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Abstract

Social networks are powerful in modeling interdependence among individuals. Re-
cently, the availability of large-scale social network data and advances in computa-
tional tools have facilitated the rapid development in social network research. How-
ever, a few important aspects of social networks have been understudied, and ad-
vanced computational tools may not directly help social scientists draw scientific
knowledge. My thesis thus aims to move towards applying and developing computa-
tional tools that help investigate important questions on social networks.

The first component of my thesis focuses on understanding social interactions and
networks, which offers implications for reshaping social networks to improve social
cohesion. Specifically, I examine the formation and dynamics of social networks,
with a focus on social exchange and “long ties”. Utilizing large-scale social network
data and computational tools, I first discuss benefits of the social exchange with
dissimilar people in social networks; and then I proceed to study dynamic social
networks and focus on long ties, or the social ties that bridge different communities
in dynamic networks. Methodologically, I develop a novel interdisciplinary approach
that combines game theory and machine learning techniques.

Second, I study what features on online platforms may improve social interac-
tions and reshape social networks. To do so, I utilize large-scale data of online social
media and provide two examples in the field. The first example is the identification
of social contagion of online gift giving. This study examines how receiving a gift
would promote the person to pay forward the gift, and also discusses how this social
contagion can promote social interactions and tight social bonds. The other exam-
ple is to examine how the designs of peer effects and prosociality on online social
platforms encourage users’ offline fitness behavior. Methodologically, both studies
involve advanced causal inference and machine learning techniques to test the main
hypotheses.

Moreover, I develop computational tools that analyze social network data. In the
final component of my thesis, I introduce an algorithm for controlled experiments
in social networks. This algorithm detects heterogeneous spillover effects – how the
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treatment assignments received by one’s network neighbors affect a person’s behavior
– in the data of networked experiments. This interdisciplinary algorithm combines
approaches in causal inference, machine learning, and network science.

Thesis Supervisor: Alex ‘Sandy’ Pentland
Title: Toshiba Professor of Media Arts and Sciences, MIT

Thesis Committee Member: Dean Eckles
Title: Associate Professor of Marketing, MIT

Thesis Committee Member: Sinan Aral
Title: David Austin Professor of Management, MIT

Thesis Committee Member: Esteban Moro
Title: Associate Professor, Universidad Carlos III de Madrid and MIT
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Chapter 1

Introduction

1.1 Background

Individuals are interdependent. Our social identities depend on who we interact

with [237]. Our opinions, actions, emotions can be deeply influenced by our peers

[69, 67, 96, 97, 47, 56, 21, 19]. We are inclined to make friends with those who share

similar characteristics [177]. The social groups that we belong to provide us with

support, information of interest, among other benefits, or pitfalls [28].

Individuals and their interdependence can be modeled by social networks [110, 53].

A social network consists of a set of individuals, who serve as nodes on the graph,

and the interactions or relationships between those individuals, who serve as edges

[34, 135]. Social networks provide researchers with a powerful, bottom-top angle

to view and analyze our societies. On the micro level, we can investigate how the

local network structure of a node (or an individual) predicts individual decisions or

influences their behaviors [163, 82, 247]. On the macro level, social networks provide

a bottom-up approach to examine the global structure of a society and the diffusion

of information or behaviors on this network [81, 198].

Social networks have been studied by multiple disciplines, ranging from physics

[258, 35], statistics [98, 226], computer science [163, 197], to economics [135], and other

social sciences [69, 73]. From my perspective, two main reasons have contributed to

the surge in social network research. The first reason is the availability of large-scale
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data [158]. Due to the proliferation of mobile and digital technologies, various social

network datasets are becoming available to researchers. Examples include mobile

communication networks, email networks, instant messaging networks, and social

media networks. Importantly, in recent years, some social network platforms have

made it possible for users to have various types of virtual interactions. The data of

those online behaviors offer opportunities to investigate important human behaviors

with large-scale datasets that have not been well studied due to the data availability

issue.

Second, the innovation of analytical and computational tools also promote the pro-

liferation of social network studies. The studies of complex networks provide powerful

ways to explain important phenomena in the real-world complex network dynamics

by simple and tractable analytical models, such as the small-world phenomenon and

the power law degree distribution [258, 35]. In addition, microeconomic theory and

econometrics have been employed to model the individual rational decisions of choos-

ing neighbors and actions on the network [135]. Furthermore, the recent rapid de-

velopment of machine learning techniques on graphs, such as graphical models [235],

embedding techniques [197, 112], and graph neural networks[144, 253], have been

utilized to model the complex patterns on large-scale real-world networks. All these

approaches have facilitated the analysis of massive social networks.

However, challenges remain in the studies of social networks from both question

driven and methods driven perspectives. On the question-driven side, first, while there

has been extensive literature on the naturally occurring patterns on social networks,

such as homophily (the phenomenon whereby people tend to interact with others

[177]), triad closure or local clustering [101], and group formation or community

detection [28], much fewer studies focus on the interactions between individuals and

communities who are distant on social networks. Those interactions between socially

distant or dissimilar individuals are equally or sometimes even more important, as

they may serve as the key channels to spread novel information and connect different

communities [110]. Moreover, they may help us understand how to help combat

societal problems such as political polarization [71], racism and xenophobia [13], and
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misinformation [76, 254].

Second, as online social media designs various novel features that facilitate people’s

daily life, as researchers, we need to work with those online platforms to understand

how to promote positive social interactions and reduce the negative ones. While

social platforms are providing us with much convenience for remote interactions,

they may unintentionally promote negative interactions such as the formation of echo

chambers, hate, and polarization. It would be interesting to illustrate how social

network platforms may design features that promote the social good. In my thesis,

two examples on online social platforms are used to offer implications for improving

the ecosystem of online social platforms, or more specifically for promoting prosocial

behavior.

From a methodological perspective, social scientists are faced with challenges when

directly applying machine learning for social science research, especially when social

scientists aim to effectively understanding causal mechanisms. Since the goal of most

machine learning algorithms is to maximize the prediction performance, direct appli-

cation of machine learning techniques may not help us fully understand the mecha-

nisms of the dynamics of our societies. This “explanation-prediction” trade-off is a

challenge in computational social science studies [120]. For social science research, it

is even more challenging to understand how to draw useful knowledge by applying the

“black-box-like” algorithms. Moreover, machine learning algorithms face challenges in

deriving causal relationships from big data, which is the core problem in many social

science studies [196]. In particular, in social networks, correlation-based data analysis

may sometimes offer misleading conclusions without considering causality [70, 18].

1.2 Problem Summary

My thesis contributes to the social network literature in terms of both drawing social

scientific knowledge and improving computational approaches. From Chapter 2 to

Chapter 6, I discuss my explorations in further understanding social networks and

improving computational methods in social networks.
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Chapter 2 introduces a framework for modeling social network formation. It dis-

cusses an approach that jointly accounts for homophily and social exchange, which has

been studied mostly separately in the prior literature. Methodologically, it proposes a

novel approach to incorporate embedding techniques [197, 112, 253] in strategic net-

work formation models [135]. This chapter is based on the paper “An interpretable

Approach for Social Network Formation Among Heterogeneous Agents,” which is joint

work with Ahmad Alabdulkareem and Alex ‘Sandy’ Pentland, and has been published

at Nature Communications [268].

Chapter 3 further discusses the dynamics of social networks, with a focus on long

ties (or long-range ties), which are the social ties that bridge different communities in

social networks [57, 56, 194]. The results of this and last chapters imply the necessity

of having social ties that bring beneficial social exchange to stabilize social ties and

maintain the structure of our social networks. Methodologically, it is an extension

of the approach in Chapter 2 to temporal social networks by combining strategic

network formation and network embedding. This chapter is based on an ongoing

project titled “Investigating and Modeling the Dynamics of Long Ties,” which is joint

work with Ding Lyu, Lin Wang, Xiaofan Wang, and Alex ‘Sandy’ Pentland.

After the two chapters that focus on modeling social network structures, Chap-

ter 4 and Chapter 5.1 provide two examples of how online social platforms can improve

well-being and promote positive social interactions in online social platforms. Chap-

ter 4 discusses the social contagion of gift giving (precisely red packets [271]) on a

major social network platform in China, which further contributes to the literature

of social contagion. The results of this chapter also highlights how online gift giv-

ing can promote social interactions and solidarity in online social networks. From a

methodological perspective, it applies a structural causal model [196] to a large-scale

observational dataset as a neat natural experiment. This is joint work with Tracy

Xiao Liu, Chenhao Tan, Qian Chen, Alex ‘Sandy’ Pentland, and Jie Tang, and is

based on a paper under review and revision titled “Gift Contagion in Online Groups”

[270].

Chapter 5.1 provides a comparison between the effect of social contagion (or peer
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pressure) versus prosocial incentives (i.e., the incentives from strangers). This chapter

focuses on their effect on people’s daily exercise patterns. This chapter does not only

quantify the peer effect (social contagion) of exercises through online social network

platforms, but also compares it with the effectiveness of prosocial incentives by the

same platform. This chapter involves multiple modern causal inference approaches,

including a large scale field experiment, instrumental variable design, matching de-

sign, and a regression discontinuity design, to estimate the effects and investigate the

mechanisms. This is joint work with Christos Nicolaides, Alex ‘Sandy’ Pentland, and

Dean Eckles, is based on the working paper “Promoting Physical Activity through

Prosocial Incentives on Mobile Platforms.”

Chapter 6 is a methodological paper, which proposes an approach that com-

bines machine learning and network science to help mitigate the network interfer-

ence [248, 22] effect when analyzing large-scale experimental data in networks. It is

also connected to theories in social networks such as structural diversity [247] and

complex contagion [57]. This is joint work with Kristen M. Altenburger and Farshad

Kooti, and is based on the paper “Causal Network Motifs: Identifying Heterogeneous

Spillover Effects in A/B Tests” appeared in the ACM Web Conference 2021 [269].

Finally, Chapter 7, the Conclusions Chapter, summarizes my thesis and proposes

future directions that I would like to explore in network science and computational

social science [158].
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Chapter 2

Modeling social exchange and

homophily with embedding

techniques

2.1 Background

Previous work on modeling social network formation has typically employed game

theory or agent-based modeling [258, 33, 136, 223, 189, 185, 135]. These studies typ-

ically propose simple and tractable micro-level rules for link formation mechanisms

and show that these rules have implications for known macro-level properties. Several

studies in statistics and econometrics have also used game theory to model empirical

networks [178, 68, 59], but they typically have been focused on estimating and iden-

tifying the effects of special interest such as racial segregation. To date, these models

have not been capable of accounting for the effects of broad heterogeneity among

individuals and, therefore, a lack predictive power for link formation in complex,

real-world networks.

Studies on network embedding techniques [197, 238, 112, 144] could partially fill

this gap in the network formation literature because these techniques consider node

heterogeneity and show predictability of both link formation and individual charac-
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teristics. Network embedding techniques are aimed at representing each node with

a fixed-length vector learned from social network observation data. The agents in a

network may be so diverse that representing all their characteristics would require

very high dimensionality for the vectors. The philosophy of network embedding is

aimed at reducing the dimensionality by mapping all the characteristics of agents onto

a low-dimensional latent space. Each dimension in the latent space, therefore, usually

does not correspond to a separate attribute of the agents. The latent space represen-

tation of the network provides considerable potential for measuring the heterogeneity

among agents. However, because network embedding methods are designed for data

representation and compression rather than for explaining network formation, they

do not attempt to capture micro, inter-agent effects such as social status or macro

effects such as social segregation and thus do not provide social science explanations

for the link formation.

There are few previous papers which have attempted to account for network for-

mation by the heterogeneity of agent without losing micro-level interpretability. A

study on ecological networks by McKane and Drossel utilized a similar approach with

ours, wherein agents were represented by a small number of attributes among a large

attribute pool [175]. However, this work did not directly estimate the latent variables

for networks of agents. More abstractly, our method is also reminiscent of mixed

membership stochastic blockmodels where agents respectively follow a probability

distribution of membership within several communities [8]. However, probabilistic

membership models typically do not seek to explain the economic and sociological

mechanism and dynamics of network formation. We hope to extend these previous

works to the estimation of agent characteristics and network link formation using

observed interaction data. In addition, we want to incorporate a more complex but

interpretable inter-agent exchange utility function, by modeling both exchange ben-

efits and coordination costs arising from the differences between agents.

Furthermore, an important question rarely studied in literature is the trade-off

between coordination costs and exchange benefits. On the one hand, the coordina-

tion between dissimilar people incurs higher costs than between similar people [137],
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a relationship which encourages homophily, i.e., the tendency to interact more with

people who have shared characteristics. On the other hand, the rationale of exchang-

ing endowments comes from welfare economics: agents have different endowments

and their preferences drive them to interact and exchange endowments [171]. The

exchange nature therefore encourages heterophily, i.e., the tendency to interact with

dissimilar individuals [205]. Empirical studies have found that heterophily exists in

various scenarios [138, 141], and that complimentary heterophily between two agents

may bring more mutual benefits than homophily [12]. However, most prior studies

of social network formation consider either only coordination costs and homophily

[68, 44, 75] or only social exchange and heterophily [74, 100, 147], rather than the

integrated consideration of exchange and coordination as we do in this study. The

trade-off between exchange benefits and coordination costs is also reminiscent of the

identity-diversity balance in organizational performance literature [257, 125].

Inspired by the network embedding techniques, we develop a social network for-

mation model and representation learning method for heterogeneous agents that seek

to retain the interpretability. We maintain the inter-agent micro-structure charac-

teristic of most agent-based models and have the macro-level structures that are the

focus of sociology. In our model, agents are characterized by vectors, called their

endowment vectors; they maximize their utility by having link formation driven by

comparing their own endowment vectors with those of others. Importantly, we take

an economic view of human networks which considers link formation to be driven by

the trade-off between the benefit of exchanges [191] among individuals with different

endowments against the coordination costs due to differences in individual endow-

ments [177]. We apply optimization methods to ascertain the endowment vectors of

all agents using empirical observation of network interactions. The effectiveness of

this method is validated by predicting link formation and individual characteristics.

Subsequently, the agent-based models that are derived from empirical data are evalu-

ated in terms of their micro- and macro-level behavior, compared with the behavior of

human networks. Abstractly, we model link formation as a reaction-diffusion system,

a framework found in many biological systems.
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2.2 Methods

Problem setup

Let ℐ = {1, 2, ..., 𝑁} be a group of 𝑁 and potentially connected agents indexed by 𝑖

(or 𝑗, 𝑙). Let 𝐾 be the dimensionality of endowments that drives the formation of the

social network of the group, indexed by 𝑘. Each agent has a latent endowment vector

wi = (𝑤𝑖1, ..., 𝑤𝑖𝐾)𝑇 , with each dimension indicating an aspect of the individual’s

attributes. Let W = (w1, ...,w𝑁)𝑇 . We observe all edges among the 𝑁 agents.

Let 𝐷 be a set of 𝑁 × 𝑁 adjacency matrices among agents in all periods. 𝐷𝑖𝑗 is

binary ({0, 1}). 𝐷𝑖𝑗 = 1 if there is an edge from 𝑖 to 𝑗, and 𝐷𝑖𝑗 = 0 otherwise. For

the convenience of showing pairwise stability, the study is restricted to undirected

graphs, i.e. 𝐷𝑖𝑗 = 𝐷𝑗𝑖.

Agents make rational choices by comparing their endowment vectors with poten-

tial friends. Agents maximize their utility functions (𝑈𝑖 : 2ℐ/{𝑖} → R for each 𝑖)

dependent on the differences between their endowment vectors and all possible can-

didates (all other agents). 𝑈𝑖 is also parameterized by W, b, and c. ∆𝑢𝑖(𝑗) is the

marginal utility that 𝑗 brings to 𝑖. We therefore predict 𝐷𝑖𝑗 by ∆𝑢𝑖(𝑗).

Data description

• Andorra. We collected the nationwide call detail records in Andorra from July

2015 to June 2016. Utilizing the country code, we filtered out all non-citizens,

leaving 32,829 citizens with at least one call interactions with another. If the

(𝑖, 𝑗) had at least one effective call (duration greater than zero seconds), we

set 𝐷𝑖𝑗 = 𝐷𝑗𝑖 = 1; otherwise 𝐷𝑖𝑗 = 𝐷𝑗𝑖 = 0. This process results in 513, 931

links. To demonstrate the effectiveness of the learned endowments, we also

extracted three characteristics of individuals: phone type, frequent city, and

Internet usage. The phone type was identified by the type allocation code, and

we classified each type into Apple, Samsung and others (the distribution of three

types is balanced). For each phone number, we employed the last phone type

that we observed. Note that type phone is strongly correlated with important
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individual characteristics such as income. The most frequent city was identified

by the cell tower id. We classified each phone number by the location that

it shows up most frequently throughout the year, this location is thus likely

the work location of the individual (some individuals’ work location may be

their home). Internet usage was computed by the total duration of cellular

data. In the prediction task, we classified Internet usage into high (more than

median) and low (less or equal than median). Details of the datasets, such

as statistics of individual characteristics and network degree distribution, are

shown in Description in detail is reported in Appendix.

• Movie. To highlight the exchange effects, we examine a specific type of social

network, director-cast movie collaboration network, where a node represents ei-

ther a movie director or an actor/actress, and an edge between a director 𝑖 and

an actor/actress 𝑗 represents a collaboration between 𝑖 and 𝑗. 𝐷𝑖𝑗 = 𝐷𝑗𝑖 = 1

means that 𝑖 and 𝑗 collaborated at least once; 0 otherwise. Note that the social

network is close to a bipartite graph where nodes are partitioned into directors

and cast (some people have both cast and director experience). We extracted

3,493 movies throughout 2000 to 2016, and retained individuals with at least

five movies within this period, resulting in 160 directors and 2,628 cast mem-

bers, and 10,399 director-cast pairs. To validate the effectiveness of the learned

endowments, we extracted two individual characteristics: occupation and gen-

der. For occupation, we labeled an individual as a director if she functioned as a

director in more than a half of the movies in which she engaged; cast otherwise.

For gender, we collected 1,840 males and 761 females and 186 unlabeled.

• Synthetic. We manually establish a network of 2,500 agents. Agents are indexed

by (𝑥, 𝑦) (𝑖 = 50𝑥 + 𝑦), 0 ≤ 𝑥 ≤ 49, 0 ≤ 𝑦 ≤ 49, 𝑥, 𝑦 ∈ N. Each agent therefore

resides at a unique location on the 50×50 grid, and the agent has a probability

of 0.5 to be either type A (e.g., a buyer) or type B (e.g., a seller). Buyers

(sellers) are exploring sellers (buyers) in their neighborhood with Manhattan

distance ≤ 3. The network is therefore a bipartite graph where buyers and
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sellers exchange goods and money. This data generating process results in

14,453 edges. We predict the type and location (divide the plane into four

parts) for all agents.

• Company. A network of employees in a company where edges represent a call

and text communication (MobileD in [239]). Each employee is labeled as a

manager or a subordinate. In total, we have 420 managers and 1,564 subordi-

nates, with 12,751 edges among them. In this network, managers are mostly

connected with managers and subordinates are mostly connected with subor-

dinates. At the same time, subordinates also interact with their respective

managers occasionally. We believe that this dataset should show a trade-off

between coordination and exchange; for example, managers and subordinates

have exchange effects, and they have lower coordination costs to interact with

the same type.

• Trade. We use the 2014 international trade data provided by the United Nations

Statistical Division (UN Comtrade Database: [https://comtrade.un.org/]),

specifically the cleaned version provided by the BACI team using their own

methodology of harmonization [104]. We created a network of countries, where

an edge indicates that the trade value between two countries is greater than one

billion dollars (for both directions). This process resulted in 100 countries with

at least one link, and 703 undirected edges among them. We predict the GDP,

economic complexity index (ECI) [116], and the countries’ continents for this

dataset.

Details in learning

For computational simplicity and better fitting performance (see Appendix), we split

the dimensions into “beneficial dimensions” and “costly dimensions”. In equation (2.5),

every dimension (say the 𝑘-th) can contribute to both benefits and costs if both 𝑏𝑘

and 𝑐𝑘 are greater than zero. However, it is not difficult to see that if we constrain

some dimensions to have zero-valued beneficial scaling parameters (𝑏𝑘 = 0) or costly
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scaling parameters (𝑐𝑘 = 0), the dimensionality of the model (𝐾) will increase but

the capacity of data fitting will not change. During the learning process, a connected

pair (𝑖, 𝑗) may result in either an increase in the difference on some beneficial di-

mension (with 𝑏𝑘 > 0) or a decrease in the difference on some costly dimension (with

𝑐𝑘 > 0) between their endowment vectors. Empirically, if both 𝑏𝑘 and 𝑐𝑘 are posi-

tive, these two conflicting effects (to increase or to decrease the utility on the same

dimension) would hinder an effective convergence (shown in Appendix); we conjec-

ture that this is because we are optimizing a non-linear non-convex loss function.

Therefore, we separate the 𝐾 dimension into 𝐾bnf “beneficial dimensions” and 𝐾cst

“costly dimensions” (𝐾bnf +𝐾cst = 𝐾). By comparing the performances of link fitting

for different 𝐾bnf and 𝐾cst, we select the optimal 𝐾*
bnf and 𝐾*

cst, and consequently

𝐾*. For simplicity, we let 𝑏𝑘 = 0, for 𝑘 > 𝐾bnf; and 𝑐𝑘 = 0, for 𝑘 ≤ 𝐾bnf, and

𝜃 = (𝑏1, 𝑏2, ..., 𝑏𝐾bnf , 𝑐𝐾bnf+1, 𝑐𝐾bnf+2, ..., 𝑐𝐾). In Appendix, we show empirically that

the performances of link fitting and node classifications are worse when we do not

split dimensions into beneficial and costly dimensions; and that even when we do

not split dimensions, the learning algorithm will lead most dimensions to be either

“beneficial” or “costly”, i.e. either 𝑏𝑘 or 𝑐𝑘 is very close to zero. More details, including

how to select 𝜆fp and 𝜆reg for different datasets, can be found in Appendix.

2.3 Results

2.3.1 A game theoretical model

Endowment is a well-known and useful concept in microeconomic theory [171], for

example, fundamental theorems of welfare economics are based on endowment vectors.

In our model, an endowment vector represents all of the features (assets, abilities,

capacities, qualities, etc.) that each agent possesses, and are treated as fixed, invariant

characteristics of the agent. We do not consider the situation where endowments are

dynamic in this study. Note that since we limit the dimensionality of endowment

vectors, similar to network embedding algorithms (see Methods), each dimension
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does not necessarily have a specific meaning, but may be a combination of many

attributes of an individual.

Agents establish social ties according to the comparison between their endow-

ments. If we assume that there are 𝐾 dimensions of endowments in a society, each

agent has a 𝐾-dimensional endowment vector w. Note that dimensions may be mu-

tually correlated; for example, in the Karate club, leaders and followers have high

values in their respective dimensions, and these two dimensions should be negatively

correlated. We constrain the first and second moments of each dimension (‖W:𝑘‖) to

be zero and one respectively for computational simplicity.

We assume the utility function of agent 𝑖 is only determined by agent 𝑖’s neighbors’

endowment vectors. We define the utility function 𝑈𝑖 : 2ℐ/{𝑖} → R for all 𝑖, as

equation (2.1). The argument 𝑆 is the potential neighbors, denoting an arbitrary

subset of all agents except 𝑖 herself, i.e., ℐ/{𝑖}. Each agent 𝑖 selects her neighbor set

𝑆 by maximizing her utility function 𝑈𝑖. 𝑈𝑖 is composed of two terms, the benefits of

exchange (𝐹𝑖) and the costs of coordination (𝐺𝑖):

𝑈𝑖(𝑆;W,b, c) = 𝐹𝑖(𝑆;W,b)⏟  ⏞  
benefits of exchange

− 𝐺𝑖(𝑆;W, c)⏟  ⏞  
costs of coordination

, ∀𝑆 ⊂ ℐ/{𝑖}. (2.1)

When 𝑆*
𝑖 is the optimal neighbor set for 𝑖, we define the marginal utility that 𝑗 brings

to 𝑖 as:

∆𝑢𝑖(𝑗) =

⎧⎪⎨⎪⎩𝑈𝑖(𝑆
*
𝑖 ;W,b) − 𝑈𝑖(𝑆

*
𝑖 /{𝑗};W,b), if 𝑗 ∈ 𝑆*

𝑖 ;

𝑈𝑖(𝑆
*
𝑖 ∪ {𝑗};W,b) − 𝑈𝑖(𝑆

*
𝑖 ;W,b), if 𝑗 /∈ 𝑆*

𝑖 .

(2.2)

In this study, we are focused on a specific form for 𝐹𝑖 and 𝐺𝑖 and, consequently,

for 𝑈𝑖. For the costs of coordination, agent 𝑖’s cost incurred by agent 𝑗 is measured

by the difference between wj and wi.

𝐺𝑖(𝑆;W, c) =
∑︁
𝑖∈𝑆

𝑔(wj,wi, c) =
∑︁
𝑖∈𝑆

‖c ∘ (wj −wi)‖2. (2.3)
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“∘” denotes element-wise multiplication. ‖𝑥‖2 denotes ℓ2 norm. Note that the costs

are symmetric, i.e. ‖c ∘ (wi−wj)‖2 = ‖c ∘ (wj−wi)‖2. The costly scaling parameter,

𝑐𝑘, measures the importance of 𝑘-th dimensions on the costs. A higher 𝑐𝑘 will amplify

the difference between 𝑖 and 𝑗’s endowment vectors on the 𝑘-th dimension (𝑤𝑗𝑘 −

𝑤𝑖𝑘). This term encourages homophily: dissimilar pairs have to suffer from high

coordination costs before forming a link.

For 𝐹𝑖, we propose the following form:

𝐹𝑖(𝑆
*
𝑖 ;W,b) =

∑︁
𝑗∈𝑆*

𝑖

𝐾∑︁
𝑘=1

𝑏𝑘 max(𝑤𝑗𝑘 − 𝑤𝑖𝑘, 0) (2.4)

Intuitively, 𝑤𝑗𝑘 −𝑤𝑖𝑘 measures the “advantage” of agent 𝑗 on the 𝑘-th dimension over

agent 𝑖. Since we do not want negative benefits, we consider the benefit on the 𝑘-th

dimension is zero if 𝑤𝑗𝑘 − 𝑤𝑖𝑘 < 0. In deep learning, max(𝑥, 0) is called the “ReLU”

function. TensorFlow [1], a machine learning programming library, provides methods

to optimize functions that contain ReLU functions. Similar to 𝑐𝑘, the beneficial

scaling parameter 𝑏𝑘 measures how beneficial the 𝑘-th dimension is. This term

indicates that if a person is high in several dimensions, she could bring more benefits

to others. Therefore, other people are inclined to link to her. However, she does

not necessarily reciprocate every link because, for example, when she is high in every

dimension, she will not benefit from others in any dimension. Note that we do not

consider comparative advantages in this study. In addition, this term encourages

heterophily: people whose expertise are complimentary have high potential benefits

for link formation. Therefore, in this specific form, we have

∆𝑢𝑖(𝑗) =
𝐾∑︁
𝑘=1

𝑏𝑘 max(𝑤𝑗𝑘 − 𝑤𝑖𝑘, 0) − ‖c ∘ (wj −wi)‖2 (2.5)

There are of course many other variations for the functional form (equation (2.1)).

For example, we can let 𝐹𝑖 non-separable in terms of the neighbor set 𝑆, e.g.,

𝐹𝑖(𝑆) = 1
|𝑆|

∑︀
𝑗∈𝑆*

𝑖

∑︀𝐾
𝑘=1 𝑏𝑘 max(𝑤𝑗𝑘 − 𝑤𝑖𝑘, 0). The intuition is that when one agent

has many neighbors, the benefit brought by each neighbor decreases; Do et al. provide
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a good example of a decreasing marginal utility [77]. However, this functional form

indicates that ∆𝑢𝑖(𝑗) depends on the neighbor set 𝑆, which leads to a time-consuming

combinatorial optimization in the learning process; specifically, when the learning al-

gorithm chooses 𝑆*
𝑖 , it may need 𝒪(𝑁2𝑁) computations of the utility functions, which

is computationally infeasible for even a small-scale network. This is beyond the scope

of this study. We can also change 𝐺𝑖 into other norms, such as ℓ1 norm, or change

𝐹𝑖 into a smoother version of max(𝑥, 0), but these changes do not significantly affect

the results in the later sections, as shown in Appendix. Therefore we concentrate on

this specific form in later sections (equation (2.5)).

In network game theory, pairwise stability [135] refers to the situation where no

increased marginal utility can be brought to both of any unconnected pairs, and

no increased marginal utility can be brought to any agents who want to drop their

neighbors. Following the definition, we derive the conditions when pairwise stability

in undirected networks is satisfied. The proof is straightforward and can be found in

Appendix.

Proposition 1 An undirected network (𝒢 = (𝒱 , ℰ)) implied by neighbor sets 𝑆*
𝑖 ,

𝑖 = 1, 2, ..., 𝑁 is pairwise stable, if the following conditions are satisfied:

1. if 𝑗 ∈ 𝑆*
𝑖 , then 𝑖 ∈ 𝑆*

𝑗 ;

2. ∀𝑗 ∈ 𝑆*
𝑖 , ∆𝑢𝑖(𝑗) ≥ 0;

3. ∀𝑗 /∈ 𝑆*
𝑖 , min

(︀
∆𝑢𝑖(𝑗),∆𝑢𝑗(𝑖)

)︀
< 0.

2.3.2 Learning endowments

We have established a model for social network formation with many parameters

and latent variables. Before we examine the proprieties of the model, we have to

assign values for the unknown variables, including the endowment vectors (W), and

scaling parameters (b and c). To equip our model with the capability of fitting real-

world networks, we learn the endowment vectors using the observations of real-world

networks, by assuming real-world networks are at or close to pairwise stability.
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Let ℒ(b, c,W|𝐷) be the loss function that we want to minimize. The definition

of ℒ(b, c,W|𝐷) is reported in Appendix. Then we solve the optimization problem in

equation (2.6).

Minimize b,c,W :ℒ(b, c,W|𝐷)

Subject to: 𝑏𝑘 ≥ 0, ∀𝑘 = 1, 2, ...𝐾

𝑐𝑘 ≥ 0, ∀𝑘 = 1, 2, ...𝐾∑︀𝑁
𝑖=1𝑤𝑖𝑘

𝑁
= 0, ∀𝑘 = 1, 2, ...𝐾

||W∙k||22 = 𝑁 , ∀𝑘 = 1, 2, ...𝐾

(2.6)

The constraints that 𝑏𝑘 and 𝑐𝑘 should not be less than 0 are required by the properties

of our model. The constraint for the mean of each dimension is to limit the number

of equivalent solutions, so that the optimizer could typically find a better solution.

The constraint of W∙k is to guarantee that the standard deviation of each dimension

is approximately 1, so that the values of b and c are comparable across dimensions.

Since ℒ(b, c,W|𝐷) is non-linear and non-convex (dimensions are interchange-

able) with respect to (b, c,W), we have to approximate the global optimum by a

local optimum. By employing Adam optimizer (an improved stochastic gradient de-

scent method) [143], we are able to learn the local optimum of ℒ(b, c,W|𝐷); Adam

optimizer is good at deriving good local optima when solving non-linear and non-

convex problems. To obtain a solution that approximates the global optimum, we

start from many randomly selected initial points and then analyze the results of the

multiple runs to find the parameters that generate the smallest loss and therefore

the best link fitting performance. Technical details, including the definition of ℒ and

methods that assist learning, are presented in Appendix.
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2.3.3 Validation of learning

Here we show that we have learned meaningful endowment vectors from empirical

networks. In particular, we first use a toy example–Zachary’s karate club network

[272] to illustrate the learning results. We then validate the effectiveness of our

model and learning method by showing their performance at fitting link formation

and predicting individual characteristics for a variety of large-scale social networks:

a synthetic network where two types of people exchange, a Trade network among

countries, a movie collaboration network, a Company communication network, and

the Andorra network, which is a nationwide mobile phone network (see Description

in Methods).

a b c

Figure 2-1: Illustration of the learned endowments for karate club network. a The
network structure of karate club network. Mr. Hi, the instructor, is marked red, and
other people in his faction are marked orange. John, the student leader or officer,
is marked purple, and other people in his faction are marked blue. b The first two
dimensions of the learned endowment vector for each individual; these two dimensions
are only related to exchange benefits so we call them “beneficial endowments”. c The
last two dimensions of the learned endowment vector for each individual; these two
dimensions are only related to coordination cost so we call them “costly endowments”.

We start with a toy example to illustrate both the rationale of the present model

and the effectiveness of learning performance. Because of a conflict between an in-

structor (Mr. Hi) and a student officier (John), the social network of Zachary’s karate

club is polarized into two factions (see Fig. 2-1, Panel a). We set 𝐾 = 4 and the first

two dimensions as “beneficial endowments” and the last two dimensions “costly endow-

ments” (see Methods) because it is more convenient for visualization if the numbers of

44



beneficial and costly dimensions are both even. Note that 𝐾 = 4 is not necessarily the

optimal dimensionality and here we did not add regularization term (see Appendix)

for this result; however we also show in Appendix that 𝐾 = 4 is a reasonable (almost

optimal) selection.

Panels b and c in Fig. 2-1 plot the values of the learned endowments of individuals

in Zachary’s karate club. In Panel b, both Mr. Hi and John are high in dimension #1

and low in dimension #2, while the rest are generally low in endowment dimension

#1 and high in dimension #2. We interpret this result as the tendency of exchanges

between instructors and students: dimension #1 represents the professional skill of

karate and leadership in their factions; endowment #2 represents the willingness to

learn Karate. As for costly endowments (Panel c), we find that dimension #4 cor-

responds to the faction to which each individual belongs: Mr. Hi and his followers

(orange) have values generally higher than 0 while John and his followers (blue) are

generally lower than 0. Dimension #4 can be explained as the individual’s identifi-

cation with the two factions. We interpret cost endowment #3 as other unobserved

characteristics that might influence the interactions between individuals, such as the

time and frequency to participate in club activities. We also illustrate the learning

results for the Trade and Synthetic datasets graphically in Appendix.

Because our goal is to use the learned endowment vectors to further analyze the

micro- and macro- patterns of the network, we learn the endowment vectors by using

all the information (the links) of the network. Therefore, rather than split the input

links into training and test sets, we use all the links as the input. A potential concern

is that we might “overfit” the network by using a large 𝐾; we partially address this

concern by introducing the regularization term ℒreg as mentioned in Appendix. We

use ∆𝑢𝑖(𝑗) as the predictor and AUC (area under the curve) as a measurement for the

fitting performance. AUC trades off between true positive and false positive rates,

and serves as a fair measure when there is a strong imbalance between positive and

negative samples. By using an approach provided in Appendix, we obtain the optimal

dimensionality (𝐾) and the optimal number of beneficial and costly endowments (𝐾bnf

and 𝐾cst, see their definitions in Methods).
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Dataset |𝒱| |ℰ| 𝐾* 𝐾*
bnf 𝐾*

cst AUC
Karate 34 78 3 2 1 98.48%

Country trade 100 703 5 3 2 96.85%
Synthetic 2,500 14,453 4 2 2 99.92%
Company 1,984 12,751 11 4 7 98.70%

Movie 2,788 10,399 7 4 3 96.08%
Andorra 32,829 513,931 15 8 7 94.76%

Table 2.1: Learning results and link fitting performance of learned endowment vectors.
|𝒱| denotes the number of nodes and |ℰ| denotes the number of edges. 𝐾*, 𝐾*

bnf and
𝐾*

cst represent the optimal number of dimensions, beneficial dimensions and costly
dimensions, respectively.

