝜎𝑑. Since 𝜎𝑑(𝑠𝑑) ≥ 0 for any 𝑠𝑑 ∈ 𝑆𝑑, we obtain that 0 ≤

𝜌𝑒(𝜎𝑑) =
∑︀

𝑠𝑑∋𝑒 𝜎𝑑(𝑠𝑑) ≤
∑︀

𝑠𝑑∈𝑆𝑑
𝜎𝑑(𝑠𝑑) = 1. Hence, any 𝜎𝑑 induces a valid probability vector

𝜌 ∈ [0, 1]|𝐸|. In fact, any vector 𝜌 ∈ [0, 1]|𝐸| can be induced by at least one feasible 𝜎𝑑. The

following lemma provides a way to explicitly construct one such feasible strategy.

Lemma 6.1. Consider any feasible security effort vector 𝜌 ∈ [0, 1]|𝐸|. Let 𝑚 be the number

of distinct positive values in 𝜌, and define 𝜌(𝑖) as the 𝑖-th largest distinct value in 𝜌, i.e.

𝜌(1) > · · · > 𝜌(𝑚). The following defender’s strategy is feasible and induces 𝜌:

𝜎𝑑(
{︀
𝑒 ∈ 𝐸|𝜌𝑒 ≥ 𝜌(𝑖)

}︀
) = 𝜌(𝑖) − 𝜌(𝑖+1), ∀𝑖 = 1, . . . ,𝑚− 1 (6.5a)

𝜎𝑑(
{︀
𝑒 ∈ 𝐸|𝜌𝑒 ≥ 𝜌(𝑚)

}︀
) = 𝜌(𝑚), (6.5b)

𝜎𝑑(∅) = 1− 𝜌(1). (6.5c)

For any remaining 𝑠𝑑 ∈ 𝑆𝑑, 𝜎𝑑(𝑠𝑑) = 0.

We now re-express the player utilities in (6.2) in terms of (𝜌(𝜎𝑑), 𝜎𝑎) as follows:

𝑈𝑑(𝜎𝑑, 𝜎𝑎) =−
∑︁
𝑠𝑎∈𝑆𝑎

(︃∑︁
𝑠𝑑∈𝑆𝑑

𝜎𝑑(𝑠𝑑)𝐶(𝑠𝑑, 𝑠𝑎)

)︃
𝜎𝑎(𝑠𝑎)−

(︃∑︁
𝑠𝑑∈𝑆𝑑

|𝑠𝑑|𝜎𝑑(𝑠𝑑)

)︃
𝑝𝑑
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=−
∑︁
𝑒∈𝐸

(︃∑︁
𝑠𝑑∈𝑆𝑑

𝜎𝑑(𝑠𝑑)𝐶(𝑠𝑑, 𝑒)

)︃
𝜎𝑎(𝑒)− 𝐶∅𝜎𝑎(∅)−

(︃∑︁
𝑒∈𝐸

𝜌𝑒(𝜎𝑑)

)︃
𝑝𝑑

(6.1)
= −

∑︁
𝑒∈𝐸

(︃(︃∑︁
𝑠𝑑∋𝑒

𝜎𝑑(𝑠𝑑)

)︃
𝐶∅ +

(︃
1−

∑︁
𝑠𝑑∋𝑒

𝜎𝑑(𝑠𝑑)

)︃
𝐶𝑒

)︃
𝜎𝑎(𝑒)− 𝐶∅𝜎𝑎(∅)−

(︃∑︁
𝑒∈𝐸

𝜌𝑒(𝜎𝑑)

)︃
𝑝𝑑

=−
∑︁
𝑒∈𝐸

(𝜌𝑒(𝜎𝑑) ((𝐶∅ − 𝐶𝑒)𝜎𝑎(𝑒) + 𝑝𝑑) + 𝐶𝑒𝜎𝑎(𝑒))− 𝐶∅𝜎𝑎(∅), (6.6a)

𝑈𝑎(𝜎𝑑, 𝜎𝑎) =
∑︁
𝑒∈𝐸

(𝜌𝑒(𝜎𝑑) (𝐶∅ − 𝐶𝑒)𝜎𝑎(𝑒) + 𝐶𝑒𝜎𝑎(𝑒)) + 𝐶∅𝜎𝑎(∅)−

(︃∑︁
𝑒∈𝐸

𝜎𝑎(𝑒)

)︃
𝑝𝑎. (6.6b)

Thus, for any given attack strategy and any two defense strategies, if the induced security

effort vectors are identical, then the corresponding utility for each player is also identical.

Henceforth, we denote the player utilities as 𝑈𝑑(𝜌, 𝜎𝑎) and 𝑈𝑎(𝜌, 𝜎𝑎), and use 𝜎𝑑 and 𝜌𝑒(𝜎𝑑)

interchangeably in representing the defender’s strategy. For the sequential game ̃︀Γ, we anal-

ogously denote the security effort vector given the strategy ̃︀𝜎𝑑 as 𝜌(̃︀𝜎𝑑), and the defender’s

utility (resp. attacker’s utility) as ̃︀𝑈𝑑(𝜌, ̃︀𝜎𝑎) (resp. ̃︀𝑈𝑎(𝜌, ̃︀𝜎𝑎)).
We next characterize the set of rationalizable strategies. Note that the post-attack usage

cost 𝐶𝑒 can increase or remain the same or even decrease, in comparison to the pre-attack

cost 𝐶∅. Let the facilities whose damage result in an increased usage cost be grouped in the

set �̄�. Similarly, let ̂︀𝐸 denote the set of facilities such that a damage to any one of them has

no effect on the usage cost. Finally, the set of remaining facilities is denoted as
̂︀
𝐸. Thus:

�̄�
Δ
= {𝑒 ∈ 𝐸|𝐶𝑒 > 𝐶∅} , (6.7a)̂︀𝐸 Δ
= {𝑒 ∈ 𝐸|𝐶𝑒 = 𝐶∅} , (6.7b)̂︀

𝐸
Δ
= {𝑒 ∈ 𝐸|𝐶𝑒 < 𝐶∅} . (6.7c)

Clearly, �̄� ∪ ̂︀𝐸 ∪ ̂︀𝐸 = 𝐸. The following proposition shows that in a rationalizable strategy

profile, the defender does not secure facilities that are not in �̄�, and the attacker only

considers targeting the facilities that are in �̄�.

Proposition 6.1. The rationalizable action sets for the defender and attacker are given by

2�̄� and �̄� ∪ {∅}, respectively. Hence, any equilibrium strategy profile (𝜌*, 𝜎*
𝑎) in Γ (resp.

139



(𝜌*, ̃︀𝜎*
𝑎) in ̃︀Γ) satisfies:

𝜌*𝑒 = 𝜎*
𝑎(𝑒) = 0, ∀𝑒 ∈ 𝐸 ∖ �̄�,

𝜌*𝑒 = ̃︀𝜎*
𝑎(𝑒, 𝜌) = 0, ∀𝑒 ∈ 𝐸 ∖ �̄�, ∀𝜌 ∈ [0, 1]𝐸.

If �̄� = ∅, then the attacker/defender does not attack/secure any facility in equilibrium.

Henceforth, to avoid triviality, we assume �̄� ̸= ∅. Additionally, we define a partition of

facilities in �̄� such that all facilities with identical 𝐶𝑒 are grouped in the same set. Let the

number of distinct values in {𝐶𝑒}𝑒∈�̄� be 𝐾, and 𝐶(𝑘) denote the 𝑘-th highest distinct value

in the set {𝐶𝑒}𝑒∈�̄�. Then, we can order the usage costs as follows:

𝐶(1) > 𝐶(2) > · · · > 𝐶(𝐾) > 𝐶∅. (6.8)

We denote �̄�(𝑘) as the set of facilities such that if any 𝑒 ∈ �̄�(𝑘) is damaged, the usage

cost 𝐶𝑒 = 𝐶(𝑘), i.e. �̄�(𝑘)
Δ
=
{︀
𝑒 ∈ �̄�|𝐶𝑒 = 𝐶(𝑘)

}︀
. We also define 𝐸(𝑘)

Δ
= |�̄�(𝑘)|. Clearly,

∪𝐾𝑘=1�̄�(𝑘) = �̄�, and
∑︀𝐾

𝑘=1𝐸(𝑘) = |�̄�|. Facilities in the same group have identical impact on

the infrastructure system when compromised.

6.4 Normal Form Game Γ

In this section, we provide complete characterization of the set of NE for any given attack and

defense cost parameters in game Γ. In Sec. 6.4.1, we show that Γ is strategically equivalent

to a zero-sum game, and hence the set of attacker’s equilibrium strategies can be solved by

a linear program. In Sec. 6.4.2, we show that the space of cost parameters (𝑝𝑎, 𝑝𝑑) ∈ R2
>0

can be partitioned into qualitatively distinct equilibrium regimes.

6.4.1 Strategic Equivalence to Zero-Sum Game

Our notion of strategic equivalence is the same as the best-response equivalence defined

in Rosenthal [1974]. If Γ and another game Γ0 are strategically equivalent, then given

any strategy of the defender (resp. attacker), the set of attacker’s (resp. defender’s) best
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responses is identical in the two games. This result forms the basis of characterizing the set

of NE.

We define the utility functions of the game Γ0 as follows:

𝑈0
𝑑 (𝜎𝑑, 𝜎𝑎) = −E𝜎[𝐶]− E𝜎𝑑 [|𝑠𝑑|] · 𝑝𝑑 + 𝑝𝑎 · E𝜎𝑎 [|𝑠𝑎|], (6.9a)

𝑈0
𝑎 (𝜎𝑑, 𝜎𝑎) = E𝜎[𝐶] + E𝜎𝑑 [|𝑠𝑑|] · 𝑝𝑑 − 𝑝𝑎 · E𝜎𝑎 [|𝑠𝑎|]. (6.9b)

Thus, Γ0 is a zero-sum game. We denote the set of defender’s (resp. attacker’s) equilibrium

strategies in Γ0 as Σ0
𝑑 (resp. Σ0

𝑎).

Lemma 6.2. The normal form game Γ is strategically equivalent to the zero sum game

Γ0. The set of defender’s (resp. attacker’s) equilibrium strategies in Γ is Σ*
𝑑 ≡ Σ0

𝑑 (resp.

Σ*
𝑎 ≡ Σ0

𝑎). Furthermore, for any 𝜎*
𝑑 ∈ Σ*

𝑑 and any 𝜎*
𝑎 ∈ Σ*

𝑎, (𝜎*
𝑑, 𝜎

*
𝑎) is an equilibrium strategy

profile of Γ.

Based on Lemma 6.2, the set of attacker’s equilibrium strategies Σ*
𝑎 can be expressed as

the optimal solution set of a linear program.

Proposition 6.2. The set Σ*
𝑎 is the optimal solution set of the following optimization prob-

lem:

max
𝜎𝑎

𝑉 (𝜎𝑎)

𝑠.𝑡. 𝑉 (𝜎𝑎) =
∑︁
𝑒∈�̄�

min {𝜎𝑎(𝑒) · (𝐶∅ − 𝑝𝑎) + 𝑝𝑑, 𝜎𝑎(𝑒) · (𝐶𝑒 − 𝑝𝑎)}+ 𝜎𝑎(∅) · 𝐶∅, (6.10a)

∑︁
𝑒∈�̄�

𝜎𝑎(𝑒) + 𝜎𝑎(∅) = 1, (6.10b)

𝜎𝑎(∅) ≥ 0, 𝜎𝑎(𝑒) ≥ 0, ∀𝑒 ∈ �̄�. (6.10c)

Furthermore, (6.10) is equivalent to the following linear optimization program:

max
𝜎𝑎,𝑣

∑︁
𝑒∈�̄�

𝑣𝑒 + 𝜎𝑎(∅) · 𝐶∅

𝑠.𝑡. 𝜎𝑎(𝑒) · (𝐶∅ − 𝑝𝑎) + 𝑝𝑑 − 𝑣𝑒 ≥ 0, ∀𝑒 ∈ �̄�, (6.11a)
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𝜎𝑎(𝑒) · (𝐶𝑒 − 𝑝𝑎)− 𝑣𝑒 ≥ 0, ∀𝑒 ∈ �̄�, (6.11b)∑︁
𝑒∈�̄�

𝜎𝑎(𝑒) + 𝜎𝑎(∅) = 1, (6.11c)

𝜎𝑎(∅) ≥ 0, 𝜎𝑎(𝑒) ≥ 0, ∀𝑒 ∈ �̄�. (6.11d)

where 𝑣 = (𝑣𝑒)𝑒∈�̄� is an |�̄�|-dimensional variable.

In Proposition 6.2, the objective function 𝑉 (𝜎𝑎) is a piecewise linear function in 𝜎𝑎.

Furthermore, given any 𝜎𝑎 and any 𝑒 ∈ �̄�, we can write:

min {𝜎𝑎(𝑒) · (𝐶∅ − 𝑝𝑎) + 𝑝𝑑, 𝜎𝑎(𝑒) · (𝐶𝑒 − 𝑝𝑎)}

=

⎧⎨⎩ 𝜎𝑎(𝑒) · (𝐶∅ − 𝑝𝑎) + 𝑝𝑑 if 𝜎𝑎(𝑒) > 𝑝𝑑
𝐶𝑒−𝐶∅

,

𝜎𝑎(𝑒) · (𝐶𝑒 − 𝑝𝑎) if 𝜎𝑎(𝑒) ≤ 𝑝𝑑
𝐶𝑒−𝐶∅

.
(6.12)

Thus, we can observe that if 𝜎𝑎(𝑒) equals to 𝑝𝑑/ (𝐶𝑒 − 𝐶∅), then −𝜎𝑎(𝑒)·𝐶∅−𝑝𝑑 = −𝜎𝑎(𝑒)·𝐶𝑒,

i.e. if a facility 𝑒 is targeted with the threshold attack probability 𝑝𝑑/(𝐶𝑒−𝐶∅), the defender is

indifferent between securing 𝑒 versus not. The following lemma analyzes the defender’s best

response to the attacker’s strategy, and shows that no facility is targeted with probability

higher than the threshold probability in equilibrium.

Lemma 6.3. Given any strategy of the attacker 𝜎𝑎 ∈ Δ(𝑆𝑎), for any defender’s security

effort 𝜌 that is a best response to 𝜎𝑎, denoted 𝜌 ∈ 𝐵𝑅(𝜎𝑎), the security effort 𝜌𝑒 on each

facility 𝑒 ∈ 𝐸 satisfies:

𝜌𝑒

⎧⎪⎪⎪⎨⎪⎪⎪⎩
= 0, ∀𝑒 ∈

{︁
�̄�|𝜎𝑎(𝑒) < 𝑝𝑑

𝐶𝑒−𝐶∅

}︁
∪ ̂︀𝐸 ∪ ̂︀𝐸,

∈ [0, 1], ∀𝑒 ∈
{︁
�̄�|𝜎𝑎(𝑒) = 𝑝𝑑

𝐶𝑒−𝐶∅

}︁
,

= 1, ∀𝑒 ∈
{︁
�̄�|𝜎𝑎(𝑒) > 𝑝𝑑

𝐶𝑒−𝐶∅

}︁
.

(6.13)

Furthermore, in equilibrium, the attacker’s strategy 𝜎*
𝑎 satisfies:

𝜎*
𝑎(𝑒) ≤

𝑝𝑑
𝐶𝑒 − 𝐶∅

, ∀𝑒 ∈ �̄�, (6.14a)

𝜎*
𝑎(𝑒) = 0, ∀𝑒 ∈ 𝐸 ∖ �̄�. (6.14b)
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Lemma 6.3 highlights a key property of NE: The attacker does not target at any facility

𝑒 ∈ �̄� with probability higher than the threshold 𝑝𝑑/(𝐶𝑒−𝐶∅), and the defender allocates a

non-zero security effort only on the facilities that are targeted with the threshold probability.

Intuitively, if a facility 𝑒 were to be targeted with a probability higher than the threshold

𝑝𝑑/(𝐶𝑒 − 𝐶∅), then the defender’s best response would be to secure that facility with prob-

ability 1, and the attacker’s expected utility will be −𝐶∅ − 𝑝𝑎𝜎𝑎(𝑒), which is smaller than

−𝐶∅ (utility of no attack). Hence, the attacker would be better off by choosing the no attack

action.

Now, we can re-write 𝑉 (𝜎𝑎) as defined in (6.10) as follows:

𝑉 (𝜎𝑎)
(6.14)
=

∑︁
𝑒∈{�̄�|𝜎𝑎(𝑒)≤

𝑝𝑑
𝐶𝑒−𝐶∅

}

𝜎𝑎(𝑒) (𝐶𝑒 − 𝑝𝑎) + 𝐶∅ · 𝜎𝑎(∅), (6.15)

and the set of attacker’s equilibrium strategies maximizes this function.

6.4.2 Equilibrium Characterization

We are now in the position to introduce the equilibrium regimes. Each regime corresponds

to a range of cost parameters such that the qualitative properties of equilibrium (i.e. the set

of facilities that are targeted and secured) do not change in the interior of each regime.

We say that a facility 𝑒 is vulnerable if 𝐶𝑒 − 𝑝𝑎 > 𝐶∅. Therefore, given any attack cost

𝑝𝑎, the set of vulnerable facilities is given by {�̄�|𝐶𝑒 − 𝑝𝑎 > 𝐶∅}. Clearly, only vulnerable

facilities are likely targets of the attacker. If 𝑝𝑎 > 𝐶(1) − 𝐶∅, then there are no vulnerable

facilities. In contrast, if 𝑝𝑎 < 𝐶(1)−𝐶∅, we define the following threshold for the per-facility

defense cost:

𝑝𝑑(𝑝𝑎)
Δ
=

1∑︀
𝑒∈{�̄�|𝐶𝑒−𝑝𝑎>𝐶∅}

1
𝐶𝑒−𝐶∅

. (6.16)

We can check that for any 𝑖 = 1, . . . , 𝐾 − 1 (resp. 𝑖 = 𝐾), if 𝐶(𝑖+1) − 𝐶∅ ≤ 𝑝𝑎 < 𝐶(𝑖) − 𝐶∅
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(resp. 0 < 𝑝𝑎 < 𝐶(𝐾) − 𝐶∅), then

𝑝𝑑(𝑝𝑎) =

(︃
𝑖∑︁

𝑘=1

𝐸(𝑘)

𝐶(𝑘) − 𝐶∅

)︃−1

. (6.17)

Recall from Lemma 6.3 that 𝜎*
𝑎(𝑒) is upper bounded by the threshold attack probability

𝑝𝑑/(𝐶𝑒 − 𝐶∅). If the defense cost 𝑝𝑑 < 𝑝𝑑(𝑝𝑎), then
∑︀𝑖

𝑘=1

𝐸(𝑘)𝑝𝑑
𝐶(𝑘)−𝐶∅

< 1, which implies that

even when the attacker targets each vulnerable facility with the threshold attack probability,

the total probability of attack is still smaller than 1. Thus, the attacker must necessarily

choose not to attack with a positive probability. On the other hand, if 𝑝𝑑 > 𝑝𝑑(𝑝𝑎), then the

no attack action is not chosen by the attacker in equilibrium.

Following the above discussion, we introduce two types of regimes depending on whether

or not 𝑝𝑑 is higher than the threshold 𝑝𝑑(𝑝𝑎). In type I regimes, denoted as {Λ𝑖|𝑖 = 0, . . . , 𝐾},

the defense cost 𝑝𝑑 < 𝑝𝑑(𝑝𝑎), whereas in type II regimes, denoted as {Λ𝑗|𝑗 = 1, . . . , 𝐾}, the

defense cost 𝑝𝑑 > 𝑝𝑑(𝑝𝑎). Hence, we say that 𝑝𝑑 is “relatively low” (resp. “relatively high”) in

comparison to 𝑝𝑎 in type I regimes (resp. type II regimes). We formally define these 2𝐾 +1

regimes as follows:

1. Type I regimes Λ𝑖, 𝑖 = 0, . . . , 𝐾:

- If 𝑖 = 0:

𝑝𝑎 > 𝐶(1) − 𝐶∅, and 𝑝𝑑 > 0 (6.18)

- If 𝑖 = 1, . . . , 𝐾 − 1:

𝐶(𝑖+1) − 𝐶∅ < 𝑝𝑎 < 𝐶(𝑖) − 𝐶∅, and 0 < 𝑝𝑑 <

(︃
𝑖∑︁

𝑘=1

𝐸(𝑘)

𝐶(𝑘) − 𝐶∅

)︃−1

(6.19)

- If 𝑖 = 𝐾:

0 < 𝑝𝑎 < 𝐶(𝐾) − 𝐶∅, and 0 < 𝑝𝑑 <

(︃
𝐾∑︁
𝑘=1

𝐸(𝑘)

𝐶(𝑘) − 𝐶∅

)︃−1

(6.20)
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2. Type II regimes, Λ𝑗, 𝑗 = 1, . . . , 𝐾:

- If 𝑗 = 1:

0 < 𝑝𝑎 < 𝐶(1) − 𝐶∅, and 𝑝𝑑 >
(︂

𝐸(1)

𝐶(1) − 𝐶∅

)︂−1

(6.21)

- If 𝑗 = 2, . . . , 𝐾:

0 < 𝑝𝑎 < 𝐶(𝑗) − 𝐶∅, and

(︃
𝑗∑︁

𝑘=1

𝐸(𝑘)

𝐶(𝑘) − 𝐶∅

)︃−1

< 𝑝𝑑 <

(︃
𝑗−1∑︁
𝑘=1

𝐸(𝑘)

𝐶(𝑘) − 𝐶∅

)︃−1

(6.22)

We now characterize equilibrium strategy sets Σ*
𝑑 and Σ*

𝑎 in the interior of each regime.1

Theorem 6.1. The set of NE in each regime is as follows:

1. Type I regimes Λ𝑖:

- If 𝑖 = 0,

𝜌*𝑒 = 0, ∀𝑒 ∈ 𝐸 (6.23a)

𝜎*
𝑎(∅) = 1. (6.23b)

- If 𝑖 = 1, . . . , 𝐾,

𝜌*𝑒 =
𝐶(𝑘) − 𝑝𝑎 − 𝐶∅

𝐶(𝑘) − 𝐶∅
, ∀𝑒 ∈ �̄�(𝑘), ∀𝑘 = 1, . . . , 𝑖 (6.24a)

𝜌*𝑒 = 0, ∀𝑒 ∈ 𝐸 ∖
(︀
∪𝑖𝑘=1�̄�(𝑘)

)︀
(6.24b)

𝜎*
𝑎(𝑒) =

𝑝𝑑
𝐶(𝑘) − 𝐶∅

, ∀𝑒 ∈ �̄�(𝑘), ∀𝑘 = 1, . . . , 𝑖 (6.24c)

𝜎*
𝑎(∅) = 1−

∑︁
𝑒∈∪𝑖

𝑘=1�̄�(𝑘)

𝜎*
𝑎(𝑒). (6.24d)

2. Type II regimes Λ𝑗:

1For the sake of brevity, we omit the discussion of equilibrium strategies when cost parameters lie exactly
on the regime boundary, although this case can be addressed using the approach developed in this article.
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- 𝑗 = 1:

𝜌*𝑒 = 0, ∀𝑒 ∈ 𝐸 (6.25a)

0 ≤ 𝜎*
𝑎(𝑒) ≤

𝑝𝑑
𝐶(1) − 𝐶∅

∀𝑒 ∈ �̄�(1), (6.25b)∑︁
𝑒∈�̄�(1)

𝜎*
𝑎(𝑒) = 1. (6.25c)

- 𝑗 = 2, . . . , 𝐾:

𝜌*𝑒 =
𝐶(𝑘) − 𝐶(𝑗)

𝐶(𝑘) − 𝐶∅
, ∀𝑒 ∈ �̄�(𝑘), ∀𝑘 = 1, . . . , 𝑗 − 1 (6.26a)

𝜌*𝑒 = 0, ∀𝑒 ∈ 𝐸 ∖
(︀
∪𝑗−1
𝑘=1�̄�(𝑘)

)︀
(6.26b)

𝜎*
𝑎(𝑒) =

𝑝𝑑
𝐶(𝑘) − 𝐶∅

, ∀𝑒 ∈ �̄�(𝑘), ∀𝑘 = 1, . . . , 𝑗 − 1 (6.26c)

0 ≤ 𝜎*
𝑎(𝑒) ≤

𝑝𝑑
𝐶(𝑗) − 𝐶∅

, ∀𝑒 ∈ �̄�(𝑗) (6.26d)

∑︁
𝑒∈�̄�(𝑗)

𝜎*
𝑎(𝑒) = 1−

𝑗−1∑︁
𝑘=1

𝑝𝑑 · 𝐸(𝑘)

𝐶(𝑘) − 𝐶∅
. (6.26e)

Let us discuss the intuition behind the proof of Theorem 6.1.

Recall from Proposition 6.2 and Lemma 6.3 that the set of attacker’s equilibrium strate-

gies Σ*
𝑎 is the set of feasible mixed strategies that maximizes 𝑉 (𝜎𝑎) in (6.15), and the attacker

never targets at any facility 𝑒 ∈ 𝐸 with probability higher than the threshold 𝑝𝑑/(𝐶𝑒 −𝐶∅).

Also recall that the costs {𝐶(𝑘)}𝐾𝑘=1 are ordered according to (6.8). Thus, in equilibrium,

the attacker targets the facilities in �̄�(𝑘) with the threshold attack probability starting from

𝑘 = 1 and proceeding to 𝑘 = 2, 3, . . . 𝐾 until either all the vulnerable facilities are targeted

with the threshold attack probability (and no attack is chosen with remaining probability),

or the total attack probability reaches 1.

Again, from Lemma 6.3, we know that the defender secures the set of facilities that are

targeted with the threshold attack probability with positive effort. The equilibrium level of

security effort ensures that the attacker gets an identical utility in choosing any pure strategy

in the support of 𝜎*
𝑎, and this utility is higher or equal to that of choosing any other pure
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strategy.

The distinctions between the two regime types are summarized as follows:

1. In type I regimes, the defense cost 𝑝𝑑 < 𝑝𝑑(𝑝𝑎). The defender secures all vulnerable

facilities with a positive level of effort. The attacker targets at each vulnerable facility

with the threshold attack probability, and the total probability of attack is less than

1.

2. In type II regimes, the defense cost 𝑝𝑑 > 𝑝𝑑(𝑝𝑎). The defender only secures a subset

of targeted facilities with positive level of security effort. The attacker chooses the

facilities in decreasing order of 𝐶𝑒 − 𝐶∅, and targets each of them with the threshold

probability until the attack resource is exhausted, i.e. the total probability of attack

is 1.

6.5 Sequential game ̃︀Γ
In this section, we characterize the set of SPE in the game ̃︀Γ for any given attack and defense

cost parameters. The sequential game ̃︀Γ is no longer strategically equivalent to a zero-sum

game. Hence, the proof technique we used for equilibrium characterization in game Γ does

not work for the game ̃︀Γ. In Sec. 6.5.1, we analyze the attacker’s best response to the

defender’s security effort vector. We also identify a threshold level of security effort which

determines whether or not the defender achieves full attack deterrence in equilibrium. In

Sec. 6.5.2, we present the equilibrium regimes which govern the qualitative properties of

SPE.

6.5.1 Properties of ̃︀Γ
By definition of SPE, for any security effort vector 𝜌 ∈ [0, 1]|𝐸| chosen by the defender in the

first stage, the attacker’s equilibrium strategy in the second stage is a best response to 𝜌,

i.e. ̃︀𝜎*
𝑎(𝜌) satisfies (6.3b). As we describe next, the properties of SPE crucially depend on a
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threshold security effort level defined as follows:

̂︀𝜌𝑒 Δ
=
𝐶𝑒 − 𝑝𝑎 − 𝐶∅

𝐶𝑒 − 𝐶∅
, ∀𝑒 ∈ �̄�. (6.27)

The following lemma presents the best response correspondence 𝐵𝑅(𝜌) of the attacker:

Lemma 6.4. Given any 𝜌 ∈ [0, 1]|𝐸|, if 𝜌 satisfies 𝜌𝑒 ≥ ̂︀𝜌𝑒, for all 𝑒 ∈ {�̄�|𝐶𝑒 − 𝑝𝑎 > 𝐶∅},

then 𝐵𝑅(𝜌) = Δ(�̄�* ∪ {∅}), where:

�̄�* Δ
=
{︀
�̄� |𝐶𝑒 − 𝑝𝑎 > 𝐶∅, 𝜌𝑒 = ̂︀𝜌𝑒}︀ . (6.28)

Otherwise, 𝐵𝑅(𝜌) = Δ(�̄�◇), where:

�̄�◇ Δ
= argmax

𝑒∈{�̄�|𝐶𝑒−𝑝𝑎>𝐶∅}
{𝜌𝑒𝐶∅ + (1− 𝜌𝑒)𝐶𝑒} . (6.29)

In words, if each vulnerable facility 𝑒 is secured with an effort higher or equal to the

threshold effort ̂︀𝜌𝑒 in (6.27), then the attacker’s best response is to choose a mixed strategy

with support comprised of all vulnerable facilities that are secured with the threshold level

of effort (i.e., �̄�* as defined in (6.28)) and the no attack action. Otherwise, the support of

attacker’s strategy is comprised of all vulnerable facilities (pure actions) that maximize the

expected usage cost (see (6.29)). In particular, no attack action is not chosen in attacker’s

best response.

Now recall that any SPE (𝜌*, ̃︀𝜎*
𝑎(𝜌

*)) must satisfy both (6.3a) and (6.3b). Thus, for an

equilibrium security effort 𝜌*, an attacker’s best response ̃︀𝜎𝑎(𝜌*) ∈ 𝐵𝑅(𝜌*) is an equilibrium

strategy only if both these constraints are satisfied. The next lemma shows that depending

on whether the defender secures each vulnerable facility 𝑒 with the threshold effort ̂︀𝜌𝑒 or not,

the total attack probability in equilibrium is either 0 or 1. Thus, the defender being the first

mover determines whether the attacker is fully deterred from conducting an attack or not.

Additionally, in SPE, the security effort on each vulnerable facility 𝑒 is no higher than the

threshold effort ̂︀𝜌𝑒, and the security effort on any other edge is 0.
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Lemma 6.5. Any SPE (𝜌*, ̃︀𝜎*
𝑎(𝜌

*)) of the game ̃︀Γ satisfies the following property:

∑︁
𝑒∈�̄�

̃︀𝜎*
𝑎(𝑒, 𝜌

*) =

⎧⎨⎩ 0, if 𝜌*𝑒 ≥ ̂︀𝜌𝑒, ∀𝑒 ∈ {�̄�|𝐶𝑒 − 𝑝𝑎 > 𝐶∅},

1, otherwise.

Additionally, for any 𝑒 ∈ {�̄�|𝐶𝑒 − 𝑝𝑎 > 𝐶∅}, 𝜌*𝑒 ≤ ̂︀𝜌𝑒. For any 𝑒 ∈ 𝐸 ∖ {�̄�|𝐶𝑒 − 𝑝𝑎 > 𝐶∅},

𝜌*𝑒 = 0.

The proof of this result is based on the analysis of following three cases:

Case 1: There exists at least one facility 𝑒 ∈ {�̄�|𝐶𝑒 − 𝑝𝑎 > 𝐶∅} such that 𝜌*𝑒 < ̂︀𝜌𝑒. In this

case, by applying Lemma 6.4, we know that ̃︀𝜎*
𝑎(𝜌

*) ∈ 𝐵𝑅(𝜌*) = Δ(�̄�◇), where �̄�◇ is defined

in (6.29). Hence, the total attack probability is 1.

Case 2: For any 𝑒 ∈ {�̄�|𝐶𝑒 − 𝑝𝑎 > 𝐶∅}, 𝜌*𝑒 > ̂︀𝜌𝑒. In this case, the set �̄�* defined in (6.28) is

empty. Hence, Lemma 6.4 shows that the total attack probability is 0.

Case 3: For any 𝑒 ∈ {�̄�|𝐶𝑒 − 𝑝𝑎 > 𝐶∅}, 𝜌*𝑒 ≥ ̂︀𝜌𝑒, and the set �̄�* in (6.28) is non-empty.

Again from Lemma 6.4, we know that ̃︀𝜎*
𝑎(𝜌

*) ∈ 𝐵𝑅(𝜌*) = Δ(�̄�* ∪ {∅}). Now assume that

the attacker chooses to target at least one facility 𝑒 ∈ �̄�* with a positive probability in

equilibrium. Then, the defender can deviate by slightly increasing the security effort on each

facility in �̄�*. By introducing such a deviation, the defender’s security effort satisfies the

condition of Case 2, where the total attack probability is 0. Hence, this results in a higher

utility for the defender. Therefore, in any SPE (𝜌*, ̃︀𝜎*
𝑎(𝜌

*)), one cannot have a second stage

outcome in which the attacker targets facilities in �̄�*. We can thus conclude that the total

attack probability must be 0 in this case.

In both Cases 2 and 3, we say that the attacker is fully deterred.

Clearly, these three cases are exhaustive in that they cover all feasible security effort

vectors, and hence we can conclude that the total attack probability in equilibrium is either

0 or 1. Additionally, since the attacker is fully deterred when each vulnerable facility is

secured with the threshold effort, the defender will not further increase the security effort

beyond the threshold effort on any vulnerable facility. That is, only Cases 1 and 3 are

possible in equilibrium.
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6.5.2 Equilibrium Characterization

Recall that in Sec. 6.4, type I and type II regimes for the game Γ can be distinguished based

on a threshold defense cost 𝑝𝑑(𝑝𝑎). It turns out that in ̃︀Γ, there are still 2𝐾 + 1 regimes.

Again, each regime denotes distinct ranges of cost parameters, and can be categorized either

as type ̃︀I or type ̃︀II. However, in contrast to Γ, the regime boundaries in this case are more

complicated; in particular, they are non-linear in the cost parameters 𝑝𝑎 and 𝑝𝑑.

To introduce the boundary ̃︀𝑝𝑑(𝑝𝑎), we need to define the function 𝑝𝑖𝑗𝑑 (𝑝𝑎) for each 𝑖 =

1, . . . , 𝐾 and 𝑗 = 1, . . . , 𝑖 as follows:

𝑝𝑖𝑗𝑑 (𝑝𝑎) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝐶(1)−𝐶∅∑︀𝑖
𝑘=1 𝐸(𝑘)−

∑︀𝑖
𝑘=1

𝑝𝑎𝐸(𝑘)
𝐶(𝑘)−𝐶∅

, if 𝑗 = 1,

𝐶(𝑗)−𝐶∅

(𝐶(𝑗)−𝐶∅)·
(︂∑︀𝑗−1

𝑘=1

𝐸(𝑘)
𝐶(𝑘)−𝐶∅

)︂
+
∑︀𝑖

𝑘=𝑗 𝐸(𝑘)−
∑︀𝑖

𝑘=1

𝑝𝑎𝐸(𝑘)
𝐶(𝑘)−𝐶∅

, if 𝑗 = 2, . . . , 𝑖.

(6.30)

For any 𝑖 = 1, . . . , 𝐾, and any attack cost 𝐶(𝑖+1)−𝐶∅ ≤ 𝑝𝑎 < 𝐶(𝑖)−𝐶∅, but 0 < 𝑝𝑎 < 𝐶(𝐾)−𝐶∅

if 𝑖 = 𝐾, the threshold ̃︀𝑝𝑑(𝑝𝑎) is defined as follows:

̃︀𝑝𝑑(𝑝𝑎) =
⎧⎪⎪⎨⎪⎪⎩

𝑝𝑖𝑗𝑑 (𝑝𝑎), if
∑︀𝑖

𝑘=𝑗+1 𝐸(𝑘)∑︀𝑖
𝑘=1

𝐸(𝑘)
𝐶(𝑘)−𝐶∅

≤ 𝑝𝑎 <
∑︀𝑖

𝑘=𝑗 𝐸(𝑘)∑︀𝑖
𝑘=1

𝐸(𝑘)
𝐶(𝑘)−𝐶∅

, and 𝑗 = 1, . . . , 𝑖− 1,

𝑝𝑖𝑖𝑑 (𝑝𝑎), if 0 ≤ 𝑝𝑎 <
𝐸(𝑖)∑︀𝑖

𝑘=1

𝐸(𝑘)
𝐶(𝑘)−𝐶∅

.
(6.31)

Lemma 6.6. Given any attack cost 0 ≤ 𝑝𝑎 < 𝐶(1) − 𝐶∅, the threshold ̃︀𝑝𝑑(𝑝𝑎) is a strictly

increasing and continuous function of 𝑝𝑎.

Furthermore, for any 0 < 𝑝𝑎 < 𝐶(1) − 𝐶∅, ̃︀𝑝𝑑(𝑝𝑎) > 𝑝𝑑(𝑝𝑎). If 𝑝𝑎 = 0, ̃︀𝑝𝑑(0) = 𝑝𝑑(0). If

𝑝𝑎 → 𝐶(1) − 𝐶∅, ̃︀𝑝𝑑(𝑝𝑎)→ +∞.

Since ̃︀𝑝𝑑(𝑝𝑎) is a strictly increasing and continuous function function of 𝑝𝑎, the inverse

function ̃︀𝑝−1
𝑑 (𝑝𝑑) is well-defined. Now we are ready to formally define the regimes for the

game ̃︀Γ:

1. Type ̃︀I regimes ̃︀Λ𝑖, 𝑖 = 0, . . . , 𝐾:
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- If 𝑖 = 0:

𝑝𝑎 > 𝐶(1) − 𝐶∅, and 𝑝𝑑 > 0. (6.32)

- If 𝑖 = 1, . . . , 𝐾 − 1:

𝐶(𝑖+1) − 𝐶∅ < 𝑝𝑎 < 𝐶(𝑖) − 𝐶∅, and 0 < 𝑝𝑑 < ̃︀𝑝𝑑(𝑝𝑎). (6.33)

- If 𝑖 = 𝐾:

0 < 𝑝𝑎 < 𝐶(𝐾) − 𝐶∅, and 0 < 𝑝𝑑 < ̃︀𝑝𝑑(𝑝𝑎). (6.34)

2. Type ̃︀II regimes ̃︀Λ𝑗, 𝑗 = 1, . . . , 𝐾:

- If 𝑗 = 1:

0 < 𝑝𝑎 < ̃︀𝑝−1
𝑑 (𝑝𝑑), and 𝑝𝑑 >

(︂
𝐸(1)

𝐶(1) − 𝐶∅

)︂−1

(6.35)

- If 𝑗 = 2, . . . , 𝐾:

0 < 𝑝𝑎 < ̃︀𝑝−1
𝑑 (𝑝𝑑), and

(︃
𝑗∑︁

𝑘=1

𝐸(𝑘)

𝐶(𝑘) − 𝐶∅

)︃−1

< 𝑝𝑑 <

(︃
𝑗−1∑︁
𝑘=1

𝐸(𝑘)

𝐶(𝑘) − 𝐶∅

)︃−1

(6.36)

Analogous to the discussion in Section 6.4.2, we say 𝑝𝑑 is “relatively low” in typẽ︀I regimes,

and “relatively high” in type ̃︀II regimes. We now provide full characterization of SPE in each

regime.

Theorem 6.2. The defender’s equilibrium security effort vector 𝜌* = (𝜌*𝑒)𝑒∈𝐸 is unique in

each regime. Specifically, SPE in each regime is as follows:

1. Type ̃︀I regimes ̃︀Λ𝑖:
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- If 𝑖 = 0,

𝜌*𝑒 = 0, ∀𝑒 ∈ 𝐸, (6.37a)

̃︀𝜎*
𝑎(∅, 𝜌) = 1, ∀𝜌 ∈ [0, 1]|𝐸|. (6.37b)

- If 𝑖 = 1, . . . , 𝐾,

𝜌*𝑒 =
𝐶(𝑘) − 𝑝𝑎 − 𝐶∅

𝐶(𝑘) − 𝐶∅
, ∀𝑒 ∈ �̄�(𝑘), ∀𝑘 = 1, . . . , 𝑖, (6.38a)

𝜌*𝑒 = 0, ∀𝑒 ∈ 𝐸 ∖
(︀
∪𝑖𝑘=1�̄�(𝑘)

)︀
, (6.38b)

̃︀𝜎*
𝑎(∅, 𝜌*) = 1, (6.38c)

̃︀𝜎*
𝑎(𝜌) ∈ 𝐵𝑅(𝜌), ∀𝜌 ∈ [0, 1]|𝐸| ∖ 𝜌*. (6.38d)

2. Type ̃︀II regimes ̃︀Λ𝑗:
- If 𝑗 = 1,

𝜌*𝑒 = 0, ∀𝑒 ∈ 𝐸, (6.39a)

̃︀𝜎*
𝑎(𝜌

*) ∈ Δ(�̄�(1)), (6.39b)

̃︀𝜎*
𝑎(𝜌) ∈ 𝐵𝑅(𝜌), ∀𝜌 ∈ [0, 1]|𝐸| ∖ 𝜌*. (6.39c)

- If 𝑗 = 2, . . . , 𝐾,

𝜌*𝑒 =
𝐶(𝑘) − 𝐶(𝑗)

𝐶(𝑘) − 𝐶∅
, ∀𝑒 ∈ �̄�(𝑘), ∀𝑘 = 1, . . . , 𝑗 − 1, (6.40a)

𝜌*𝑒 = 0, ∀𝑒 ∈ 𝐸 ∖
(︀
∪𝑗−1
𝑘=1�̄�(𝑘)

)︀
, (6.40b)

̃︀𝜎*
𝑎(𝜌

*) ∈ Δ
(︀
∪𝑗𝑘=1�̄�(𝑘)

)︀
, (6.40c)

̃︀𝜎*
𝑎(𝜌) ∈ 𝐵𝑅(𝜌), ∀𝜌 ∈ [0, 1]|𝐸| ∖ 𝜌*. (6.40d)

In our proof of Theorem 6.2 (see Appendix D.3), we take the approach by first construct-

ing a partition of the space (𝑝𝑎, 𝑝𝑑) ∈ R2
>0 defined in (D.7), and then characterizing the SPE

for cost parameters in each set in the partition (Lemmas D.1–D.2). Theorem 6.2 follows
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directly by regrouping/combining the elements of this partition such that each of the new

partition has qualitatively identical equilibrium strategies.

From the discussion of Lemma 6.5, we know that only Cases 1 and 3 are possible in

equilibrium, and that in any SPE, the security effort on each vulnerable facility 𝑒 is no higher

than the threshold effort ̂︀𝜌𝑒. It turns out that for any attack cost, depending on whether

the defense cost is lower or higher than the threshold cost ̃︀𝑝𝑑(𝑝𝑎), the defender either secures

each vulnerable facility with the threshold effort given by (6.31) (type ̃︀I regime), or there

is at least one vulnerable facility that is secured with effort strictly less than the threshold

(type ̃︀II regimes):

1. In type ̃︀I regimes, the defense cost 𝑝𝑑 < ̃︀𝑝𝑑(𝑝𝑎). The defender secures each vulnerable

facility with the threshold effort ̂︀𝜌𝑒. The attacker is fully deterred.

2. In type ̃︀II regimes, the defense cost 𝑝𝑑 > ̃︀𝑝𝑑(𝑝𝑎). The defender’s equilibrium security

effort is identical to that in NE of the normal form game Γ. The total attack probability

is 1.

6.6 Comparison of Γ and ̃︀Γ
Sec. 6.6.1 deals with the comparison of players’ equilibrium utilities in the two games. In

Sec. 6.6.2, we compare the equilibrium regimes and discuss the distinctions in equilibrium

properties of the two games. This leads us to an understanding of the effect of timing of

play, i.e. we can identify situations in which the defender gains by proactively investing in

securing all of the vulnerable facilities at an appropriate level of effort.

6.6.1 Comparison of Equilibrium Utilities

The equilibrium utilities in both games are unique, and can be directly derived using Theo-

rems 6.1 and 6.2. We denote the equilibrium utilities of the defender and attacker in regime

Λ𝑖 (resp. Λ𝑗) as 𝑈Λ𝑖

𝑑 and 𝑈Λ𝑖

𝑎 (resp. 𝑈Λ𝑗

𝑑 and 𝑈
Λ𝑗
𝑎 ) in Γ, and ̃︀𝑈 ̃︀Λ𝑖

𝑑 and ̃︀𝑈 ̃︀Λ𝑖

𝑎 (resp. ̃︀𝑈 ̃︀Λ𝑗

𝑑 and̃︀𝑈 ̃︀Λ𝑗
𝑎 ) in regime ̃︀Λ𝑖 (resp. ̃︀Λ𝑗) in ̃︀Γ.
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Proposition 6.3. In both Γ and ̃︀Γ, the equilibrium utilities are unique in each regime.

Specifically,

1. Type I (̃︀I) regimes Λ𝑖 (̃︀Λ𝑖):
- If 𝑖 = 0:

𝑈Λ0
𝑑 = ̃︀𝑈 ̃︀Λ0

𝑑 = −𝐶∅, and 𝑈Λ0
𝑎 = ̃︀𝑈 ̃︀Λ0

𝑎 = 𝐶∅.

- If 𝑖 = 1, . . . , 𝐾:

𝑈Λ𝑖

𝑑 = −𝐶∅ −

(︃
𝑖∑︁

𝑘=1

𝐸(𝑘)

)︃
𝑝𝑑, and 𝑈Λ𝑖

𝑎 = 𝐶∅,

̃︀𝑈 ̃︀Λ𝑖

𝑑 = −𝐶∅ −

(︃
𝑖∑︁

𝑘=1

(𝐶𝑒 − 𝑝𝑎 − 𝐶∅)𝐸(𝑘)

𝐶𝑒 − 𝐶∅

)︃
𝑝𝑑, and ̃︀𝑈 ̃︀Λ𝑖

𝑎 = 𝐶∅.

2. Type II (̃︀II) regimes Λ𝑗 (̃︀Λ𝑗):
- If 𝑗 = 1:

𝑈Λ1
𝑑 = ̃︀𝑈 ̃︀Λ1

𝑑 = −𝐶(1), and 𝑈Λ1
𝑎 = ̃︀𝑈 ̃︀Λ1

𝑎 = 𝐶(1) − 𝑝𝑎.

- If 𝑗 = 2, . . . , 𝐾:

𝑈
Λ𝑗

𝑑 = ̃︀𝑈 ̃︀Λ𝑗

𝑑 = −𝐶(𝑗) −
𝑗−1∑︁
𝑘=1

(︀
𝐶(𝑘) − 𝐶(𝑗)

)︀
𝑝𝑑𝐸(𝑘)

𝐶(𝑘) − 𝐶∅
, and 𝑈Λ𝑗

𝑎 = ̃︀𝑈 ̃︀Λ𝑗
𝑎 = 𝐶(𝑗) − 𝑝𝑎.

From our results so far, we can summarize the similarities between the equilibrium out-

comes in Γ and ̃︀Γ. While most of these conclusions are fairly intuitive, the fact that they

are common to both game-theoretic models suggests that the timing of defense investments

do not play a role as far as these insights are concerned. Firstly, the support of both players

154



equilibrium strategies tends to contain the facilities, whose compromise results in a high us-

age cost. The defender secures these facilities with a high level of effort in order to reduce the

probability with which they are targeted by the attacker. Secondly, the attack and defense

costs jointly determine the set of facilities that are targeted or secured in equilibrium. On

one hand, the set of vulnerable facilities increases as the cost of attack decreases. On the

other hand, when the cost of defense is sufficiently high, the attacker tends to conduct an at-

tack with probability 1. However, as the defense cost decreases, the attacker randomizes the

attack on a larger set of facilities. Consequently, the defender secures a larger set of facilities

with positive effort, and when the cost of defense is sufficiently small, all vulnerable facilities

are secured by the defender. Thirdly, each player’s equilibrium payoff is non-decreasing in

the opponent’s cost, and non-increasing in her own cost. Therefore, to increase her equi-

librium payoff, each player is better off as her own cost decreases and the opponent’s cost

increases.

6.6.2 First Mover Advantage

We now focus on identifying parameter ranges in which the defender has the first mover

advantage, i.e., the defender in SPE has a strictly higher payoff than in NE. To identify the

first mover advantage, let us recall the expressions of type I regimes for Γ in (6.18)–(6.20)

and type ̃︀I regimes for ̃︀Γ in (6.32)–(6.34). Also recall that, for any given cost parameters 𝑝𝑎

and 𝑝𝑑, the threshold 𝑝𝑑(𝑝𝑎) (resp. ̃︀𝑝𝑑(𝑝𝑎)) determines whether the equilibrium outcome is

of type I or type II regime (resp. type ̃︀I or ̃︀II regime) in the game Γ (resp. ̃︀Γ). Furthermore,

from Lemma 6.6, we know that the cost threshold 𝑝𝑑(𝑝𝑎) in Γ is smaller than the threshold̃︀𝑝𝑑(𝑝𝑎) in ̃︀Γ. Thus, for all 𝑖 = 1, . . . , 𝐾, the type I regime Λ𝑖 in Γ is a proper subset of the

type ̃︀I regime ̃︀Λ𝑖 in ̃︀Γ. Consequently, for any (𝑝𝑎, 𝑝𝑑) ∈ R2
>0, we can have one of the following

three cases:

(a) 0 < 𝑝𝑑 < 𝑝𝑑(𝑝𝑎): The defense cost is relatively low in both Γ and ̃︀Γ. We denote the set

of (𝑝𝑎, 𝑝𝑑) that satisfy this condition as 𝐿 (low cost). That is,

𝐿
Δ
= {(𝑝𝑎, 𝑝𝑑) |0 < 𝑝𝑑 < 𝑝𝑑(𝑝𝑎)} = ∪𝐾𝑖=0Λ

𝑖. (6.41)
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(b) 𝑝𝑑(𝑝𝑎) < 𝑝𝑑 < ̃︀𝑝𝑑(𝑝𝑎): The defense cost is relatively high in Γ, but relatively low in ̃︀Γ.

We denote the set of (𝑝𝑎, 𝑝𝑑) that satisfy this condition as 𝑀 (medium cost). That is,

𝑀
Δ
= {(𝑝𝑎, 𝑝𝑑) |𝑝𝑑(𝑝𝑎) < 𝑝𝑑 < ̃︀𝑝𝑑(𝑝𝑎)} = ∪𝐾𝑖=1

(︁̃︀Λ𝑖 ∖ Λ𝑖)︁ . (6.42)

(c) 𝑝𝑑 > ̃︀𝑝𝑑(𝑝𝑎): The defense cost is relatively high in both Γ and ̃︀Γ. We denote the set of

(𝑝𝑎, 𝑝𝑑) that satisfy this condition as 𝐻 (high cost). That is,

𝐻
Δ
= {(𝑝𝑎, 𝑝𝑑) |𝑝𝑑 > ̃︀𝑝𝑑(𝑝𝑎)} = ∪𝐾𝑗=1

̃︀Λ𝑗.
We next compare the properties of NE and SPE for cost parameters in each set based on

Theorems 6.1 and 6.2, and Propositions 6.3.

- Set 𝐿:

Attacker : In Γ, the total attack probability is nonzero but smaller than 1, whereas iñ︀Γ, the attacker is fully deterred. The attacker’s equilibrium utility is identical in both

games, i.e., 𝑈𝑎 = ̃︀𝑈𝑎.
Defender : The defender chooses identical equilibrium security effort in both games,

i.e. 𝜌* = 𝜌*, but obtains a higher utility in ̃︀Γ in comparison to that in Γ, i.e., 𝑈𝑑 < ̃︀𝑈𝑑.
- Set 𝑀 :

Attacker : In Γ, the attacker conducts an attack with probability 1, whereas in ̃︀Γ the

attacker is fully deterred. The attacker’s equilibrium utility is lower in ̃︀Γ in comparison

to that in Γ, i.e., 𝑈𝑎 > ̃︀𝑈𝑎.
Defender : The defender secures each vulnerable facility with a strictly higher level of

effort in ̃︀Γ than in Γ, i.e. 𝜌*𝑒 > 𝜌*𝑒 for each vulnerable facility 𝑒 ∈ {𝐸|𝐶𝑒−𝑝𝑎 > 𝐶∅}. The

defender’s equilibrium utility is higher in ̃︀Γ in comparison to that in Γ, i.e., 𝑈𝑑 < ̃︀𝑈𝑑.
- Set 𝐻:

Attacker : In both games, the attacker conducts an attack with probability 1, and

obtains identical utilities, i.e. 𝑈𝑎 = ̃︀𝑈𝑎.
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Defender : The defender chooses identical equilibrium security effort in both games,

i.e., 𝜌* = 𝜌*, and obtains identical utilities, i.e. 𝑈𝑑 = ̃︀𝑈𝑑.
Importantly, the key difference between NE and SPE comes from the fact that in ̃︀Γ, the

defender as the leading player is able to influence the attacker’s strategy in her favor. Hence,

when the defense cost is relatively medium or low (both sets 𝑀 and 𝐿), the defender can

proactively secure all vulnerable facilities with the threshold effort to fully deter the attack,

which results in a higher defender utility in ̃︀Γ than in Γ. Thus, we say the defender has the

first-mover advantage when the cost parameters lie in the set 𝑀 or 𝐿. However, the reason

behind the first-mover advantage differs in each set:

- In set 𝑀 , the defender needs to proactively secure all vulnerable facilities with strictly

higher effort in ̃︀Γ than that in Γ to fully deter the attacker.

- In set 𝐿, the defender secures facilities in ̃︀Γ with the same level of effort as that in Γ,

and the attacker is still deterred with probability 1.

On the other hand, in set 𝐻, the defense cost is so high that the defender is not able

to secure all targeted facilities with an adequately high level of security effort. Thus, the

attacker conducts an attack with probability 1 in both games, and the defender no longer

has first-mover advantage.

Finally, for the sake of illustration, we compute the parameter sets 𝐿, 𝑀 , and 𝐻 for

transportation network with three facilities (edges); see Fig. 6-1. If an edge 𝑒 ∈ 𝐸 is not

damaged, then the cost function is ℓ𝑒(𝑤𝑒), which increases in the edge load 𝑤𝑒. If edge 𝑒 is

successfully compromised by the attacker, then the cost function changes to ℓ⊗𝑒 (𝑤𝑒), which is

higher than ℓ𝑒(𝑤𝑒) for any edge load 𝑤𝑒 > 0. The network faces a set of non-atomic travelers

with total demand 𝐷 = 10. We define the usage cost in this case as the average cost of

travelers in Wardrop equilibrium Correa and Stier-Moses [2011]. Therefore, the usage costs

corresponding to attacks to different edges are 𝐶1 = 20, 𝐶2 = 19, 𝐶3 = 18 and the pre-attack

usage cost is 𝐶∅ = 17. From (6.8), 𝐾 = 3, and �̄�(1) = {𝑒1}, �̄�(2) = {𝑒2} and �̄�(3) = {𝑒3}.

In Fig. 6-2, we illustrate the regimes of both Γ and ̃︀Γ, and the three sets 𝐻, 𝑀 , and 𝐿

distinguished by the thresholds 𝑝𝑑(𝑝𝑎) and ̃︀𝑝𝑑(𝑝𝑎).
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Figure 6-1: Three edge network

(a)
(b) (c)

Figure 6-2: (a) Regimes of NE in Γ, (b) Regimes of SPE in ̃︀Γ, (c) Comparison of NE and
SPE.

6.7 Model Extensions and Discussion

In this section, we discuss how relaxing our modeling assumptions influence our main results.

Our discussion centers around extending our results when the following modeling aspects are

included: facility-dependent cost parameters, less than perfect defense, and attacker’s ability

to target multiple facilities.

Facility-dependent attack and defense costs. Our techniques for equilibrium characterization

of games Γ and ̃︀Γ — as presented in Sections 6.4 and 6.5 respectively — can be generalized

to the case when attack/defense costs are non-homogeneous across facilities. We denote

the attack (resp. defense) cost for facility 𝑒 ∈ 𝐸 as 𝑝𝑎,𝑒 (resp. 𝑝𝑑,𝑒). However, an explicit

characterization of equilibrium regimes in each game can be quite complicated due to the

multidimensional nature of cost parameters.

In normal form game Γ, it is easy to show that the attacker’s best response correspondence
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in Lemma 6.3 holds except that the threshold attack probability for any facility 𝑒 ∈ �̄� now

becomes 𝑝𝑑,𝑒/(𝐶𝑒 − 𝐶∅). The set of vulnerable facilities is given by {𝐸|𝐶𝑒 − 𝑝𝑎,𝑒 > 𝐶∅}.

The attacker’s equilibrium strategy is to order the facilities in decreasing order of 𝐶𝑒 − 𝑝𝑎,𝑒,

and target the facilities in this order each with the threshold probability until either all

vulnerable facilities are targeted or the total probability of attack reaches 1. As in Theorem

6.1, the former case happens when the cost parameters lie in a type I regime, and the latter

case happens for type II regimes, although the regime boundaries are more complicated to

describe. In equilibrium, the defender chooses the security effort vector to ensure that the

attacker is indifferent among choosing any of the pure actions that are in the support of

equilibrium attack strategy.

In the sequential game ̃︀Γ, Lemmas 6.4 and 6.5 can be extended in a straightforward

manner except that the threshold security effort for any vulnerable facility 𝑒 ∈ {𝐸|𝐶𝑒−𝐶∅ >

𝑝𝑎,𝑒} is given by ̂︀𝜌𝑒 = (𝐶𝑒 − 𝑝𝑎,𝑒 − 𝐶∅)/(𝐶𝑒 − 𝐶∅). The SPE for this general case can be

obtained analogously to Theorem 6.2, i.e. comparing the defender’s utility of either securing

all vulnerable facilities with the threshold effort to fully deter the attack, or choosing a

strategy that is identical to that in Γ. These cases happen when the cost parameters lie

in (suitably defined) Type ̃︀I and Type ̃︀II regimes, respectively. The main conclusion of

our analysis also holds: the defender obtains a higher utility by proactively defending all

vulnerable facilities when the facility-dependent cost parameters lie in type ̃︀I regimes.

Less than perfect defense in addition to facility-dependent cost parameters. Now consider

that the defense on each facility is only successful with probability 𝛾 ∈ (0, 1), which is an

exogenous technological parameter. For any security effort vector 𝜌, the actual probability

that a facility 𝑒 is not compromised when targeted by the attacker is 𝛾𝜌𝑒. Again our results

on NE and SPE in Sec. 6.4 – Sec. 6.5 can be readily extended to this case. However,

the expressions for thresholds for attack probability and security effort level need to be

modified. In particular, for Γ, in Lemma 6.3, the threshold attack probability on any facility

𝑒 ∈ �̄� is 𝑝𝑑,𝑒/𝛾(𝐶𝑒 − 𝐶∅). For ̃︀Γ, the threshold security effort ̂︀𝜌𝑒 for any vulnerable facility

𝑒 ∈ {𝐸|𝐶𝑒 −𝐶∅ > 𝑝𝑑,𝑒} is (𝐶𝑒 − 𝑝𝑎,𝑒 −𝐶∅)/𝛾(𝐶𝑒 −𝐶∅). If this threshold is higher than 1 for

a particular facility, then the defender is not able to deter the attack from targeting it.
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Attacker’s ability to target multiple facilities. If the attacker is not constrained to targeting

a single facility, his pure strategy set would be 𝑆𝑎 = 2𝐸. Then for a pure strategy profile

(𝑠𝑑, 𝑠𝑎), the set of compromised facilities is given by 𝑠𝑎 ∖ 𝑠𝑑, and the usage cost 𝐶𝑠𝑎∖𝑠𝑑 .

Unfortunately, our approach cannot be straightforwardly applied to this case. This is because

the mixed strategies cannot be equivalently represented as probability vectors with elements

representing the probability of each facility being targeted or secured. In fact, for a given

attacker’s strategy, one can find two feasible defender’s mixed strategies that induce an

identical security effort vector, but result in different players utilities. Hence, the problem

of characterizing defender’s equilibrium strategies cannot be reduced to characterizing the

equilibrium security effort on each facility. Instead, one would need to account for the

attack/defense probabilities on all the subsets of facilities in 𝐸. This problem is beyond the

scope of our paper, although a related work Dahan and Amin [2015] has made some progress

in this regard.

Finally, we briefly comment on the model where all the three aspects are included. So

long as players’ strategy sets are comprised of mixed strategies, the defender’s equilibrium

utility in ̃︀Γ must be higher or equal to that in Γ. This is because in ̃︀Γ, the defender can

always choose the same strategy as that in NE to achieve a utility that is no less than

that in Γ. Moreover, one can show the existence of cost parameters such that the defender

has strictly higher equilibrium utility in SPE than in NE. In particular, consider that the

attacker’s cost parameters (𝑝𝑎,𝑒)𝑒∈𝐸 in this game are such that there is only one vulnerable

facility 𝑒 ∈ 𝐸 such that 𝐶𝑒 − 𝐶∅ > 𝑝𝑎,𝑒, and the threshold effort on that facility ̂︀𝜌𝑒 =

(𝐶𝑒 − 𝑝𝑎,𝑒 − 𝐶∅) /𝛾(𝐶𝑒−𝐶∅) < 1. In this case, if the defense cost 𝑝𝑑,𝑒 is sufficiently low, then

by proactively securing the facility 𝑒 with the threshold effort ̂︀𝜌𝑒, the defender can deter the

attack completely and obtain a strictly higher utility in ̃︀Γ than that in Γ. Thus, for such

cost parameters, the defender gets the first mover advantage in equilibrium.
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Chapter 7

Aggregate Demand Prediction in

Transportation Networks

7.1 Introduction and Problem Formulation

Chapters 2 – 6 have focused on building analytical models and tools that study the incentives

and strategic interactions of humans in transportation networks. In this chapter, we develop

empirical tools for predicting the aggregate demand in multi-model transportation networks.

Consider the setting, where travelers commute from one region, denoted as 𝐴, to another

region, denoted as 𝐵, either by driving or taking public transit such as bus or subway (see

Fig. 7-1). The two regions can be two city centers or one city center and one suburban

area, where travelers regularly commute between them. Each region is covered by a highway

network and a public transit network, and the two regions are connected by one or several

roads and transit lines.

The goal of our study is to predict the aggregate fraction of driving demand compared

to the demand of taking public transit from region A to B. In particular, we predict how the

demand fraction changes with the travel time of the multimodal transportation networks,

which often fluctuates due to recurrent and non-recurrent disruptions. This demand fraction

is useful for the transportation authority to anticipate the aggregate change of demand in

response to the travel time fluctuation, and to efficiently manage traffic flows and transit

schedules.
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Figure 7-1: Regions A and B connected by highways and transit networks.

The challenge of predicting the aggregate demand fraction is two fold: First, we do not

have individual-level data including the origins and destinations of trips, choices between

driving and taking transit, and choices of routes in each mode. Instead, our prediction only

relies on the aggregate traffic flow measurement that are collected from embedded sensors

at specific locations of the network. Second, the prediction of demand fraction relies on the

high-dimensional data of travel time costs on all segments in both the highway network and

the transit network. Our prediction needs to account for the heterogeneous impact of travel

time on these segments on the aggregate demand fraction.

Our machine learning method tackles these two challenges, and achieve high accuracy in

an empirical study of driving and transit demand prediction in San Francisco Bay area. We

present the prediction model and machine learning methods in Sec. 7.2, and demonstrate

the empirical result in Sec. 7.3. We also provide a behavioral justification of our prediction

model in Appendix E.

7.2 Prediction Model

We consider a set of days 𝐼. For each day 𝑖 ∈ 𝐼, we divide the time period of our study

into 𝑇 intervals, where each 𝑡 ∈ 𝑇 refers to the time interval [𝜏𝑡, 𝜏𝑡+1]. The interval length

𝜏𝑡+1 − 𝜏𝑡 is identical for all 𝑡 ∈ 𝑇 . For each day 𝑖 ∈ 𝐼 and each time interval 𝑡 ∈ 𝑇 , the

aggregate demand of transit ridership from region 𝐴 to 𝐵 is 𝑞𝑏𝑡𝑖, and the aggregate demand
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of driving is 𝑞𝑑𝑡𝑖. The demand fraction of driving in time interval 𝑡 ∈ 𝑇 on day 𝑖 ∈ 𝐼 is:

𝑦𝑡𝑖 =
𝑞𝑑𝑡𝑖

𝑞𝑑𝑡𝑖 + 𝑞𝑏𝑡𝑖
, (7.1)

Given 𝑦𝑡𝑖, we directly obtain the demand fraction of transit as 1− 𝑦𝑡𝑖.

We predict the driving fraction 𝑦𝑡𝑖 using the travel time of segments in the traffic network

and the public transit network. In the traffic network, each segment is defined as the range

from an on-ramp to the next off-ramp. In the transit network, each segment is defined as

a single stop. We denote the set of all segments as 𝑁 = 𝑁𝑑 ∪ 𝑁 𝑏, where 𝑁𝑑 (resp. 𝑁 𝑏) is

the set of segments in the traffic (resp. transit) network. For each 𝑖 ∈ 𝐼 and each 𝑡 ∈ 𝑇 , the

average travel time of segment 𝑛 ∈ 𝑁 is 𝑥𝑛𝑡𝑖. Then, the vector of average travel time of all

segments for 𝑖 and 𝑡 is 𝑥𝑡𝑖 = (𝑥𝑛𝑡𝑖)𝑛∈𝑁 .

Our prediction model is trained separately for each time interval 𝑡 ∈ 𝑇 because the sets

of travelers are different for different time intervals, and their demand patterns are also

different. For each 𝑡 ∈ 𝑇 , we predict the driving demand ratio 𝑦𝑡𝑖 as in (7.1) using the

average travel time vector in time intervals 𝑡, 𝑡− 𝛿, . . . , 𝑡− 𝑘𝛿, where 𝛿 > 0 is a positive time

lag, time interval 𝑡 − 𝑗𝛿 corresponds [𝜏𝑡 − 𝑗𝛿, 𝜏𝑡+1 − 𝑗𝛿] for any 𝑗 = 0, . . . , 𝑘, and 𝑘 is the

maximum number of time lags that are incorporated in the model. We denote the travel

time vector for time interval 𝑡− 𝑗𝛿 in day 𝑖 as 𝑥(𝑡−𝑗𝛿)𝑖.

We use a kernel function 𝜑𝑡(·) : R|𝑁 |(𝑘+1)
≥0 → R that transforms the travel time vector(︀

𝑥𝑡𝑖, 𝑥(𝑡−𝛿)𝑖, . . . , 𝑥(𝑡−𝑘𝛿)𝑖
)︀

into a real-valued number. We predict the driving fraction 𝑦𝑡𝑖 as

a logistic function of the kernel value 𝜑𝑡
(︀
𝑥𝑡𝑖, 𝑥(𝑡−𝛿)𝑖, . . . , 𝑥(𝑡−𝑘𝛿)𝑖

)︀
plus a noise term 𝜓𝑡𝑖 with

identical and independent distribution.

𝑦𝑡𝑖 =
1

1 + exp
{︀
𝜑𝑡
(︀
𝑥𝑡𝑖, 𝑥(𝑡−𝛿)𝑖, . . . , 𝑥(𝑡−𝑘𝛿)𝑖

)︀}︀ + 𝜓𝑡𝑖. (7.2)

Our prediction model is motivated by the behavioral foundation of binary choice model

for individual travelers (Ben-Akiva and Bierlaire [1999]), see Appendix E for behavioral

justification of our model. The difference between our prediction and choice modeling is that

we focus on predicting the aggregate demand fraction instead of individual mode choices.

Additionally, we only use data on aggregate demand of driving and transit. We do not
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observe the mode choices at individual level.

We can re-write (7.2) equivalently as follows:

log

(︂
𝑞𝑏𝑡𝑖
𝑞𝑑𝑡𝑖

)︂
(7.1)
= log

(︂
1

𝑦𝑡𝑖
− 1

)︂
= 𝜑𝑡

(︀
𝑥𝑡𝑖, 𝑥(𝑡−𝛿)𝑖, . . . , 𝑥(𝑡−𝑘𝛿)𝑖

)︀
+ 𝜖𝑡𝑖, (7.3)

where 𝜖𝑡𝑖 is also identically and independently distributed for all 𝑖 ∈ 𝐼.

The input vector of the kernel function
(︀
𝑥𝑡𝑖, 𝑥(𝑡−𝛿)𝑖, . . . , 𝑥(𝑡−𝑘𝛿)𝑖

)︀
has in total |𝑁 |(𝑘 + 1)

variables, where |𝑁 | is the number of segments in driving and transit networks, and 𝑘 is the

maximum number of time lags. To avoid over-fitting and improve the prediction accuracy,

we employ a class of dimension reduction methods to train the kernel function. In particular,

we consider (i) naive subset variable regression; (ii) ridge regression; (iii) LASSO regression;

(iv) principal components regression; (v) random forest method.

In methods (i) – (iv), we adopt a linear kernal function:

𝜑𝑡
(︀
𝑥𝑡𝑖, 𝑥(𝑡−𝛿)𝑖, . . . , 𝑥(𝑡−𝑘𝛿)𝑖

)︀
= 𝛾𝑡 +

𝑘∑︁
𝑗=0

(𝛽𝑗𝑡 )
′ · 𝑥(𝑡−𝑗𝛿)𝑖. (7.4)

(i) Naive subset variable regression: For each 𝑡 ∈ 𝑇 , we select a subset of regressors �̃�(𝑡−�̃�𝛿)𝑖,

where �̃� is a single selected time lag in {0, 1, . . . , 𝑘}, and �̃�(𝑡−�̃�𝛿)𝑖 is a sub-vector of 𝑥𝑡−�̃�Δ that

only includes segments within 𝑟 distance to the middle point between region 𝐴 and 𝐵. In

(7.4), we estimate 𝛾𝑡 and the coefficients that correspond to the selected variables �̃�(𝑡−�̃�𝛿)𝑖
using ordinary least square. We set the rest of the parameters as zero. In naive subset

variable regression, the hyper-parameter is (𝛼, 𝑟), where 𝛼 governs the chosen time lag of

the model and 𝑟 governs the number of segments included in the regression.

(ii) Ridge regression: For each 𝑡 ∈ 𝑇 , the ridge regression coefficients minimizes the sum of

least squares error and an L-2 norm regularization of the coefficients 𝛽𝑡 =
(︀
𝛽𝑗𝑡
)︀𝑘
𝑗=0

:

min
𝛾𝑡,𝛽𝑡

∑︁
𝑖∈𝐼

(︃
log

(︂
𝑞𝑏𝑡𝑖
𝑞𝑑𝑡𝑖

)︂
− 𝛾𝑡 −

𝑘∑︁
𝑗=0

(︀
𝛽𝑗𝑡
)︀′
𝑥(𝑡−𝑗𝛿)𝑖

)︃2

+ 𝜆‖𝛽𝑡‖2,

The hyper parameter 𝜆 ≥ 0 governs the weight of the regularization term – the sum of
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squares of the coefficients 𝛽𝑡.

(iii) LASSO regression: For each 𝑡 ∈ 𝑇 , the lasso coefficients minimizes the sum of least

squares error and an L-1 norm regularization of the coefficients 𝛽𝑡

min
𝛾𝑡,𝛽𝑡

∑︁
𝑖∈𝐼

(︃
log

(︂
𝑞𝑏𝑡𝑖
𝑞𝑑𝑡𝑖

)︂
− 𝛾𝑡 −

𝑘∑︁
𝑗=0

(︀
𝛽𝑗𝑡
)︀′
𝑥(𝑡−𝑗Δ)𝑖

)︃2

+ 𝜆‖𝛽𝑡‖1,

and 𝜆 is the hyper parameter that governs the weight of the regularization term.

(iv) Principal components regression (PCR). We consider the following transformed linear

regression:

log

(︂
𝑞𝑏𝑡𝑖
𝑞𝑑𝑡𝑖

)︂
= 𝛾𝑡 +

∑︁
ℓ∈𝐿

𝜂𝑡ℓ𝑧𝑡ℓ, (7.5)

where (𝑧𝑡ℓ)
𝐿
ℓ=1 is the first 𝐿 principal component vectors constructed from the original input(︀

𝑥𝑡𝑖, 𝑥(𝑡−𝛿)𝑖, . . . , 𝑥(𝑡−𝑘𝛿)𝑖
)︀
.The principal component vectors are constructed sequentially: the

first principal vector 𝑧𝑡1 =
(︀
𝑥𝑡𝑖, 𝑥(𝑡−𝛿)𝑖, . . . , 𝑥(𝑡−𝑘𝛿)𝑖

)︀′ ·𝑣𝑡1 is the projection of the original vector(︀
𝑥𝑡𝑖, 𝑥(𝑡−𝛿)𝑖, . . . , 𝑥(𝑡−𝑘𝛿)𝑖

)︀
onto the direction 𝑣𝑡1 such that the variance of 𝑧𝑡1 is maximized. For

each ℓ = 2, . . . , 𝐿, after constructing the first ℓ−1 principal vectors, we construct the ℓ-th vec-

tor by finding a 𝑣𝑡ℓ that is orthogonal to 𝑣𝑡1, . . . , 𝑣𝑡ℓ−1, and 𝑧𝑡ℓ =
(︀
𝑥𝑡𝑖, 𝑥(𝑡−𝛿)𝑖, . . . , 𝑥(𝑡−𝑘𝛿)𝑖

)︀′
𝑣𝑡ℓ

achieves the maximum variance.

The total number of the principal vectors included in the regression 𝐿 is the hyper

parameter, and 𝐿 is smaller than the total number of original regressors |𝑁 |(𝑘+ 1) in (7.2).

Moreover, the coefficient 𝛾𝑡 in the transformed regression (7.5) is the same as that in (7.3),

and the PCR coefficients in the original regression 𝛽𝑡 =
(︀
𝛽0
𝑡 , 𝛽

1
𝑡 , . . . , 𝛽

𝑘
𝑡

)︀
can be computed

from the transformed coefficients 𝜂𝑡 = (𝜂𝑡1, . . . , 𝜂𝑡𝐿) as follows:

𝛽𝑡 = 𝜂
′

𝑡 · 𝑣𝑡.

and 𝑣𝑡 = (𝑣𝑡1, . . . , 𝑣𝑡𝐿).

(v) Random forest. For each hour 𝑡, given any hyper parameters 𝑀 and 𝐿, we compute the

random forest regression as follows:
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1. Select 𝑀 data points
(︁
log
(︁
𝑞𝑏𝑡𝑖
𝑞𝑑𝑡𝑖

)︁
, 𝑥𝑡𝑖, 𝑥(𝑡−𝛿)𝑖, . . . , 𝑥(𝑡−𝑘𝛿)𝑖

)︁
𝑖∈𝑀

randomly out of the train-

ing set to build a regression tree

2. Repeat step 1 for 𝐿 times to build 𝐿 trees

3. For a new data point, predict the dependent variable use each one of the 𝐿 trees, and

compute the average of the 𝐿 outcomes.

Cross validation. We select the optimal hyper parameter in each one of the four methods

using 10-fold cross validation. For each time interval 𝑡 ∈ 𝑇 , we partition the data set

{𝑞𝑏𝑡𝑖, 𝑞𝑑𝑡𝑖, 𝑥𝑡𝑖}𝑖∈𝐼 into 10 equal-size folds at random. We train our model using 9 out of 10

folds of data, and test the trained model on the remaining one fold. For any given hyper-

parameter, we iterate this process over all folds, and compute the root-mean-square error

(RMSE) as the square root of the squared test error:

𝑅𝑀𝑆𝐸 =

⎯⎸⎸⎷ 1

10

10∑︁
𝑓=1

1

|𝐼𝑓 |
∑︁
𝑖∈𝐼𝑓

(𝑦𝑡𝑖 −
1

1 + exp{𝜑−𝑓
𝑡

(︀
𝑥𝑡𝑖, 𝑥(𝑡−𝛿)𝑖, . . . , 𝑥(𝑡−𝑘𝛿)𝑖

)︀
}
) (7.6)

where {𝐼𝑓}10𝑓=1 is the 10-fold partition of the set 𝐼 and 𝜑−𝑓
𝑡

(︀
𝑥𝑡𝑖, 𝑥(𝑡−𝛿)𝑖, . . . , 𝑥(𝑡−𝑘𝛿)𝑖

)︀
is the

kernel function trained using all but the 𝑓 -th fold 𝐼 ∖ 𝐼𝑓 as the training data set. For each

regression method, we compute the optimal hyper parameter that minimizes the RMSE.

7.3 Empirical Study

7.3.1 Highways and Transit System in San Francisco Bay Area

In this section, we apply our model and method in Sec. 7.2 to predict the driving demand

fraction in San Francisco Bay area. Our analysis focuses on travelers whose origins are in

the the East-Bay area (region A), and the destinations are in region B that includes City

of San Francisco and Daly City. The two regions are connected by highways and the Bay

Area Rapid Transit (BART) system. We demonstrate the locations of the two regions in

Fig. 7-2a, and the BART stations in Fig. 7-2b.
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We use three data sources: (1) The Caltrans Performance Measurement System (PeMS)

dataset of 5 minute aggregate traffic flow (total number of cars) and average speed measured

by loop detectors embedded on the main highways in California, see Fig 7-2c for the locations

of the loop detectors in the two regions. This dataset also provides performance metric

of each detector – the percentage of traffic counts that is not imputed; (2) The BART

origin-destination pair dataset that reports hourly origin-destination demand taken from

user tap-in/tap-out information for each pair of BART stations; (3) The California Highway

Patrol (CHP) incidents detail dataset that documents the duration, location, type (collision,

hazard, advisory, etc.) of traffic incidents, and the measures taken after incidents such as

lane closure, road cleaning, etc.

(a) (b) (c)

Figure 7-2: (a) Two regions; (b) BART stations; (c) Loop detectors

We study the hourly prediction of aggregate driving fraction between the two regions.

Each 𝑡 is a one-hour time interval, and 𝑇 is the set of 18 one-hour intervals from 4:00 to

22:00 – the BART operating hours. Our analysis includes all incident-free workdays from

Jan. 1st 2019 to Dec. 31st 2019. We do not include holidays and weekends, because the

travel pattern and mode choices during these days are different from that in weekdays.1 We

also filter out data points of hours during which there is a major incidents that cause lane

closure according to the reports from CHP. This is because travelers may not have complete

information of the incidents, and their mode choices during incident hours may not fully

1Travelers mainly take trips for work during workdays, and take trips for leisure during weekends and
holidays. Additionally, on weekends, the San Francisco Bay bridge has a different toll price, and the BART
has a different schedule. These factors also affect travelers’ mode choices on weekends.
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account for the non-recurrent delays caused by these incidents. Furthermore, we delete data

points collected by loop detectors that have less than 80% non-imputed traffic counts.

We measure the total driving demand of each hour 𝑡 by the total flow recorded by the

loop detector on the Bay bridge in hour 𝑡.2,3 The total BART demand of each hour 𝑡 is

measured by aggregating the ridership over all pairs of BART stations, where the origin is

in 𝐴 and the destination is in 𝐵.

We consider the part of the traffic network that covers the range of the main highways

in areas 𝐴, 𝐵 and the Bay bridge. Each highway segment of this network is a stretch of

highway bounded by ramps (i.e. entrances, exits, splits, etc), and the average travel time

of the segment is taken to be the length of the segment (from ramp to ramp) divided by

the average speed (averaged over readings across all intermediate detectors).4 There are 217

segments in our network.

We do not include the BART travel time vector in our analysis due to the lack of station-

to-station BART travel time data. This is equivalent to assuming that BART travel time

is approximately constant, and thus does not affect the aggregate driving fraction. This

assumption is mostly consistent with the “Customer On Time Performance" record provided

by BART authority, which shows that the over 90% of the trips are made on time for most

days in the fiscal year of 2018.5 As we will show in the next section, our prediction is fairly

accurate even though we only account for the driving time on highways.

7.3.2 Results and Discussion

In Fig. 7-3, we show the 10-fold cross validation root mean squared error for each method

and each hour. The boxes extend from the first (Q1) to the third quartile (Q3) while the

whiskers extend beyond the box by 1.5 times the interquartile range (Q3-Q1). Observations

beyond the whiskers are considered outliers. We show that all five methods achieve fairly

accurate prediction of the driving demand ratio with the mean RMSE less than 0.04 in all

2We aggregate the 5-minute flow data into hourly-flow data.
3Loop detectors on the Bay bridge provide consistent flow estimate. We choose the flow recorded by

detector 404416, because this detector has 100% non-imputed traffic counts for the period of our study.
4For segments without intermediate detectors, the travel time is taken to be the average of the immediate

upstream and downstream detectors on the same highway.
5The data is not available for 2019.
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hours except for the hour 5:00 - 6:00.6 In particular, all methods achieve RMSE less than

0.02 during morning rush hours from 7:00 - 10:00. In fact, the fluctuation of driving demand

fraction during this period of time is the highest of all times (the variance of driving fraction

is higher than 0.12), which implies that a significant proportion of travelers adjust their

mode choices based on the travel time during morning commute. Our methods accurately

predict travelers’ response to morning hour driving time. This prediction is useful for the

traffic authority to adjust traffic and transit management plans according to the predicted

demand change.

Moreover, all five methods achieve comparable accuracy levels in terms of mean RMSE.

The RMSE of the random forest method is slightly lower than the other four methods,

and the RMSE of the naive subset variable regression is slightly higher. This observation

is intuitive because the random forest method has the flexibility to capture the non-linear

relationship between log
(︁
𝑞𝑏𝑡𝑖
𝑞𝑑𝑡𝑖

)︁
and the costs of segments, while all other four methods assume

that log
(︁
𝑞𝑏𝑡𝑖
𝑞𝑑𝑡𝑖

)︁
is linear in the travel time costs. On the other hand, the naive subset variable

regression has slightly higher RMSE than other methods since only the subsections that are

nearest to the Bay bridge are selected instead of segments in the entire network.

Figure 7-3: Root mean squared error of predictions

6During 5:00 - 6:00, the mean RMSE of ridge, Lasso and PCR are below 0.04, and that of subset selection
and random forest regression are between 0.04 and 0.06.
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Next, we visualize the geospatial distribution of the model coefficients in all methods as

heatmaps. Specifically, in naive subset variable regression, ridge regression, LASSO regres-

sion, and principal component regression, we sum the segment coefficients 𝛽𝑗𝑡 over all lag

values 𝑗 = 0, . . . , 𝑘 for each segment in the network, and colored on a spectrum from red

to green, which correspond to lower (more negative) and higher (more positive) coefficients

respectively. For random forest, we color segments on a spectrum of green (least important)

to red (most important) as determined by an impurity-based measure of importance. We

color segments with no influence on the prediction as gray. In the case of LASSO, which

rewards sparse coefficient estimates, gray segments have coefficient 0. For the random forest,

gray segments suggest no splitting criteria are employed. Fig. 7-4 – 7-8 demonstrate the

heatmaps of each method in the hours 7:00 - 8:00, 9:00 - 10:00, 11:00 - 12:00, 13:00 - 14:00,

15:00 - 16:00 and 17:00 - 18:00, respectively.

The model coefficients demonstrate the influence of the travel time of each segment on

the aggregate driving demand ratio. We expect segments whose driving times have a greater

influence on reducing driving ratio to be more negatively correlated with the dependent

variable, and thus have a more negative coefficient (red). The heatmaps of the coefficients

provide useful information for the traffic authority to identify the critical segments in the

road network, where the congestion delay results in travelers shifting from driving to taking

public transit.

From Fig. 7-4 – 7-8, we find that all prediction methods demonstrate similar patterns

in relative criticality of segments in shaping the driving fraction, and the pattern changes

over time. Particularly, we find that in the morning, congestion on segments of I80-W has

a negative influence on the driving fraction, while in the afternoon, congestion on I580-W

has a higher impact. One likely explanation of this observation is a shift in demands from

origins along I80-W in the morning to demands farther east along I580-W in the afternoon.

We also note that congestion on segments that are closer to the Bay bridge have a higher

impact on reducing driving fraction. This is intuitive since congestion on these segments

affect a larger proportion of trips that cross the bridge. In addition, the heap-maps identify

a few segments that are further away from the bridge, but congestion on these segments

have relatively higher impact on reducing the driving fraction. We find that these are the
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segments close to BART stations. This may be due to the fact that travelers whose origins

or destinations are closer to BART stations are more like to shift from driving to taking

BART when the driving time cost is high.

Finally, we observe that in methods that select a subset of segments instead of assigning

non-zero weights to all segments, i.e. naive subset variable regression, LASSO regression, and

random forests, more segments are assigned with non-zero weights during morning rush hours

compared to rest of the day. This implies that more segments experience high variability in

driving time during morning rush hours than in other hours, and more travelers are more

responsive to the driving time fluctuation in these hours. This leads to the high variability

of driving demand fraction in the morning.

(a) 7:00 - 8:00 (b) 9:00 - 10:00 (c) 11:00 - 12:00

(d) 13:00 - 14:00 (e) 15:00 - 16:00 (f) 17:00 - 18:00

Figure 7-4: Naive subset variable regression: Weights on road segments
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(a) 7:00 - 8:00 (b) 9:00 - 10:00 (c) 11:00 - 12:00

(d) 13:00 - 14:00 (e) 15:00 - 16:00 (f) 17:00 - 18:00

Figure 7-5: LASSO regression: Weights on road segments

(a) 7:00 - 8:00 (b) 9:00 - 10:00 (c) 11:00 - 12:00

(d) 13:00 - 14:00 (e) 15:00 - 16:00 (f) 17:00 - 18:00

Figure 7-6: Ridge regression: Weights on road segments
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(a) 7:00 - 8:00 (b) 9:00 - 10:00 (c) 11:00 - 12:00

(d) 13:00 - 14:00 (e) 15:00 - 16:00 (f) 17:00 - 18:00

Figure 7-7: Principal component regression: Weights on road segments

(a) 7:00 - 8:00 (b) 9:00 - 10:00 (c) 11:00 - 12:00

(d) 13:00 - 14:00 (e) 15:00 - 16:00 (f) 17:00 - 18:00

Figure 7-8: Random forest: Weights on road segments
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Chapter 8

Conclusion and Future Work

This thesis focuses on analyzing the role of platforms and autonomous systems in today’s

transportation networks. We propose a modeling framework that addresses the strategic

nature of human-platform interactions and the physical constraints of the infrastructure

networks. We develop game-theoretic tools that study the value of information and opti-

mal information design for routing games in uncertain networks, and multi-agent strategic

learning via information platforms. We designed a welfare-improving market mechanism

for autonomous carpooling services and developed game-theoretic models for security of

cyber-physical systems. We also present a machine learning method for predicting aggregate

demand in multimodal transportation networks. Our results provide guidelines to engineer

both efficiency and resiliency in the design of the complex transportation systems.

Beyond this thesis, the following questions are interesting directions for future research:

1. How to achieve stronger learning guarantees via strategic experimentation on infor-

mation platforms?

In Chapter 4, we have shown that learning induced by strategic agents may not recover

complete information environment unless certain conditions are satisfied. The main reason

that hinders complete information learning is the fact that data is generated endogenously

from agents’ utility maximizing decisions in games. Additionally, since the realized payoff

information of each agent is aggregated and shared to all agents by the public information

platform, no agent has an incentive to explore off-equilibrium strategies. An important di-

rection of future research is to study the design of platforms that incentives agents to explore
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off-equilibrium strategies so that learning eventually aggregates complete information of the

unknown environment. The design of such platform requires providing monetary incentives

for agents who explore off-equilibrium strategies, or to retain some payoff information as

private only for the agents who explore.

2. How to design incentive mechanisms under uncertain road capacities?

In Chapter 5, we demonstrate the design of carpooling market mechanism with fixed

and known road capacity. In practice, the capacity of road segments is uncertain due to

recurrent or non-recurrent disruptions. The design of incentive mechanism needs to account

for the uncertain capacity, and assign trips in a manner such that the capacity constraint is

satisfied with high probability. In this case, travelers’ valuation of trips should also rely on

the expected delay of the trip time cost that is computed based on the distribution of road

capacity.

3. How to predict the dynamics of aggregate agent behavior during prolonged network

disruptions?

In Chapter 7, our machine learning methods accurately predict the driving demand frac-

tion in transportation networks with recurrent disturbances. When testing our prediction

models using data collected during non-recurrent disruptions, we find that our prediction

remains to be accurate when the duration of disruptions caused by the incident is short

(less than 15 minutes). On the other hand, we find that the prediction error of driving

demand fraction is high when incidents significantly reduce the road capacity (lane closures)

and cause prolonged disruptions. This implies that during incident hours, new methods are

needed to account for travelers’ dynamic adjustment of travel decisions. Such methods need

to reflect the fact that travelers’ response to incident is typically delayed due to the lack of

perfect information.
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Appendix A

Supplementary Material for Chapter 2

A.1 Proofs of Section 2.4

Proof of Lemma 2.1. First note that Φ(𝑞), as defined in (2.12), is a continuous and

differentiable function of the strategy profile 𝑞. To show that Φ(𝑞) is a weighted potential

function of Γ(𝜆), we write the first order derivative of Φ(𝑞) with respect to 𝑞𝑖𝑟(𝑡𝑖):

𝜕Φ(𝑞)

𝜕𝑞𝑖𝑟(𝑡
𝑖)

=
∑︁
𝑠∈𝑆

∑︁
𝑡−𝑖∈𝑇−𝑖

𝜋(𝑠, 𝑡𝑖, 𝑡−𝑖)
∑︁
𝑒∈𝑟

𝑐𝑠𝑒
(︀
𝑤𝑒(𝑡

𝑖, 𝑡−𝑖)
)︀

(2.8)
= Pr(𝑡𝑖)E[𝑐𝑟(𝑞)|𝑡𝑖], ∀𝑟 ∈ 𝑅, ∀𝑡𝑖 ∈ 𝑇 𝑖, ∀𝑖 ∈ 𝐼. (A.1)

Thus, Φ(𝑞) satisfies (2.11) with 𝛾(𝑡𝑖) = Pr(𝑡𝑖) for any 𝑡𝑖 ∈ 𝑇 𝑖 and any 𝑖 ∈ 𝐼. �

Proof of Lemma 2.2. Since each 𝑐𝑠𝑒(𝑤𝑒(𝑡)) is differentiable in 𝑤𝑒(𝑡), we know that
̂︀
Φ(𝑤) is

twice differentiable with respect to 𝑤. The first order partial derivative of
̂︀
Φ(𝑤) with respect

to 𝑤𝑒(𝑡) can be written as: 𝜕

̂︀
Φ(𝑤)
𝜕𝑤𝑒(𝑡)

=
∑︀

𝑠∈𝑆 𝜋(𝑠, 𝑡)𝑐
𝑠
𝑒 (𝑤𝑒 (𝑡)) for any 𝑒 ∈ 𝐸, and any 𝑡 ∈ 𝑇 .

Also, the second order derivative of
̂︀
Φ(𝑤) can be written as follows:

𝜕2
̂︀
Φ(𝑤)

𝜕𝑤𝑒(𝑡)𝜕𝑤𝑒′ (𝑡
′)

=

⎧⎨⎩
∑︀

𝑠∈𝑆 𝜋 (𝑠, 𝑡)
𝑑𝑐𝑠𝑒(𝑤𝑒(𝑡))
𝑑𝑤𝑒(𝑡)

, if 𝑒 = 𝑒
′ and 𝑡 = 𝑡

′ ,

0, otherwise,
∀𝑒, 𝑒′ ∈ 𝐸, ∀𝑡, 𝑡′ ∈ 𝑇.

Since for any 𝑒 ∈ 𝐸 and any 𝑠 ∈ 𝑆, 𝑐𝑠𝑒(𝑤𝑒) is increasing in 𝑤𝑒,
∑︀

𝑠∈𝑆 𝜋 (𝑠, 𝑡)
𝑑𝑐𝑠𝑒(𝑤𝑒(𝑡))
𝑑𝑤𝑒(𝑡)

> 0.

Thus, the Hessian matrix of
̂︀
Φ(𝑤) has positive elements on the diagonal and 0 in all other
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entries, i.e. it is positive definite. Therefore,
̂︀
Φ(𝑤) is strictly convex in 𝑤. �

Proof of Theorem 2.1. We first show that any minimum of (OPT-𝑄) is a Bayesian

Wardrop equilibrium. The Lagrangian of (OPT-𝑄) is given by (2.15), where 𝜇 = (𝜇𝑡
𝑖
)𝑡𝑖∈𝑇 𝑖,𝑖∈𝐼

and 𝜈 = (𝜈𝑡
𝑖

𝑟 )𝑟∈𝑅,𝑡𝑖∈𝑇 𝑖,𝑖∈𝐼 are Lagrange multipliers associated with the constraints (2.4a) and

(2.4b), respectively. For any optimal solution 𝑞, there must exist 𝜇 and 𝜈 such that (𝑞, 𝜇, 𝜈)

satisfies the following Karush-Kuhn-Tucker (KKT) conditions:

𝜕ℒ
𝜕𝑞𝑖𝑟(𝑡

𝑖)
=

𝜕Φ

𝜕𝑞𝑖𝑟(𝑡
𝑖)
− 𝜇𝑡𝑖 − 𝜈𝑡𝑖𝑟 = 0, ∀𝑟 ∈ 𝑅, ∀𝑡𝑖 ∈ 𝑇 𝑖, ∀𝑖 ∈ 𝐼, (KKT.1)

𝜈𝑡
𝑖

𝑟 𝑞
𝑖
𝑟(𝑡

𝑖) = 0, ∀𝑟 ∈ 𝑅, ∀𝑡𝑖 ∈ 𝑇 𝑖, ∀𝑖 ∈ 𝐼, (KKT.2)

𝜈𝑡
𝑖

𝑟 ≥ 0, ∀𝑟 ∈ 𝑅, ∀𝑡𝑖 ∈ 𝑇 𝑖, ∀𝑖 ∈ 𝐼. (KKT.3)

Using (A.1) and (KKT.1), we have 𝜕Φ(𝑞)
𝜕𝑞𝑖𝑟(𝑡

𝑖)
= Pr(𝑡𝑖)E[𝑐𝑟(𝑞)|𝑡𝑖] = 𝜇𝑡

𝑖
+ 𝜈𝑡

𝑖

𝑟 for any 𝑟 ∈ 𝑅, and

𝑡𝑖 ∈ 𝑇 𝑖, 𝑖 ∈ 𝐼. From (KKT.2), we see that for any 𝑟 ∈ 𝑅, and 𝑡𝑖 ∈ 𝑇 𝑖, 𝑖 ∈ 𝐼, if 𝑞𝑖𝑟(𝑡𝑖) > 0, the

corresponding Lagrange multiplier 𝜈𝑡𝑖𝑟 = 0, and Pr(𝑡𝑖)E[𝑐𝑟(𝑞)|𝑡𝑖] = 𝜇𝑡
𝑖 . However, if 𝑞𝑖𝑟(𝑡𝑖) = 0,

then Pr(𝑡𝑖)E[𝑐𝑟(𝑞)|𝑡𝑖] = 𝜇𝑡
𝑖
+ 𝜈𝑡

𝑖

𝑟 ≥ 𝜇𝑡
𝑖 . Thus, for any 𝑟 ∈ 𝑅, and 𝑡𝑖 ∈ 𝑇 𝑖, 𝑖 ∈ 𝐼:

𝑞𝑖𝑟(𝑡
𝑖) > 0 ⇒ Pr(𝑡𝑖)E[𝑐𝑟(𝑞)|𝑡𝑖] = 𝜇𝑡

𝑖 ≤ 𝜇𝑡
𝑖

+ 𝜈𝑡
𝑖

𝑟′
= Pr(𝑡𝑖)E[𝑐𝑟′ (𝑞)|𝑡𝑖], ∀𝑟′ ∈ 𝑅.

From (2.9), we conclude that an optimal solution of (OPT-𝑄) is a Bayesian Wardrop equi-

librium.

Next, we show that any equilibrium 𝑞* of the game Γ(𝜆) is an optimal solution of

(OPT-𝑄). Consider a pair of Lagrange multipliers �̄� (resp. 𝜈)) corresponding to the con-

straints (4a) (resp. (4b)), where �̄�𝑡𝑖 = min𝑟∈𝑅 Pr(𝑡𝑖)E[𝑐𝑟(𝑞*)|𝑡𝑖] and 𝜈𝑡𝑖𝑟 = Pr(𝑡𝑖)E[𝑐𝑟(𝑞*)|𝑡𝑖]−

�̄�𝑡
𝑖 . We can easily check that (KKT.1) and (KKT.3) are satisfied by (𝑞*, �̄�, 𝜈). Since 𝑞* is

an equilibrium, we know from (2.9) that for a route 𝑟 ∈ 𝑅, and 𝑡𝑖 ∈ 𝑇 𝑖, 𝑖 ∈ 𝐼, if 𝑞𝑖*𝑟 (𝑡𝑖) > 0,

then E[𝑐𝑟(𝑞*)|𝑡𝑖] = min𝑟∈𝑅 E[𝑐𝑟(𝑞*)|𝑡𝑖] and consequently 𝜈𝑡
𝑖

𝑟 = Pr(𝑡𝑖)E[𝑐𝑟(𝑞*)|𝑡𝑖] − �̄�𝑡
𝑖
= 0.

This implies that (KKT.2) is also satisfied by (𝑞*, �̄�, 𝜈). Noting that Φ(𝑞) ≡
̂︀
Φ(𝑤), where

the induced edge load 𝑤 is linear in 𝑞 (see (2.7)), and that
̂︀
Φ(𝑤) is strictly convex in 𝑤

(Lemma 2.2), we conclude that Φ(𝑞) is a convex function of 𝑞. Furthermore, since 𝑄(𝜆) is

a convex polytope, (OPT-𝑄) is a convex problem. Thus, KKT conditions are also sufficient
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for optimality, and any equilibrium 𝑞* is an optimal solution of (OPT-𝑄).

Finally, for any 𝜆, we can use equations (2.7) and (2.14) to re-express (OPT-𝑄) as an

optimization problem whose solution gives an equilibrium edge load 𝑤*(𝜆):

min
𝑤,𝑞

̂︀
Φ(𝑤)

𝑠.𝑡. 𝑞 ∈ 𝑄(𝜆), 𝑤𝑒(𝑡) =
∑︁
𝑟∋𝑒

∑︁
𝑖∈𝐼

𝑞𝑖𝑟(𝑡
𝑖), ∀𝑡 ∈ 𝑇, ∀𝑒 ∈ 𝐸.

(A.2)

Clearly, the feasible set of the above problem is a convex polytope. From Lemma 2.2,
̂︀
Φ(𝑤)

is strictly convex in 𝑤. Therefore, the equilibrium edge load 𝑤*(𝜆) is unique. �

Lemma A.1. (Theorem 2 in Wachsmuth [2013]) The Lagrange multiplies 𝜇* and 𝜈* asso-

ciated with any 𝑞* ∈ 𝑄*(𝜆) at the optimum of (OPT-𝑄) are unique if and only if the LICQ

condition is satisfied in that the gradients of the set of tight constraints in (2.4a)-(2.4b) at

the optimum are linearly independent.

Proof of Lemma 2.3. Let the set of constraints that are tight at optimum of (OPT-𝑄)

in (2.4b) be denoted as ℬ. Assume for the sake of contradiction that LICQ does not hold,

i.e. the set of equality constraints (2.4a) and the elements in the set ℬ are linearly depen-

dent. Now, note that the constraint sets (2.4a) and (2.4b) are each comprised of linearly

independent affine functions. Hence, there must exist a type 𝑡𝑖 such that the gradient of

the corresponding equality constraint (i.e.
∑︀

𝑟∈𝑅 𝑞
𝑖*
𝑟 (𝑡

𝑖) = 𝜆𝑖𝐷) is linearly dependent with

the elements in the set ℬ, which implies that 𝑞𝑖*𝑟 (𝑡𝑖) = 0, ∀𝑟 ∈ 𝑅. However, this violates the

equality constraint in (2.4a) as
∑︀

𝑟∈𝑅 𝑞
𝑖*
𝑟 (𝑡

𝑖) = 𝜆𝑖𝐷 ̸= 0, and we arrive at a contradiction.

Since LICQ holds, for any equilibrium strategy profile 𝑞* ∈ 𝑄*(𝜆), the corresponding

𝜇* and 𝜈* must be unique. Following the proof of Theorem 2.1, we conclude that for any

𝑞* ∈ 𝑄*(𝜆), (𝑞*, 𝜇*, 𝜈*) satisfies the KKT conditions, and 𝜇𝑡
𝑖* and 𝜈𝑡

𝑖*
𝑟 can be written as

(2.16a) and (2.16b), respectively.

Finally, noting that the equilibrium edge load is unique (Theorem 2.1), 𝜇* and 𝜈* in

(2.16a)-(2.16b) are thus unique in equilibrium. �

Proof of Proposition 2.1. Step I: We show that any 𝑞 ∈ 𝑄(𝜆) induces a route flow 𝑓 that

satisfies (2.17a)-(2.17d). From (2.6), we obtain that for any 𝑡𝑖, 𝑡𝑖 ∈ 𝑇 𝑖, any 𝑡−𝑖, 𝑡−𝑖 ∈ 𝑇−𝑖,
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and any 𝑖 ∈ 𝐼, 𝑓 satisfies (2.17a):

𝑓𝑟(𝑡
𝑖, 𝑡−𝑖)− 𝑓𝑟(𝑡𝑖, 𝑡−𝑖) = 𝑞𝑖𝑟(𝑡

𝑖) +
∑︁

𝑗∈𝐼∖{𝑖}

𝑞𝑗𝑟(𝑡
𝑗)− 𝑞𝑖𝑟(𝑡𝑖)−

∑︁
𝑗∈𝐼∖{𝑖}

𝑞𝑗𝑟(𝑡
𝑗)

=𝑞𝑖𝑟(𝑡
𝑖) +

∑︁
𝑗∈𝐼∖{𝑖}

𝑞𝑗𝑟(𝑡
𝑗)− 𝑞𝑖𝑟(𝑡𝑖)−

∑︁
𝑗∈𝐼∖{𝑖}

𝑞𝑗𝑟(𝑡
𝑗) = 𝑓𝑟(𝑡

𝑖, 𝑡−𝑖)− 𝑓𝑟(𝑡𝑖, 𝑡−𝑖).