As shown in Table 2.3.3, our model is able to obtain very good fits to the input

networks. For all datasets, the AUC of link fitting is over 94%. Moreover, we demon-

strate that for all datasets, it is necessary to incorporate both the benefit and the cost

terms into the utility functions (i.e. 𝐾bnf > 0 and 𝐾cst > 0). This finding highlights

the importance of integrating both exchange effects and coordination costs into the

link formation mechanisms. Other technical details, including learning curves and

the performance on all the dimensions, are presented in Appendix.

Although our goal is not to design a network embedding algorithm that outper-

forms the state-of-the-art algorithms, it is interesting to examine the model’s ability

to predict individual characteristics as a network embedding algorithm. If the learned

endowments have a decent predictive power for individual characteristics, we can then

believe that we have effectively learned the endowment vectors, which can be used

for further analysis such as agent-based modeling. We extract characteristics that are

not directly relevant to nodes’ ego network attributes (see Appendix for a full list).

We split the nodes and their learned endowment vectors into training (75%) and test

(25%) sets. We use support vector machine (SVM) and 𝑘-nearest neighbors algo-

rithm (𝑘-NN) to train the classifiers, and use cross-validation to tune the classifiers’

hyperparameters.

As shown in Fig. 2-2, the learned endowment vectors can well predict most indi-

vidual characteristics by SVM. Note that 𝑘-NN has similar results Appendix. This

result shows that our model can encapsulate the latent features of the agents. It is
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Figure 2-2: Prediction performance of the learned endowments. We use support
vector machine as the classifier. The baseline, random guess algorithm, is indicated
by the dashed line. Error bars represent the standard errors for the average AUCs in
five random splitting of training-test sets.

important to highlight that individual characteristics might not be fully reflected in

the network; therefore, neither network embedding algorithms nor the present model

can guarantee high AUCs for all prediction tasks. However, the learned endowment

vectors in fact contain more information than the presented agent features; there-

fore, they could predict very different agent characteristics, e.g., preferences of movie

genres.

The accuracy at estimating agent characteristics beyond the input data could be

because they are important either in coordination costs (e.g. locations) or exchange

benefits (e.g. collaboration between cast members and directors). Some charac-

teristics may have both exchange effects and coordination costs: for example, in a
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company, subordinates mostly communicate with each other (low coordination costs),

but would also interact with their managers occasionally (exchange benefits).

We also compare our results with a network embedding algorithm, DeepWalk

[197], with the same number of dimensions and therefore the same degree of freedom

(Appendix). Recall that network embedding methods are designed only for dimen-

sion reduction; they therefore do not provide economic or sociological insights about

the network. Algorithmically, DeepWalk uses an energy function that considers only

similarity and not the benefit that can flow from exchanges between agents with very

different endowments. Consequently, as might be expected, when our model is com-

pared to DeepWalk, we have better performance if the predicted characteristics are

explicitly implied by exchange effects. However, for characteristics explicitly implied

by low coordination costs between similar people, the performance of the present

model is somewhat lower than that of DeepWalk, probably because DeepWalk con-

siders the similarity between neighbors spanning multiple hops. In sum, the ability

to predict agent characteristics shows that our model has learned useful information

implicit in the network, and that this implicit information can be used for further

agent-based modeling.

2.3.4 Agent-based modeling

We next analyze the properties of the model as an agent-based model. Because of

the high degree of freedom of the present model, any manually input distributions of

W, b and c may appear too arbitrary and do not reflect any real-world situation.

We therefore use the learned endowments and parameters as the input to study

both micro- and macro- level properties of this model. Our model exhibits many

complex and well-known social phenomena, suggesting that these phenomena could

be caused by the simple mechanisms of exchange benefits and coordination costs

among heterogeneous agents.

On the micro level, an interesting question is how an agent’s endowments will

affect their ego networks. In particular, we consider two variables for agents based on

our model. The first variable is a quantitative measure of social status that we call
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“social power”

social power(𝑖) = b ·wi. (2.7)

Social power means “the potential for social influence” [99], or the potential benefits

that one could bring to the other. Recall that 𝑏𝑘 measures how beneficial the 𝑘-th

dimension is. 𝑤𝑖𝑘 is the 𝑖-th agent’s value on the 𝑘-th dimension. As 𝑏𝑘×𝑤𝑖𝑘 increases,

𝑖 is more likely to benefit others on the 𝑘-th dimension. Therefore, it is sensible to

represent an agent’s social status by the dot product of b and wi. Therefore, the

definition of this variable is consistent with the concept, social power. The utility of

this social power for social exchange leads naturally to the formation of a network

structure that is often described as hierarchical, especially within the surrounding

homophilic group.

The second variable is “social exclusion”, which measures the extent to which an

agent is marginalized [231]:

social exclusion = ‖c ∘wi‖2. (2.8)

Recall that we have constrained the means for all dimensions to be 0. If an agent

has a large absolute value on some dimension, she is believed to be on the margin of

that dimension because a higher cost is needed when she links to another arbitrary

person.

We are interested in the correlation between the social power or social exclusion

and statistics of their ego networks (i.e., degree and clustering coefficient). The re-

sults of the Andorra dataset is presented in Fig. 2-3, and similar results for other

datasets are reported in Appendix. We find that “social power” is strongly positively

correlated with degree, while “social exclusion” is strongly negatively correlated with

degree. This finding is consistent with the implication of the proposed model: people

with high (beneficial) endowments can potentially benefit others to a greater degree;

people on the margin of the society have fewer opportunities to interact with oth-

ers. More interestingly, we examine the correlations between social power/exclusion

and the clustering coefficients for the nodes. A high clustering coefficient means that
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Figure 2-3: Correlations between endowment-related variables and ego networks
statistics for the Andorra dataset. a Social power versus degree. b Social exclusion
versus degree. c Social power versus clustering coefficient. d Social exclusion versus
clustering coefficient. Colors represent the density of data points, where red indicates
dense areas and purple indicates sparse areas. All data points are plotted as light blue
dots. 𝜌 denotes Pearson correlation coefficients. All Pearson correlation coefficients
are significant at level 𝑝 < 0.001.

the agent’s neighbors are closely connected, and therefore indicates that the agent’s

neighbors might lack diversity. We find that people have lower clustering coefficients

on the network if they have higher social power or lower social exclusion; that is, high

status (power) people have more diverse social networks, a well-known and important

aspect of human networks.

The proposed model can also predict the macro-level dynamics of networks. As

an illustration, we are focused on the impact the systematic change of cost scaling

parameters c (i.e. reducing c to c′ = (1 − 𝛼)c, 𝛼 ∈ [0, 1]) on the macro statistics of
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the social network. Decreases in coordination costs are typically caused by advances

in information technology (e.g. the Internet) or transportation (e.g. a new railway).

We then employ agent-based modeling according to the learned endowment vectors

and utility functions to reconstruct the empirical social networks (see Appendix for

the approach of reconstruction). Finally, we compute density, average clustering

coefficient, average shortest path in the giant component, and interaction diversity

(defined as equation (2.9)) where ℰ represents the set of edges for the network and c

is the value after being reduced. Note that here we do not change the relative ratios

among 𝑐𝑘 (1 ≤ 𝑘 ≤ 𝐾); it is therefore sensible to incorporate the c into equation (2.9)

after being normalized by ‖c‖2.

interaction diversity =
1

|ℰ|
∑︁

(𝑖,𝑗)∈ℰ

‖c ∘ (wi −wj)‖2
‖c‖2

(2.9)

Figure 2-4 shows the impact of reducing c on the macro statistics of all networks.

We find that as the cost scaling parameter c decreases, the density significantly in-

creases while clustering coefficient does not increase much. This indicates that the

decrease in coordination costs (e.g. adoption of the Internet) results in more links, and

increases social cohesion or balance [55], i.e., the connectivity between one’s neigh-

bors. The decreasing trend of shortest paths between pairs reveals that the decrease

of the coordination cost could diminish the power of social hierarchy. The increase of

interaction diversity indicates that the decrease of coordination costs leads to greater

connections between more dissimilar individuals. These synthetic findings indicate

that the coordination costs’ reduction, usually caused by technology advances, results

in a society with more opportunities to connect to others, especially to dissimilar peo-

ple; this is also a society with less hierarchy.

2.4 Discussion

Inspired by network embedding methods that represent agents by vectors, this study

also applies vector representations for heterogeneous agents, referred to as their “en-
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a b

c d

Figure 2-4: Impact of reduction in costly scaling parameters on macro-level network
statistics. a Density. b Clustering coefficient. c Average of shortest path lengths. d
Interaction diversity. X-axis represents the reduction of costly scaling parameters; y-
axis represents the dynamics of the macro-level network statistics when costly scaling
parameters are reduced.

dowment vectors”. Our model is more interpretable than network embedding algo-

rithms because we can economically and sociologically explain the link formation

mechanism, by the trade-off between the exchange benefits and coordination costs

among agents. We learned the endowment vectors from empirical network data,

which can be used to predict a variety of other agent properties, and to demon-

strate inter-agent network characteristics such as social status and diversity that are

well-known from social science literature.

In particular, we highlight the necessity of trading off between beneficial exchange
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effects and coordination costs. Most link formation models use only one or the other.

We show that we can effectively learn the representations for agents from empirical

networks by optimization methods that incorporate these trade-offs, without explic-

itly modeling social status, hierarchy, or the dynamics of social networks. This result

suggests that many characteristics that are described in the social science literature

are due to the trade-off between coordination costs and exchange benefits, rather than

being fundamental effects or biases.

There are several interesting future directions based on this work. First, it is

intriguing to consider the influence of existing neighbors on the marginal utilities of

adding one more neighbor. For instance, the marginal utility of befriending a person

should be higher when an ego has 10 friends than when the ego has 100 friends. In-

corporating this interaction effect is difficult because this will require combinatorial

optimization methods. Second, it is a promising direction to incorporate an indi-

rect effect: the utility of “friends’ friends”. When we befriend a person, we do not

only benefit from this person, but also this person’s friends because we obtain use-

ful information from and have small coordination costs with this person’s friends.

The indirect effect is reminiscent of several network embedding methods, including

DeepWalk, which embed nodes on randomly sampled paths to have similar repre-

sentations. Finally, we may take into account broader interaction effects such as

“reputation”: when people reach out to an ego, the ego may reciprocate a link even if

the link does not directly benefit the ego.

2.5 Appendix
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Figure 2-5: Degree distribution for all datasets.
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Figure 2-6: Learning curves for losses.
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Figure 2-7: Learning curves for AUCs.
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Figure 2-8: Learning losses for 𝐾 and 𝐾bnf.
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Figure 2-9: Illustration of learned endowments for trade network. We let (𝐾,𝐾bnf) =
(6, 4) for visualization. The first four dimensions are beneficial dimensions and the
last two dimensions are costly dimensions.
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Figure 2-10: Learned endowment vectors for agent 𝑖, 𝑖 = 50𝑥 + 𝑦. The left panel
shows the two beneficial endowments, while the right panel shows the two costly
endowments. Colors indicate the value on respective dimensions: red for the first and
third dimensions and blue for the second and fourth dimensions. Purple indicates
high value on both dimensions; black indicates low value on both dimensions.

59



Table 2.2: Statistics of Individual Characteristics in Andorra CDR
Phone Type
Samsung 14,609
Apple 9,422
Others 8,798
Location Cluster
Centre 20,830
St Julia 3,377
Massana 3,703
Arans 264
Encamp 3,641
Soldeu 536
Pas De La Cas 478
Internet usage (hour)
0% 0.00
25% 5.95
50% 1,076.28
75% 3,088.07
100% 8,746.29
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Table 2.3: Prediction performance of the present model and DeepWalk. Standard
errors of the means in five classifications are reported in parentheses.

Dataset Present-SVM Present-KNN DeepWalk-SVM DeepWalk-KNN
Club-Karate 0.9900 0.9894 1.0000 1.0000

(0.0100) (0.0065) (0.0000) (0.0000)
Location-Trade 0.8045 0.8125 0.8597 0.9099

(0.0333) (0.0337) (0.0439) (0.0215)
ECI-Trade 0.8828 0.9098 0.8750 0.8504

(0.0221) (0.0186) (0.0272) (0.0257)
GDP-Trade 0.8319 0.7633 0.7355 0.7459

(0.0607) (0.0697) (0.0622) (0.0680)
Type-Synthetic 0.9279 0.9446 0.5340 0.4470

(0.0036) (0.0048) (0.0081) (0.0106)
Location-Synthetic 0.9986 0.9908 0.9971 0.9987

(0.0001) (0.0016) (0.0021) (0.0008)
Job-Company 0.8538 0.8549 0.9491 0.9352

(0.0098) (0.0075) (0.0061) (0.0040)
Job-Movie 0.9931 0.9854 0.5774 0.4824

(0.0008) (0.0045) (0.0187) (0.0041)
Gender-Movie 0.5445 0.5266 0.5546 0.5294

(0.0105) (0.0006) (0.0140) (0.0075)
Location-Andorra 0.6908 0.7141 0.8265 0.8215

(0.0097) (0.0064) (0.0058) (0.0084)
PhoneType-Andorra 0.5331 0.5592 0.5918 0.5805

(0.0052) (0.0019) (0.0034) (0.0049)
Internet-Andorra 0.6075 0.5822 0.6493 0.6446

(0.0030) (0.0305) (0.0022) (0.0070)

Table 2.4: Pearson correlation coefficients between social power or exclusion and
degree or clustering coefficients. *: 𝑝 < 0.1; **: 𝑝 < 0.01.

Dataset Karate Trade Synthetic Movie Company
social power vs log(degree) 0.713** -0.179* 0.406** 0.808** -0.011

social exclusion vs log(degree) -0.365* -0.833** -0.257** -0.593 ** -0.675**

social power vs clustering coef. -0.583** -0.345** - - 0.007
social exclusion vs clustering coef. 0.368* -0.636** - - -0.007

Table 2.5: The optimal AUC in five runs in the “split” and “non-split” conditions.
Condition Karate Trade Synthetic Movie Company Andorra

Split 0.9848 0.9685 0.9992 0.9608 0.9870 0.9476
Non-Split 0.9245 0.9537 0.9957 0.9611 0.9321 0.9318

61



Table 2.6: Comparison of predictive power of learned endowments on “split” and
“non-split” conditions.

Dataset Split-SVM Split-KNN Nonsplit-SVM Nonsplit-KNN
Club-Karate 0.9900 0.9894 0.9089 0.9189

(0.0100) (0.0065) (0.0365) (0.0308)
Location-Trade 0.8045 0.8125 0.8140 0.8849

(0.0333) (0.0337) (0.0222) (0.0421)
ECI-Trade 0.8828 0.9098 0.9050 0.9093

(0.0221) (0.0186) (0.0267) (0.0322)
GDP-Trade 0.8319 0.7633 0.7833 0.7843

(0.0607) (0.0697) (0.0672) (0.0653)
Type-Synthetic 0.9279 0.9446 0.9346 0.9541

(0.0036) (0.0048) (0.0044) (0.0017)
Location-Synthetic 0.9986 0.9908 0.9986 0.9890

(0.0001) (0.0016) (0.0001) (0.0008)
Job-Company 0.8538 0.8549 0.6745 0.6442

(0.0098) (0.0075) (0.0077) (0.0123)
Job-Movie 0.9931 0.9854 0.9926 0.9864

(0.0008) (0.0045) (0.0010) (0.0025)
Gender-Movie 0.5445 0.5266 0.5199 0.5770

(0.0105) (0.0006) (0.0109) (0.0021)
Location-Andorra 0.6908 0.7141 0.5315 0.6215

(0.0097) (0.0064) (0.0336) (0.0116)
PhoneType-Andorra 0.5331 0.5592 0.4880 0.5463

(0.0052) (0.0019) (0.0100) (0.0067)
Internet-Andorra 0.6075 0.5822 0.5107 0.5889

(0.0030) (0.0305) (0.0316) (0.0104)

Table 2.7: Number of beneficial and costly dimensions in the non-split condition.
Dataset 𝑏𝑘, 𝑐𝑘 = 0 𝑏𝑘 = 0, 𝑐𝑘 > 0 𝑏𝑘 = 0, 𝑐𝑘 < 0 𝑏𝑘, 𝑐𝑘 > 0
Karate 0 1 2 0
Trade 0 2 3 0

Synthetic 0 2 2 0
Company 1 5 5 1

Movie 0 4 2 2
Andorra 0 5 11 0

Pairwise Stability

The proof of the Proposition (1) is derived directly from the definition of pairwise

stability. On the one hand, removing an agent in 𝑆*
𝑖 leads to a decrease in 𝑈𝑖, i.e.,
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Table 2.8: The optimal AUC in five runs for variations of the functional form.
Condition Karate Trade Synthetic Movie Company Andorra

Present model 0.9848 0.9685 0.9992 0.9608 0.9870 0.9476
Smooth 0.9727 0.9675 0.9885 0.9567 0.9943 0.9395
Abs (ℓ1) 0.9730 0.9722 0.9907 0.9717 0.9923 0.9379

Table 2.9: Comparison of the prediction performances between the present model and
variations. Standard errors are reported in parentheses.

Dataset Present-SVM Present-KNN Abs-SVM Abs-KNN Smooth-SVM Smooth-KNN
Club-Karate 0.9900 0.9894 1.0000 0.9900 0.9900 0.9600

(0.0100) (0.0065) (0.0000) (0.0100) (0.0100) (0.0127)
Location-Trade 0.8045 0.8125 0.6939 0.7656 0.7594 0.7636

(0.0333) (0.0337) (0.0313) (0.0474) (0.0215) (0.0236)
ECI-Trade 0.8828 0.9098 0.7789 0.7562 0.8834 0.8399

(0.0221) (0.0186) (0.0306) (0.0533) (0.0296) (0.0362)
GDP-Trade 0.8319 0.7633 0.8768 0.8601 0.8730 0.8633

(0.0607) (0.0697) (0.0512) (0.0621) (0.0568) (0.0461)
Type-Synthetic 0.9279 0.9446 0.8970 0.9200 0.9307 0.9147

(0.0036) (0.0048) (0.0052) (0.0041) (0.0037) (0.0060)
Location-Synthetic 0.9986 0.9908 0.9985 0.9905 0.9514 0.9415

(0.0001) (0.0016) (0.0002) (0.0012) (0.0014) (0.0044)
Job-Company 0.8538 0.8549 0.77589 0.7657 0.8044 0.7814

(0.0098) (0.0075) (0.0158) (0.0082) (0.0102) (0.0071)
Job-Movie 0.9931 0.9854 0.9882 0.9795 0.9861 0.9774

(0.0008) (0.0045) (0.0011) (0.0048) (0.0043) (0.0042)
Gender-Movie 0.5445 0.5266 0.5011 0.5297 0.5043 0.5526

(0.0105) (0.0006) (0.0086) (0.0057) (0.0096) (0.0094)
Location-Andorra 0.6908 0.7141 0.5840 0.6033 0.6205 0.6395

(0.0097) (0.0064) (0.0191) (0.0089) (0.0049) (0.0054)
PhoneType-Andorra 0.5331 0.5592 0.5608 0.5631 0.5456 0.5654

(0.0052) (0.0019) (0.0053) (0.0061) (0.0014) (0.0030)
Internet-Andorra 0.6075 0.5822 0.6096 0.6122 0.5993 0.6176

(0.0030) (0.0305) (0.0073) (0.0103) (0.0112) (0.0053)

𝑈𝑖(𝑆
*
𝑖 ;W,b, c) ≥ 𝑈𝑖(𝑆

*
𝑖 /{𝑗};W,b, c), for 𝑗 ∈ 𝑆*

𝑖 . (2.10)

In our specific form (equation (5) in main text), we have

∆𝑢𝑖(𝑗) ≥ 0, for 𝑗 ∈ 𝑆*
𝑖 . (2.11)

On the other hand, forming a new link does not increase the utility of both agents at

the same time, i.e., if

𝑈𝑖(𝑆
*
𝑖 ;W,b, c) ≤ 𝑈𝑖(𝑆

*
𝑖 ∪ {𝑗};W,b, c), for 𝑗 /∈ 𝑆*

𝑖 , (2.12)

then

𝑈𝑗(𝑆
*
𝑗 ;W,b, c) > 𝑈𝑗(𝑆

*
𝑗 ∪ {𝑖};W,b, c), for 𝑖 /∈ 𝑆*

𝑗 . (2.13)

Equivalently, between ∆𝑢𝑖(𝑗) and ∆𝑢𝑗(𝑖), at least one should be less than zero. There-
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fore, we have

min
(︀
∆𝑢𝑖(𝑗),∆𝑢𝑗(𝑖)

)︀
< 0, for 𝑖 /∈ 𝑆*

𝑗 and 𝑗 /∈ 𝑆*
𝑖 . (2.14)

Data description

Here we describe in detail the datasets that we utilize, with a focus on the individual

characteristics to predict. Degree distributions are presented in 2-5.

Description of Andorra Dataset

We begin with a brief illustration of the format of the dataset. For each entry,

we have the anonymized phone number which initiates a record (call/text/cellular),

the starting time of the record, the duration of the record, the cell tower id of the

initiator, the type of the record (call/text/cellular), cell phone carrier (containing

country code), the anonymized phone number that receives the call or text, the type

allocation code (containing phone type). The statistics of individual characteristics

are presented in 2.2. Because we do not have fine-grained information for users, we

use the following three variables as the proxy variables for individual characteristics.

• Phone type. In Andorra, the first and second largest phone types are Samsung

and Apple, respectively. Therefore, we distinguish these two phone types from

other phone types. We believe that phone type should be (weakly) correlated

to individual income and social status; therefore we employ the phone type as

one of the variables to predict.

• Location. Andorra Telecom records the cell tower location to which each call

connects. We are then able to label each user by the place where she appears

most frequently. Andorra Telecom classifies cell towers into seven clusters (as

shown in 2.2). Note that the clusters do not strictly correspond to the seven

districts in Andorra.

64



• Internet usage. For Internet usage, we show the minimum, the first quartile,

median, the third quartile, and the maximum in the dataset. Youths tend to

use the Internet more frequently than old people. Thus Internet usage should

be a decent proxy for age since we lack sufficient fine-grained characteristics for

the individuals.

Description of Movie Dataset

The TMDB is a public dataset1. In the dataset, we have 4,803 movies in total. For

each movie, participants are classified into either cast or crew. Each individual is

identified by a unique ID. We only extract the actors/actresses and directors, and

then establish links between the director and the cast, meaning that “the director

invited the actor/actress to the collaboration and the actor/actress agreed”. If an

individual serves as the director in more than half of the movies that she has engaged

in, then we label her as “director”, otherwise “actor/actress”. The gender of each

individual is also identified in the dataset.

Description of Company Dataset

The company dataset is also a public dataset (MobileD 2). We examine this net-

work because it shows the collaboration within a company and provides the labels

of individual characteristics (managers or subordinates). In this network, managers’

neighbors are mostly managers and subordinates’ neighbors are mostly subordinates.

Therefore, strong homophily (caused by reduced coordination costs) exists on the

“job” dimension in this network but there are also exchanges between these two types

of employees. We predict whether an employee is a manager or a subordinate.

Description of Trade Dataset

Because we do not consider the strength of a link, we will have a very densely con-

nected network if we do not filter out some links. We filtered out links with export
1https://www.kaggle.com/tmdb/tmdb-movie-metadata
2https://aminer.org/socialtieacross
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amounts lower than one billion; countries with high trade volumes would retain more

links. We also remove countries without any link because then we have no informa-

tion to estimate information for these countries. This process yields a network of 100

countries.

We extract three features for the 100 countries (or region) in the network:

1. Continent. We predict whether a country belongs to Africa, America, Asia/Pacific

and Europe, and measure the performance by the average AUC of these four

predictions. We have 14 African countries, 19 American countries, 33 Asian or

Pacific countries, and 33 European countries in this network.

2. GDP. We use the GDP in 2014 as the second variable to predict. We label as

1 the countries with a GDP higher than the median; and otherwise 0.

3. Export complexity index (ECI). ECI measures the economic complexity for a

country. For example, Japan has a high ECI because it exports products with

high uniqueness. Similar to GDP, we label the countries with an ECI higher

than the median as 1; and otherwise 0.

Description of Synthetic Dataset

As mentioned in the main article, we generate the network with two types of agents

(e.g., buyers and sellers) who explore exchanges in their neighborhoods. We predict

two individual characteristics in this dataset:

1. Type. As mentioned previously, we predict the type of each agent (a binary

variable). The probability that the agent 𝑖 is type A (e.g., buyers) is 0.5, and

agents draw their types independently.

2. Location. We divide the 50 × 50 grid into four divisions: (1) 0 ≤ 𝑥 < 25 and

0 ≤ 𝑦 < 25; (2) 0 ≤ 𝑥 < 25 and 25 ≤ 𝑦 < 50; (3) 25 ≤ 𝑥 < 50 and 0 ≤ 𝑦 < 25;

(4) 25 ≤ 𝑥 < 50 and 25 ≤ 𝑦 < 50. We predict whether a node belongs to each

division, and then take the average AUC to measure the prediction performance

for this characteristic.
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Learning

Learning Method

Random noise. Since real-world social networks may incorporate random noises,

we therefore add an i.i.d. random shock for the marginal utility into each pair (𝑖, 𝑗).

Following the conditions in Proposition (1), for 𝑗 ∈ 𝑆*
𝑖 ,

∆𝑢𝑖(𝑗) + 𝜖𝑖𝑗 ≥ 0; (2.15)

and for 𝑙 /∈ 𝑆*
𝑖 ,

min
(︁

∆𝑢𝑖(𝑗),∆𝑢𝑗(𝑖)
)︁

+ 𝜖𝑖𝑗 < 0. (2.16)

For computational simplicity, we assume that the CDF of random shock 𝜖𝑖𝑗 is a

sigmoid function,

𝜑(𝑥) = 𝑃𝑟[−𝜖𝑖𝑗 ≤ 𝑥] =
1

1 + exp(−𝑥− 𝑢0)
. (2.17)

We then establish the loss function. We learn the W, b, c by minimizing the loss

function. 𝑢0 can be considered as a baseline benefit or cost of forming a link. 𝑢0 is

learned along with b and c (can be perceived as a reserved utility) but is omitted in

later equations.

Loss. We next specify the definition of the loss function:

ℒ = ℒpos + ℒneg + ℒfp + ℒreg. (2.18)

• ℒpos = −
∑︀

(𝑖,𝑗)∈ℰ log

(︁
𝜑
(︀
|𝑆*

𝑖 |Δ𝑢𝑖(𝑗)
)︀)︁

∑︀
(𝑖,𝑗)∈ℰ 1

. This loss measures how well connected pairs

are predicted. 𝜑(𝑥) is the sigmoid function (𝜑(𝑥) = 1
exp (−𝑥−𝑢0)+1

). 𝑢0 is an

unknown scalar to be learned along with b and c. Multiplying |𝑆*
𝑖 | is to consider

that fact that when an agent has many agents (a large |𝑆*
𝑖 |), the marginal benefit

from each neighbor (∆𝑢𝑖(𝑗)) does not need to be very large. In other words,

we require ∆𝑢𝑖(𝑗) to be large if 𝑖 has few neighbors but not necessarily large if
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𝑖 has many neighbors.

• ℒneg = −

∑︀
(𝑖,𝑗)/∈ℰ log

(︂
1−𝜑

(︁
min

(︀
Δ𝑢𝑖(𝑗),Δ𝑢𝑗(𝑖)

)︀)︁)︂
∑︀

(𝑖,𝑗)/∈ℰ 1
. This loss measures how well dis-

connected pairs are predicted. This term follows the third condition in Propo-

sition 1.

• ℒfp = 𝜆fp

∑︀
(𝑖,𝑗)/∈FP log

(︂
1−𝜑

(︁
min

(︀
Δ𝑢𝑖(𝑗),Δ𝑢𝑗(𝑖)

)︀)︁)︂
∑︀

(𝑖,𝑗)∈ℰ 1
. The penalty of existing false

positives. FP is the set of pairs that are not in ℰ but rank in the top |ℰ|

among all min(∆𝑢𝑖(𝑗),∆𝑢𝑗(𝑖)), ∀𝑖, 𝑗. Because the number of disconnected pairs

is typically much larger than the number of connected pairs, false positives are

usually not properly penalized. 𝜆fp scales the weight of this term.

• ℒreg = 𝜆reg‖𝜃‖1. Lasso (ℓ1) helps to eliminate unnecessary dimensions and to

determine the choice of 𝐾. Therefore, if we learn a 𝑏𝑘 or a 𝑐𝑘 close to zero, we

can remove this dimension and find an optimal 𝐾*.

Dimensionality selection. We next provide a method to select the optimal dimen-

sionality (𝐾*) along with (𝐾*
bnf and 𝐾*

cst). Algorithm 1 presents the method. The

philosophy is that for each 𝐾, we enumerate all possible 𝐾bnf. “SGD” represents the

algorithm for learning W and 𝜃 via stochastic gradient descent and will be discussed

later. If 𝐾bnf gives rise to the best AUC for the current 𝐾, and the corresponding

𝜃 contains 0, then we terminate the enumeration. After removing the dimensions

with zero-valued 𝜃𝑘 (< 0.01 in practice), we obtain the optimal dimensionality and

the values of corresponding variables. We stop increasing 𝐾 if we find a zero-valued

𝜃𝑘 in the optimal run in the best 𝐾bnf for this 𝐾. A zero-valued 𝜃𝑘 means that the

𝑘-th dimension does not contribute to either benefits or costs so we can drop that

dimension without impacting the performance of this model. We call such dimensions

“degenerate dimensions” .
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Result: W*,𝜃*, 𝐾*, 𝐾*
bnf, 𝐾

*
cst

Initialize 𝐾 to a small number;

repeat

𝐾 = 𝐾 + 1;

ℒ*(𝐾) = +∞;

for 0 ≤ 𝐾bnf ≤ 𝐾 do

W(𝐾,𝐾bnf),𝜃(𝐾,𝐾bnf) = SGD(ℒ, 𝐾,𝐾bnf);

Let ℒ(𝐾,𝐾bnf) be the current loss;

if ℒ(𝐾,𝐾bnf) < ℒ*(𝐾) then

ℒ*(𝐾) = ℒ(𝐾,𝐾bnf);

𝐾*
bnf = 𝐾bnf;

end

end

until ∃𝑘 s.t. 𝜃𝑘 ≈ 0;

𝐾* = 𝐾 − |{𝜃𝑘 ≈ 0}|;

𝐾*
bnf = 𝐾*

bnf − |{𝑏𝑘 ≈ 0}|;

𝐾*
cst = 𝐾* −𝐾*

bnf;

W* = W(𝐾*, 𝐾*
bnf) (after removing the 𝑘-th dimension with 𝜃𝑘 = 0);

𝜃* = 𝜃(𝐾*, 𝐾*
bnf);

Algorithm 1: The procedure of learning endowment vectors and other parame-

ters.

Stochastic gradient descent (SGD) Here we describe the algorithm for SGD given

𝐾 and 𝐾bnf. We use TensorFlow [1] to implement the learning algorithm. Specifically,

we use Adam optimizer [143] as the optimizer. We run a large number of iterations

(5,000) to guarantee the convergence of learning. Importantly, because the memory

cannot typically afford 𝑁2 links as the input for one iteration, we retain all the con-

nected pairs as the input while randomly sampling the number of unconnected pairs.

Specifically, we sample ten times the number of connected pairs each iteration (four

times for Andorra because of the memory limit); however we still have a consistent

estimation for ℒneg in expectation. This technique is called “negative sampling” and
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is also used in many machine learning methods. For a typical network with a density

of 0.1%, each iteration we sample approximately 1% pairs so every 100 iterations may

cover all pairs on expectation. Also note that the stochastic nature of this learning

process reduces the likelihood to converge to unwanted local minima. To approximate

the optimum, we selected the run with the best AUC for link fitting.

Speed-up for Andorra Dataset. When the network is large (more than 10,000,

e.g. Andorra) nodes, the computation of ℒfp is very time-consuming. To speed up

the learning, we could drop this term because empirically, this term is small for large-

scale networks. For example, when learning endowment vectors for Andorra dataset,

this term takes up less than 0.1% of the total loss even if the term is not optimized.

Therefore, we drop ℒfp in Andorra dataset to speed up the learning, but retain ℒfp

for other datasets to increase learning performance.

Choice of 𝜆reg and 𝜆fp. The value of 𝜆reg determines the constraint of the dimen-

sionality and avoids overfitting. A large 𝜆reg will lead all 𝑏𝑘 and 𝑐𝑘 to be zero, while a

zero-valued 𝜆reg fails to limit the dimensionality and the model may eventually overfit

the data with an extremely high 𝐾. We select 𝜆reg a priori based on the complexity

of the network. When the number of nodes is smaller than 1,000, we let 𝜆reg = 0.1;

when the number of nodes is greater than 1,000 but smaller than 10,000, we set

𝜆reg = 0.05; otherwise we set 𝜆reg = 0.01. For 𝜆fp, we set it as 0.01 for all datasets.

The good fitting and the prediction performance demonstrate that such selection is

reasonable. Note that it is not necessary to obtain an optimal 𝜆reg or 𝜆fp if they result

in satisfactory endowment vector estimations.

Learning rate and the number of iterations. There is no specific guidance to

select these two terms a priori. Empirically, 0.1 is a reasonable initial learning rate,

and it decays by 5% every 100 epochs. In addition, 5,000 can be a reasonable choice

for the number of iterations. We will show in the next section that such choices result

in sensible results.
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Learning curves

Here we plot the learning curves for all datasets under the optimal settings. As

described in Methods, we start from five random initial points to approximate the

global optimum. As shown in 2-6 and 2-7, all runs converge during the first 1,000

iterations, meaning that our choices of the learning rate and the number of iterations

are sensible. Moreover, most runs converge to similar losses and AUCs. This finding

is important because it indicates that the local optimum is a good approximation for

the global optimum.

Results of dimensionality selection

For each 𝐾, we have a 𝐾*
bnf(𝐾) that results in the smallest loss. If a zero-valued 𝑏𝑘

or 𝑐𝑘 is learned at the setting of 𝐾,𝐾*
bnf(𝐾), we stop increasing 𝐾. Here we plot

the losses for the best run for each pair of 𝐾,𝐾bnf for all datasets in 2-8 (except

for Andorra) (we do not plot very small 𝐾 for the convenience of visualization).

The increment of 𝐾 stopped at 4, 6, 5, 8, and 12 respectively for Karate, Trade,

Synthetic, Movie and Company, respectively. When (𝐾,𝐾bnf) is set to be (4, 2),

(6, 3), (5, 3), (8, 5), and (12, 4) for Karate, Trade, Synthetic, Movie and Company

respectively, we derive the minimal losses. Then we drop degenerate dimensions: one

costly dimension for Karate, Trade, Movie and Company; one beneficial dimension for

synthetic. After deleting the degenerate dimensions, we derive (𝐾*, 𝐾*
bnf): (3, 2) for

Karate, (5, 3) for Trade, (4, 2) for Synthetic, (7, 4) for Movie, (11, 4) for the Company

dataset. For Andorra, because of the limit of computational resource, we are unable to

enumerate for all (𝐾,𝐾bnf). Instead, we set an arbitrary large 𝐾 = 16 and reduce the

dimensionality by the regularization term ℒreg, where we find one costly degenerate

dimension. So we reduce one costly dimension, i.e. 𝐾 = 15. Here we do not argue

that 15 is an optimal choice for the Andorra dataset, but it is good enough for further

agent-based modeling.
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Graphical illustration

Illustration for the trade network

Since we have the trade network with only 100 countries, we can visualize the output

of learned endowment vectors that is close to the optimal choice of dimensionality:

𝐾 = 6 and 𝐾bnf = 4. It is convenient for visualization to keep both 𝐾bnf and 𝐾cst

even.

2-9 depicts the distribution of endowment vectors for all countries in the network.

The first four dimensions are beneficial dimensions (with 𝑏𝑘 > 0). We find that

China, United Arab Emirates, the US, and Germany are high in these four dimensions

respectively. The last two dimensions are costly dimensions (with 𝑐𝑘 > 0). We

find that geographically close countries are clustered on the space, meaning that the

distance between countries plays an important role in the costs of network formation.

Illustration for synthetic dataset

As mentioned in the main article, nodes are located on a 50×50 grid. Each node

can be either a seller or a buyer (with probabilities of 0.5 independently). We plot

the learned endowments in 2-10. The plots show that we have recovered the data

generating process. In the left panel, red and blue nodes are randomly distributed,

which is consistent with the fact that buyers and sellers are randomly distributed on

the grid. In the right panel, we observe that the degree of blue increases along the

𝑥-axis and that the degree of red increases along the 𝑦-axis. When both 𝑥 and 𝑦 are

small, black is shown; when both 𝑥 and 𝑦 are large, purple is shown. In sum, the

right panel demonstrates that we have successfully recovered the data generation of

costly dimensions.

Comparison with network embedding algorithms

Although we have emphasized that the proposed model is not intended for dimen-

sion reduction of graph structures, we compare it with a classical network embedding

algorithm, DeepWalk. Our goal is not to invent algorithms to outperform Deep-
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Walk or other network embedding algorithms. In addition, to remain interpretability

(link formation mechanism) and model simplicity, we do not enforce similarity among

nodes on randomly sampled paths, which is why DeepWalk and other network em-

bedding algorithms sometimes perform better in node classification tasks than we

do, especially when similar nodes are clustered on the networks. As shown in 2.3,

when the agents with this characteristic are densely clustered, the present model does

not outperform DeepWalk, as expected. However, when characteristics do not show

this “clustering” effect or may imply exchange effects (GDP in Trade, Type in Syn-

thetic, Job in Movie), the present model does significantly outperform DeepWalk.

This finding indicates that it is necessary to incorporate exchange effects along with

coordination costs into network formation models, and that our model has a decent

predictive power without losing interpretability in social science and link formation

mechanisms.

“Social power or exclusion” for all networks

In the main article, we have presented the scatter plots about the correlation between

social power or social exclusion and micro-level statistics of networks on the Andorra

dataset. Here we show the correlations for other datasets in 2.4. Because the syn-

thetic network is a bipartite graph and the movie network is almost a bipartite graph

(some agents served as both directors and cast members), clustering coefficients are

inapplicable. We find consistent results for most datasets with the results for the

Andorra dataset. For the company data, we do not observe the significant correlation

between social power and degree; we conjecture that this is because members in high

status (managers) of the company do not need to communicate with every person.

Reconstruction of networks

Our methods to reconstruct the networks are as follows. Codes are provided online.

1. Learn the endowment vectors W, and scaling parameters b and c with the

aforementioned methods.
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2. Rank the marginal utilities for all pairs (𝑖, 𝑗) by equation (5) in main text

(specifically, min(∆𝑢𝑖(𝑗),∆𝑢𝑗(𝑖))) and establish a reconstructed network based

on the top |ℰ| pairs. Record the minimal utility min(∆𝑢𝑖(𝑗),∆𝑢𝑗(𝑖)) in the

reconstructed network, denoted by �̄�.

3. Multiple c by 1 − 𝛼, and repeat the previous step, to obtain new reconstructed

networks after decreasing c. In the reconstructed network, min(∆𝑢𝑖(𝑗),∆𝑢𝑗(𝑖)) ≥

�̄�.

4. Compute the statistics shown in Fig. (4) for each reconstructed network.

Robustness check: no splitting for beneficial and costly dimen-

sions

We present the link fitting performance for the “split” (with beneficial and costly

dimensions, as presented in the main article) and the “non-split” (𝑏𝑘 and 𝑐𝑘 can be

positive simultaneously) conditions. In 2.5, with the same number of dimensions, the

AUC of the “split” condition is better than the “non-split” condition for all datasets.

Note that because the AUCs of link fitting are typically very high, a significant

decrease in AUC indicates a worse modeling fitting ability.

We also use the learned endowment vectors on the “non-split” condition to predict

individual characteristics. We present the comparison between the “split” and “non-

split” conditions in 2.6. We find that the prediction powers of endowments learned

in the two conditions are comparable.

In addition, we also show that even if we do not force some 𝑏𝑘 or 𝑐𝑘 to be zero-

valued in the “non-split” condition, we will still learn b* and c* such that for most 𝑘,

either 𝑏𝑘 = 0 or 𝑐𝑘 = 0.
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Robustness check: Variations of the functional form

We show the robustness of our model by using two variations of the functional form.

The first one (Abs) is to change the 𝐺𝑖 from ℓ2 into an ℓ1 norm:

∆𝑢𝑖(𝑗) =
𝐾∑︁
𝑘=1

𝑏𝑘 max(𝑤𝑗𝑘 − 𝑤𝑖𝑘, 0) − ‖c ∘ (wj −wi)‖1. (2.19)

The second one (𝑆𝑚𝑜𝑜𝑡ℎ) is to use a smooth form of ReLU (max(𝑥, 0)) to assist the

optimization:

∆𝑢𝑖(𝑗) =
𝐾∑︁
𝑘=1

𝑏𝑘 log(1 + exp(𝑤𝑗𝑘 − 𝑤𝑖𝑘)) − ‖c ∘ (wj −wi)‖2. (2.20)

Note that when 𝑥 is far away from 0, max(𝑥, 0) is very close to log(1 + exp(𝑥)).

When 𝑥 is around 0, log(1 + exp(𝑥)) has a smoother gradient than max(𝑥, 0), which

is more convenient for the optimization. We can also consider log(1 + exp(𝑥)) as a

“noisy” form of max(𝑥, 0): when 𝑥 is close to zero, a small random shock will influence

whether there is a benefit.

To show that these two versions of functional forms will not influence the fitting

ability and the predictive power of the learned endowments, we present the fitting

performance in 2.8 and the prediction performance in 2.9. We find that the perfor-

mances for three versions of utility forms yield very similar results; the similar results

mean that in the main article, it is reasonable to only present one functional form.
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Chapter 3

Modeling dynamics of long ties with

embedding techniques

3.1 Background

Social network analysis provides a powerful instrument to investigate the structure of

society by aggregating interpersonal relationships among individuals [135, 34]. In the

social network literature, a large body of research focuses on how tightly clustered

social ties and groups are formed, as well as how they evolve, spread information

and behaviors, and promote group solidarity [136, 258, 35, 163, 67, 93, 176, 88]. One

central effect that can explain many social phenomena is homophily, a phenomenon

whereby similar people tend to make friends with each other. For example, homophily

serves as a reason for the formation of echo chambers, social segregation, and political

polarization [217, 3, 134].

Meanwhile, a smaller but increasing number of studies focus on social ties that

function as “bridges” between different communities, because of the unique roles they

play in global network structures and information diffusion [160, 190, 56, 224]. This

notion was originally put forward by Granovetter [111], who proposed the “weak

tie hypothesis” and highlighted the potential value of these seemingly “weak ties”

for spreading novel information across loosely connected communities. Additionally,

Burt proposed a similar idea, which he named structural hole spanners, emphasizing
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Figure 3-1: Tie range characterizes the length of the second shortest path between
two connected nodes. The blue nodes are the nodes on the shortest path between the
two red nodes except for their direct link.

the value gained by people situated in-between communities [52]. Moreover, the

Watts–Strogatz network [258] highlights the role of these “bridges” in explaining the

“small world” phenomenon [217]. In recent years, there has been a rapid growth in

studies on weak ties from many different disciplines [160, 190, 274, 105, 107, 157].

One recent development in the literature is the concept of “long ties.” They are

social ties that have a large tie range. Tie range is measured by the length of the

second shortest path between two connected nodes (see Fig. 3-1). Social ties with

a large tie range may work as important social network bridges between different

communities [111, 182, 206, 194, 244]. The idea of using tie range was already been

discussed in the work of ref. [111]. In the decades since, there has been a debate on

the effectiveness of long ties in spreading information and social contagion. While

some researchers observe that long ties are crucial for the widespread of behaviors

and information [258, 107, 243, 85], others find that long ties may have limitations for

spreading novel information or continuing the social contagion of certain behaviors

[57, 56].

When discussing long ties, researchers typically state that they are weak, meaning

they have few interactions or low bandwidth. However, one recent study by Park

(2018) shows that this is not necessarily the case; they find that not only are long ties

not always weak, but that they can sometimes be much stronger than other social

ties [194]. Despite this intriguing result, Park’s paper also left open some interesting
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questions regarding the corresponding mechanisms of long ties.

In the literature on weak and long ties, there is a lack of empirical evidence on their

dynamics within temporal networks. Temporal networks, i.e., the network structures

with the same set of nodes in a time series, are extensively studied in the complex

network and graph data mining literature (e.g., [123, 161, 122, 148, 126]). However,

few studies shed light on the dynamics of weak ties or long ties. One challenge is

that large-scale dynamic networks without a profusion of missing nodes and links are

surprisingly rare. This issue may result in the false identification of long ties since

most publicly available temporal networks are derived from a subsample of nodes in

a fully connected network. The paper that most closely aligns with the present study

is ref. [181], in which the authors discuss the dynamics of tie strength. However, in

their paper, the researchers did not approach the concept of tie range, nor did they

use empirical data.

In the present study, we combine empirical analysis and computational modeling

to understand the dynamics of long ties. First, we empirically examine the dynamic

trends of long ties compared to other types of ties. Through this examination, we find

that although long ties often initiate with weak tie strength, they become stronger

and more persistent over time. Second, we further investigate the mechanisms of

long ties, which ref. [194] did not fully address. In total, we discuss three possible

mechanisms: degree heterogeneity, survival bias, and beneficial long ties [212, 259].

Firstly, we use empirical analysis to show that the first two mechanisms might not

fully explain our main results. Next, we extend the interdisciplinary model (that

uses game theory and node embedding techniques) proposed by ref. [268] to temporal

networks. Our novel model incorporates the benefits that long ties bring into the

utility function, such as novel information and diversity. The modeling results imply

that the hypothesis of beneficial long ties might explain the patterns found in our

study.
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3.2 Results

3.2.1 Long ties last longer and become stronger

In this work, we employ tie range to quantify of the local network structure of a social

tie. As the length of our data is two years, we partition the data into eight phases;

however, our results are robust to other ways of partitioning, as well (see SI ). To

begin our analysis, we classify all social ties by tie range in the first phase, and then,

we observe the evolution of those ties in the subsequent phases.

First, we examine the dynamics of interaction frequency (measured by the number

of calls or texts) and interaction duration (measured by the total duration of the calls).

While observing the magnitudes in just the first phase, we find a “U-shape” in the

data that is consistent with the results of ref. [194]. Our result shows that interaction

frequency and duration initially decrease with the tie range, but later increase with

the tie range. We also find that long ties can be as intimate as short-range ties that

are closely embedded in a social network.

By comparing the dynamics of short ties and long ties, we find that not only do

long ties are initially stronger, but also that they persist longer. For example, in the

long run, the average interaction duration and frequency of social ties with a tie range

≥ 6 even appear to be much larger than those with a tie range of 2. Furthermore,

social ties with a tie range of 5 also appear to be stronger and more persistent than

ties with a tie range of 3 or 4. In SI, we discuss the robustness of our findings by

adjusting the time window that defines the length of each phase.

To understand what mechanisms drive the pattern shown in Fig. 3-2, we decom-

pose the dynamics of interaction frequency or duration into persistence probability

and interaction increments. We define 𝑦𝑡 as the interaction frequency or duration in

phase 𝑡, and we let the difference between phase 𝑡 and 1 be ∆𝑦𝑡 = 𝑦𝑡 − 𝑦1. Then
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Figure 3-2: Evolution of both interaction frequency and interaction duration of ties
throughout the eight seasonal snapshots. All ties are classified according to their tie
range in the first season. Error bars are 95% confidence intervals.

persistence probability and interaction increments are defined as follows:

E[𝑦𝑡|𝑦1 > 0] = E[𝑦1 + ∆(𝑦𝑡)|𝑦𝑡 > 0, 𝑦1 > 0]P[𝑦𝑡 > 0|𝑦1 > 0]

=
(︀
E[𝑦1|𝑦𝑡 > 0, 𝑦1 > 0] + E[∆𝑦𝑡|𝑦𝑡 > 0, 𝑦1 > 0]⏟  ⏞  

interaction increments

)︀
P[𝑦𝑡 > 0|𝑦1 > 0]⏟  ⏞  
persistence probability

(3.1)

The dynamics of the persistence probability and interaction increments are pre-

sented in Fig. 3-3. As illustrated in the left panel in this figure, we find that social ties

with a tie range ≥ 6 have the largest persistence probability in all subsequent phases,

followed by closely embedded ties with a tie range of 2. Meanwhile, we find that social

ties with a mid-sized tie range (i.e., 3 or 4) dissolve the fastest. This consistent trend

with the overall effect presented in Fig. 3-2 suggests that the overall effect is largely

driven by a different persistence probability in social ties with different tie ranges.

Regarding the interaction increments, we find that they generally increase with tie

range, indicating that conditional on a persistent social tie, the interaction frequency

and duration appear to be larger when this is a long tie. By contrast, social ties with

a tie range of 2 have the smallest interaction increments. One of our conjectures is

that the persistent short-range ties typically require less effort to maintain, as they

can be indirectly maintained by their common friends; by contrast, we speculate that

long ties require a lot of time investment to be able to be maintained.

In SI, we also conducted additional analysis to illustrate that in general, long ties
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Figure 3-3: Dynamics of persistence probability and interaction increments condi-
tional on the tie range in phase 1. Error bars are 95% confidence intervals.

have longer lifespans.

3.2.2 Dynamics of tie range

Next, we examine the dynamics of tie range. We first examine the dynamic trends

of tie range in the first successive phase (the left panel of Fig. 3-4). Here, we only

examine the social ties that persist in both phase 1 and phase 2. We present the

transition probability matrix between tie ranges in successive phases in Fig. 3-4. As

shown in the figure, for those social ties that persist, they have a large likelihood of

evolving into short ties. In particular, for longer range ties, i.e., tie range of = 5 or

≥ 6), their probability of evolving into a tie range equal to 2 is the largest: 32% or

36%, respectively. Few short ties become long ties, since such an evolution requires

that all their common neighbors dissolve with either of them. In addition, long ties

seem also to be a stable status. For example, long ties with a social tie range ≥ 6

have a probability of 34% to have a tie range of 5, while 15% of them have a tie range

of ≥ 6.

We next examine the tie range dynamics in phase 4 and phase 8, which are pre-

sented in the middle and right panels in Fig 3-4. We find the pattern in phases 4 and

8 are largely consistent with the pattern in phase 2. In particular, for those with tie

range = 5 or ≥ 6 in phase 1, they have a probability of 26% or 38%, respectively,

to persist with a tie range ≥ 5 in phase 4; they have a probability of 41% or 52%,

respectively, to persist with a tie range ≥ 5 in phase 8. These results indicate that
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Figure 3-4: Transition probability matrix of tie range from phase 1 to a subsequent
phase. Social ties that dissolved in the corresponding phase are disregarded in the
analysis.

although long ties have a high probability of becoming short ties, they can also persist

as long ties. This finding suggests that it is not necessary for a social tie to become

a short-range tie to be long-lasting.

Next, we proceed to jointly investigate tie range and tie strength (i.e., the fre-

quency and the total duration of interactions). As shown in Fig. 3-5, in general,

those ties that become short-range (e.g., tie range = 2) are those with more inter-

actions; for social ties that have a different initial tie range but that change to a tie

range of 2, the interaction frequency or duration are always the greatest. For the

persistence probability, the same trend generally holds. The one exception here is for

those with a tie range ≥ 6: if they continue to be social ties with a tie range ≥ 6,

their tie strength remains strong. Note that although we are only discussing phase 1

and phase 2, our results are equally robust when we examining any phase 𝑡 and its

first subsequent phase, 𝑡 + 1 (see SI ).

3.2.3 Discussing the mechanisms

In the previous sections, we show that long ties are not only stronger but also last

longer. Moreover, quite a few strong long ties continue to be long ties. To discuss the

plausible explanations for the observed patterns, We next propose and discuss three

hypotheses pertaining to degree heterogeneity, survival bias, and valuable long ties.

Degree heterogeneity. First, one plausible explanation for the observed patterns is
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Figure 3-5: Interaction duration (a), frequency (b) and persistent probability (c)
in the next phase when tie range evolves. The text above the figures indicates the
meanings of the numbers.

degree heterogeneity. As shown in Fig. S8 in SI, we find that individuals who have

fewer friends are more likely to have long ties. Thus, they tend to retain the relation-

ships with their small number of friends, but with greater persistent probability and

interaction increments.

To reduce the impact of degree heterogeneity, we plot the results conditional on

the degree range. The results of this work are presented in Fig. S7 in SI. We find

that the patterns observed in our main text are found in all degree subgroups. This

finding shows that although degree heterogeneity may provide an explanation for the

observed patterns, it does not fully explain our main results.

Survival bias. The second plausible explanation is survival bias – that only very

valuable long ties survived – even though newly-formed long ties are likely weaker

than newly-formed short ties. Therefore, surviving long ties tend to continue to

persist, or perhaps even become stronger, while others dissolve rapidly. To test for

this hypothesis, we need to examine (1) whether newly formed long ties are weaker

than newly formed short ties in the beginning and (2) whether newly formed long ties

have a smaller persistence probability, such that only very strong long ties survive.

We find (1) is supported while (2) is not supported, and thus survival bias cannot

fully explain our results.

To investigate these two ideas, we put social ties into one of two categories: existing

ties, and new ties. An existing tie is one that as had any interactions in the previous
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phase, while a new tie has had no such interactions. After separating all ties into

existing or new ones, we perform the same analysis as that found in the previous

sections. We use the tie range in phase 2 as the reference, and we investigate whether

there was non-zero interaction frequency or duration in order to determine if it is a

new or existing tie.

We first examine whether newly formed long ties are weaker initially than newly

formed short ties. In Fig. S8 in SI, we show that while existing ties present a “U-

shape” in the relationship between the interaction frequency (duration) and tie range

in phase 2, this “U-shape” pattern does not hold for new ties. Instead, as indicated

by Fig. S8 in SI, for new ties, the longer the new tie is, the fewer interactions the two

people have in phase 2. This result supports our conjecture that newly formed long

ties are likely to be weaker than newly formed short ties.

Next, we investigate whether newly formed long ties have a smaller persistence

probability. However, as indicated by Fig. S9 in SI, we observe that for newly formed

ties there exists a U-shape between tie range and persistence probability; importantly,

newly formed long ties have the highest persistence probability. This finding contra-

dicts our conjecture that the persistence probability of newly formed long ties would

be the smallest. Thus, for the two notions we examined, we find that (1) is supported

while (2) is not supported. Therefore, the survival bias hypothesis does not fully

explain our main results.

Valuable long ties. Our last hypothesis is that long ties tend to be more valuable.

This hypothesis is consistent with the weak tie theory and the roles of long ties, as

previous studies conjecture [111, 258]. However, while most of computational models

that simulate the real-world networks highlight homophily [177] – the phenomenon

that individuals with similar attributes tend to be friends – previous models do not

typically consider the benefits of social exchange between people with different skill or

information sets [268]. Recent work, such as that by [268], provides an example of how

one can consider homophily and social exchange jointly, but this work is restricted

to static social networks. Below, we propose a computational model that combines

game theory and machine learning in order to examine long tie dynamics and which
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supports our hypothesis on valuable long ties.

3.2.4 The interdisciplinary model

In this section, we propose a game-theoretical computational model that simulates

the dynamics of social networks. Specifically, the model combines the embedding

techniques [197, 112, 144, 253] in machine learning and the strategic network for-

mation in economics [136, 66]. Compared to the common network formation game

models in the economics literature, our model stresses the high-dimensional hetero-

geneity, as well as the values of social exchange. Compared to network embedding

techniques, our model helps understand the social network formation mechanisms.

Ultimately, our model integrates the strategic network formation approach to explain

the mechanisms, while the embedding techniques improve the predictability of the

computational model. Our study echoes the recent paper that discusses the trade-off

between explanation and prediction in computational social science [120].

Our model considers two procedures during the formation of social ties: the meet-

ing procedure, and the choice procedure. This two-step model takes into account the

dynamics of social ties – that people first meet others randomly, and then make their

rational decisions about the choice of friends. The meeting procedure models the

reality, wherein people meet each other at random. There may exist many potential

neighbor candidates who are mutually beneficial (e.g., some potentially valuable long

ties), but the extremely low meeting probability can prevent the social tie from being

formed. Moreover, when first meeting a new neighbor, a person may lack sufficient in-

formation to assess the person, and they are unable to make a rational decision about

the social tie. After getting to know a new friend over a period of time (one phase

in our study), the individual can then start to make make a rational decision. The

choice procedure assumes that individuals are rational when choosing their network

neighbors and that each individual maximizes their utility function.

Formally, let ℐ be the set of individuals and let 𝑖 (or 𝑗, ℓ) be their index. Addi-

tionally, let 𝑡 index the discrete time steps (or phases), and thus 𝑡 ∈ N+. Let A(𝑡)

denote the adjacency matrix in phase 𝑡. A(𝑡)
𝑖𝑗 = 1 indicates that 𝑖 and 𝑗 are connected
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in phase 𝑡. A(𝑡)
𝑖𝑗 = 0 indicates that 𝑖 and 𝑗 are disconnected in phase 𝑡. For simplicity,

we only consider an undirected network, i.e., A(𝑡)
𝑖𝑗 = A

(𝑡)
𝑗𝑖 for all 𝑖, 𝑗 ∈ ℐ and for all

𝑡 ∈ N+. To account for the heterogeneity of individual attributes, we use the “endow-

ment vector” w𝑖, which is a 𝐾-dimensional vector as the embedding [197, 112]. As

embedding techniques do, each dimension measures a certain latent attribute of an

individual, such as a type of skill or useful information. A larger 𝑤𝑖𝑘 indicates that

the individual retains a high endowment of the 𝑘th dimension.

In each phase, the neighbor’s set of 𝑖 consists of two components: the new friend

set ℳ(𝑡)
𝑖 , and the existing friend set 𝒩 (t)

𝑖 . The new friend set is formed in the ran-

dom meeting procedure. We assume each pair of individuals has a different meeting

probability. The concept of the “meeting probability” is widely adopted in several

econometric studies that aim to model social network formation [178, 66]. Specif-

ically, for each pair of individuals (e.g., 𝑖 and 𝑗), they have a probability of 𝑝(𝑡)𝑖𝑗 to

“meet” each other in phase 𝑡. If A(𝑡−1)
𝑖𝑗 = 1, that is, the two individuals were connected

in phase 𝑡−1, then the 𝑝(𝑡)𝑖𝑗 is a large probability. Otherwise, 𝑝(𝑡)𝑖𝑗 is a small probability

dependent on the network topology between 𝑖 and 𝑗. We can imagine that if this is

a long tie, the probability would be much smaller. Formally, we parametrize 𝑝
(𝑡)
𝑖𝑗 as

follows:

𝑝
(𝑡)
𝑖𝑗 =

⎧⎪⎨⎪⎩𝑑𝑡−1(𝑖, 𝑗) A
(𝑡−1)
𝑖𝑗 = 0

𝑞 A
(𝑡−1)
𝑖𝑗 = 1

(3.2)

The distance metric 𝑑𝑡−1(𝑖, 𝑗) depends on the network topology between individual

𝑖 and individual 𝑗 in phase 𝑡− 1. We define the distance metric to be proportional to

the probability of a random walk from 𝑖 to 𝑗. Here, 𝑞 is set to describe the probability

of be maintained in the meeting procedure in phase 𝑡.

The second component is the existing friend set 𝒩 (𝑡)
𝑖 . It is a subset of all friends

in phase 𝑡−1, i.e., 𝒩 (𝑡)
𝑖 ∈ ℳ(𝑡−1)

𝑖 ∪𝒩 (𝑡−1)
𝑖 . This means that individuals make rational

decisions after maintaining their friendships for a period of one phase. The rationale

behind this notion is that individuals need a significant amount of time to observe and
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understand the value of an existing friend, so the rational choice procedure happens

in the phase immediately following the meeting procedure. For a connected social

tie in phase 𝑡 − 1, the friendship must survive in both the meeting procedure (a

random draw from Bern(𝑞)) and the rational choice procedure. The choice procedure

is modeled using the following utility function:

𝑈
(𝑡)
𝑖 (c

(𝑡)
𝑖 ) =

∑︁
𝑗∈ℳ(𝑡−1)

𝑖 ∪𝒩 (𝑡−1)
𝑖

⎛⎜⎝𝑐
(𝑡)
𝑖𝑗

∑︁
𝑘

⎛⎜⎝𝜎(𝑤𝑗𝑘 − 𝑤𝑖𝑘) +
∑︁

ℓ∈ℳ(𝑡−1)
𝑗 ∪𝒩 (𝑡−1)

𝑗

𝛿𝜎(𝑤ℓ𝑘 − 𝑤𝑖𝑘)

⎞⎟⎠−
(︁
𝑐
(𝑡)
𝑖𝑗

)︁2

⎞⎟⎠ ,

where
∑︁
𝑗

(︁
𝑐
(𝑡)
𝑖𝑗

)︁2

= 1.

(3.3)

Here, 𝑈 (𝑡)
𝑖 is the utility function of individual 𝑖 in phase 𝑡. c(𝑡)𝑖 ∈ [0, 1]ℳ

(𝑡−1)
𝑖 ∪𝒩 (𝑡−1)

𝑖 ,

which can be understood as a function that maps any 𝑗 in the neighbor set in phase

𝑡 − 1, i.e., to map each element in ℳ(𝑡−1)
𝑖 ∪ 𝒩 (𝑡−1)

𝑖 , to a real number in [0, 1]. The

utility function sums over all 𝑖’s neighbors in phase 𝑡− 1. 𝜎 is the ReLU function: if

𝑤𝑗𝑘−𝑤𝑖𝑘 > 0, it outputs 𝑤𝑗𝑘−𝑤𝑖𝑘; otherwise 0. ℓ enumerates over all 𝑗’s neighbors in

phase 𝑡−1, which are also 𝑖’s “friends’ friends.” The depreciation factor 𝛿, which ranges

in (0, 1), measures how the value of a potential friend depreciates as the distance on

the network increases. We refer to 𝜎(𝑤𝑗𝑘 − 𝑤𝑖𝑘) +
∑︀

ℓ∈ℳ(𝑡−1)
𝑗 ∪𝒩 (𝑡−1)

𝑗
𝛿𝜎(𝑤ℓ𝑘 − 𝑤𝑖𝑘) as

the benefit that 𝑗 brings to 𝑖. In addition, we separate the benefit into two: the

direct benefit, 𝜎(𝑤𝑗𝑘 − 𝑤𝑖𝑘), and the indirect benefit
∑︀

ℓ∈ℳ(𝑡−1)
𝑗 ∪𝒩 (𝑡−1)

𝑗
𝛿𝜎(𝑤ℓ𝑘 − 𝑤𝑖𝑘).

The design of these benefit terms was intended for our valuable long tie hypothesis –

we hope to observe that long ties have, on average, larger values in the direct benefit

term.

𝑐
(𝑡)
𝑖𝑗 measures the time investment of 𝑖 in 𝑗. A non-zero value of 𝑐(𝑡)𝑖𝑗 indicates that

𝑗 belongs to 𝒩 𝑡
𝑖 . The restriction of the sum of squared 𝑐

(𝑡)
𝑖𝑗 reflects that people have

limited time or energy to invest in their neighbors. The benefit of each neighbor

is proportional to the time or energy investment in each neighbor 𝑗; this is why we
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multiply the benefit term by 𝑐
(𝑡)
𝑖𝑗 . At the same time, the squared term

(︁
𝑐
(𝑡)
𝑖𝑗

)︁2

is used to

measure the cost of time or energy. The design of 𝑐(𝑡)𝑖𝑗 echoes our degree heterogeneity

hypothesis – those with many ties may have less investment in any one individual

neighbor.

By the Cauchy-Schwarz inequality, Equation (3.3) can be solved by

(𝑐
(𝑡)
𝑖𝑗 )* ∝

∑︁
𝑘

⎛⎜⎝𝜎(𝑤𝑗𝑘 − 𝑤𝑖𝑘) +
∑︁

ℓ∈ℳ(𝑡−1)
𝑗 ∪𝒩 (𝑡−1)

𝑗

𝛿𝜎(𝑤ℓ𝑘 − 𝑤𝑖𝑘)

⎞⎟⎠ , and
∑︁
𝑗

(︁
(𝑐

(𝑡)
𝑖𝑗 )*

)︁2

= 1.

(3.4)

In particular,

𝑗 ∈ 𝒩 (𝑡)
𝑖 iff

(︁
𝑐
(𝑡)
𝑖𝑗

)︁*
> 0; 𝑗 /∈ 𝒩 (𝑡)

𝑖 iff
(︁
𝑐
(𝑡)
𝑖𝑗

)︁*
= 0. (3.5)

In other words, if the optimal solution informs
(︁
𝑐
(𝑡)
𝑖𝑗

)︁*
= 0, then this indicates that

𝑖 and 𝑗 are not longer connected. Otherwise,
(︁
𝑐
(𝑡)
𝑖𝑗

)︁*
is proportional to the duration

during which 𝑖 interacts with 𝑗.

This model provides major improvements based on the framework proposed by

ref. [268]. First, different from their paper, we establish a model for network dynamics.

In particular, we incorporate a meeting procedure: this addresses the phenomenon

that in reality, there are many neighbor candidates who do not form links purely

because they have no opportunity to meet. Second, our model also takes into account

the “weight” (i.e., the interaction frequency or duration) of the links. This is different

from ref. [268] where the weights between the links are binary. Third, ref. [268]

assumes that the marginal utility of additional neighbors is not dependent on other

existing neighbors; by contrast, our model does not incorporate this assumption, and

it also accounts for the network externality (i.e., the benefits of friends of friends).

We provide additional analyses to verify our modeling fitting capacity in SI.

Figure 3-6 provides the main implications derived from learning results of our

model. We first present the average benefit, i.e., 𝜎(𝑤𝑗𝑘−𝑤𝑖𝑘)+
∑︀

ℓ∈ℳ(𝑡−1)
𝑗 ∪𝒩 (𝑡−1)

𝑗
𝛿𝜎(𝑤ℓ𝑘 − 𝑤𝑖𝑘)

given the different tie range in Panel (a). The average is taken over all candidate
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Figure 3-6: The results implied by our model. (a) The corresponding result of the
model which balances the time investment and benefit. (b) Direct benefit from 1-
neighbors. (c) Indirect benefit from common neighbors.

neighbors in ℳ(𝑡−1)
𝑗 ∪𝒩 (𝑡−1)

𝑗 given the tie range in phase 𝑡− 1. From this, we find a

U-shape, i.e., the average benefit decreases with tie range at the beginning, but later

increases with the tie range. This is consistent with our previous findings regardng

the U-shape between tie range and tie strength.

Next, we separate the benefits in Equation (3.3) into the direct effect and the

indirect effect. We present the average direct effect, which is 𝜎(𝑤𝑗𝑘 − 𝑤𝑖𝑘) in Panel

(b). We observe an increasing pattern with the tie range, indicating that as the

tie range increases, the average benefit that a tie brings also increases. This result

supports our hypothesis that long ties tend to be more valuable, which explains the

results in the previous sections. We also compute the average indirect effect, i.e.,∑︀
ℓ∈ℳ(𝑡−1)

𝑗 ∪𝒩 (𝑡−1)
𝑗

𝛿𝜎(𝑤ℓ𝑘 − 𝑤𝑖𝑘). In our model, only social ties with common friends,

i.e., those with a tie range of 2, have indirect effects. We plot the relationship between

the number of common neighbors and the average indirect effect. As observed in Panel

(c), we find an increasing pattern. In particular, by examining the first several data

points in the plot, we observe a seemingly convex pattern, indicating the increasing

marginal utility of common neighbors.

3.3 Discussion

In this study, we combine empirical data analysis and an interdisciplinary compu-

tational model to study the dynamics of long ties and their differences from other
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types of ties. We find that very long ties tend to be stronger, and they persist longer

than other, shorter-range ties, even though long ties may initially be weak. More-

over, we find that long ties tend to have a stable status, as many social ties persist

to become long ties. We propose three hypotheses to investigate the mechanisms at

play. After discussing hypotheses regarding degree heterogeneity and survival bias,

we conclude that they might not fully explain our main results. Finally, we propose an

interdisciplinary model that combines game theory and machine learning to account

for heterogeneity in the values of social ties. The modeling results indicate that the

hypothesis that long ties are more valuable than other ties might explain our results.

Our results also signal the importance of mixing diverse people in promoting social

cohesion. For example, both our empirical analysis and modeling results indicate that

people who are dissimilar in certain attributes or distant in a social network may have

significant mutual benefits. However, the small likelihood of those people meeting can

hinder the formation of their future interactions.

Based on this study, there are several interesting research directions that could

be investigated. First, although we examine a large-scale social network with very

few missing nodes, our dataset only reflects communication taking place over phones.

Therefore, it would be interesting to examine the external validity of our results

compared to offline social networks or online social media networks. Second, there

may be interesting variants of our model. For example, our model only reflects the

absolute advantages that other people bring, but it would be interesting to incorporate

comparative advantages in our model, as well. Finally, It would be interesting to

find a universal metric that combines tie range and tie strength when we assess the

relationship between two nodes in social networks.
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3.4 Methods and Materials

3.4.1 Data description

In our study, we use a nationwide call detail record dataset. Users’ private information

has been anonymized and thus we are able to identify them. This data provider is

a company that functions as the service provider for most of the mobile phone users

in that country. The time period covered by the data starts from Jan. 2015 to Dec.

2016. In the dataset, we retrieve the total number of calls, text, as well as the duration

of calls between any two people in each month.

We establish a temporal social network with the dataset. We consider discrete

time steps (or phases): for each phase, we construct a “snapshot” of the network,

where the node indicates a user and edge represents the interaction between two

users. A key question is how we determine the window of each phase. In our main

results, we adopt a seasonal window – we treat every four months as a phase. In SI,

we also use one month or six months to verify the robustness of our results.