From (2.4a) and (2.4b), we can directly conclude that 𝑓 must also satisfy (2.17b) and (2.17c).

Additionally,

𝐷 −
∑︁
𝑟∈𝑅

min
𝑡𝑖∈𝑇 𝑖

𝑓𝑟(𝑡
𝑖, 𝑡−𝑖)

(2.6)
= 𝐷 −

∑︁
𝑟∈𝑅

∑︁
𝑗∈𝐼∖{𝑖}

𝑞𝑗𝑟(𝑡
𝑗)−

∑︁
𝑟∈𝑅

min
𝑡𝑖∈𝑇 𝑖

𝑞𝑖𝑟(𝑡
𝑖)

(2.4a)
= 𝐷 −

∑︁
𝑗∈𝐼∖{𝑖}

𝜆𝑗𝐷 −
∑︁
𝑟∈𝑅

min
𝑡𝑖∈𝑇 𝑖

𝑞𝑖𝑟(𝑡
𝑖) = 𝜆𝑖𝐷 −

∑︁
𝑟∈𝑅

min
𝑡𝑖∈𝑇 𝑖

𝑞𝑖𝑟(𝑡
𝑖)

(2.4b)
≤ 𝜆𝑖𝐷, ∀𝑡−𝑖 ∈ 𝑇−𝑖, ∀𝑖 ∈ 𝐼.

Therefore, 𝑓 satisfies (2.17d). Thus, any feasible route flow must satisfy (2.17a)-(2.17d).

Step II: Next, we show that for any route flow 𝑓 ∈ 𝐹 (𝜆) (i.e. 𝑓 that satisfies constraints

(2.17a)-(2.17d)), the set of feasible strategies that induce 𝑓 can be characterized by (2.22).

For any route 𝑟 ∈ 𝑅, the linear system of equations (2.6) has
∏︀

𝑖∈𝐼 |𝑇 𝑖| equations in
∑︀

𝑖∈𝐼 |𝑇 𝑖|

variables. Note that for any given ̂︀𝑡 =
(︀̂︀𝑡𝑖)︀

𝑖∈𝐼 ∈ 𝑇 , the following equations are linearly

independent:

∑︁
𝑖∈𝐼

𝑞𝑖𝑟(̂︀𝑡𝑖) = 𝑓𝑟(̂︀𝑡),
𝑞𝑖𝑟(𝑡

𝑖) +
∑︁

𝑗∈𝐼∖{𝑖}

𝑞𝑗𝑟(̂︀𝑡𝑗) = 𝑓𝑟(𝑡
𝑖,̂︀𝑡−𝑖), ∀𝑡𝑖 ∈ 𝑇 𝑖 ∖ {̂︀𝑡𝑖}, ∀𝑖 ∈ 𝐼.

(A.3)

We then show that given any 𝑡 ∈ 𝑇 ,
∑︀

𝑖∈𝐼 𝑞
𝑖
𝑟(𝑡

𝑖) = 𝑓𝑟(𝑡) is a linear combination of the

equations in (A.3). Following (2.17a), we can write:

∑︁
𝑖∈𝐼

𝑓𝑟(𝑡
𝑖,̂︀𝑡−𝑖)− (|𝐼| − 1)𝑓𝑟(̂︀𝑡) = 𝑓𝑟(𝑡

1,̂︀𝑡−1) + 𝑓𝑟(𝑡
2,̂︀𝑡−2) +

|𝐼|∑︁
𝑖=3

𝑓𝑟(𝑡
𝑖,̂︀𝑡−𝑖)− (|𝐼| − 1)𝑓𝑟(̂︀𝑡)

(2.17a)
= 𝑓𝑟(𝑡

1, 𝑡2,̂︀𝑡−1−2) + 𝑓𝑟(̂︀𝑡) + |𝐼|∑︁
𝑖=3

𝑓𝑟(𝑡
𝑖,̂︀𝑡−𝑖)− (|𝐼| − 1)𝑓𝑟(̂︀𝑡)
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=𝑓𝑟(𝑡
1, 𝑡2,̂︀𝑡−1−2) +

|𝐼|∑︁
𝑖=3

𝑓𝑟(𝑡
𝑖,̂︀𝑡−𝑖)− (|𝐼| − 2)𝑓𝑟(̂︀𝑡),

where ̂︀𝑡−1−2 = (̂︀𝑡3, · · · ,̂︀𝑡|𝐼|). We apply the same procedure iteratively for another |𝐼| − 2

times:

∑︁
𝑖∈𝐼

𝑓𝑟(𝑡
𝑖,̂︀𝑡−𝑖)− (|𝐼| − 1)𝑓𝑟(̂︀𝑡) = 𝑓𝑟(𝑡), ∀𝑡 ∈ 𝑇. (A.4)

Now for any 𝑟 ∈ 𝑅 and 𝑡 ∈ 𝑇 , we can write
∑︀

𝑖∈𝐼 𝑞
𝑖
𝑟(𝑡

𝑖) =
∑︀

𝑖∈𝐼

(︁
𝑞𝑖𝑟(𝑡

𝑖) +
∑︀

𝑗∈𝐼∖{𝑖} 𝑞
𝑗
𝑟(̂︀𝑡𝑗))︁ −

(|𝐼| − 1)
∑︀

𝑖∈𝐼 𝑞
𝑖
𝑟(̂︀𝑡𝑖) (A.3)

=
∑︀

𝑖∈𝐼 𝑓𝑟(𝑡
𝑖,̂︀𝑡−𝑖) − (|𝐼| − 1)𝑓𝑟(̂︀𝑡) (A.4)

= 𝑓𝑟(𝑡). Thus, for any 𝑟 ∈ 𝑅,

the linear system (2.6) is comprised of
∑︀

𝑖∈𝐼 |𝑇 𝑖| variables, and any constraint can indeed

be expressed as a linear combination of
∑︀

𝑖∈𝐼 |𝑇 𝑖| − |𝐼| + 1 independent equations in (A.3).

From the rank-nullity theorem, we conclude that the dimension of null space of this linear

map is |𝐼| − 1. Then, for any 𝑟 ∈ 𝑅, any 𝑖 ∈ 𝐼, setting 𝑞𝑖𝑟(̂︀𝑡𝑖) = 𝜒𝑖𝑟, any solution of

(2.6) can be expressed as (2.22), where ̂︀𝑡 ∈ 𝑇 is an arbitrary type profile. Additionally,∑︀
𝑖∈𝐼 𝜒

𝑖
𝑟 =

∑︀
𝑖∈𝐼 𝑞

𝑖
𝑟(̂︀𝑡𝑖) = 𝑓𝑟(̂︀𝑡). Thus, 𝜒 satisfies (2.23b), i.e. for each 𝑟 ∈ 𝑅, out of the

|𝐼| variables in {𝜒𝑖𝑟}𝑖∈𝐼 , |𝐼| − 1 are free, and the remaining one is obtained from (2.23b).

We can conclude that the strategy profile 𝑞 as defined in (2.22) induces the route flow

𝑓 . It remains to be shown that if 𝑞 is a feasible strategy profile, 𝜒 must satisfy (2.23a)

and (2.23c) as well. Since 𝑞 satisfies (2.4a), we obtain that 𝜆𝑖𝐷
(2.4a)
=

∑︀
𝑟∈𝑅 𝑞

𝑖
𝑟(𝑡

𝑖)
(2.22)
=∑︀

𝑟∈𝑅
(︀
𝑓𝑟(𝑡

𝑖,̂︀𝑡−𝑖)− 𝑓𝑟(̂︀𝑡𝑖,̂︀𝑡−𝑖) + 𝜒𝑖𝑟
)︀ (2.17b)

=
∑︀

𝑟∈𝑅 𝜒
𝑖
𝑟 for any 𝑖 ∈ 𝐼, i.e. 𝜒 satisfies (2.23a).

Additionally, from (2.4b), 0 ≤ 𝑞𝑖𝑟(𝑡
𝑖)

(2.22)
= 𝑓𝑟(𝑡

𝑖,̂︀𝑡−𝑖) − 𝑓𝑟(̂︀𝑡𝑖,̂︀𝑡−𝑖) + 𝜒𝑖𝑟 for any 𝑟 ∈ 𝑅 and any

𝑡𝑖 ∈ 𝑇 𝑖. Thus, 𝜒𝑖𝑟 ≥ max𝑡𝑖∈𝑇 𝑖

{︀
𝑓𝑟(̂︀𝑡𝑖,̂︀𝑡−𝑖)− 𝑓𝑟(𝑡𝑖,̂︀𝑡−𝑖)}︀, i.e. 𝜒 satisfies (2.23c).

Step III: Finally, we show that the set of 𝜒 satisfying (2.23) is non-empty, i.e., any

𝑓 ∈ 𝐹 (𝜆) can be induced by at least one feasible strategy profile 𝑞. Consider any 𝑓 ∈ 𝐹 (𝜆),

we explicitly construct the following 𝜒, and show that such 𝜒 satisfies (2.23):

𝜒𝑖𝑟 = 𝛾𝑟 ·

(︃
𝜆𝑖𝐷 −

∑︁
𝑟∈𝑅

max
𝑡𝑖∈𝑇 𝑖

(︀
𝑓𝑟(̂︀𝑡)− 𝑓𝑟(𝑡𝑖,̂︀𝑡−𝑖))︀)︃+max

𝑡𝑖∈𝑇 𝑖

(︀
𝑓𝑟(̂︀𝑡)− 𝑓𝑟(𝑡𝑖,̂︀𝑡−𝑖))︀ , ∀𝑟 ∈ 𝑅, ∀𝑖 ∈ 𝐼,

(A.5)
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where ̂︀𝑡 is any arbitrary type profile, and

𝛾𝑟 =
𝑓𝑟(̂︀𝑡)−∑︀𝑖∈𝐼 max𝑡𝑖∈𝑇 𝑖

(︀
𝑓𝑟(̂︀𝑡)− 𝑓𝑟(𝑡𝑖,̂︀𝑡−𝑖))︀∑︀

𝑟∈𝑅
[︀
𝑓𝑟(̂︀𝑡)−∑︀𝑖∈𝐼 max𝑡𝑖∈𝑇 𝑖

(︀
𝑓𝑟(̂︀𝑡)− 𝑓𝑟(𝑡𝑖,̂︀𝑡−𝑖))︀]︀ ,

if
∑︀

𝑟∈𝑅
[︀
𝑓𝑟(̂︀𝑡)−∑︀𝑖∈𝐼 max𝑡𝑖∈𝑇 𝑖

(︀
𝑓𝑟(̂︀𝑡)− 𝑓𝑟(𝑡𝑖,̂︀𝑡−𝑖))︀]︀ ̸= 0, and 𝛾𝑟 = 0 otherwise.

First, we check that the (𝜒𝑖𝑟)𝑟∈𝑅,𝑖∈𝐼 as defined in (A.5) satisfies (2.23c). Note that 𝛾𝑟 ≥ 0.

To see this, since for any 𝑡 ∈ 𝑇 ,
∑︀

𝑖∈𝐼 𝑓𝑟(𝑡
𝑖,̂︀𝑡−𝑖)− (|𝐼| − 1)𝑓𝑟(̂︀𝑡) (A.4)

= 𝑓𝑟(𝑡) ≥ 0, we know that

min𝑡∈𝑇
∑︀

𝑖∈𝐼 𝑓𝑟(𝑡
𝑖,̂︀𝑡−𝑖)− (|𝐼| − 1)𝑓𝑟(̂︀𝑡) = min𝑡∈𝑇 𝑓𝑟(𝑡) ≥ 0. Thus, for any 𝑟 ∈ 𝑅, we obtain:

𝑓𝑟(̂︀𝑡)−∑︁
𝑖∈𝐼

max
𝑡𝑖∈𝑇 𝑖

(︀
𝑓𝑟(̂︀𝑡)− 𝑓𝑟(𝑡𝑖,̂︀𝑡−𝑖))︀ = min

𝑡∈𝑇

∑︁
𝑖∈𝐼

𝑓𝑟(𝑡
𝑖,̂︀𝑡−𝑖)− (|𝐼| − 1)𝑓𝑟(̂︀𝑡) = min

𝑡∈𝑇
𝑓𝑟(𝑡) ≥ 0.

(A.6)

Hence, we can conclude that 𝛾𝑟 ≥ 0. Next, 𝜆𝑖𝐷 −
∑︀

𝑟∈𝑅max𝑡𝑖∈𝑇 𝑖

(︀
𝑓𝑟(̂︀𝑡)− 𝑓𝑟(𝑡𝑖,̂︀𝑡−𝑖))︀ (2.17b)

=

𝜆𝑖𝐷 −
(︀
𝐷 −

∑︀
𝑟∈𝑅min𝑡𝑖∈𝑇 𝑖 𝑓𝑟(𝑡

𝑖,̂︀𝑡−𝑖))︀ (2.17d)
≥ 0. Using the above inequalities, we obtain that

𝜒𝑖𝑟 as considered in (A.5) satisfies (2.23c).

Second, we check 𝜒𝑖𝑟 satisfies (2.23a). If
∑︀

𝑟∈𝑅
[︀
𝑓𝑟(̂︀𝑡)−∑︀𝑖∈𝐼 max𝑡𝑖∈𝑇 𝑖

(︀
𝑓𝑟(̂︀𝑡)− 𝑓𝑟(𝑡𝑖,̂︀𝑡−𝑖))︀]︀ >

0, then:

∑︁
𝑟∈𝑅

𝜒𝑖𝑟 =
∑︁
𝑟∈𝑅

𝛾𝑟 ·

(︃
𝜆𝑖𝐷 −

∑︁
𝑟∈𝑅

max
𝑡𝑖∈𝑇 𝑖

(︀
𝑓𝑟(̂︀𝑡)− 𝑓𝑟(𝑡𝑖,̂︀𝑡−𝑖))︀)︃+

∑︁
𝑟∈𝑅

max
𝑡𝑖∈𝑇 𝑖

(︀
𝑓𝑟(̂︀𝑡)− 𝑓𝑟(𝑡𝑖,̂︀𝑡−𝑖))︀

=

(︃
𝜆𝑖𝐷 −

∑︁
𝑟∈𝑅

max
𝑡𝑖∈𝑇 𝑖

(︀
𝑓𝑟(̂︀𝑡)− 𝑓𝑟(𝑡𝑖,̂︀𝑡−𝑖))︀)︃+

∑︁
𝑟∈𝑅

max
𝑡𝑖∈𝑇 𝑖

(︀
𝑓𝑟(̂︀𝑡)− 𝑓𝑟(𝑡𝑖,̂︀𝑡−𝑖))︀ = 𝜆𝑖𝐷.

On the other hand, if
∑︀

𝑟∈𝑅
[︀
𝑓𝑟(̂︀𝑡)−∑︀𝑖∈𝐼 max𝑡𝑖∈𝑇 𝑖

(︀
𝑓𝑟(̂︀𝑡)− 𝑓𝑟(𝑡𝑖,̂︀𝑡−𝑖))︀]︀ = 0, we obtain that:

0 =
∑︁
𝑟∈𝑅

[︃
𝑓𝑟(̂︀𝑡)−∑︁

𝑖∈𝐼

max
𝑡𝑖∈𝑇 𝑖

(︀
𝑓𝑟(̂︀𝑡)− 𝑓𝑟(𝑡𝑖,̂︀𝑡−𝑖))︀]︃

(2.17b)
= 𝐷 −

∑︁
𝑖∈𝐼

(︃∑︁
𝑟∈𝑅

max
𝑡𝑖∈𝑇 𝑖

(︀
𝑓𝑟(̂︀𝑡)− 𝑓𝑟(𝑡𝑖,̂︀𝑡−𝑖))︀)︃ (2.17d)

≥ 𝐷 −
∑︁
𝑖∈𝐼

𝜆𝑖𝐷 = 0,

which implies that for any 𝑖 ∈ 𝐼,
∑︀

𝑟∈𝑅max𝑡𝑖∈𝑇 𝑖

(︀
𝑓𝑟(̂︀𝑡)− 𝑓𝑟(𝑡𝑖,̂︀𝑡−𝑖))︀ = 𝜆𝑖𝐷. Since in this

case, 𝛾𝑟 = 0, we can conclude that
∑︀

𝑟∈𝑅 𝜒
𝑖
𝑟 =

∑︀
𝑟∈𝑅max𝑡𝑖∈𝑇 𝑖

(︀
𝑓𝑟(̂︀𝑡)− 𝑓𝑟(𝑡𝑖,̂︀𝑡−𝑖))︀ = 𝜆𝑖𝐷, i.e.
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𝜒 satisfies (2.23a).

Finally, 𝜒𝑖𝑟 also satisfies (2.23b). If
∑︀

𝑟∈𝑅
[︀
𝑓𝑟(̂︀𝑡)−∑︀𝑖∈𝐼 max𝑡𝑖∈𝑇 𝑖

(︀
𝑓𝑟(̂︀𝑡)− 𝑓𝑟(𝑡𝑖,̂︀𝑡−𝑖))︀]︀ > 0,

we have:

∑︁
𝑖∈𝐼

𝜒𝑖𝑟 = 𝛾𝑟 ·
∑︁
𝑖∈𝐼

(︃
𝜆𝑖𝐷 −

∑︁
𝑟∈𝑅

max
𝑡𝑖∈𝑇 𝑖

(︀
𝑓𝑟(̂︀𝑡)− 𝑓𝑟(𝑡𝑖,̂︀𝑡−𝑖))︀)︃+

∑︁
𝑖∈𝐼

max
𝑡𝑖∈𝑇 𝑖

(︀
𝑓𝑟(̂︀𝑡)− 𝑓𝑟(𝑡𝑖,̂︀𝑡−𝑖))︀

= 𝛾𝑟 ·

(︃
𝐷 −

∑︁
𝑖∈𝐼

∑︁
𝑟∈𝑅

max
𝑡𝑖∈𝑇 𝑖

(︀
𝑓𝑟(̂︀𝑡)− 𝑓𝑟(𝑡𝑖,̂︀𝑡−𝑖))︀)︃+

∑︁
𝑖∈𝐼

max
𝑡𝑖∈𝑇 𝑖

(︀
𝑓𝑟(̂︀𝑡)− 𝑓𝑟(𝑡𝑖,̂︀𝑡−𝑖))︀

(2.17b)
= 𝛾𝑟 ·

(︃∑︁
𝑟∈𝑅

[︃
𝑓𝑟(̂︀𝑡)−∑︁

𝑖∈𝐼

max
𝑡𝑖∈𝑇 𝑖

(︀
𝑓𝑟(̂︀𝑡)− 𝑓𝑟(𝑡𝑖,̂︀𝑡−𝑖))︀]︃)︃+

∑︁
𝑖∈𝐼

max
𝑡𝑖∈𝑇 𝑖

(︀
𝑓𝑟(̂︀𝑡)− 𝑓𝑟(𝑡𝑖,̂︀𝑡−𝑖))︀

= 𝑓𝑟(̂︀𝑡)−∑︁
𝑖∈𝐼

max
𝑡𝑖∈𝑇 𝑖

(︀
𝑓𝑟(̂︀𝑡)− 𝑓𝑟(𝑡𝑖,̂︀𝑡−𝑖))︀+∑︁

𝑖∈𝐼

max
𝑡𝑖∈𝑇 𝑖

(︀
𝑓𝑟(̂︀𝑡)− 𝑓𝑟(𝑡𝑖,̂︀𝑡−𝑖))︀ = 𝑓𝑟(̂︀𝑡).

If
∑︀

𝑟∈𝑅
[︀
𝑓𝑟(̂︀𝑡)−∑︀𝑖∈𝐼 max𝑡𝑖∈𝑇 𝑖

(︀
𝑓𝑟(̂︀𝑡)− 𝑓𝑟(𝑡𝑖,̂︀𝑡−𝑖))︀]︀ = 0, then we have

0 =
∑︁
𝑟∈𝑅

[︃
𝑓𝑟(̂︀𝑡)−∑︁

𝑖∈𝐼

max
𝑡𝑖∈𝑇 𝑖

(︀
𝑓𝑟(̂︀𝑡)− 𝑓𝑟(𝑡𝑖,̂︀𝑡−𝑖))︀]︃ (A.6)

=
∑︁
𝑟∈𝑅

min
𝑡∈𝑇

𝑓𝑟(𝑡) ≥ 0,

which implies that for any 𝑟 ∈ 𝑅, min𝑡∈𝑇 𝑓𝑟(𝑡) = 0. In this case, 𝛾𝑟 = 0, and thus
∑︀

𝑖∈𝐼 𝜒
𝑖
𝑟 =∑︀

𝑖∈𝐼 max𝑡𝑖∈𝑇 𝑖

(︀
𝑓𝑟(̂︀𝑡)− 𝑓𝑟(𝑡𝑖,̂︀𝑡−𝑖))︀ (A.6)

= 𝑓𝑟(̂︀𝑡)−min𝑡∈𝑇 𝑓𝑟(𝑡) = 𝑓𝑟(̂︀𝑡), i.e. 𝜒 satisfies (2.23b).

Therefore, if 𝑓 satisfies (2.17a)-(2.17d), we can conclude that the 𝜒 in (A.5) satisfies

(2.23), i.e. the set of 𝜒 satisfying (2.23) is non-empty. We already showed in Step II that

𝑞 as defined in (2.22) with parameter 𝜒 satisfying (2.23) is a feasible strategy profile, and 𝑞

induces 𝑓 . Therefore, if 𝑓 satisfies (2.17a)-(2.17d), there exists a feasible 𝑞 that induces 𝑓 ,

i.e. any 𝑓 ∈ 𝐹 (𝜆) is a feasible route flow.

In summary, we have shown that any feasible route flow satisfies (2.17) (Step I); For any

𝑓 that satisfies (2.17), the set of feasible strategy profiles that induce 𝑓 can be written in

(2.22)-(2.23) (Step II); Such set is non-empty, and hence 𝑓 is feasible (Step III). We can thus

conclude that the set of feasible route flows is 𝐹 (𝜆), and the set of feasible strategies that

induce 𝑓 is as in (2.22)-(2.23). �

Proof of Proposition 2.2. From Proposition 2.1, we know that the set of feasible route

flows is the set 𝐹 (𝜆) characterized by (2.17a)-(2.17d). Additionally, the weighted potential
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function in (2.12) can be equivalently written as a function of 𝑓 given by (2.13). Therefore,

the minimum of (OPT-𝐹 ) is equal to that in (OPT-𝑄), and the set of optimal solutions is

the set of equilibrium route flows. �

A.2 Proofs of Section 2.5

Lemma A.2. The route flows 𝑓 𝑖𝑗,† ∈ 𝐹 𝑖𝑗,† induce a unique edge load 𝑤𝑖𝑗,†.

Proof of Lemma A.2. Following (2.7) and (OPT-𝐹 ), any edge load 𝑤𝑖𝑗,† induced by route

flows in 𝐹 𝑖𝑗,† (which we defined as optimal solution set of (OPT-𝐹 𝑖𝑗)) is an optimal solution

of the following optimization problem:

min
𝑤

̂︀
Φ(𝑤),

𝑠.𝑡. 𝑤𝑒(𝑡) =
∑︁
𝑟∋𝑒

𝑓𝑟(𝑡), ∀𝑡 ∈ 𝑇, ∀𝑒 ∈ 𝐸,

𝑓 satisfies (2.17a), (2.17b), (2.17c), (IIC)∖{𝑖, 𝑗}, (IIC𝑖𝑗).

The constraints (2.17a), (2.17b), (2.17c) are linear constraints. Following from (2.21), con-

straints (IIC)∖{𝑖, 𝑗}, (IIC𝑖𝑗) are each equivalent to a set of linear constraints. Additionally,

𝑤 is a linear function of 𝑓 , thus the feasible set of 𝑤 in this optimization problem must also

be a convex polytope. Since
̂︀
Φ(𝑤) is a strictly convex function in 𝑤, the optimal solution

𝑤𝑖𝑗,† is unique. �

Proof of Lemma 2.4. First, we show that both thresholds 𝜆𝑖 and �̄�𝑖 belong to the interval

[0, 1− |𝜆−𝑖𝑗|]. Since 𝜆𝑖 is attainable on the set 𝐹 𝑖𝑗,†, there exists 𝑓 𝑖𝑗,† ∈ 𝐹 𝑖𝑗,† such that:

𝜆𝑖 =
1

𝐷
̂︀𝐽 𝑖(𝑓 𝑖𝑗,†) (2.19)

=
1

𝐷

(︃
𝐷 −

∑︁
𝑟∈𝑅

min
𝑡𝑖∈𝑇 𝑖

𝑓 𝑖𝑗,†𝑟

(︀
𝑡𝑖, 𝑡−𝑖

)︀)︃
≥ 1

𝐷

(︃
𝐷 −

∑︁
𝑟∈𝑅

𝑓 𝑖𝑗,†𝑟

(︀̂︀𝑡𝑖, 𝑡−𝑖)︀)︃ (2.17b)
= 0.

Similarly, we can check that �̄�𝑖 ≤ 1− |𝜆−𝑖𝑗|.

Additionally, we know for any 𝑓 𝑖𝑗,† ∈ 𝐹 𝑖𝑗,†:

�̄�𝑖
(2.26)
≥ 1

𝐷

{︁(︀
1− |𝜆−𝑖𝑗|

)︀
𝐷 − ̂︀𝐽 𝑗(𝑓 𝑖𝑗,†)}︁ (IIC𝑖𝑗)

≥ 1

𝐷
̂︀𝐽 𝑖(𝑓 𝑖𝑗,†) (2.26)

≥ 𝜆𝑖.
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Therefore, 0 ≤ 𝜆𝑖 ≤ �̄�𝑖 ≤ 1− |𝜆−𝑖𝑗|. �

For any two populations 𝑖, 𝑗 ∈ 𝐼, we can compute the threshold 𝜆𝑖 as follows:

min 𝑦

𝑠.𝑡. 𝐷 −
∑︁
𝑟∈𝑅

𝑓𝑟(𝑡
𝑖
𝑟,̂︀𝑡−𝑖) ≤ 𝑦 ·𝐷, ∀𝑡𝑖1 ∈ 𝑇 𝑖, . . . ,∀𝑡𝑖|𝑅| ∈ 𝑇 𝑖,

𝑓 𝑖𝑗,† ∈ 𝐹 𝑖𝑗,†,

(A.7)

where 𝐹 𝑖𝑗,† is the polytope defined in (2.25). Therefore, (A.7) is a linear programming.

Analogously, the threshold �̄�𝑖 is the optimal value of the following linear program:

max 𝑦

𝑠.𝑡. − |𝜆−𝑖𝑗|𝐷 +
∑︁
𝑟∈𝑅

𝑓𝑟(𝑡
𝑗
𝑟,̂︀𝑡−𝑗) ≥ 𝑦 ·𝐷, ∀𝑡𝑗1 ∈ 𝑇 𝑗, . . .∀𝑡

𝑗
|𝑅| ∈ 𝑇

𝑗,

𝑓 𝑖𝑗,† ∈ 𝐹 𝑖𝑗,†.

(A.8)

Proof of Theorem 2.2.
[︀
Regime Λ𝑖𝑗1

]︀
: First, we show by contradiction that the constraint

(IIC𝑖) is tight for any equilibrium route flow. Assume that for a given 𝜆 ∈ Λ𝑖𝑗1 , there exists an

equilibrium route flow 𝑓 * such that (IIC𝑖) is not tight. From Proposition 2.2, we know that

𝑓 * is an optimal solution of (OPT-𝐹 ). Since (OPT-𝐹 ) is a convex optimization problem,

𝑓 * is still a minimizer of ̂︀Φ(𝑓) if we drop the constraint (IIC𝑖). Additionally, the constraints

(IIC𝑖) and (IIC𝑗) implies that 𝑓 * must also satisfy (IIC𝑖𝑗). Thus, such 𝑓 * is an optimal

solution of the following problem:

min
𝑓

̂︀Φ(𝑓), 𝑠.𝑡. (2.17a), (2.17b), (2.17c), (IIC𝑖𝑗), and (IIC)∖{𝑖}. (A.9)

Moreover, the threshold �̄�𝑖 defined in (2.26) is attained by a route flow, say 𝑓 𝑖𝑗,†, in the set

𝐹 𝑖𝑗,†. Thus, we can write: 1 − |𝜆−𝑖𝑗| − 1
𝐷
̂︀𝐽 𝑗(𝑓 𝑖𝑗,†) = �̄�𝑖

(Lemma 2.4)
≥ 𝜆𝑖

(2.27a)
> 𝜆𝑖. Rearranging,

we obtain: 1
𝐷
̂︀𝐽 𝑗(𝑓 𝑖𝑗,†) < 1 − |𝜆−𝑖𝑗| − 𝜆𝑖 = 𝜆𝑗, and so such 𝑓 𝑖𝑗,† also satisfies (IIC𝑗). Since

𝑓 𝑖𝑗,† is an optimal solution of (2.25), which minimizes the same objective function as (A.9)

but without the constraint (IIC𝑗), we thus know that 𝑓 𝑖𝑗,† is also an optimal solution in

(A.9). Since the induced edge load is unique, we can conclude that the edge load induced
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by 𝑓 * must be identical to that induced by 𝑓 𝑖𝑗,†, which is 𝑤𝑖𝑗,†. Then, from (2.25), we have

𝑓 * ∈ 𝐹 𝑖𝑗,†. Therefore, from (2.26), we can write 𝜆𝑖 ≤ 1
𝐷
̂︀𝐽 𝑖(𝑓 *). Since we assumed that

(IIC𝑖) is not binding in equilibrium, we obtain: 1
𝐷
̂︀𝐽 𝑖(𝑓 *) < 𝜆𝑖 < 𝜆𝑖 ≤ 1

𝐷
̂︀𝐽 𝑖(𝑓 *), which is a

contradiction. Thus, (IIC𝑖) must be tight in equilibrium for any 𝜆 in regime Λ𝑖𝑗1 .

Finally, following the tightness of (IIC𝑖) at optimum of (OPT-𝐹 ), by rearranging the

constraint (IIC𝑖𝑗) in (2.28), we have ̂︀𝐽 𝑗(𝑓 *) ≤ (1− |𝜆−𝑖𝑗|)𝐷− ̂︀𝐽 𝑖(𝑓 *) = 𝜆𝑗𝐷. Thus, (IIC𝑗) is

guaranteed to hold in Regime Λ𝑖𝑗1 given the constraint (IIC𝑖𝑗) and the fact that (IIC𝑖) is tight

at the optimum of (OPT-𝐹 ). Hence, (IIC𝑗) can be dropped in (OPT-𝐹 ) without changing

the optimal solution set.[︀
Regime Λ𝑖𝑗3

]︀
: Analogous to the proof given for regime Λ𝑖𝑗1 , we can argue that constraint

(IIC𝑗) is tight in any equilibrium for any 𝜆 in regime Λ𝑖𝑗3 . By imposing constraint (IIC𝑖𝑗),

(IIC𝑖) can be dropped from the constraint set in (OPT-𝐹 ) without changing the optimal

solution set.[︀
Regime Λ𝑖𝑗2

]︀
: To study this regime, we need two additional thresholds

𝜆𝑖
Δ
=

1

𝐷
max

𝑓 𝑖𝑗,†∈𝐹 𝑖𝑗,†

{︁ ̂︀𝐽 𝑖(𝑓 𝑖𝑗,†)}︁ , ¯̄𝜆𝑖
Δ
=

1

𝐷
min

𝑓 𝑖𝑗,†∈𝐹 𝑖𝑗,†

{︁(︀
1− |𝜆−𝑖𝑗|

)︀
𝐷 − ̂︀𝐽 𝑗(𝑓 𝑖𝑗,†)}︁ .

From (2.26), we can check that 𝜆𝑖 ≤ 𝜆𝑖, and ¯̄𝜆𝑖 ≤ �̄�𝑖.

For any 𝜆𝑖 ∈ [𝜆𝑖, 𝜆𝑖], we argue that 𝐹 *(𝜆) ⊆ 𝐹 𝑖𝑗,†. Since the set 𝐹 𝑖𝑗,† as defined by

(2.25) is a bounded polytope, and 𝜆𝑖 (resp. 𝜆𝑖) is the minimum (resp. maximum) value of

the continuous function ̂︀𝐽 𝑖(𝑓 𝑖𝑗,†) on 𝐹 𝑖𝑗,†, we know from the mean value theorem that there

exists a 𝑓 𝑖𝑗,† ∈ 𝐹 𝑖𝑗,† satisfying: 𝜆𝑖 = 1
𝐷
̂︀𝐽 𝑖(𝑓 𝑖𝑗,†). Such 𝑓 𝑖𝑗,† also satisfies constraint (IIC𝑗).

Therefore, 𝑓 𝑖𝑗,† satisfies all the constraints in (2.17), and minimizes ̂︀Φ(𝑓). So 𝑓 𝑖𝑗,† is an

equilibrium route flow, which implies that 𝐹 *(𝜆)∩𝐹 𝑖𝑗,† ̸= ∅. Since the equilibrium edge load

vector is unique, and the edge load induced by 𝑓 𝑖𝑗,† is 𝑤𝑖𝑗,†, we must have 𝑤*(𝜆) = 𝑤𝑖𝑗,†.

Furthermore, from (2.25), 𝐹 𝑖𝑗,† is a superset of all feasible route flows that can induce 𝑤𝑖𝑗,†.

Therefore, 𝐹 *(𝜆) ⊆ 𝐹 𝑖𝑗,† for any 𝜆𝑖 ∈ [𝜆𝑖, 𝜆𝑖]. Similarly, we can argue that for any 𝜆𝑖 ∈ [¯̄𝜆𝑖, �̄�𝑖],

𝐹 *(𝜆) ⊆ 𝐹 𝑖𝑗,†.

To prove that 𝐹 *(𝜆) ⊆ 𝐹 𝑖𝑗,† for any 𝜆 in regime Λ𝑖𝑗2 , we need to argue two cases 𝜆𝑖 ≥ ¯̄𝜆𝑖 and

𝜆𝑖 < ¯̄𝜆𝑖 separately. If 𝜆𝑖 ≥ ¯̄𝜆𝑖, then [𝜆𝑖, �̄�𝑖] ⊆ [𝜆𝑖, 𝜆𝑖]∪[¯̄𝜆𝑖, �̄�𝑖]. Therefore, 𝐹 *(𝜆) ⊆ 𝐹 𝑖𝑗,† for any
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𝜆 in regime Λ𝑖𝑗2 . If 𝜆𝑖 < ¯̄𝜆𝑖, for any 𝜆𝑖 ∈ (𝜆𝑖, ¯̄𝜆𝑖), we can check that any 𝑓 𝑖𝑗,† ∈ 𝐹 𝑖𝑗,† satisfies the

constraint (IIC𝑖): 1
𝐷
̂︀𝐽 𝑖(𝑓 𝑖𝑗,†) ≤ 𝜆𝑖 < 𝜆𝑖. Additionally, since 𝜆𝑖 < ¯̄𝜆𝑖 ≤ 1− |𝜆−𝑖𝑗| − 1

𝐷
̂︀𝐽 𝑗(𝑓 𝑖𝑗,†),

we know that 1
𝐷
̂︀𝐽 𝑗(𝑓 𝑖𝑗,†) < 1− |𝜆−𝑖𝑗| − 𝜆𝑖 = 𝜆𝑗, i.e. 𝑓 𝑖𝑗,† also satisfies the constraint (IIC𝑗).

Thus, any 𝑓 𝑖𝑗,† ∈ 𝐹 𝑖𝑗,† is an equilibrium route flow, i.e. 𝐹 *(𝜆) = 𝐹 𝑖𝑗,† for any 𝜆𝑖 ∈ (𝜆𝑖, ¯̄𝜆𝑖).

Combined with the fact that 𝐹 *(𝜆) ⊆ 𝐹 𝑖𝑗,† for any 𝜆 ∈ [𝜆𝑖, 𝜆𝑖] ∪ [¯̄𝜆𝑖, �̄�𝑖], we know that

𝐹 *(𝜆) ⊆ 𝐹 𝑖𝑗,† for any 𝜆 in regime Λ𝑖𝑗2 . �

Corollary A.1. If the game Γ(𝜆) has a parallel-route network, then the equilibrium route

flow 𝑓 * is unique. Moreover, if there are two populations, then the equilibrium strategy profile

is unique in regime Λ12
1 or Λ12

3 , and can be written as follows:

In regime Λ𝑖𝑗1 : 𝑞1*𝑟 (𝑡1) = 𝑓 *
𝑟 (𝑡

1,̂︀𝑡2)− min̂︀𝑡1∈𝑇 1
𝑓 *
𝑟 (̂︀𝑡1,̂︀𝑡2), ∀𝑟 ∈ 𝑅, ∀𝑡1 ∈ 𝑇 1, (A.10a)

𝑞2*𝑟 (𝑡2) = min̂︀𝑡1∈𝑇 1
𝑓 *
𝑟 (̂︀𝑡1, 𝑡2), ∀𝑟 ∈ 𝑅, ∀𝑡2 ∈ 𝑇 2, (A.10b)

In regime Λ𝑖𝑗3 : 𝑞1*𝑟 (𝑡1) = min̂︀𝑡2∈𝑇 2
𝑓 *
𝑟 (𝑡

1,̂︀𝑡2), ∀𝑟 ∈ 𝑅, ∀𝑡1 ∈ 𝑇 1, (A.10c)

𝑞2*𝑟 (𝑡2) = 𝑓 *
𝑟 (̂︀𝑡1, 𝑡2)− min̂︀𝑡2∈𝑇 2

𝑓 *
𝑟 (̂︀𝑡1,̂︀𝑡2), ∀𝑟 ∈ 𝑅, ∀𝑡2 ∈ 𝑇 2, (A.10d)

where
(︀̂︀𝑡1,̂︀𝑡2)︀ is any type profile.

Proof of Corollary A.1. Given a parallel route network, we immediately obtain the

uniqueness of 𝑓 * from Theorem 2.1. Then from Proposition 2.1, any strategy profile that

can induce 𝑓 * can be expressed as in (2.22). In regime Λ12
1 , we know from Theorem 2.2 that

the constraint (IIC1) is tight in equilibrium. Therefore, from (2.23a) and (2.23c), we obtain:

𝜆1𝐷
(2.23a)
=

∑︁
𝑟∈𝑅

𝜒1
𝑟

(2.23c)
≥

∑︁
𝑟∈𝑅

max
𝑡1∈𝑇 1

(︀
𝑓 *
𝑟 (̂︀𝑡1,̂︀𝑡2)− 𝑓 *

𝑟 (𝑡
1,̂︀𝑡2))︀ (2.19)

= ̂︀𝐽1(𝑓 *) = 𝜆1𝐷.

Thus, (2.23c) is tight for any 𝑟 ∈ 𝑅, i.e. 𝜒1
𝑟 = max𝑡1∈𝑇 1

(︀
𝑓 *
𝑟 (̂︀𝑡1,̂︀𝑡2)− 𝑓 *

𝑟 (𝑡
1,̂︀𝑡2))︀. Additionally,

from (2.23a), 𝜒2
𝑟 = min𝑡1∈𝑇 1 𝑓 *

𝑟 (𝑡
1,̂︀𝑡2). Thus, 𝜒 as defined in (2.23) is unique. Following

(2.22), we can obtain the unique 𝑞* as defined in (A.10a)-(A.10b). Analogously, we can

argue that the equilibrium strategy profile is also unique in regime Λ12
3 , and is written as in

(A.10c)-(A.10d). �
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Proof of Proposition 2.3.
[︀
Regime Λ𝑖𝑗1

]︀
: Consider any population size vector 𝜆 ∈ Λ𝑖𝑗1 ,

there exists a sufficiently small 𝜖 > 0 such that 𝜆′
= 𝜆 + 𝜖𝑧𝑖𝑗 ∈ Λ𝑖𝑗1 , i.e. 𝜆𝑖′ = 𝜆𝑖 + 𝜖 > 𝜆𝑖,

𝜆𝑗
′
= 𝜆𝑗 − 𝜖 < 𝜆𝑗, and the sizes of all other populations remain unchanged. Consider any

equilibrium route flow 𝑓 *(𝜆) ∈ 𝐹 *(𝜆) and any 𝑓 *(𝜆
′
) ∈ 𝐹 *(𝜆

′
). We know from Theorem 2.2

that constraint (IIC𝑖) is tight in equilibrium, and thus 𝑓 *(𝜆) and 𝑓 *(𝜆
′
) satisfy: 1

𝐷
̂︀𝐽 𝑖(𝑓 *(𝜆)) =

𝜆𝑖 < 𝜆𝑖
′
= 1

𝐷
̂︀𝐽 𝑖(𝑓 *(𝜆

′
)). Consequently, any equilibrium route flow 𝑓 *(𝜆) for size vector 𝜆 is

in the feasible domain of (2.28) for size vector 𝜆′ , but 𝑓 *(𝜆) /∈ 𝐹 *(𝜆
′
), because ̂︀𝐽 𝑖 (𝑓 *(𝜆)) =

𝜆𝑖 < 𝜆𝑖
′ , i.e. the constraint (IIC𝑖) is satisfied, but not tight. Since 𝑓 *(𝜆

′
) ∈ 𝐹 *(𝜆

′
), we must

have Ψ(𝜆
′
) = ̂︀Φ(𝑓 *(𝜆

′
)) < ̂︀Φ(𝑓 *(𝜆)) = Ψ(𝜆).

Additionally, from (2.24), we know that Ψ(𝜆
′
) =

̂︀
Φ(𝑤*(𝜆

′
)) <

̂︀
Φ(𝑤*(𝜆)) = Ψ(𝜆). Thus,

the unique equilibrium edge load 𝑤*(𝜆) necessarily changes in the direction 𝑧𝑖𝑗 in regime Λ𝑖𝑗1 .[︀
Regime Λ𝑖𝑗2

]︀
: From Theorem 2.2, 𝐹 *(𝜆) ⊆ 𝐹 𝑖𝑗,† for any 𝜆 ∈ Λ𝑖𝑗2 . Since the equilibrium

edge load is unique, we know 𝑤*(𝜆) = 𝑤𝑖𝑗,†. From (2.24) we can conclude that Ψ(𝜆) =̂︀
Φ(𝑤𝑖𝑗,†). Thus, Ψ(𝜆) as well as 𝑤*(𝜆) remain fixed in regime Λ𝑖𝑗2 .[︀

Regime Λ𝑖𝑗3
]︀
: Following similar argument in regime Λ𝑖𝑗1 , we conclude that Ψ(𝜆) mono-

tonically increases in the direction 𝑧𝑖𝑗 in regime Λ𝑖𝑗3 . As a result, 𝑤*(𝜆) changes when 𝜆 is

perturbed in the direction 𝑧𝑖𝑗 in regime Λ𝑖𝑗3 . �

Lemma A.3. (Fiacco and Kyparisis [1986], page 102) The value of the potential function

in equilibrium, Ψ(𝜆), is convex with respect to 𝜆 if in (OPT-𝑄), Φ(𝑞) is convex in 𝑞, and the

constraints are affine in 𝑞 and 𝜆.

Lemma A.4. (Fiacco [2009], page 3469) If in (OPT-𝑄), the objective function Φ(𝑞) is

convex and continuously differentiable in 𝑞, and additionally the set of equilibria 𝑞* and the

set of Lagrange multiplies 𝜇*, 𝜈* are nonempty and bounded, then Ψ(𝜆) is continuous and

directionally differentiable in 𝜆. Furthermore, for any given 𝑖, 𝑗 ∈ 𝐼, the directional derivative

of Ψ(𝜆) in the direction 𝑧𝑖𝑗 is ∇𝑧𝑖𝑗Ψ(𝜆) = min𝑞*∈𝑄*(𝜆) max (𝜇*,𝜈*)
∈(𝑀(𝑞*),𝑁(𝑞*))

∇𝜆𝐿(𝑞
*, 𝜇*, 𝜈*, 𝜆)𝑧𝑖𝑗,

where 𝑀(𝑞*) and 𝑁(𝑞*) are the sets of Lagrange multipliers 𝜇* and 𝜈* in (2.15) associated

with the equilibrium 𝑞* ∈ 𝑄*(𝜆).

Proof of Lemma 2.5. Since in (OPT-𝑄), the weighted potential function Φ(𝑞) is convex

in 𝑞, and the constraints (2.4a)-(2.4b) are affine in 𝑞 and 𝜆, from Lemma A.3, we know that
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the optimal value of the potential function Ψ(𝜆) is convex in 𝜆.

Next, we can check that (OPT-𝑄) satisfies the following conditions: (1) The potential

function Φ(𝑞) is continuously differentiable in 𝑞, and constraints (2.4a)-(2.4b) are linear in 𝑞

and 𝜆; (2) The optimal solution set 𝑄*(𝜆) is non-empty and bounded (Theorem 2.1). The

Lagrange multipliers at the optimum of (OPT-𝑄) are unique, and bounded (Lemma 2.3).

Therefore, from Lemma A.4, we know that Ψ(𝜆) is differentiable in the direction 𝑧𝑖𝑗, and

∇𝑧𝑖𝑗Ψ(𝜆) can be expressed as:

∇𝑧𝑖𝑗Ψ(𝜆) = min
𝑞*∈𝑄*(𝜆)

max
(𝜇*,𝜈*)

∈(𝑀(𝑞*),𝑁(𝑞*))

∇𝜆ℒ(𝑞*, 𝜇*, 𝜈*, 𝜆) · 𝑧𝑖𝑗

(2.15)
= min

𝑞*∈𝑄*(𝜆)
max
(𝜇*,𝜈*)

∈(𝑀(𝑞*),𝑁(𝑞*))

(︃∑︁
𝑡𝑖∈𝑇 𝑖

𝜇*𝑡𝑖 −
∑︁
𝑡𝑗∈𝑇 𝑗

𝜇*𝑡𝑗
)︃
·𝐷,

where 𝑀(𝑞*) (resp. 𝑁(𝑞*)) is the set of optimal Lagrange multipliers 𝜇* (resp. 𝜈*) associated

with the equilibrium strategy 𝑞*. From Lemma 2.3, since both 𝜇* and 𝜈* are unique in

equilibrium, ∇𝑧𝑖𝑗Ψ(𝜆) can be simplified:

∇𝑧𝑖𝑗Ψ(𝜆) =

(︃∑︁
𝑡𝑖∈𝑇 𝑖

𝜇*𝑡𝑖 −
∑︁
𝑡𝑗∈𝑇 𝑗

𝜇*𝑡𝑗
)︃
𝐷

(2.16a)
=

(︃∑︁
𝑡𝑖∈𝑇 𝑖

min
𝑟∈𝑅

Pr(𝑡𝑖)E[𝑐𝑟(𝑞*)|𝑡𝑖]−
∑︁
𝑡𝑗∈𝑇 𝑗

min
𝑟∈𝑅

Pr(𝑡𝑗)E[𝑐𝑟(𝑞*)|𝑡𝑗]

)︃
𝐷

(2.10)
=
(︀
𝐶𝑖*(𝜆)− 𝐶𝑗*(𝜆)

)︀
𝐷 = −𝑉 𝑖𝑗*(𝜆) ·𝐷.

�

Proof of Theorem 2.3. First, we know from Proposition 2.3 that in direction 𝑧𝑖𝑗, Ψ(𝜆)

decreases in regime Λ𝑖𝑗1 , does not change in regime Λ𝑖𝑗2 and increases in regime Λ𝑖𝑗3 . Following

Lemma 2.5, we directly obtain that 𝑉 𝑖𝑗*(𝜆) > 0 in Λ𝑖𝑗1 , 𝑉 𝑖𝑗*(𝜆) = 0 in Λ𝑖𝑗2 , and 𝑉 𝑖𝑗*(𝜆) < 0

in Λ𝑖𝑗3 .

Next, from Lemma 2.5, we know that Ψ(𝜆) is convex in 𝜆. Hence, for any 𝑖, 𝑗 ∈ 𝐼,
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the directional derivative ∇𝑧𝑖𝑗Ψ(𝜆) is non-decreasing in 𝑧𝑖𝑗. From (2.29), 𝑉 𝑖𝑗*(𝜆) is non-

increasing in 𝑧𝑖𝑗. �

Proof of Proposition 2.4. Since the interim belief of population 𝑗, 𝛽𝑗(𝑠, 𝑡−𝑗|𝑡𝑗) in (2.30)

is independent with type 𝑡𝑗, the equilibrium strategy of the uninformed population 𝑞𝑗*(𝑡𝑗)

must be identical across all 𝑡𝑗 ∈ 𝑇 𝑗. Following (2.18) and (2.19), the impact of information

metric 𝐽 𝑗(𝑞*) = ̂︀𝐽 𝑗(𝑓 *) = 0 for any 𝑞* ∈ 𝑄*(𝜆), 𝑓 * ∈ 𝐹 *(𝜆) and any 𝜆. For the sake of

contradiction, we assume that the regime Λ𝑖𝑗3 is non-empty. From Theorem 2.2, we know

that the constraint (IIC𝑗) must be tight in equilibrium when 𝜆 is in regime Λ𝑖𝑗3 . However,

since ̂︀𝐽 𝑗(𝑓 *) = 0 for any 𝜆, the constraint (IIC𝑗) is tight only when 𝜆𝑗 = 0, i.e. 𝜆𝑖 = 1−|𝜆−𝑖𝑗|.

This implies that the regime Λ𝑖𝑗3 is indeed empty. Thus, there are at most two regimes Λ𝑖𝑗1

and Λ𝑖𝑗2 . Following Proposition 2.3, we can conclude that 𝐶𝑗*(𝜆) ≥ 𝐶𝑖*(𝜆).

Example A.1. We consider the game with two populations on two parallel routes (𝑟1 and

𝑟2) with the following cost functions: 𝑐n1 (𝑓1) = 𝑓1+15, 𝑐a1(𝑓1) = 3𝑓1+15, 𝑐2(𝑓2) = 20𝑓2+30.

The prior distribution 𝜃, the total demand 𝐷, and the information environment are the same

as that in Example 2.1. Although both populations receive the accurate signal of the state

with positive probability, we have �̄�1 = 1 as the impact of information on population 2 is

zero. Since the free flow travel time on 𝑟2 is much higher than that on 𝑟1, population 2

travelers exclusively uses 𝑟1 regardless of the received signal, see Fig. A-1.
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Figure A-1: Effects of varying population sizes for Example A.1: (a) Equilibrium route flows
on 𝑟1; (b) Equilibrium population costs.
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Example A.2. Consider a game with two populations on two parallel routes (𝑟1 and 𝑟2).

There are two states: {𝑠1, 𝑠2}, each state is realized with probability 0.5. The cost functions

are: 𝑐𝑠11 (𝑓1) = 𝑓1 + 10, 𝑐𝑠21 (𝑓1) = 𝑓1 + 1, 𝑐𝑠12 (𝑓2) = 𝑓2 + 1, 𝑐𝑠22 (𝑓2) = 𝑓2 + 10. Population 1 is

completely informed, and population 2 is uninformed. The total demand is 𝐷 = 1. We now

obtain that 𝜆1 = �̄�1 = 1; thus, regimes Λ12
2 and Λ12

3 are empty sets, and population 1 has

strictly lower expected cost than population 2 for any 𝜆1 ∈ (0, 1), see Fig. A-2.
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Figure A-2: Effects of varying population sizes for Example A.2: (a) Equilibrium route flows
on 𝑟1; (b) Equilibrium population costs.