There are tourists from foreign countries who also visited this country. To main-

tain a temporal network where the node set is stable and the global network structure

does not change dramatically with the dynamics of a few nodes, we only consider the

interactions among users who have at least one call or text in each phase. We con-

struct a temporal directed network with 45192 nodes and 385533 edges on average

for each phase.

In terms of the weight of the directed network, we consider two variables as men-

tioned in the main text: interaction frequency and duration. Interaction frequency

is the total number of calls or text that node 𝑖 sends to 𝑗; there are a few calls with

zero-second duration and we filter those calls out. Interaction duration is the total

time length that 𝑖 calls 𝑗 in each phase, and does not account for texting.
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3.4.2 Tie range and long ties

Tie range[111, 194] is defined as the length of the second shortest path between

two connected nodes (Fig 3-1). It indirectly reflects the network distance of the

connection. Consistent with previous long tie studies [57, 194], there is no clear

cutoff of tie range that decides whether a tie is short or long tie. A good reference is

the Milgram experiment, which suggested that the average network distance between

every two people is approximately 6. In our study, we treat social ties with a tie range

of 2 as short ties, and ties with 5 or ≥ 6 as long ties.

3.4.3 Details in learning

Based on Equation (3.4), we construct the loss function to minimize the MSE Loss

between 𝑐𝑖𝑗 and its right hand side. We use stochastic gradient descent to optimize

the loss function. For each epoch, we construct our loss function as below:

ℒ = ℒ𝑝𝑜𝑠 + ℒ𝑛𝑒𝑔, (3.6)

The loss function is composed of the loss functions of positive (connected pairs), and

negative samples (disconnected pairs).

ℒ𝑝𝑜𝑠 =
∑︁

𝑖∈𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑑

∑︁
𝑗∈

(︁
𝒩 (𝑡−1)

𝑖 ∪ℳ(𝑡−1)
𝑖

)︁
∩𝒩 (𝑡)

𝑖

|𝑐(𝑡)𝑖𝑗 − 𝑐
(𝑡)
𝑖𝑗 | (3.7)

ℒ𝑛𝑒𝑔 =
∑︁

𝑖∈𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑑

∑︁
𝑗∈

(︁
𝒩 (𝑡−1)

𝑖 ∪ℳ(𝑡−1)
𝑖

)︁
∖𝒩 (𝑡)

𝑖

𝑐
(𝑡)
𝑖𝑗 (3.8)

For positive samples, we minimize the difference between 𝑐
(𝑡)
𝑖𝑗 , the time investment

of 𝑖 on 𝑗, and the predicted time investment denoted by 𝑐
(𝑡)
𝑖𝑗 .

𝑐
(𝑡)
𝑖𝑗 =

log
(︁
𝐷

(𝑡)
𝑖𝑗 + 1

)︁
∑︀

𝑗∈ℳ(𝑡−1)
𝑖 ∪𝒩 (𝑡−1)

𝑖
log

(︁
𝐷

(𝑡)
𝑖𝑗 + 1

)︁ (3.9)
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where 𝐷
(𝑡)
𝑖𝑗 is the interaction duration between 𝑖 and 𝑗 in phase 𝑡. To reduce the

impact of extreme values, we take the logarithm of 𝐷(𝑡)
𝑖𝑗 . Since 𝐷

(𝑡)
𝑖𝑗 ≥ 0, 𝑐(𝑡)𝑖𝑗 ≥ 0.

𝑐
(𝑡)
𝑖𝑗 =

exp
{︁∑︀

𝑘

(︁
𝜎(𝑤𝑗𝑘 − 𝑤𝑖𝑘) +

∑︀
ℓ∈ℳ(𝑡−1)

𝑗 ∪𝒩 (𝑡−1)
𝑗

𝛿𝜎(𝑤ℓ𝑘 − 𝑤𝑖𝑘)
)︁}︁

∑︀
𝑗′∈ℳ(𝑡−1)

𝑖 ∪𝒩 (𝑡−1)
𝑖

exp

{︂∑︀
𝑘

(︂
𝜎(𝑤𝑗′𝑘 − 𝑤𝑖𝑘) +

∑︀
ℓ∈ℳ(𝑡−1)

𝑗′ ∪𝒩 (𝑡−1)

𝑗′
𝛿𝜎(𝑤ℓ𝑘 − 𝑤𝑖𝑘)

)︂}︂
(3.10)

When minimizing the loss function, we treat the time investment of 𝑖 in 𝑗, which

is calculated by the interaction duration or frequency, as the input and endowment

vectors in this loss function as the variables to be inferred. Note that the existence

of the 𝛿 may result in an uncontrollable gradient issue. We thus use grid search for

this variable and check the robustness of our results in SI. Moreover, we also pay

attention to dimension selection of endowments. For more details, please see SI.

To facilitate the learning process, we apply mini-batch stochastic gradient descent

with Adam optimizer.[143] Consistent with conventional network embedding algo-

rithms, node sampling probability is proportional to node degree (𝑑
3
4 ).[179] In this

case, the endowment vectors of both these sampled nodes and their neighbors will be

updated in each epoch in the gradient descent. We set 500 epochs and sample 1,000

nodes as the input of the model in each epoch. In SI, we show that our learning

converges under this setting.

3.5 Appendix

Data processing and summary statistics

In our study, we use a nationwide mobile phone call dataset involving about 45

thousand (45192) people’s phone call logs in 2 years from Jan. 2015 to Dec. 2016.

The country is an European country with more than 50 thousand but fewer than

100 thousand citizens. We aggregate the monthly phone call and texting log for each

pair of users. Then we take a series of snapshots by aggregating all temporal events

happening in a time window. We have flexibility for the time window. We establish
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a directed graph including all phone call logs in the time window. As mentioned in

the main text, we mainly consider two types of edge weights, interaction frequency

and interaction duration. Interaction frequency is the phone call counts between two

people, and interaction duration is the sum of call volumes of all phone calls in an

interval.

We next discuss how to select the time window. Note that the selection of the

time window affects the distribution of tie range. A too narrow time window may

result in each snapshot being so sparse that many short-range ties might be treated

as long-range ties. A too wide time window may result in too few snapshots for us

to analyze the network dynamics. Eventually, we choose a season (three months) as

the time window for the main text. Each season or three months are regarded as a

“phase”.

We also believe monthly or semi-yearly time windows are reasonable choices. We

illustrate distributions of the number of nodes and edges of each monthly, seasonal,

and half-yearly snapshots induced from the dataset.

As the length of our data is two years, we partition the data into 8 phases (Seasonal

snapshots). As the definition of tie range, we classify all connections with respect to

tie range in each phase. Due to the small magnitude of ties over range 6, we merge

them as ≥ 6. In addition, some ties with infinite tie range cannot be ignored. As

illustrated in Tab. 3.1, social ties with a tie range of 5 or ≥ 6 only take a small

proportion of all connections.

To test for the robustness of the choice of the time window, we further adjust the

interval into a month or a half year. When the time interval is set as a month, we

obtain 24 monthly snapshots. We respectively calculate the tie range of each edge

in every snapshot. Consistent with the main text, we use the logarithm value of

interaction frequency and duration so a few extreme values would not unreasonably

affect the averages. Fig. 3-7(a&b), (c&d) present our main results after adjusting the

time window. We observe a very similar trend with the results when the time window

is four months. These results show that our main results are robust in terms of the

time window.
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Sensitivity check

Since tie range of an edge is easily impacted by another node or edge that is distant

on the network, we need to conduct examine how our results are sensitive to the

existence of a few nodes or edges. We examine the sensitivity of our results to the

impacts of certain nodes or edges. We randomly drop a proportion (5%) of nodes or

edges and then replicate our main result. As shown in Fig. 3-9, dropping either nodes

or edges would not affect our main conclusions. This indicates that our results are

not sensitive to a few nodes or edges happening to exist on the network.

Lifespan

In the main text, we use interaction frequency and interaction to investigate the dy-

namics of social ties. Here we use the “lifespan” as the other dimension to measure the

dynamics. It is defined as the number of phases for which a pair has any interactions.

As shown in Fig. 3-10, there are also U-shapes regarding the relationship between

tie range and lasting phases. This result further verify our statement “long ties last

longer.”

Tie strength heterogeneity

Here we examine our main results by controlling tie strength i.e., interaction duration

and frequency. This control reduces the impact of initial tie strength. By categorizing

social ties by their strength in phase 1, we find that our main results are robust in

each category (see Fig. 3-12) – for each tie strength subgroup, our main conclusion

persists.

Degree heterogeneity hypothesis

Here we discuss our “degree heterogeneity” hypothesis. Again, we categorize social

ties by degree, and plot the trends for each subgroup in Fig. 3-13. We find that

our main results persist in all degree subgroups. Therefore, the degree heterogeneity

hypothesis cannot fully explain our main results.
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Survival bias hypothesis

To test for this hypothesis, we need to examine whether (1) newly formed long ties

are weaker than newly formed short ties in the beginning; and (2) newly formed long

ties have a smaller persistence probability such that only very strong long ties survive.

For (1), we plot the trends in Fig. 3-14. We find that for new ties, the tie strength is

weakest for those with tie range ≥ 6. By contrast, for existing ties, the trend appears

to be a “U-shape.” Thus, we support “newly formed long ties are weaker than newly

formed short ties in the beginning”. For hypothesis (2), we re-conduct the analysis

by decomposing the outcome into persistence probability and interaction increments.

However, we find that newly formed ties still have the largest persistence probability.

Thus (2) is not supported. We therefore believe the survival bias hypothesis cannot

fully explain our main results.

Details in learning

Here we provide more technical details regarding the learning process of our proposed

model. In our proposed model, we need to learn both hyper-parameter 𝛿 and en-

dowments. However, simultaneously training 𝛿 and endowment vectors may cause an

uncontrollable gradient issue. Therefore, we first try to find the optimal 𝛿 and then

train endowment vectors by minimizing the loss. From the data, we observe there is

a positive indirect effect from common friends, and thus 𝛿 should be a small positive

value. As shown in Fig. 3-16, we find that the model performs better when we set 𝛿

as 0.2 than other options – the fit result 𝑐𝑖𝑗 is closest to the real-world data 𝑐𝑖𝑗.

After determining the value of 𝛿, we next infer the endowment vectors. To speed

up the learning rate of the model, we adopt a sampling strategy. We set the maximum

number of epochs as 500 and randomly sample 1000 nodes in each epoch. According

to the loss function, sampled nodes and their neighbors will receive a gradient descent

and endowment vectors of them will be updated in each epoch. We set a testing set

of 1000 nodes to track the learning curve of the model. As shown in Fig. 3-17, the

loss appears to converge to stable after 100 epochs.
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Tie Range Phase 1 Phase 2 Phase 3 Phase 4 Phase 5 Phase 6 Phase 7 Phase 8
2 373,270 338,689 306,481 311,417 253,648 243,471 206,858 204,401

71.2% 69.2% 68.2% 67.7% 64.3% 63.0% 61.0% 59.7%
3 105,438 102,713 93,316 100,617 88,051 91,261 77485 83,864

20.1% 21.0% 20.8% 21.9% 22.3% 23.6% 22.9% 24.5%
4 40,729 42,366 43,115 41,968 44,102 43,540 43757 43,405

7.77% 8.66% 9.59% 9.12% 11.2% 11.3% 12.9% 12.7%
5 4738 5264 6097 5,561 7,971 7636 9973 9727

0.90% 1.08% 1.36% 1.21% 2.02% 1.98% 2.94% 2.84%
≥ 6 284 255 433 409 686 663 1004 1004

0.05% 0.05% 0.10% 0.09% 0.17% 0.17% 0.30% 0.28%

Table 3.1: Statistics of ties with different range over 8 phases.

As to the dimension selection of endowment vectors, we investigate how different

selection of the dimensions impact our main results. We test it from 2-dimensional

to 5-dimensional endowment vectors. Note that a too large dimensionality may raise

the issue of computational complexity. We present the results corresponding to Fig.

6 (a) in the main text in Fig. 3-18. As shown in the figure, the conclusions from

different dimensions are largely similar. We therefore choose the dimensionality of

four as an illustration in the main text.

We implemented our algorithm in PyTorch. The endowment vectors are imple-

mented as embeddings in PyTorch, and we use Adam optimizer with regularization

for the optimization.
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Figure 3-7: Evolution of both interaction frequency and interaction duration of ties
throughout the four semiyearly (a&c) and twenty-four monthly (b&d) snapshots. All
ties are classified according to their tie range in the first phase. Error bars are 95%
confidence intervals.
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Figure 3-8: Dynamics of persistence probability and interaction increments condi-
tional on the tie range in phase 1. Either a month (b,d&f) or a semi-year (a,c&e) is
set as the time window. Error bars are 95% confidence intervals.
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Figure 3-9: Sensitivity check by randomly dropping a proportion (5%) of nodes or
edges.

Figure 3-10: Lifespans (or the number of lasting phases) of ties with different tie
range. We examine the two years separately.
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Figure 3-11: Interaction duration (a), frequency (b) and persistent probability (c) in
the next phase when tie range evolves. (phase 𝑡 vs phase 𝑡 + 1)
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Figure 3-12: Evolution of ties with different ranges when we examine separately
subgroups categorized by interaction duration (a-c) and frequency (d-f) in Phase 1 .

Figure 3-13: Evolution of interaction duration (a-c) and frequency (d-f) of ties with
different ranges when we examine degree subgroups. ND indicates node degree. The
medium node degree of phone call network in phase 1 is 12.
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Figure 3-14: Interaction duration (a) and frequency (b) for newly formed ties and
existing ties.

Figure 3-15: Dynamics of interaction frequency, interaction duration and persistent
probability of survival (a-c) or newly-formed (d-f) ties throughout the next seven
seasonal snapshots conditional on the tie range in phase 2. Error bars are 95%
confidence intervals.
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Figure 3-16: Choice of 𝛿.

Figure 3-17: The learning curve.

Figure 3-18: Results of choosing different dimensionality.
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Chapter 4

Identifying gift contagion with

structural causal models

4.1 Background

Individuals belong to many different social groups: kinship groups, friend groups,

work groups or organizations, and interest groups. The collective identities developed

in these groups deeply shape the behavior of their members [237, 69, 67, 62, 21, 47].

Nowadays, social groups are facilitated through digital platforms, especially social net-

work platforms such as Facebook, Line, WeChat, and WhatsApp. These platforms

support social groups for a variety of purposes, including relationship maintenance,

opinion and information exchange, and event planning [252, 28, 193, 43, 166]. In par-

ticular, during the COVID-19 pandemic, online work group chats have substituted

for conventional in-person meetings [49]; indeed, it was reported that 42 percent of

the U.S. labor force worked from home full-time as of June 2020.1 In China, WeChat

groups are widely used for instant work-related communication [166, 201]. Although

online work groups offer the convenience of long-distance communication and coordi-

nation, they may face challenges related to team building and group solidarity [124].

One way to promote group bonding is through the use of group gifts, which are

the gifts sent by a group member without specifying recipients. Examples of group
1https://news.stanford.edu/2020/06/29/snapshot-new-working-home-economy/
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gifts include the food items or souvenirs bought by a member to her work group

after traveling abroad as well as the small gifts being exchanged at a Christmas or

holiday party (the “white elephant” gift exchange). While prior literature focuses on

one-to-one gifts and their role in creating interpersonal social bonds [173], few studies

have investigated group gifts and their role in promoting in-group interactions and

solidarity.

In this study, we observe the outbreak of sending group gifts in both online and

offline settings, such as the “red packet rain” in online groups, indicating the presence

of gift contagion (the social contagion of gift giving).2 Social contagion is defined as

“an event in which a recipient’s behavior has changed to become ‘more like’ that of

the actor” [261]. [18] has pointed to the importance of identifying causal effects in

the process of social contagion. In the context of group gifts, gift contagion implies

that people who receive larger amounts of gifts feel promoted to increase their own

subsequent contributions. If gift contagion exists in groups, the actual impact of a

given gift would be amplified, leading to stronger social bonds and feelings of group

solidarity [169].

To quantify the effect of gift contagion, our study employs a large-scale dataset of

3.4 million users in a major Chinese social network platform. On the platform, users

send online red packets to each other as a type of digital monetary gift. Online red

packets, especially group red packets, swiftly became extremely popular after being

released: more than 700 million people engaged in sending or receiving red packets

during one week in 2019 [54, 264].

Methodologically, the causal identification of social contagion in observational

data is notoriously challenging [18, 221]. In particular, the following two confounding

factors may hinder valid causal identification of gift contagion. The first confounding

is the “temporal clustering.” Specifically, group members may send gifts within a

short time period independently to celebrate a festival or an event [18]. The second

is homophily, the phenomenon whereby individuals tend to befriend similar others

[177]. For example, wealthy people tend to cluster in an online group and send larger

2https://digital.hbs.edu/platform-rctom/submission/making-it-rainchinese-red-packets/
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amounts of gifts to each other.

We leverage a natural experiment to overcome the above challenges. Our natu-

ral experiment is enabled by a random gift amount allocation algorithm for group

red packets. The algorithm splits a red packet into several shares and randomly de-

termines the amount of each share. We utilize this random assignment of received

cash amounts to identify the impact of the amount received on a participant’s sub-

sequent gifting behavior. We first examine the presence of gift contagion in online

groups. On average, receiving one additional dollar causes a recipient to send 18

cents back to the group within the subsequent 24 hours. Moreover, we find that

this overall effect is mainly driven by the extensive margin, i.e., receiving red packets

significantly promotes the likelihood of giving. Second, we investigate heterogeneity

in the effect size of gift contagion across different time periods (festival versus non-

festival periods), and across different types of groups (e.g., relative versus classmate

groups). Third, our analysis suggests that a social norm exists in that the luckiest

draw recipient should send the very first subsequent red packet. Finally, we find that

both individual-level network position and group-level network structure affect the

strength of gift contagion, respectively.

4.1.1 Online red packets

In our study, we focus on the custom of sending monetary gifts to family members,

friends, and other acquaintances in what is known as “red packets” (also known as

“red envelopes,” or “lucky money”). Red packets are typically sent to others as a way

of commemorating festivals or important events. They also function as a means of

tightening the social network in East and Southeast Asian cultures, known as the

renqing and guanxi system [168, 256]. We summarize the history of red packets in

Appendix.

The Chinese social network platform enables users to designate private contacts

(we use the term “friends” throughout the paper) and to create group chats. Online

groups are created for a wide variety of purposes, ranging from family members to

coworkers and friends. The number of group members ranges between 3 and 500.
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(a) (b) (c)

(d) (e1) (e2) (f)

sent amount

quantity

received amount
(random)

order=3, rank=3

order=2, rank=1

order=1, rank=2
when some 

shares are left
when all shares 

are received

Figure 4-1: Illustration of group red packets with random amounts
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The platform introduced its online red packet feature in 2014, allowing users to send

monetary gifts to either a friend or a group. WeChat red packets were popularized

during the Lunar New Year of 2015 — it was reported that 55% of the Chinese

population sent and received red packets on that single day. Because of the popularity

of red packets, WeChat also benefits from a rapid growth in its mobile payment market

share. For example, in 2015, Tencent’s mobile payments share grew from 11% to 20%,

while Alipay’s share dropped from 82% to 68%.3 In 2019, its market share is 39.5%

while Alipay is 54.5%.4

Noting that the platform allows two types of group red packets, our study focuses

on the most popular one – the random-amount, group-designated red packet, as

depicted in Figure 4-1.5 In this example, Panel (a) provides the basic information

about the group, the name of which is “Party!”, with five group members in total.

Panel (b) presents the user interface of this group, from which a group member

can click the “Red Packet” button to send a red packet. Panel (c) shows that a

group member (Steve in this example) can choose both the total amount of the red

packet that he would like to send (“Total”=10 CNY) and the number of recipients

(“Quantity”=3). Panel (d) is the interface for the red packet notification, from which

a user can click the orange button to choose to receive the packet. Panel (e1) pops up

when some shares of the red packet remain. In this example, only the first three users

who click the “Open” button can receive a share of this red packet. Panel (e2) pops

up when all shares of the red packet have been received by group members. Finally,

Panel (f) shows the recipient list, which can be viewed by clicking “View details” in

Panel (e). All of the group members, including senders, recipients, and non-recipients,

can view the recipient list and see the amount obtained by each recipient. We define

the order of receiving time as group members’ respective places in the order at the

time when they receive the red packet. In the above setting, the amount that each

user receives is randomly assigned by the platform, and is a function of the total

amount of the red packet, the number of recipients, and the order of the receiving

3https://www.pymnts.com/news/b2b-payments/2016/barclays-corporate-banking-head-chief-resignation/
4https://www.businessofapps.com/data/wechat-statistics/
5The other type is that senders can also choose to split red packets equally.
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time. Moreover, the platform designates which user receives the largest amount of a

red packet with a “Luckiest Draw” icon and the corresponding yellow text. All group

members can observe who is the luckiest draw recipient.

4.2 Methods

4.2.1 Data collection

We collect a dataset consisting of randomly-sampled online groups with red packet

activity from October 1, 2015 to February 29, 2016. To protect user privacy, users’

identities were anonymized before we accessed the data. To avoid data sparsity, we

restrict our analysis to online groups in which the number of red packets sent is

at least three times the number of group members. We also filter out groups that

might be used for online gambling based on the following criteria: (1) a number of

red packets greater than 50 times the number of group members; (2) a name that

suggests a gambling focus (containing words such as 元/块(Chinese yuan), 发(send),

红(red), 包(packet), 最佳(luckiest), 抢(grad), 赌(gamble), 钱(money), 福利(welfare),

and 接龙(chain) or Arabic numerals (which indicate the default packet amount set

for gambling); or (3) no designated group name, which could also be temporarily

created for gambling.6 In total, this selection process results in 174,131 groups with

3,466,928 group members (3,450,540 unique users).

In our main analyses, we include: (1) the characteristics of 174,131 online groups,

including the number of group members, the total number of red packets, and the total

cash value of the red packets; (2) 3,450,540 unique users in these online groups, along

with their characteristics, such as the number of in-group friends are also retrieved;

and (3) the attributes of each red packet, including the cash amount, the correspond-

ing recipients and the opening time. In total, our sample comprises 36,608,864 red

packets. Furthermore, we focus on recipients of “spontaneous red packets,” which

indicate that no group red packet is sent in the 24 hours prior to this type of red

6We show that groups identified as gambling groups appear to exhibit greater levels of gift
contagion Appendix
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packet. We conduct robustness checks by varying the time window and find that

our main results remain (Appendix). In total, we identify 1,549,720 spontaneous red

packets sent to 7,266,446 recipients.7 Each observation refers to a user’s received

red packet and we have 7,266,446 observations in total. In Appendix we present a

detailed description of the data.

4.2.2 Estimation strategy

Random assignment algorithm

Here we illustrate the random assignment algorithm for red packet amounts on the

platform. First, the sender determines the total amount of the red packet (𝑎 > 0) and

the number of recipients to receive a portion of the red packet (𝑛 ≥ 1).8 Then group

members choose to open the red packet on a first-come, first-served basis. They do

not know the values of 𝑎 and 𝑛 until they open the red packet. Let 𝑜 denote the order

of receiving time (𝑜 = 1, 2, ..., 𝑛). The amount received by the recipient with order 𝑜,

denoted by 𝑉𝑜, is determined by the following algorithm:

1. When 𝑜 = 1 and 𝑜 < 𝑛: the amount obtained by the first recipient (order = 1)

follows a uniform distribution on (0, 2𝑎
𝑛

]. The expected amount is:

E[𝑉1] =
1

2
× (0 +

2𝑎

𝑛
) =

𝑎

𝑛
.

When 𝑜 = 𝑛 = 1, the amount received is 𝑎 because the only recipient should

take all the cash amount.

2. When 1 < 𝑜 < 𝑛: the amount received follows a uniform distribution on (0,

7We exclude observations in which the sender clicks the red packet and receives a share of her
own red packet.

8In practice, the amount received is rounded to the nearest cent, and is set at least 0.01 CNY.
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2(𝑎−𝑉1−...−𝑉𝑜−1)
𝑛−𝑜+1

]. We have:

E[𝑉𝑜] = E

[︁
E[𝑉𝑜|𝑉1, ..., 𝑉𝑜−1]

]︁
= E

[︂
1

2
×
(︁

0 +
2(𝑎− 𝑉1 − ...− 𝑉𝑜−1)

𝑛− 𝑜 + 1

)︁]︂
=

𝑎−E[𝑉1] − ...−E[𝑉𝑜−1]

𝑛− 𝑜 + 1
.

We show that E[𝑉𝑜] = 𝑎
𝑛

by induction:

First, we have already shown that E[𝑉1] = 𝑎
𝑛
.

Second, assuming that we have E[𝑉𝑜′ ] = 𝑎
𝑛

for all 𝑜′ < 𝑜, we have E[𝑉𝑜] =
𝑎−(𝑜−1) 𝑎

𝑛

𝑛−𝑜+1
= 𝑎

𝑛
.

3. When 𝑜 = 𝑛: 𝑉𝑜 = 𝑎 − 𝑉1 − ... − 𝑉𝑜−1, indicating that the last recipient takes

the surplus. Then we have E[𝑉𝑜] = 𝑎−E[𝑉1] − ...−E[𝑉𝑜−1] = 𝑎
𝑛
.

Therefore, the expectation of the received amount is the same: 𝑎
𝑛
. However, the

variance in the amounts is not always the same. For example, when 𝑛 > 2,

Var(𝑉1) =
1

12
× (

2𝑎

𝑛
− 0)2 =

𝑎2

3𝑛2
;

Var(𝑉2) = E

[︁
Var(𝑉2|𝑉1)

]︁
+ Var

(︁
E[𝑉2|𝑉1]

)︁
= E

[︁ 1

12
×

(︀2(𝑎− 𝑉1)

𝑛− 1

)︀2]︁
+ Var

(︁𝑎− 𝑉1

𝑛− 1

)︁
= E

[︁ (𝑎− 𝑉1)
2

3(𝑛− 1)2

]︁
+

1

(𝑛− 1)2
Var(𝑉1)

=
(︁
−

(𝑎− 2𝑎
𝑛

)3

9(𝑛− 1)2
+

𝑎3

9(𝑛− 1)2

)︁
× 𝑛

2𝑎
+

𝑎2

3(𝑛− 1)2𝑛2

=
𝑎2

3𝑛2
+

4𝑎2

9(𝑛− 1)2𝑛2
> Var(𝑉1).

In addition, we provide the complete proof for variance differences in Appendix.

To show that the random assignment algorithm functions as described above,

we compare the empirical distributions of received amounts from our data to the

simulation results generated by the algorithm in Figure 4-2. In our first comparison
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example in the upper two rows, we see that the total amount is 10 CNY and the

number of recipients is 5 (108,560 observations). In our second comparison example

in the bottom two rows, we see that the total amount is 5 CNY and the number of

recipients is 3 (38,523 observations). We do not find significant differences between

these two distributions generated by the simulation and our empirical data (𝑝 =

0.30 and 0.36 for the two cases, respectively, two-sided Kolmogorov-Smirnov tests).

Additionally, consistent with the random assignment algorithm, the expectation of

the amount received is solely determined by the total amount of the gift and the

number of recipients (10
5

= 2 and 5
3

for the two cases, respectively). Examining the

remaining data, we find that the results continue to hold.

Furthermore, we verify the randomization procedure and provide the results in

Appendix. The results suggest that, conditional on the total amount of the red

packet, the number of recipients, and the order of receiving time, the amount received

is not significantly correlated with individual characteristics or historical behaviors.

Altogether, these analyses confirm that the amount that a recipient obtains is solely

determined by the following three variables: (1) the total amount of the red packet;

(2) the number of recipients; and (3) the order of receiving time. This verification

enables us to use the following empirical strategy to quantify the causal impact of

gift contagion.

Empirical strategy

We next discuss our empirical strategy, which is used to quantify the impact of the

amount received on the recipient’s subsequent gifting behavior. We regard the random

assignment of received amounts as a stratified randomized experiment [140, 129, 132,

26], where a stratum is uniquely determined by the total amount of the red packet,

the number of recipients, and the order of receiving time. We apply the empirical

strategy of stratified randomized experiments proposed by [132] and conduct the

following regression analyses:
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Figure 4-2: Distributions of received amounts in our dataset (red) and simulation
(blue). The top two rows are those with 10 CNY and 5 recipients; The bottom two
rows are those with 5 CNY and 3 recipients. A title with (𝑎, 𝑛, 𝑜) indicates that the
total amount of the gift is 𝑎 CNY, the number of recipients is 𝑛, and the order of
receiving time is 𝑜.

𝑌𝑔𝑖𝑟 = 𝛽𝑇𝑔𝑖𝑟 +
∑︁
𝑠

𝛾𝑠𝐵𝑠(𝐴𝑟, 𝑁𝑟, 𝑂𝑖𝑟) + 𝜖𝑔𝑖𝑟. (4.1)

In Equation (4.1), 𝑔 denotes an online group, and 𝑖 denotes a unique user who

receives a share of a red packet 𝑟. 𝜖𝑔𝑖𝑟 represents the random noise. The dependent
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variable 𝑌𝑔𝑖𝑟 is the amount sent by the recipient 𝑖 in the time interval after receiving

a red packet. The selected time intervals are 10 minutes, 1 hour, 3 hours, 6 hours,

12 hours, and 24 hours. The main independent variable 𝑇𝑔𝑖𝑟 is the amount received

by user 𝑖 from red packet 𝑟. 𝛽 is the estimand of interest that specifies the linear

relationship between 𝑇𝑔𝑖𝑟 and 𝑌𝑔𝑖𝑟 and measures the degree of gift contagion. 𝐴𝑟, 𝑁𝑟,

and 𝑂𝑖𝑟 refer to the total amount of the red packet 𝑟, its number of recipients, and user

𝑖’s order of receiving time, respectively. Finally, 𝐵𝑠(𝐴𝑟, 𝑁𝑟, 𝑂𝑖𝑟) is a dummy variable

indicating whether the value of 𝑋𝑔𝑖𝑟 = (𝐴𝑟, 𝑁𝑟, 𝑂𝑖𝑟) belongs to the 𝑠th stratum. The

dummy variable helps control for stratum fixed effects. In total, we have 180,578

strata in our sample.

To address potential data interdependence, we focus on group- versus user-level

interdependence, as only 3.1% of the users in our dataset belong to more than one

group, data interdependence at the group level is the primary concern. To further

address user-level interdependence, our bootstrap identifies any two groups containing

the same user as a “cluster.” We use the Poisson bootstrap [86] at the “cluster” level

for 1,000 replicates to estimate the robust standard errors or 95% confidence intervals.

To depict the causal relationship examined by our empirical strategy, we use

Pearl’s directed acyclic graphs (DAGs) to visualize the causal relationship in our

empirical strategy [196]. As shown in Figure 4-3, controlling for 𝑋 blocks all of the

“backdoor” paths from 𝑇 to 𝑌 , which satisfies the backdoor criterion and allows us to

identify the causal impact of 𝑇 on 𝑌 . This process provides greater confidence that

confounding factors (𝑈), such as temporal clustering and homophily, would not bias

our estimation.

This empirical strategy has two advantages in identifying a causal relationship.

First, it enables us to fully control for the stratum fixed effect, without requiring a

specific functional form for the impact of 𝑋. For example, a linear specification, i.e.,

adding 𝐴𝑟, 𝑁𝑟, and 𝑂𝑖𝑟 directly into the regression, would lead to an overestimated

treatment effect (Appendix). Second, we realize that if most strata have few obser-

vations, we may fail to measure such within-stratum effects. Fortunately, our sample

size is sufficiently large that we have a sufficient number of observations within each
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time effects)

Figure 4-3: A directed acyclic graph illustrating the causal relationship

stratum. Note that the average number of observations in a stratum is 8.37.

4.3 Hypotheses

Both observational and experimental studies provide a wide body of support for the

idea that various behaviors are found to be socially contagious [67, 96, 21, 47, 150,

19, 146]. In our setting, the phenomenon of gift contagion may be driven by multiple

motivations. For example, reciprocity, including direct and indirect, can promote

social contagion [9, 187, 188, 219]. Since any group members can receive a share of

red packets in an online group, we conjecture that indirect reciprocity should play

a more important role than direct reciprocity in our sample.9 Furthermore, fairness

concerns, or inequity aversion may also promote gift contagion [90, 45], as the random

assignment of gift amounts generates an unequal distribution of cash amounts between

recipients. Consequently, this perceived lack of fairness in distribution may motivate

users who obtain larger amounts to increase their subsequent contributions in order

to mitigate the inequity. Based on this conjecture, we form our first hypothesis:

Hypothesis 1 (Gift contagion) The larger the amount a recipient obtains, the

larger the amount she will send to the group.

Next, we are interested in understanding whether the degree of gift contagion

varies between different time periods. In East and Southeast Asia, red packets are
9This conjecture is further supported by our analysis in Appendix.
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usually sent during the Lunar New Year and other festivals [222, 256]. We thus posit

that gift contagion is stronger during festivals.

Hypothesis 2 (Festival effect) Gift contagion is stronger during festivals than other

time periods.

In addition, we expect the degree of gift contagion to be contingent on group types.

Red packets are historically sent among relatives (see Appendix for more details). We

thus posit that we will observe more gift contagion in groups of relatives.

Hypothesis 3 (Group type effect) Gift contagion is stronger in groups of rela-

tives than other groups.

Recall that the user interface highlights who is the luckiest draw recipient, and

this information is observed by all group members. We thus posit that gift conta-

gion is stronger for luckiest draw recipients. There are two possible reasons for this

conjecture. The first one is the amount effect : luckiest draw recipients receive larger

amounts and thus they may send a larger amount. The second is that the salience

of the luckiest draw recipient information may motivate luckiest draw recipients to

send red packets (referred to as the luckiest draw effect). Therefore, we propose the

following hypothesis.

Hypothesis 4 (Luckiest draw effect) Gift contagion is stronger for luckiest draw

recipients than others.

Finally, we are interested in the moderating effect of social network characteristics.

There has been extensive literature on the effect of individual network positions on

social contagion [258, 53, 133, 21, 247, 47, 32, 19]. For example, [21] conduct a

large-scale randomized field experiment to examine Facebook users’ product adoption

decisions. They find that individuals who are susceptible to influence are less clustered

on networks. In another study, [247] examine how individual positions on e-mail

networks impact the adoption of a new product, and find that individuals who are

less clustered on a network are more inclined to adopt a new product.
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Furthermore, the number of friends (i.e., degree) may also affect the degree of gift

contagion. Both the classic linear threshold model [139] and complex contagion theory

[57] suggest that, regarding the adoption of new products or behaviors, people need to

see more than one neighbor who has already adopted the product or behavior before

being influenced to do likewise. An experiment examining information diffusion on

Facebook also indicates that the probability of sharing information depends on the

number of friends who already shared this information [31]. In our sample, those

with more in-group friends generally have more friends who have adopted the gifting

behavior, and thus may be more likely to be influenced. This leads to the following

hypothesis:

Hypothesis 5 (Individual network position on gift contagion)

(a) Gift contagion is stronger for individuals who are less clustered in the group.

(b) Gift contagion is stronger for individuals who have more friends (higher degree)

in the group.