A.3 Proofs of Section 2.6

Proof of Proposition 2.5. Firstly, we prove that for any 𝜆 ∈ Λ†, 𝐹 *(𝜆) ⊆ 𝐹 †. From

the definition of Λ† in (2.33), we know that for any 𝜆 ∈ Λ†, there exists at least one route

flow 𝑓 † ∈ 𝐹 † satisfying the constraints in (OPT-𝐹 ), and hence such 𝑓 † is a feasible solution

of the optimization problem (OPT-𝐹 ); thus ̂︀Φ(𝑓 †) ≥ Ψ(𝜆). Additionally, since 𝑓 † is an

optimal solution of (2.31), which has the same objective function as (OPT-𝐹 ) but without

the constraints (IIC), we conclude that ̂︀Φ(𝑓 †) ≤ Ψ(𝜆) for any feasible 𝜆 (including 𝜆 ∈ Λ†).

Thus, Ψ(𝜆) = ̂︀Φ(𝑓 †), and 𝑓 † is an equilibrium route flow. Analogous to the argument in

proof of Theorem 2.1, the equilibrium edge load equals to 𝑤†. Since the set 𝐹 † in (2.32)

contains all route flows such that the induced edge load is 𝑤†, we can conclude that the set

of equilibrium route flow 𝐹 *(𝜆) ⊆ 𝐹 † for any 𝜆 ∈ Λ†.

Next, we prove that Λ† = argmin𝜆Ψ(𝜆). We have argued in the first part of the proof that
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for any 𝑓 † ∈ 𝐹 †, ̂︀Φ(𝑓 †) ≤ Ψ(𝜆) for any feasible 𝜆; and since for any 𝜆 ∈ Λ†, 𝐹 *(𝜆) ⊆ 𝐹 †, we

have Ψ(𝜆) = ̂︀Φ(𝑓 †). Therefore, ̂︀Φ(𝑓 †) = min𝜆Ψ(𝜆), and Λ† ⊆ argmin𝜆Ψ(𝜆). Additionally,

for any 𝜆 ∈ argmin𝜆Ψ(𝜆), we have Ψ(𝜆) = min𝜆Ψ(𝜆) = ̂︀Φ(𝑓 †). Since 𝐹 † includes all route

flows that satisfy (2.17a)-(2.17c) and attain the minimum value of Ψ(𝜆), any equilibrium

route flow 𝑓 * ∈ 𝐹 *(𝜆) for 𝜆 ∈ argmin𝜆Ψ(𝜆) must be in 𝐹 †. Hence, such 𝜆 must also be

in Λ† defined in (2.33), i.e. argmin𝜆Ψ(𝜆) ⊆ Λ†. We can therefore conclude that Λ† =

argmin𝜆Ψ(𝜆).

From Lemma 2.5, we know that the function Ψ(𝜆) is convex in 𝜆. Additionally, the

set of feasible population size vector 𝜆 is a closed convex set. Consequently, the set Λ† =

argmin𝜆Ψ(𝜆) is convex and non-empty.

Finally, we show that 𝑤*(𝜆) = 𝑤† if and only if 𝜆 ∈ Λ†. From the first part of the proof,

we know that 𝐹 *(𝜆) ⊆ 𝐹 †. Therefore, the unique equilibrium edge load is 𝑤†, which does

not depend on 𝜆. Additionally, for any feasible 𝜆 /∈ Λ†, from the second part of the proof,

we know that Ψ(𝜆) >

̂︀
Φ(𝑤†). Thus, 𝑤*(𝜆) ̸= 𝑤†. �

Proof of Theorem 2.4. Firstly, we show for any 𝜆 ∈ Λ†, all travelers have identical costs

in equilibrium. Consider any 𝑖, 𝑗 ∈ 𝐼 such that 𝜆𝑖 > 0 and 𝜆𝑗 > 0, the directional derivative

of Ψ(𝜆) in the direction 𝑧𝑖𝑗, ∇𝑧𝑖𝑗Ψ(𝜆), must be 0. Otherwise, Ψ(𝜆) strictly decreases in

the direction 𝑧𝑖𝑗 (resp. 𝑧𝑗𝑖) if ∇𝑧𝑖𝑗Ψ(𝜆) < 0 (resp. if ∇𝑧𝑖𝑗Ψ(𝜆) > 0), which contradicts

the fact that Λ† = argmin𝜆Ψ(𝜆) as in Proposition 2.5. From Lemma 2.5, we know that

𝐶𝑖*(𝜆) = 𝐶𝑗*(𝜆). Therefore, any two populations with positive size have identical costs in

equilibrium.

If any 𝜆 ∈ Λ† satisfies 𝜆𝑖 > 0 for all 𝑖 ∈ 𝐼, then the first step in our proof is suf-

ficient to show that (2.34) is satisfied. Otherwise, for any 𝜆 ∈ Λ†, and any degenerate

population 𝑖 ∈ {𝐼|𝜆𝑖 = 0}, we need to show that 𝐶𝑖*(𝜆) ≥ 𝐶𝑗*(𝜆), where 𝜆𝑗 > 0. Since

Λ† = argmin𝜆Ψ(𝜆), we know that Ψ(𝜆) must be non-decreasing in the direction 𝑧𝑖𝑗. Thus,

we obtain: ∇𝑧𝑖𝑗Ψ(𝜆)
(2.29)
= (𝐶𝑖*(𝜆)− 𝐶𝑗*(𝜆))𝐷 ≥ 0. Thus, 𝐶𝑖*(𝜆) ≥ 𝐶𝑗*(𝜆). The first and

the second steps together show that any 𝜆 ∈ Λ† satisfies (2.34), and hence is a vector of

equilibrium adoption rates.

Finally, we show that for any feasible 𝜆 /∈ Λ†, (2.34) is not satisfied. Since Λ† =

argmin𝜆Ψ(𝜆), for any 𝜆 /∈ Λ†, we can claim that there must exist a direction 𝑧𝑖𝑗 such
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that Ψ(𝜆) decreases in the direction 𝑧𝑖𝑗, ∇𝑧𝑖𝑗Ψ(𝜆) < 0. Otherwise, 𝜆 is a local minimum of

Ψ(𝜆), and since Ψ(𝜆) is convex in 𝜆 (Lemma 2.5), 𝜆 is a global minimum, which contradicts

the fact that 𝜆 /∈ Λ†. For such a direction 𝑧𝑖𝑗, there are two possible cases: (1) 𝜆𝑖 > 0

and 𝜆𝑗 > 0. In this case, from (2.29), 𝐶𝑖*(𝜆) ̸= 𝐶𝑗*(𝜆), and thus travelers do not have

identical costs in equilibrium. (2) 𝜆𝑖 = 0 and 𝜆𝑗 > 0. In this case, from (2.29), we must

have ∇𝑧𝑖𝑗Ψ(𝜆) = (𝐶𝑖*(𝜆)− 𝐶𝑗*(𝜆))𝐷 < 0. Therefore, 𝐶𝑗*(𝜆) > 𝐶𝑖*(𝜆), which implies that

travelers in population 𝑗 has incentive to change subscription to platform 𝑖. To sum up, in

either case, 𝜆 /∈ Λ† cannot be a vector of equilibrium adoption rates. �

A.4 Extension to Networks with Multiple Origin-destination

Pairs

In this section, we extend our model to networks with multiple origin-destination pairs, and

show that all the results presented in the paper still hold. Consider a network with a set of

origin-destination (o-d) pairs 𝐾. Each o-d pair 𝑘 ∈ 𝐾 is connected by the set of routes 𝑅𝑘.

The set of all routes is 𝑅 = ∪𝑘∈𝐾𝑅𝑘. The demand of travelers between o-d pair 𝑘 ∈ 𝐾 is

𝐷𝑘 > 0. The information environment – state, platforms, signals and common prior –is the

same as that introduced in Sec. 2.3.1. The fraction of travelers between o-d pair 𝑘 ∈ 𝐾 who

subscribe to platform 𝑖 ∈ 𝐼 is 𝜆𝑖𝑘. A feasible size vector 𝜆 = (𝜆𝑖𝑘)𝑘∈𝐾,𝑖∈𝐼 satisfies 𝜆𝑖𝑘 ≥ 0 for

any 𝑘 ∈ 𝐾 and any 𝑖 ∈ 𝐼, and
∑︀

𝑖∈𝐼 𝜆
𝑖
𝑘 = 1 for any 𝑘 ∈ 𝐾. We denote the strategy profile

as 𝑞 = (𝑞𝑖𝑟,𝑘(𝑡
𝑖))𝑟∈𝑅𝑘,𝑖∈𝐼,𝑡𝑖∈𝑇 𝑖,𝑘∈𝐾 , where 𝑞𝑖𝑟,𝑘(𝑡𝑖) is the amount of travelers in population 𝑖 who

take route 𝑟 between o-d pair 𝑘 when the signal is 𝑡𝑖. A strategy profile 𝑞 is feasible if it

satisfies:

∑︁
𝑟∈𝑅𝑘

𝑞𝑖𝑟,𝑘(𝑡
𝑖) = 𝜆𝑖𝑘 ·𝐷𝑘, ∀𝑖 ∈ 𝐼, ∀𝑡𝑖 ∈ 𝑇 𝑖, ∀𝑘 ∈ 𝐾,

𝑞𝑖𝑟,𝑘(𝑡
𝑖) ≥ 0, ∀𝑟 ∈ 𝑅𝑘, ∀𝑖 ∈ 𝐼, ∀𝑡𝑖 ∈ 𝑇 𝑖, ∀𝑘 ∈ 𝐾.

For any feasible strategy profile 𝑞, the induced route flow vector is 𝑓 = (𝑓𝑟,𝑘(𝑡))𝑟∈𝑅𝑘,𝑘∈𝐾,𝑡∈𝑇 ,

where 𝑓𝑟,𝑘(𝑡) is the flow on route 𝑟 induced by travelers between o-d pair 𝑘 when the type
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profile is 𝑡:

𝑓𝑟,𝑘(𝑡) =
∑︁
𝑖∈𝐼

𝑞𝑖𝑟,𝑘(𝑡
𝑖), ∀𝑟 ∈ 𝑅𝑘, ∀𝑘 ∈ 𝐾, ∀𝑡 ∈ 𝑇. (A.11)

The aggregate edge load on edge 𝑒 ∈ 𝐸 when the type profile is 𝑡 can be written as follows:

𝑤𝑒(𝑡) =
∑︁
𝑖∈𝐼

∑︁
𝑘∈𝐾

∑︁
𝑟∈{𝑅𝑘|𝑟∋𝑒}

𝑞𝑖𝑟,𝑘(𝑡
𝑖)

(A.11)
=

∑︁
𝑘∈𝐾

∑︁
𝑟∈{𝑅𝑘|𝑟∋𝑒}

𝑓𝑟,𝑘(𝑡). (A.12)

The expected cost of each route 𝑟 ∈ 𝑅 given type 𝑡𝑖 ∈ 𝑇 𝑖, denoted E[𝑐𝑟(𝑞)|𝑡𝑖], can be written

as in (2.8). A feasible strategy profile 𝑞* is a Bayesian Wardrop equilibrium if for any 𝑘 ∈ 𝐾,

any 𝑖 ∈ 𝐼, and any 𝑡𝑖 ∈ 𝑇 𝑖:

∀𝑟 ∈ 𝑅𝑘, 𝑞𝑖*𝑟,𝑘(𝑡
𝑖) > 0 ⇒ E[𝑐𝑟(𝑞*)|𝑡𝑖] ≤ E[𝑐𝑟′(𝑞*)|𝑡𝑖], ∀𝑟′ ∈ 𝑅𝑘.

We now state the extensions of our results to the network with 𝐾 o-d pairs. Firstly, we

can check that the following function of 𝑞 is a weighted potential function of the Bayesian

congestion game with 𝐾 o-d pairs:

Φ(𝑞) =
∑︁
𝑒∈𝐸

∑︁
𝑠∈𝑆

∑︁
𝑡∈𝑇

𝜋(𝑠, 𝑡)

∫︁ ∑︀
𝑖∈𝐼

∑︀
𝑘∈𝐾

∑︀
𝑟∈{𝑅𝑘|𝑟∋𝑒} 𝑞

𝑖
𝑟,𝑘(𝑡

𝑖)

0

𝑐𝑠𝑒(𝑧)𝑑𝑧,

Therefore, given any size vector 𝜆, the set of equilibrium strategy profiles 𝑄*(𝜆) can be solved

by the same convex optimization problem (OPT-𝑄) in Theorem 2.1. The equilibrium edge

load 𝑤*(𝜆) is unique.

Secondly, with simple modifications, we characterize the set of feasible route flow vectors

𝐹 as follows:

𝐹
Δ
= {𝑓 | ∀𝑘 ∈ 𝐾, (𝑓𝑟,𝑘(𝑡))𝑟∈𝑅𝑘,𝑡∈𝑇 satisfies (2.17a) – (2.17d)},

and the set of equilibrium route flows 𝐹 *(𝜆) can be solved by the optimization problem

(OPT-𝐹 ) in Proposition 2.2. Particularly, the information impact constraint (2.17d) for o-d
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pair 𝑘 ∈ 𝐾 and population 𝑖 ∈ 𝐼 now becomes:

𝐷𝑘 −
∑︁
𝑟∈𝑅𝑘

min
𝑡𝑖∈𝑇 𝑖

𝑓𝑟,𝑘(𝑡
𝑖, 𝑡−𝑖) ≤ 𝜆𝑖𝑘𝐷𝑘, ∀𝑡−𝑖 ∈ 𝑇−𝑖, ∀𝑖 ∈ 𝐼, ∀𝑘 ∈ 𝐾. (A.13)

That is, the impact of information sent by platform 𝑖 on the route flows between o-d pair 𝑘

is bounded by the amount of travelers who subscribe to platform 𝑖 and travel between o-d

pair 𝑘.

Thirdly, for any o-d pair 𝑘 and any pair of platforms 𝑖 and 𝑗, we can analogously analyze

how the equilibrium outcomes change with the sizes 𝜆𝑖𝑘 and 𝜆𝑗𝑘, while the sizes of all other

populations remain unchanged. We denote this direction of perturbing 𝜆 as 𝑧𝑖𝑗𝑘 . We can show

that Theorem (2.2) holds: three regimes (one or two may be empty) can be distinguished

by whether or not the information impact all the travelers between o-d pair 𝑘 who subscribe

to platform 𝑖 (resp. 𝑗), i.e. whether or not (A.13) is tight at the optimum of (OPT-𝐹 ).

Fourthly, the relative value of information, denoted 𝑉 𝑖𝑗*
𝑘 (𝜆), is the travel cost saving

experienced by travelers between o-d pair 𝑘 who subscribe to platform 𝑖 compared with

travelers who subscribe to platform 𝑗. Analogous to Lemma 2.5, we obtain:

𝑉 𝑖𝑗*
𝑘 (𝜆) = 𝐶𝑗*

𝑘 (𝜆)− 𝐶𝑖*
𝑘 (𝜆) = −

1

𝐷𝑘

∇Φ𝑧𝑖𝑗𝑘
(𝑞).

By applying sensitivity analysis, we can show that 𝑉 𝑖𝑗*
𝑘 (𝜆) is positive, zero, and negative in

the three regimes respectively.

Finally, we analyze how travelers between each o-d pair 𝑘 ∈ 𝐾 choose platform sub-

scription. By dropping the information impact constraints (A.13) in (OPT-𝐹 ) and following

(2.32) - (2.33), we obtain the extension of Theorem 2.4: characterization of the set Λ†, which

is the set of size vectors induced by travelers’ choice of platforms. We note that how an

individual traveler between o-d pair 𝑘 chooses information subscription not only depends on

the choices of other travelers between the same o-d pair, but also the choices of travelers

who travel between other o-d pairs. This is because travelers between different o-d pairs may

take common routes and edges, and hence impact each other’s costs.
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Appendix B

Supplementary Material for Chapter 4

B.1 Proofs of Section 4.3

Proof of Lemma 4.1.

First, we show that for any parameter 𝑠 ∈ 𝑆, the sequence
(︁
𝜃𝑘𝑡 (𝑠)

𝜃𝑘𝑡 (𝑠*)

)︁∞
𝑡=1

is a non-negative

martingale, and hence converges with probability 1. Note that for any 𝑡 = 1, 2, . . . , and any

parameter 𝑠 ∈ 𝑆 ∖ {𝑠*}, we have the following from (𝜃-update):

𝜃𝑘𝑡+1(𝑠)

𝜃𝑘𝑡+1(𝑠*)
=

𝜃𝑘𝑡(𝑠) ·
∏︀𝑘𝑡+1−1

𝑘=𝑘𝑡
𝜑𝑠(𝑦𝑘|𝑞𝑘)

𝜃𝑘𝑡(𝑠*) ·
∏︀𝑘𝑡+1−1

𝑘=𝑘𝑡
𝜑𝑠*(𝑦𝑘|𝑞𝑘)

.

Now starting from any initial belief 𝜃1, consider a sequence of strategies 𝑄𝑘𝑡−1 Δ
= (𝑞𝑗)

𝑘𝑡−1
𝑗=1

and a sequence of realized outcomes 𝑌 𝑘𝑡−1 Δ
= (𝑦𝑗)

𝑘𝑡−1
𝑗=1 before stage 𝑘𝑡. Then, the expected

value of 𝜃𝑘𝑡+1 (𝑠)

𝜃𝑘𝑡+1 (𝑠*)
conditioned on 𝜃1, 𝑄𝑘𝑡−1 and 𝑌 𝑘𝑡−1 is as follows:

E
[︂
𝜃𝑘𝑡+1(𝑠)

𝜃𝑘𝑡+1(𝑠*)

⃒⃒⃒⃒
𝜃1, 𝑄𝑘𝑡−1, 𝑌 𝑘𝑡−1

]︂
=

𝜃𝑘𝑡(𝑠)

𝜃𝑘𝑡(𝑠*)
· E

[︃ ∏︀𝑘𝑡+1−1
𝑘=𝑘𝑡

𝜑𝑠(𝑦𝑘|𝑞𝑘)∏︀𝑘𝑡+1−1
𝑘=𝑘𝑡

𝜑𝑠*(𝑦𝑘|𝑞𝑘)

]︃
(B.1)

where 𝜃𝑘𝑡 is the repeatedly updated belief from 𝜃1 based on 𝑄𝑘𝑡−1 and 𝑌 𝑘𝑡−1 using (𝜃-update).

Note that

E

[︃ ∏︀𝑘𝑡+1−1
𝑘=𝑘𝑡

𝜑𝑠(𝑦𝑘|𝑞𝑘)∏︀𝑘𝑡+1−1
𝑘=𝑘𝑡

𝜑𝑠*(𝑦𝑘|𝑞𝑘)

]︃
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=

∫︁
𝑦𝑘𝑡𝑦𝑘𝑡+1𝑦𝑘𝑡+1−1

(︃ ∏︀𝑘𝑡+1−1
𝑘=𝑘𝑡

𝜑𝑠(𝑦𝑘|𝑞𝑘)∏︀𝑘𝑡+1−1
𝑘=𝑘𝑡

𝜑𝑠*(𝑦𝑘|𝑞𝑘)

)︃
·

(︃
𝑘𝑡+1−1∏︁
𝑘=𝑘𝑡

𝜑𝑠
*
(𝑦𝑘|𝑞𝑘)

)︃
𝑑𝑦𝑘𝑡𝑦𝑘𝑡+1𝑦𝑘𝑡+1−1

=

∫︁
𝑦𝑘𝑡𝑦𝑘𝑡+1𝑦𝑘𝑡+1−1

𝑘𝑡+1−1∏︁
𝑘=𝑘𝑡

𝜑𝑠(𝑦𝑘|𝑞𝑘)𝑑𝑦𝑘𝑡𝑦𝑘𝑡+1𝑦𝑘𝑡+1−1 = 1.

Hence, for any 𝑘 = 1, 2, . . . ,

E
[︂
𝜃𝑘𝑡+1(𝑠)

𝜃𝑘𝑡+1(𝑠*)

⃒⃒⃒⃒
𝜃1, 𝑄𝑘𝑡−1, 𝑌 𝑘𝑡−1

]︂
=

𝜃𝑘𝑡(𝑠)

𝜃𝑘𝑡(𝑠*)
, ∀𝑠 ∈ 𝑆.

Again, from (𝜃-update) we know that 𝜃𝑘𝑡 (𝑠)

𝜃𝑘𝑡 (𝑠*)
≥ 0. Hence, the sequence

(︁
𝜃𝑘𝑡 (𝑠)

𝜃𝑘𝑡 (𝑠*)

)︁∞
𝑡=1

is a non-

negative martingale for any 𝑠 ∈ 𝑆. From the martingale convergence theorem, we conclude

that 𝜃𝑘𝑡 (𝑠)

𝜃𝑘𝑡 (𝑠*)
converges with probability 1.

Next we show that the sequence
(︀
log 𝜃𝑘𝑡(𝑠*)

)︀∞
𝑡=1

is a submartingale, and hence converges

with probability 1. We define the estimated density function of payoffs
(︀
𝑦𝑘
)︀𝑘𝑡+1−1

𝑘=𝑘𝑡
with belief

𝜃 as 𝜇
(︁(︀
𝑦𝑘
)︀𝑘𝑡+1−1

𝑘=𝑘𝑡

⃒⃒⃒
𝜃𝑘𝑡 ,

(︀
𝑞𝑘
)︀𝑘𝑡+1−1

𝑘=𝑘𝑡

)︁
Δ
=
∑︀

𝑠∈𝑆 𝜃
𝑘𝑡(𝑠)

∏︀𝑘𝑡+1−1
𝑘=𝑘𝑡

𝜑𝑠
*
(𝑦𝑘|𝑞𝑘). From (𝜃-update), we

have:

E
[︀
log 𝜃𝑘𝑡+1(𝑠*)

⃒⃒
𝜃1, 𝑄𝑘𝑡−1, 𝑌 𝑘𝑡−1

]︀
= E

⎡⎣ log
⎛⎝ 𝜃𝑘𝑡(𝑠*)

∏︀𝑘𝑡+1−1
𝑘=𝑘𝑡

𝜑𝑠
*
(𝑦𝑘|𝑞𝑘)

𝜇
(︁
(𝑦𝑘)

𝑘𝑡+1−1
𝑘=𝑘𝑡

⃒⃒⃒
𝜃𝑘𝑡 , (𝑞𝑘)

𝑘𝑡+1−1
𝑘=𝑘𝑡

)︁
⎞⎠⃒⃒⃒⃒⃒⃒ 𝜃1, 𝑄𝑘𝑡−1, 𝑌 𝑘𝑡−1

⎤⎦
= log 𝜃𝑘𝑡(𝑠*) + E

⎡⎣log
⎛⎝ ∏︀𝑘𝑡+1−1

𝑘=𝑘𝑡
𝜑𝑠

*
(𝑦𝑘|𝑞𝑘)

𝜇
(︁
(𝑦𝑘)

𝑘𝑡+1−1
𝑘=𝑘𝑡

⃒⃒⃒
𝜃𝑘𝑡 , (𝑞𝑘)

𝑘𝑡+1−1
𝑘=𝑘𝑡

)︁
⎞⎠⎤⎦

= log 𝜃𝑘𝑡(𝑠*)

+

∫︁
𝑦𝑘𝑡𝑦𝑘𝑡+1𝑦𝑘𝑡+1−1

(︃
𝑘𝑡+1−1∏︁
𝑘=𝑘𝑡

𝜑𝑠
*
(𝑦𝑘|𝑞𝑘)

)︃
log

⎛⎝ ∏︀𝑘𝑡+1−1
𝑘=𝑘𝑡

𝜑𝑠
*
(𝑦𝑘|𝑞𝑘)

𝜇
(︁
(𝑦𝑘)

𝑘𝑡+1−1
𝑘=𝑘𝑡

⃒⃒⃒
𝜃𝑘𝑡 , (𝑞𝑘)

𝑘𝑡+1−1
𝑘=𝑘𝑡

)︁
⎞⎠ 𝑑𝑦𝑘𝑡𝑦𝑘𝑡+1𝑦𝑘𝑡+1−1

= log 𝜃𝑘𝑡(𝑠*) +𝐷𝐾𝐿

(︃
𝑘𝑡+1−1∏︁
𝑘=𝑘𝑡

𝜑𝑠
*
(𝑦𝑘|𝑞𝑘)

⃒⃒⃒⃒⃒⃒
𝜇
(︁(︀
𝑦𝑘
)︀𝑘𝑡+1−1

𝑘=𝑘𝑡

⃒⃒⃒
𝜃𝑘𝑡 ,

(︀
𝑞𝑘
)︀𝑘𝑡+1−1

𝑘=𝑘𝑡

)︁)︃
≥ log 𝜃𝑘𝑡(𝑠*),

where the last inequality is due to the non-negativity of KL divergence between the dis-

tributions
∏︀𝑘𝑡+1−1

𝑘=𝑘𝑡
𝜑𝑠

*
(𝑦𝑘|𝑞𝑘) and 𝜇

(︁(︀
𝑦𝑘
)︀𝑘𝑡+1−1

𝑘=𝑘𝑡

⃒⃒⃒
𝜃𝑘𝑡 ,

(︀
𝑞𝑘
)︀𝑘𝑡+1−1

𝑘=𝑘𝑡

)︁
. Therefore, the sequence(︀

log 𝜃𝑘𝑡(𝑠*)
)︀∞
𝑘=1

is a submartingale. Additionally, since log 𝜃𝑘𝑡(𝑠*) is bounded above by zero,

by the martingale convergence theorem log 𝜃𝑘𝑡(𝑠*) converges with probability 1. Hence,
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𝜃𝑘𝑡(𝑠*) must also converge with probability 1.

From the convergence of 𝜃𝑘𝑡 (𝑠)

𝜃𝑘𝑡 (𝑠*)
and 𝜃𝑘𝑡(𝑠*), we conclude that 𝜃𝑘𝑡(𝑠) converges with prob-

ability 1 for any 𝑠 ∈ 𝑆. Since for any 𝑘 = 𝑘𝑡 + 1, . . . , 𝑘𝑡+1 − 1, 𝜃𝑘 = 𝜃𝑘𝑡 , we know that 𝜃𝑘

also converges. Let the convergent vector be denoted as 𝜃 =
(︀
𝜃(𝑠)

)︀
𝑠∈𝑆. We can check that

for any 𝑘, 𝜃𝑘(𝑠) ≥ 0 for all 𝑠 ∈ 𝑆 and
∑︀

𝑠∈𝑆 𝜃
𝑘(𝑠) = 1. Hence, 𝜃 must satisfy 𝜃(𝑠) ≥ 0 for all

𝑠 ∈ 𝑆 and
∑︀

𝑠∈𝑆 𝜃(𝑠) = 1, i.e. 𝜃 is a feasible belief vector. �

Before proceeding, we show that the best response correspondence is upper hemicontinu-

ous in the belief and the strategy profile. This result follows directly from the Berge’s theorem

of maximum and the fact that the expected utility function E𝜃 [𝑢𝑠𝑖 (𝑞𝑖, 𝑞−𝑖)] is continuous in

𝜃 and 𝑞.

Lemma B.1. For any 𝜃 ∈ Δ(𝑆), any 𝑖 ∈ 𝐼 and any 𝑞−𝑖 ∈ 𝑄−𝑖, BR(𝑞−𝑖, 𝜃) is upper-

hemicontinuous in 𝜃 and 𝑞−𝑖.

We are now ready to prove Lemma 4.2.

Proof of Lemma 4.2. For any stage𝐾 ≥ 1, we construct an auxiliary sequence of strategies(︀
𝑞𝑘
)︀∞
𝑘=1

as follows: First, we set 𝑞𝑘 = 𝑞𝑘 for all 𝑘 = 1, . . . , 𝐾. Then, for any 𝑘 > 𝐾, we define

the following subsequences:

- We define 𝑞𝑘+1 Δ
= argmin𝑞∈𝐹 (𝜃,𝑞𝑘) ‖𝑞 − 𝑞𝑘+1‖. That is, 𝑞𝑘+1 is a strategy updated from

𝑞𝑘 with the fixed point belief 𝜃 (i.e. 𝑞𝑘+1 ∈ 𝐹 (𝜃, 𝑞𝑘)). Additionally, 𝑞𝑘+1 is the closest

to 𝑞𝑘+1 – the strategy in stage 𝑘 + 1 of the original sequence – among all strategies in

the set 𝐹 (𝜃, 𝑞𝑘).

- We define the auxiliary strategy 𝑞𝑘+1 Δ
= argmin𝑞∈𝐹 (𝜃,𝑞𝑘) ‖𝑞 − 𝑞𝑘+1‖. That is, 𝑞𝑘+1

is a strategy updated from 𝑞𝑘 with the fixed point belief 𝜃 (i.e. 𝑞𝑘+1 ∈ 𝐹 (𝜃, 𝑞𝑘)).

Additionally, 𝑞𝑘+1 is the closest to 𝑞𝑘+1 among all strategies in the set 𝐹 (𝜃, 𝑞𝑘).

Therefore, for any 𝑘 > 𝐾, we have:

‖𝑞𝑘+1 − 𝑞𝑘+1‖ = 𝐷
(︀
𝑞𝑘+1, 𝐹 (𝜃, 𝑞𝑘)

)︀
, ‖𝑞𝑘+1 − 𝑞𝑘+1‖ = 𝐷

(︀
𝑞𝑘+1, 𝐹 (𝜃, 𝑞𝑘)

)︀
. (B.2)

We next show by mathematical induction that for any ℓ ≥ 1, lim𝐾→∞ ‖𝑞𝐾+ℓ − 𝑞𝐾+ℓ‖ = 0.
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To begin with, for ℓ = 1, we have

‖𝑞𝐾+1 − 𝑞𝐾+1‖ ≤ ‖𝑞𝐾+1 − 𝑞𝐾+1‖+ ‖𝑞𝐾+1 − 𝑞𝐾+1‖
(B.2)
= 𝐷

(︀
𝑞𝐾+1, 𝐹

(︀
𝜃, 𝑞𝐾

)︀)︀
+𝐷

(︀
𝑞𝐾+1, 𝐹

(︀
𝜃, 𝑞𝐾

)︀)︀
. (B.3)

Since 𝜃𝑘 converges to 𝜃 (Lemma 4.1), 𝐹 (𝜃, 𝑞) is upper hemicontinuous in 𝜃 (Lemma B.1),

and 𝑞𝐾+1 ∈ 𝐹 (𝜃𝐾+1, 𝑞𝐾), we know that lim𝐾→∞𝐷
(︀
𝑞𝐾+1, 𝐹

(︀
𝜃, 𝑞𝐾

)︀)︀
= 0. Additionally, since

𝑞𝐾 = 𝑞𝐾 and 𝑞𝐾+1 ∈ 𝐹 (𝜃, 𝑞𝐾), 𝐷
(︀
𝑞𝐾+1, 𝐹

(︀
𝜃, 𝑞𝐾

)︀)︀
= 0. Therefore, lim𝐾→∞ ‖𝑞𝐾+1−𝑞𝐾+1‖ =

0.

Now, assume that lim𝐾→∞ ‖𝑞𝐾+ℓ − 𝑞𝐾+ℓ‖ = 0 for some ℓ ≥ 1, we need to prove that

lim𝐾→∞ ‖𝑞𝐾+ℓ+1 − 𝑞𝐾+ℓ+1‖ = 0. Similar to (B.3), we have

‖𝑞𝐾+ℓ+1 − 𝑞𝐾+ℓ+1‖ ≤ 𝐷
(︀
𝑞𝐾+ℓ+1, 𝐹

(︀
𝜃, 𝑞𝐾+ℓ

)︀)︀
+𝐷

(︀
𝑞𝐾+ℓ+1, 𝐹

(︀
𝜃, 𝑞𝐾+ℓ

)︀)︀
Analogous to ℓ = 1, since 𝐹 (𝜃, 𝑞) is upper hemicontinuous in 𝜃,

lim
𝐾→∞

𝐷
(︀
𝑞𝐾+ℓ+1, 𝐹

(︀
𝜃, 𝑞𝐾+ℓ

)︀)︀
= 0.

Additionally, since lim𝐾→∞ ‖𝑞𝐾+ℓ − 𝑞𝐾+ℓ‖ = 0, 𝐹 (𝜃, 𝑞) is upper hemicontinuous in 𝑞, and

𝑞𝐾+ℓ+1 ∈ 𝐹
(︀
𝜃, 𝑞𝐾+ℓ

)︀
, we know that lim𝐾→∞𝐷

(︀
𝑞𝐾+ℓ+1, 𝐹

(︀
𝜃, 𝑞𝐾+ℓ

)︀)︀
= 0. Therefore, we

have lim𝐾→∞ ‖𝑞𝐾+ℓ+1− 𝑞𝐾+ℓ+1‖ = 0. By mathematical induction, we conclude that for any

ℓ ≥ 1, lim𝐾→∞ ‖𝑞𝐾+ℓ − 𝑞𝐾+ℓ‖ = 0.

Finally, Assumption 1 ensures that the strategy update with constant beliefs 𝜃 converges

to an equilibrium strategy 𝑞 ∈ EQ(𝜃). That is, for any 𝐾 ≥ 1, limℓ→∞ ‖𝑞𝐾+ℓ − 𝑞‖ = 0.

Therefore,

lim
𝑘→∞
‖𝑞𝑘 − 𝑞‖ = lim

ℓ→∞
lim
𝐾→∞

‖𝑞𝐾+ℓ − 𝑞‖ ≤ lim
ℓ→∞

lim
𝐾→∞

‖𝑞𝐾+ℓ − 𝑞𝐾+ℓ‖+ lim
ℓ→∞

lim
𝐾→∞

‖𝑞𝐾+ℓ − 𝑞‖ = 0.

Thus, lim𝑘→∞ 𝑞𝑘 = 𝑞. �

Proof of Lemma 4.3. By iteratively applying the belief update in (𝜃-update), we can
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write:

𝜃𝑘𝑡(𝑠) =
𝜃1(𝑠)

∏︀𝑘𝑡−1
𝑗=1 𝜑𝑠(𝑦𝑗|𝑞𝑗)∑︀

𝑠′∈𝑆 𝜃
1(𝑠′)

∏︀𝑘𝑡−1
𝑗=1 𝜑𝑠′(𝑦𝑗|𝑞𝑗)

, ∀𝑠 ∈ 𝑆. (B.4)

We define Φ𝑠(𝑌 𝑘𝑡−1|𝑄𝑘𝑡−1) as the probability density function of the history of the realized

outcomes 𝑌 𝑘𝑡−1 = (𝑦𝑗)
𝑘𝑡−1
𝑗=1 conditioned on the history of strategies 𝑄𝑘𝑡−1 = (𝑞𝑗)

𝑘𝑡−1
𝑗=1 prior to

stage 𝑘𝑡, i.e. Φ𝑠(𝑌 𝑘𝑡−1|𝑄𝑘𝑡−1)
Δ
=
∏︀𝑘𝑡−1

𝑗=1 𝜑𝑠(𝑦𝑗|𝑞𝑗). We rewrite (B.4) as follows:

𝜃𝑘𝑡(𝑠) =
𝜃1(𝑠)Φ𝑠(𝑌 𝑘𝑡−1|𝑄𝑘𝑡−1)∑︀

𝑠′∈𝑆 𝜃
1(𝑠′)Φ𝑠′(𝑌 𝑘𝑡−1|𝑄𝑘𝑡−1)

≤ 𝜃1(𝑠)Φ𝑠(𝑌 𝑘𝑡−1|𝑄𝑘𝑡−1)

𝜃1(𝑠)Φ𝑠(𝑌 𝑘𝑡−1|𝑄𝑘𝑡−1) + 𝜃1(𝑠*)Φ𝑠*(𝑌 𝑘𝑡−1|𝑄𝑘𝑡−1)

=
𝜃1(𝑠) Φ𝑠(𝑌 𝑘𝑡−1|𝑄𝑘𝑡−1)

Φ𝑠* (𝑌 𝑘𝑡−1|𝑄𝑘𝑡−1)

𝜃1(𝑠) Φ𝑠(𝑌 𝑘𝑡−1|𝑄𝑘𝑡−1)

Φ𝑠* (𝑌 𝑘𝑡−1|𝑄𝑘𝑡−1)
+ 𝜃1(𝑠*)

. (B.5)

For any 𝑠 ∈ 𝑆 ∖𝑆*(𝑞), if we can show that the ratio Φ𝑠(𝑌 𝑘𝑡−1|𝑄𝑘𝑡−1)

Φ𝑠* (𝑌 𝑘𝑡−1|𝑄𝑘𝑡−1)
converges to 0, then 𝜃(𝑠)

must also converge to 0. Now, we need to consider two cases:

Case 1: 𝜑𝑠*(𝑦|𝑞)≪ 𝜑𝑠(𝑦|𝑞): In this case, the log-likelihood ratio can be written as:

log

(︂
Φ𝑠(𝑌 𝑘𝑡−1|𝑄𝑘𝑡−1)

Φ𝑠*(𝑌 𝑘𝑡−1|𝑄𝑘𝑡−1)

)︂
=

𝑘𝑡−1∑︁
𝑗=1

log

(︂
𝜑𝑠(𝑦𝑗|𝑞𝑗)
𝜑𝑠*(𝑦𝑗|𝑞𝑗)

)︂
. (B.6)

For any 𝑠 ∈ 𝑆, since 𝜑𝑠(𝑦𝑗|𝑞𝑗) is continuous in 𝑞𝑗, the probability density function of

log
(︁
𝜑𝑠(𝑦𝑗 |𝑞𝑗)
𝜑𝑠* (𝑦𝑗 |𝑞𝑗)

)︁
is also continuous in 𝑞𝑗. In Lemma 4.2, we proved that

(︀
𝑞𝑘
)︀∞
𝑘=1

converges to 𝑞.

Then, the distribution of log
(︁
𝜑𝑠(𝑦𝑗 |𝑞𝑗)
𝜑𝑠* (𝑦𝑗 |𝑞𝑗)

)︁
must converge to the distribution of log

(︁
𝜑𝑠(𝑦|𝑞)
𝜑𝑠* (𝑦|𝑞)

)︁
.

Note that for any 𝑠 ∈ 𝑆 ∖ 𝑆*(𝑞), the expectation of log
(︁
𝜑𝑠(𝑦|𝑞)
𝜑𝑠* (𝑦|𝑞)

)︁
can be written as:

E
[︂
log

(︂
𝜑𝑠(𝑦|𝑞)
𝜑𝑠*(𝑦|𝑞)

)︂]︂
=

∫︁
𝑦

𝜑𝑠
*
(𝑦|𝑞) · log

(︂
𝜑𝑠(𝑦|𝑞)
𝜑𝑠*(𝑦|𝑞)

)︂
𝑑𝑦 = −𝐷𝐾𝐿

(︀
𝜑𝑠

*
(𝑦|𝑞)||𝜑𝑠(𝑦|𝑞)

)︀
< 0.

If we can show that the equation (B.7) below holds, then we can conclude that the log-

likelihood sequence defined by (B.6) converges to −∞; this would in turn imply that the
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sequence of likelihood ratios Φ𝑠(𝑌 𝑘𝑡−1|𝑄𝑘𝑡−1)

Φ𝑠* (𝑌 𝑘𝑡−1|𝑄𝑘𝑡−1)
must converge to 0. But first we need to show:

lim
𝑡→∞

1

𝑘𝑡 − 1
log

(︂
Φ𝑠(𝑌 𝑘𝑡−1|𝑄𝑘𝑡−1)

Φ𝑠*(𝑌 𝑘𝑡−1|𝑄𝑘𝑡−1)

)︂
= lim

𝑡→∞

1

𝑘𝑡 − 1

𝑘𝑡−1∑︁
𝑗=1

log

(︂
𝜑𝑠(𝑦𝑗|𝑞𝑗)
𝜑𝑠*(𝑦𝑗|𝑞𝑗)

)︂
= E

[︂
log

(︂
𝜑𝑠(𝑦|𝑞)
𝜑𝑠*(𝑦|𝑞)

)︂]︂
, 𝑤.𝑝. 1. (B.7)

We denote the cumulative distribution function of log
(︁
𝜑𝑠(𝑦𝑗 |𝑞𝑗)
𝜑𝑠* (𝑦𝑗 |𝑞𝑗)

)︁
as 𝐹 𝑗(𝑧) : R → [0, 1],

i.e. 𝐹 𝑗(𝑧) = Pr
(︁
log
(︁
𝜑𝑠(𝑦𝑗 |𝑞𝑗)
𝜑𝑠* (𝑦𝑗 |𝑞𝑗)

)︁
≤ 𝑧
)︁
. The cumulative distribution function of log

(︁
𝜑𝑠(𝑦|𝑞)
𝜑𝑠* (𝑦|𝑞)

)︁
is denoted 𝐹 (𝑧) : R→ [0, 1], i.e. 𝐹 (𝑧) = Pr

(︁
log
(︁
𝜑𝑠(𝑦|𝑞)
𝜑𝑠* (𝑦|𝑞)

)︁
≤ 𝑧
)︁
. Then,

lim
𝑗→∞

𝐹 𝑗(𝑧) = 𝐹 (𝑧), ∀𝑧 ∈ R. (B.8)

For any sequence of realized outcomes (𝑦𝑗)∞𝑗=1, we define a sequence of random variables

Δ = (Δ𝑗)
∞
𝑗=1, where Δ𝑗 = 𝐹 𝑗

(︁
log
(︁
𝜑𝑠(𝑦𝑗 |𝑞𝑗)
𝜑𝑠* (𝑦𝑗 |𝑞𝑗)

)︁)︁
. Then, we must have Δ𝑗 ∈ [0, 1], and for any

𝛿 ∈ [0, 1], Pr(Δ𝑗 ≤ 𝛿) = Pr
(︁
𝐹 𝑗
(︁
log
(︁
𝜑𝑠(𝑦𝑗 |𝑞𝑗)
𝜑𝑠* (𝑦𝑗 |𝑞𝑗)

)︁)︁
≤ 𝛿
)︁
= 𝛿. That is, Δ𝑗 is independently

and uniformly distributed on [0, 1]. Consider another sequence of random variables (𝜂𝑗)
∞
𝑗=1,

where 𝜂𝑗 Δ
=
(︀
𝐹
)︀−1

(Δ𝑗). Since Δ𝑗 is independently and identically distributed (i.i.d.) with

uniform distribution, 𝜂𝑗 is also i.i.d. distributed with the same distribution as log
(︁
𝜑𝑠(𝑦|𝑞)
𝜑𝑠* (𝑦|𝑞)

)︁
.

Additionally, since each Δ𝑗 is generated from the realized outcome 𝑦𝑗, (𝜂𝑗)∞𝑗=1 is in the same

probability space as log
(︁
𝜑𝑠(𝑦𝑗 |𝑞𝑗)
𝜑𝑠* (𝑦𝑗 |𝑞𝑗)

)︁
. From (B.8), we know that as 𝑗 → ∞, 𝐹 𝑗 converges to

𝐹 . Therefore, with probability 1,

lim
𝑗→∞

⃒⃒⃒⃒
log

(︂
𝜑𝑠(𝑦𝑗|𝑞𝑗)
𝜑𝑠*(𝑦𝑗|𝑞𝑗)

)︂
− 𝜂𝑗

⃒⃒⃒⃒
= lim

𝑗→∞

⃒⃒⃒⃒
log

(︂
𝜑𝑠(𝑦𝑗|𝑞𝑗)
𝜑𝑠*(𝑦𝑗|𝑞𝑗)

)︂
− (𝐹 )−1𝐹 𝑗

(︂
log

(︂
𝜑𝑠(𝑦𝑗|𝑞𝑗)
𝜑𝑠*(𝑦𝑗|𝑞𝑗)

)︂)︂⃒⃒⃒⃒
= 0.

Consequently, with probability 1,

lim
𝑡→∞

⃒⃒⃒⃒
⃒ 1

𝑘𝑡 − 1

𝑘𝑡−1∑︁
𝑗=1

(︂
log

(︂
𝜑𝑠(𝑦𝑗|𝑞𝑗)
𝜑𝑠*(𝑦𝑗|𝑞𝑗)

)︂
− 𝜂𝑗

)︂⃒⃒⃒⃒
⃒ ≤ lim

𝑡→∞

1

𝑘𝑡 − 1

𝑘𝑡−1∑︁
𝑗=1

⃒⃒⃒⃒
log

(︂
𝜑𝑠(𝑦𝑗|𝑞𝑗)
𝜑𝑠*(𝑦𝑗|𝑞𝑗)

)︂
− 𝜂𝑗

⃒⃒⃒⃒
= 0.

(B.9)

Since (𝜂𝑗)
∞
𝑗=1 is independently and identically distributed according to the distribution of
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log
(︁
𝜑𝑠(𝑦|𝑞)
𝜑𝑠* (𝑦|𝑞)

)︁
, from strong law of large numbers, we have:

lim
𝑡→∞

1

𝑘𝑡 − 1

𝑘𝑡−1∑︁
𝑗=1

𝜂𝑗 = E
[︂
log

(︂
𝜑𝑠(𝑦|𝑞)
𝜑𝑠*(𝑦|𝑞)

)︂]︂
= −𝐷𝐾𝐿

(︀
𝜑𝑠

*
(𝑦|𝑞)||𝜑𝑠(𝑦|𝑞)

)︀
, 𝑤.𝑝. 1.

From (B.9), we obtain the following:

lim
𝑡→∞

1

𝑘𝑡 − 1

𝑘𝑡−1∑︁
𝑗=1

log

(︂
𝜑𝑠(𝑦𝑗|𝑞𝑗)
𝜑𝑠*(𝑦𝑗|𝑞𝑗)

)︂
= lim

𝑡→∞

1

𝑘𝑡 − 1

𝑘𝑡−1∑︁
𝑗=1

𝜂𝑗 = −𝐷𝐾𝐿

(︀
𝜑𝑠

*
(𝑦|𝑞)||𝜑𝑠(𝑦|𝑞)

)︀
, 𝑤.𝑝. 1

(B.10)

Hence, (B.7) holds. Then, for any 𝑠 ∈ 𝑆 ∖ 𝑆*(𝑞), lim𝑡→∞
Φ𝑠(𝑌 𝑘𝑡−1|𝑄𝑘𝑡−1)

Φ𝑠* (𝑌 𝑘𝑡−1|𝑄𝑘𝑡−1)
= 0. Thus, from

(B.5), we know that lim𝑡→∞ 𝜃𝑘𝑡(𝑠) = 0 for all 𝑠 ∈ 𝑆 ∖ 𝑆*(𝑞). Since for any 𝑘 = 𝑘𝑡 +

1, . . . , 𝑘𝑡+1 − 1, 𝜃𝑘 = 𝜃𝑘𝑡 , we know that lim𝑘→∞
Φ𝑠(𝑌 𝑘−1|𝑄𝑘−1)

Φ𝑠* (𝑌 𝑘−1|𝑄𝑘−1)
= 0 and lim𝑘→∞ 𝜃𝑘(𝑠) = 0 for

all 𝑠 ∈ 𝑆 ∖ 𝑆*(𝑞).

Finally, since 𝜃1(𝑠) > 0 for all 𝑠 ∈ 𝑆, the true parameter 𝑠* is never excluded from the

belief. Therefore, lim𝑘→∞
1
𝑘
log
(︀
𝜃𝑘(𝑠*)

)︀
= 0. For any 𝑠 ∈ 𝑆 ∖ 𝑆*(𝑞), we have the following:

lim
𝑘→∞

1

𝑘
log
(︀
𝜃𝑘(𝑠)

)︀
= lim

𝑘→∞

1

𝑘
log
(︀
𝜃𝑘(𝑠*)

)︀
+ lim

𝑘→∞

1

𝑘
log

(︂
𝜃𝑘(𝑠)

𝜃𝑘(𝑠*)

)︂
= lim

𝑘→∞

1

𝑘
log

(︂
𝜃𝑘(𝑠)

𝜃𝑘(𝑠*)

)︂
= lim

𝑘→∞

1

𝑘
log

(︂
𝜃1(𝑠)

𝜃1(𝑠*)

)︂
+ lim

𝑘→∞

1

𝑘
log

(︂
Φ𝑠(𝑌 𝑘−1|𝑄𝑘−1)

Φ𝑠*(𝑌 𝑘−1|𝑄𝑘−1)

)︂
= E

[︂
log

(︂
𝜑𝑠(𝑦|𝑞)
𝜑𝑠*(𝑦|𝑞)

)︂]︂
= −𝐷𝐾𝐿

(︀
𝜑𝑠

*
(𝑦|𝑞)||𝜑𝑠(𝑦|𝑞)

)︀
, 𝑤.𝑝. 1.

Case 2: 𝜑𝑠*(𝑦|𝑞) is not absolutely continuous in 𝜑𝑠(𝑦|𝑞).

In this case, 𝜑𝑠(𝑦|𝑞) = 0 does not imply 𝜑𝑠*(𝑦|𝑞) = 0 with probability 1, i.e. Pr (𝜑𝑠(𝑦|𝑞) = 0) >

0, where Pr (·) is the probability of 𝑦 with respect to the true distribution 𝜑𝑠
*
(𝑦|𝑞). Since

the distributions 𝜑𝑠(𝑦|𝑞) and 𝜑𝑠
*
(𝑦|𝑞) are continuous in 𝑞, the probability Pr (𝜑𝑠(𝑦|𝑞) = 0)

must also be continuous in 𝑞. Therefore, for any 𝜖 ∈ (0,Pr (𝜑𝑠(𝑦|𝑞) = 0)), there exists 𝛿 > 0

such that Pr (𝜑𝑠(𝑦|𝑞) = 0) > 𝜖 for all 𝑞 ∈ {𝑞|‖𝑞 − 𝑞‖ < 𝛿}.

From Lemma 4.2, we know that lim𝑘→∞ 𝑞𝑘 = 𝑞. Hence, we can find a positive number

𝐾1 > 0 such that for any 𝑘 > 𝐾1, ‖𝑞𝑘 − 𝑞‖ < 𝛿, and hence Pr
(︀
𝜑𝑠(𝑦𝑘|𝑞𝑘) = 0

)︀
> 𝜖. We
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then have
∑︀∞

𝑘=1 Pr
(︀
𝜑𝑠(𝑦𝑘|𝑞𝑘) = 0

)︀
= ∞. Moreover, since the event 𝜑𝑠(𝑦𝑘|𝑞𝑘) = 0 is inde-

pendent from the event 𝜑𝑠(𝑦𝑘′|𝑞𝑘′) = 0 for any 𝑘, 𝑘′, we can conclude that Pr
(︀
𝜑𝑠(𝑦𝑘|𝑞𝑘) = 0,

infinitely often) = 1 based on the second Borel-Cantelli lemma. Hence, we must have

Pr
(︀
𝜑𝑠(𝑦𝑘|𝑞𝑘) > 0, ∀𝑘

)︀
= 0. From the Bayesian update (𝜃-update), we know that if 𝜑𝑠(𝑦𝑘|𝑞𝑘) =

0 for some stage 𝑘, then any belief of 𝑠 updated after stage 𝑘 is 0. Therefore, we can conclude

that Pr
(︀
𝜃𝑘(𝑠) > 0, ∀𝑘

)︀
= 0 with probability 1, i.e. there exists a positive number 𝐾* > 𝐾1

with probability 1 such that 𝜃𝑘(𝑠) = 0 for any 𝑘 > 𝐾*. �

Proof of Proposition 4.1. Firstly, if [𝜃] ∖ 𝑆*(𝑞) is a non-empty set for any 𝜃 ∈ Δ(𝑆) ∖ [𝜃*]

and any 𝑞 ∈ EQ(𝜃), then no belief with imperfect information 𝜃 ∈ Δ(𝑆)∖ [𝜃*] satisfies (4.2a).

That is, only the complete information belief vector 𝜃* can be a fixed point belief. Therefore,

all fixed point must be complete information fixed points.

On the other hand, assume for the sake of contradiction that there exists a belief 𝜃† ∈

Δ(𝑆) ∖ {𝜃*} such that [𝜃†] ⊆ 𝑆*(𝑞†) for an equilibrium strategy 𝑞† ∈ EQ(𝜃†), then
(︀
𝜃†, 𝑞†

)︀
,

which is not a complete information fixed point, is in the set Ω. Thus, we arrive at a

contradiction.

Secondly, from condition (i) that [𝜃] ⊆ 𝑆*(𝑞) for any ‖𝑞 − 𝑞‖ < 𝜉, we have:

E𝜃[𝑢𝑠𝑖 (𝑞)] = 𝑢𝑠
*

𝑖 (𝑞), ∀𝑖 ∈ 𝐼. (B.11)

For any 𝑞 ∈ EQ(𝜃), from condition (ii) that 𝑞𝑖 is a best response to 𝑞−𝑖, 𝑞𝑖 must be a local

maximizer of E𝜃[𝑢𝑠𝑖 (𝑞𝑖, 𝑞−𝑖)]. From (B.11), 𝑞𝑖 is a local maximizer of 𝑢𝑠*𝑖 (𝑞𝑖, 𝑞−𝑖). Since the

function 𝑢𝑠
*
𝑖 (𝑞𝑖, 𝑞−𝑖) is concave in 𝑞𝑖, 𝑞𝑖 is also a global maximizer of 𝑢𝑠*𝑖 (𝑞𝑖, 𝑞−𝑖), and hence

is a best response of 𝑞−𝑖 with complete information of 𝑠*. Since this argument holds for all

𝑖 ∈ 𝐼, 𝑞 is a complete information equilibrium. �

Proof of Proposition 4.2. On one hand, if Ω = {(𝜃*,EQ(𝜃*))}, then for any initial state,

the learning dynamics converges to a complete information fixed point with belief 𝜃* and

strategy in EQ(𝜃*). That is, (𝜃*,EQ(𝜃*)) is globally stable. On the other hand, if there

exists another fixed point
(︀
𝜃†, 𝑞†

)︀
∈ Ω ∖ {(𝜃*,EQ(𝜃*))}, then learning that starts with the

initial belief 𝜃1 = 𝜃† (resp. 𝜃1 = 𝜃*) and strategy 𝑞1 = 𝑞† (resp. 𝑞1 = 𝑞*) remains at
(︀
𝜃†, 𝑞†

)︀
(resp. (𝜃*, 𝑞*)) for all stages w.p.1. Thus, in this case, globally stable fixed points do not
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exist. �

Proof of Lemma 4.4.

(i) From Assumption (A2a), we know that such 𝜖′ must exist.

(ii) Since 𝜖 ≤ 𝜖, we know from Assumption (A2b) that BR(𝜃, 𝑞) ⊆ 𝑁𝛿

(︀
EQ(𝜃)

)︀
for any

𝜃 ∈ 𝑁𝜖

(︀
𝜃
)︀

and any 𝑞 ∈ 𝑁𝛿

(︀
EQ(𝜃)

)︀
.

(iii) Under Assumption 1, we know from Theorem 4.1 that the sequence of the beliefs and

strategies converges to a fixed point
(︀
𝜃†, 𝑞†

)︀
. If 𝜃𝑘 ∈ 𝑁𝜖(𝜃) for all 𝑘, then lim𝑘→∞ 𝜃𝑘 =

𝜃† ∈ 𝑁𝜖(𝜃) ⊆ 𝑁𝜖(𝜃). Additionally, from (i) and the fact that 𝜖 ≤ 𝜖′, we know that

lim𝑘→∞ 𝑞𝑘 = 𝑞† ∈ EQ(𝜃†) ⊆ 𝑁𝛿

(︀
EQ(𝜃)

)︀
. Therefore,

lim
𝑘→∞

Pr
(︀
𝜃𝑘 ∈ 𝑁𝜖(𝜃) ≥ 𝑞𝑘 ∈ 𝑁𝛿(EQ(𝜃))

)︀
≥Pr

(︀
𝜃𝑘 ∈ 𝑁𝜖(𝜃), ∀𝑘

)︀
≥Pr

(︀
𝜃𝑘 ∈ 𝑁𝜖(𝜃), 𝑞

𝑘 ∈ 𝑁𝛿(EQ(𝜃)), ∀𝑘
)︀
.

�

In the proofs of Lemmas 4.5 – 4.6, we denote
(︁
𝜃𝑘
)︁∞
𝑘=1

as an auxiliary belief sequence

that is updated in every stage (instead of just updated at (𝑘𝑡)
∞
𝑘=1). That is,

𝜃1 = 𝜃1, and 𝜃𝑘+1(𝑠) =
𝜃𝑘(𝑠)𝜑𝑠(𝑦𝑘|𝑞𝑘)∑︀

𝑠′∈𝑆 𝜃
𝑘(𝑠′)𝜑𝑠′(𝑦𝑘|𝑞𝑘)

, ∀𝑠 ∈ 𝑆, ∀𝑘 = 1, 2, . . . (B.12)

From (𝜃-update), we know that

𝜃𝑘 =

⎧⎨⎩ 𝜃𝑘, ∀𝑘 = 𝑘𝑡, 𝑘 = 1, 2, . . . ,

𝜃𝑘−1, otherwise.
(B.13)

Proof of Lemma 4.5. First, note that 0 < 𝜌1 < 𝜌2 < 𝜖
|𝑆| . For any 𝑠 ∈ 𝑆 ∖ [𝜃] and any

𝑘 > 1, we denote 𝑈𝑘(𝑠) the number of upcrossings of the interval [𝜌1, 𝜌2] that the belief 𝜃𝑗(𝑠)

completes by stage 𝑘. That is, 𝑈𝑘(𝑠) is the maximum number of intervals
(︀
[𝑘𝑖, 𝑘𝑖]

)︀𝑈𝑘(𝑠)

𝑖=1
with

1 ≤ 𝑘1 < 𝑘1 < 𝑘2 < 𝑘2 < · · · < 𝑘𝑈𝑘(𝑠) < 𝑘𝑈𝑘(𝑠) ≤ 𝑘, such that 𝜃𝑘𝑖(𝑠) < 𝜌1 < 𝜌2 < 𝜃𝑘𝑖(𝑠)

for 𝑖 = 1, . . . 𝑈𝑘(𝑠). Since the beliefs
(︁
𝜃𝑗(𝑠)

)︁𝑘
𝑗=1

are updated based on randomly realized
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payoffs (𝑦𝑗)
𝑘
𝑗=1 as in (B.12), 𝑈𝑘(𝑠) is also a random variable. For any 𝑘 > 1, 𝑈𝑘(𝑠) ≥ 1 if

and only if 𝜃1(𝑠) < 𝜌1 and there exists a stage 𝑗 ≤ 𝑘 such that 𝜃𝑗(𝑠) > 𝜌2. Equivalently,

lim𝑘→∞ 𝑈𝑘(𝑠) ≥ 1 if and only if 𝜃1(𝑠) < 𝜌1 and there exists a stage 𝑘 > 1 such that 𝜃𝑘(𝑠) > 𝜌2.

Therefore, if 𝜃1(𝑠) < 𝜌1 for all 𝑠 ∈ 𝑆 ∖ [𝜃], then:

Pr
(︁
𝜃𝑘(𝑠) ≤ 𝜌2, ∀𝑠 ∈ 𝑆 ∖ [𝜃], ∀𝑘

)︁
= 1− Pr

(︁
∃𝑠 ∈ 𝑆 ∖ [𝜃] and 𝑘, 𝑠.𝑡. 𝜃𝑘(𝑠) > 𝜌2

)︁
≥1−

∑︁
𝑠∈𝑆∖[𝜃]

Pr
(︁
∃𝑘, 𝑠.𝑡. 𝜃𝑘(𝑠) > 𝜌2

)︁
= 1−

∑︁
𝑠∈𝑆∖[𝜃]

lim
𝑘→∞

Pr
(︀
𝑈𝑘(𝑠) ≥ 1

)︀
. (B.14)

Next, we define 𝛼 Δ
= 𝜃(𝑠*) − 𝜌1. Since 0 < 𝜌1 < min𝑠∈[𝜃]{𝜃(𝑠)} and 𝑠* is in the support

set, we have 𝛼 ∈ (0, 𝜃(𝑠*)). If 𝜃1(𝑠) satisfies (4.8a) – (4.8b), then 𝜃1(𝑠)

𝜃1(𝑠*)
< 𝜌1

𝛼
for all 𝑠 ∈ 𝑆 ∖ [𝜃].

Additionally, for any stage 𝑘 and any 𝑠 ∈ 𝑆 ∖ [𝜃], if 𝜃𝑘(𝑠) > 𝜌2, then 𝜃𝑘(𝑠)

𝜃𝑘(𝑠*)
≥ 𝜌2 because

𝜃𝑘(𝑠*) ≤ 1. Hence, whenever 𝜃𝑘(𝑠) completes an upcrossing of the interval [𝜌1, 𝜌2], 𝜃𝑘(𝑠)

𝜃𝑘(𝑠*)

must also have completed an upcrosssing of the interval
[︁
𝜌1

𝛼
, 𝜌2
]︁
. From (4.7a) – (4.7b), we

can check that 𝜌1

𝛼
< 𝜌2 so that the interval

[︁
𝜌1

𝛼
, 𝜌2
]︁

is valid. We denote �̂�𝑘(𝑠) as the number

of upcrossings of the sequence
(︁
𝜃𝑗(𝑠)

𝜃𝑗(𝑠*)

)︁𝑘
𝑗=1

with respect to the interval
[︁
𝜌1

𝛼
, 𝜌2
]︁

until stage 𝑘.

Then, 𝑈𝑘(𝑠) ≤ �̂�𝑘(𝑠) for all 𝑘. Therefore, we can write:

Pr
(︀
𝑈𝑘(𝑠) ≥ 1

)︀
≤ Pr

(︁
�̂�𝑘(𝑠) ≥ 1

)︁
≤ E

[︁
�̂�𝑘(𝑠)

]︁
, (B.15)

where the last inequality is due to Makov inequality.

From the proof of Lemma 4.1, we know that the sequence
(︁
𝜃𝑘(𝑠)

𝜃𝑘(𝑠*)

)︁∞
𝑘=1

is a martingale.

Therefore, we can apply the Doob’s upcrossing inequality as follows:

E
[︁
�̂�𝑘(𝑠)

]︁
≤

E
[︁
max{𝜌1

𝛼
− 𝜃𝑘(𝑠)

𝜃𝑘(𝑠*)
, 0}
]︁

𝜌2 − 𝜌1

𝛼

≤
𝜌1

𝛼

𝜌2 − 𝜌1

𝛼

, ∀𝑘. (B.16)

From (B.13), (B.14) – (B.16), and (4.7a) – (4.7b), we can conclude that:

Pr
(︀
𝜃𝑘(𝑠) ≤ 𝜌2, ∀𝑠 ∈ 𝑆 ∖ [𝜃], ∀𝑘

)︀
= Pr

(︁
𝜃𝑘(𝑠) ≤ 𝜌2, ∀𝑠 ∈ 𝑆 ∖ [𝜃], ∀𝑘

)︁
≥1−

𝜌1

𝛼
|𝑆 ∖ [𝜃]|
𝜌2 − 𝜌1

𝛼

= 1−
𝜌1

𝜃(𝑠*)−𝜌1 |𝑆 ∖ [𝜃]|

𝜌2 − 𝜌1

𝜃(𝑠*)−𝜌1
> 𝛾.
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�

Proof of Lemma 4.6. From Assumption (A2c), we know that [𝜃] ⊆ 𝑆*(𝑞1) if 𝑞1 ∈

𝑁𝛿

(︀
EQ(𝜃)

)︀
. Hence, 𝜑𝑠(𝑦1|𝑞1) = 𝜑𝑠

*
(𝑦1|𝑞1) for any 𝑠 ∈ [𝜃] and any realized payoff 𝑦1.

Therefore,

𝜃2(𝑠)

𝜃2(𝑠*)
=

𝜃1(𝑠)

𝜃1(𝑠*)

𝜑𝑠(𝑦1|𝑞1)
𝜑𝑠*(𝑦1|𝑞1)

=
𝜃1(𝑠)

𝜃1(𝑠*)
, 𝑤.𝑝. 1, ∀𝑠 ∈ [𝜃]. (B.17)

This implies that
∑︀

𝑠∈[𝜃] 𝜃
2(𝑠)

𝜃2(𝑠*)
=

∑︀
𝑠∈[𝜃] 𝜃

1(𝑠)

𝜃1(𝑠*)
, and for all 𝑠 ∈ [𝜃]:

𝜃2(𝑠)∑︀
𝑠∈[𝜃] 𝜃

2(𝑠)
=

𝜃2(𝑠)

𝜃2(𝑠*)

𝜃2(𝑠*)∑︀
𝑠∈[𝜃] 𝜃

2(𝑠)
=

𝜃1(𝑠)

𝜃1(𝑠*)

𝜃1(𝑠*)∑︀
𝑠∈[𝜃] 𝜃

1(𝑠)
=

𝜃1(𝑠)∑︀
𝑠∈[𝜃] 𝜃

1(𝑠)
.

Thus, we have

𝜃2(𝑠)

𝜃1(𝑠)
=

∑︀
𝑠∈[𝜃] 𝜃

2(𝑠)∑︀
𝑠∈[𝜃] 𝜃

1(𝑠)
, 𝑤.𝑝. 1, ∀𝑠 ∈ [𝜃].

Since
∑︀

𝑠∈[𝜃] 𝜃
1(𝑠) ≤ 1, if 𝜃2(𝑠) < 𝜌2 for all 𝑠 ∈ 𝑆 ∖ [𝜃], then we have 𝜃2(𝑠)

𝜃1(𝑠)
> 1− |𝑆 ∖ [𝜃]|𝜌2.

Additionally, since
∑︀

𝑠∈[𝜃] 𝜃
2(𝑠) < 1 and 𝜃1(𝑠) < 𝜌3 for all 𝑠 ∈ [𝜃], we have 𝜃2(𝑠)

𝜃1(𝑠)
< 1

1−|𝑆∖[𝜃]|𝜌3 .

Since by (4.7c), 𝜌3 ≤ 𝜃(𝑠) for all 𝑠 ∈ 𝑆 ∖ [𝜃], any 𝜃1(𝑠) ∈
(︀
𝜃(𝑠)− 𝜌3, 𝜃(𝑠) + 𝜌3

)︀
is a non-

negative number for all 𝑠 ∈ [𝜃]. Therefore, we have the following bounds:

(︀
𝜃(𝑠)− 𝜌3

)︀ (︀
1− |𝑆 ∖ [𝜃]|𝜌2

)︀
< 𝜃2(𝑠) <

𝜃(𝑠) + 𝜌3

1− |𝑆 ∖ [𝜃]|𝜌3
. (B.18)

Since

𝜌3
(4.7c)
≤ 𝜖− |𝑆 ∖ [𝜃]||𝑆|𝜌2𝜃(𝑠)

|𝑆| − |𝑆 ∖ [𝜃]||𝑆|𝜌2
, ∀𝑠 ∈ [𝜃], (B.19)

we can check that
(︀
𝜃(𝑠)− 𝜌3

)︀ (︀
1− |𝑆 ∖ [𝜃]|𝜌2

)︀
≥ 𝜃(𝑠) − 𝜖

|𝑆| for all 𝑠 ∈ [𝜃]. To ensure the

right-hand-side of (B.19) is positive, we need to have 𝜌2 < 𝜖
|𝑆∖[𝜃]||𝑆|𝜃(𝑠) for all 𝑠 ∈ [𝜃], which is

satisfied by (4.7b). Also, since 𝜌3
(4.7c)
≤ 𝜖

|𝑆|+|𝑆∖[𝜃]|(𝜃(𝑠)|𝑆|+𝜖)
for all 𝑠 ∈ [𝜃], we have 𝜃(𝑠)+𝜌3

1−|𝑆∖[𝜃]|𝜌3 <

𝜃(𝑠) + 𝜖
|𝑆| for all 𝑠 ∈ [𝜃]. Therefore, we can conclude that 𝜃2(𝑠) ∈

(︁
𝜃(𝑠)− 𝜖

|𝑆| , 𝜃(𝑠) +
𝜖
|𝑆|

)︁
for
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all 𝑠 ∈ [𝜃]. Additionally, if 𝜃2(𝑠) ≤ 𝜌2 < 𝜖
|𝑆| for all 𝑠 ∈ 𝑆 ∖ [𝜃], then 𝜃2 ∈ 𝑁𝜖

(︀
𝜃
)︀
. From (ii) in

Lemma 4.4, we know that BR(𝜃𝑘, 𝑞1) ∈ 𝑁𝛿

(︀
EQ(𝜃)

)︀
for both 𝑘 = 1, 2. From (B.13), we have

𝜃2 ∈ 𝑁𝜖

(︀
𝜃
)︀
, and BR(𝜃2, 𝑞1) ∈ 𝑁𝛿

(︀
EQ(𝜃)

)︀
. Since 𝑞1 ∈ 𝑁𝛿

(︀
EQ(𝜃)

)︀
, the updated strategy 𝑞2

given by (𝑞-update) must also be in the neighborhood 𝑁𝛿

(︀
EQ(𝜃)

)︀
.

We now use mathematical induction to prove that the belief of any 𝑠 ∈ [𝜃] satisfies

𝜃𝑘(𝑠) ∈
(︁
𝜃(𝑠)− 𝜖

|𝑆| , 𝜃(𝑠) +
𝜖
|𝑆|

)︁
for stages 𝑘 > 2. If in stages 𝑗 = 1, . . . , 𝑘, |𝜃𝑗(𝑠)− 𝜃(𝑠)| < 𝜖

|𝑆|

for all 𝑠 ∈ [𝜃] and 𝜃𝑗(𝑠) < 𝜌2 < 𝜖
|𝑆| for all 𝑠 ∈ 𝑆∖[𝜃], then 𝜃𝑗 ∈ 𝑁𝜖

(︀
𝜃
)︀

for all 𝑗 = 1, . . . , 𝑘. Thus,

from (B.13) and (ii) in Lemma 4.4, we have 𝜃𝑗 ∈ 𝑁𝜖

(︀
𝜃
)︀

and BR (𝜃𝑗, 𝑞𝑗−1) ⊆ 𝑁𝛿

(︀
EQ(𝜃)

)︀
.

Therefore, 𝑞𝑗 ∈ 𝑁𝛿

(︀
EQ(𝜃)

)︀
for all 𝑗 = 2, . . . , 𝑘.

From Assumption (A2c), we know that [𝜃] ⊆ 𝑆*(𝑞𝑗) for all 𝑗 = 1, . . . , 𝑘. Therefore,

for any 𝑠 ∈ [𝜃] and any 𝑗 = 1, . . . , 𝑘, 𝜑𝑠(𝑦𝑗|𝑞𝑗) = 𝜑𝑠
*
(𝑦𝑗|𝑞𝑗) with probability 1. Then, by

iteratively applying (B.17), we have 𝜃𝑘+1(𝑠)

𝜃1(𝑠)
=

∑︀
𝑠∈[𝜃] 𝜃

𝑘+1(𝑠)∑︀
𝑠∈[𝜃] 𝜃

1(𝑠)
for all 𝑠 ∈ [𝜃] with probability 1.

Analogous to 𝑘 = 2, we can prove that |𝜃𝑘+1(𝑠)− 𝜃(𝑠)| < 𝜖
|𝑆| for all 𝑠 ∈ [𝜃]. From (B.13), we

also have |𝜃𝑘+1(𝑠)− 𝜃(𝑠)| < 𝜖
|𝑆| for all 𝑠 ∈ [𝜃]. From the principle of mathematical induction,

we conclude that in all stages 𝑘, |𝜃𝑘(𝑠)− 𝜃(𝑠)| < 𝜖
|𝑆| for all 𝑠 ∈ [𝜃], and 𝑞𝑘 ∈ 𝑁𝛿

(︀
EQ(𝜃)

)︀
for

all 𝑘. Therefore, we have proved (4.10).

�

Finally, we are ready to prove Theorem 4.2.

Proof of Theorem 4.2. We combine Lemmas 4.4 – 4.6. For any 𝛾 ∈ (0, 1), and any 𝜖, 𝛿 > 0,

consider 𝛿1 = 𝛿 and 𝜖1 Δ
= min{𝜌1, 𝜌3} given by (4.7a) and (4.7c). If 𝜃1 ∈ 𝑁𝜖1(𝜃), then |𝜃1(𝑠)−

𝜃(𝑠)| < 𝜖1 for all 𝑠 ∈ 𝑆. Recall from (iii) in Lemma 4.4, lim𝑘→∞ Pr
(︀
𝜃𝑘 ∈ 𝑁𝜖(𝜃), 𝑞

𝑘 ∈ 𝑁𝛿(EQ(𝜃))
)︀
≥

Pr
(︀
𝜃𝑘 ∈ 𝑁𝜖(𝜃), 𝑞

𝑘 ∈ 𝑁𝛿

(︀
EQ(𝜃)

)︀
, ∀𝑘

)︀
. Since 𝜌2 ≤ 𝜖/|𝑆|, we further have:

Pr
(︀
𝜃𝑘 ∈ 𝑁𝜖(𝜃), 𝑞

𝑘 ∈ 𝑁𝛿

(︀
EQ(𝜃)

)︀
, ∀𝑘

)︀
≥ Pr

⎛⎝ |𝜃𝑘(𝑠)− 𝜃(𝑠)| < 𝜖
|𝑆| , ∀𝑠 ∈ [𝜃], ∀𝑘 and

𝜃𝑘 < 𝜌2, ∀𝑠 ∈ 𝑆 ∖ [𝜃], 𝑞𝑘 ∈ 𝑁𝛿

(︀
EQ(𝜃)

)︀
, ∀𝑘

⎞⎠
= Pr

(︀
𝜃𝑘(𝑠) < 𝜌2,∀𝑠 ∈ 𝑆 ∖ [𝜃],∀𝑘

)︀
· Pr

⎛⎝ |𝜃𝑘(𝑠)− 𝜃(𝑠)| < 𝜖
|𝑆| ,∀𝑠 ∈ [𝜃], ∀𝑘

and 𝑞𝑘 ∈ 𝑁𝛿

(︀
EQ(𝜃)

)︀
, ∀𝑘

⃒⃒⃒⃒
⃒⃒ 𝜃𝑘(𝑠) < 𝜌2.

∀𝑠 ∈ 𝑆 ∖ [𝜃],∀𝑘

⎞⎠
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For any 𝜃1 ∈ 𝑁𝜖1(𝜃) and any 𝑞1 ∈ 𝑁𝛿1
(︀
EQ(𝜃)

)︀
, we know from Lemmas 4.5 – 4.6 that:

Pr
(︀
𝜃𝑘(𝑠) < 𝜌2, ∀𝑠 ∈ 𝑆 ∖ [𝜃], ∀𝑘

)︀
> 𝛾, and

Pr

⎛⎝ |𝜃𝑘(𝑠)− 𝜃(𝑠)| < 𝜖
|𝑆| , ∀𝑠 ∈ [𝜃], ∀𝑘

and 𝑞𝑘 ∈ 𝑁𝛿

(︀
EQ(𝜃)

)︀
, ∀𝑘

⃒⃒⃒⃒
⃒⃒ 𝜃𝑘(𝑠) < 𝜌2, ∀𝑠 ∈ 𝑆 ∖ [𝜃], ∀𝑘

⎞⎠ = 1

Therefore, for any 𝜃1 ∈ 𝑁𝜖1(𝜃) and any 𝑞1 ∈ 𝑁𝛿1
(︀
EQ(𝜃)

)︀
, the states of learning dynamics

satisfy lim𝑘→∞ Pr
(︀
𝜃𝑘 ∈ 𝑁𝜖(𝜃), 𝑞

𝑘 ∈ 𝑁𝛿

(︀
EQ(𝜃)

)︀)︀
> 𝛾. Thus,

(︀
𝜃, 𝑞
)︀

is locally stable. �

B.2 Proofs of Section 4.5

Proof of Proposition 4.3. Under condition (1), since the true parameter 𝑠* is identifiable,

we know any fixed point belief must have complete complete information of 𝑠*. Thus, the

fixed point strategy must be a complete information Wardrop equilibrium.

Under conditions (2) and (3), we know that at any fixed point, the belief 𝜃 must con-

sistently estimate the cost of all edges, i.e. E𝜃[ℓ𝑠𝑒(�̄�𝑒)] = ℓ𝑠
*
𝑒 (�̄�𝑒) for all 𝑒 ∈ 𝐸 given any(︀

𝜃, �̄�
)︀
∈ Ω. Therefore, we have E𝜃[ℓ𝑠𝑟(𝑞)] = ℓ𝑠

*
𝑟 (𝑞) for all 𝑟 ∈ 𝑅.

From the variational inequality, we know that

∑︁
𝑟∈𝑅

E𝜃[ℓ𝑠𝑟(𝑞)] · (𝑞𝑟 − 𝑞𝑟) ≥ 0, ∀𝑞 ∈ 𝑄,

⇒
∑︁
𝑟∈𝑅

ℓ𝑠
*

𝑟 (𝑞) · (𝑞𝑟 − 𝑞𝑟) ≥ 0, ∀𝑞 ∈ 𝑄.

That is, 𝑞 satisfies the variational inequality with complete information of 𝑠*. Therefore, we

can conclude that 𝑞 must be a complete information equilibrium, and the induced edge load

vector must be �̄� = 𝑤*. �

Before presenting the proof of Proposition 4.4, we first introduce the definition of series-

parallel networks and Braess’s paradox.

Definition B.1. Series-parallel networks A network is series-parallel if and only if it can be

constructed recursively from single edges by connecting networks in series or in parallel.
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Definition B.2. Braess’s paradox occurs in a network if there are two sets of latency func-

tions �̃� Δ
= {ℓ̃𝑒(𝑤𝑒)}𝑒∈𝐸 and 𝐿 Δ

= {ℓ𝑒(𝑤𝑒)}𝑒∈𝐸 such that ℓ̃𝑒(𝑤𝑒) ≥ ℓ𝑒(𝑤𝑒) for all 𝑒 ∈ 𝐸 and all

𝑤𝑒 ≥ 0, but the equilibrium social cost associated with �̃� is lower than that with 𝐿.

Lemma B.2 (Theorem 1 in Milchtaich [2006]). Braess’s paradox does not occur in a network

with single origin-destination pair if and only if the network is series-parallel.

We are now ready to prove Proposition 4.4:

Proof of Proposition 4.4. For any fixed point
(︀
𝜃, �̄�

)︀
, we know from Theorem 4.1 that

for the utilized resources 𝑒 ∈ �̄�, the average cost is accurately estimated, i.e. E𝜃[ℓ𝑠𝑒(�̄�𝑒)] =

ℓ𝑠
*
𝑒 (�̄�𝑒). Consider another congestion game �̃�, in which the latency functions of resources

𝑒 ∈ 𝐸∖�̄� are ℓ̃𝑠*𝑒 (𝑤𝑒) =∞ for any 𝑤𝑒 ≥ 0, and the costs of resources 𝑒 ∈ �̄� do not change, i.e.

ℓ̃𝑠
*
𝑒 (𝑤𝑒) = ℓ𝑠

*
𝑒 (𝑤𝑒). Then, �̄� is the equilibrium load vector of �̃� with complete information

of 𝑠*, and 𝐶(�̄�) is the equilibrium social cost. Note that 𝑤* is the complete information

equilibrium load vector in the original congestion game 𝐺, where ℓ𝑠*𝑒 (𝑤𝑒) ≤ ℓ̃𝑠
*
𝑒 (𝑤𝑒) for all

𝑒 ∈ 𝐸 and all 𝑤𝑒 ≥ 0. Since the network is series parallel with single origin-destination pair,

following from Lemma B.2, we know that Baraess paradox does not occur. Hence, we can

conclude that 𝐶(�̄�) ≥ 𝐶(𝑤*) for any �̄�.

�

B.3 Learning in Games with Finite Strategy Set

Our results in Sec. 4.3 can be extended to learning in games where strategy sets are finite

and players can choose mixed strategies. In this game, each player 𝑖’s action set (pure

strategies) is a finite set 𝐴𝑖, and the action profile (pure strategy profile) is denoted as

𝑎 = (𝑎𝑖)𝑖∈𝐼 ∈ 𝐴 =
∏︀

𝑖∈𝐼 𝐴𝑖. Given any parameter 𝑠 and any action profile 𝑎, the distribution

of players’ payoff 𝑦 is 𝜑𝑠 (𝑦|𝑎).

We denote player 𝑖’s mixed strategy as 𝑞𝑖 = (𝑞𝑖(𝑎𝑖))𝑎𝑖∈𝐴𝑖
∈ 𝑄𝑖 = Δ(𝐴𝑖), where 𝑞𝑖(𝑎𝑖)

is the probability of choosing the action 𝑎𝑖. The strategy set 𝑄𝑖 is bounded and convex.

Players’ action profile in each stage 𝑘, denoted as 𝑎𝑘 =
(︀
𝑎𝑘𝑖
)︀
𝑖∈𝐼 , is realized from the mixed

strategy profile 𝑞𝑘.
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Analogous to (𝜃-update), the information system updates the belief 𝜃𝑘𝑡 based on actions(︀
𝑎𝑘
)︀𝑘𝑡+1−1

𝑘=𝑘𝑡
and the realized payoff vectors

(︀
𝑦𝑘
)︀𝑘𝑡+1−1

𝑘=𝑘𝑡
as follows:

𝜃𝑘𝑡+1(𝑠) =
𝜃𝑘𝑡(𝑠)

∏︀𝑘𝑡+1−1
𝑘=𝑘𝑡

𝜑𝑠(𝑦𝑘|𝑎𝑘)∑︀
𝑠′∈𝑆 𝜃

𝑘𝑡(𝑠′)
∏︀𝑘𝑡+1−1

𝑘=𝑘𝑡
𝜑𝑠′(𝑦𝑘|𝑎𝑘)

, ∀𝑠 ∈ 𝑆.

Similar to Sec. 4.2, we consider three types of best-response updates:

1. Simultaneous best-response dynamics. All players choose an action that is a best re-

sponse to their opponents’ actions given the updated belief and their opponents’ action

profile:

𝑎𝑘+1
𝑖 ∈ BR𝑖(𝜃

𝑘+1, 𝑎𝑘−𝑖), ∀𝑖 ∈ 𝐼.

2. Sequential best-response dynamics. Players change their actions to be a best-response

strategy of other opponents’ actions one by one:

𝑎𝑘+1
𝑖

⎧⎨⎩ ∈ BR𝑖(𝜃
𝑘+1, 𝑎𝑘−𝑖), if 𝑘 𝑚𝑜𝑑 |𝐼| = 𝑖.

= 𝑎𝑘𝑖 , otherwise.

3. Fictitious play. The mixed strategy 𝑞𝑘𝑖 represents player 𝑖’s empirical frequency of

actions in previous stages 1, . . . , 𝑘. In each stage 𝑘, all players best respond to their

opponents’ empirical frequency 𝑞𝑘−𝑖:

𝑎𝑘𝑖 ∈ BR𝑖(𝜃
𝑘, 𝑞𝑘−𝑖), 𝑞𝑘+1

𝑖 =
𝑘

𝑘 + 1
𝑞𝑘𝑖 +

1

𝑘 + 1
𝑎𝑘𝑖 , ∀𝑖 ∈ 𝐼, ∀𝑘.

We extend the definition of payoff equivalent parameters in Definition 4.2 as follows:

Parameter 𝑠 is payoff-equivalent to 𝑠* given 𝑞 ∈ 𝑄 if the distribution of payoffs under

𝑠 is identical to that under 𝑠* for all actions that are assigned with positive probabil-

ity given 𝑞. Therefore, the payoff-equivalent parameter set given 𝑞 is defined as 𝑆*(𝑞)
Δ
=

{𝑆 |𝐷𝐾𝐿 (𝜑
𝑠* (𝑦|𝑎) ||𝜑𝑠 (𝑦|𝑎)) = 0, ∀𝑎 ∈ [𝑞]}, where [𝑞] = {𝐴|𝑞(𝑎) > 0} is the support set

of the mixed strategy profile 𝑞. In addition, the set of payoff-equivalent parameters on a
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strategy set �̄� ⊆ 𝑄 is 𝑆*(�̄�) = {𝑆|𝑠 ∈ 𝑆* (𝑞) , ∀𝑞 ∈ �̄�}.

The convergence result in Theorem 4.1 can be readily extended to games with finite

strategy sets: Under Assumption 1, the beliefs
(︀
𝜃𝑘
)︀∞
𝑘=1

converge to a fixed point belief 𝜃

that accurately estimates the payoff distribution for all action profiles that are taken with

positive probability, and the strategies
(︀
𝑞𝑘
)︀∞
𝑘=1

converge to the equilibrium set EQ(𝜃).

The results on global and local stability properties in Proposition 4.2 and Theorem 4.2

also hold for games with finite strategy set. Moreover, for games with a finite strategy set,

any fixed point that satisfies the sufficient condition of local stability must be a complete

information fixed point. This is because any local perturbation of a fixed point strategy

profile can lead to a mixed strategy with full support on all action profiles, and these mixed

strategies can distinguish any parameter 𝑠 ̸= 𝑠* from 𝑠*. Thus, local consistency condition

in Assumption (A2c) is only satisfied by the complete information belief 𝜃*.
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Appendix C

Supplementary Material for Chapter 5

C.1 Proofs of Section 5.3

Proof of Theorem 5.1. First, we proof that the four conditions of market equilibrium

(𝑥*, 𝑝*, 𝜏 *) ensures that 𝑥* satisfies the feasibility constraints of the primal (LP), (𝑢*, 𝜏 *)

satisfies the dual (D), and (𝑥*, 𝑢*, 𝜏 *) satisfies the complementary slackness conditions. The

vector 𝑢* is the utility vector computed from (5.4).

(i) Feasibility constraints of (LP): Since 𝑥* is a feasible trip vector, 𝑥* must satisfy the

feasibility constraints of (LP).

(ii) Feasibility constraints of (D): From the stability condition (5.6), individual rationality

(5.5), and the fact that toll prices are non-negative, we know that (𝑢*, 𝜏 *) satisfies the

feasibility constraints of (D).

(iii) Complementary slackness condition with respect to (LP.a): If rider 𝑚 is not assigned,

then (LP.a) is slack with the integer trip assignment 𝑥* for some rider 𝑚. The budget

balanced condition (5.7b) shows that 𝑝*𝑚 = 0. Since rider 𝑚 is not in any trip and

the payment is zero, the dual variable (i.e. rider 𝑚’s utility) 𝑢𝑚* = 0. On the other

hand, if 𝑢𝑚* > 0, then rider 𝑚 must be in a trip, and constraint (LP.a) must be tight.

Thus, we can conclude that the complementary slackness condition with respect to the

primal constraint (LP.a) is satisfied.
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(iv) Complementary slackness condition with respect to (LP.b): Since the mechanism is

market clearing, toll price 𝜏𝑒 is nonzero if and only if the load on edge 𝑒 is below

the capacity, i.e. the primal constraint (LP.b) is slack for edge 𝑒 ∈ 𝐸. Therefore,

the complementary slackness condition with respect to the primal constraint (LP.b) is

satisfied.

(v) Complementary slackness condition with respect to (D.a): From (5.7a), we know that

for any organized trip, the corresponding dual constraint (D.a) is tight. If constraint

(D.a) is slack for a trip (𝑏, 𝑟), then the budget balance constraint ensures that trip is

not organized. Therefore, the complementary slackness condition with respect to the

primal constraint (D.a) is satisfied.

We can analogously show that the inverse of (i) – (v) are also true: the feasibility con-

straints of (LP) and (D), and the complementary slackness conditions ensure that (𝑥*, 𝑝*, 𝜏 *)

is a market equilibrium. Thus, we can conclude that (𝑥*, 𝑝*, 𝜏 *) is a market equilibrium if and

only if (𝑥*, 𝑢*, 𝜏 *) satisfies the feasibility constraints of (LP) and (D), and the complementary

slackness conditions.

From strong duality theory, we know that the equilibrium trip vector 𝑥* must be an

optimal integer solution of (LP). Therefore, the existence of market equilibrium is equivalent

to the existence of an integer optimal solution of (LP). The optimal trip assignment is an

optimal integer solution of (LP), and (𝑢*, 𝜏 *) is an optimal solution of the dual problem (D).

The payment 𝑝* can be computed from (5.4). �

Proof of Corollary 5.1. Consider any two routes 𝑟, 𝑟′ ∈ 𝑅 such that 𝑡𝑟 ≥ 𝑡𝑟′ . Given 𝑥*,

we denote the rider group that takes route 𝑟 as 𝑏𝑟. If no rider group is assigned to route 𝑟,

then we denote 𝑏𝑟 = ∅. From (5.7a), we have

∑︁
𝑚∈𝑏𝑟

𝑢*𝑚 +
∑︁
𝑒∈𝑟

𝜏 *𝑒 = 𝑉𝑟(𝑏𝑟).

Additionally, since (𝑢*, 𝜏 *) satisfies constraint (D.a), we know that

∑︁
𝑚∈𝑏𝑟

𝑢*𝑚 +
∑︁
𝑒∈𝑟′

𝜏 *𝑒 ≥ 𝑉𝑟′(𝑏𝑟).
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Therefore, we must have:

∑︁
𝑒∈𝑟′

𝜏 *𝑒 −
∑︁
𝑒∈𝑟

𝜏 *𝑒 ≥ 𝑉𝑟′(𝑏𝑟)− 𝑉𝑟(𝑏𝑟) =

(︃∑︁
𝑚∈𝑏𝑟

𝛽𝑚 +
∑︁
𝑚∈𝑏𝑟

𝛾𝑚(|𝑏𝑟|) + 𝛿|𝑏𝑟|

)︃
(𝑡𝑟 − 𝑡𝑟′) ≥ 0.

�

C.2 Proofs of Section 5.4.

Proof of Lemma 5.1. Consider any (fractional) optimal solution of (LP), denoted as �̂�*.

We denote 𝑓(𝑏) =
∑︀

𝑟∈𝑅 �̂�
*
𝑟(𝑏) as the flow of group 𝑏, and ̂︀𝐹 =

∑︀
𝑏∈𝐵 𝑓(𝑏) is the total flows.

Since �̂�* is feasible, we know that ̂︀𝐹 ≤ 𝐶, where 𝐶 is the maximum capacity of the network.

The set of all groups with positive flow in �̂� is ̂︀𝐵 Δ
= {�̂� ∈ 𝐵|𝑓(�̂�) > 0}. For each �̂� ∈ �̂�, we

re-write the trip value function as follows:

𝑉𝑟(�̂�) = 𝑧(�̂�)− 𝑔(�̂�)𝑡𝑟, ∀
(︁
�̂�, 𝑟
)︁
∈ �̂� ×𝑅,

where 𝑧(�̂�) =
∑︀

𝑚∈�̂� (𝛼
𝑚 − 𝜋𝑚)− 𝜎|�̂�|, and 𝑔(�̂�) =

∑︀
𝑚∈�̂� (𝛽

𝑚 + 𝛾(|𝑏|)) + 𝛿|𝑏|.

We denote the number of rider groups in �̂� as 𝑛, and re-number these rider groups in

decreasing order of 𝑔(�̂�), i.e.

𝑔(�̂�1) ≥ 𝑔(�̂�2) ≥ · · · ≥ 𝑔(�̂�𝑛).

We now construct another trip vector 𝑥* by the following procedure:

Initialization: Zero assignment vector 𝑥*𝑟(𝑏)← 0 for all 𝑟 ∈ 𝑅 and all 𝑏 ∈ 𝐵

For 𝑗 = 1, . . . , 𝑛:

(a) Assign rider group �̂�𝑗 to a route 𝑟 in 𝑅*, which has the minimum travel time among

all routes with flow less than the capacity, i.e. 𝑟 ∈ argmin𝑟∈{𝑅*|
∑︀

𝑏∈𝐵 𝑥*𝑟(𝑏)<𝑘
*
𝑟}{𝑡𝑟}.

(b) If
∑︀

𝑏∈𝐵 𝑥
*
𝑟(𝑏) + 𝑓(�̂�𝑗) ≤ 𝑘*𝑟 , then 𝑥*𝑟(�̂�𝑗) = 𝑓(�̂�𝑗).

(c) Otherwise, assign 𝑥*𝑟(�̂�𝑗) = 𝑘*𝑟 −
∑︀

𝑏∈𝐵 𝑥
*
𝑟(𝑏), and continue to assign the remaining
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weight of rider group �̂�𝑗 to the next unsaturated route with the minimum cost. Repeat

this process until the condition in (b) is satisfied, i.e. the total weight 𝑓(𝑏𝑗) is assigned.

We can check that
∑︀

𝑏∋𝑚
∑︀

𝑟∈𝑅 𝑥
*
𝑟(𝑏) =

∑︀
𝑏∋𝑚 𝑓(𝑏) ≤ 1 so that (LP𝑘*.a) is satisfied.

Additionally, since in the assignment procedure, the total weight assigned to route 𝑟 is less

than or equal to 𝑘*𝑟 , we must have
∑︀

𝑏∈𝐵 𝑥
*
𝑟(𝑏) ≤ 𝑘*𝑟 for all 𝑟 ∈ 𝑅, i.e. (LP𝑘*.b) is satisfied.

Thus, 𝑥* is a feasible solution of (LP𝑘*).

It remains to prove that 𝑥* is optimal of (LP𝑘*). We prove this by showing that 𝑉 (𝑥*) ≥

𝑉 (�̂�*). The objective function 𝑆(𝑥*) can be written as follows:

∑︁
𝑟∈𝑅

∑︁
𝑏∈𝐵

𝑉𝑟(𝑏)𝑥
*
𝑟(𝑏) =

∑︁
𝑟∈𝑅

∑︁
𝑏∈𝐵

𝑧(𝑏)𝑥*𝑟(𝑏)−
∑︁
𝑟∈𝑅

∑︁
𝑏∈𝐵

𝑔(𝑏)𝑡𝑟𝑥
*
𝑟(𝑏). (C.1)

We note that since
∑︀

𝑟∈𝑅 𝑘
*
𝑟 = 𝐶 and

∑︀
𝑟∈𝑅
∑︀

𝑏∈𝐵 �̂�
*
𝑟(𝑏) ≤ 𝐶, the algorithm must terminate

with all groups in �̂� being assigned. Therefore,
∑︀

𝑟∈𝑅 𝑥
*
𝑟(𝑏) = 𝑓(𝑏) =

∑︀
𝑟∈𝑅 �̂�

*
𝑟(𝑏) for all

𝑏 ∈ 𝐵. Therefore,

∑︁
𝑟∈𝑅

∑︁
𝑏∈𝐵

𝑧(𝑏)𝑥*𝑟(𝑏) =
∑︁
𝑏∈𝐵

𝑧(𝑏)𝑓(𝑏) =
∑︁
𝑟∈𝑅

∑︁
𝑏∈𝐵

𝑧(𝑏)�̂�*𝑟(𝑏) (C.2)

Then, 𝑉 (𝑥*) ≥ 𝑉 (�̂�*) is equivalent to
∑︀

𝑟∈𝑅
∑︀

𝑏∈𝐵 𝑔(𝑏)𝑡𝑟𝑥
*
𝑟(𝑏) ≤

∑︀
𝑟∈𝑅
∑︀

𝑏∈𝐵 𝑔(𝑏)𝑡𝑟�̂�
*
𝑟. To

prove this, we show that 𝑥* minimizes the term
∑︀

𝑟∈𝑅
∑︀

𝑏∈𝐵 𝑔(𝑏)𝑡𝑟𝑥
*
𝑟(𝑏) among all feasible 𝑥

that induces the same flow of groups as �̂�*, i.e.

𝑥* ∈ argmin
𝑥∈𝑋(𝑓)

∑︁
𝑟∈𝑅

∑︁
𝑏∈𝐵

𝑔(𝑏)𝑡𝑟𝑥𝑟(𝑏), (C.3)

where

𝑋(𝑓)
Δ
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩(𝑥𝑟(𝑏))𝑟∈𝑅,𝑏∈𝐵

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒
∑︀

𝑟∈𝑅 𝑥𝑟(𝑏) = 𝑓(𝑏), ∀𝑏 ∈ 𝐵,∑︀
𝑏∈𝐵
∑︀

𝑟∋𝑒 𝑥𝑟(𝑏) ≤ 𝑞𝑒, ∀𝑒 ∈ 𝐸,

𝑥𝑟(𝑏) ≥ 0, ∀𝑟 ∈ 𝑅, ∀𝑏 ∈ 𝐵.

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (C.4)

We prove (C.3) by mathematical induction. To begin with, (C.3) holds trivially on any

single-link network. We ext prove that if (C.3) holds on two series-parallel sub-networks 𝐺1
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and 𝐺2, then (C.3) holds on the network 𝐺 that connects 𝐺1 and 𝐺2 in series or in parallel.

In particular, we analyze the cases of series connection and parallel connection separately:

(Case 1) Series-parallel Network 𝐺 is formed by connecting two series-parallel sub-networks

𝐺1 and 𝐺2 in series.

We denote the set of routes in subnetwork 𝐺1 and 𝐺2 as 𝑅1 and 𝑅2, respectively. Since

𝐺1 and 𝐺2 are connected in series, the set of routes in network 𝐺 is 𝑅 Δ
= 𝑅1 × 𝑅2. Since

the two sub-networks are connected in sequence, the group flow vector in 𝐺1 (resp. 𝐺2)

is 𝑓 1
𝑟1(𝑏) =

∑︀
𝑟2∈𝑅2 𝑓𝑟1𝑟2(𝑏) (resp. 𝑓 2

𝑟2(𝑏) =
∑︀

𝑟1∈𝑅1 𝑓𝑟1𝑟2(𝑏)) for all 𝑏 ∈ 𝐵 and all 𝑟1 ∈ 𝑅1

(resp.𝑟2 ∈ 𝑅2). Analogously, we define the set of trip vectors on sub-network 𝐺1 (resp. 𝐺2)

that satisfies the constraint in (C.3) as 𝑋1(𝑓 1) (resp. 𝑋2(𝑓 2)). We can check that 𝑋1(𝑓 1)

(resp. 𝑋2(𝑓 2)) is the set of trip vectors in 𝑋(𝑓) that is restricted on network 𝐺1 (resp.

𝐺2). That is, for any 𝑥 ∈ 𝑋(𝑓), we can find 𝑥1 ∈ 𝑋1(𝑓 1) (resp. 𝑥2 ∈ 𝑋2(𝑓 2)) such that∑︀
𝑟2∈𝑅2 𝑥𝑟1𝑟2(𝑏) = 𝑥1𝑟1(𝑏) (resp.

∑︀
𝑟1∈𝑅1 𝑥𝑟1𝑟2(𝑏) = 𝑥2𝑟2(𝑏)) for all 𝑏 ∈ 𝐵 and all 𝑟1 ∈ 𝑅1 (resp.

𝑟2 ∈ 𝑅2). Since the two subnetworks are connected sequentially, we have the follows:

∑︁
𝑟∈𝑅

∑︁
𝑏∈𝐵

𝑔(𝑏)𝑡𝑟𝑥𝑟(𝑏) =
∑︁
𝑟1∈𝑅1

∑︁
𝑏∈𝐵

𝑔(𝑏)𝑡𝑟1

(︃∑︁
𝑟2∈𝑅2

𝑥𝑟1𝑟2(𝑏)

)︃
+
∑︁
𝑟2∈𝑅2

∑︁
𝑏∈𝐵

𝑔(𝑏)𝑡𝑟2

(︃∑︁
𝑟1∈𝑅1

𝑥𝑟1𝑟2(𝑏)

)︃

=
∑︁
𝑟1∈𝑅1

∑︁
𝑏∈𝐵

𝑔(𝑏)𝑡𝑟1𝑥
1
𝑟1(𝑏) +

∑︁
𝑟2∈𝑅2

∑︁
𝑏∈𝐵

𝑔(𝑏)𝑡𝑟2𝑥
2
𝑟2(𝑏). (C.5)

We also denote the trip vector that is obtained from procedure (a) – (c) based on 𝑓 in

𝐺1 (resp. 𝐺2) as 𝑥1* (resp. 𝑥2*). We now argue that
∑︀

𝑟2∈𝑅2 𝑥*𝑟1𝑟2(𝑏) = 𝑥1*𝑟1(𝑏) for all 𝑏 ∈ 𝐵

and all 𝑟1 ∈ 𝑅1. For the sake of contradiction, assume that there exists 𝑏 ∈ 𝐵 such that∑︀
𝑟2∈𝑅2 𝑥*𝑟1𝑟2(𝑏) ̸= 𝑥1*𝑟1(𝑏) for at least one 𝑟1 ∈ 𝑅1. We denote �̂� as one such group with the

maximum 𝑔(�̂�). Since the total flow of �̂� is 𝑓(�̂�) in both 𝑥* and 𝑥1*, if
∑︀

𝑟2∈𝑅2 𝑥*𝑟1𝑟2(�̂�) ̸= 𝑥1*𝑟1(�̂�)

on one 𝑟1 ∈ 𝑅1, the same inequality must hold for another 𝑟1′ ∈ 𝑅1. Without loss of

generality, we assume that 𝑡𝑟1 < 𝑡𝑟1′ . Since any group �̂�′ that is assigned before �̂� (𝑔(�̂�′) > 𝑔(�̂�))

satisfy
∑︀

𝑟2∈𝑅2 𝑥*𝑟1𝑟2(�̂�
′) = 𝑥1*𝑟1(�̂�

′) for all 𝑟1 ∈ 𝑅1, if
∑︀

𝑟2∈𝑅2 𝑥*𝑟1𝑟2(�̂�) < 𝑥1*𝑟1(�̂�), then 𝑥1* is not

obtained by procedure (a) – (c) on 𝐺1 because 𝑟1 is not saturated with 𝑥1* in the round

of assigning �̂�, and more flow of �̂� should be moved from 𝑟1
′ to 𝑟1 to saturate route 𝑟1.