In addition to individual-level network characteristics, the group-level network

structure may also affect the degree of gift contagion as well [110, 258, 53, 56]. For

example, the weak tie theory suggests that the existence of long-range ties helps the

spread of social contagion; thus, social contagion is expected to be stronger in net-

works that are not tightly knit [110, 258, 53]. By contrast, [56] shows that a more

clustered network spreads behavior more quickly because the adoption of a new be-

havior requires reinforcement from multiple influential network neighbors. Moreover,

a tightly knit group network structure may indicates closer relationships within the

group. Therefore, we are agnostic regarding the degree of gift contagion between

groups with different group-level network structures.

Hypothesis 6 (Group network structure on gift contagion) The strength of gift

contagion differs between tightly and loosely knit groups.
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4.4 Results

4.4.1 Gift contagion in online groups

We first apply a simplistic, non-parametric approach to shed light on the causal

effect of the amount received by a user within a group on the probability of that

user sending the first subsequent red packet. We depict the probability of sending

the first subsequent red packet for the recipients of a given red packet in Figure 4-4.

From this figure, we see a decreasing trend related to the rank of received amounts:

those who receive the largest amount have the highest probability of sending the

first subsequent red packet. Moreover, the largest difference lies between those who

receive the largest amount and those who receive the second largest amount, while

the differences between other recipients are much smaller.

Figure 4-4: The recipients’ probability of sending the first subsequent red packet.
“Num” is the number of recipients of a given red packet. The 𝑥-axis indicates the
rank of received amounts among recipients. For example, “1st” refers to the user who
receives the largest amount, i.e., the luckiest draw recipient. “>5th” is the average
probability among recipients whose rank is below the 5th position. The dashed gray
line represents the average probability that a non-recipient sends the first subsequent
red packet. The error bars, i.e., the 95% CIs, are much smaller than the markers, and
become invisible.

Next, we apply the empirical strategy described in Section 4.2.2 to quantify the

impact of the amount received on the subsequent amount sent, namely, we estimate
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Figure 4-5: The marginal effects of the amount received on the amount sent within
the corresponding timeframes. Error bars are the 95% CIs.

𝛽 in Equation (4.1). Figure 4-5 presents the marginal effects for different timeframes.

From the figure, we see an increase in the effect size as the timeframe widens, with the

effect stabilizing after the first three hours. In later analyses, we focus on regression

results for 10 minutes and 24 hours, respectively.

Table 4.1: Regression analyses for gift contagion
Overall Extensive Intensive

10 min 24 h 10 min 24 h 10 min 24 h
(1) (2) (3) (4) (5) (6)

Amount received 0.1559*** 0.1853*** 0.0031*** 0.0032*** 0.0202 -0.2284*
(0.0166) (0.0343) (0.0001) (0.0001) (0.0788) (0.1471)

Stratum fixed effect Y Y Y Y Y Y
No. of observations 7,266,446 7,266,446 7,266,446 7,266,446 1,060,746 1,370,741
Adjusted 𝑅2 0.0394 0.0396 0.0211 0.0233 0.1826 0.1391

Note: The dependent variable (DV) for Columns (1) and (2) is the amount sent within the respective
timeframe. It is coded as zero for those who do not send red packets. The DV in Columns (3) and (4) is
the dummy variable for sending red packets. The DV in Columns (5) and (6) is the amount conditioning
on sending red packets. Marginal effects are reported. Standard errors clustered at the group- and
user-level are in parentheses. *: 𝑝 < 0.1, **: 𝑝 < 0.05, ***: 𝑝 < 0.01.

Result 1 (Gift contagion) The larger the amount a recipient obtains, the larger

the amount she sends to the group.

Support. As shown in Columns (1) and (2) in Table 4.1, the regression coefficients

for the amount received are positive and significant at the 1% level (10 minute: 0.1559,

𝑝 < 0.01; 24-hour: 0.1853, 𝑝 < 0.01).
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By Result 1, we reject the null hypothesis in favor of Hypothesis 1. Since the gifting

behavior is quantitatively measurable in our dataset, we are able to decompose the

overall effect to the extensive and intensive margins. This decomposition has received

little examination in the previous gift contagion literature. For example, in their study

of gift contagion on Facebook, [146] reports only the overall effect of gift contagion.

The extensive margin reflects whether the amount received increases the recipient’s

likelihood of sending a red packet, while the intensive margin indicates, conditional

on sending a red packet, whether the amount received affects the amount sent. As

shown in Columns (3) and (4), receiving one more CNY increases the recipient’s

probability of sending a red packet by 0.31% in 10 minutes (𝑝 < 0.01) and 0.32% in

24 hours (𝑝 < 0.01). By contrast, the intensive margin is not significant within 10

minutes (𝑝 > 0.1), and even becomes negative within 24 hours (𝑝 = 0.061). Therefore,

we conclude that the primary driver of our observed overall effect of receiving a red

packet on subsequent behavior is that users are more likely to send packets versus

more likely to send a greater amount.

In addition, we test for generalized reciprocity [266, 186], i.e., whether receiving

gifts in one group triggers the recipient to send a gift within another group. Again,

we apply the estimation strategy in Equation (4.1) to estimate the effect, but with

the dependent variable being the average amount that the user sends to other groups

she belongs to in our sample. Since we sample our data at the group level, our test of

generalized reciprocity is restricted to those who belong to multiple sampled groups,

which yields 18,910 (3.1%) users in our sample.

Altogether, although the sign for the estimated coefficient is positive, it is not

significant (see Table 4.13 in Appendix). This null result may be due to two factors.

First, although the number of users is not small, a lack of within-stratum variation

may underpower our analysis. Indeed, among 12,671 strata, 7,956 contain only one

observation. Second, since users may belong to additional groups that are not in our

sample, the lack of all sending and receiving history of a user leads to an underesti-

mation of our effect.
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4.4.2 Heterogeneous effect of gift contagion

The fine-grained information in our large dataset provides opportunities to examine

how the effect size of gift contagion varies in multiple dimensions, which further deep-

ens our understanding of gift contagion. For example, [146] only examine Facebook

birthday gifts, while our sample includes the sending of red packets for different pur-

poses, such as celebrating the Lunar New Year and job promotion. We first examine

how the strength of gift contagion differs between festivals and non-festival seasons

by running regressions separately, and report the main results below.10

Result 2 (Festival effect) The effect of gift contagion is stronger during festival

than non-festival seasons, and the difference is significant in the first 10 minutes.

Support. As shown in Columns (1) and (2) of Table 4.2, the size of the overall

effect is larger during festival than non-festival seasons (10 minutes: 0.1948 versus

0.1207, 𝑝 = 0.039; 24 hours: 0.2474 versus 0.1271, 𝑝 = 0.106).

By Result 2, we reject the null hypothesis in favor of Hypothesis 2. We also

examine the extensive and intensive margins and present the results in Columns (3)-

(6), Table 4.2. From these results, we see that the extensive margin is significant

for both festival and non-festival seasons, although the differences are not significant

at the 5% level (10 minutes: 𝑝 > 0.1; 24 hours: 𝑝 = 0.087). Additionally, although

no significance is detected for the intensive margin, the intensive margin for festival

season is larger than non-festival season.

Second, we examine whether the gift contagion effect varies across different types

of groups. We identify three group types by inferring a group’s composition from

group names. (1) Relative groups : groups with names containing 家(family). (2)

Classmate groups : groups with names containing [班(class), 小学/中学/初中/高

中(elementary/secondary/low secondary/high secondary school, respectively),大学(college/university),

校(school), 届/级(grade)]. (3) Coworker groups : groups with names containing 公

司(company), 集团(corporate group), 工作(work), and 有限(limited liability). Ta-

ble 4.3 reports the regression results for group type analysis.
10We consider all important dates that people celebrate in China including the Lunar New Year

and other festivals.
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Table 4.2: Regression analyses for gift contagion: festival versus non-festival seasons
Overall Extensive Intensive

10 min 24 h 10 min 24 h 10 min 24 h
(1) (2) (3) (4) (5) (6)

Festival
Amount received 0.1948*** 0.2474*** 0.0031*** 0.0031*** 0.0771 -0.0237

(0.0256) (0.0533) (0.0001) (0.0001) (0.0835) (0.1442)
Stratum fixed effect Y Y Y Y Y Y
No. of observations 2,297,290 2,297,290 2,297,290 2,297,290 399,763 545,953
Adjusted 𝑅2 0.0458 0.0493 0.0172 0.0222 0.1626 0.1260

Non-festival
Amount received 0.1207*** 0.1271** 0.0032*** 0.0034*** -0.1313 -0.5508

(0.0251) (0.0519) (0.0001) (0.0001) (0.1577) (0.3229)
Stratum fixed effect Y Y Y Y Y Y
No. of observations 4,969,156 4,969,156 4,969,156 4,969,156 660,983 824,788
Adjusted 𝑅2 0.0342 0.0318 0.0196 0.0208 0.1861 0.1485

Note: The dependent variable (DV) for Columns (1) and (2) is the amount sent within the respective
timeframe. It is coded as zero for those who do not send red packets. The DV in Columns (3) and (4) is
the dummy variable for sending red packets. The DV in Columns (5) and (6) is the amount conditioning on
sending red packets. Marginal effects are reported. Standard errors clustered at the group- and user-level are
in parentheses. *: 𝑝 < 0.1, **: 𝑝 < 0.05, ***: 𝑝 < 0.01.

Table 4.3: Regression analyses for gift contagion by group types
Overall Extensive Intensive

10 min 24 h 10 min 24 h 10 min 24 h
(1) (2) (3) (4) (5) (6)

Relatives
Amount received 0.1458*** 0.1934*** 0.0031*** 0.0031*** 0.0923 0.0481

(0.0213) (0.0441) (0.0002) (0.0002) (0.0828) (0.1262)
Stratum fixed effect Y Y Y Y Y Y
No. of observations 2,200,404 2,200,404 2,200,404 2,200,404 366,553 472,239
Adjusted 𝑅2 0.0342 0.0318 0.0196 0.0208 0.1861 0.1485

Classmates
Amount received -0.0207 -0.0825 0.0074*** 0.0074*** -0.9680** -1.0938**

(0.0627) (0.1229) (0.0009) (0.0009) (0.4107) (0.5300)
Stratum fixed effect Y Y Y Y Y Y
No. of observations 408,397 408,397 408,397 408,397 47,242 62,616
Adjusted 𝑅2 0.0982 0.1206 0.0082 0.0148 0.2631 0.1956

Coworkers
Amount received 0.1101* 0.0498 0.0032*** 0.0031*** -0.2257 -0.6819

(0.0647) (0.1068) (0.0006) (0.0006) (0.3692) (0.5326)
Stratum fixed effect Y Y Y Y Y Y
No. of observations 143,297 143,297 143,297 143,297 17,974 23,156
Adjusted 𝑅2 0.1633 0.1723 -0.0067 0.0041 0.3694 0.3236

Note: The dependent variable (DV) for Columns (1) and (2) is the amount sent within the respective timeframe.
It is coded as zero for those who do not send red packets. The DV in Columns (3) and (4) is the dummy variable
for sending red packets. The DV in Columns (5) and (6) is the amount conditioning on sending red packets.
Marginal effects are reported. Standard errors clustered at the group- and user-level are in parentheses. *:
𝑝 < 0.1, **: 𝑝 < 0.05, ***: 𝑝 < 0.01.
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Result 3 (Group type effect) The overall effect of gift contagion is stronger in

relative groups than in classmate groups.

Support. The effect size is significantly greater in relative groups than in class-

mate groups (10 minutes: 0.1458 versus −0.0207, 𝑝 = 0.012; 24 hours: 0.1934 versus

−0.0825, 𝑝 = 0.034). There is no significant difference for other pairwise compar-

isons.

By Result 3, we reject the null hypothesis in favor of Hypothesis 3. In addition, as

indicated by Table 3, we find that the overall effect is significant for relative groups,

while the effects are not significant for the other two groups.11 We also compare

the extensive and intensive margins across group types and find that the extensive

margin is significantly higher in classmate groups than in relative groups (10 minutes:

0.0074 versus 0.0031, 𝑝 < 0.01; 24 hours: 0.0074 versus 0.0031, 𝑝 < 0.01) or coworker

groups (10 minutes: 0.0074 versus 0.0032, 𝑝 < 0.01; 24 hours: 0.0074 versus 0.0031,

𝑝 < 0.01). By contrast, the intensive margin for classmate groups is significantly

smaller than that for relative groups (10 minutes: −0.9680 versus 0.0923, 𝑝 = 0.011;

24 hours: −1.0938 versus 0.0481, 𝑝 = 0.036).

4.4.3 “Luckiest draw” effect

As discussed in Section 4.3, we posit that luckiest draw recipients may exhibit stronger

gift contagion. To examine the behavioral difference between luckiest and non-luckiest

draw recipients, we run the regressions in Equation (4.1) for these two subgroups

separately and report the results in Table 4.4.

Result 4 (Luckiest draw effect) Gift contagion is stronger for luckiest draw re-

cipients than non-luckiest draw recipients, and the difference is significant in the

10-minute timeframe.

Support. In Columns (1) and (2) of Table 4.4, the marginal effects for luckiest

draw recipients are larger than those for non-luckiest draw recipients (10 minutes:

0.3251 versus 0.0984, 𝑝 = 0.017; 24 hours: 0.3979 versus 0.1631, 𝑝 > 0.1).
11The overall effect is marginally significant for coworker groups only within 10 minutes (𝑝 < 0.1).
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Table 4.4: Regression analyses for gift contagion: luckiest versus non-luckiest draw
recipients

Overall Extensive Intensive
10 min 24 h 10 min 24 h 10 min 24 h

(1) (2) (3) (4) (5) (6)
Luckiest

Amount received 0.3251*** 0.3979** 0.0076*** 0.0080*** -0.3366 -0.7459*
(0.0889) (0.1726) (0.0004) (0.0004) (0.2886) (0.4531)

Stratum fixed effect Y Y Y Y Y Y
No. of observations 1,923,297 1,923,297 1,923,297 1,923,297 296,799 371,698
Adjusted 𝑅2 0.0640 0.0503 0.0348 0.0373 0.1844 0.1222

Non-luckiest
Amount received 0.0984*** 0.1631** 0.0007*** 0.0008*** 0.2199 0.2012

(0.0334) (0.0814) (0.0001) (0.0001) (0.1477) (0.3272)
Stratum fixed effect Y Y Y Y Y Y
No. of observations 5,343,149 5,343,149 5,343,149 5,343,149 763,947 999,043
Adjusted 𝑅2 0.0373 0.0413 0.0159 0.0184 0.1543 0.1181

Note: The dependent variable (DV) for Columns (1) and (2) is the amount sent within the respective
timeframe. It is coded as zero for those who do not send red packets. The DV in Columns (3) and (4) is
the dummy variable for sending red packets. The DV in Columns (5) and (6) is the amount conditioning on
sending red packets. Marginal effects are reported. Standard errors clustered at the group- and user-level are
in parentheses. *: 𝑝 < 0.1, **: 𝑝 < 0.05, ***: 𝑝 < 0.01.

By Result 4, we reject the null hypothesis in favor of Hypothesis 4. Moreover, we

find that the extensive margin for luckiest draw recipients is almost ten times of that

for non-luckiest draw recipients (10 minutes: 0.0076 versus 0.0007, 𝑝 < 0.01; 24 hours:

0.0080 versus 0.0008, 𝑝 < 0.01). Conditional on sending red packets, the marginal

effect on the amount that a user sends is smaller for luckiest than non-luckiest draw

recipients, although the difference is only marginally significant (Columns (5) and

(6), 10 minutes: −0.3366 versus 0.2199, 𝑝 = 0.086; 24 hours: −0.7459 versus 0.2012,

𝑝 = 0.090).

It is possible that luckiest draw recipients send more simply because they receive

more. To control for this “amount” effect, we implement the following matching pro-

cedure. Specifically, we match each luckiest draw recipient with non-luckiest draw

recipients by holding the following variables constant: the total amount of the red

packet, the number of recipients of that red packet, the order of receiving time, and

the amount received by the corresponding recipient. Matching on the first three

variables allows us to control for the effect of unobserved variables, as the backdoor

criterion is satisfied [196]. Moreover, matching on the received amount allows us to
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further control for the difference in the amount received.12 Our matching procedure

yields 668,936 luckiest draw recipients and 1,658,283 non-luckiest draw recipients, rep-

resenting successful matching of 33.7% of our luckiest draw recipients. Additionally,

we bootstrap for 1,000 replicates to construct the confidence intervals.
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Figure 4-6: Comparisons between luckiest and non-luckiest draw recipients for the
unconditional amount that a user sends (left), the probability of sending (middle),
and the conditional amount that a user sends (right). Error bars are the 95% CIs.

As shown in the left panel of Figure 4-6, the cash amount sent in the first subse-

quent red packet increases by 0.082 CNY from non-luckiest to luckiest draw recipients,

an effect that is significant at the 1% level. This result suggests that being the luck-

iest draw recipient alone promotes the gift contagion. By contrast, for the second

subsequent red packet, we find a much smaller increase and the effect is no longer

significant (𝑝 = 0.37).13 We also decompose the overall effect into the extensive and

intensive margins.14 Again, we find a significant difference for the extensive margin,

instead of the intensive margin.

Altogether, our results suggest the existence of a group norm whereby the luckiest

draw recipients should send the first subsequent red packet. This norm can facilitate

coordination among group members to maintain a chain of red packets [91, 219,

102]. Moreover, we find that the strength of such a group norm is contingent on

12We conduct one-to-many matching [232].
13There is no significant difference for the third and subsequent red packets.
14Note that the definitions here are slightly different: (1) overall: the amount sent in the 𝑘th

subsequent red packet; (2) extensive margin: whether the recipient sent the 𝑘th subsequent red
packet; and (3) intensive margin: the amount sent conditional on being the user who sends the 𝑘th
subsequent red packet.
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the discrepancy between the amounts received by the luckiest draw recipient and the

amounts received by other recipients (see Appendix), suggesting that the fairness

concern plays a role in influencing the strength of the luckiest draw effect [45, 46].

Additionally, gifts may pressure recipients into signaling their own virtue, especially

for luckiest-draw recipients. However, since users endogenously decide whether they

want to receive a red packet, they can avoid social pressure by not clicking on an

offered packet. In addition, the upper limit of a red packet’s cash amount is not very

large – 200 CNY (roughly 30 USD) and the average cash amount for luckiest-draw

recipients in our setting is 1.16 CNY. Therefore, we suspect that social pressure or

reputational concerns do not play an important role in our setting.

4.4.4 Social contagion and social network

In this section, we apply social network analysis to understand how the group network

structure affects the strength of our observed gift contagion. Since group members

may or may not be private contacts on the platform (“friends”), we construct a rela-

tionship network among group members, with each edge indicating that two group

members are contacts.

First, we examine how individual network positions affects gift contagion. Specif-

ically,we focus on the clustering coefficient and degree. The clustering coefficient of

user 𝑖 in group 𝑔 [121, 258], or the extent to which a user’s friends are connected, is

defined below:

clustering coefficient(𝑖, 𝑔) =

∑︀
𝑗∈𝒩 𝑔

𝑖

∑︀
𝑘∈𝒩 𝑔

𝑖 ,𝑘 ̸=𝑗 1[𝑘 ∈ 𝒩 𝑔
𝑗 ]

|𝒩 𝑔
𝑖 |(|𝒩

𝑔
𝑖 | − 1)

, (4.2)

where 𝒩 𝑔
𝑖 is the set of a user 𝑖’s in-group friends in group 𝑔. The value of the clustering

coefficient ranges from [0, 1]; 0 indicates that none of 𝑖’s friends are connected and 1

indicates that all of 𝑖’s friends are connected in an online group. Moreover, we use

the normalized degree in our analysis: degree(𝑖,𝑔)
No. of group members , with a range of [0, 1].15

Table 4.5 reports the regression results adding the clustering coefficient, the nor-

15Compared to the (unnormalized) degree, normalized degree considers the effect of group size.
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malized degree, and their interaction terms with the amount received as independent

variables. We summarize the results below:

Result 5 (Individual network position on gift contagion)

(a) The overall effect of gift contagion is smaller for group members with a higher

clustering coefficient.

(b) The normalized degree does not significantly impact the overall effect of gift

contagion.

Support. As shown in Columns (1) and (2) of Table 4.5, the interaction term

between “Amount received” and “Clustering coefficient” is negative and significant at

the 1% level (10 minutes: −0.2961, 𝑝 < 0.01; 24 hours: −0.7641, 𝑝 < 0.01), and the

clustering coefficient itself is also negative and significant (10 minutes: −0.1416, 𝑝 <

0.05; 24 hours: −0.4770, 𝑝 < 0.01). The coefficient for normalized degree is positive

and significant at the 1% level (10 minutes: 0.9943, 𝑝 < 0.01; 24 hours: 2.2320,

𝑝 < 0.01), although its interaction term with “Amount received” is not significant.

By Result 5(a), we reject the null hypothesis in favor of Hypothesis 5(a). This

finding is consistent with prior studies [21, 247]. Moreover, as shown in Columns (3)-

(6), the interaction terms for the extensive and intensive margins are also negative

and significant.16 For the normalized degree, we do not find a salient interaction

effect, and thus we fail to reject the null hypothesis in favor of Hypothesis 5(b).17

Next, we examine the effect of the group-level network structure on our observed

gift contagion. We use the average normalized degree, or network density to measure

the degree to which a network is tightly connected [184]:

average normalized degree(𝑔) =

∑︀
𝑖∈𝒢 |𝒩

𝑔
𝑖 |

|𝒢| × (|𝒢| − 1)
. (4.3)

16The only exception is the intensive margin result for 10 minutes.
17We also examine the impact of centrality, in particular, the eigenvector centrality, which is

widely used in the literature of networks [170, 135]. However, no significant overall effect for the
interaction term is found (Table 4.17).
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Table 4.5: Effect of individual in-group degree and clustering coefficient on gift con-
tagion

Overall Extensive Intensive
10 min 24 h 10 min 24 h 10 min 24 h

(1) (2) (3) (4) (5) (6)
Amount received 0.3544*** 0.6852*** 0.0085*** 0.0088*** 0.1642 0.4334

(0.0875) (0.2150) (0.0004) (0.0005) (0.3349) (0.6273)
Amount received × normalized degree 0.0612 0.1756 -00051*** -0.0052*** 0.2748 0.2561

(0.0.0951) (0.2133) (0.0004) (0.0004) (0.3739) (0.6754)
Amount received × clustering coefficient -0.2961*** -0.7641*** -0.0028*** -0.0030*** -0.4187 -1.021**

(0.0768) (0.1682) (0.0004) (0.0004) (0.2842) (0.4736)
Normalized degree 0.9943*** 2.2320*** 0.0631*** 0.0872*** 3.7129*** 6.4928***

(0.0787) (0.1734) (0.0027) (0.0034) (0.3997) (0.6754)
Clustering coefficient -0.1416** -0.4770*** -0.0457*** -0.0661*** 1.6278*** 2.0105***

(0.0553) (0.1211) (0.0021) (0.0027) (0.2953) (0.5087)
Group size fixed effect Y Y Y Y Y Y
Stratum fixed effect Y Y Y Y Y Y
No. of observations 7,266,446 7,266,446 7,266,446 7,266,446 1,060,746 1,370,741
Adjusted 𝑅2 0.0400 0.0403 0.0260 0.0308 0.1524 0.1102

Note: The dependent variable (DV) for Columns (1) and (2) is the amount sent within the respective timeframe. It is coded
as zero for those who do not send red packets. The DV in Columns (3) and (4) is the dummy variable for sending red packets.
The DV in Columns (5) and (6) is the amount conditioning on sending red packets. Marginal effects are reported. Standard
errors clustered at the group- and user-level are in parentheses. *: 𝑝 < 0.1, **: 𝑝 < 0.05, ***: 𝑝 < 0.01.

𝒢 denotes the set of group 𝑔’s members. The average normalized degree ranges from

[0, 1]. We present results of the regression with average normalized degree and the

interaction term in Table 4.6.

Result 6 (Group network structure on gift contagion) Although there is no

significant overall effect, the interaction effect between the amount received and the

average normalized degree is negative and significant for the extensive margin.

Support. In Columns (3) and (4) of Table 4.6, the interaction term for “Amount

received × avg normalized degree” is negative and significant (10 minutes: −0.0046,

𝑝 < 0.01; 24 hours: −0.0044, 𝑝 < 0.01), although there is no significant interaction

effect for overall effects or intensive margins.

By Result 6, we reject the null hypothesis in favor of Hypothesis 6 for the extensive

margin. As shown in Table 4.6, although the “Amount received × avg normalized

degree” are non-significant in Columns (1) and (2), they are negative and significant

in Columns (3) and (4). We also examine the impact of overall clustering [135] and

find similar results. The detailed analyses are reported in Appendix.
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Table 4.6: Effect of average normalized degree in groups
Overall Extensive Intensive

10 min 24 h 10 min 24 h 10 min 24 h
(1) (2) (3) (4) (5) (6)

Amount received 0.2221*** 0.4167*** 0.0062*** 0.0062*** 0.0187 0.1988
(0.0592) (0.1346) (0.0003) (0.0003) (0.2079) (0.3902)

Amount received × avg normalized degree -0.0970 -0.3400 -0.0046*** -0.0044*** -0.0226 -0.6034
(0.0890) (0.2103) (0.0004) (0.0004) (0.3082) (0.6009)

Avg normalized degree 0.8392*** 1.6332*** 0.0150*** 0.0145** 4.7210*** 7.0219***
(0.0898) (0.2079) (0.0048) (0.0063) (0.4379) (0.7828)

Group size fixed effect Y Y Y Y Y Y
Stratum fixed effect Y Y Y Y Y Y
No. of observations 7,266,446 7,266,446 7,266,446 7,266,446 1,060,746 1,370,741
Adjusted 𝑅2 0.0397 0.0399 0.0239 0.0272 0.1523 0.1100

Note: The dependent variable (DV) for Columns (1) and (2) is the amount sent within the respective timeframe. It is coded
as zero for those who do not send red packets. The DV in Columns (3) and (4) is the dummy variable for sending red packets.
The DV in Columns (5) and (6) is the amount conditioning on sending red packets. Marginal effects are reported. Standard
errors clustered at the group- and user-level are in parentheses. *: 𝑝 < 0.1, **: 𝑝 < 0.05, ***: 𝑝 < 0.01.

Finally, we examine the impact of receiving gifts on network dynamics. We change

the dependent variable in Equation (4.1) to the number of within-group edges added

by a user after the user receives a red packet. Figure 4-7 presents the results, where

the 𝑥-axis indicates different time intervals and the 𝑦-axis represents the marginal

effect of the amount received (in CNY) on the number of new friends added by the

recipient within the group. On average, receiving 100 CNY encourages the recipient to

add 0.05 friends within the group in the subsequent seven days (𝑝 < 0.01). Although

this appears to be a small effect, it reflects how in-group gifts can foster in-group

interactions through establishing new connections.

In sum, our findings suggest that in-groups gifts not only promote gift contagion,

but can also encourage within-group interaction and strengthen group solidarity.

4.5 Discussion

Taking advantage of the random assignment of red packet amounts to gift recipients,

we leverage a natural experiment to quantify the strength of gift contagion within

online groups. We document the presence of gift contagion and further find that the

overall effect is driven primarily by the extensive margin, i.e., receiving red packets

encourages more users to send packets. The degree of gift contagion varies across
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Figure 4-7: The marginal effect on the within-group edges added by the recipient
within the group. Error bars are the 95% CIs.

different time periods and various groups. Moreover, we find evidence of a group

norm whereby the luckiest draw recipients are expected to take the lead in sending

the first subsequent red packet. Regarding the moderating effect of in-group social

networks, we find that the higher a user’s clustering coefficient is, the less susceptible

she is to gift contagion. Additionally, there is a significantly negative interaction

effect for the extensive margin between the amount received and how tightly knit a

group network is. Altogether, our results, especially the analyses for the extensive

and intensive margins, deepen our understanding of the social phenomenon of gift

contagion.

There are several possible future directions based on our study. First, it would

be interesting to examine how receiving red packets affects other types of user be-

haviors, such as group communication and liking others’ feeds. Second, due to data

constraints, we are not able to disentangle which mechanism, such as reciprocity or

fairness concern, is the main driver for our observed gift contagion. Therefore, care-

fully design experimental studies are needed for future work to investigate the primary

mechanism. Finally, as we are analyzing online gift contagion in East Asian culture,

it would be interesting to explore whether our results can be generalized to offline

settings or other culture groups.
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4.6 Appendix

Table 4.7: Summary statistics of groups
Variables Mean Min 25% 50% 75% Max

Group size 19.91 3 8.0 14.0 24.0 490
Total no. of red packets 210.24 9 54.0 115.0 253.5 8458
Total cash amount of red packets (CNY) 919.30 0.11 164.46 418.86 990.0 373679.07

Table 4.8: Summary statistics of users (1)
Variables Count Proportion

Gender
Male 1,783,737 51.69%
Female 1,639,955 47.53%
Unreported 26,848 0.78%

Table 4.9: Summary statistics of users (2)
Variables Mean Min 25% 50% 75% Max

Within-group degree 8.75 1 4 7 11 358
No. of private contacts 182.61 0 54 110 204 25,956
No. of groups that a user joins 38.99 1 9 20 40 16,945,750

Table 4.10: Summary statistics of red packets
Statistics Mean Min 25% 50% 75% Max

Amount 4.37 0.01 0.5 1 5 200
No. of recipients 5.06 1 3 5 5 100
Time interval between red packets (in seconds)a 29304.07 0 46 130 938 12,475,671
Completion time (in seconds)b 1267.53 2 10 23 176 509,131

a Time interval indicates the time between the current and the preceding red packet.
b Completion time measures the time interval between the red packet’s sending time and the time

when the last share of this red packet was received. Red packets that are not received by anyone are
excluded.
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Figure 4-8: The illustration of spontaneous red packets (circled red packets) and
sessions (three sessions split by dashed lines in this example).

10m 1h 3h 6h 12h 24h
time interval since receiving

0.00

0.05

0.10

0.15

0.20

0.25

0.30

m
ar

gi
na

l e
ffe

ct
 o

f a
m

ou
nt

 re
ce

iv
ed

 (t
ot

al
)

=6h
=12h
=24h
=48h

Figure 4-9: Treatment effects for different 𝜏 . Error bars are the 95% CIs clustered at
the group- and user-levels.
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Figure 4-10: Treatment effects for normal groups studied in the main text and groups
that were filtered out. Error bars are the 95% CIs clustered at the group- and user-
levels.
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Figure 4-11: The regression results for the linear specification of the effect of

(𝐴𝑟, 𝑁𝑟, 𝑂𝑖𝑟). “Linear” represents the results when (𝐴𝑟, 𝑁𝑟, 𝑂𝑖𝑟) is linearly specified.

“Stratified” represents the results when (𝐴𝑟, 𝑁𝑟, 𝑂𝑖𝑟) is used to stratify data, as is in

the main text. Error bars are the 95% CIs clustered at the group- and user-levels.

Figure 4-12: The 𝑥-axis represents the time interval since receiving a red packet. The

𝑦-axis represents the marginal effect of receiving red packets on the amount sent in

the future. “Indirect” and “direct” refer to the ratio of the amount sent to group

members except for the original sender and to the original sender, respectively. Error

bars are the 95% CIs clustered at the group- and user-levels.
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Table 4.11: Regression coefficients and the corresponding adjusted 𝑝 values for red
packets with the amount of 5 CNY and 3 recipients. (𝑎, 𝑛, 𝑜) refers to the total
amount, the number of recipients, and the order of receiving time.

Variables (5,3,1) Adj. 𝑝 (5,3,2) Adj. 𝑝 (5,3,3) Adj. 𝑝

female 0.0016 0.9365 0.0049 0.8036 0.0019 0.9296
degree 0.0520 0.9023 -0.0806 0.9023 0.0090 0.9365
fricnt 0.5963 0.9365 0.1410 0.9365 2.4340 0.8036
joincnt 0.3196 0.9023 0.1584 0.9365 0.3770 0.9023
history_sendamt -0.6952 0.9365 0.1280 0.9365 0.1321 0.9365
history_sendcnt -0.2336 0.9023 -0.0903 0.9365 0.1838 0.9023
history_recvamt -0.9458 0.9023 0.1200 0.9365 0.2068 0.9365
history_recvcnt -0.5519 0.9023 -0.0977 0.9365 0.4581 0.9023
groupamt -3.6014 0.9365 -1.1416 0.9365 0.9528 0.9365
groupnum -7.6666 0.9023 -5.3852 0.9296 3.9070 0.9365

Table 4.12: Regression coefficients and the corresponding adjusted 𝑝 values for red
packets with the amount of 10 CNY and 5 recipients. (𝑎, 𝑛, 𝑜) refers to the total
amount, the number of recipients, and the order of receiving time.

Variable (10,5,1) Adj. 𝑝 (10,5,2) Adj. 𝑝 (10,5,3) Adj. 𝑝 (10,5,4) Adj. 𝑝 (10,5,5) Adj. 𝑝

female 0.0006 0.9490 -0.0002 0.9490 -0.0007 0.9490 -0.0007 0.9490 0.0022 0.6569
degree 0.0922 0.8288 -0.0785 0.6569 0.003 0.9556 0.0048 0.9490 0.0112 0.9490
fricnt -1.5021 0.6569 1.4011 0.6569 -1.1583 0.7047 -0.6723 0.8807 -0.4135 0.9490
joincnt -0.0285 0.9490 0.0302 0.9490 -0.0339 0.9490 -0.2852 0.6569 -0.095 0.9490
history_sendamt 1.0972 0.8132 0.8839 0.8288 2.1079 0.6569 -0.2787 0.9490 -0.32 0.9490
history_sendcnt 0.0613 0.9490 0.2013 0.6569 0.1389 0.6569 -0.0471 0.9490 -0.0268 0.9490
history_recvamt 1.3355 0.6569 0.1375 0.9490 1.4951 0.6569 -0.5232 0.9119 0.0097 0.9875
history_recvcnt 0.6882 0.6569 0.478 0.7167 0.7242 0.6569 -0.2521 0.9119 -0.3717 0.7052
groupamt 29.2084 0.6569 4.5624 0.9490 23.1333 0.6569 -1.8278 0.9490 3.9539 0.9490
groupnum 7.2803 0.9490 13.0648 0.7052 3.8353 0.9490 -6.4186 0.9358 -7.3134 0.8807

A Brief History of Red Packets

Red packets are typically sent from older relatives to children or unmarried young

people. Children and unmarried young people wish their older relatives a “Happy New

Year,” which is called bainian (拜年). Then, the older relatives give them cash gifts

in exchange. Red packets are a traditional custom dating back to the Han dynasty

(circa 50 BC - 100 AD) [222].

Lucky money was once called “压祟钱”, the literal meaning of which is the money
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Table 4.13: Regression results for generalized reciprocity
Overall Extensive Intensive

10 min 24 h 10 min 24 h 10 min 24 h
(1) (2) (3) (4) (5) (6)

Amount received 0.0067 -0.0250 0.0003 0.0001 -5.5001 3.7199
(0.0191) (0.3870) (0.0006) (0.0015) (58.5689) (12.2207)

Stratum fixed effect Y Y Y Y Y Y
No. of observations 154,312 154,312 154,312 154,312 321 5182
Adjusted 𝑅2 0.0665 0.1119 0.0665 0.1119 0.9775 0.5685

Note: The dependent variable (DV) for Columns (1) and (2) is the amount sent within the respective
timeframe. It is coded as zero for those who do not send red packets. The DV in Columns (3) and (4) is
the dummy variable for sending red packets. The DV in Columns (5) and (6) is the amount conditioning
on sending red packets. Marginal effects are reported. Standard errors clustered at the group- and
user-level are in parentheses. *: 𝑝 < 0.1, **: 𝑝 < 0.05, ***: 𝑝 < 0.01.