We can analogously argue that if
∑︀

𝑟2∈𝑅2 𝑥*𝑟1𝑟2(�̂�) > 𝑥1*𝑟1(�̂�), then 𝑥* is not obtained from
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the procedure (a) – (c) for 𝐺. In either case, we have arrived at a contradiction. We can

analogously argue that
∑︀

𝑟1∈𝑅1 𝑥*𝑟1𝑟2(𝑏) = 𝑥2*𝑟2(𝑏) for all 𝑏 ∈ 𝐵 and all 𝑟2 ∈ 𝑅2. Therefore,

∑︁
𝑟∈𝑅

∑︁
𝑏∈𝐵

𝑔(𝑏)𝑡𝑟𝑥
*
𝑟(𝑏) =

∑︁
𝑟1∈𝑅1

∑︁
𝑏∈𝐵

𝑔(𝑏)𝑡𝑟1

(︃∑︁
𝑟2∈𝑅2

𝑥*𝑟1𝑟2(𝑏)

)︃
+
∑︁
𝑟2∈𝑅2

∑︁
𝑏∈𝐵

𝑔(𝑏)𝑡𝑟2

(︃∑︁
𝑟1∈𝑅1

𝑥*𝑟1𝑟2(𝑏)

)︃

=
∑︁
𝑟1∈𝑅1

∑︁
𝑏∈𝐵

𝑔(𝑏)𝑡𝑟1𝑥
1*
𝑟1(𝑏) +

∑︁
𝑟2∈𝑅2

∑︁
𝑏∈𝐵

𝑔(𝑏)𝑡𝑟2𝑥
2*
𝑟2(𝑏) (C.6)

If (C.3) holds on both sub-networks (i.e. 𝑥1* ∈ argmin𝑥∈𝑋1(𝑓1)

∑︀
𝑟1∈𝑅1

∑︀
𝑏∈𝐵 𝑔(𝑏)𝑡𝑟1𝑥

1
𝑟1(𝑏)

and 𝑥2* ∈ argmin𝑥∈𝑋2(𝑓2)

∑︀
𝑟2∈𝑅2

∑︀
𝑏∈𝐵 𝑔(𝑏)𝑡𝑟2𝑥

2
𝑟2(𝑏)), then from (C.5) – (C.6), we know that

(C.3) also holds in network 𝐺.

(Case 2) Series-parallel Network 𝐺 is formed by connecting two series-parallel networks 𝐺1

and 𝐺2 in parallel.

Same as case 1, we denote 𝑅1 (resp. 𝑅2) as the set of routes in 𝐺1 (resp. 𝐺2). Then, the

set of all routes in 𝐺 is 𝑅 = 𝑅1 ∪𝑅2.

Given any 𝑓 , we compute 𝑥* from the procedure (a) – (c) in network 𝐺. We denote

𝑓 1* =
∑︀

𝑟1∈𝑅1

∑︀
𝑏∈𝐵 𝑥

*
𝑟(𝑏) (resp. 𝑓 2* =

∑︀
𝑟2∈𝑅2

∑︀
𝑏∈𝐵 𝑥

*
𝑟(𝑏)) as the total flow assigned to

subnetwork𝐺1 (resp. 𝐺2) in 𝑥*. We now denote 𝑥1* (resp. 𝑥2*) as the trip vector 𝑥* restricted

on sub-network 𝐺1 (resp. 𝐺2), i.e. 𝑥1* =
(︀
𝑥*𝑟1(𝑏)

)︀
𝑟1∈𝑅1,𝑏∈𝐵 (resp. 𝑥2* =

(︀
𝑥*𝑟2(𝑏)

)︀
𝑟2∈𝑅2,𝑏∈𝐵).

We can check that 𝑥1* (resp. 𝑥2*) is the trip vector obtained by the procedure (a) – (c) given

the total flow 𝑓 1* (resp. 𝑓 2*) on network 𝐺1 (resp. 𝐺2).

Consider any arbitrary split of the total flow 𝑓 to the two sub-networks, denoted as(︁
𝑓 1, 𝑓 2

)︁
, such that 𝑓 1(𝑏) + 𝑓 2(𝑏) = 𝑓(𝑏) for all 𝑏 ∈ 𝐵. Given 𝑓 1 (resp. 𝑓 2), we denote the

trip vector obtained by procedure (i) – (iii) on sub-network 𝐺1 (resp. 𝐺2) as �̂�1* (resp. �̂�2*).

We also define the set of feasible trip vectors on sub-network 𝐺1 (resp. 𝐺2) that induce the

total flow 𝑓 1 (resp. 𝑓 2) given by (C.4) as 𝑋1(𝑓 1) (resp. 𝑋2(𝑓 2)). Then, the set of all trip

vectors that induce 𝑓 on network 𝐺 is 𝑋(𝑓) = ∪(𝑓1,𝑓2)(𝑋
1(𝑓 1), 𝑋2(𝑓 2)).

Under our assumption that (C.3) holds on sub-network 𝐺1 and 𝐺2 with any total flow,
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we know that given any flow split
(︁
𝑓 1, 𝑓 2

)︁
,

∑︁
𝑟1∈𝑅1

∑︁
𝑏∈𝐵

𝑔(𝑏)𝑡𝑟�̂�
1*
𝑟1(𝑏) +

∑︁
𝑟2∈𝑅2

∑︁
𝑏∈𝐵

𝑔(𝑏)𝑡𝑟�̂�
2*
𝑟2(𝑏) ≤

∑︁
𝑟1∈𝑅1

∑︁
𝑏∈𝐵

𝑔(𝑏)𝑡𝑟�̂�
1
𝑟1(𝑏) +

∑︁
𝑟2∈𝑅2

∑︁
𝑏∈𝐵

𝑔(𝑏)𝑡𝑟�̂�
2
𝑟2(𝑏),

∀�̂�1 ∈ 𝑋(𝑓 1), �̂�2 ∈ 𝑋(𝑓 2).

Therefore, the optimal solution of (C.3) must be a trip vector (�̂�1*, �̂�2*) associated with

a flow split
(︁
𝑓 1, 𝑓 2

)︁
. It thus remains prove that any (�̂�1*, �̂�2*) associated with flow split(︁

𝑓 1, 𝑓 2
)︁
̸= (𝑓 1*, 𝑓 2*) cannot be an optimal solution (i.e. can be improved by re-arranging

flows).

For any
(︁
𝑓 1, 𝑓 2

)︁
̸= (𝑓 1*, 𝑓 2*), we can find a group 𝑏𝑗 such that 𝑓 1(𝑏𝑗) ̸= 𝑓 1*(𝑏𝑗) (hence-

forth 𝑓 2(𝑏𝑗) ̸= 𝑓 2*(𝑏𝑗)). We denote 𝑏�̂� as one such group with the maximum 𝑔(𝑏), i.e.

𝑓 1(𝑏𝑗) = 𝑓 1*(𝑏𝑗) for any 1, . . . , �̂� − 1. Since groups 𝑏1, . . . , 𝑏�̂�−1 are assigned before group 𝑏�̂�

according to procedure (a) – (c), we know that �̂�1*𝑟1(𝑏𝑗) = 𝑥*𝑟1(𝑏𝑗) and �̂�2*𝑟2(𝑏𝑗) = 𝑥*𝑟2(𝑏𝑗) for

all 𝑟1 ∈ 𝑅1, all 𝑟2 ∈ 𝑅2 and all 𝑗 = 1, . . . , �̂� − 1. Since 𝑓 1(𝑏�̂�) ̸= 𝑓 1*(𝑏�̂�), the trip vector

in �̂�1* and �̂�2* must be different from that in 𝑥*. Without loss of generality, we assume

that 𝑓 1(𝑏�̂�) > 𝑓 1*(𝑏�̂�) and 𝑓 2(𝑏�̂�) < 𝑓 2*(𝑏�̂�). Then, there must exist routes 𝑟1 ∈ 𝑅1 and

𝑟2 ∈ 𝑅2 such that �̂�1*𝑟1(𝑏�̂�) > 𝑥*𝑟1(𝑏�̂�) and �̂�2*𝑟2(𝑏�̂�) < 𝑥*𝑟2(𝑏�̂�). Moreover, since 𝑥* assigns group

𝑏�̂� to routes with the minimum travel time cost that are unsaturated after assigning groups

𝑏1, . . . , 𝑏�̂�−1, we have 𝑡𝑟2 < 𝑡𝑟1 . If route 𝑟2 is unsaturated given �̂�2*, then we decrease �̂�1*𝑟1(𝑏�̂�)

and increase �̂�2*𝑟2(𝑏�̂�) by a small positive number 𝜖 > 0. We can check that the objective func-

tion of (C.3) is reduced by 𝜖(𝑡𝑟1 − 𝑡𝑟2)𝜖𝑔(𝑏�̂�) > 0. On the other hand, if route 𝑟2 is saturated,

then group 𝑏�̂�+1 must be assigned to 𝑟2 because it is assigned right after group 𝑏�̂�. Then, we

decrease 𝑥1*𝑟1(𝑏�̂�) and 𝑥2*𝑟2(𝑏�̂�+1) by 𝜖 > 0, increases 𝑥1*𝑟1(𝑏�̂�+1) and 𝑥2*𝑟2(𝑏�̂�) by 𝜖 (i.e. exchange a

small fraction of group 𝑏�̂� with group 𝑏�̂�+1). Note that 𝑔(𝑏�̂�) > 𝑔(𝑏�̂�+1) and 𝑡𝑟1 > 𝑡𝑟2 . We can

thus check that the objective function of (C.3) is reduced by 𝜖(𝑡𝑟1𝑔(𝑏�̂�) − 𝑡𝑟2𝑔(𝑏�̂�+1))𝜖 > 0.

Therefore, we have found an adjustment of trip vector (�̂�1*, �̂�2*) that reduces the objective

function of (C.3). Hence, for any flow split
(︁
𝑓 1, 𝑓 2

)︁
̸= (𝑓 1*, 𝑓 2*), the associated trip vec-

tor (�̂�1*, �̂�2*) is not the optimal solution of (C.3). The optimal solution of (C.3) must be

constructed by procedure (i) – (iii) with flow split (𝑓 1*, 𝑓 2*), i.e. must be 𝑥*.
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We have shown from cases 1 and 2 that if 𝑥* is an optimal solution of (C.3) on two series-

parallel sub-networks, then 𝑥* is an optimal solution on the connected series-parallel network.

Moreover, since (C.3) holds trivially when the network is a single edge, and any series-parallel

network is formed by connecting series-parallel sub-networks in series or parallel, we can

conclude that 𝑥* obtained from procedure (a) – (c) minimizes the objective function in (C.3)

for any flow vector 𝑓 on any series-parallel network.

From (C.1), (C.2) and (C.3), we can conclude that 𝑉 (𝑥*) ≥ 𝑉 (�̂�*). Hence, 𝑥* must be

an optimal solution in (LP𝑘*). �

Proof of Lemma 5.2. First, for any feasible 𝑥 in (LP𝑘*), consider a vector 𝑦 such that

for any (𝑟, 𝑏) ∈ {𝐵 × 𝑅|𝑥𝑟(𝑏) = 1}, 𝑦𝑙(𝑏) = 1 for one 𝑙 ∈ 𝐿𝑟 and 𝑦𝑙(�̄�) = 0 for any other(︀
�̄�, 𝑙
)︀
. We can check that 𝑦 is feasible in (LP-y) and 𝑆(𝑥) = 𝑆(𝑦). On the other hand, for

any feasible 𝑦 in (LP-y), there exists 𝑥 = 𝜒(𝑦) as in (5.15) such that 𝑥 is feasible in (LP𝑘*)

and 𝑆(𝑥) = 𝑆(𝑦). Thus, (LP𝑘*) and (LP-y) are equivalent in that for any feasible solution

of one linear program, there exists a feasible solution that achieves the same social welfare

in the other linear program.

Therefore, (LP𝑘*) has an integer optimal solution if and only if (LP-y) has an integer

optimal solution, and for any integer optimal solution 𝑦* of (LP-y), 𝑥 = 𝜒(𝑦*) as in (5.15)

is an optimal solution of (LP𝑘*). �

Proof of Lemma 5.3. We write the dual program of (LP-y) as follows:

min
𝑢,𝜇

∑︁
𝑚∈𝑀

𝑢𝑚 +
∑︁
𝑙∈𝐿

𝜇𝑙,

𝑠.𝑡.
∑︁
𝑚∈�̄�

𝑢𝑚 + 𝜇𝑙 ≥ 𝑊𝑙(�̄�) ∀�̄� ∈ �̄�, ∀𝑙 ∈ 𝐿, (D-y.a)

𝑢𝑚 ≥ 0, 𝜇𝑙 ≥ 0, ∀𝑚 ∈𝑀, ∀𝑙 ∈ 𝐿. (D-y.b)

For any Walrasian equilibrium (𝑦*, 𝑢*), we consider the vector 𝜇* = (𝜇*
𝑙 )𝑙∈𝐿 as follows:

𝜇*
𝑙 = max

�̄�∈�̄�
𝑊𝑙(�̄�)−

∑︁
𝑚∈�̄�

𝑢𝑚*, ∀𝑙 ∈ 𝐿. (C.8)
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From the definition of Walrasian equilibrium, we know that 𝑦* is a feasible solution of

(LP-y), and (𝑢*, 𝜇*) is a feasible solution of (D-y). We now show that (𝑦*, 𝑢*, 𝜇*) satisfies

complementary slackness condition of (LP-y) and (D-y).

- Complementary slackness condition for (LP-y.a): Condition (ii) in Definition 5.5 en-

sures that rider 𝑚’s utility is positive if and only if (LP-y.a) is tight (i.e. rider 𝑚 joins

a trip).

- Complementary slackness condition for (LP-y.b): If no rider group takes route 𝑙 ∈ 𝐿,

i.e. (LP-y.b) is slack and �̄�𝑙 = ∅, then 𝜇*
𝑙 as in (C.8) is zero. On the other hand, 𝜇*

𝑙 > 0,

then �̄�𝑙 ̸= ∅. Hence, (LP-y.b) must be tight.

- Complementary slackness condition for (D-y.a): From condition (i) in Definition 5.5,

we know that 𝑦*𝑙 (�̄�𝑙) = 1 if and only if �̄�𝑙 ∈ argmax�̄�∈�̄�𝑊𝑙(�̄�)−
∑︀

𝑚∈�̄� 𝑢
𝑚*, i.e. constraint

(D-y.a) is tight.

From strong duality, we know that 𝑦* must be an integer optimal solution of (LP-y) and

(𝑢*, 𝜇*) must be an optimal solution of (D-y). Therefore, we can conclude that a Walrasian

equilibrium (𝑦*𝑡, 𝑢*) exists in the equivalent economy 𝒢 if and only if (LP-y) has an optimal

integer solution. �

Proof of Lemma 5.4. Since all riders have homogeneous carpool disutility, we can simplify

the trip value function 𝑉 𝑟(�̄�) as follows:

𝑉 𝑟(�̄�) =
∑︁

𝑚∈ℎ𝑟(�̄�)

𝜂𝑚𝑟 − 𝜃(|ℎ𝑟(�̄�)|),

where 𝜂𝑚𝑟
Δ
= 𝛼𝑚 − 𝛽𝑚𝑡𝑟 and 𝜃(|ℎ𝑟(�̄�)|) =

(︀
𝜋(|ℎ𝑟(�̄�)|) + 𝜎

)︀
|ℎ𝑟(�̄�)|+

(︀
𝛾(|ℎ𝑟(�̄�)|) + 𝛿

)︀
|ℎ𝑟(�̄�)|𝑡𝑟.

Before proving that the augmented trip value function 𝑉 𝑟(�̄�) satisfies (a) and (b) in

Definition 5.5, we first provide the following statements that will be used later:

(i) The function 𝜃(|ℎ𝑟(�̄�)|) is non-decreasing in |ℎ𝑟(�̄�)| because the marginal carpool disu-

tility is non-decreasing in the group size.

(ii) The representative rider group for any trip
(︀
�̄�, 𝑟
)︀
∈ �̄� × 𝑅 can be constructed by

selecting riders from �̄� in decreasing order of 𝜂𝑚𝑟 . The last selected rider ℓ (i.e. the rider in
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ℎ𝑟(�̄�) with the minimum value of 𝜂𝑚𝑟 ) satisfies:

𝜂ℓ𝑟 ≥ 𝜃(|ℎ𝑟(�̄�)|)− 𝜃(|ℎ𝑟(�̄�)| − 1). (C.9)

That is, adding rider ℓ to the set ℎ𝑟(�̄�) ∖ {ℓ} increases the trip valuation. Additionally,

𝜂𝑚𝑟 < 𝜃(|ℎ𝑟(�̄�)|+ 1)− 𝜃(|ℎ𝑟(�̄�)|), ∀𝑚 ∈ �̄� ∖ ℎ𝑟(�̄�). (C.10)

Then, adding any rider in �̄� ∖ ℎ𝑟(�̄�) to ℎ𝑟(�̄�) no longer increases the trip valuation.

(iii) |ℎ𝑟(�̄�′)| ≥ |ℎ𝑟(�̄�)| for any two rider groups �̄�′, �̄� ∈ 𝐵 such that �̄�′ ⊇ �̄�.

Proof of (iii). Assume for the sake of contradiction that |ℎ𝑟(�̄�′)| < |ℎ𝑟(�̄�)|. Consider the rider

ℓ ∈ argmin𝑚∈ℎ𝑟(�̄�) 𝜂
𝑚
𝑟 . The value 𝜂ℓ𝑟 satisfies (C.9). Since |ℎ𝑟(�̄�′)| < |ℎ𝑟(�̄�)|, �̄�′ ⊇ �̄�, and we

know that riders in the representative rider group ℎ𝑟(�̄�′) are the ones with |ℎ𝑟(�̄�′)| highest 𝜂𝑚𝑟
in �̄�′, we must have ℓ /∈ ℎ𝑟(�̄�′). From (C.10), we know that 𝜂ℓ𝑟 < 𝜃(|ℎ𝑟(�̄�′)| + 1)− 𝜃(|ℎ𝑟(�̄�′)|).

Since the marginal carpool disutility is non-decreasing in the rider group size, we can check

that 𝜃(|ℎ𝑟(�̄�)| + 1) − 𝜃(|ℎ𝑟(�̄�)|) is non-decreasing in |ℎ𝑟(�̄�)|. Since |ℎ𝑟(�̄�′)| < |ℎ𝑟(�̄�)|, we have

|ℎ𝑟(�̄�′)| ≤ |ℎ𝑟(�̄�)| − 1. Therefore,

𝜂ℓ𝑟 < 𝜃(|ℎ𝑟(�̄�′)|+ 1)− 𝜃(|ℎ𝑟(�̄�′)|) ≤ 𝜃(|ℎ𝑟(�̄�)|)− 𝜃(|ℎ𝑟(�̄�)| − 1),

which contradicts (C.9) and the fact that ℓ ∈ ℎ𝑟(�̄�). Hence, |ℎ𝑟(�̄�′)| ≥ |ℎ𝑟(�̄�)|.

We now prove that 𝑉 satisfies (i) in Definition 5.5. For any �̄�, �̄�′ ⊆𝑀 and �̄� ⊆ �̄�′, consider

two cases:

Case 1: 𝑖 /∈ ℎ𝑟({𝑖} ∪ �̄�′). In this case, ℎ𝑟(�̄�′ ∪ 𝑖) = ℎ𝑟(�̄�
′), and 𝑉 (𝑖|�̄�′) = 𝑉 (�̄�′ ∪ 𝑖)− 𝑉 (�̄�′) = 0.

Since 𝑉 satisfies monotonicity condition, we have 𝑉 (𝑖|�̄�) ≥ 0. Therefore, 𝑉 (𝑖|�̄�) ≥ 𝑉 (𝑖|�̄�′).

Case 2: 𝑖 ∈ ℎ𝑟({𝑖} ∪ �̄�′). We argue that 𝑖 ∈ ℎ𝑟({𝑖} ∪ �̄�). From (C.9), 𝜂𝑖𝑟 ≥ 𝜃(|ℎ𝑟(�̄�′)|) −

𝜃(|ℎ𝑟(�̄�′)| − 1). Since �̄�′ ⊇ �̄�, we know from (iii) that |ℎ𝑟(�̄�′)| ≥ |ℎ𝑟(�̄�)|. Hence, 𝜂𝑖𝑟 ≥

𝜃(|ℎ𝑟(�̄�)|)− 𝜃(|ℎ𝑟(�̄�)| − 1), and thus 𝑖 ∈ ℎ𝑟({𝑖} ∪ �̄�).

We define ℓ′ Δ
= argmin𝑚∈ℎ𝑟(�̄�′) 𝜂

𝑚
𝑟 and ℓ Δ

= argmin𝑚∈ℎ𝑟(�̄�) 𝜂
𝑚
𝑟 . We also consider two thresh-

olds 𝜇′ = 𝜃(|ℎ𝑟(�̄�′)| + 1)− 𝜃(|ℎ𝑟(�̄�′)|), and 𝜇 = 𝜃(|ℎ𝑟(�̄�)| + 1)− 𝜃(|ℎ𝑟(�̄�)|). Since �̄�′ ⊇ �̄�, from

(iii), we have |ℎ𝑟(�̄�′)| ≥ |ℎ𝑟(�̄�)| and thus 𝜇′ ≥ 𝜇. We further consider four sub-cases:
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(2-1) 𝜂ℓ
′
𝑟 ≥ 𝜇′ and 𝜂ℓ𝑟 ≥ 𝜇. From (C.9) and (C.10), ℎ𝑟({𝑖} ∪ �̄�′) = ℎ𝑟(�̄�

′) ∪ {𝑖} and

ℎ𝑟({𝑖} ∪ �̄�) = ℎ𝑟(�̄�)∪ {𝑖}. The marginal value of 𝑖 is 𝑉 𝑟(𝑖|�̄�′) = 𝜂𝑖𝑟 − 𝜇′, and 𝑉 𝑟(𝑖|�̄�) = 𝜂𝑖𝑟 − 𝜇.

Since 𝜇′ ≥ 𝜇, 𝑉 𝑟(𝑖|�̄�′) ≤ 𝑉 𝑟(𝑖|�̄�).

(2-2) 𝜂ℓ′𝑟 < 𝜇′ and 𝜂ℓ𝑟 ≥ 𝜇. Since 𝑖 ∈ ℎ𝑟({𝑖}∪ �̄�′) in Case 2, we know from (C.9) and (C.10)

that ℎ𝑟({𝑖}∪�̄�′) = ℎ𝑟(�̄�
′)∖{ℓ′}∪{𝑖} and ℎ𝑟({𝑖}∪�̄�) = ℎ𝑟(�̄�)∪{𝑖}. Therefore, 𝑉 𝑟(𝑖|�̄�′) = 𝜂𝑖𝑟−𝜂ℓ

′
𝑟

and 𝑉 𝑟(𝑖|�̄�) = 𝜂𝑖𝑟 −𝜇. We argue in this case, we must have |ℎ𝑟(�̄�′)| > |ℎ𝑟(�̄�)|. Assume for the

sake of contradiction that |ℎ𝑟(�̄�′)| = |ℎ𝑟(�̄�)|, then 𝜇′ = 𝜇 and 𝜂ℓ′𝑟 ≥ 𝜂ℓ𝑟 because �̄�′ ⊇ �̄�. However,

this contradicts the assumption of this subcase that 𝜂ℓ′𝑟 < 𝜇′ = 𝜇 ≤ 𝜂ℓ𝑟. Hence, we must

have |ℎ𝑟(�̄�′)| ≥ |ℎ𝑟(�̄�)|+ 1. Then, from (C.9), we have 𝜂ℓ′𝑟 ≥ 𝜃(|ℎ𝑟(�̄�′)|)− 𝜃(|ℎ𝑟(�̄�′)| − 1) ≥ 𝜇.

Hence, 𝑉 𝑟(𝑖|�̄�′) ≤ 𝑉 𝑟(𝑖|�̄�).

(2-3) 𝜂ℓ′𝑟 ≥ 𝜇′ and 𝜂ℓ𝑟 < 𝜇. From (C.9) and (C.10), ℎ𝑟(𝑖∪�̄�′) = ℎ𝑟(�̄�
′)∪{𝑖} and ℎ𝑟({𝑖}∪�̄�) =

ℎ𝑟(�̄�) ∖ {ℓ′} ∪ {𝑖}. Therefore, 𝑉 𝑟(𝑖|�̄�′) = 𝜂𝑖𝑟 − 𝜇′ and 𝑉 𝑟(𝑖|�̄�) = 𝜂𝑖𝑟 − 𝜂ℓ𝑟. Since 𝜇′ ≥ 𝜇 ≥ 𝜂ℓ𝑟, we

know that 𝑉 𝑟(𝑖|�̄�′) ≤ 𝑉 𝑟(𝑖|�̄�).

(2-4) 𝜂ℓ′𝑟 < 𝜇′ and 𝜂ℓ𝑟 < 𝜇. From (C.9) and (C.10), ℎ𝑟({𝑖} ∪ �̄�′) = ℎ𝑟(�̄�
′) ∖ {ℓ′} ∪ {𝑖},

and ℎ𝑟({𝑖} ∪ �̄�) = ℎ𝑟(�̄�) ∖ {ℓ} ∪ {𝑖}. Therefore, 𝑉 𝑟(𝑖|�̄�′) = 𝜂𝑖𝑟 − 𝜂ℓ
′
𝑟 and 𝑉 𝑟(𝑖|�̄�) = 𝜂𝑖𝑟 − 𝜂ℓ𝑟. If

|ℎ𝑟(�̄�′)| = |ℎ𝑟(�̄�)|, then we must have 𝜂ℓ′𝑟 ≥ 𝜂ℓ𝑟, and hence 𝑉 𝑟(𝑖|�̄�′) ≤ 𝑉 𝑟(𝑖|�̄�). On the other

hand, if |ℎ𝑟(�̄�′)| ≥ |ℎ𝑟(�̄�)| + 1, then from (C.9) we have 𝜂ℓ𝑟 ≥ 𝜃(|ℎ𝑟(�̄�′)|) − 𝜃(|ℎ𝑟(�̄�′)| − 1) ≥

𝜇 > 𝜂ℓ𝑟. Therefore, we can also conclude that 𝑉 𝑟(𝑖|�̄�′) ≤ 𝑉 𝑟(𝑖|�̄�).

From all four subcases, we can conclude that in case 2, 𝑉 𝑟(𝑖|�̄�) ≥ 𝑉 𝑟(𝑖|�̄�′).

We now prove that 𝑉 satisfies condition (ii) of Definition 5.5 by contradiction. Assume

for the sake of contradiction that (5.17) is not satisfied. Then, there must exist a group

�̄� ∈ �̄�, and 𝑖, 𝑗, 𝑘 ∈𝑀 ∖ �̄� such that:

𝑉 𝑟(𝑖, 𝑗|�̄�) + 𝑉 𝑟(𝑘|�̄�) > 𝑉 𝑟(𝑖|�̄�) + 𝑉 𝑟(𝑗, 𝑘|�̄�), ⇒ 𝑉 𝑟(𝑗|𝑖, �̄�) > 𝑉 𝑟(𝑗|𝑘, �̄�), (C.11a)

𝑉 𝑟(𝑖, 𝑗|�̄�) + 𝑉 𝑟(𝑘|�̄�) > 𝑉 𝑟(𝑗|�̄�) + 𝑉 𝑟(𝑖, 𝑘|�̄�), ⇒ 𝑉 𝑟(𝑖|𝑗, �̄�) > 𝑉 𝑟(𝑖|𝑘, �̄�). (C.11b)

We consider the following four cases:

Case A: ℎ𝑟
(︀
�̄� ∪ {𝑖, 𝑗}

)︀
= ℎ𝑟

(︀
�̄� ∪ {𝑖}

)︀
∪ {𝑗} and ℎ𝑟

(︀
�̄� ∪ {𝑗, 𝑘}

)︀
= ℎ𝑟

(︀
�̄� ∪ {𝑘}

)︀
∪ {𝑗}.

In this case, if |ℎ𝑟
(︀
�̄� ∪ {𝑖}

)︀
| ≥ |ℎ𝑟

(︀
�̄� ∪ {𝑘}

)︀
|, then 𝑉 𝑟(𝑗|𝑖, �̄�) ≤ 𝑉 𝑟(𝑗|𝑘, �̄�), which contra-

dicts (C.11a). On the other hand, if |ℎ𝑟
(︀
�̄� ∪ {𝑖}

)︀
| < |ℎ𝑟

(︀
�̄� ∪ {𝑘}

)︀
|, then we must have
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ℎ𝑟
(︀
�̄� ∪ {𝑖}

)︀
= ℎ𝑟(�̄�) and ℎ𝑟

(︀
�̄� ∪ {𝑘}

)︀
= ℎ𝑟(�̄�) ∪ {𝑘}. Therefore, 𝑉 𝑟(𝑖|𝑗, �̄�) = 0, and (C.11b)

cannot hold. We thus obtain the contradiction.

Case B: |ℎ𝑟
(︀
�̄� ∪ {𝑖, 𝑗}

)︀
| = |ℎ𝑟

(︀
�̄� ∪ {𝑖}

)︀
| and |ℎ𝑟

(︀
�̄� ∪ {𝑗, 𝑘}

)︀
| = |ℎ𝑟

(︀
�̄� ∪ {𝑘}

)︀
|. We fur-

ther consider the following four sub-cases:

(B-1). ℎ𝑟
(︀
�̄� ∪ {𝑖, 𝑗}

)︀
= ℎ𝑟

(︀
�̄� ∪ {𝑖}

)︀
and ℎ𝑟

(︀
�̄� ∪ {𝑗, 𝑘}

)︀
= ℎ𝑟

(︀
�̄� ∪ {𝑘}

)︀
. In this case,

𝑉 𝑟(𝑗|𝑖, �̄�) = 𝑉 𝑟(𝑗|𝑘, �̄�) = 0. Hence, we arrive at a contradiction against (C.11a).

(B-2). ℎ𝑟
(︀
�̄� ∪ {𝑖, 𝑗}

)︀
̸= ℎ𝑟

(︀
�̄� ∪ {𝑖}

)︀
and ℎ𝑟

(︀
�̄� ∪ {𝑗, 𝑘}

)︀
= ℎ𝑟

(︀
�̄� ∪ {𝑘}

)︀
. In this case, when

𝑗 is added to the set �̄� ∪ {𝑖}, 𝑗 replaces a rider, denoted as ℓ ∈ �̄� ∪ {𝑖}. Since ℓ is replaced,

we must have 𝜂ℓ𝑟 ≤ 𝜂𝑚𝑟 for any 𝑚 ∈ ℎ𝑟(�̄� ∪ {𝑗}). If ℓ = 𝑖, then ℎ𝑟(�̄� ∪ {𝑖, 𝑗}) = ℎ𝑟(�̄� ∪ {𝑗}).

Hence, 𝑉 𝑟(𝑖|𝑗, �̄�) = 0, and we arrive at a contradiction with (C.11b). On the other hand,

if ℓ ̸= 𝑖, then ℓ is a rider in group �̄�. This implies that ℓ ∈ �̄� should be replaced by 𝑗

when 𝑗 is added to the set {𝑘} ∪ �̄�, which contradicts the assumption of this case that

ℎ𝑟
(︀
�̄� ∪ {𝑗, 𝑘}

)︀
= ℎ𝑟

(︀
�̄� ∪ {𝑘}

)︀
.

(B-3). ℎ𝑟
(︀
�̄� ∪ {𝑖, 𝑗}

)︀
= ℎ𝑟

(︀
�̄� ∪ {𝑖}

)︀
and ℎ𝑟

(︀
�̄� ∪ {𝑗, 𝑘}

)︀
̸= ℎ𝑟

(︀
�̄� ∪ {𝑘}

)︀
. Analogous

to case B-2, we know that ℎ𝑟
(︀
�̄� ∪ {𝑗, 𝑘}

)︀
= ℎ𝑟

(︀
�̄� ∪ {𝑗}

)︀
and 𝜂𝑗𝑟 ≥ 𝜂𝑘𝑟 . Moreover, since

ℎ𝑟
(︀
�̄� ∪ {𝑖, 𝑗}

)︀
= ℎ𝑟

(︀
�̄� ∪ {𝑖}

)︀
, we must have 𝜂𝑗𝑟 ≤ 𝜂𝑖𝑟. Therefore, 𝑉 𝑟(�̄� ∪ {𝑖, 𝑗}) = 𝑉 𝑟(�̄� ∪ {𝑖}),

and 𝑉 𝑟(𝑖|𝑗, �̄�) = 𝑉 𝑟(�̄� ∪ {𝑖}) − 𝑉 𝑟(�̄� ∪ {𝑗}). Since 𝜂𝑗𝑟 ≤ 𝜂𝑖𝑟 and 𝜂𝑗𝑟 ≥ 𝜂𝑘𝑟 , we know that

𝑉 𝑟(𝑖|𝑘, �̄�) = 𝑉 𝑟(�̄� ∪ {𝑖}) − 𝑉 𝑟(�̄� ∪ {𝑘}) ≥ 𝑉 𝑟(�̄� ∪ {𝑖}) − 𝑉 𝑟(�̄� ∪ {𝑗}) = 𝑉 𝑟(𝑖|𝑗, �̄�), which

contradicts (C.11b).

(B-4). ℎ𝑟
(︀
�̄� ∪ {𝑖, 𝑗}

)︀
̸= ℎ𝑟

(︀
�̄� ∪ {𝑖}

)︀
and ℎ𝑟

(︀
�̄� ∪ {𝑗, 𝑘}

)︀
̸= ℎ𝑟

(︀
�̄� ∪ {𝑘}

)︀
. In this case, if

ℎ𝑟
(︀
�̄� ∪ {𝑖, 𝑗}

)︀
= ℎ𝑟

(︀
�̄� ∪ {𝑗}

)︀
, then 𝑉 𝑟(𝑖|𝑗, �̄�) = 𝑉 𝑟(𝑖, 𝑗, �̄�)−𝑉 𝑟(𝑗, �̄�) = 𝑉 𝑟(𝑗, �̄�)−𝑉 𝑟(𝑗, �̄�) = 0,

which contradicts (C.11b). On the other hand, if ℎ𝑟
(︀
�̄� ∪ {𝑖, 𝑗}

)︀
̸= ℎ𝑟

(︀
�̄� ∪ {𝑗}

)︀
, then one

rider ℓ ∈ �̄� must be replaced by 𝑗 when 𝑗 is added into the set �̄� ∪ {𝑖}, i.e. ℎ𝑟
(︀
�̄� ∪ {𝑖, 𝑗}

)︀
=

ℎ𝑟
(︀
�̄� ∖ {ℓ} ∪ {𝑖, 𝑗}

)︀
. Hence, 𝜂ℓ𝑟 ≤ 𝜂𝑖𝑟 and 𝜂ℓ𝑟 ≤ 𝜂𝑗𝑟 . If 𝜂ℓ𝑟 ≤ 𝜂𝑘𝑟 , then under the assump-

tion that |ℎ𝑟
(︀
�̄� ∪ {𝑗, 𝑘}

)︀
| = |ℎ𝑟

(︀
�̄� ∪ {𝑘}

)︀
| and ℎ𝑟

(︀
�̄� ∪ {𝑗, 𝑘}

)︀
̸= ℎ𝑟

(︀
�̄� ∪ {𝑘}

)︀
, we must have

ℎ𝑟
(︀
�̄� ∪ {𝑗, 𝑘}

)︀
= ℎ𝑟

(︀
�̄� ∖ {ℓ} ∪ {𝑗, 𝑘}

)︀
. Then, we can check that 𝑉 𝑟(𝑗|𝑖, 𝑏) = 𝑉 𝑟(𝑗|𝑘, 𝑏), which

contradicts (C.11a).

On the other hand, if 𝜂ℓ𝑟 > 𝜂𝑘𝑟 , then ℎ𝑟
(︀
�̄� ∪ {𝑗, 𝑘}

)︀
= ℎ𝑟

(︀
�̄� ∪ {𝑗}

)︀
. In this case, 𝑉 𝑟(𝑖|𝑗, �̄�)

is the change of trip value by replacing ℓ with 𝑖, and 𝑉 𝑟(𝑖|𝑘, �̄�) is the change of trip value

by replacing 𝑘 with 𝑖. Since 𝜂𝑘𝑟 < 𝜂ℓ𝑟, we must have 𝑉 𝑟(𝑖|𝑗, �̄�) < 𝑉 𝑟(𝑖|𝑘, �̄�), which contradicts
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(C.11b).

Case C: ℎ𝑟
(︀
�̄� ∪ {𝑖, 𝑗}

)︀
= ℎ𝑟

(︀
�̄� ∪ {𝑖}

)︀
∪ {𝑗} and |ℎ𝑟

(︀
�̄� ∪ {𝑗, 𝑘}

)︀
| = |ℎ𝑟

(︀
�̄� ∪ {𝑘}

)︀
|. We

further consider the following sub-cases:

(C-1). ℎ𝑟
(︀
�̄� ∪ {𝑗, 𝑘}

)︀
= ℎ𝑟

(︀
�̄� ∪ {𝑘}

)︀
. In this case, 𝜂𝑗𝑟 ≤ 𝜂𝑚𝑟 for all 𝑚 ∈ ℎ𝑟(�̄� ∪ {𝑘}), and

𝜂𝑗𝑟 < 𝜃(|ℎ𝑟(�̄�∪{𝑘})+1|)−𝜃(|ℎ𝑟(�̄�∪{𝑘})|). Since ℎ𝑟
(︀
�̄� ∪ {𝑖, 𝑗}

)︀
= ℎ𝑟

(︀
�̄� ∪ {𝑖}

)︀
∪{𝑗}, we know

that 𝜂𝑗𝑟 ≥ 𝜃(|ℎ𝑟(�̄�∪{𝑖})+1|)−𝜃(|ℎ𝑟(�̄�∪{𝑖})|). Since carpool disutility is non-decreasing in rider

group size, for 𝜂𝑗𝑟 to satisfy both inequalities, we must have |ℎ𝑟(�̄�∪{𝑖})| < |ℎ𝑟(�̄�∪{𝑘})|. Then,

we must have ℎ𝑟(�̄�∪{𝑖}) = ℎ𝑟(�̄�) and ℎ𝑟(�̄�∪{𝑘}) = ℎ𝑟(�̄�)∪{𝑘}. Therefore, 𝑉 𝑟(𝑖, 𝑗, �̄�) = 𝑉 𝑟(𝑗, �̄�)

and 𝑉 𝑟(𝑖, 𝑘, �̄�) = 𝑉 𝑟(𝑘, �̄�). Hence, 𝑉 𝑟(𝑖|𝑗, �̄�) = 𝑉 𝑟(𝑖|𝑘, �̄�) = 0, which contradicts (C.11b).

(C-2). ℎ𝑟
(︀
�̄� ∪ {𝑗, 𝑘}

)︀
̸= ℎ𝑟

(︀
�̄� ∪ {𝑘}

)︀
. Since |ℎ𝑟

(︀
�̄� ∪ {𝑗, 𝑘}

)︀
| = |ℎ𝑟

(︀
�̄� ∪ {𝑘}

)︀
|, 𝑗 replaces

a rider ℓ in �̄�∪{𝑘}, and 𝜂ℓ𝑟 ≤ ℓ𝑚𝑟 for all 𝑚 ∈ �̄�∪𝑘. If ℓ = 𝑘, then ℎ𝑟
(︀
�̄� ∪ {𝑗, 𝑘}

)︀
= ℎ𝑟

(︀
�̄� ∪ {𝑗}

)︀
.

Therefore, 𝑉 𝑟(𝑗|𝑖, �̄�) = 𝜂𝑗𝑟 −
(︀
𝜃(|ℎ𝑟(�̄� ∪ {𝑖})|+ 1)− 𝜃(|ℎ𝑟(�̄� ∪ {𝑖})|)

)︀
and 𝑉 𝑟(𝑗|𝑘, �̄�) = 𝜂𝑗𝑟 − 𝜂𝑘𝑟 .

If 𝜂𝑘𝑟 ≤ 𝜃(|ℎ𝑟(�̄� ∪ {𝑖})| + 1) − 𝜃(|ℎ𝑟(�̄� ∪ {𝑖})|), then (C.11a) is contradicted. Thus, 𝜂𝑘𝑟 >

𝜃(|ℎ𝑟(�̄�∪{𝑖})|+1)− 𝜃(|ℎ𝑟(�̄�∪{𝑖})|). Since 𝑘 is replaced by 𝑗 when 𝑗 is added to �̄�∪{𝑘}, we

must have 𝜂𝑘𝑟 < 𝜃(|ℎ𝑟(�̄�∪ {𝑗})|+1)− 𝜃(|ℎ𝑟(�̄�∪ {𝑗})|). For 𝜂𝑘𝑟 to satisfy both inequalities, we

must have |ℎ𝑟(�̄�∪{𝑗})| > |ℎ𝑟(�̄�∪{𝑖})|. Hence, ℎ𝑟(�̄�∪{𝑗}) = ℎ𝑟(�̄�)∪{𝑗} and ℎ𝑟(�̄�∪{𝑖}) = ℎ𝑟(�̄�).

Then, 𝑉 𝑟(𝑖|𝑗, �̄�) = 𝑉 𝑟(�̄� ∪ {𝑖, 𝑗})− 𝑉 𝑟(�̄� ∪ {𝑗}) = 0, which contradicts (C.11b).

On the other hand, if ℓ ∈ �̄�, then we know from (C.10) that 𝜂ℓ𝑟 < 𝜃(|ℎ𝑟
(︀
�̄� ∪ {𝑘}

)︀
| +

1)− 𝜃(|ℎ𝑟
(︀
�̄� ∪ {𝑘}

)︀
|). Additionally, since ℎ𝑟

(︀
�̄� ∪ {𝑖, 𝑗}

)︀
= ℎ𝑟

(︀
�̄� ∪ {𝑖}

)︀
∪ {𝑗}, we know from

(C.9) that 𝜂ℓ𝑟 ≥ 𝜃(|ℎ𝑟
(︀
�̄� ∪ {𝑖}

)︀
| + 1) − 𝜃(|ℎ𝑟

(︀
�̄� ∪ {𝑖}

)︀
|). If 𝜂ℓ𝑟 satisfies both inequalities,

then we must have |ℎ𝑟
(︀
�̄� ∪ {𝑖}

)︀
| < |ℎ𝑟

(︀
�̄� ∪ {𝑘}

)︀
|. Therefore, ℎ𝑟

(︀
�̄� ∪ {𝑖}

)︀
= ℎ𝑟(�̄�). Then,

𝑉 𝑟(𝑖|𝑗, �̄�) = 0, which contradicts (C.11b).

Case D: |ℎ𝑟
(︀
�̄� ∪ {𝑖, 𝑗}

)︀
| = |ℎ𝑟

(︀
�̄� ∪ {𝑖}

)︀
| and ℎ𝑟

(︀
�̄� ∪ {𝑗, 𝑘}

)︀
= ℎ𝑟

(︀
�̄� ∪ {𝑘}

)︀
∪ {𝑗}. We

further consider the following sub-cases:

(D-1). ℎ𝑟
(︀
�̄� ∪ {𝑖, 𝑗}

)︀
= ℎ𝑟

(︀
�̄� ∪ {𝑖}

)︀
. In this case, analogous to (C-1), we know that

|ℎ𝑟(�̄� ∪ {𝑘})| < |ℎ𝑟(�̄� ∪ {𝑖})|. Therefore, ℎ𝑟(�̄� ∪ {𝑘}) = ℎ𝑟(�̄�) and ℎ𝑟(�̄� ∪ {𝑖}) = ℎ𝑟(�̄�) ∪

{𝑖}. Therefore, 𝜂𝑘𝑟 < 𝜂𝑖𝑟. Additionally, since ℎ𝑟
(︀
�̄� ∪ {𝑖, 𝑗}

)︀
= ℎ𝑟

(︀
�̄� ∪ {𝑖}

)︀
, 𝜂𝑗𝑟 < 𝜂𝑖𝑟. Then,

𝑉 𝑟(𝑖|𝑗, �̄�) = 𝑉 𝑟(𝑖, �̄�) − 𝑉 𝑟(𝑗, �̄�) and 𝑉 𝑟(𝑖|𝑘, �̄�) = 𝑉 𝑟(𝑖, �̄�) − 𝑉 𝑟(�̄�). Since 𝑉 is monotonic,

𝑉 𝑟(𝑗, �̄�) ≥ 𝑉 𝑟(�̄�) so that 𝑉 𝑟(𝑖|𝑗, �̄�) ≤ 𝑉 𝑟(𝑖|𝑘, �̄�), which contradicts (C.11b).

(D-2). ℎ𝑟
(︀
�̄� ∪ {𝑖, 𝑗}

)︀
̸= ℎ𝑟

(︀
�̄� ∪ {𝑖}

)︀
. Since |ℎ𝑟

(︀
�̄� ∪ {𝑖, 𝑗}

)︀
| = |ℎ𝑟

(︀
�̄� ∪ {𝑖}

)︀
|, 𝑗 replaces
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the rider ℓ ∈ �̄� ∪ {𝑖} such that 𝜂ℓ𝑟 ≤ 𝜂𝑚𝑟 for all 𝑚 ∈ ℎ𝑟(�̄� ∪ {𝑖}). If ℓ = 𝑖, then analogous

to case C-2, we know that if (C.11b) is satisfied, then |ℎ𝑟(�̄� ∪ {𝑗})| < |ℎ𝑟(�̄� ∪ {𝑘})|. Hence,

ℎ𝑟(�̄� ∪ {𝑗}) = ℎ𝑟(�̄�) and 𝑉 (𝑗|𝑖, �̄�) = 0, which contradicts (C.11a).

On the other hand, if ℓ ∈ �̄�, then again analogous to case C-2, we know that |ℎ𝑟
(︀
�̄� ∪ {𝑘}

)︀
| <

|ℎ𝑟
(︀
�̄� ∪ {𝑖}

)︀
|. Therefore, ℎ𝑟

(︀
�̄� ∪ {𝑘}

)︀
= ℎ𝑟(�̄�), and ℎ𝑟

(︀
�̄� ∪ {𝑖}

)︀
= ℎ𝑟(�̄�) ∪ {𝑖}. Then,

𝑉 𝑟(𝑗|𝑖, �̄�) = 𝑉 𝑟(�̄� ∖ {ℓ} ∪ {𝑖, 𝑗})− 𝑉 𝑟(𝑖, �̄�), and 𝑉 𝑟(𝑗|𝑘, �̄�) = 𝑉 𝑟(�̄�∪ {𝑗})− 𝑉 𝑟(�̄�). Since ℓ ̸= 𝑖,

𝑉 𝑟(𝑖|𝑗, �̄�) = 𝑉 𝑟(�̄� ∖ {ℓ}∪{𝑖, 𝑗})−𝑉 𝑟(𝑗, �̄�) = 𝜂𝑖𝑟− 𝜂ℓ𝑟. Additionally, since ℎ𝑟(𝑖, �̄�) = ℎ𝑟(�̄�)∪{𝑖},

𝑉 𝑟(𝑖|𝑘, �̄�) = 𝑉 𝑟(𝑖, �̄�)−𝑉 𝑟(�̄�) = 𝜂𝑖𝑟−(𝜃(|ℎ𝑟(�̄�)|+1)−𝜃(|ℎ𝑟(�̄�)|)). Since ℎ𝑟(�̄�∪{𝑖}) = ℎ𝑟(�̄�)∪{𝑖}

and ℓ ∈ �̄�, we know from (C.9) that 𝜂ℓ𝑟 ≥ 𝜃(|ℎ𝑟(�̄�)| + 1) − 𝜃(|ℎ𝑟(�̄�)|). Therefore, 𝑉 𝑟(𝑖|𝑗, �̄�) ≤

𝑉 𝑟(𝑖|𝑘, �̄�), which contradicts (C.11b).

From all above four cases, we can conclude that condition (ii) of Definition 5.5 is satisfied.

We can thus conclude that 𝑉 satisfies gross substitutes condition. �

C.3 Proofs of Section 5.6

Proof of Lemma 5.9. We first show that for any optimal utility vector 𝑢* ∈ 𝑈*, there

exists a vector 𝜆* such that (𝑢*, 𝜆*) is an optimal solution of (D𝑘*). Since 𝑢* ∈ 𝑈*, there

must exist a toll price vector 𝜏 * such that (𝑢*, 𝜏 *) is an optimal solution of (D). Consider

𝜆* = (𝜆*𝑟)𝑟∈𝑅* as follows:

𝜆*𝑟 =
∑︁
𝑒∈𝑟

𝜏 *𝑒 , ∀𝑟 ∈ 𝑅*. (C.12)

Since (𝑢*, 𝜏 *) is feasible in (D), we can check that (𝑢*, 𝜆*) is also a feasible solution of (D𝑘*).

Moreover, since (𝑥*, 𝑢*, 𝜏 *) satisfies complementary slackness conditions with respect to (LP)

and (D), (𝑥*, 𝑢*, 𝜆*) also satisfies complementary slackness conditions with respect to (LP𝑘*)

and (D𝑘*). Therefore, (𝑢𝑚*, 𝜆*) is an optimal solution of (D𝑘*).

We next show that for any optimal solution (𝑢*, 𝜆*) of (D𝑘*), we can find a toll price

vector 𝜏 * such that (𝑢*, 𝜏 *) is an optimal solution of (D) (i.e. 𝑢* ∈ 𝑈*). We prove this

argument by mathematical induction. To begin with, if the network only has a single edge

𝐸 = {𝑒}, then for any optimal solution (𝑢*, 𝜆*), we can check that (𝑢*, 𝜏 *) where 𝜏 *𝑒 = 𝜆*𝑒 is
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an optimal solution of (LP). We now prove that if this argument holds on two series-parallel

networks 𝐺1 and 𝐺2, then it also holds on the network constructed by connecting 𝐺1 and

𝐺2 in parallel or in series. We prove the case of parallel connection and series connection

separately as follows:

(Case 1). The network 𝐺 is constructed by connecting 𝐺1 and 𝐺2 in parallel. In each

network 𝐺𝑖 (𝑖 = 1, 2), we define 𝐸𝑖 as the set of edges, 𝑅𝑖 as the set of routes. We also define

𝑘𝑖* as the optimal route capacity vector computed from Alg. 1 in 𝐺𝑖, and 𝑅𝑖* = {𝑅𝑖|𝑘𝑖* > 0}

as the set of routes with positive capacity in 𝑘𝑖*. Since 𝐺1 and 𝐺2 are connected in parallel,

we have 𝐸1 ∪ 𝐸2 = 𝐸, 𝑅1 ∪𝑅2 = 𝑅, 𝑘* = (𝑘1*, 𝑘2*), and 𝑅* = 𝑅1* ∪𝑅2*.

For each 𝑖 = 1, 2, we consider the sub-problem, where riders organize trips on the sub-

network 𝐺𝑖. For any (𝑥*, 𝑢*, 𝜆*) on the original network 𝐺, we define the trip vector 𝑥𝑖* =(︀
𝑥*𝑟𝑖(𝑏)

)︀
𝑟𝑖∈𝑅𝑖,𝑏∈𝐵 and the route toll price vector 𝜆𝑖* =

(︀
𝜏 *𝑟𝑖
)︀
𝑟𝑖∈𝑅𝑖 for the subnetwork 𝐺𝑖. We

can check that the vector 𝑥𝑖* is a feasible solution of (LP𝑘*) for the subproblem, where

the route set 𝑅* in the original problem (LP𝑘*) is replaced by 𝑅𝑖*, and 𝑘* is replaced

by 𝑘𝑖*, and the vector (𝑢*, 𝜆𝑖*) is a feasible solution of (LP𝑘*). Additionally, since the

original optimal solutions 𝑥* and (𝑢*, 𝜆*) satisfy the complementary slackness conditions of

constraints (LP.a)-(LP.b) and (D.a) for all 𝑚 ∈𝑀 and all 𝑟 ∈ 𝑅* = 𝑅1*∪𝑅2*, we know that

𝑥𝑖* and (𝑢*, 𝜆𝑖*) must also satisfy the complementary slackness conditions of these constraints

in each subproblem. Therefore, 𝑥𝑖* is an optimal integer solution of (LP𝑘*) and (𝑢*, 𝜆𝑖*) is

an optimal solution of (D𝑘*) in the subproblem 𝑃 𝑖.