Table 4.14: Regression results for the ratio of the second largest to largest amount
received

Overall Extensive Intensive
10 min 24 h 10 min 24 h 10 min 24 h

(1) (2) (3) (4) (5) (6)
Amount received 0.3209*** 0.3621* 0.0055*** 0.0056*** -0.3529 -0.7868

(0.0920) (0.1862) (0.0004) (0.0004) (0.3079) (0.5367)
Ratio 0.0515 -0.1205 -0.0363*** -0.0379*** 0.2693 -0.0584

(0.1126) (0.2379) (0.0021) (0.0022) (0.4646) (0.8487)
Stratum fixed effect Y Y Y Y Y Y
No. of observations 1,268,240 1,268,240 1,268,240 1,268,240 223,329 273,898
Adjusted 𝑅2 0.0620 0.0469 0.0326 0.0350 0.1811 0.1208

Note: The dependent variable (DV) for Columns (1) and (2) is the amount sent within the respective time-
frame. It is coded as zero for those who do not send red packets. The DV in Columns (3) and (4) is the
dummy variable for sending red packets. The DV in Columns (5) and (6) is the amount conditioning on
sending red packets. Marginal effects are reported. Standard errors clustered at the group- and user-level are
in parentheses. *: 𝑝 < 0.1, **: 𝑝 < 0.05, ***: 𝑝 < 0.01.
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Table 4.15: Heterogeneous treatment effects for recipient’s gender
Overall Extensive Intensive

10 min 24 h 10 min 24 h 10 min 24 h
(1) (2) (3) (4) (5) (6)

Female recipient
Amount received 0.1919*** 0.1912** 0.0033*** 0.0034*** -0.1933 -0.5985*

(0.0407) (0.0838) (0.0001) (0.0002) (0.1830) (0.3448)
Stratum fixed effect Y Y Y Y Y Y
No. of observations 3,870,582 3,870,582 3,870,582 3,870,582 551,408 711,086
Adjusted 𝑅2 0.0450 0.0441 0.0188 0.0217 0.1867 0.1444

Male recipient
Amount received 0.1836*** 0.1747** 0.0033*** 0.0035*** -0.2100 -0.6796**

(0.0398) (0.0801) (0.0002) (0.0002) (0.1728) (0.3244)
Stratum fixed effect Y Y Y Y Y Y
No. of observations 3,380,557 3,380,557 3,380,557 3,380,557 506,889 656,573
Adjusted 𝑅2 0.0439 0.0454 0.0194 0.0220 0.1587 0.1158

Note: The dependent variable (DV) for Columns (1) and (2) is the amount sent within the respective time-
frame. It is coded as zero for those who do not send red packets. The DV in Columns (3) and (4) is the
dummy variable for sending red packets. The DV in Columns (5) and (6) is the amount conditioning on
sending red packets. Marginal effects are reported. Standard errors clustered at the group- and user-level are
in parentheses. *: 𝑝 < 0.1, **: 𝑝 < 0.05, ***: 𝑝 < 0.01.

Table 4.16: Heterogeneous treatment effects for sender’s gender
Overall Extensive Intensive

10 min 24 h 10 min 24 h 10 min 24 h
(1) (2) (3) (4) (5) (6)

Female sender
Amount received 0.1421*** 0.1825*** 0.0037*** 0.0039*** -0.1601 -0.3750

(0.0292) (0.0568) (0.0002) (0.0002) (0.1446) (0.2626)
Stratum fixed effect Y Y Y Y Y Y
No. of observations 2,960,098 2,960,098 2,960,098 2,960,098 478,056 609,017
Adjusted 𝑅2 0.0541 0.0471 0.0211 0.0233 0.2318 0.1547

Male sender
Amount received 0.1622*** 0.1873*** 0.0028*** 0.0029*** 0.0583 -0.1988

(0.0206) (0.0403) (0.0001) (0.0001) (0.0891) (0.1639)
Stratum fixed effect Y Y Y Y Y Y
No. of observations 4,329,692 4,329,692 4,329,692 4,329,692 573,594 748,681
Adjusted 𝑅2 0.0309 0.0295 0.0247 0.0272 0.1281 0.0995

Note: The dependent variable (DV) for Columns (1) and (2) is the amount sent within the respective
timeframe. It is coded as zero for those who do not send red packets. The DV in Columns (3) and (4) is
the dummy variable for sending red packets. The DV in Columns (5) and (6) is the amount conditioning on
sending red packets. Marginal effects are reported. Standard errors clustered at the group- and user-level are
in parentheses. *: 𝑝 < 0.1, **: 𝑝 < 0.05, ***: 𝑝 < 0.01.
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Table 4.17: Effect of individual eigenvector centrality on gift contagion
Overall Extensive Intensive

10 min 24 h 10 min 24 h 10 min 24 h
(1) (2) (3) (4) (5) (6)

Amount received 0.1653*** 0.3093*** 0.0061*** 0.0061*** 0.1938 0.5509
(0.0588) (0.1154) (0.0003) (0.0003) (0.2212) (0.3733)

Amount received × eigen -0.0319 -0.3678 -0.0086*** -0.0085*** -0.4935 -2.1662*
(0.1843) (0.3798) (0.0007) (0.0008) (0.6307) (1.0945)

Eigen 2.6627*** 6.1014*** 0.2140*** 0.2963*** 5.2927*** 8.9651***
(0.1501) (0.3054) (0.0033) (0.0037) (0.7270) (1.0232)

Group size fixed effect Y Y Y Y Y Y
Stratum fixed effect Y Y Y Y Y Y
No. of observations 7,266,446 7,266,446 7,266,446 7,266,446 1,060,746 1,370,741
Adjusted 𝑅2 0.0398 0.0401 0.0308 0.0315 0.1520 0.1099

Note: The dependent variable (DV) for Columns (1) and (2) is the amount sent within the respective
timeframe. It is coded as zero for those who do not send red packets. The DV in Columns (3) and (4) is
the dummy variable for sending red packets. The DV in Columns (5) and (6) is the amount conditioning on
sending red packets. Marginal effects are reported. Standard errors clustered at the group- and user-level are
in parentheses. *: 𝑝 < 0.1, **: 𝑝 < 0.05, ***: 𝑝 < 0.01.

that drives away the demon Sui (祟) on the Lunar New Year’s Eve [209]. “岁” (age)

has the same pronunciation as “祟.” Sui was a demon who would enter houses on

New Year Eve’s and deliberately terrify and harm children. Children would catch

a terrible fever and even mental disorders if they became terrified. To protect the

children, parents gave as an offering eight copper coins wrapped in red packets. It was

believed that these eight coins would emit strong lights that would drive the demon

away. These eight copper coins were considered the initial version of red packets.

In the 1900s, when the printing technique was popularized in China, red packets

have been developed into their current form. Chinese characters symbolizing good

wishes are printed on red packets. Red packets are no longer used only to ensure

the safety of children for superstitious reasons. At present, they usually symbolize

senders’ wishes for successful fortune, health, studies, and career paths. The wrapping

of red packets typically contains characters with such meanings.

In addition to the role of wishes for children or unmarried young people, red

packets are also used as cash gifts on other occasions. Invitees to birthday parties,

weddings, and funerals are expected to bring cash gifts, usually wrapped in red en-

velopes to the hosts. The amount of the gift represents the senders’ evaluation of the

strength of social bonds and relationships between senders and recipients. Receiving
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Table 4.18: Effect of overall clustering in groups
Overall Extensive Intensive

10 min 24 h 10 min 24 h 10 min 24 h
(1) (2) (3) (4) (5) (6)

Amount received 0.2838*** 0.6047*** 0.0078*** 0.0080*** -0.0416 0.2730
(0.0809) (0.1741) (0.0004) (0.0004) (0.2658) (0.4472)

Amount received × overall clustering -0.1654 -0.5448** -0.0061*** -0.0063*** 0.0600 -0.6614
(0.1088) (0.2407) (0.0005) (0.0006) (0.3550) (0.6304)

Average clustering coefficient 0.7165*** 1.4052*** -0.0017 -0.0061 5.4598*** 8.3258***
(0.1109) (0.2365) (0.0062) (0.0082) (0.4829) (0.7520)

Group size fixed effect Y Y Y Y Y Y
Stratum fixed effect Y Y Y Y Y Y
No. of observations 7,266,446 7,266,446 7,266,446 7,266,446 1,060,746 1,370,741
Adjusted 𝑅2 0.0397 0.0399 0.0238 0.0272 0.1522 0.1099

Note: The dependent variable (DV) for Columns (1) and (2) is the amount sent within the respective timeframe. It is
coded as zero for those who do not send red packets. The DV in Columns (3) and (4) is the dummy variable for sending
red packets. The DV in Columns (5) and (6) is the amount conditioning on sending red packets. Marginal effects are
reported. Standard errors clustered at the group- and user-level are in parentheses. *: 𝑝 < 0.1, **: 𝑝 < 0.05, ***:
𝑝 < 0.01.

cash gifts is regarded as owing “renqing” (favor), and recipients are strongly expected

to send back the gift cash in the future (called to return “renqing”) [256, 51].

At present, with the proliferation of online platforms, red packets are commonly

sent on these platforms. Red packets are used as convenient cash gifts, through

either one-to-one or one-to-many channels. These online red packets are no longer

only sent from older people to younger people, nor are they only used for the Lunar

New Year or important events. The limit of online red packets (typically 200 CNY

or approximately 30 USD) reduces the potential social pressure to reciprocate with

large-amount cash gifts. Users even use them for entertainment. On other online

platforms, red packets are a means of providing coupons to users. Incorporating good

wishes for the customers, these red packets may encourage consumption and user

engagement.

Sample Description

Our sample includes 3,450,540 unique users in 174,131 groups. For each user, we

obtain the demographic information listed below. For variables that are updated

monthly, we use the information retrieved in February 2016 for our analysis. More-
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over, we identify friendships, i.e., whether users are contacts, between users in our

dataset. We summarize our data below:

• Group

– Group size: the number of group members in a group.

• Group members

– Gender: self-reported by users.

– Number of groups that a user joins.

– Number of private contacts (“friends”) that a user has.

– Within-group degree: number of private contacts (or “friends”) that a user

has in one group. Note that it is possible that members of the same group

may not be “friends.”

– Clustering coefficient: the extent to which a user’s friends are connected

in the group, as defined in the main text.

• Red packet sending variables

– Sending time.

– Sender ID.

– Total cash amount of the red packet, determined by the sender.

– The number of recipients, determined by the sender.

• Red packet receiving variables

– Recipient ID.

– Receiving time. The time interval between a red packet being sent and

being received by the current recipient. A red packet expires 24 hours

after being sent. We use the receiving time to infer the order of receiving

time of a given red packet 𝑟.
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– The cash amount received.

We report the summary statistics for group size, the total number of red packets,

and the total cash amount of red packets for each group in Table 4.7. We also present

summary statistics for users’ gender age in Table 4.8. In Table 4.9, we further report

information for within-group degree (how many private contacts, or “friends,” a user

has in a group), the number of private contacts, and the number of groups that she

joins.

Finally, we summarize information on red packets (Table 4.10), including the

cash amount, the number of recipients, the time interval between two successive red

packets in a group, and the total completion time. We find that most red packets

contain relatively small amounts (75% of them do not exceed 5 CNY). In addition,

the time intervals between two successive red packets are generally small, with all of

the money from a given red packet often being received within minutes.

Randomization Check

Conditional on the three variables that determine our stratification, we show that the

received amount (𝑇 ) is independent of the following variables: (1) whether the user

is female; (2) within-group degree, or the number of “friends”; (3) the number of

friends (denoted by fricnt); (4) the number of groups that the user joins (denoted

by joincnt); (5) the total amount of red packets that the user has sent in the group

(denoted by history_sendamt); (6) the total number of red packets that the user

has sent in the group (denoted by history_sendcnt); (7) the total amount of red

packets that the user has received in the group (denoted by history_recvamt); (8)

the total number of red packets that the user has received in the group (denoted

by history_recvcnt); (9) the total amount of red packets sent in the group by all

group members historically (denoted by groupamt); and (10) the total number of red

packets sent in the group by all group members historically (denoted by groupnum).

Specifically, we run simple OLS regressions for each stratum in which the depen-

dent variable is one of the aforementioned variables, and the independent variable is
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the cash amount received by a user. We present the corresponding coefficients and the

adjusted 𝑝-values after implementing false discovery control18 for the two representa-

tive cases in Tables 4.11 and 4.12, respectively. In summary, no significant correlation

is found. We also check other combinations of the amount sent and the number of

recipients, and no significance is found. Overall, our data pass the randomization

check.

Calculation of the variance of the amount received

Here we provide a complete calculation for the variance of the amount received by the

𝑜th recipient. Although the expected amount is the same for different recipients, we

show that their variance is generally different. Specifically, we show a non-decreasing

trend for the variance with 𝑜. Let 𝑆𝑜 denote the summation of the first 𝑜 recipients’

amounts received (𝑆𝑜 = 𝑉1 + 𝑉2 + ...𝑉𝑜). Recall that 𝑎 is the total amount of the

red packet, 𝑛 is the number of recipients, and 𝑉𝑜 is the amount received by the 𝑜th

recipient.

We first consider the case in which 𝑜 < 𝑛:

E[𝑆2
𝑜+1] = E

[︀
(𝑆𝑜 + 𝑉𝑜+1)

2
]︀

= E[𝑆2
𝑜 ] + 2E

[︁
𝑆𝑜 ×

𝑎− 𝑆𝑜

𝑛− 𝑜

]︁
+

4

3
E

[︁(𝑎− 𝑆𝑜)
2

(𝑛− 𝑜)2

]︁
= E[𝑆2

𝑜 ]
(︁

1 − 2

𝑛− 𝑜
+

4

3

1

(𝑛− 𝑜)2

)︁
+E[𝑆𝑜]

(︂
2𝑎

𝑛− 𝑜
− 8

3

𝑎

(𝑛− 𝑜)2

)︂
+

4

3

𝑎2

(𝑛− 𝑜)2

= E[𝑆2
𝑜 ]
(︁

1 − 2

𝑛− 𝑜
+

4

3

1

(𝑛− 𝑜)2

)︁
+ 𝑎2

(︁ 2𝑜

(𝑛− 𝑜)𝑛
− 8𝑜

3(𝑛− 𝑜)2𝑛
+

4

3(𝑛− 𝑜)2

)︁
.

(4.4)

Note that E[𝑆𝑜] = E[𝑉1] + ... +E[𝑉𝑜] = 𝑎𝑜
𝑛

.

We next relate 𝑉𝑜, the amount received by the 𝑜th recipient, to 𝑆𝑜:

18We use the Benejamini-Hochberg procedure with 𝛼 = 0.1 because it is more conservative and
generates smaller adjusted 𝑝 values than methods such as the Bonferroni correction.
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Var(𝑉𝑜) = E

[︁ 1

12
×

(2(𝑎− 𝑆(𝑜− 1)))2

(𝑛− 𝑜 + 1)2

]︁
=

1

3
E

[︁ (𝑎− 𝑆𝑜−1)
2

(𝑛− 𝑜 + 1)2

]︁
;

Var(𝑉𝑜−1) = E

[︁ 1

12
×

(2(𝑎− 𝑆(𝑜− 2)))2

(𝑛− 𝑜 + 2)2

]︁
=

1

3
E

[︁ (𝑎− 𝑆𝑜−2)
2

(𝑛− 𝑜 + 2)2

]︁
.

Dividing the first equation by the second, we obtain

Var(𝑉𝑜)

Var(𝑉𝑜−1)
=

(𝑛− 𝑜 + 2)2

(𝑛− 𝑜 + 1)2
× E[(𝑎− 𝑆𝑜−1)

2]

E[(𝑎− 𝑆𝑜−2)2]
.

Then,

Var(𝑉𝑜)

Var(𝑉1)
=

Var(𝑉𝑜)

Var(𝑉𝑜−1)
× Var(𝑉𝑜−1)

Var(𝑉𝑜−2)
× ...× Var(𝑉2)

Var(𝑉1)
=

=
(𝑛− 𝑜 + 2)2

(𝑛− 𝑜 + 1)2
× (𝑛− 𝑜 + 3)2

(𝑛− 𝑜 + 2)2
...× 𝑛2

(𝑛− 1)2

× E[(𝑎− 𝑆𝑜−1)
2]

E[(𝑎− 𝑆𝑜−2)2]
× E[(𝑎− 𝑆𝑜−2)

2]

E[(𝑎− 𝑆𝑜−3)2]
× ...× E[(𝑎− 𝑆1)

2]

𝑎2

=
𝑛2

(𝑛− 𝑜 + 1)2
E[(𝑎− 𝑆𝑜−1)

2]

𝑎2
.

Since Var[𝑉1] = 𝑎2

3𝑛2 , and E[𝑆𝑜−1] = 𝑎(𝑜−1)
𝑛

, we obtain

Var(𝑉𝑜) =
𝑎2

3(𝑛− 𝑜 + 1)2

(︁
1 − 2(𝑜− 1)

𝑛

)︁
+

1

3(𝑛− 𝑜 + 1)2
E[𝑆2

𝑜−1]. (4.5)

Combining Equations 4.4 and 4.5, we have

Var(𝑉𝑜+1) =
(︁

1 +
1

3(𝑛− 𝑜)2

)︁
Var(𝑉𝑜).

Therefore, we know 1 < 𝑜 < 𝑛:

Var(𝑉𝑜) = Var(𝑉1)
𝑜−1∏︁
𝑘=1

(︁
1 +

1

3(𝑛− 𝑘)2

)︁
=

𝑎2

3𝑛2

𝑜−1∏︁
𝑘=1

(︁
1 +

1

3(𝑛− 𝑘)2

)︁
. (4.6)

For 𝑜 = 𝑛, because the last two recipients split the surplus uniformly at random,

𝑉𝑛−1 and 𝑉𝑛 are identically distributed. Therefore,
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Var(𝑉𝑛) = Var(𝑉𝑛−1) =
𝑎2

3𝑛2

𝑛−2∏︁
𝑘=1

(︁
1 +

1

3(𝑛− 𝑘)2

)︁
.

In summary,

Var(𝑉𝑜) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0 𝑛 = 1 and 𝑜 = 𝑛

𝑎2

3𝑛2

∏︀𝑜−1
𝑘=1

(︁
1 + 1

3(𝑛−𝑘)2

)︁
𝑛 > 1 and 𝑜 < 𝑛

𝑎2

3𝑛2

∏︀𝑛−2
𝑘=1

(︁
1 + 1

3(𝑛−𝑘)2

)︁
𝑛 > 1 and 𝑜 = 𝑛

(4.7)

Furthermore, the variance increases with 𝑜 when 𝑜 < 𝑛.

Additional Analyses

Threshold selection

First, we illustrate the selection process of a spontaneous red packet (circled in Fig-

ure 4-8). If the interval of two consecutive red packets is greater than 𝜏 , we divide

these two red packets into two “sessions.” Therefore, in each session, the time interval

between any two consecutive red packets is less than 𝜏 .

We use 24 hours for our timeframe in the main analyses because a red packet

expires 24 hours after being sent. To examine the sensitivity of our results to the

selection of a 24-hour window, we also select 6, 12, and 48 hours and re-run our

analyses; their respective treatment effects are shown in Figure 4-9. We find similar

results for a 48-hour time window, and a slightly smaller treatment effect for a 6- or

12-hour time window.

Gambling and unnamed groups

To explore the impact of our filtering process on our results, we re-run our regressions

focusing on gambling groups, for which group names indicate red packet games or

gambling, and unnamed groups with functions that are unclear. The results in Fig-

ure 4-10 show that the filtered groups appear to have a higher marginal effect. These

results suggest that filtering out these gambling groups may have helped us obtain a
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more accurate understanding of gift contagion.

Alternatives for the econometric model

If we apply a linear specification for the effect of the three-dimensional vector — the

total amount of the red packet (𝐴𝑟), the number of recipients (𝑁𝑟), and the order of

receiving time (𝑂𝑖𝑟), we obtain the following regression:

𝑌𝑔𝑖𝑟 = 𝛽𝑇𝑔𝑖𝑟 + 𝛾1𝐴𝑟 + 𝛾2𝑁𝑟 + 𝛾3𝑂𝑖𝑟 + 𝜖𝑔𝑖𝑟. (4.8)

As shown in Figure 4-11, the regression results suggest a much larger marginal ef-

fect than the results in the main text. One possibility is that the effect of (𝐴𝑟, 𝑁𝑟, 𝑂𝑖𝑟)

on 𝑌𝑔𝑖𝑟 is not a linear combination of the three variables, which raises the issue of

functional form misspecification.

Direct and indirect reciprocity.

Here we present an additional analysis to show that, compared to direct reciprocity,

indirect reciprocity plays a dominant role in promoting gift contagion. We separate

𝑌𝑔𝑖𝑟 in Eq. (4.1) into two components: 𝑌
(1)
𝑔𝑖𝑟 and 𝑌

(2)
𝑔𝑖𝑟 . 𝑌

(1)
𝑔𝑖𝑟 is the amount sent to

the original sender (the sender of red packet 𝑟), which measures direct reciprocity.

𝑌
(2)
𝑔𝑖𝑟 is the amount sent to other group members, which could be a proxy for indirect

reciprocity. 19 As shown in Figure 4-12, on average, the marginal effect on the amount

received by the original sender is 3.07% [SE=0.65%, 𝑝 < 0.001] in the next 24 hours.

By contrast, this effect size is much larger for the amount received by other group

members: 10.25% [SE=2.10%, 𝑝 < 0.001].

“Luckiest draw” and fairness concerns.

To investigate whether the fairness concern plays a role in affecting the amount that

a user sends, we run the following regression for luckiest draw recipients:

19Note that a small proportion of the total amount does not belong to either 𝑌 (1)
𝑔𝑖𝑟 or 𝑌 (2)

𝑔𝑖𝑟 because
the sender can also receive a share of her own red packet.
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𝑌𝑔𝑖𝑟 = 𝛽𝑇𝑔𝑖𝑟 + 𝛼ratio𝑍𝑔𝑖𝑟 +
∑︁
𝑠

𝛾𝑠𝐵𝑠(𝐴𝑟, 𝑁𝑟, 𝑂𝑖𝑟) + 𝜖𝑔𝑖𝑟. (4.9)

Compared to Eq. (4.1), we include an additional independent variable: 𝑍𝑔𝑖𝑟. Let 𝑇 ′
𝑔𝑖𝑟

is the second-largest amount received from the same red packet; and then 𝑍𝑔𝑖𝑟 =
𝑇 ′
𝑔𝑖𝑟

𝑇𝑔𝑖𝑟

represents the ratio of the second-largest amount to the largest amount. We remove

the observations (luckiest recipients) that do not have corresponding the second luck-

iest recipient. Table 4.14 reports the regression results.

We find that the ratio of the second-largest to the largest amount has a negative

impact on the likelihood of sending red packets. For example, for the next 10 minutes

and 24 hours, we have �̂�ratio = −0.0363 and −0.0379 for extensive margin (𝑝 < 0.01).

This suggests that, when the cash amount received by the luckiest-draw recipient is

much larger than that received by others, the recipient may feel more obligated to

send red packets to the group because of her fairness concern.

Gender effects

We also examine gender differences. We do not find any significant gender differences

when running regressions on female and male recipients separately (Table 4.15). As

shown in Table 4.16, although we do not find a significant difference in the overall

effect between female senders and male senders, we find that the red packets sent

by female senders exhibit a higher extensive margin than those sent by male senders

(𝑝 < 0.01 for both 10 minutes and 24 hours).

Effect of overall clustering.

Here we use overall clustering as an alternative to the average normalized degree, as

a measure of group network structure. The overall clustering of group 𝑔 is define as

overall clustering(𝑔) =

∑︀
𝑖∈|𝒢| #{(𝑗, 𝑘)|𝑗, 𝑘 ∈ 𝒩 𝑔

𝑖 and 𝑖 ̸= 𝑗 ̸= 𝑘 and 𝑘 ∈ 𝒩 𝑔
𝑗 }∑︀

𝑖∈|𝒢| #{(𝑗, 𝑘)|𝑗, 𝑘 ∈ 𝒩 𝑔
𝑖 and 𝑖 ̸= 𝑗 ̸= 𝑘}

.

(4.10)
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𝒢 denotes the set of members of group 𝑔, and 𝒩 𝑔
𝑖 denotes the set of network neighbors

of user 𝑖 in group 𝑔.

We report the regression results in Table 4.18. As shown in Columns (1) and (2),

a larger overall clustering predicts a larger amount sent within a group. However,

the interaction terms are negative (𝑝 > 0.1 and 𝑝 = 0.024 for 10 minutes and 24

hours, respectively), suggesting that groups with a larger overall clustering do not

necessarily induce stronger gift contagion. In Columns (3) and (4), the interaction

terms are significant and negative, suggesting that for groups with a larger overall

clustering, there is generally a smaller extensive margin. For the intensive margin

(Columns (5) and (6)), we do not find any significance in the interaction terms.
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Chapter 5

Identifying prosocial incentive

effectiveness on exercises with

advanced causal inference techniques

5.1 Background

With the prevalence of smartphones, mobile applications have provided a variety of

functions that support and facilitate user daily life, such as shopping, learning, and

social networking [183, 89, 65, 50]. In particular, mobile health (mHealth) applications

greatly benefit the social well-being of our societies by allowing individuals to monitor

their health conditions and maintain healthy lifestyles [89, 228, 4, 229, 250, 230].

As of 2017, more than 318,000 mHealth applications have been released, guiding

users’ healthy diet, physical activities, and disease control.1 Especially during the

COVID-19 pandemic, many mobile applications have been utilized around the world

for contact tracing, in an effort to contain the spread of the pandemic [79].

Despite the numerous benefits to society, many mHealth applications also face

challenges in their efficacy to promote a healthier lifestyle. In general, the design of

mHealth applications lacks support from evidence-based strategies [117]. In fact, a

1https://www.iqvia.com/insights/the-iqvia-institute/reports/the-growing-value-of-digital-health
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few medical studies have utilized small-size randomized control trials, but most of

them find non-significant effects of mobile health applications on physical activities

[246, 145, 10, 155, 109, 225, 195, 172, 108].

Therefore, we need more empirical studies to understand how to design effective

incentives on the mobile platforms to promote physical activity. Previous studies have

proposed several incentives that may encourage people to maintain healthy lifestyles

and encourage physical activity. The first type is to use monetary incentives (e.g.,

giving out money) to encourage more physical activities [60, 41, 5]. However, there

has been controversy regarding the long-term effect of monetary incentives [210]. The

second type of incentive is the social incentive, including peer effects or social compar-

ison. As many other types of human behaviors do, physical activities are also found

contagious: people tend to exercise more after noticing or witnessing peers doing so

[67, 19]. Another plausible reason is social comparison, whereby users may compete

to champion or rank high on the ranking page [234, 263]. Moreover, some studies

have jointly examined the efficacy of monetary and social incentives on encouraging

physical activities, and they find that the effect of monetary incentive on fitness is

larger when the bonus is received by a friend of the subject than received by the

subject [6, 165].

Our study thus seeks to identify the efficacy of a third incentive – prosocial

incentive – on fitness behavior [39]. Prosocial incentives highlight the benefits to

others when engaging individuals in an activity. Prosocial incentives have been

shown to be effective in many ways, such as improving mental health [80] or work

performance[131]. Currently, several mobile phone applications have associated fit-

ness with charitable giving. For example, CharityMiles links the distances of running

or biking to donation amount to charities.2 In Chile, there is a similar design named

burn to give (or betterfly).3 In China, several “giant” applications, such as WeChat

and Ant Forest, employ charitable incentives to encourage walking. They have a

feature known as step donation – users’ step counts are associated with the amount

2https://charitymiles.org/
3https://betterfly.cl/
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donated by a third party (usually a company). Although many applications have

utilized this charitable incentive to encourage workouts, few studies have revealed

its efficacy. It is possible that instead of encouraging users to exercise more, those

online platforms only attract fitness enthusiasts who also care for charities, result-

ing in spurious correlation between physical activities and engagement in charitable

behavior.

In this paper, we combine an online field experiment of approximately 40 million

users and follow-up observational studies to examine the efficacy of prosocial incen-

tives on fitness behavior. This is a collaboration with WeChat, the largest Chinese

social networking platform. WeChat is a “giant” mobile application in China, which

enables users to complete a variety of activities virtually, including social network-

ing, remote working, reading news and online posts, conduct mobiles payments for

groceries or airline tickets, and sending gifts to friends; however, very few studies

have so far analyzed the behavior on this platform [127, 270]. In this study, we focus

on WeRun, which is a mini-program on WeChat. WeRun records users’ daily step

counts and provides a personalized ranking page for each user, which displays the step

counts of the user and his or her friends. In addition, WeRun has a “step donation”

feature, which associates users’ daily step count with the welfare of charities. Our

study focuses on the effectiveness of the step donation feature and compares it with

that of the ranking feature.

Our online field experiment employs an encouragement design [115], a widely

adopted experimental approach when experimenters cannot directly manipulate the

behaviors of subjects. We send different messages to users to remind them of the

prosocial or social incentives on the platform; and thus users in different treatment

groups may be encouraged to different extents to view the corresponding features.

Our encouragement design increases the engagement in the step donation feature by

2.5 times. We find a significant effect in a subgroup of the population, who have

historically experienced step donation. However, we do not observe significance for

the effect on the whole population, possibly because of the difficulty in promoting

users’ prosocial behavior.
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Next, to complement the field experiment, we perform a matching design and focus

on a subgroup of the population where we believe prosocial incentives have a larger

effect size. The matching provides us with more statistical power, and enables us to

investigate the effect heterogeneity and long-term treatment effects. The results of the

matching design are largely consistent with the findings from the field experiment.

We also find that the prosocial incentive appears to have a larger effect than the

social incentive for this subgroup of the population, and that the effect size increases

as the users are more historically physically active or with more social connections

on WeChat.

Finally, we discuss the underlying prosocial mechanisms. According to [37], drivers

for prosocial behavior can be intrinsic, extrinsic, and reputational. On WeRun, en-

gaging in step donation is not visible to other users; therefore, reputational concerns

are not a driver in this setting. Moreover, there is no explicit extrinsic driver, such

as rewards or punishments, in the step donation feature, extrinsic motivations are

neither a driver for users’ prosocial behavior. The design of step donation feature

enables us to perform a regression discontinuity design to distinguish the effect of

“warm glow giving” [14], or impure altruism as a contrast to pure altruism. Warm

glow giving refers to the phenomenon that people engage in prosocial behavior to

gain the joy of helping others; however, they do not actually take into account the

welfare of charitable recipients [14]. We find that for users who are likely driven by

warm glow giving, the prosocial incentive may only encourage the user to engage in

prosocial activity when no additional efforts of physical activity are required.

At least two main advantages exist when we study WeRun. First, our sample

is more able to represent the general public. Previous related studies have primarily

used online apps that are primarily for fitness, and so their sample may only represent

fitness enthusiasts or young people who rely more on electronic devices to track their

fitness behavior. It is reported that many WeRun users are more than 50 years old

[162], which is different from many other online fitness platforms (such as 23 in [21]).

Second, we can compare the strength of charitable incentives versus social incentives.

We collected both the behavior of step donation and of checking the ranking page. The
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step donation page represents a charitable incentive but the ranking page indicates

the existence of a social incentive.

WeRun is a mini-program on WeChat, and is listed in parallel with a user’s recent

contacts in the “Chats” panel. It can be understood as a bot-chat that sends routinely

information to users. As of 2020, WeRun has 300 million daily active users. WeRun

users routinely receive a message at a time between 10 pm to 11 pm in their local

time. As shown in the left panel of 5-1, users receive their daily step count and

rank among their WeChat friends who also use WeRun. At the same time, they are

notified of who among their friends “championed” on their step count ranking page,

i.e., the person who walked the largest number of steps among all his or her WeChat

friends. If a user chooses to click on the daily message, he or she will be directed

to the ranking page, which is presented in the middle panel of Figure 5-1. On the

top of this page, the daily cumulative step count and rank of the user are presented.

Below the user’s own information, there is a detailed ranking of the step counts of

the user’s WeChat friends. Step counts that exceed 10k are marked in orange while

step counts that below 10k are marked in green. Steps counts will be reset to zero in

the midnight and every day a new step ranking for each user is generated. Users can

like the step counts of their WeChat friends (the “heart” icon).

The right panel presents the “step donation” page. This page can either be entered

through “...” on the top right on the ranking page, or through clicking their step profile

(e.g., 4074 steps in this example). The step donation feature allows any users who

walk more than 10k steps to ask a third party (usually a company) to donate a small

amount to charities.4

On WeRun, the step donation feature has a daily quota. A third party, usually

a company who would signal their corporate responsibility, eventually donates to

charities after a user completes step donation. Therefore, these companies set an

upper limit for the daily step donation total amount, which is approximately a few

hundreds of thousands Chinese yuan. In fact, the total amount has almost been

4Although it is called “donation,” users’ step count would not be decreased by engaging in step
donation.
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Figure 5-1: Illustration of step ranking page and step donation page.

reached everyday, with a deadline reached at some point in the evening. We utilize

this deadline to deploy our regression discontinuity design.

5.2 Experimental study

The observational study suggests that both prosocial and social incentives can encour-

age users to work out more. Next, we design an online experiment to promote more

workouts by encouraging users to get exposed to the prosocial and social incentives.

5.2.1 Experimental design

Through the collaboration with WeChat, we design and implement a field experiment.

In our experiment, WeChat randomly manipulated the text in the left panel in Fig-

ure 5-1.5 The treatment assignment is on the user level – once the user is assigned to

an experimental group, the user always receives the text belonging to that group until

the experiment terminates. This design helps eliminate the “carryover effects” [156]

across different treatment assignments: imagine when the message one user received

5To make sure users are balanced across treatment groups, they did know what messages they
will see before enter the page indicated by the left panel in Figure 5-1.
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varies across days, the change in user behavior can be attributed to the messages

received on any day so far. The experiment was run for 17 days from September 1st

to September 17th, 2020.6 We only analyze users in Mainland China and thus only

one single time zone exists in our analysis. WeChat or the authors did not view or

analyze the up-to-date data until the experiment terminated, and thus the optional

stopping issue does not apply in our study.

Our study is essentially an encouragement design [115]: users are randomly sent

different messages, which promote them with different probabilities of being engaged

in the step donation or checking the step ranking page. We designed five treatment

groups and one control group. Within each group, we also slightly change the text

in case that results are completely driven by non-interesting factors, such as wording

or text length. Such a variation may also generate heterogeneity in the first stage

in the encouragement design – that is, the probability of viewing the step donation

page or the step ranking page). Each treatment group contains approximately 6.3

million users. We present the summary of the message that each experimental group

receives in Table 5.1. Details, such as the actual Chinese text that users receive and

the slight change in text are presented in Table 5.6.

We next illustrate our rationale for designing different text for each group. Users in

the donate group are reminded of the step donation feature; the design of this group

is to examine the effect of the prosocial incentive. Note that engaging in step donation

is not visible to other users, so such a design does not involve any hint on the potential

benefits to the user. To further investigate how users’ different prosocial motivations

drive their prosocial behavior, we designed two other groups – donate_achieve and

donate_charity. People engaged in prosocial behavior primarily for two reasons:

impure altruism (warm glow giving) and pure altruism [37]. The theory of warm-

glow giving indicates that people engage in prosocial behavior because they feel good

about it, regardless of the actual impact of recipients [14]; by contrast, pure altruism

6We acknowledge that the experiment was implemented during the COVID-19 pandemic, which
may impact user behavior. However, according to the JHU CSSE COVID-19 data, the 7-day average
new case number is 12 in Mainland China as of September 17, 2020. Such a trend has been main-
tained since April 2020. This indicates that COVID-19 does have a severe impact on user behavior
and internal validity of this study.
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Table 5.1: Description of different treatment groups

Treatment group name Message (translated)
donate You can donate your steps.

donate_achieve You can donate your steps to mark your achievement.
donate_charity You can donate your steps to help charities.

ranking Check your step count ranking among your friends.
tomorrow Keep on it tomorrow.

default (control) XXX champion today.

indicates that people engage in prosocial behavior because they hope to contribute to

the well-being of the recipients. In our study, donate_achieve is designed to reflect

impure altruism more, while donate_charity is designed to reflect pure altruism

more. We conjecture that text designed with specific prosocial motivation only drives

users with the corresponding motivation to engage in step donation.

In order to compare the efficacy of the prosocial incentive versus the social incen-

tive, we designed the ranking group, where the text reminds the users of the ranking

page. By doing so, we expect that users in this group will be more likely to check

the ranking page and be influenced by the step count ranking. Moreover, we propose

tomorrow as a benign intervention. This group may help eliminate, for example, the

“novelty effect” [245, 199]: users may react to any change on the platform in the short

term but this effect may disappear quickly. Finally, we hold some users as the control,

named the default group. In this group, the message is what users normally received

prior to our experiment:“who championed today” as what the control group received.

Our main outcome variable is the step count on a certain day. We use step_count

to refer to the step count and step_count_10k to whether the user walks more than

10,000 steps. The choice of 10,000 steps as the cutoff is because users can only

donate their steps when they walk more than 10,000 steps. In addition, we also

examine whether a user engaged in step donation on a certain day, indicated by

step_donation, or whether the user viewed the ranking page, indicated by step_ranking.

These two outcomes are used to measure the effectiveness of the messages designed

on encouraging users to either view the step donation page or the ranking page; even-
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tually, we employ an IV design, whereby we treat step_donation and step_ranking

on the first day of our experiment as the endogenous variable and step_count and

step_count_10k on the second day as outcome variable.7

As discussed in Section 5.1, WeRun step donation has a daily quota for the total

amount of step donation, which generates a daily deadline. Only users who arrive

prior to the deadline can successfully complete their step donation. Because the

deadline is reached prior to 10pm on all days during our 17-day experiment period,

all users who were promoted to attempt step donation were notified that “the deadline

has been passed for today and please try tomorrow.” Therefore, our experiment is

testing the effect of viewing the step donation with the information that the current

day’s quota has been reached. Users may be not motivated to walk more and engage

in step donation on the next day after a failed attempt of step donation on the current

day. This also shows our rationale of using the step count on the next day as the

outcome variable. Details of our methods and the robustness check are presented in

Appendix 5.6.

5.2.2 Results

Summary statistics

Before presenting our results, we present the basic summary statistics in treatment

groups in Table 5.2. We use demographics as well as historical behavior in the past

29 days prior to the start day of our experiment.

Our sample is balanced in gender (a female ratio of 49%). The average number

of days with step donation is as small as 0.06; this is partially because of the nature

of the WeRun design, i.e, the ranking page is highlighted but step donation is not

designed as the main feature. Among the 29 days, the average number of days with

viewing the ranking page is 9.20, suggesting that many users are active users who

frequently view the ranking page. We perform a balance check across those covariates

7We choose the subsequent day to measure outcome because most users receive our treatment
after 10pm in their local time, and suspect that most users would not be motivated to walk more
steps after that time point.
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Table 5.2: Summary statistics of the covariates in each treatment group. Sample
size and the means of pre-treatment covariates are presented. Standard errors are in
parentheses.

Treatment group name Sample size Female ratio Average steps Days with step donation Days with step ranking
donate 6,888,743 49.34% 6,770.58 0.0617 9.291

(0.02%) (0.005) (0.0003) (0.004)
donate_achieve 6,891,377 49.39% 6,768.53 0.0616 9.292

(0.02%) (0.005) (0.0003) (0.004)
donate_charity 6,890,329 49.38% 6,771.79 0.0620 9.297

(0.02%) (0.005) (0.0003) (0.004)
ranking 6,889,882 49.37% 6,770.41 0.0630 9.295

(0.02%) (0.005) (0.0003) (0.004)
tomorrow 6,888,094 49.39% 6,767.85 0.0620 9.290

(0.02%) (0.005) (0.0003) (0.004)
default (control) 6,888,092 49.39% 6,771.58 0.0626 9.292

(0.02%) (0.005) (0.0003) (0.004)

Figure 5-2: Treatment effects on step_donation and step_ranking. The experiment
lasted for 17 days. Each error bar indicates the effect for one day. We also report the
effects on the 7 days before and 15 days after the 17-day experimental time period.
Error bars are 95% CIs.

in Table 5.7 in Appendix, and our analysis indicates covariates are balanced.

Effect on viewing step donation page and ranking page

As a first step, we examine the effectiveness of the messages designed on encouraging

users to view the step donation page or the ranking page. Despite the challenges

in promoting prosocial behavior [153, 154, 152], a few previous studies indicate that

mobile messaging may be an effective way [267, 236].

First, we examine the impact of engaging in the step donation feature. We present

the daily treatment effects in the left panel of Figure 5-2 by comparing each treatment
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Figure 5-3: Heterogeneity of the effectiveness of different treatment messages on
engaging in step donation. The upper panels are conditional on different step donation
history, and the lower panels are conditional on different historical average steps.
Error bars are 95% CIs.

group versus the control group.8 We find that donate promotes the step donation

activities the most: there was a 0.5% increase in the probability of engaging step

donation in the donate group compared to the default group on the first day. The

effect size decays slowly until 0.35% at the end of the 17-day experiment period. The

slow decay indicates that the effect is not mainly driven by the novelty effect. The

effect size of donate is in fact large in the relative scale – as shown in Figure 5-13 in

Appendix, donate increases the likelihood of engaging in step donation by 2.5 times

compared to the default group. Moreover, there appears to be a long-term effect –

after we terminated the experiment and all users returned to receiving the default

message, the effect is still significant for users who were assigned to donate.9

Interestingly, the donate_achieve and donate_charity groups are much less ef-

fective than the donate group. We provide two explanations for this result. One

conjecture is that users may be driven by pure altruism or warm-glow giving to be-

8To illustrate the effect size on the absolute scale, we also present the means in Figure 5-13 in
Appendix.

9The same with donate_achieve and donate_charity.
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havior prosocially. Highlighting one type of motivation may drive users with the

corresponding motivation only. Based on this conjecture, there may be an approxi-

mately equal number of users who are driven by pure altruism or warm-glow giving,

leading the similar trends of donate_achieve and donate_charity in the left panel

of Figure 5-2.

The effects of ranking and tomorrow are small but significant. This could be

explained by a second order effect – those people are more likely to enter the ranking

page than default, and thus eventually are more likely to enter the step donation

page subsequently.

We also investigate heterogeneity in the effect size and present the results in

Figure 5-3. We find that users who have historically engaged in step donation are

more likely to be encouraged to do it again. The effect size also increases with the

historical average step count – those who typically walk more steps are more likely to

be encouraged. This is because those users are more likely to exceed the 10k cutoff

on the step count. These results suggest that the messages designed are more likely

to affect those people who are quantified to engage in step donation or more familiar

with the feature. Later in our instrumental variable design, we also leverage this first

stage heterogeneity to improve the precision of our estimation.;

Next, we examine the impact of our messages on viewing the step ranking page.

The effect of ranking is small compared to other treatment messages, although it

is intended to encourage users to view the ranking page. A plausible explanation is

that this may have a very similar meaning to default – promoting users to view the

ranking page – and thus users may not be very responsive to this treatment.

We find that donate promotes viewing the step ranking page the most – It pro-

motes 1.4% more users on WeRun than default to view the step ranking page on

the first day of the experiment; this appears to be a novelty effect – the effect de-

cays rapidly and reaches 0.3% at the end of the experiment. However, surprisingly,

a trivial message such as tomorrow can also have a similar novelty effect. Moreover,

as for long term effects, the effect of tomorrow appears to persist as 0.1% after the

experiment terminated, but the effect of donate is much smaller than the experiment
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terminated. These results suggest that although reminding of step donation encour-

ages views of step ranking, this effect is unsustainable and may be purely caused by

the novelty effect.

Moreover, donate_achieve promotes fewer users to view the ranking page than

donate, anddonate_charity promotes even fewer. We conjecture that this is because

donate_achieve may encourage additional users to check their ranking page, while

donate_charity may only encourage those users who would engage in step donation.

These results suggest that ranking may not be an effective message to motivate

more views on the step ranking page. The donate group and other donation related

groups are also driven by the novelty effect to view the ranking page, but the effect

size is no greater than the tomorrow group, which we believe to only generate a

novelty effect.

Effect on step counts.

We proceed to examine the impact on step counts. As shown in Figure 5-4, we do

not find any significant impact on either the step count or the probability of whether

step count is greater than 10,000. We also perform subgroup analysis conditional

on different historical average step counts or historical step donation, or perform

variance reduction by accounting for important covariates and examine heterogeneity

given historical activity in Appendix 5.6. However, we do not find any significant

effects.

To further measure the impact of viewing the step donation page on step counts,

we employ an instrumental variable design. We retrieve users who were assigned to

“donate”, “donate_achieve”, “donate_charity”, and “default” groups as our ob-

servations in the instrumental variable. The underlying assumption is that receiving

messages about step donation does not have a direct effect on users’ step count. –

viewing the step donation page exists on the causal path between these two variables.

Specifically, viewing the step donation on day 1 of the treatment is the endogenous

variable that is located at the causal path from the random assignment to the step
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Figure 5-4: Treatment effects on step counts. The experiment lasted for 17 days.
Each error bar indicates the effect of one day. We also report the effects before and
after this period. Error bars are 95% CIs.

count on day 2.10

For the endogenous variable, we leverage two types. The first type is whether the

user engaged in step donation on day 1; and the other is whether the user engaged in

step donation on day 1 after the deadline. 11 We employ three sets of instrumental

variable designs. First (“simply”), we employ the selected seven types of random

assignments as instruments (Column (1)).12 Second (“polynomial”), to leverage first-

stage heterogeneity, we add the interaction terms between the random assignments

and exogenous variables into the first stage, and then use lasso [242, 38] to retain

important instruments with non-zero regression coefficients (Column (2)). Third

(“stratum”), we create 25 stratum by the five subgroups divided by historical step

donation count times the five subgroups divided by historical step count. We then

add the interaction between the stratum indicators and the 7 treatment assignment

indicators, and then use lasso to retain instruments that have non-zero regression

10We do not account for observations after day 2 because the step counts may be affected by the
behavior of viewing the step donation page happening on any day before. We do not include the
“ranking” and “tomorrow” because their corresponding messages may directly affect the step count
through motivations that are not related to step donation.

11Note that since design messages were sent after 10 pm and all deadlines happened prior to 10
pm, we cannot use whether the user engaged in step donation on day 1 after the deadline as another
endogenous variable.

12There are two different messages for each among donate, donate_charity, and
donate_achieve, which are discussed in Appendix 5.6 and default is the seventh.
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Table 5.3: Regression results of the instrumental variable design.
simple polynomial stratum

(1) (2) (3) (4) (5) (6)
Dependent variable: step count on day 2

donate day 1 865.78 319.42 810.40
(622.48) (539.36) (565.58)

donate day 1 after cap 855.06 322.03 927.71*
(608.21) (543.85) (547.82)

First-stage 𝐹 statistic 1,788.76 2,593.40 654.21 891.50 37.42 9.80
Adjusted 𝑅2 0.58 0.58 0.58 0.58 0.58 0.58
No. instruments 6 6 101 101 98 98
No. observations 27,558,541 27,558,541 27,558,541 27,558,541 27,558,541 27,558,541

Dependent variable: step count ≥ 10k on day 2
donate day 1 0.0885 0.0201 0.1255**

(0.0619) (0.0353) (0.0510)
donate day 1 after cap 0.0872 0.0203 0.1198**

(0.0604) (0.0356) (0.0485)
First-stage 𝐹 statistic 1,788.76 2,593.40 654.21 891.50 37.42 9.80
Adjusted 𝑅2 0.36 0.36 0.36 0.35 0.38 0.38
No. instruments 6 6 101 101 98 98
No. observations 27,558,541 27,558,541 27,558,541 27,558,541 27,558,541 27,558,541

Note: Robust standard errors are in parentheses. *: 𝑝 < 0.1, **: 𝑝 < 0.05, ***: 𝑝 < 0.01.

coefficients (Column (3)).

The results of the instrumental variable design on all users are presented in Ta-

ble 5.3. As indicated, when we use the first and second sets of instruments, we do

not find significant effects despite the large first stage 𝐹 statistics. In Columns (5)

and (6), although the result indicates that the step donation engagement on day 1

increases the step count on day 2, the small 𝐹 -statistics in the first stages indicate

the presence of weak instruments. Therefore, their significance may not fully support

a clear causal relationship between step donation and the step count.

We also deploy the instrumental variable design on users who engaged at least once

in step donation in the past 29 days prior to the experiment only. We do so because

the heterogeneity analysis in Figure 5-3 indicates that those users have a larger effect

size on encouraging viewing the step donation page. As presented in Columns (1)-(2)

and (5)-(6) of Table 5.4, we find a significant effect when the dependent variable is

whether the step count is greater than 10,000, the effects are significant at the 5%

and 1% levels, respectively. Their F statistics are greater than 10 (e.g., they are 68

and 169 in Columns (1) and (2)). Columns (3) and (4) do not show significance,

but the coefficients are not significantly different from the other four columns. These

results indicate that for those users who are familiar with viewing the step donation
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Table 5.4: Regression results of the instrumental variable design for users with step
donation history.

simple polynomial stratum
(1) (2) (3) (4) (5) (6)

Dependent variable: step count on day 2
donate day 1 1327.21 903.85 1642.55

(1030.45) (1034.31) (1034.31)
donate day 1 after cap 1122.63 1580.88 1698.49*

(895.81) (1148.34) (1007.10)
First-stage 𝐹 statistic 68.04 168.51 26.15 29.42 18.83 23.47
Adjusted 𝑅2 0.60 0.58 0.60 0.58 0.60 0.60
No. instruments 6 6 47 87 45 106
No. observations 558,240 558,240 558,240 558,240 558,240 558,240

Dependent variable: step count ≥ 10k on day 2
donate day 1 0.2104** 0.0935 0.2329***

(0.0901) (0.0568) (0.0650)
donate day 1 after cap 0.1698** 0.0723 0.1472***

(0.0783) (0.0568) (0.0563)
First-stage 𝐹 statistic 68.04 168.51 26.15 29.42 18.83 23.47
Adjusted 𝑅2 0.39 0.39 0.39 0.39 0.40 0.40
No. instruments 6 6 45 101 44 106
No. observations 558,240 558,240 558,240 558,240 558,240 558,240

Note: Robust standard errors are in parentheses. *: 𝑝 < 0.1, **: 𝑝 < 0.05, ***: 𝑝 < 0.01.

page, they can be encouraged to exceed 10k steps on the next day. We do not find

significant effects when the dependent variable is the step count, except for Column

(6) with significance at the 10% level, although the signs of regression coefficients are

all positive.

We also test the effect of viewing the ranking page on the step count on the

subsequent day. Here we only employ the “ranking”, “tomorrow”, and “default”

groups, and the endogenous variable becomes whether the user views the step ranking

page on day 1. We also create the stratum differently – instead of dividing the sample

by the step donation history, we change it to the step ranking history. We present

the results in Table 5.8 in Appendix. Overall, we do not find a significant effect of

viewing the ranking page on the step count on the subsequent day.

5.3 Matching design

Although our experimental study, especially the instrumental variable design re-

stricted to users with step donation history, provides evidence of the effect of the

prosocial incentive on physical activity, it may have two limitations. The first limi-

tation is the statistical significance – our experimental results are not significant in
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Figure 5-5: Illustration of our matching procedure.

terms of the reduced form (Figure 5-4) or the instrumental variable design for the

whole population (Table 5.3). Second, in the experiment, because of low statistical

power, we are unable to investigate fine-grained heterogeneous effects of the proso-

cial incentive or social incentive on physical activity. Here by using observational

study, we proceed to further understand how effect size varies across different user

subgroups.

In this section, we employ a matching design with observational data and focus

our analysis on users who have at least one-time engagement in step donation in the

sample.

5.3.1 Data collection and matching design

Collaborating with WeChat, we first access 1/3 of the whole population of the WeRun

users with de-identified information. We observe a 84-day window of the behavior

of WeRun users, from September 8th to November 30th, 2019. We then focus our

analysis on a subsample that is used for the matching procedure.

Specifically, we employ matching to identify the causal effect of viewing the proso-

cial and social incentives. In our analysis, each observation corresponds to the user
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of user 𝑖 on day 𝑑. We first construct a treatment group, referred to as the social &

prosocial group. If user 𝑖 viewed the step ranking page (the middle panel of Figure 5-

1) and step donation page (the right panel of Figure 5-1) on day 𝑑, this observation

belongs to the treatment group. We construct another two control groups, social

group and null group. In the social group, user 𝑖 did not view the step donation

page on day 𝑑, but they viewed the ranking page (the middle panel of Figure 5-1). In

the null group, user 𝑖 did not view the step donation page on day 𝑑, or the ranking

page. We match each observation from the prosocial & social to the social or

null group.13 Our analysis is focused on the average treatment effect on the treated

– we match each observation from the treatment group (social & prosocial) to

the two control groups (social and null). Comparing the prosocial & social

group and the matched social group estimates the effect of the step donation page

(prosocial incentive); we denote it by 𝜏𝑝. Comparing the prosocial & social group

and the matched null group estimates the effect of the step donation page and the

ranking page (prosocial incentive and social incentive); we denote it by 𝜏𝑝 + 𝜏𝑠. In

this way, we can also indirectly estimate the effect of viewing the ranking page (social

incentive), which is 𝜏𝑠.

In particular, we require that observations in these three groups did not engage

in the step donation page in the past 42 days, but did so at least once prior to this

42-day time window.14 Please refer to Figure 5-5 for illustration. This requirement

has two benefits. First, engaging in step donation after not doing so for a long time

window implies that the current step donation is more likely to be triggered by an

exogenous shock. This may reduce the influence of selection bias on our matching

procedure. Second, step donation might not be very well-known among WeRun users.

Requiring engaging in step donation at least once in the two control groups helps

us to exclude users who are completely unfamiliar with step donation users, which

also reduces the impact of the potential selection bias resulting from unfamiliarity

13We do not have users who view the step donation page without viewing the ranking page.
14Since the farthest time we can retrieve in the data is a successive 84-day time window, the last

day of step donation must be one day from the first day of our sample until the start of the 42-day
window.
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Table 5.5: Summary statistics of the covariates in each group in the matching. Sample
size and the means of pre-treatment covariates are presented. Standard errors are in
parentheses.

Treatment group name Sample size Female ratio Average steps Days with step donation Days with step ranking
prosocial & social 55,504 45.10% 9440.22 2.00 25.85

(0.21%) (19.893) (0.00) (0.061)
social 13,097,865 46.21% 9424.78 1.00 32.74

(0.01%) (1.265) (0.00) (0.003)
null 12,905,418 43.84% 7851.40 1.00 11.54

(0.01%) (1.090) (0.00) (0.003)

with the WeRun step donation feature. In total, we retrieve 55,504 observations in

the prosocial & social group, 13,097,865 observations in the social group, and

12,905,418 observations in the null group. Each observation corresponds to a user 𝑖

on day 𝑑. Table 5.5 presents a table of summary statistics.

We measure the outcome by the behavior on the next day. The main outcome

variable is the user’s step count on the next day, and whether it exceeds 10k.15 In

addition, we measure the user’s engagement in step donation or the step ranking page

on the next day as outcome variables. The covariates are high-dimensional, which

include basic information such as gender, the numbers of WeChat contacts, and the

number of interactions; moreover, we retain user histories such as the step counts and

the number of viewing WeRun rankings. The comprehensive description of covariates

are presented in Appendix 5.6.

We present the summary statistics of the data in Table 5.5. As shown in the table,

the number of observations that belong to the prosocial & social group is much

smaller than the numbers in the other two groups. This imbalance also illustrates the

rationale why we regard the prosocial & social as the treatment group and match

every observation in the treatment to the other two control groups: because of the

large imbalance in sample size, it is much easier for us to use a matching algorithm

to find a high-quality match in the control group. We examine the quality of our

matching results in Appendix .

We mainly employ nearest neighbor matching [273, 241] to estimate the treatment

15Again, we choose the subsequent day to measure outcomes because most users receive our
treatment after 10pm in their local time, and we assume that most users would not be motivated to
walk more steps within the time window from 10pm to midnight. Moreover, we only collected the
daily maximum steps and cannot measure the step count increase from the time when they receive
the notification to the midnight of that day.
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Figure 5-6: Treatment effects on the step count outcomes by comparing the
prosocial & social versus the matched social group, or comparing the matched
social group and the matched null group. Error bars are 95% CIs.

effects of viewing the step donation page or the step ranking page. Since our covariates

are high-dimensional, we rescale the covariate space so that the matching quality is

better in important covariates. A covariate is more important when it is scaled up,

i.e., when it is multiplied by a number that is greater than 1. Learning an effective

metric is an open question, and we employ MALTS [192] to learn the optimal metric

for the covariate space. The algorithm stretches each dimension by its predictability

of the treatment variable and the outcome variable. In the main text, we employ

one-to-one matching but our results are robust when it is extended to one-to-many

matching.

5.3.2 Matching results

Step donation effect and ranking effect.

After matching is employed, we estimate the difference in means between prosocial

& social and null (𝜏𝑝 + 𝜏𝑠 conditional on prosocial & social) as well as the dif-

ference in means between social and null (𝜏𝑠 conditional on prosocial & social).

After that, we derive 𝜏𝑝 and 𝜏𝑠, which correspond to the effect of viewing the step

donation page and the ranking page, respectively.

We first examine the impact of viewing the step donation page on the step count
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on the subsequent day. As shown in Figure 5-6, users who viewed the step donation

page (the prosocial & social group) walk more 312.48 steps than users from the

matched social group on the subsequent day (𝑝 < 0.001). The likelihood of walk-

ing at least 10,000 in the prosocial & social group is 2.16% greater than social

group (𝑝 < 0.001). The effect sizes are consistent with the results derived from the

instrumental variable design in Table 5.3, although they are smaller in the matching

results.16 This result once again suggests that the prosocial incentive, i.e., the step

donation page, may encourage users to work out more.

We next examine the effect of the ranking page by comparing the matched social

group and the matched null group, i.e., the estimation of 𝜏𝑠. As shown in the left

panel of Figure 5-6, the social group walks 116.77 more steps than the null group

(𝑝 = 0.003). In the right panel, the probability of exceeding 10,000 steps in the social

group is 1.22% larger than the null group (𝑝 < 0.001). This result shows that the

effect size of the ranking page is smaller than the step donation page, indicating

that the prosocial incentive is more effective in encouraging workouts in our sample.

The matching result is also consistent with the experimental design: the confidence

intervals of the corresponding IV design (Table 5.8) covers the effects we present in

the matching results.

Moderator analysis

In the controlled experiment, we do not investigate the heterogeneous effects due

to limited “first-stage” effects. Here, we use matching to investigate the moderating

effects of average steps, gender, and WeChat friend count. These analyses further

help reveal the moderating factors that affect the effect size.

We first leverage the average steps, i.e., the average in the past 42 days prior

to day 𝑑 when the user triggers a step donation. We categorize observations into

four groups – 0 ∼ 5000, 5000 ∼ 10000, 10000 ∼ 15000, and > 15000, and present

the results in Figure 5-7.17 As shown in the left panel of Figure 5-7, the effect
16Reasons such as different subgroups of the sample can explain this difference.
17We set a 10k cutoff because users who exceed this cutoff view different text on the step donation

page, and also their step count is highlighted in orange in the ranking page.
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Figure 5-7: Moderating effect conditional on historical average steps. Error bars are
95% CIs.

of the step donation page on the subsequent day appears to increase as a user’s

average step count increases, despite the overlapping confidence intervals. This result

indicates that step donation might encourage users who walk more to exercise even

more frequently. On the right panel, however, The effect of the step donation page

on the likelihood of exceeding 10k does not show an increasing trend. Interestingly,

the 5000 ∼ 10000 subgroup has the largest effect, indicating that the design of the

step donation page may strongly incentivize users to exceed 10k steps. We conjecture

that this is because for users who typically walk more than 10k steps every day, their

probability of exceeding 10k is already large, and thus step donation would not change

their probability of 10k steps but only change their step counts.

As for the effect of the ranking page, it appears only effective only for users whose

average step counts are greater than 10,000 steps. We conjecture that this is because

the WeRun ranking page has another incentive to encourage users to exceed 10k steps

– those who exceed 10k steps are marked yellow in the ranking page. Moreover, the

overall trends are increasing for both outcome variables.

We next investigate gender effects and present the results in Figure 5-8. We find

that the effect size of the step donation page (prosocial & social versus social

group) is larger for male users than female users – the effect size of the prosocial

incentive is 435.38 for male users, while it is 162.87 for female users (𝑝 < 0.001). We
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Figure 5-8: Gender difference in the effect size. Error bars are 95% CIs.

Figure 5-9: Heterogeneity of effect sizes with respect to quartiles of users’ WeChat
friend counts. Error bars are 95% CIs.

conjecture that the gender difference results from the fact that male users in general

walk more than female users, and thus the effect size on the step count is larger for

males. In terms of the likelihood of exceeding 10k steps, we do not find significant

gender differences (𝑝 > 0.1). Moreover, we also observe marginally significant gender

difference in the effect of the ranking page; for example, the effect for male users is

177.61 while the effect for female users is 42.57 (𝑝 = 0.081).

We proceed to examine the moderating effect of friend count. We partition users

to four quartiles by WeChat the friend count. The cutoffs for the quartiles are 125,

231, and 433. As shown in Figure 5-9, the effect size of the prosocial incentive on step
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Figure 5-10: The temporal trend of effect sizes. Each error bar indicates the difference
between the two groups in comparison. Error bars are 95% CIs.

count for the four quartiles is increasing, indicating step donation has a larger effect

for users with more WeChat friends than those with fewer friends. The increasing

trend might come from the fact that users with more WeChat friends are in general

more responsive to the design on the platform. We do not find the increasing trend in

the ranking page effect, which does not support our conjecture that users with more

friends may be more responsive to social incentive.

5.3.3 Long-term effect

Since in our controlled experiment, the randomization is only on the user level, we

are unable to test the long term effect of experiencing the step donation once. Here

we can simply change the outcome variable from the step count on the next day to

any subsequent day.

We present the results in Figure 5-10. We find that the step donation page has

a persistent effect on the step count but the effect size decays. – the effect of the

step donation page on the next day is 312.49 on the next day but it decays to 145.02

on the second subsequent day. All effects of the step donation are significant in the

subsequent seven days. The effect of the ranking page on the next day is 116.77 on the

next day but it decays to 67.48 on the second subsequent day. All effects of the step

donation are significant in the subsequent six days but not significant for the seventh
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day. This result indicates that the step donation feature may have a long term effect

– it encourages users to exercise more persistently. By contrast, the long-term effect

of the ranking feature might be smaller.

5.4 Regression discontinuity design

In both the experiment and the matching results, we do not discuss how different

prosocial motivations change users’ behavior. Here we perform a regression discon-

tinuity design to distinguish a portion of users who are very likely to be driven by

impure altruism (from pure altruism) and investigate the impact of experiencing step

donation on their subsequent behavior.

5.4.1 Data description and RDD rationale

The data was collected in the same time period with the matching design. That is,

we first randomly sample 30% of the WeRun anonymized users and retain those users

who have viewed the step donation page during that time period. This process results

in 4.7 million users in this sample. We retrieved the timestamps when they entered

the right panel of in Figure 5-1, as well as the step donation deadline time for each

day. If a user entered the step donation page multiple times on a single day, we only

count the last time. We present a detailed description of the step donation feature

and the daily deadline in Figure 5-20 in Appendix. Unfortunately, we are unable to

retrieve whether the user clicked the buttons on Panels (b) or (c) in Figure 5-20 and

thus we use the last time of a user entering the step donation page as the time they

engage in step donation.18

We next introduce the rationale of our regression discontinuity design. The users

who arrived immediately before and after the discontinuity point can be assumed

homogeneous, since they cannot anticipate the daily deadline of step donation. Then

18We only know a statistic – among people who exceeding 10,000 steps when entering Panel (a),
their probability of clicking on the button is 62.40%. Therefore, the effect size in the rest of this
section may be underestimated by roughly 40%.
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we can compare the difference in the subsequent behavior of users who arrived before

or after the deadline.

We include the following variables for our regression discontinuity design. The

running variable is defined as the time of attempted step donations since the dis-

continuity point on day 𝑑. The unit is in seconds. The binary treatment variable

indicates whether a user enters the step donation page after the daily deadline. We

examine the following outcome variables: (1) a dummy variable indicating whether

the user attempts step donation on day 𝑑 + 1 before the deadline on day 𝑑 + 1; (2)

a dummy variable indicating whether the user attempts step donation, regardless of

before or after the deadline; (3) whether the step count on day 𝑑 + 1 is greater than

10k; and (4) the step count on day 𝑑 + 1. Covariates mentioned in Section 5.3 are

also employed to improve precision.

5.4.2 RDD results

Before presenting the results, we employ the McCrary test [174] to examine whether

the marginal density of the running variable is continuous without manipulation. Fig-

ure 5-21 in Appendix shows the density curve to be smooth around the discontinuity

point, with 𝑝 = 0.88 from the McCrary Test. This result supports the validity of our

regression discontinuity design.

We first present a graphical illustration of our regression discontinuity design in

Figure 5-11. By comparing the minutes before or after the deadline We find that

missing the deadline significantly increases the next day’s probability of step donation

before the deadline by 2.35% percent (𝑝<0.01). It also appears to increase the next

day’s probability of attempting step donation by 1.12% percent, but the effect is not

significant (𝑝 > 0.1).19 As for the effect on step count, we do not observe a significant

effect. In other words, missing the deadline does not cause these users to walk more

or less on the subsequent day.

We further apply the non-parametric regression to estimate the causal effect. We

employ Imbens-Kalyanaraman optimal bandwidth [113] to retain observations used in
19We compare the outcomes in the one minute before or after the deadline
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Figure 5-11: Graphical illustration of the effect of discontinuity points on the four
outcome variables. Error bars are 95% CIs clustered at the user level.

Figure 5-12: Non-parametric estimates of the effect of missing a deadline. ℎopt refers
to the Imbens-Kalyanaraman optimal bandwidth. To show the robustness, we also
present the results when the bandwidth is 1

2
ℎopt and 2ℎopt. Error bars are 95% CIs

clustered at the user level.

the non-parametric regression. We present the results in Figure 5-12, where ℎopt is the

optimal bandwidth. We also use 1
2
ℎopt and 2ℎopt to test the robustness of our results.

To address data interdependence, all standard errors are bootstrapped on the user

level. As shown in the figure, we find that missing the deadline increases the user’s

probability of making the deadline on the next day by 2.59% [95%CI=2.26%, 2.92%].

Moreover, missing the deadline also increases the user’s probability of attempting step

donation on the next day by 0.79% [95%CI=0.48%, 1.11%]. These results mean that

after missing today’s deadline, users will be more likely to attempt step donations on

the next day, and they will also try to attempt step donation earlier on the next day.

For the step count and its probability of exceeding 10k steps, we do not find

a significant effect (𝑝 > 0.1). This result could be caused by the fact that human

mobility has regularity and cannot be easily impacted by such a prosocial motivation.

In other words, impure altruism may only encourage users who are qualified to engage

in step donation to complete the prosocial action; however, impure altruism may not
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be able to encourage users to walk more steps to complete the requirement of the

prosocial incentive of the mobile platform.

We also investigate the heterogeneity of the effect of missing the deadline. For

example, we examine the heterogeneity conditional on the number of steps when

entering the step donation page. We find that the effect of attempting step donation

promptly is generally significant only when a user’s number of steps exceeds 10k

(Figure 5-22). This result indicates that missing the deadline has the largest effect

for those who were qualified to donate but failed because of missing the deadline.

5.5 Discussion

Understanding incentives that encourage exercises has numerous social impacts. Our

study investigates the under-studied incentive for physical activity, i.e., prosocial in-

centives. We employ mixed methods by combining findings of a large-scale experiment

based on encouragement design and observational studies. From the experiment, our

encouragement design through mobile messaging promotes users to experience the

prosocial incentive. Our analysis suggests that prosocial incentives appear to pro-

mote more physical activity for users who are likely to be encouraged to experience

the prosocial incentive. We do not find significant effects for the whole population,

possibly due to the lack of statistical power or weak instruments (i.e., the mobile

messaging can encourage a small proportion of users to experience step donation).

To complement this experiment, we perform an observational study with a high-

dimensional matching strategy. We find that consistent with the experimental result,

users who engaged in step donation are likely to walk more steps. Such an effect

is as strong as the effect of the social incentive resulting from the ranking page. In

addition, the result of a regression discontinuity design indicates that impure altruism

drives some users to engage in the prosocial incentive, but we do not find evidence

that the impurely altruistic motivation also drives the increase of step counts.

Our study does have limitations. First, as many other empirical studies do, the

external validity might be a concern. However, as WeChat and WeRun users represent
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a large and relatively comprehensive population in China, we believe our results at

least reflect a nationwide pattern. We acknowledge the design of the step donation

and ranking pages, such as the 10k threshold and the quota and deadline in the

daily step donation, may generate platform-specific conclusions. We leave it as an

open question about how those designs would affect user behavior. Second, although

we perform a high-dimensional matching design and carefully examine the matching

quality, we may still suffer from selection bias. However, we believe that the consistent

results between the experiment and the matching provide us with more confidence.

5.6 Appendix

Supplemental information for the experiment

In the main text, we mentioned that the table displayed was simply English transla-

tion. Moreover, within each treatment group, we slightly change the text to reduce

the effect that users’ behavior changes according to uninteresting factors such as text

length. Table 5.6 provides the details of the notifications that users receive. The

English version is translated by the authors.

Table 5.6: Original Chinese text users receive in the experimental design.