From our assumption of mathematical induction, there exists a toll price vector 𝜏 𝑖* =

(𝜏 *𝑒 )𝑒∈𝐸𝑖 such that (𝑢*, 𝜏 𝑖*) is an optimal solution of (D) in each subproblem 𝑖 with subnetwork

𝐺𝑖. Thus, (𝑢*, 𝜏 𝑖*) satisfies the feasibility constraints in (D) of each subproblem 𝑖, and 𝑥𝑖* and

(𝑢*, 𝜏 𝑖*) satisfy the complementary slackness conditions with respect to constraints (LP.a)

for each 𝑚 ∈𝑀 , (LP.b) for each 𝑒 ∈ 𝐸𝑖, (D.a) for each 𝑟𝑖 ∈ 𝑅𝑖. Consider the toll price vector

𝜏 * = (𝜏 1*, 𝜏 2*). Since 𝑅 = 𝑅1 ∪𝑅2 and 𝐸 = 𝐸1 ∪𝐸2, (𝑢*, 𝜏 *) must be feasible in (D) on the

original network, and 𝑥*, (𝑢*, 𝜏 *) must satisfy the complementary slackness conditions with

respect to constraints (LP.a) – (LP.b), and (D.a). Therefore, we can conclude that for any

optimal solution (𝑢*, 𝜏 *) of (D𝑘*), there exists a toll price vector 𝜏 * such that (𝑢*, 𝜏 *) is an

optimal solution of (D) in network 𝐺.
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(Case 2). The network 𝐺 is constructed by connecting 𝐺1 and 𝐺2 in series. Same as that in

case 1, we define 𝐸𝑖 as the set of edges in the subnetwork 𝐺𝑖 (𝑖 = 1, 2), and 𝑅𝑖 as the set of

routes. Since 𝐺1 and 𝐺2 are connected in series, we have 𝐸 = 𝐸1 ∪ 𝐸2, and 𝑅 = 𝑅1 ×𝑅2.

We define a sub-trip (𝑏, 𝑟𝑖) as the trip in the sub-network 𝐺𝑖 where rider group 𝑏 takes

route 𝑟𝑖 ∈ 𝑅𝑖. Analogous to the value of trip defined in (5.2), the value of each sub-trip

(𝑏, 𝑟𝑖) ∈ 𝐵 ×𝑅𝑖 is defined as:

𝑉 𝑖
𝑟𝑖(𝑏) =

∑︁
𝑚∈𝑏

(︀
𝛼𝑖𝑚 − 𝛽𝑚𝑡𝑟𝑖

)︀
− |𝑏| (𝜋(|𝑏|) + 𝛾(|𝑏|)𝑡𝑟𝑖 + 𝜎 + 𝛿𝑡𝑟𝑖) , ∀𝑏 ∈ 𝐵, ∀𝑟𝑖 ∈ 𝑅𝑖, ∀𝑖 = 1, 2,

(C.13)

where 𝛼𝑖𝑚 is the value for rider𝑚 to travel from the origin to the destination of the subnetwork

𝐺𝑖. The value of 𝛼𝑖𝑚 can be any number in [0, 𝛼𝑚] as long as 𝛼1
𝑚 + 𝛼2

𝑚 = 𝛼𝑚. We can check

that 𝑉 1
𝑟1(𝑏) + 𝑉 2

𝑟2(𝑏) = 𝑉𝑟1𝑟2(𝑏) is the value of the entire trip (𝑏, 𝑟1𝑟2) of the original network.

We denote the trip organization vector on 𝐺𝑖 as 𝑥𝑖 =
(︀
𝑥𝑖𝑟𝑖(𝑏)

)︀
𝑟𝑖∈𝑅𝑖,𝑏∈𝐵, where 𝑥𝑖𝑟𝑖(𝑏) = 1

if the sub-trip (𝑏, 𝑟𝑖) is organized in 𝐺𝑖, and 0 otherwise. The optimal trip organization

problem (LP) can be equivalently presented by (𝑥1, 𝑥2) as follows:

max
𝑥1,𝑥2

𝑆(𝑥1, 𝑥2) =
∑︁
𝑏∈𝐵

∑︁
𝑟1∈𝑅1

𝑉 1
𝑟1(𝑏)𝑥

1
𝑟1(𝑏) +

∑︁
𝑏∈𝐵

∑︁
𝑟2∈𝑅2

𝑉 2
𝑟2(𝑏)𝑥

2
𝑟2(𝑏)

𝑠.𝑡.
∑︁
𝑟𝑖∈𝑅𝑖

∑︁
𝑏∋𝑚

𝑥𝑖𝑟𝑖(𝑏) ≤ 1, ∀𝑚 ∈𝑀, ∀𝑖 = 1, 2 (C.14a)

∑︁
𝑟𝑖∋𝑒

∑︁
𝑏∈𝐵

𝑥𝑖𝑟𝑖(𝑏) ≤ 𝑞𝑒, ∀𝑒 ∈ 𝐸𝑖, ∀𝑖 = 1, 2 (C.14b)

∑︁
𝑟1∈𝑅1

𝑥1𝑟1(𝑏) =
∑︁
𝑟2∈𝑅2

𝑥1𝑟2(𝑏), ∀𝑏 ∈ 𝐵, (C.14c)

𝑥𝑖𝑟𝑖(𝑏) ≥ 0, ∀𝑏 ∈ 𝐵, ∀𝑟𝑖 ∈ 𝑅𝑖, ∀𝑖 = 1, 2, (C.14d)

where (C.14a) and (C.14b) are the constraints of 𝑥𝑖 in the trip organization sub-problem on

𝐺𝑖. The constraint (C.14c) ensures that any rider group that takes a route in 𝐺1 (resp. 𝐺2)

must also takes a route in 𝐺2 (resp. 𝐺1) to complete a trip in the original network 𝐺.

We denote 𝑘𝑖* as the optimal capacity vector of sub-network 𝐺𝑖 computed from Alg. 1.

Since Alg. 1 allocates capacity on routes in increasing order of their travel time, and the
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total travel time of each route is 𝑡𝑟1𝑟2 = 𝑡𝑟1 + 𝑡𝑟2 , we know that 𝑘1*𝑟1 =
∑︀

𝑟2∈𝑅2 𝑘*𝑟1𝑟2 for all

𝑟1 ∈ 𝑅1 and 𝑘2*𝑟2 =
∑︀

𝑟1∈𝑅1 𝑘*𝑟1𝑟2 for all 𝑟2 ∈ 𝑅2. Analogous to the proof of Lemma 5.1, any

optimal integer solution of the following linear program is an optimal solution of (C.14):

max
𝑥1,𝑥2

𝑆(𝑥1, 𝑥2) =
∑︁
𝑏∈𝐵

∑︁
𝑟1∈𝑅1

𝑉 1
𝑟1(𝑏)𝑥

1
𝑟1(𝑏) +

∑︁
𝑏∈𝐵

∑︁
𝑟2∈𝑅2

𝑉 2
𝑟2(𝑏)𝑥

2
𝑟2(𝑏)

𝑠.𝑡.
∑︁
𝑟𝑖∈𝑅𝑖

∑︁
𝑏∋𝑚

𝑥𝑖𝑟𝑖(𝑏) ≤ 1, ∀𝑚 ∈𝑀, ∀𝑖 = 1, 2, (C.15a)

∑︁
𝑏∈𝐵

𝑥𝑖𝑟𝑖(𝑏) ≤ 𝑘𝑖*𝑟𝑖 , ∀𝑟𝑖 ∈ 𝑅𝑖, ∀𝑖 = 1, 2, (C.15b)

∑︁
𝑟1∈𝑅1

𝑥1𝑟1(𝑏) =
∑︁
𝑟2∈𝑅2

𝑥1𝑟2(𝑏), ∀𝑏 ∈ 𝐵, (C.15c)

𝑥𝑖𝑟𝑖(𝑏) ≥ 0, ∀𝑏 ∈ 𝐵, ∀𝑟𝑖 ∈ 𝑅𝑖, ∀𝑖 = 1, 2. (C.15d)

We note that a trip (𝑏, 𝑟1𝑟2) is organized if and only if both 𝑥1𝑟1(𝑏) = 1 and 𝑥2𝑟2(𝑏) = 1.

Thus, any (𝑥1, 𝑥2) is feasible in (C.14) (resp. (C.15)) if and only if there exists a feasible

𝑥 in (LP) (resp. (LP𝑘*)) such that 𝑥1𝑟1(𝑏) =
∑︀

𝑟2∈𝑅2 𝑥𝑟1𝑟2(𝑏) and 𝑥2𝑟2(𝑏) =
∑︀

𝑟1∈𝑅1 𝑥𝑟1𝑟2(𝑏).

Moreover, the value of the objective function 𝑆 (𝑥1, 𝑥2) equals to 𝑆(𝑥) with the corresponding

𝑥:

𝑆(𝑥1, 𝑥2)

(C.13)
=

∑︁
𝑏∈𝐵

∑︁
𝑟1∈𝑅1

𝑥1𝑟1(𝑏)

(︃∑︁
𝑚∈𝑏

𝛼1
𝑚

)︃
−
∑︁
𝑏∈𝐵

∑︁
𝑟1∈𝑅1

(︃∑︁
𝑚∈𝑏

𝛽𝑚𝑡𝑟1 + |𝑏| (𝜋(|𝑏|) + 𝛾(|𝑏|)𝑡𝑟1 + 𝜎 + 𝛿𝑡𝑟1)

)︃
𝑥1𝑟1(𝑏)

+
∑︁
𝑏∈𝐵

∑︁
𝑟2∈𝑅2

𝑥2𝑟2(𝑏)

(︃∑︁
𝑚∈𝑏

𝛼2
𝑚

)︃
−
∑︁
𝑏∈𝐵

∑︁
𝑟2∈𝑅2

(︃∑︁
𝑚∈𝑏

𝛽𝑚𝑡𝑟2 + |𝑏| (𝜋(|𝑏|) + 𝛾(|𝑏|)𝑡𝑟2 + 𝜎 + 𝛿𝑡𝑟2)

)︃
𝑥2𝑟2(𝑏)

(C.14c)
=

∑︁
𝑏∈𝐵

∑︁
𝑟∈𝑅

𝑥𝑟(𝑏)

(︃∑︁
𝑚∈𝑏

𝛼𝑚

)︃
−
∑︁
𝑏∈𝐵

∑︁
𝑟1∈𝑅1

(︃∑︁
𝑚∈𝑏

𝛽𝑚𝑡𝑟1 + |𝑏| (𝜋(|𝑏|) + 𝛾(|𝑏|)𝑡𝑟1 + 𝜎 + 𝛿𝑡𝑟1)

)︃ ∑︁
𝑟2∈𝑅2

𝑥𝑟1𝑟2(𝑏)

−
∑︁
𝑏∈𝐵

∑︁
𝑟2∈𝑅2

(︃∑︁
𝑚∈𝑏

𝛽𝑚𝑡𝑟2 + |𝑏| (𝜋(|𝑏|) + 𝛾(|𝑏|)𝑡𝑟2 + 𝜎 + 𝛿𝑡𝑟2)

)︃ ∑︁
𝑟1∈𝑅1

𝑥𝑟1𝑟2(𝑏)

=
∑︁
𝑏∈𝐵

∑︁
𝑟∈𝑅

𝑥𝑟(𝑏)

(︃∑︁
𝑚∈𝑏

𝛼𝑚 − 𝛽𝑚𝑡𝑟 − |𝑏| (𝜋(|𝑏|) + 𝛾(|𝑏|)𝑡𝑟 + 𝜎 + 𝛿𝑡𝑟)

)︃
= 𝑆(𝑥)

Therefore, given any optimal solution 𝑥* of (LP𝑘*), (𝑥1*, 𝑥2*), where 𝑥1*𝑟1(𝑏) =
∑︀

𝑟2∈𝑅2 𝑥*𝑟1𝑟2(𝑏)

and 𝑥2*𝑟2(𝑏) =
∑︀

𝑟1∈𝑅1 𝑥*𝑟1𝑟2(𝑏), is an optimal integer solution of (C.15). Additionally, (𝑥1*, 𝑥2*)
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is also an optimal solution of (C.14). Hence, the optimal values of (LP), (C.14), (LP𝑘*) and

(C.15) are the same.

We introduce the dual variables 𝑢𝑖 = (𝑢𝑖𝑚)𝑚∈𝑀,𝑖=1,2 for constraints (C.14a), 𝜏 𝑖 = (𝜏 𝑖𝑒)𝑒∈𝐸𝑖

for (C.14b) of each 𝑖 = 1, 2, and 𝜒 = (𝜒(𝑏))𝑏∈𝐵 for (C.14c). Then, the dual program of

(C.14) can be written as follows:

min
𝑢1,𝑢2,𝜏1,𝜏2,𝜒

𝑈 =
∑︁
𝑚∈𝑀

𝑢1𝑚 +
∑︁
𝑚∈𝑀

𝑢2𝑚 +
∑︁
𝑒∈𝐸1

𝑞𝑒𝜏
1
𝑒 +

∑︁
𝑒∈𝐸2

𝑞𝑒𝜏
2
𝑒

𝑠.𝑡.
∑︁
𝑚∈𝑏

𝑢1𝑚 +
∑︁
𝑒∈𝑟1

𝜏 1𝑒 + 𝜒(𝑏) ≥ 𝑉 1
𝑟1(𝑏), ∀𝑏 ∈ 𝐵, ∀𝑟1 ∈ 𝑅1, (C.16a)

∑︁
𝑚∈𝑏

𝑢2𝑚 +
∑︁
𝑒∈𝑟2

𝜏 2𝑒 − 𝜒(𝑏) ≥ 𝑉 2
𝑟2(𝑏), ∀𝑏 ∈ 𝐵, ∀𝑟2 ∈ 𝑅2, (C.16b)

𝑢𝑖𝑚, 𝜏
𝑖
𝑒 ≥ 0, ∀𝑚 ∈𝑀, ∀𝑒 ∈ 𝐸, 𝑖 = 1, 2. (C.16c)

Similarly, we obtain the dual program of (C.15) with the same dual variables except for

the route toll price vector 𝜆𝑖 =
(︀
𝜆𝑖𝑟𝑖
)︀
𝑟𝑖∈𝑅𝑖*,𝑖=1,2

for (C.15b):

min
𝑢1,𝑢2,𝜆1,𝜆2,𝜒

𝑈 =
∑︁
𝑚∈𝑀

𝑢1𝑚 +
∑︁
𝑚∈𝑀

𝑢2𝑚 +
∑︁
𝑟1∈𝑅1*

𝑘1*𝑟1𝜆
1
𝑟1 +

∑︁
𝑟2∈𝑅2*

𝑘2*𝑟2𝜆
2
𝑟2

𝑠.𝑡.
∑︁
𝑚∈𝑏

𝑢1𝑚 + 𝜆1𝑟1 + 𝜒(𝑏) ≥ 𝑉 1
𝑟1(𝑏), ∀𝑏 ∈ 𝐵, ∀𝑟1 ∈ 𝑅1*, (C.17a)

∑︁
𝑚∈𝑏

𝑢2𝑚 + 𝜆2𝑟2 − 𝜒(𝑏) ≥ 𝑉 2
𝑟2(𝑏), ∀𝑏 ∈ 𝐵, ∀𝑟2 ∈ 𝑅2*, (C.17b)

𝑢𝑖𝑚, 𝜆
𝑖
𝑟𝑖 ≥ 0, ∀𝑚 ∈𝑀, ∀𝑟𝑖 ∈ 𝑅𝑖*, 𝑖 = 1, 2. (C.17c)

From strong duality, we know that the optimal value of (C.17) (resp. (D𝑘*)) is the same as

that of (C.15) (resp. (LP𝑘*)). Since the optimal values of (LP𝑘*) and (C.15) are identical,

we know that the optimal values of (C.17) must be equal to that of (D𝑘*). Additionally,

we can check that for any feasible solution (𝑢1, 𝑢2, 𝜆1, 𝜆2, 𝜒) of (C.17) must correspond to a

feasible solution (𝑢, 𝜆) of (D𝑘*) such that 𝑢𝑚 = 𝑢1𝑚 + 𝑢2𝑚 and 𝜆𝑟1𝑟2 = 𝜆1𝑟1 + 𝜆2𝑟2 . Then, for

each (𝑢*, 𝜆*), we consider the optimal solution (𝑢1*, 𝑢2*, 𝜆1*, 𝜆2*, 𝜒*) of (C.17), and define

𝑉 1
𝑟1(𝑏) = 𝑉 1

𝑟1(𝑏)− 𝜒*(𝑏), 𝑉 2
𝑟2(𝑏) = 𝑉 2

𝑟2(𝑏) + 𝜒*(𝑏) for each 𝑟1 ∈ 𝑅1, 𝑟2 ∈ 𝑅2 and 𝑏 ∈ 𝐵. Then,
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for each 𝑖 = 1, 2, (𝑢𝑖*, 𝜆𝑖*) is an optimal solution of the following linear program:

min
𝑢𝑖,𝜆𝑖

𝑈 𝑖 =
∑︁
𝑚∈𝑀

𝑢𝑖𝑚 +
∑︁
𝑟𝑖∈𝑅𝑖*

𝑘𝑖*𝑟𝑖𝜆
𝑖
𝑟𝑖

𝑠.𝑡.
∑︁
𝑚∈𝑏

𝑢𝑖𝑚 + 𝜆𝑖𝑟𝑖 ≥ 𝑉 𝑖
𝑟𝑖(𝑏), ∀𝑏 ∈ 𝐵, ∀𝑟𝑖 ∈ 𝑅𝑖*, (C.18a)

𝑢𝑖𝑚, 𝜆
𝑖
𝑟𝑖 ≥ 0, ∀𝑚 ∈𝑀, ∀𝑟𝑖 ∈ 𝑅𝑖*. (C.18b)

From the assumption of the mathematical induction, there exists toll price vector 𝜏 𝑖* such

that (𝑢𝑖*, 𝜏 𝑖*) is an optimal dual solution of the trip organization problem on the sub-network

given 𝑉 value function for each 𝑖 = 1, 2:

min
𝑢𝑖,𝜆𝑖

𝑈 =
∑︁
𝑚∈𝑀

𝑢𝑖𝑚 +
∑︁
𝑒∈𝐸𝑖

𝑞𝑒𝜏
𝑖
𝑒

𝑠.𝑡.
∑︁
𝑚∈𝑏

𝑢𝑖𝑚 +
∑︁
𝑒∈𝑟𝑖

𝜏 𝑖𝑒 ≥ 𝑉𝑟𝑖(𝑏), ∀𝑏 ∈ 𝐵, ∀𝑟𝑖 ∈ 𝑅𝑖,

𝑢𝑖𝑚, 𝜏
𝑖
𝑒 ≥ 0, ∀𝑚 ∈𝑀, ∀𝑒 ∈ 𝐸𝑖.

(C.19)

Since the objective function (C.16) is the sum of the objective functions in (C.19) for 𝑖 = 1, 2,

and the constraints are the combination of the constraints in the two linear programs, we

know that (𝑢1*, 𝑢2*, 𝜏 1*, 𝜏 2*, 𝜒*) must be an optimal solution of (C.16). We consider the

toll price vector 𝜏 * = (𝜏 1*, 𝜏 2*). Since (𝑢1*, 𝑢2*, 𝜏 1*, 𝜏 2*, 𝜒*) satisfies constraints (C.16a) and

(C.16b) and 𝑢𝑚* = 𝑢1*𝑚 + 𝑢2*𝑚 for all 𝑚 ∈ 𝑀 , (𝑢*, 𝜏 *) is a feasible solution of (D) on the

original network 𝐺. Furthermore, since (𝑢*, 𝜏 *) achieves the same objective value as the

optimal solution (𝑢1*, 𝑢2*, 𝜏 1*, 𝜏 2*, 𝜒*) in (C.17), (𝑢*, 𝜏 *) must be an optimal solution of (D)

on the network 𝐺.

Finally, we conclude from cases 1 and 2 that in any series-parallel network, for any

optimal solution (𝑢*, 𝜆*) of (D𝑘*), there must exist a toll price vector 𝜏 * such that (𝑢*, 𝜏 *)

is an optimal solution of (D). �

Proof of Lemma 5.10. For any 𝑢* ∈ 𝑈*, we define 𝜆* = (𝜆*)𝑟∈𝑅 as follows:

𝜆*𝑟 = max
�̄�∈�̄�

𝑉 𝑟(�̄�)−
∑︁
𝑚∈�̄�

𝑢𝑚*, ∀𝑟 ∈ 𝑅*.
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Analogous to the proof of Lemma 5.3, we can show that (𝑦*, 𝑢*) is a Walrasian equilibrium

if and only if (𝑦*, 𝑢*, 𝜆*) satisfies the feasibility constraints of (LP𝑘*) and (D𝑘*) and the

complementary slackness conditions. Therefore, (𝑢*, 𝜆*) must be an optimal solution of

(D𝑘*) and 𝑢* ∈ 𝑈*. �
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Appendix D

Supplementary Material for Chapter 6

D.1 Proofs of Section 6.3

Proof of Lemma 6.1. We first show that the strategy in (6.5) is feasible. Since 𝜌(1) ≤ 1,

and for any 𝑖 = 1, . . . ,𝑚 − 1, 𝜌(𝑖) − 𝜌(𝑖+1) > 0, 𝜎𝑑(𝑠𝑑) is non-negative for any 𝑠𝑑 ∈ 𝑆𝑑.

Additionally,

∑︁
𝑠𝑑∈𝑆𝑑

𝜎𝑑(𝑠𝑑) = 𝜎𝑑 (∅) +
𝑚−1∑︁
𝑖=1

𝜎𝑑
(︀{︀
𝑒 ∈ 𝐸|𝜌𝑒 ≥ 𝜌(𝑖)

}︀)︀
+ 𝜎𝑑

(︀{︀
𝑒 ∈ 𝐸|𝜌𝑒 ≥ 𝜌(𝑚)

}︀)︀
=
(︀
1− 𝜌(1)

)︀
+

𝑚−1∑︁
𝑖=1

(︀
𝜌(𝑖) − 𝜌(𝑖+1)

)︀
+ 𝜌(𝑚)

= 1− 𝜌(1) + 𝜌(1) − 𝜌(𝑚) + 𝜌(𝑚)

= 1.

Thus, 𝜎𝑑 in (6.5) is a feasible strategy of the defender. Now we check that 𝜎𝑑 in (6.5) indeed

induces 𝜌. Consider any 𝑒 ∈ 𝐸 such that 𝜌𝑒 = 0. Then, since 𝑒 /∈
{︀
𝐸|𝜌𝑒 ≥ 𝜌(𝑖)

}︀
for any 𝑖 =

1, . . . ,𝑚, and 𝑒 /∈ ∅, for any 𝑠𝑑 ∋ 𝑒, we must have 𝜎𝑑(𝑠𝑑) = 0. Thus,
∑︀

𝑠𝑑∋𝑒 𝜎𝑑(𝑠𝑑) = 0 = 𝜌𝑒.

Finally, for any 𝑗 = 1, . . . ,𝑚, consider any 𝑒 ∈ 𝐸, where 𝜌𝑒 = 𝜌(𝑗):

∑︁
𝑠𝑑∋𝑒

𝜎𝑑(𝑠𝑑) =
𝑚∑︁
𝑖=𝑗

𝜎𝑑
(︀{︀
𝑒 ∈ 𝐸|𝜌𝑒 ≥ 𝜌(𝑖)

}︀)︀
= 𝜌(𝑗).
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Therefore, 𝜎𝑑 in (6.5) induces 𝜌. �

Proof of Proposition 6.1. We prove the result by the principal of iterated dominance.

We first show that any 𝑠𝑑 such that 𝑠𝑑 * �̄� is strictly dominated by the strategy 𝑠′𝑑 = 𝑠𝑑∩ �̄�.

Consider any pure strategy of the attacker, 𝑠𝑎 ∈ 𝐸, the utilities of the defender with strategy

𝑠𝑑 and 𝑠′𝑑 are as follows:

𝑢𝑑(𝑠𝑑, 𝑠𝑎) = −𝐶(𝑠𝑑, 𝑠𝑎)− |𝑠𝑑|𝑝𝑑 = −𝐶(𝑠𝑑, 𝑠𝑎)− (|𝑠′𝑑|+ |𝑠𝑑 ∖ �̄�|)𝑝𝑑,

𝑢𝑑(𝑠
′

𝑑, 𝑠𝑎) = −𝐶(𝑠
′

𝑑, 𝑠𝑎)− |𝑠
′

𝑑|𝑝𝑑.

If 𝑠𝑎 ∈ �̄� or 𝑠𝑎 /∈ 𝑠𝑑 or 𝑠𝑎 = ∅, then 𝐶(𝑠𝑑, 𝑠𝑎) = 𝐶(𝑠
′

𝑑, 𝑠𝑎), and thus 𝑈𝑑(𝑠𝑑, 𝑠𝑎) < 𝑈𝑑(𝑠
′

𝑑, 𝑠𝑎).

If 𝑠𝑎 = 𝑒 ∈ 𝑠𝑑 ∖ �̄�, then 𝑒 /∈ �̄�, and 𝐶𝑒 ≤ 𝐶∅. We have 𝐶(𝑠𝑑, 𝑠𝑎) = 𝐶∅ ≥ 𝐶𝑒 = 𝐶(𝑠
′

𝑑, 𝑠𝑎), and

thus 𝑈𝑑(𝑠
′

𝑑, 𝑠𝑎) ≥ −𝐶(𝑠𝑑, 𝑠𝑎) − |𝑠
′

𝑑|𝑝𝑑 > 𝑈𝑑(𝑠𝑑, 𝑠𝑎). Therefore, any 𝑠𝑑 such that 𝑠𝑑 * �̄� is a

strictly dominated strategy. Hence, in Γ, any equilibrium strategy of the defender satisfies

𝜎*
𝑑(𝑠𝑑) = 0. From (6.4), we know that 𝜌*𝑒 = 0 for any 𝑒 ∈ 𝐸 ∖ �̄�.

We denote the set of defender’s pure strategies that are not strictly dominated as 𝑆𝑑 =

{𝑠𝑑|𝑠𝑑 ⊆ �̄�}. Consider any 𝑠𝑑 ∈ 𝑆𝑑, we show that any 𝑠𝑎 ∈ 𝐸 ∖ �̄� is strictly dominated by

strategy ∅. The utility functions of the attacker with strategy 𝑠𝑎 and ∅ are as follows:

𝑢𝑎(𝑠𝑑, 𝑠𝑎) = 𝐶(𝑠𝑑, 𝑠𝑎)− 𝑝𝑎,

𝑢𝑎(𝑠𝑑, ∅) = 𝐶(𝑠𝑑, ∅).

Since 𝑠𝑑 ⊆ �̄� and 𝑠𝑎 ∈ 𝐸 ∖ �̄�, 𝑠𝑎 /∈ 𝑠𝑑, thus 𝐶(𝑠𝑑, 𝑠𝑎) = 𝐶𝑠𝑎 ≤ 𝐶∅. However, 𝐶(𝑠𝑑, ∅) = 𝐶∅

and 𝑝𝑎 > 0. Therefore, 𝑈𝑎(𝑠𝑑, ∅) > 𝑈𝑎(𝑠𝑑, 𝑠𝑎). Hence, any 𝑠𝑎 ∈ 𝐸 ∖ �̄� is strictly dominated.

Hence, in equilibrium, the probability of the attacker choosing facility 𝑒 ∈ 𝐸 ∖ �̄� is 0 in Γ.

We can analogously argue that in ̃︀Γ, 𝜌*𝑒 = 0 and ̃︀𝜎*
𝑎(𝑒, 𝜌) = 0 for any 𝑒 ∈ 𝐸 ∖ �̄�. �
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D.2 Proofs of Section 6.4

Proof of Lemma 6.2. The utility functions of the attacker with strategy 𝜎𝑎 in Γ0 and Γ

are related as follows:

𝑈0
𝑎 (𝜎𝑑, 𝜎𝑎) = 𝑈𝑎(𝜎𝑑, 𝜎𝑎) + E𝜎𝑑 [|𝑠𝑑|] · 𝑝𝑑.

Thus, for a given 𝜎𝑑, any 𝜎𝑎 that maximizes 𝑈0
𝑎 (𝜎𝑑, 𝜎𝑎) also maximizes 𝑈𝑎(𝜎𝑑, 𝜎𝑎). So the

set of best response strategies of the attacker in Γ0 is identical to that in Γ. Analogously,

given any 𝜎𝑎, the set of best response strategies of the defender in Γ is identical to that in

Γ0. Thus, Γ0 and Γ are strategically equivalent, i.e. they have the same set of equilibrium

strategy profiles. Using the interchangeability property of equilibria in zero-sum games, we

directly obtain that for any 𝜎*
𝑑 ∈ Σ*

𝑑 and any 𝜎*
𝑎 ∈ Σ*

𝑎, (𝜎*
𝑑, 𝜎

*
𝑎) is an equilibrium strategy

profile. �

Proof of Proposition 6.2. From Lemma 6.2, the set of attacker’s equilibrium strategies

Σ*
𝑎 is the optimal solution of the following maximin problem:

max
𝜎𝑎

min
𝑠𝑑∈𝑆𝑑

{︃∑︁
𝑒∈�̄�

(𝐶(𝑠𝑑, 𝑒) + |𝑠𝑑|𝑝𝑑 − 𝑝𝑎) · 𝜎𝑎(𝑒) + (𝐶(𝑠𝑑, ∅) + |𝑠𝑑|𝑝𝑑) · 𝜎𝑎(∅)

}︃

𝑠.𝑡.
∑︁
𝑒∈�̄�

𝜎𝑎(𝑒) + 𝜎𝑎(∅) = 1, (D.1a)

𝜎𝑎(∅) ≥ 0, 𝜎𝑎(𝑒) ≥ 0, ∀𝑒 ∈ �̄�. (D.1b)

Given any 𝑠𝑑 ∈ 𝑆𝑑, we can express the objective fucntion in (D.1) as follows:

∑︁
𝑒∈�̄�

(𝐶(𝑠𝑑, 𝑒) + |𝑠𝑑|𝑝𝑑 − 𝑝𝑎) · 𝜎𝑎(𝑒) + (𝐶(𝑠𝑑, ∅) + |𝑠𝑑|𝑝𝑑) · 𝜎𝑎(∅)

=
∑︁
𝑒∈�̄�

(𝐶(𝑠𝑑, 𝑒)− 𝑝𝑎) · 𝜎𝑎(𝑒) + 𝐶(𝑠𝑑, ∅)𝜎𝑎(∅) + |𝑠𝑑|𝑝𝑑 ·

(︃∑︁
𝑒∈𝐸

𝜎𝑎(𝑒) + 𝜎𝑎(∅)

)︃
(D.1a)
=
∑︁
𝑒∈�̄�

𝜎𝑎(𝑒) · (𝐶(𝑠𝑑, 𝑒)− 𝑝𝑎) + |𝑠𝑑|𝑝𝑑 + 𝜎𝑎(∅) · 𝐶∅
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=
∑︁
𝑒∈�̄�

𝜎𝑎(𝑒) · (𝐶(𝑠𝑑, 𝑒)− 𝑝𝑎) + 𝑝𝑑 ·

(︃∑︁
𝑒∈�̄�

1{𝑠𝑑 ∋ 𝑒}

)︃
+ 𝜎𝑎(∅) · 𝐶∅

=
∑︁
𝑒∈�̄�

(𝜎𝑎(𝑒) · (𝐶(𝑠𝑑, 𝑒)− 𝑝𝑎) + 𝑝𝑑 · 1{𝑠𝑑 ∋ 𝑒}) + 𝜎𝑎(∅) · 𝐶∅

(6.1)
=
∑︁
𝑒∈𝑠𝑑

(𝜎𝑎(𝑒) · (𝐶∅ − 𝑝𝑎) + 𝑝𝑑) +
∑︁

𝑒∈�̄�∖𝑠𝑑

𝜎𝑎(𝑒) · (𝐶𝑒 − 𝑝𝑎) + 𝜎𝑎(∅) · 𝐶∅.

Therefore, we can write:

min
𝑠𝑑∈𝑆𝑑

{︃∑︁
𝑒∈�̄�

(𝐶(𝑠𝑑, 𝑒) + |𝑠𝑑|𝑝𝑑 − 𝑝𝑎) · 𝜎𝑎(𝑒) + (𝐶(𝑠𝑑, ∅) + |𝑠𝑑|𝑝𝑑) · 𝜎𝑎(∅)

}︃

= min
𝑠𝑑∈𝑆𝑑

⎧⎨⎩∑︁
𝑒∈𝑠𝑑

(𝜎𝑎(𝑒) · (𝐶∅ − 𝑝𝑎) + 𝑝𝑑) +
∑︁

𝑒∈�̄�∖𝑠𝑑

𝜎𝑎(𝑒) · (𝐶𝑒 − 𝑝𝑎) + 𝜎𝑎(∅) · 𝐶∅

⎫⎬⎭
=
∑︁
𝑒∈�̄�

min {𝜎𝑎(𝑒) · (𝐶∅ − 𝑝𝑎) + 𝑝𝑑, 𝜎𝑎(𝑒) · (𝐶𝑒 − 𝑝𝑎)}+ 𝜎𝑎(∅) · 𝐶∅

=𝑉 (𝜎𝑎).

Thus (D.1) is equivalent to (6.10), and Σ*
𝑎 is the optimal solution set of (6.10)

By introducing an |�̄�|-dimensional variable 𝑣 = (𝑣𝑒)𝑒∈�̄�, (6.10) can be changed to a linear

optimization program (6.11), and Σ*
𝑎 is the optimal solution set of (6.11). �

Proof of Lemma 6.3. We first argue that the defender’s best response is in (6.13). For

edge 𝑒 ∈ 𝐸 such that 𝜎𝑎(𝑒) < 𝑝𝑑
𝐶𝑒−𝐶∅

, we have (𝐶∅ − 𝐶𝑒)𝜎𝑎(𝑒) + 𝑝𝑑 > 0. Since 𝜌 ∈ 𝐵𝑅(𝜎𝑎)

maximizes 𝑈𝑑(𝜎𝑑, 𝜎𝑎) as given in (6.6a), 𝜌𝑒 must be 0. Additionally, Proposition 6.1 ensures

that for any 𝑒 ∈ 𝐸 ∖ �̄�, 𝜌𝑒 is 0.

Analogously, if 𝜎𝑎(𝑒) > 𝑝𝑑
𝐶𝑒−𝐶∅

, then (𝐶∅ − 𝐶𝑒)𝜎𝑎(𝑒) + 𝑝𝑑 < 0, and the best response

𝜌𝑒 = 1. Finally, if 𝜎𝑎(𝑒) = 𝑝𝑑
𝐶𝑒−𝐶∅

, any 𝜌𝑒 ∈ [0, 1] can be a best response.

We next prove (6.14). We show that if a feasible 𝜎𝑎 violates (6.14a), i.e., there exists a

facility, denoted 𝑒 ∈ �̄� such that 𝜎𝑎(𝑒) > 𝑝𝑑
𝐶𝑒−𝐶∅

, then 𝜎𝑎 cannot be an equilibrium strategy.

There are two cases:

1. There exists another facility ̂︀𝑒 ∈ �̄� such that 𝜎𝑎(̂︀𝑒) < 𝑝𝑑
𝐶̂︀𝑒−𝐶∅

. Consider an attacker’s
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strategy 𝜎′
𝑎 defined as follows:

𝜎
′

𝑎(𝑒) = 𝜎𝑎(𝑒), ∀𝑒 ∈ �̄� ∖ {𝑒, ̂︀𝑒}, 𝜎
′

𝑎(∅) = 𝜎𝑎(∅),

𝜎
′

𝑎(𝑒) = 𝜎𝑎(𝑒)− 𝜖,

𝜎
′

𝑎(̂︀𝑒) = 𝜎𝑎(̂︀𝑒) + 𝜖,

where 𝜖 is a sufficiently small positive number so that 𝜎′
𝑎(𝑒) >

𝑝𝑑
𝐶𝑒−𝐶∅

and 𝜎′
𝑎(̂︀𝑒) < 𝑝𝑑

𝐶̂︀𝑒−𝐶∅
.

We obtain:

𝑉 (𝜎
′

𝑎)− 𝑉 (𝜎𝑎) = 𝜖 (𝐶̂︀𝑒 − 𝐶∅) > 0

The last inequality holds from (6.7a) and ̂︀𝑒 ∈ �̄�. Therefore, 𝜎𝑎 cannot be an attacker’s

equilibrium strategy.

2. If there does not exist such 𝑒 as defined in case (a), then for any 𝑒 ∈ �̄�, we have

𝜎𝑎(𝑒) ≥ 𝑝𝑑
𝐶𝑒−𝐶∅

. Now consider 𝜎′
𝑎 as follows:

𝜎
′

𝑎(𝑒) = 𝜎𝑎(𝑒), ∀𝑒 ∈ 𝐸 ∖ {𝑒},

𝜎
′

𝑎(𝑒) = 𝜎𝑎(𝑒)− 𝜖,

𝜎
′

𝑎(∅) = 𝜎𝑎(∅) + 𝜖,

where 𝜖 is a sufficiently small positive number so that 𝜎′
𝑎(𝑒) >

𝑝𝑑
𝐶𝑒−𝐶∅

. We obtain:

𝑉 (𝜎
′

𝑎)− 𝑉 (𝜎𝑎) = 𝜖 (𝐶∅ − (𝐶∅ − 𝑝𝑎)) = 𝜖𝑝𝑎 > 0.

Therefore, 𝜎𝑎 also cannot be an attacker’s equilibrium strategy.

Thus, we can conclude from cases (a) and (b) that in equilibrium 𝜎*
𝑎 must satisfy (6.14a).

Additionally, from Proposition 6.1, (6.14b) is also satisfied. �

Proof of Theorem 6.1. We first prove the attacker’s equilibrium strategies in each regime.

From Proposition 6.2 and Lemma 6.3, we know that 𝜎*
𝑎 maximizes 𝑉 (𝜎𝑎), which can be

equivalently re-written as in (6.15). We analyze the attacker’s equilibrium strategy set in
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each regime subsequently:

1. Type I regimes Λ𝑖:

- 𝑖 = 0:

Since 𝑝𝑎 > 𝐶(1)−𝐶∅, we must have 𝐶∅ > 𝐶𝑒−𝑝𝑎 for any 𝑒 ∈ �̄�. There is no vulnerable

facility, and thus 𝜎*
𝑎(∅) = 1.

- 𝑖 = 1, . . . , 𝐾:

Since 𝑝𝑑 satisfies (6.19) or (6.20), we obtain:

∑︁
𝑒∈∪𝑖

𝑘=1�̄�(𝑘)

𝑝𝑑
𝐶𝑒 − 𝐶∅

=
𝑖∑︁

𝑘=1

𝑝𝑑 · 𝐸(𝑘)

𝐶(𝑘) − 𝐶∅
< 1 (D.2)

Therefore, the set of feasible attack strategies satisfying (6.24c)-(6.24d) is a non-empty

set. We also know from Lemma 6.3 that 𝜎*
𝑎 satisfies (6.14a). Again from (6.19) or

(6.20), for any 𝑘 = 1, . . . , 𝑖, we have 𝐶(𝑘) − 𝑝𝑎 > 𝐶∅ and for any 𝑘 = 𝑖 + 1, . . . , 𝐾, we

have 𝐶(𝑘) − 𝑝𝑎 < 𝐶∅. Since {𝐶(𝑘)}𝐾𝑘=1 satisfy (6.8), to maximize 𝑉 (𝜎𝑎) in (6.15), the

optimal solution must satisfy (6.24c)-(6.24d).

2. Type II regimes Λ𝑗:

- 𝑗 = 1: From (6.21), we know that:

1 =
∑︁
𝑒∈�̄�(1)

𝜎*
𝑎(𝑒) <

𝑝𝑑𝐸(1)

𝐶(1) − 𝐶∅
. (D.3)

Thus, the set of feasible attack strategies satisfying (6.25b)-(6.25c) is a non-empty set.

Additionally, from Lemma 6.3, we know that 𝜎*
𝑎 satisfies (6.25b). Since 𝐶(1) > 𝐶(𝑘)

for any 𝑘 = 2, . . . , 𝐾, and 𝐶(1) − 𝑝𝑎 > 𝐶∅. From (6.15) and (D.3), we know that

in equilibrium the attacker targets facilities in �̄�(1) with probability 1. The set of

strategies satisfying (6.25b)-(6.25c) maximizes (6.15), and thus is the set of attacker’s

equilibrium strategies.
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- 𝑗 = 2, . . . , 𝐾: From (6.22), we know that:

0 < 1−
𝑗−1∑︁
𝑘=1

𝑝𝑑 · 𝐸(𝑘)

𝐶(𝑘) − 𝐶∅
<

𝑝𝑑 · 𝐸(𝑗)

𝐶(𝑗) − 𝐶∅
.

Thus, the set of feasible attack strategies satisfying (6.26c)-(6.26e) is a non-empty set.

From Lemma 6.3, we know that 𝜎*
𝑎 satifies (6.26d). Since {𝐶(𝑘)}𝑘=1,...,𝑗 satisfies the

ordering in (6.8), in order to maximize 𝑉 (𝜎𝑎) in (6.15), 𝜎*
𝑎 must also satisfy (6.26c)

and (6.26e), and the remaining facilities are not targeted.

We next prove the defender’s equilibrium security effort. By definition of Nash equilib-

rium, the probability vector 𝜌* is induced by an equilibrium strategy if and only if it satisfies

the following two conditions:

1. 𝜌* is a best response to any 𝜎*
𝑎 ∈ Σ*

𝑎.

2. Any attacker’s equilibrium strategy is a best response to 𝜌*, i.e. the attacker has

identical utilities for choosing any pure strategy in his equilibrium support set, and the

utility is no less than that of any other pure strategies.

Note that in both conditions, we require 𝜌* to be a best response to any attacker’s equilibrium

strategy. This is because given any 𝜎*
𝑎 ∈ Σ*

𝑎, (𝜌*, 𝜎*
𝑎) is an equilibrium strategy profile

(Lemma 6.2). We now check these conditions in each regime:

1. Type I regimes Λ𝑖:

- If 𝑖 = 0:

Since 𝜎*
𝑎(𝑒) = 0 for any 𝑒 ∈ 𝐸. From Lemma 6.3, the best response of the defender is

𝜌*𝑒 = 0 for any 𝑒 ∈ 𝐸.

- If 𝑖 = 1, . . . , 𝐾:

From Lemma 6.3, we know that 𝜌*𝑒 = 0 for any 𝑒 ∈ 𝐸 ∖
(︀
∪𝑖𝑘=1�̄�(𝑘)

)︀
. Since 𝜎*

𝑎(∅) > 0, 𝜌*𝑒
must ensure that the attacker’s utility of choosing any facility 𝑒 ∈ ∪𝑖𝑘=1�̄�(𝑘) is identical

to that of choosing no attack ∅. Consider any 𝑒 ∈ ∪𝑖𝑘=1�̄�(𝑘):

𝑈𝑎(𝜌
*, 𝑒) = 𝑈𝑎(𝜌

*, ∅),
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(6.6b)⇒ 𝜌*𝑒 (𝐶∅ − 𝑝𝑎) + (1− 𝜌*𝑒) (𝐶𝑒 − 𝑝𝑎) = 𝐶∅,

⇒ 𝜌*𝑒 =
𝐶𝑒 − 𝑝𝑎 − 𝐶∅

𝐶𝑒 − 𝐶∅
, ∀𝑒 ∈ ∪𝑖𝑘=1�̄�(𝑘).

For any 𝑒 ∈ 𝐸 ∖
(︀
∪𝑖𝑘=1�̄�(𝑘)

)︀
, since 𝜌*𝑒 = 0, the attacker receives utility 𝐶𝑒 − 𝑝𝑎 by

targeting 𝑒, which is lower than 𝐶∅. Therefore, 𝜌* in (6.24a)-(6.24b) satisfies both

conditions (1) and (2). 𝜌* is the unique equilibrium strategy.

2. Type II regimes Λ𝑗:

- If 𝑗 = 0:

Consider an attacker’s strategy 𝜎𝑎 such that:

𝜎𝑎(𝑒) =
1

𝐸(1)

, ∀𝑒 ∈ �̄�(1),

𝜎𝑎(𝑒) = 0, ∀𝑒 ∈ 𝐸 ∖ �̄�(1).

Since 𝑝𝑑 satisfies (6.21), we know that 1
𝐸(1)

< 𝑝𝑑
𝐶(1)−𝐶∅

. One can check that 𝜎𝑎 satisfies

(6.25b)-(6.25c), and thus 𝜎𝑎 ∈ Σ*
𝑎. Therefore, we know from Lemma 6.3 that 𝜌*𝑒 = 0

for any 𝑒 ∈ 𝐸.

- If 𝑗 = 1, . . . , 𝐾:

Analogous to our discussion for 𝑗 = 0, the following is an equilibrium strategy of the

attacker:

𝜎*
𝑎(𝑒) =

𝑝𝑑
𝐶𝑒 − 𝐶∅

, ∀𝑒 ∈ ∪𝑗−1
𝑘=1�̄�(𝑘),

𝜎*
𝑎(𝑒) =

1

𝐸(𝑗)

(︃
1−

𝑗−1∑︁
𝑖=1

𝑝𝑑𝐸(𝑘)

𝐶(𝑘) − 𝐶∅

)︃
, ∀𝑒 ∈ �̄�(𝑗),

𝜎*
𝑎(𝑒) = 0, ∀𝑒 ∈ 𝐸 ∖

(︀
∪𝑗𝑘=1�̄�(𝑘)

)︀
.

From Lemma 6.3, we immediately obtain that 𝜌*𝑒 = 0 for any 𝑒 ∈ 𝐸 ∖
(︀
∪𝑗−1
𝑘=1�̄�(𝑘)

)︀
.

Furthermore, for any 𝑒 ∈ ∪𝑗−1
𝑘=1�̄�(𝑘), the utility of the attacker in choosing 𝑒 must be

the same as the utility for choosing any facility in �̄�(𝑗), which is 𝐶(𝑗) − 𝑝𝑎. Therefore,
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for any 𝑒 ∈ ∪𝑗−1
𝑘=1�̄�(𝑘), 𝜌* satisfies:

𝑈𝑎(𝜌
*, 𝑒) = 𝐶(𝑗) − 𝑝𝑎,

(6.6b)⇒ 𝜌*𝑒 (𝐶∅ − 𝑝𝑎) + (1− 𝜌*𝑒)
(︀
𝐶(𝑘) − 𝑝𝑎

)︀
= 𝐶(𝑗) − 𝑝𝑎,

⇒ 𝜌*𝑒 =
𝐶(𝑘) − 𝐶(𝑗)

𝐶(𝑘) − 𝐶∅
.

Additionally, for any 𝑒 ∈ 𝐸 ∖
(︀
∪𝑗𝑘=1�̄�(𝑘)

)︀
, the utility for the attacker targeting 𝑒 is

𝐶𝑒−𝑝𝑎, which is smaller than 𝐶(𝑗)−𝑝𝑎. Thus, both condition (1) and (2) are satisfied.

𝜌* is the unique equilibrium security effort.

�

D.3 Proofs of Section 6.5

Proof of Lemma 6.4. For any non-vulnerable facility 𝑒, the best response strategy ̃︀𝜎𝑎
must be such that ̃︀𝜎𝑎(𝑒, 𝜌) = 0 for any 𝜌.

Now consider any 𝑒 ∈ {𝐸|𝐶𝑒 − 𝑝𝑎 > 𝐶∅}. If 𝜌𝑒 > ̂︀𝜌𝑒, then we can write:

𝑈𝑎(𝜌, 𝑒) = 𝜌𝑒𝐶∅ + (1− 𝜌𝑒)𝐶𝑒 − 𝑝𝑎 < 𝐶∅ = 𝑈𝑎(𝜌, ∅). (D.4)

That is, the attacker’s expected utility of targeting the facility 𝑒 is less than the expected

utility of no attack. Thus, in any attacker’s best response, ̃︀𝜎𝑎(𝑒, 𝜌) = 0 for any such facility

𝑒. Additionally, if 𝜌𝑒 = ̂︀𝜌𝑒, then 𝑈𝑎(𝑒, 𝜌) = 𝑈𝑎(∅, 𝜌), i.e. the utility of targeting such facility

is identical with the utility of choosing no attack, and is higher than that of any other pure

strategies. Hence, the set of best response strategies of the attacker is Δ(�̄�* ∪ {∅}), where

�̄�* is the set defined in (6.28).

Otherwise, if there exists a facility 𝑒 ∈ {𝐸|𝐶𝑒 − 𝑝𝑎 > 𝐶∅} such that 𝜌𝑒 < ̂︀𝜌𝑒, then we

obtain:

𝑈𝑎(𝜌, 𝑒) = 𝜌𝑒𝐶∅ + (1− 𝜌𝑒)𝐶𝑒 − 𝑝𝑎 > 𝐶∅ = 𝑈𝑎(𝜌, ∅).

Thus, no attack cannot be chosen in any best response strategy, which implies that the

attacker chooses to attack with probability 1. Finally, �̄�◇ is the set of facilities which incur
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the highest expected utility for the attacker given 𝜌, thus 𝐵𝑅(𝜌) = Δ(�̄�◇). �

Proof of Lemma 6.5. We first prove that the total attack probability is either 0 or 1 in

any SPE. We discuss the following three cases separately:

- There exists at least one single facility 𝑒 ∈ {�̄�|𝐶𝑒 − 𝑝𝑎 > 𝐶∅} such that 𝜌*𝑒 < ̂︀𝜌𝑒.
Since ̃︀𝜎*

𝑎(𝜌
*) ∈ 𝐵𝑅(𝜌*), from Lemma 6.4, we know that

∑︀
𝑒∈�̄� ̃︀𝜎*

𝑎(𝑒, 𝜌
*) = 1.

- For all 𝑒 ∈ {�̄�|𝐶𝑒 − 𝑝𝑎 > 𝐶∅}, 𝜌*𝑒 > ̂︀𝜌𝑒, i.e. the set �̄�* in (6.28) is empty.

Since ̃︀𝜎*
𝑎(𝜌

*) ∈ 𝐵𝑅(𝜌*), from Lemma 6.4, we know that no edge is targeted in SPE,

i.e.
∑︀

𝑒∈�̄� ̃︀𝜎*
𝑎(𝑒, 𝜌

*) = 0.

- For all 𝑒 ∈ {�̄�|𝐶𝑒 − 𝑝𝑎 > 𝐶∅}, 𝜌*𝑒 ≥ ̂︀𝜌𝑒, and the set �̄�* in (6.28) is non-empty.

For the sake of contradiction, we assume that in SPE, there exists a facility 𝑒 ∈ �̄�*

such that ̃︀𝜎*
𝑎(𝑒, 𝜌

*) > 0, i.e. ̃︀𝜎*
𝑎(∅, 𝜌*) < 1. Then, we can write 𝑈𝑑(𝜌*, ̃︀𝜎*

𝑎(𝜌
*)) as follows:

𝑈𝑑(𝜌
*, ̃︀𝜎*

𝑎(𝜌
*)) = −𝐶∅ − (1− ̃︀𝜎*

𝑎(∅, 𝜌*))𝑝𝑎 −

(︃∑︁
𝑒∈�̄�

𝜌*𝑒

)︃
𝑝𝑑. (D.5)

Now, consider 𝜌′ as follows:

𝜌′𝑒 = 𝜌*𝑒 + 𝜖 > ̂︀𝜌𝑒, ∀𝑒 ∈ �̄�*,

𝜌′𝑒 = 𝜌*𝑒 = 0, ∀𝑒 ∈ 𝐸 ∖ �̄�*,

where 𝜖 is a sufficiently small positive number. Given such a 𝜌′, we know from Lemma

6.4 that the unique best response is ̃︀𝜎𝑎(∅, 𝜌′) = 1. Therefore, the defender’s utility is

given by:

𝑈𝑑(𝜌
′, ̃︀𝜎𝑎(𝜌′)) = −𝐶∅ −

(︃∑︁
𝑒∈𝐸

𝜌′𝑒

)︃
𝑝𝑑.

Additionally,

𝑈𝑑(𝜌
′, ̃︀𝜎𝑎(𝜌′))− 𝑈𝑑(𝜌*, ̃︀𝜎𝑎(𝜌*)) = (1− ̃︀𝜎𝑎(∅, 𝜌*))𝑝𝑎 − 𝜖𝑝𝑑|�̄�*|.
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Since 𝜖 is sufficiently small and ̃︀𝜎𝑎(∅, 𝜌*) < 1, we obtain that 𝑈𝑑(𝜌′, ̃︀𝜎𝑎(𝜌′)) > 𝑈𝑑(𝜌
*, ̃︀𝜎𝑎(𝜌*)).

Therefore, 𝜌* cannot be a SPE. We can conclude that in this case, the attacker chooses

not to attack with probability 1.

We next show that in any SPE, the defender’s security effort on each vulnerable facility 𝑒 is

no higher than the threshold ̂︀𝜌𝑒 defined in (6.27). Assume for the sake of contradiction that

there exists a facility 𝑒 ∈ {�̄�|𝐶𝑒 − 𝑝𝑎 > 𝐶∅} such that 𝜌𝑒 > ̂︀𝜌𝑒. We discuss the following two

cases separately:

- The set ̂︀𝑒 ∈ {�̄�|𝐶𝑒 − 𝑝𝑎 > 𝐶∅, 𝜌𝑒 < ̂︀𝜌𝑒} is non-empty. We know from Lemma 6.4 that

𝐵𝑅(𝜌) = Δ(�̄�◇), where the set �̄�◇ in (6.29) is the set of facilities which incur the

highest utility for the attacker. Clearly, �̄�◇ ⊆ {�̄�|𝐶𝑒 − 𝑝𝑎 > 𝐶∅, 𝜌𝑒 < ̂︀𝜌𝑒}, and hence

𝑒 /∈ �̄�◇.

We consider 𝜌′ such that 𝜌′𝑒 = 𝜌𝑒 − 𝜖, where 𝜖 is a sufficiently small positive number,

and 𝜌′𝑒 = 𝜌𝑒 for any other facilities. Then 𝜌′𝑒 > ̂︀𝜌𝑒 still holds, and the set �̄�◇ does not

change. The attacker’s best response strategy remains to be 𝐵𝑅(𝜌′) = Δ(�̄�◇). Hence,

the utility of the defender given 𝜌′ increases by 𝜖𝑝𝑑 compared to that given 𝜌, because

the expected usage cost E𝜎[𝐶] does not change, but the expected defense cost decreases

by 𝜖𝑝𝑑. Thus, such 𝜌 cannot be the defender’s equilibrium effort.

- For all 𝑒 ∈ {�̄�|𝐶𝑒 − 𝑝𝑎 > 𝐶∅}, 𝜌𝑒 ≥ ̂︀𝜌𝑒. We have already argued that ̃︀𝜎*
𝑎(∅, 𝜌) = 1 in

this case. Since the defense cost 𝑝𝑑 > 0, if there exists any 𝑒 such that 𝜌𝑒 > ̂︀𝜌𝑒, then

by decreasing the security effort on 𝑒, the utility of the defender increases. Therefore,

such 𝜌 cannot be an equilibrium strategy of the defender.

From both cases, we can conclude that for any 𝑒 ∈ {�̄�|𝐶𝑒 − 𝑝𝑎 > 𝐶∅}, 𝜌*𝑒 ≤ ̂︀𝜌𝑒
Finally, any non-vulnerable facilities 𝑒 ∈ 𝐸 ∖{𝐸|𝐶𝑒−𝑝𝑎 > 𝐶∅} will not be targeted, hence

we must have 𝜌*𝑒 = 0. �

Proof of Lemma 6.6. We first show that the threshold ̃︀𝑝𝑑(𝑝𝑎) as given in (6.31) is a well-

defined function of 𝑝𝑎. Given any 0 ≤ 𝑝𝑎 < 𝐶(1) − 𝐶∅, there is a unique 𝑖 ∈ {1, . . . , 𝐾} such
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that 𝐶(𝑖+1)−𝐶∅ ≤ 𝑝𝑎 < 𝐶(𝑖)−𝐶∅. Now, we need to show that there is a unique 𝑗 ∈ {1, . . . , 𝑖}

such that
∑︀𝑖

𝑘=𝑗+1 𝐸(𝑘)∑︀𝑖
𝑘=1

𝐸(𝑘)
𝐶(𝑘)−𝐶∅

≤ 𝑝𝑎 <
∑︀𝑖

𝑘=𝑗 𝐸(𝑘)∑︀𝑖
𝑘=1

𝐸(𝑘)
𝐶(𝑘)−𝐶∅

(or 0 ≤ 𝑝𝑎 <
𝐸(𝑖)∑︀𝑖

𝑘=1

𝐸(𝑘)
𝐶(𝑘)−𝐶∅

if 𝑗 = 𝑖). Note that

functions {𝑝𝑖𝑗𝑑 }𝑖𝑗=1 are defined on the range

[︃
0,

∑︀𝑖
𝑘=1 𝐸(𝑘)∑︀𝑖

𝑘=1

𝐸(𝑘)
𝐶(𝑘)−𝐶∅

]︃
. Since {𝐶(𝑘)}𝑖𝑘=1 satisfies (6.8),

we have: ∑︀𝑖
𝑘=1𝐸(𝑘)∑︀𝑖

𝑘=1

𝐸(𝑘)

𝐶(𝑘)−𝐶∅

≥
∑︀𝑖

𝑘=1𝐸(𝑘)

1
𝐶(𝑖)−𝐶∅

∑︀𝑖
𝑘=1𝐸(𝑘)

= 𝐶(𝑖) − 𝐶∅.

Hence, for any 𝐶(𝑖+1) − 𝐶∅ ≤ 𝑝𝑎 < 𝐶(𝑖) − 𝐶∅, the value ̃︀𝑝𝑑(𝑝𝑎) is defined as 𝑝𝑖𝑗𝑑 (𝑝𝑎) for a

unique 𝑗 ∈ {1, . . . , 𝑖}. Therefore, we can conclude that for any 0 ≤ 𝑝𝑎 < 𝐶(1) − 𝐶∅, ̃︀𝑝𝑑(𝑝𝑎) is

a well-defined function.

We next show that ̃︀𝑝𝑑(𝑝𝑎) is continuous and strictly increasing in 𝑝𝑎. Since for any

𝑖 = 1, . . . , 𝐾, and any 𝑗 = 1, . . . , 𝑖, the function 𝑝𝑖𝑗𝑑 (𝑝𝑎) is continuous and strictly increasing

in 𝑝𝑎, ̃︀𝑝𝑑(𝑝𝑎) must be piecewise continuous and strictly increasing in 𝑝𝑎. It remains to be

shown that ̃︀𝑝𝑑(𝑝𝑎) is continuous at 𝑝𝑎 ∈
{︀
𝐶(𝑖) − 𝐶∅

}︀𝐾
𝑖=2
∪

{︃ ∑︀𝑖
𝑘=𝑗 𝐸(𝑘)∑︀𝑖

𝑘=1

𝐸(𝑘)
𝐶(𝑘)−𝐶∅

}︃
𝑗=1,...,𝑖,𝑖=1,...𝐾

.

We now show that for any 𝑖 = 2, . . . , 𝐾, ̃︀𝑝𝑑(𝑝𝑎) is continuous at 𝐶(𝑖) − 𝐶∅. Consider

𝑝𝑎 = 𝐶(𝑖) − 𝐶∅ − 𝜖 where 𝜖 is a sufficiently small positive number. There is a unique

�̂� ∈ {1, . . . , 𝑖} such that ̃︀𝑝𝑑(𝑝𝑎) = 𝑝𝑖�̂�𝑑 (𝑝𝑎). We want to argue that �̂� ̸= 𝑖:

𝑝𝑎 ·

(︃
𝑖∑︁

𝑘=1

𝐸(𝑘)

𝐶(𝑘) − 𝐶∅

)︃
=
(︀
𝐶(𝑖) − 𝐶∅ − 𝜖

)︀
·

(︃
𝑖∑︁

𝑘=1

𝐸(𝑘)

𝐶(𝑘) − 𝐶∅

)︃

= 𝐸(𝑖) +
𝑖−1∑︁
𝑘=1

(︀
𝐶(𝑖) − 𝐶∅

)︀
𝐸(𝑘)

𝐶(𝑘) − 𝐶∅
− 𝜖

(︃
𝑖∑︁

𝑘=1

𝐸(𝑘)

𝐶(𝑘) − 𝐶∅

)︃
> 𝐸(𝑖),

⇒ 𝑝𝑎 = 𝐶(𝑖) − 𝐶∅ − 𝜖 >
𝐸(𝑖)∑︀𝑖

𝑘=1

𝐸(𝑘)

𝐶(𝑘)−𝐶∅

Thus, �̂� ∈ {1, . . . , 𝑖− 1}, and from (6.31),
∑︀𝑖

𝑘=�̂�+1
𝐸(𝑘)∑︀𝑖

𝑘=1

𝐸(𝑘)
𝐶(𝑘)−𝐶∅

≤ 𝐶(𝑖) − 𝐶∅ − 𝜖 <
∑︀𝑖

𝑘=�̂�
𝐸(𝑘)∑︀𝑖

𝑘=1

𝐸(𝑘)
𝐶(𝑘)−𝐶∅

. Since

𝜖 is a sufficiently small positive number, we have:

𝑖∑︁
𝑘=�̂�+1

𝐸(𝑘) ≤

(︃
𝑖∑︁

𝑘=1

𝐸(𝑘)

𝐶(𝑘) − 𝐶∅

)︃
·
(︀
𝐶(𝑖) − 𝐶∅ − 𝜖

)︀
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= 𝐸(𝑖) +
𝑖−1∑︁
𝑘=1

(︀
𝐶(𝑖) − 𝐶∅

)︀
𝐸(𝑘)

𝐶(𝑘) − 𝐶∅
− 𝜖

(︃
𝑖∑︁

𝑘=1

𝐸(𝑘)

𝐶(𝑘) − 𝐶∅

)︃

⇒
𝑖−1∑︁

𝑘=�̂�+1

𝐸(𝑘) ≤
𝑖−1∑︁
𝑘=1

(︀
𝐶(𝑖) − 𝐶∅

)︀
𝐸(𝑘)

𝐶(𝑘) − 𝐶∅
+ 𝜖

(︃
𝑖−1∑︁
𝑘=1

𝐸(𝑘)

𝐶(𝑘) − 𝐶∅

)︃

⇒
∑︀𝑖−1

𝑘=�̂�+1
𝐸(𝑘)∑︀𝑖−1

𝑘=1

𝐸(𝑘)

𝐶(𝑘)−𝐶∅

≤ 𝐶(𝑖) − 𝐶∅ + 𝜖.

Analogously, we can check that 𝐶(𝑖) − 𝐶∅ + 𝜖 <

∑︀𝑖−1

𝑘=�̂�
𝐸(𝑘)∑︀𝑖−1

𝑘=1

𝐸(𝑘)
𝐶(𝑘)−𝐶∅

. Hence, from (6.31), when

𝑝𝑎 = 𝐶(𝑖) − 𝐶∅ + 𝜖, we have ̃︀𝑝𝑑(𝑝𝑎) = 𝑝𝑖−1�̂�
𝑑 (𝑝𝑎). Then,

lim
𝑝𝑎→(𝐶(𝑖)−𝐶∅)

−
̃︀𝑝𝑑(𝑝𝑎) = lim

𝜖→0
𝑝𝑖�̂�𝑑 (𝐶(𝑖) − 𝐶∅ − 𝜖)

(6.30)
=

𝐶(�̂�) − 𝐶∅(︁
𝐶(�̂�) − 𝐶∅

)︁
·
(︁∑︀�̂�−1

𝑘=1

𝐸(𝑘)

𝐶(𝑘)−𝐶∅

)︁
+
∑︀𝑖−1

𝑘=�̂�
𝐸(𝑘) −

∑︀𝑖−1
𝑘=1

𝑝𝑎𝐸(𝑘)

𝐶(𝑘)−𝐶∅

= lim
𝜖→0

𝑝𝑖−1�̂�
𝑑 (𝐶(𝑖) − 𝐶∅ + 𝜖) = lim

𝑝𝑎→(𝐶(𝑖)−𝐶∅)
+
̃︀𝑝𝑑(𝑝𝑎).

Thus, ̃︀𝑝𝑑(𝑝𝑎) is continuous at 𝐶(𝑖) − 𝐶∅ for any 𝑖 = 2, . . . , 𝐾.

For any 𝑖 = 1, . . . , 𝐾, we next show that ̃︀𝑝𝑑(𝑝𝑎) is continuous at 𝑝𝑎 =
∑︀𝑖

𝑘=𝑗 𝐸(𝑘)∑︀𝑖
𝑘=1

𝐸(𝑘)
𝐶(𝑘)−𝐶∅

for

𝑗 = 1, . . . , 𝑖:

lim

𝑝𝑎→

⎛⎜⎝ ∑︀𝑖
𝑘=𝑗

𝐸(𝑘)∑︀𝑖
𝑘=1

𝐸(𝑘)
𝐶(𝑘)−𝐶∅

⎞⎟⎠
−
̃︀𝑝𝑑(𝑝𝑎) = 𝑝𝑖𝑗𝑑

⎛⎝ ∑︀𝑖
𝑘=𝑗 𝐸(𝑘)∑︀𝑖

𝑘=1

𝐸(𝑘)

𝐶(𝑘)−𝐶∅

⎞⎠ =

(︃
𝑗−1∑︁
𝑘=1

𝐸(𝑘)

𝐶(𝑘) − 𝐶∅

)︃−1

= 𝑝
𝑖(𝑗−1)
𝑑

⎛⎝ ∑︀𝑖
𝑘=𝑗 𝐸(𝑘)∑︀𝑖

𝑘=1

𝐸(𝑘)

𝐶(𝑘)−𝐶∅

⎞⎠ = lim

𝑝𝑎→

⎛⎜⎝ ∑︀𝑖
𝑘=𝑗

𝐸(𝑘)∑︀𝑖
𝑘=1

𝐸(𝑘)
𝐶(𝑘)−𝐶∅

⎞⎟⎠
+
̃︀𝑝𝑑(𝑝𝑎).

Hence, we can conclude that ̃︀𝑝𝑑(𝑝𝑎) is continuous and strictly increasing in 𝑝𝑎.

Additionally, for any 𝑖 = 1, . . . , 𝐾, consider any 𝑝𝑎 such that 𝐶(𝑖+1)−𝐶∅ < 𝑝𝑎 ≤ 𝐶(𝑖)−𝐶∅
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(or 0 < 𝑝𝑎 ≤ 𝐶(𝐾) − 𝐶∅ if 𝑖 = 𝐾), then for any 𝑗 = 1, . . . , 𝑖, we have:

𝑝𝑖𝑗𝑑 (𝑝𝑎)
(6.30)
=

𝐶(𝑗) − 𝐶∅(︀
𝐶(𝑗) − 𝑝𝑎 − 𝐶∅

)︀
·
(︁∑︀𝑗−1

𝑘=1

𝐸(𝑘)

𝐶(𝑘)−𝐶∅

)︁
+
∑︀𝑖

𝑘=𝑗

(𝐶(𝑘)−𝑝𝑎−𝐶∅)𝐸(𝑘)

𝐶(𝑘)−𝐶∅

>
𝐶(𝑗) − 𝐶∅(︀

𝐶(𝑗) − 𝐶(𝑖+1)

)︀
·
(︁∑︀𝑗−1

𝑘=1

𝐸(𝑘)

𝐶(𝑘)−𝐶∅

)︁
+
∑︀𝑖

𝑘=𝑗

(𝐶(𝑘)−𝐶(𝑖+1))𝐸(𝑘)

𝐶(𝑘)−𝐶∅

=
𝐶(𝑗) − 𝐶∅(︀

𝐶(𝑗) − 𝐶(𝑖+1)

)︀
·
(︁∑︀𝑖

𝑘=1

𝐸(𝑘)

𝐶(𝑘)−𝐶∅

)︁
(6.8)
>

(︃
𝑖∑︁

𝑘=1

𝐸(𝑘)

𝐶(𝑘) − 𝐶∅

)︃−1

(6.17)
= 𝑝𝑑(𝑝𝑎).

Therefore, for any 0 < 𝑝𝑎 < 𝐶(1) − 𝐶∅, we have:

̃︀𝑝𝑑(𝑝𝑎) (6.31)
≥ min

𝑗=1,...,𝑖
𝑝𝑖𝑗𝑑 (𝑝𝑎) > 𝑝𝑑(𝑝𝑎), (D.6)

Finally, if 𝑝𝑎 = 0, then we know that ̃︀𝑝𝑑(0) = 𝑝𝐾𝐾𝑑 (0). From (6.30), we can check that

𝑝𝐾𝐾𝑑 (0) =
(︁∑︀𝐾

𝑘=1

𝐸(𝑘)

𝐶(𝑘)−𝐶∅

)︁−1

= 𝑝𝑑(0). If 𝑝𝑎 approaches 𝐶(1) −𝐶∅, then ̃︀𝑝𝑑(𝑝𝑎) = 𝑝11𝑑 (𝑝𝑎), and

we have:

lim
𝑝𝑎→𝐶(1)−𝐶∅

̃︀𝑝𝑑(𝑝𝑎) (6.30)
= lim

𝑝𝑎→𝐶(1)−𝐶∅

𝐶(1) − 𝐶∅

𝐸(1) −
𝑝𝑎𝐸(1)

𝐶(1)−𝐶∅

= +∞

�

We define the partition as:

𝒫 Δ
=
{︁{︀

Λ𝑖
}︀𝐾
𝑖=0

,
{︀
Λ𝑖𝑗
}︀
𝑗=1,...,𝑖,𝑖=1,...,𝐾,

}︁
, (D.7)

where {Λ𝑖}𝐾𝑖=0 are type I regimes in the normal form game defined in (6.18)-(6.20), and Λ𝑖𝑗
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is the set of (𝑝𝑑, 𝑝𝑎), which satisfy:

𝑝𝑑 ∈

⎧⎪⎪⎨⎪⎪⎩
(︂(︁

𝐸(1)

𝐶(1)−𝐶∅

)︁−1

,+∞
)︂
, if 𝑗 = 1,(︂(︁∑︀𝑗

𝑘=1

𝐸(𝑘)

𝐶(𝑘)−𝐶∅

)︁−1

,
(︁∑︀𝑗−1

𝑘=1

𝐸(𝑘)

𝐶(𝑘)−𝐶∅

)︁−1
)︂
, if 𝑗 = 2, . . . , 𝐾,

(D.8a)

𝑝𝑎 ∈

⎧⎨⎩
(︀
𝐶(𝑖+1) − 𝐶∅, 𝐶(𝑖) − 𝐶∅

)︀
, if 𝑖 = 1, . . . , 𝐾 − 1,(︀

0, 𝐶(𝐾) − 𝐶∅
)︀
, if 𝑖 = 𝐾,

(D.8b)

We can check that sets in 𝒫 are disjoint, and cover the whole space of (𝑝𝑑, 𝑝𝑎). Lemma D.1

characterizes SPE in sets {Λ𝑖}𝐾𝑖=0, and Lemma D.2 characterizes SPE in sets
{︀
Λ𝑖𝑗
}︀𝑖=𝐾,𝑗=𝑖
𝑖=1,𝑗=1

.

Lemma D.1. In ̃︀Γ, for any (𝑝𝑎, 𝑝𝑑) in the set Λ𝑖, where 𝑖 = 0, . . . , 𝐾:

- If 𝑖 = 0, then SPE is as given in (6.37).

- If 𝑖 = 1, . . . , 𝐾: then SPE is as given in (6.38).

Proof of Lemma D.1. If 𝑖 = 0: The set of vulnerable facilities {�̄�|𝐶𝑒−𝑝𝑎 > 𝐶∅} is empty.

Thus, ̃︀𝜎*
𝑎(∅, 𝜌) = 1, and 𝜌*𝑒 = 0 for all 𝑒 ∈ 𝐸.

For any 𝑖 = 1, . . . , 𝐾: The set of vulnerable facilities is ∪𝑖𝑘=1�̄�(𝑘). From Lemma 6.5, we

have already known that for any 𝑒 ∈ ∪𝑖𝑘=1�̄�(𝑘), 𝜌*𝑒 ≤ ̂︀𝜌𝑒. Assume for the sake of contradiction

that there exists a facility 𝑒 ∈ ∪𝑖𝑘=1�̄�(𝑘) such that 𝜌𝑒 < ̂︀𝜌𝑒. From Lemma 6.4, we know that̃︀𝜎*
𝑎(∅, 𝜌) = 0, and 𝐵𝑅(𝜌) = Δ(�̄�◇), where �̄�◇ is in (6.29). Clearly, �̄�◇ ⊆ ∪𝑖𝑘=1�̄�(𝑘). We define

𝜆 as follows:

𝜆 = max
𝑒∈∪𝑖

𝑘=1�̄�(𝑘)

{𝜌𝑒𝐶∅ + (1− 𝜌𝑒)𝐶𝑒} = 𝜌𝑒𝐶∅ + (1− 𝜌𝑒)𝐶𝑒, ∀𝑒 ∈ �̄�◇.

The utility of the defender can be written as:

𝑈𝑑(𝜌, ̃︀𝜎*
𝑎(𝜌)) = −𝜆−

(︃∑︁
𝑒∈𝐸

𝜌𝑒

)︃
· 𝑝𝑑.

We now consider 𝜌′ as follows:

𝜌′𝑒 = 𝜌𝑒 +
𝜖

𝐶𝑒 − 𝐶∅
, ∀𝑒 ∈ �̄�◇,
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𝜌′𝑒 = 𝜌𝑒, ∀𝑒 ∈ 𝐸 ∖ �̄�◇,

where 𝜖 is a sufficiently small positive number. Under this deviation, we can check that the

set �̄�◇ does not change, but 𝜆 changes to 𝜆 − 𝜖. Therefore, the defender’s utility can be

written as:

𝑈𝑑(𝜌
′, ̃︀𝜎𝑎(𝜌′)) = −𝜆+ 𝜖−

(︃∑︁
𝑒∈𝐸

𝜌′𝑒

)︃
· 𝑝𝑑 = −𝜆+ 𝜖−

(︃∑︁
𝑒∈𝐸

𝜌𝑒

)︃
· 𝑝𝑑 −

∑︁
𝑒∈�̄�◇

𝜖𝑝𝑑
𝐶𝑒 − 𝐶∅

=𝑈𝑑(𝜌, ̃︀𝜎𝑎(𝜌)) + 𝜖

(︃
1−

∑︁
𝑒∈�̄�◇

𝑝𝑑
𝐶𝑒 − 𝐶∅

)︃
≥ 𝑈𝑑(𝜌, ̃︀𝜎𝑎(𝜌)) + 𝜖

⎛⎝1−
∑︁

𝑒∈∪𝑖
𝑘=1�̄�(𝑘)

𝑝𝑑
𝐶𝑒 − 𝐶∅

⎞⎠
=𝑈𝑑(𝜌, ̃︀𝜎𝑎(𝜌)) + 𝜖

(︃
1−

𝑖∑︁
𝑘=1

𝑝𝑑𝐸(𝑘)

𝐶𝑒 − 𝐶∅

)︃
(6.19)
> 𝑈𝑑(𝜌, ̃︀𝜎𝑎(𝜌)).

Therefore, such 𝜌 cannot be an equilibrium strategy profile. We thus know that 𝜌* is as

given in (6.38). The attacker’s equilibrium strategy can be derived from Lemmas 6.4 and

6.5 directly. �

Lemma D.2. For (𝑝𝑎, 𝑝𝑑) in Λ𝑖𝑗, where 𝑖 = 1, . . . , 𝐾, and 𝑗 = 1, . . . , 𝑖, there are two cases

of SPE:

If 𝑝𝑑 > 𝑝𝑖𝑗𝑑 , where 𝑝𝑖𝑗𝑑 is as given in (6.30):

- If 𝑗 = 1, then SPE is as given in (6.39).

- If 𝑗 = 2, . . . , 𝑖, then SPE is as given in (6.40).

If 𝑝𝑑 < 𝑝𝑖𝑗𝑑 , then the SPE is as given in (6.38).

Proof of Lemma D.2. Consider cost parameters in the set Λ𝑖𝑗 defined in (D.7), where

𝑖 = 1, . . . , 𝐾 and 𝑗 = 1, . . . , 𝑖. The set of vulnerable facilities is ∪𝑖𝑘=1�̄�(𝑘). From Lemma 6.5,

we know that the defender can either secure all vulnerable facilities 𝑒 ∈ ∪𝑖𝑘=1�̄�(𝑘) with the

threshold effort ̂︀𝜌𝑒 defined in (6.27), or leave at least one vulnerable facility secured less than

the threshold effort. We discuss the two cases separately:

(1) If any 𝑒 ∈ ∪𝑖𝑘=1�̄�(𝑘) is secured with the threshold effort ̂︀𝜌𝑒, then from Lemma 6.5, we
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know that the total probability of attack is 0. The defender’s utility can be written as:

𝑈𝑑(̂︀𝜌, ̃︀𝜎*
𝑎(̂︀𝜌)) = −𝐶∅ −

(︃
𝑖∑︁

𝑘=1

(︀
𝐶(𝑘) − 𝑝𝑎 − 𝐶∅

)︀
· 𝐸(𝑘)

𝐶(𝑘) − 𝐶∅

)︃
· 𝑝𝑑. (D.9)

(2) If the set {𝐸|𝐶𝑒 − 𝑝𝑎 > 𝐶∅, 𝜌𝑒 < ̂︀𝜌𝑒} is non-empty, then we define ̃︀𝑃 as the set of

feasible 𝜌 in this case. We denote 𝜌† as the secure effort vector that incurs the highest utility

for the defender among all 𝜌 ∈ ̃︀𝑃 . Then, 𝜌† can be written as:

𝜌† ∈ argmax
𝜌∈ ̃︀𝑃 𝑈𝑑(𝜌, ̃︀𝜎*

𝑎(𝜌)) = argmax
𝜌∈ ̃︀𝑃

(︃
−E(𝜌,̃︀𝜎*

𝑎(𝜌))[𝐶]−

(︃∑︁
𝑒∈𝐸

𝜌𝑒

)︃
· 𝑝𝑑

)︃

=argmax
𝜌∈ ̃︀𝑃

(︃
−E(𝜌,̃︀𝜎*

𝑎(𝜌))[𝐶]−

(︃∑︁
𝑒∈𝐸

𝜌𝑒

)︃
· 𝑝𝑑 +

(︃∑︁
𝑒∈𝐸

̃︀𝜎*
𝑎(𝑒, 𝜌)

)︃
· 𝑝𝑎 −

(︃∑︁
𝑒∈𝐸

̃︀𝜎*
𝑎(𝑒, 𝜌)

)︃
· 𝑝𝑎

)︃
.

(D.10)

We know from Lemma 6.4 that ̃︀𝜎*
𝑎(∅, 𝜌) = 0. Therefore,

∑︀
𝑒∈𝐸 ̃︀𝜎*

𝑎(𝑒, 𝜌) = 1, and (D.10) can

be re-expressed as:

𝜌† ∈ argmax
𝜌∈ ̃︀𝑃

(︃
−E(𝜌,̃︀𝜎*

𝑎(𝜌))[𝐶]−

(︃∑︁
𝑒∈𝐸

𝜌𝑒

)︃
· 𝑝𝑑 +

(︃∑︁
𝑒∈𝐸

̃︀𝜎*
𝑎(𝑒, 𝜌)

)︃
· 𝑝𝑎 − 𝑝𝑎

)︃

= argmax
𝜌∈ ̃︀𝑃

(︃
−E(𝜌,̃︀𝜎*

𝑎(𝜌))[𝐶]−

(︃∑︁
𝑒∈𝐸

𝜌𝑒

)︃
· 𝑝𝑑 +

(︃∑︁
𝑒∈𝐸

̃︀𝜎*
𝑎(𝑒, 𝜌)

)︃
· 𝑝𝑎

)︃
.

Since in equilibrium, the attacker chooses the best response strategy, we have:

E(𝜌,̃︀𝜎*
𝑎(𝜌))[𝐶]−

(︃∑︁
𝑒∈𝐸

̃︀𝜎*
𝑎(𝑒, 𝜌)

)︃
· 𝑝𝑎 = max̃︀𝜎𝑎∈Δ(𝑆𝑎)

(︃
E(𝜌,̃︀𝜎𝑎)[𝐶]−

(︃∑︁
𝑒∈𝐸

̃︀𝜎𝑎(𝑒))︃ · 𝑝𝑎)︃ . (D.11)

Hence, 𝜌† can be re-expressed as:

𝜌†
(D.11)
= argmax

𝜌∈ ̃︀𝑃
(︃
− max̃︀𝜎𝑎∈Δ(𝑆𝑎)

(︃
E(𝜌,̃︀𝜎𝑎)[𝐶]−

(︃∑︁
𝑒∈𝐸

̃︀𝜎𝑎(𝑒))︃ · 𝑝𝑎)︃−(︃∑︁
𝑒∈𝐸

𝜌𝑒

)︃
· 𝑝𝑑

)︃

= argmax
𝜌∈ ̃︀𝑃

(︃
− max̃︀𝜎𝑎∈Δ(𝑆𝑎)

(︃
E(𝜌,̃︀𝜎𝑎)[𝐶]−

(︃∑︁
𝑒∈𝐸

̃︀𝜎𝑎(𝑒))︃ · 𝑝𝑎 +(︃∑︁
𝑒∈𝐸

𝜌𝑒

)︃
· 𝑝𝑑

)︃)︃
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= argmax
𝜌∈ ̃︀𝑃 miñ︀𝜎𝑎∈Δ(𝑆𝑎)

(︃
−E(𝜌,̃︀𝜎𝑎)[𝐶] +

(︃∑︁
𝑒∈𝐸

̃︀𝜎𝑎(𝑒))︃ · 𝑝𝑎 −(︃∑︁
𝑒∈𝐸

𝜌𝑒

)︃
· 𝑝𝑑

)︃
(6.9a)
= argmax

𝜌∈ ̃︀𝑃 miñ︀𝜎𝑎∈Δ(𝑆𝑎)
𝑈0
𝑑 (𝜌, ̃︀𝜎𝑎).

Therefore, 𝜌† is the defender’s equilibrium strategy in the zero sum game, which is identical

to the equilibrium strategy in the normal form game (recall Lemma 6.2). From Theorem

6.1, when 𝑝𝑎 and 𝑝𝑑 are in Λ𝑖𝑗, 𝜌† is in (6.40) (or (6.39) if 𝑗 = 1). The defender’s utility in

this case is:

𝑈𝑑(𝜌
†, ̃︀𝜎*

𝑎(𝜌
†)) = −𝐶(𝑗) −

(︃
𝑗−1∑︁
𝑘=1

(︀
𝐶(𝑘) − 𝐶(𝑗)

)︀
· 𝐸(𝑘)

𝐶(𝑘) − 𝐶∅

)︃
· 𝑝𝑑. (D.12)

Finally, by comparing 𝑈𝑑 in (D.12) and (D.9), we can check that if 𝑝𝑑 > 𝑝𝑖𝑗𝑑 , then 𝑈𝑑(𝜌†, ̃︀𝜎*
𝑎(𝜌

†)) >

𝑈𝑑(̂︀𝜌, ̃︀𝜎*
𝑎(̂︀𝜌)). Thus, SPE is in (6.40) (or (6.39) if 𝑗 = 1). If 𝑝𝑑 < 𝑝𝑖𝑗𝑑 , then 𝑈𝑑(𝜌

†, ̃︀𝜎*
𝑎(𝜌

†)) <

𝑈𝑑(̂︀𝜌, ̃︀𝜎*
𝑎(̂︀𝜌)), and SPE is in (6.38). �

Proof of Theorem 6.2. Type ̃︀I regimes ̃︀Λ𝑖:
If 𝑖 = 0: There is no vulnerable facility. Therefore, the attacker chooses not to attack with

probability 1, and the defender does not secure any facility. SPE is as given in (6.37).

If 𝑖 = 1, . . . , 𝐾: Consider any 𝐶(𝑖+1)−𝐶∅ < 𝑝𝑎 < 𝐶(𝑖)−𝐶∅. From Lemma (6.6), we know that̃︀𝑝𝑑(𝑝𝑎) > 𝑝𝑑(𝑝𝑎), where ̃︀𝑝𝑑(𝑝𝑎) is defined in (6.31) and 𝑝𝑑(𝑝𝑎) is as defined in (6.16). From

Lemma D.1, we know that SPE is as given in (6.38) for any 𝑝𝑑 < 𝑝𝑑(𝑝𝑎).

It remains to be shown that for any 𝑝𝑑(𝑝𝑎) ≤ 𝑝𝑑 < ̃︀𝑝𝑑(𝑝𝑎), SPE is also as given in

(6.38). For any 𝐶(𝑖+1) − 𝐶∅ ≤ 𝑝𝑎 < 𝐶(𝑖) − 𝐶∅, there is a unique �̂� ∈ {1, . . . , 𝑖} such that∑︀𝑖
𝑘=�̂�+1

𝐸(𝑘)∑︀𝑖
𝑘=1

𝐸(𝑘)
𝐶(𝑘)−𝐶∅

≤ 𝑝𝑎 <
∑︀𝑖

𝑘=�̂�
𝐸(𝑘)∑︀𝑖

𝑘=1

𝐸(𝑘)
𝐶(𝑘)−𝐶∅

, and from (6.31), we have:

̃︀𝑝𝑑(𝑝𝑎) = 𝑝𝑖�̂�𝑑 (𝑝𝑎) ≥ 𝑝𝑖�̂�𝑑

⎛⎝ ∑︀𝑖
𝑘=�̂�+1𝐸(𝑘)∑︀𝑖
𝑘=1

𝐸(𝑘)

𝐶(𝑘)−𝐶∅

⎞⎠ (6.30)
=

⎛⎝ �̂�∑︁
𝑘=1

𝐸(𝑘)

𝐶(𝑘) − 𝐶∅

⎞⎠−1

,

̃︀𝑝𝑑(𝑝𝑎) = 𝑝𝑖�̂�𝑑 (𝑝𝑎) < 𝑝𝑖�̂�𝑑

⎛⎝ ∑︀𝑖
𝑘=�̂� 𝐸(𝑘)∑︀𝑖

𝑘=1

𝐸(𝑘)

𝐶(𝑘)−𝐶∅

⎞⎠ =

⎛⎝ �̂�−1∑︁
𝑘=1

𝐸(𝑘)

𝐶(𝑘) − 𝐶∅

⎞⎠−1

.
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Consider any 𝑗 = �̂�+1, . . . , 𝑖, and any
(︁∑︀𝑗

𝑘=1

𝐸(𝑘)

𝐶(𝑘)−𝐶∅

)︁−1

≤ 𝑝𝑑 <
(︁∑︀𝑗−1

𝑘=1

𝐸(𝑘)

𝐶(𝑘)−𝐶∅

)︁−1

, the cost

parameters (𝑝𝑎, 𝑝𝑑) are in the set Λ𝑖𝑗 as defined in (D.7). Additionally, from our definition of

�̂�, we know that 𝑝𝑎 >
∑︀𝑖

𝑘=𝑗 𝐸(𝑘)∑︀𝑖
𝑘=1

𝐸(𝑘)
𝐶(𝑘)−𝐶∅

. We now show that in Λ𝑖𝑗, 𝑝𝑑 < 𝑝𝑖𝑗𝑑 (𝑝𝑎):

𝑝𝑖𝑗𝑑 (𝑝𝑎)
(6.30)
> 𝑝𝑖𝑗𝑑

⎛⎝ ∑︀𝑖
𝑘=𝑗 𝐸(𝑘)∑︀𝑖

𝑘=1

𝐸(𝑘)

𝐶(𝑘)−𝐶∅

⎞⎠ =

(︃
𝑗−1∑︁
𝑘=1

𝐸(𝑘)

𝐶(𝑘) − 𝐶∅

)︃−1
(D.7)
> 𝑝𝑑.

Hence, from Lemma D.2, we know that for any
(︁∑︀𝑖

𝑘=1

𝐸(𝑘)

𝐶(𝑘)−𝐶∅

)︁−1

≤ 𝑝𝑑 ≤
(︁∑︀�̂�

𝑘=1

𝐸(𝑘)

𝐶(𝑘)−𝐶∅

)︁−1

,

SPE is as given in (6.38). For any
(︁∑︀�̂�

𝑘=1

𝐸(𝑘)

𝐶(𝑘)−𝐶∅

)︁−1

< 𝑝𝑑 < ̃︀𝑝𝑑(𝑝𝑎), the cost parameters

(𝑝𝑎, 𝑝𝑑) are in the set Λ�̂�𝑖 , and 𝑝𝑑 < ̃︀𝑝𝑑(𝑝𝑎) = 𝑝𝑖�̂�𝑑 (𝑝𝑎). Again from Lemma D.2, SPE is in

(6.38).

Therefore, we can conclude that in regime ̃︀Λ𝑖, SPE is in (6.38).

Type ̃︀II regimes ̃︀Λ𝑗, where 𝑗 = 1, . . . , 𝐾: Since ̃︀𝑝𝑑(𝑝𝑎) is strictly increasing in 𝑝𝑎 and

lim𝑝𝑎→𝐶(1)−𝐶∅ ̃︀𝑝𝑑(𝑝𝑎) = +∞, we know that for any 𝑝𝑑 > 0, 𝑝𝑎 < ̃︀𝑝−1
𝑑 (𝑝𝑑) < 𝐶(1) − 𝐶∅.

Therefore, we can re-express ̃︀Λ1 as follows:

̃︀Λ1 (6.35)
=

{︃
(𝑝𝑎, 𝑝𝑑)

⃒⃒⃒⃒
⃒𝑝𝑎 < ̃︀𝑝−1

𝑑 (𝑝𝑑), 𝑝𝑑 >

(︂
𝐸(1)

𝐶(1) − 𝐶∅

)︂−1
}︃

=

{︃
(𝑝𝑎, 𝑝𝑑)

⃒⃒⃒⃒
⃒𝑝𝑑 > ̃︀𝑝𝑑(𝑝𝑎), 𝑝𝑑 >

(︂
𝐸(1)

𝐶(1) − 𝐶∅

)︂−1

, 0 ≤ 𝑝𝑎 ≤ 𝐶(1) − 𝐶∅

}︃
(D.7)
= =

𝐾⋃︁
𝑖=1

(︁
Λ𝑖𝑗
⋂︁
{(𝑝𝑎, 𝑝𝑑) |𝑝𝑑 > ̃︀𝑝𝑑(𝑝𝑎)})︁ . (D.13)

For any 𝑗 = 2, . . . , 𝐾, if 𝑝𝑎 > 𝐶(𝑗) − 𝐶∅, then from Lemma 6.6, we have:

̃︀𝑝𝑑(𝑝𝑎) > 𝑝𝑑(𝑝𝑎)
(6.17)
≥

(︃
𝑗−1∑︁
𝑘=1

𝐸(𝑘)

𝐶(𝑘) − 𝐶∅

)︃−1

. (D.14)

Therefore, for any 𝑝𝑑 <
(︁∑︀𝑗−1

𝑘=1

𝐸(𝑘)

𝐶(𝑘)−𝐶∅

)︁−1

, we know that 𝑝𝑎 < ̃︀𝑝−1
𝑑 (𝑝𝑑) < 𝐶(𝑗) − 𝐶∅. Analo-
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gous to (D.13), we re-express the set ̃︀Λ𝑗 as follows:

̃︀Λ𝑗 (6.36)
=

⎧⎨⎩(𝑝𝑎, 𝑝𝑑)

⃒⃒⃒⃒
⃒⃒𝑝𝑎 < ̃︀𝑝−1

𝑑 (𝑝𝑑),

(︃
𝑗∑︁

𝑘=1

𝐸(𝑘)

𝐶(𝑘) − 𝐶∅

)︃−1

≤ 𝑝𝑑 <

(︃
𝑗−1∑︁
𝑘=1

𝐸(𝑘)

𝐶(𝑘) − 𝐶∅

)︃−1
⎫⎬⎭

(D.14)
=

⎧⎨⎩(𝑝𝑎, 𝑝𝑑)

⃒⃒⃒⃒
⃒⃒ 𝑝𝑑 > ̃︀𝑝𝑑(𝑝𝑎),

(︁∑︀𝑗
𝑘=1

𝐸(𝑘)

𝐶(𝑘)−𝐶∅

)︁−1

≤ 𝑝𝑑 <
(︁∑︀𝑗−1

𝑘=1

𝐸(𝑘)

𝐶(𝑘)−𝐶∅

)︁−1

,

0 ≤ 𝑝𝑎 ≤ 𝐶(𝑗) − 𝐶∅

⎫⎬⎭
(D.7)
=

𝐾⋃︁
𝑖=𝑗

(︁
Λ𝑖𝑗
⋂︁
{(𝑝𝑎, 𝑝𝑑) |𝑝𝑑 > ̃︀𝑝𝑑(𝑝𝑎)})︁ .

We next show that for any 𝑗 = 1, . . . , 𝐾, and any 𝑖 = 𝑗, . . . , 𝐾, the set Λ𝑖𝑗 ∩ {(𝑝𝑎, 𝑝𝑑) |𝑝𝑑 >̃︀𝑝𝑑(𝑝𝑎)} ⊆ Λ𝑖𝑗 ∩ {(𝑝𝑎, 𝑝𝑑) |𝑝𝑑 > 𝑝𝑖𝑗𝑑 (𝑝𝑎)}. Consider any cost parameters (𝑝𝑎, 𝑝𝑑) in the set

Λ𝑖𝑗 ∩ {(𝑝𝑎, 𝑝𝑑) |𝑝𝑑 > ̃︀𝑝𝑑(𝑝𝑎)}, from (6.31), we can find �̂� such that
∑︀𝑖

𝑘=�̂�+1
𝐸(𝑘)∑︀𝑖

𝑘=1

𝐸(𝑘)
𝐶(𝑘)−𝐶∅

≤ 𝑝𝑎 <

∑︀𝑖
𝑘=�̂�

𝐸(𝑘)∑︀𝑖
𝑘=1

𝐸(𝑘)
𝐶(𝑘)−𝐶∅

, and ̃︀𝑝𝑑(𝑝𝑎) = 𝑝𝑖�̂�𝑑 (𝑝𝑎). We discuss the following three cases separately:

- If �̂� > 𝑗, then we must have 𝑝𝑎 <
∑︀𝑖

𝑘=�̂�
𝐸(𝑘)∑︀𝑖

𝑘=1

𝐸(𝑘)
𝐶(𝑘)−𝐶∅

≤
∑︀𝑖

𝑘=𝑗+1 𝐸(𝑘)∑︀𝑖
𝑘=1

𝐸(𝑘)
𝐶(𝑘)−𝐶∅

. Hence, from (6.30),

𝑝𝑖𝑗𝑑 (𝑝𝑎) <
(︁∑︀𝑗

𝑘=1

𝐸(𝑘)

𝐶(𝑘)−𝐶∅

)︁−1

. From the definition of the set Λ𝑖𝑗 in (D.7), we know that

𝑝𝑑 > 𝑝𝑖𝑗𝑑 (𝑝𝑎) in this set, and thus (𝑝𝑎, 𝑝𝑑) ∈ Λ𝑖𝑗 ∩ {(𝑝𝑎, 𝑝𝑑) |𝑝𝑑 > 𝑝𝑖𝑗𝑑 (𝑝𝑎)}.

- If �̂� = 𝑗, then we directly obtain that (𝑝𝑎, 𝑝𝑑) ∈ Λ𝑖𝑗 ∩ {(𝑝𝑎, 𝑝𝑑) |𝑝𝑑 > 𝑝𝑖𝑗𝑑 (𝑝𝑎)}.

- If �̂� < 𝑗, then since 𝑝𝑎 ≥
∑︀𝑖

𝑘=�̂�+1
𝐸(𝑘)∑︀𝑖

𝑘=1

𝐸(𝑘)
𝐶(𝑘)−𝐶∅

, from (6.30), we have ̃︀𝑝𝑑(𝑝𝑎) = 𝑝𝑖�̂�𝑑 (𝑝𝑎) ≥(︁∑︀�̂�
𝑘=1

𝐸(𝑘)

𝐶(𝑘)−𝐶∅

)︁−1

≥
(︁∑︀𝑗−1

𝑘=1

𝐸(𝑘)

𝐶(𝑘)−𝐶∅

)︁−1

. From the definition of the set Λ𝑖𝑗 in (D.7),

the set Λ𝑖𝑗 ∩ {(𝑝𝑎, 𝑝𝑑) |𝑝𝑑 > ̃︀𝑝𝑑(𝑝𝑎)} is empty, and thus can be omitted.

We can conclude from all three cases that Λ𝑖𝑗 ∩ {(𝑝𝑎, 𝑝𝑑) |𝑝𝑑 > ̃︀𝑝𝑑(𝑝𝑎)} ⊆ Λ𝑖𝑗 ∩ {(𝑝𝑎, 𝑝𝑑) |𝑝𝑑 >

𝑝𝑖𝑗𝑑 (𝑝𝑎)}. Therefore, from Lemma D.2, SPE is in (6.40) (or (6.39) if 𝑗 = 1) in the regime ̃︀Λ𝑗.
�
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Appendix E

Supplementary Material for Chapter 7

E.1 Behavioral Justification

Our choice of the regression model (7.2) is motivated by the well-known discrete choice

models (Ben-Akiva and Bierlaire [1999]) that are used to explain individual travelers’ choices

between the two modes – driving and taking public transit – based on the estimated utilities

of the two modes. The utility of driving and taking public transit for individual travelers

depends on their anticipated travel time and a mode-specific features that includes all other

characteristics such as waiting time, walking distance, parking, fee, etc.

We note that travelers’ anticipated travel time of each mode depends on their origins,

destinations, and the selected path (subset of traffic or transit segments that connect from

the origin to the destination). In most cases, travelers need to make the mode choice before

they depart from the origin. Thus, travelers’ anticipated travel time for a trip in time interval

𝑡 is not necessarily the average travel time in 𝑡 but instead is the time in a previous interval

𝑡 − 𝑗𝛿, where 𝛿 ≥ 0 is a unit non-negative time lag, and 𝑗 depends on travelers’ origins,

destinations, and the delay of receiving travel time information.

Since we do not have individual-level data that records the origin, destination and selected

path of travelers, we cannot estimate the utility of each mode for every individual. Instead,

we consider a representative utility function that evaluates the average utility of each mode

for all travelers. Since travelers’ selected path may take any segment in the network, the

representative utility depends on the travel time of all segments. Moreover, we assume that
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the maximum time lag for any traveler’s decision of a trip in time interval 𝑡 is 𝑘𝛿. Then, we

write the representative utility of driving (resp. transit) as 𝜑𝑑𝑡
(︀
𝑥𝑡𝑖, 𝑥(𝑡−𝛿)𝑖, . . . , 𝑥(𝑡−𝑘𝛿)𝑖

)︀
(resp.

𝜑𝑏𝑡
(︀
𝑥𝑡𝑖, 𝑥(𝑡−𝛿)𝑖, . . . , 𝑥(𝑡−𝑘𝛿)𝑖

)︀
) plus a noise term with zero mean:

𝑈𝑑
𝑡 = 𝜑𝑑𝑡

(︀
𝑥𝑡𝑖, 𝑥(𝑡−𝛿)𝑖, . . . , 𝑥(𝑡−𝑘𝛿)𝑖

)︀
+ 𝜁𝑑𝑡 , (E.1a)

𝑈 𝑏
𝑡 = 𝜑𝑏𝑡

(︀
𝑥𝑡𝑖, 𝑥(𝑡−𝛿)𝑖, . . . , 𝑥(𝑡−𝑘𝛿)𝑖

)︀
+ 𝜁𝑏𝑡 , (E.1b)

Given the representative utilities 𝑈𝑑
𝑡 and 𝑈 𝑏

𝑡 , the probability of choosing the driving mode

in the discrete choice model is given by:

Pr(Driving) =
exp {𝑈𝑑

𝑡 }
exp {𝑈𝑑

𝑡 }+ exp {𝑈 𝑏
𝑡 }

=
1

1 + exp {𝑈 𝑏
𝑡 − 𝑈𝑑

𝑡 }
(E.1)
=

1

1 + exp
{︀
𝜑𝑏𝑡
(︀
𝑥𝑡𝑖, 𝑥(𝑡−𝛿)𝑖, . . . , 𝑥(𝑡−𝑘𝛿)𝑖

)︀
− 𝜑𝑑𝑡

(︀
𝑥𝑡𝑖, 𝑥(𝑡−𝛿)𝑖, . . . , 𝑥(𝑡−𝑘𝛿)𝑖

)︀}︀ ,
We take 𝜑𝑡

(︀
𝑥𝑡𝑖, 𝑥(𝑡−𝛿)𝑖, . . . , 𝑥(𝑡−𝑘𝛿)𝑖

)︀ Δ
= 𝜑𝑏𝑡

(︀
𝑥𝑡𝑖, 𝑥(𝑡−𝛿)𝑖, . . . , 𝑥(𝑡−𝑘𝛿)𝑖

)︀
−𝜑𝑑𝑡

(︀
𝑥𝑡𝑖, 𝑥(𝑡−𝛿)𝑖, . . . , 𝑥(𝑡−𝑘𝛿)𝑖

)︀
.

Therefore, as the number of travelers becomes large, the aggregate driving fraction evaluated

by 𝑦𝑡𝑖 can be written as (7.2).
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