Treatment group name Proportion ≥/< 10k Chinese original text English translation
donate_S 1% ≥ 可以捐步了 You can donate your steps

< 满万步可以捐步 You can donate your steps if you reach 10k
donate_L 1% ≥ 已满万步，可以捐步了 You have reached 10k steps and so you can donate your steps

< 满万步可以捐步 You can donate your steps if you reach 10k
donate_achieve_S 1% ≥ 捐步记录成就 You can donate your steps to mark your achievement

< 满万步可捐步记录成就 You can donate your steps to mark your achievement if you reach 10k
donate_achieve_L 1% ≥ 已满万步，捐步记录成就 You have reached 10k steps and so you can donate your steps to mark your achievement

< 满万步可捐步记录成就 You can donate your steps to mark your achievement if you reach 10k
donate_charity_S 1% ≥ 捐步助力公益 You can donate your steps to help charities

< 满万步可捐步助力公益 You can donate your steps to help charities if you reach 10k
donate_charity_L 1% ≥ 已满万步，捐步助力公益 You have reached 10k steps and so you can donate your steps to help charities

< 满万步可捐步助力公益 You can donate your steps to help charities if you reach 10k
ranking_S 1% ≥ 查看好友排行 Check your step count ranking among your friends

< 查看好友排行 Check your step count ranking among your friends
ranking_L 1% ≥ 已满万步，查看好友排行 You have reached 10k steps. Check your step count ranking among your friends

< 未满万步，查看好友排行 You have not reached 10k steps. Check your step count ranking among your friends
tomorrow_S 1% ≥ 明天继续加油 Keep on it tomorrow

< 明天继续加油 Keep on it tomorrow
tomorrow_L 1% ≥ 已满万步，明天继续加油 You have reached 10k steps. Keep on it tomorrow

< 未满万步，明天继续加油 You have not reached 10k steps. Keep on it tomorrow
default (control) 2% ≥ XXX 获得今日冠军 XXX champion today

< XXX 获得今日冠军 XXX champion today

Note: “Proportion” refers to the proportion of users who were randomly assigned to a certain treatment group among all WeRun users. The messages received were
affected by whether the user’s daily step count is no less than 10k by the time the routinely message was sent.
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Table 5.7: Results of 𝑡 tests for the balance check of the covariates in the experiment.
𝑝 values are unadjusted for multiple hypothesis testing.

Comparison Statistic Female ratio Average steps Step donation Step ranking
donate v. default mean diff -0.047% -1.00 -0.0009 -0.001

S.E. 0.027% 2.77 0.0005 0.006
𝑝 value 0.0782 0.7178 0.0502 0.8820

donate_achieve v. default mean diff -0.005% -3.05 -0.0010 0.001
S.E. 0.027% 2.77 0.0005 0.006

𝑝 value 0.8454 0.2705 0.0323 0.9037
donate_charity v. default mean diff -0.013% 0.21 -0.0007 0.005

S.E. 0.027% 2.77 0.0005 0.006
𝑝 value 0.6414 0.9382 0.1687 0.3844

ranking v. default mean diff -0.023% -1.16 0.0004 0.004
S.E. 0.027% 2.77 0.0005 0.006

𝑝 value 0.3843 0.6743 0.4544 0.5114
tomorrow v. default mean diff -0.005% -3.73 -0.0006 -0.002

S.E. 0.027% 2.77 0.0005 0.006
𝑝 value 0.8528 0.1777 0.2041 0.7773

Balance check. We conduct a balance check of the experiment for the statistics

in Table 5.2 in the main text. We compare the mean of the treatment group versus

the mean of the control group. Among the 4 × 5 comparisons, only one of them is

significant at the 5% level – donate_achieve v. default for step donation (𝑝 = 0.0323).

However, after we apply the Benjamini-Hochberg procedure [40] to account for false

discovery, the smallest 𝑝 value in 25 tests should be 0.05/20 × 1 = 0.0025 to be

significant. Therefore, we consider the 𝑝 value of 0.0323 as false positive.

Step donation and ranking effects. The main text presents the treatment effects

of different treatments on viewing the step donation page or the ranking page. To

illustrate the effect sizes on the relative scale, we present the means of the outcome

variables in Figure 5-13.

Step counts. First, we also present the means of the step counts (or the dummy

indicating its being greater than 10k) for each treatment group in Figure 5-14. This

helps show the effect size on the relative scale. We cannot observe economically

sizable effects from these figures.

As discussed in the main text, we examine heterogeneity of the effect size given

users’ history in step donation or step counts. Results are presented in Figure 5-

15. As shown in the figure, we do not observe significant effects across different

subgroups. The occasional significant effects may result from multiple hypothesis

testing or imperfect random assignments.

In addition, we perform variance reduction by adding covariates into the regres-

sion. The covariates include the demographic features and user donation history and
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Figure 5-13: Means of on step_donation and step_ranking for different treatment
groups. The experiment lasted for 17 days. Each error bar indicates the mean for the
day. We also report the effects before and after this period. Error bars are standard
errors.

Figure 5-14: Means of step counts and the corresponding dummy variable for different
treatment groups. The experiment lasted for 17 days. Each error bar indicates the
mean for the day. We also report the effects before and after this period. Error bars
are standard errors.
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Figure 5-15: Heterogeneity of the effectiveness of different treatment messages on step
counts. The upper panels are conditional on different step donation history, and the
lower panels are conditional on different historical average steps. Error bars are 95%
CIs.

historical average step count in the past 29 days. The results are plotted in Figure 5-

16. Although the standard errors of the treatment effects have been reduced, we do

not observe clear patterns of significant effects.

In the main text, we perform an instrumental variable design to test the effect

of viewing the step donation page. Here we use the variable indicating viewing the

ranking page as the endogenous variable. We only use users assigned tomorrow,

ranking, or default in the regression. The results are presented in Table 5.8. We

also create the stratum in a different way, instead of stratifying the step donation

history, we stratify step ranking check history. As shown in the table, we do not

observe significant effects of the endogenous variable – check the ranking page.
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Figure 5-16: Daily treatment effects after controlling for covariates. Error bars are
95%.

Table 5.8: Regression results of the instrumental variable design for the effect of
checking the ranking page.

simple polynomial stratum
(1) (2) (3)

Dependent variable: step count on day 2
check ranking day 1 -206.88 208.42 -253.38

(218.87) (210.97) (191.64)
First-stage 𝐹 statistic 459.39 32.81 3.14
Adjusted 𝑅2 0.58 0.58 0.58
No. instruments 4 101 101
No. observations 20,666,068 20,666,068 20,666,068

Dependent variable: step count ≥ 10k on day 2
check ranking day 1 -0.009 0.006 -0.037**

(0.022) (0.019) (0.018)
First-stage 𝐹 statistic 459.39 32.81 3.14
Adjusted 𝑅2 0.35 0.36 0.37
No. instruments 4 101 101
No. observations 20,666,068 20,666,068 20,666,068

Note: Robust standard errors are in parentheses. *: 𝑝 < 0.1, **:
𝑝 < 0.05, ***: 𝑝 < 0.01.
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Table 5.9: Robustness check for changing the number of matched observations.
Matching approach prosocial & social prosocial social

Dependent variable: average outcome (step count)
1:1 matching 10396.49 10035.13 9993.00

(29.61) (28.21) (28.04)
1:3 matching 10396.49 10024.74 9964.68

(29.61) (16.16) (16.04)
1:5 matching 10396.49 10011.27 9953.83

(29.61) (12.49) (12.40)
Dependent variable: average outcome (step count ≥ 10k)

1:1 matching 0.4596 0.4348 0.4271
(0.0021) (0.0021) (0.0021)

1:3 matching 0.4596 0.4351 0.4269
(0.0021) (0.0012) (0.0012)

1:5 matching 0.4596 0.4341 0.4261
(0.0021) (0.0009) (0.0009)

Supplemental information for matching

List of covariates. We employ the following covariates in the matching. (1) Time

features: the day when the user engaged in this and last step donation. (2) User

information: gender, economic level of the city, friend count, and message count. (3)

WeRun history: the step count, the views of step ranking page, and the number likes

received on day 𝑑, 𝑑− 1, 𝑑− 2, 𝑑− 3 the averages from 𝑑− 7 to 𝑑− 4, 𝑑− 14 to 𝑑− 8,

𝑑− 21 to 𝑑− 15, 𝑑− 27 to 𝑑− 22, 𝑑− 35 to 𝑑− 28, and 𝑑− 42 to 𝑑− 36. In total,

we have 37 covariates.

One-to-many matching. In the main text, we mainly employ one-to-one nearest

matching because of the imbalance in sample sizes between the treatment group and

the two control groups. This can help us to match the best quality observation,

but matching to too few observations may increase the variance. Here we instead

employ one-to-three matching and one-to-five matching. The results are presented in

Table 5.9. We do not observe noticeable changes in the effect sizes, but one-to-many

matching can reduce the variance of the means of the outcome variables.

Matching quality. To demonstrate the robustness of the matching results, we

filter out matched pairs with the largest distances in the covariate space. Specifically,

we filtered out the matched pairs with the top 0%, 20%, 40%, 60%, 80% matching

distances. Because in general the match quality is worse for users whose step count is

greater, we tend to filter out physically active users. We thus analyze four subgroups

– conditional on users’ step counts on the current day – separately. As shown in
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Figure 5-17: Matching quality check when we compare the prosocial & social
group versus the social group.

Figure 5-18: Matching quality check when we compare the social group versus the
null group.

Figures 5-17 and 5-18, filtering out low-quality matched pairs do not affect the effects

for the first three subgroups. It does appear to affect the ≥ 15k subgroup when we

filter too much proportion. This is because when we filter out 80%, most observations

in the ≥ 15k subgroup would be removed, which leads to a large variance.

Variance reduction. We first examine the robustness of the results by adding co-

variates to regressions, which improve the precision of our estimation. We present the

coefficients from regressions with or without the control for covariates in Table 5.10.

Covariates are identical to the ones used for matching.

We find that after controlling for covariates, the effects sizes of both prosocial
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& social and social incentives on step counts are reduced but remain statistically

significant (Columns (1) and (2)). Controlling for covariates does not heavily affect

the regression coefficients when the dependent variable is the step donation next day

(Column (3)) but reduces the effect size when we examine checking the ranking page

as the outcome. This further verifies the robustness of our main results.

Table 5.10: Regression coefficients after controlling for covariates.

Dependent variable:

step count next day step count ≥10k next day step donate next day check ranking next day
(1) (2) (3) (4)

Prosocial&Social 429.25*** 0.0338*** 0.0367*** 0.4200***
(41.752) (0.003) (0.001) (0.003)

Social 116.77*** 0.0123*** 0.0060*** 0.4950***
(41.339) (0.003) (0.000) (0.003)

Covariate control N N N N
Observations 166,206 166,206 166,206 166,206
Adjusted 𝑅2 0.001 0.001 0.016 0.195

Prosocial&Social 285.66*** 0.0231*** 0.0347*** 0.3422***
(31.223) (0.003) (0.001) (0.003)

Social 88.71*** 0.0077*** 0.0043*** 0.4048***
(30.22) (0.003) (0.001) (0.003)

Covariate control Y Y Y Y
Observations 166,206 166,206 166,206 166,206
Adjusted 𝑅2 0.513 0.289 0.020 0.262

Propensity score matching. We also employ propensity score matching [208] to

perform the analysis. We first conduct a Logistic regression to estimate the propen-

sity score for each observation. We then match each observation in the prosocial &

social group with an observation in the social group with the closest propensity

score. The regression results are presented in Table 5.11. We find that adding covari-

ates drastically changes the regression coefficients, indicating that propensity score

matching may not produce high quality results. This can result from the common

issues of propensity score matching [142]. Therefore, we should not trust the results

of propensity score matching.

More outcome variables. To be consistent with the analysis of the experiment, we

use the engagement of the step donation page and the ranking page as the outcomes

and perform the same matching procedure. The results are presented in Figure 5-19.

As expected, as shown in the left panel of Figure 5-19, users who viewed the step

donation page (prosocial & social group) are more likely to be engaged in the step

donation on the next day than otherwise (social group or null group). This result

suggests that experiencing the step donation feature once promotes the person to do
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Table 5.11: Regression coefficients after controlling for covariates with propensity
score matching.

Dependent variable:

step count next day step count ≥10k next day step donate next day platform engagement next day
(1) (2) (3) (4)

Prosocial&Social 4011.5888*** 0.4583*** 0.0387*** -0.2976***
(34.463) (0.002) (0.001) (0.004)

Social 4211.8033*** 0.4618*** 0.0000 -0.2278
(34.463) (0.003) (0.000) (0.004)

Covariate control N N N N
Observations 166,206 166,206 166,206 166,206
Adjusted 𝑅2 0.103 0.221 0.026 0.110

Prosocial&Social 289.0539*** 0.0772*** 0.0313*** 0.3629***
(289.193) (0.022) (0.002) (0.028)

Social 71.6937 0.0577*** -0.0073*** 0.4160***
(236.590) (0.022) (0.002) (0.028)

Covariate control Y Y Y Y
Observations 166,206 166,206 166,206 166,206
Adjusted 𝑅2 0.582 0.446 0.030 0.206

Figure 5-19: Averages of outcome variables in the prosocial & social group, the
matched social group, and the matched null group. Error bars are 95% standard
errors.

it over again.

As shown in the right panel of Figure 5-19, users who viewed the ranking page

(prosocial & social and social group) are much more likely to view the step

ranking page on the next day. We observe a greater likelihood in the social group

of viewing the ranking page on the next day than in the prosocial & social group.

We conjecture that this is because in the prosocial & social group, there are users

who are only interested in the step donation feature but uninterested in the step

ranking feature.
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Figure 5-20: Illustration of the step donation.

Supplemental information for RDD

Details of step donation and deadline. Figure 5-20 illustrates the process

of engaging in step donation. Users may enter the step donation mini program on

WeChat at any time. After seeing the Panel (a), a user may click the red button in

the middle to attempt a step donation. If her number of steps is smaller than ten

thousand, the platform will inform the user that she is not qualified for today (Panel

(b)). If her number of steps achieves ten thousand, the platform will inform the user

that she is qualified and may go further to do the step donation (Panel (c)). However,

if the user arrives late, i.e., after the capping time, the platform will inform the user

that today’s quota is capped (Panel (d)). Note that users’ step donation behavior will

not be observed by any other user. There is no badge design or any other reputation

gain or rewards attached to it.

Density Test A common way to support the validity of a regression discontinuity

design is the density test. That is, if the density curve of the sample around the

discontinuity point does not change smoothly, this curve suggests that some agents

may be able to deliberately place themselves before or after the discontinuity point,

resulting in non-homogeneity between treatment and control groups.

Figure 5-21 shows the density curve to be smooth around the discontinuity point,

with 𝑝 = 0.88 from the McCrary Test [174]. This result supports the validity of our

regression discontinuity design.
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Figure 5-21: Density check of our regression discontinuity design. We do not find a
clear discontinuity at 0, suggesting that users cannot well predict the capping time
and our regression discontinuity design is valid.

By changing the outcome variable to covariates including demographical features

such as gender, click history and step history, we also find that important covariates

do not change abruptly around the discontinuity point. Thus, comparisons between

samples before and after the discontinuity point would provide us trustworthy causal

evidence.

We primarily use the Imbens-Kalyanaraman optimal bandwidth but also test the

robustness of our results with a half of or double the optimal bandwidth. For the

three outcome variables, we derive ℎopt = 1693, 2040, and 2239, respectively. These

results indicate that our choice of the bandwidth is sensible.

Heterogeneity. We further examine the treatment effects conditional on the number

of steps when entering the step donation page. We find that the effect of attempting

step donation promptly is generally significant only when a user’s number of steps

does not reach 10k. For the probability of attempting step donation, we find that the

effect is in general significant when the number of steps is smaller than 17.5k steps.

When the number is larger, the effect becomes non-significant, partially because their

probability of exceeding 10k steps with or without missing the deadline is already

large enough.
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Figure 5-22: Heterogeneous treatment effects conditional on the number of steps when
entering the step donation page. Error bars are 95% CIs.
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Chapter 6

Mitigating network interference with

network motifs and machine learning

6.1 Background

Randomized control trials, or “A/B tests”, have been crucial to understanding the im-

pact of an intervention, such as a new policy [119, 114], product intervention [20, 29],

or medical treatment [16, 167]. Randomized control trials can estimate the causal

effect of a treatment intervention by ensuring that treatment and control assign-

ments are independent of other variables. Increasingly, causal inference methods

have had to adapt to modern A/B test settings where there are high-dimensional

features [216, 204, 87, 83], computational and algorithmic considerations [262], and

network interference concerns [17, 84, 215].

For addressing interference, traditional causal inference methods rely on a critical

assumption called the “stable unit treatment value assumption” (SUTVA) [92, 227].

SUTVA is in fact a strong assumption, requiring that a unit’s outcome is only af-

fected by its own assignment conditions, regardless of the assignment conditions of all

other observations. However, this can be an unrealistic assumption in many settings,

including social networks, where user’s are influenced by one another [200, 48, 24].

We refer to this as network interference [17].

An increasing number of approaches are aimed at dealing with network inter-
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ference [207, 240, 248, 149, 265, 22, 36, 215, 128]. Existing methods for addressing

networked interference can be categorized into two main strategies. The first one is to

improve the random assignment strategy. Cluster random assignment treats observa-

tions at the level in which observations have strong interdependence (e.g., assigning

on the class or city level) [207, 106, 36]. Graph cluster randomization is a special

case for social networks [248, 84]. It first runs a graph clustering algorithm and then

randomizes treatment assignment on the graph cluster level. Recent work proposes

random clustering instead of a fixed clustering [249]. Another type of approach, in-

cluding ours, relaxes SUTVA by allowing the potential outcome to be defined as a

function of the assignment conditions of the ego observation and its (𝑛-hop) neigh-

bors [251, 159]. However, few studies have utilized the network structure in the 𝑛-hop

neighbors (i.e. local network structure) to further characterize different interference

conditions.

From the empirical end, many social network studies have highlighted why local

structures should be considered to address network interference. For example, the

structural diversity hypothesis [247, 233] claims the likelihood of product adoption is

largely dependent on the degree to which a unit’s neighbors who have adopted are

disconnected. By contrast, complex contagion theory [57, 56] or the “echo chamber”

effect [30, 94], suggest an individual is most likely to adopt a behavior when she

is clustered in the network of multiple neighbors who have adopted this behavior.

Figure 6-1 illustrates four examples of network interference that could be captured

by the local networks structure and treatment assignment. The first two conditions

are simply the cases where all neighbors are treated or non-treated, followed by the

important network interference conditions suggested by structural diversity and com-

plex contagion, respectively. In the case of structural diversity and echo chamber

settings, the ego node in (c) and (d) has 1/2 neighbors treated but exhibit very dif-

ferent local structures and the ego’s outcome may be different in these settings; and

we do not know which one is the dominant factor that drives most of the variance in

the outcome.

Our study provides a tool for experimenters and practitioners to account for impor-
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Figure 6-1: Examples of network interference conditions across different local
network structures. The star indicates a user and a circle represents a user’s friends.
Solid circles indicate that a friend is in treatment and hollow circles indicate a friend is in
control. For stars, the shaded indicates that it could be treated or control.

tant network interference conditions without necessarily specifying a particular dom-

inant social science theory. We rely on network motifs [180, 11] (or graphlets [213]) to

characterize both the local structure and treatment assignment conditions to account

for the different types of (network interference) exposure conditions. We can think of

network motifs as “label-independent structure” since the features do not depend on

treatment labels and network motifs with treatment assignment conditions as “label-

dependent structure” since they depend on labels [103]. We refer to network motifs

with treatment assignment labels as causal network motifs. Prior work has considered

label-dependent network motifs for use in protein function prediction applications [61]

and has developed computationally tractable ways for detecting labeled motifs [203].

Another example is [23], which uses network features such as transitivity in a propen-

sity score matching framework, with a focus on observational data. Our proposal is

distinct in that we focus on experimental settings where causal network motifs can

quantify the causal impact of different interference conditions.

In this study, we provide an approach to automatically categorize network inter-

ference conditions based on local network neighborhood structures. We develop our

approach based on the framework proposed by [22], where the authors regard dif-

ferent network interference conditions1 as unique treatments. However, it is unclear

1In this study, we use exposure conditions and network interference conditions interchangeably.
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how experimenters or practitioners should a priori define different network interference

conditions that are suitable for specific data and experiment. Moreover, manually de-

termining different network interference conditions may make more severe the issue

of a large number of researcher degrees of freedom.

The following sections will describe our two-step solution to identify different net-

work interference conditions. First, we construct network motifs with assignment

labels, referred to as causal network motifs, to characterize complex network inter-

ference conditions. In our study, we not only characterize the network structure by

the number of different network motifs, but also characterize the assignment condi-

tions in the local network neighborhood by the causal network motifs. Second, using

these causal network motif features, we develop a tree-based algorithm to cluster

different exposure conditions. Each leaf or terminal node in the tree corresponds to

a network interference condition and can be used to estimate the average potential

outcome given that condition. We cannot directly apply conventional decision trees

or other machine learning algorithms, since we need to adjust those algorithms to

address issues, such as selection bias and positivity as will be explained [260, 63, 64].

Moreover, as a common goal in causal inference, we aim to estimate the average

potential outcome given an interference condition to quantify causal impacts, rather

than predicting the potential outcome and the treatment effect for every observation

[211].

6.2 Methods

6.2.1 Causal Inference Setup

Let 𝑖 (or 𝑗) index individuals in a social network. 𝒰 is the set of individuals in the

population. 𝒩𝑖 be the neighbor set of 𝑖, and this can be extended beyond immediate

neighbors. 𝑌𝑖 is the observed potential outcome. 𝑍𝑖 ∈ {0, 1} denotes the random

treatment assignment for 𝑖. Whenever applicable, we use upper-case letters to repre-

sent variables or vectors that could be intervened by experimenters or affected by the
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intervention; and we use lower-case letters for other variables that are not affected by

the intervention (such as demographics). Sets are in calligraphy.

Potential outcomes framework for network interference

We start from the potential outcomes framework [211]: The potential outcomes frame-

work defines that a unit’s outcome is a function of assignment conditions.

𝑌𝑖 = 𝑦𝑖(𝑍𝑖). (6.1)

𝑦𝑖(1) and 𝑦𝑖(0) are called potential outcomes and we only ever observe one of them.

This function implies no interference, meaning that the potential outcome 𝑌𝑖 does

not depend on the treatment assignment of other users. However, this is often an

unrealistic assumption in network settings, since the unit’s outcome can be dependent

on the treatment assignment conditions of neighbors or even any other unit, through,

for example, social contagion.

To overcome this unrealistic assumption, our approach is based on [22] which

introduces exposure mapping. An exposure mapping is defined as a function that

maps the treatment assignment vector to a value; the fraction of treated friends [248]

is an example of a simple exposure mapping. Each exposure mapping corresponds

to a condition that considers both treatment assignment conditions of both the ego

node and her (𝑛-hop) neighbor. Under this framework, researchers or practitioners

usually need to define a priori a set of network interference conditions (also known as

exposure conditions). We denote this set by 𝒟. Then in this framework, the outcome

variable is expressed by

𝑌𝑖 =
∑︁
𝑑∈𝒟

𝑦𝑖(𝑑)1[𝐷𝑖 = 𝑑]. (6.2)

Each 𝑑 corresponds to a pre-specified exposure condition (interference condition). 𝐷𝑖

is a random variable indicating 𝑖’s exposure condition. Analyzing different exposure

conditions can offer insights into how observations react to different network interfer-

ence settings, such as comparing (with selection bias corrected) users in control with
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treated friends to users in control with only control friends.

Let us introduce three examples. First, SUTVA is a special case under this ex-

posure mapping framework (where 𝒟 = {𝑒𝑔𝑜_𝑡𝑟𝑒𝑎𝑡𝑒𝑑, 𝑒𝑔𝑜_𝑐𝑜𝑛𝑡𝑟𝑜𝑙}). The sec-

ond example is the existence of direct and indirect effects, as introduced in [22]:

that 𝒟 = {𝑛𝑜_𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒, 𝑑𝑖𝑟𝑒𝑐𝑡_𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒, 𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡_𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒, 𝑑𝑖𝑟𝑒𝑐𝑡 + 𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡

_𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒}. Direct effect means the ego or user is treated and indirect effect means

any neighbor is treated; thus we have four conditions in total. In our study, we use di-

rect effect to refer to the effect of changing 𝑍𝑖 from 0 to 1 on the outcome variable; and

indirect effect refers to any consequence that result from the assignment conditions

besides ego node 𝑖, i.e. 𝑍−𝑖.2 The third example, the 𝑘 (or 𝑞-fractional) neighborhood

conditions in [248] fits this framework, with (2× 2) four different exposure conditions

— whether the ego node is treated × whether more than 𝑘 (or 𝑞-fractional) of her

neighbors are assigned to the same treatment condition with the ego node.

Distinguishing between correlation and causation

The indirect effect may contain a large degree of heterogeneity based on how many

(𝑛-hop) neighbors are treated and how they are connected. Some of these conditions

are theorized in [57, 247] while other cannot. It is usually challenging to distinguish

between what is the causal impact of certain exposure conditions, versus what is

usually confounded by ego’s local network structure (for example, users with more

friends tend to have their friends less clustered) [233]. In other words, selection bias

may result from simply taking average over observations within a certain interference

condition. For example, imagine that we want to quantify the impact of an indirect

effect, so simply taking the average over observations who have at least one treated

friend versus taking average over observations with no treated friends. This aver-

age may be biased towards observations who have more friends. We illustrate this

selection bias issue in Figure 6-4.

2Indirect effects will be further specified by X𝑖 in later sections.
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Mathematically, our goal is to estimate the average potential outcome

𝑦(𝑑) =
1

|𝒰|
∑︁
𝑖

𝑦𝑖(𝑑), for all 𝑑 ∈ 𝒟. (6.3)

This is one of the core goals proposed in [22]. To correct the aforementioned selection

bias, we employ inverse probability weighting, such as Horvitz–Thompson estimator

and Hajek estimator [218] Although the Horvitz–Thompson estimator is an unbiased

estimator for the average potential outcome, it empirically has unaffordably high

variance. Therefore, following [84, 22], we use the Hajek estimator to estimate the

average potential outcome for exposure condition 𝑑 since its small bias can usually

be ignored in a large sample:

ˆ̄𝑦𝐻𝑎𝑗𝑒𝑘(𝑑) =

∑︀
𝑖∈𝒰

1𝑖(𝑑)𝑦𝑖(𝑑)
𝜋𝑖(𝑑)∑︀

𝑖∈𝒰
1𝑖(𝑑)
𝜋𝑖(𝑑)

=

∑︀
𝑖∈𝒰 ,𝐷𝑖=𝑑

𝑦𝑖(𝑑)
𝜋𝑖(𝑑)∑︀

𝑖∈𝒰 ,𝐷𝑖=𝑑
1

𝜋𝑖(𝑑)

, (6.4)

where we denote 𝜋𝑖(𝑑) = P[𝐷𝑖 = 𝑑] and 1𝑖(𝑑) = 1[𝐷𝑖 = 𝑑]. 𝜋𝑖(𝑑) is the inclusion

probability of the exposure condition of 𝑖 being 𝑑, and is a generalization of propensity

scores [208]. It can also be understood as a weighted average over observations with

1𝑖(𝑑) = 1, where the weight is 1/𝜋𝑖(𝑑). Therefore, it can be estimated through

weighted linear regressions: the coefficient for the constant is the Hajek estimator.

Its variance can be estimated via Taylor linearization [214].

The probability 𝜋𝑖(𝑑) is often challenging to compute analytically. We therefore

use Monte Carlo for sufficiently large replicates to approximate 𝜋𝑖(𝑑). Specifically, we

re-run the treatment assignment procedure for 𝑅 replicates to obtain the empirical

distribution of (𝑍𝑖,Xi).3 Therefore, we can derive the estimated inclusion probability

�̂�𝑖(𝑑) for any exposure condition 𝑑. For example, we can let �̂�𝑖(𝑑) =
∑︀

𝑟 1[𝐷
(𝑟)
𝑖 =𝑑]+1

𝑅+1
;

and we substitute the 𝜋𝑖(𝑑) in Equation 6.4 with �̂�𝑖(𝑑). The relative bias ˆ̄𝑦𝐻𝑎𝑗𝑒𝑘(𝑑)

to 𝑦(𝑑) diminishes exponentially as 𝑅 increases. The details have been discussed in

[22].

While the exposure mapping framework introduces a tractable way to take into

3It is challenging to derive this distribution analytically, especially when the random assignment
is deployed on the individual level.
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account network interference, it is an open question how we should then account

for the treatment assignment conditions of the 𝑛-hop neighbors and their network

connections in Figure 6-1. We hope to provide an approach that generates exposure

conditions that are suitable for a given experiment and dataset, and that avoids man-

ually defining exposure conditions a priori. Our study provides a two-step solution to

automatically identify different exposure conditions while overcoming selection bias

concerns, as will be explained in more detail in the next sections. First, for an A/B

test on a network, we construct network motif features with treatment assignment

conditions to provide a fine-grained characterization of the local network structure

and potential interference conditions. Second, using the network motif characteriza-

tion as input, we develop a tree-based algorithm to perform clustering and define the

set 𝒟 rather than allowing practitioners to explore that.

6.2.2 Causal Network Motifs

Network motifs are a way to characterize all patterns of smaller network features

among a set of nodes [180]. We introduce “causal network motifs,” which differ from

conventional network motifs in two primary aspects. First, we focus on (1-hop) ego

networks that include the ego node, with the methods generalizing to higher 𝑛-hop

ego networks for 𝑛>1. Second, we consider the treatment assignment conditions of the

user and their 𝑛-hop connections. We use the terminology “network motifs” to refer to

conventional motifs without treatment assignment labels (or assignment conditions)

and causal network motifs to refer to ones with assignment conditions. Examples of

network motifs are illustrated in Figure 6-2. We use these counts on an 𝑛-hop ego

network to characterize the exposure condition of each observation.

Experimenters and practitioners need to determine a priori the region of ego net-

works (the 𝑛 for 𝑛-hop ego networks which means the path length between an ego

node and another node is no greater than 𝑛) and the network motifs that matter. For

example, Figure 6-2 specifies 1-hop ego network and uses the assignment conditions

of dyads, triads, and open tetrads as features in the interference vector.

Using causal network motifs implies the following two assumptions:
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Figure 6-2: Examples of causal network motifs. Stars represent egos and circles
represent alters. Solid indicates the node being treated, hollow indicates control, and shaded
indicates that it could be treated or control. The first patterns in each row are conventional
network motifs without assignment conditions, or just called network motifs, followed by
corresponding network motifs. Our interference vector is constructed by dividing the count
of a causal network motif by the count of the corresponding causal network motif. The
labels below each network motif indicate the naming: for example, an open triad where one
neighbor is treated is named 3o-1.
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1. (𝑛-hop ego networks) We assume that an ego node’s outcome can only be

affected by its own assignment condition and its (𝑛-hop) neighbors’ assignment

conditions. This is a common assumption in the prior network interference

literature, and is sometimes called the stable unit treatment on neighborhood

value assumption [95, 159]. A larger 𝑛 implies a more relaxed assumption.

2. (Specified network motifs) Given the specified 𝑛-hop ego networks and

causal network motifs, we assume that only the assignment conditions of speci-

fied network motifs affect the outcome of the ego observation. This assumption

implies that we do not distinguish two ego networks with identical counts of

specified network motifs but with different network structures. Considering

more and higher-order would mitigate this issue.

Ideally, we should consider a large 𝑛 and network motifs with more nodes because

these are more relaxed assumptions. However, two issues may arise. First, it is

typically computationally expensive to count network motifs of many nodes in an ego

network of large 𝑛. There are many possible network motif patterns and potentially

large counts. Second, related to the positivity requirement in the next section, we need

all (or almost all) observations to contain all specified network motifs. Specification

of too many network motifs may exclude a significant proportion of samples from the

analysis.

Note that although all our examples are in the undirected setting, it can be easily

extended to directed networks (e.g., a directed edge from 𝑖 to 𝑗 indicates that 𝑖

reached 𝑗). In either undirected or directed networks, we should be cautious that

the networks are pre-treatment so that the network structure is not affected by the

treatment assignments. For example, when we use a network where edges represent

whether the two nodes have interactions, the interactions used should have happened

before the treatment was assigned; otherwise this would bring about an issue known

as post-treatment bias [15].

After counting causal network motifs for each ego node in our network, our next

step is to convert the counts to features, which will be used in the next section. Let
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Figure 6-3: An example of ego network with treatment assignments and the corre-
sponding interference vector. Stars represent egos and circles represent alters. Solid
indicates the node being treated, hollow indicates control, and shaded indicates that
it could be treated or control.

X𝑖 denote an 𝑚-dimensional random vector, referred to as interference vector. The

interference vector has an important requirement: Each element of the random vector

is “intervenable” — that is, the random treatment assignment affects the value of each

element of the vector. The requirement addresses the selection bias issue when we

estimate the average potential outcomes.

We construct the interference vector in the following way. For each observation, for

the count for each causal network motif (e.g., 2-1, 2-0, ..., 3o-2, 3o-1, ...), we normalize

it by the count of the corresponding network motifs (e.g., dyads, open triads, closed

triads, ...)4. In this way, each element of X𝑖 is intervenable and the support for each

element is in [0, 1]. Note that when considering a network motif with many nodes,

some observations may not have certain network motifs, and normalization cannot

be performed. In these scenarios, we can either exclude this network motif from the

interference vector, or drop these observations if they take a really small proportion.

Please refer to Figure 6-3 for an illustration of constructing the interference vector.

4The 𝑞-fractional neighborhood conditions are considered special cases in our approach where
only dyad motifs are used.
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Figure 6-4: Illustration of selection bias and positivity. 𝑥-axis and 𝑦-axis represent
the fraction of the given causal network motif among the corresponding network motifs,
assuming that we only specify these two causal network motifs. The positions of nodes
indicate observed values for each observation (not the probability distribution). Π1, Π2, Π3

or Π′
1, Π′

2, Π′
3 represent a plausible partitioning. Imagine green and yellow nodes represent

two types of observations (e.g. green for observations with fewer neighbors and yellow
for observations with more neighbors). In independent random assignments, green nodes
are more likely to have extreme values in the 𝑥- or 𝑦- axis, while yellow nodes are more
likely to be centered around the mean. The left partitioning may violate positivity because
yellow nodes may have zero or very small probability to belong in Π1; by contrast, the
right partitioning is feasible. In the right partitioning, simply taking the average is still
problematic because yellow nodes have a smaller probability to belong in Π′

𝑖. Therefore, we
need inverse probability weighting (e.g., Hajek estimator) to correct this selection bias.

We combine the ego node’s own assignment condition 𝑍𝑖 and interference vec-

tor X𝑖 as the features for our tree-based algorithm described in the next section to

determine exposure conditions. (𝑍𝑖,X𝑖) ∈ [0, 1]𝑚+1. Related to [22], our approach

is mathematically equivalent to, by an abuse of notation, 𝐷 = 𝑓(𝑍𝑖,X𝑖) such that

𝑦(𝐷) = 𝑦(𝑓(𝑍𝑖,X𝑖)). 𝒟 is equivalent to partitioning [0, 1]𝑚+1 to 𝒳1 ∪ 𝒳2 ∪ ... ∪ 𝒳|𝒟|.

𝑍𝑖 impacts direct effects, and X𝑖 corresponds to indirect effects.

6.2.3 A Tree-Based Partitioning Approach

The next question is how to design an algorithm to determine exposure conditions

by (𝑍𝑖,X𝑖) (i.e., partitioning its support [0, 1]𝑚+1). By an abuse of notation, we

replace any exposure condition 𝑑 by the corresponding partition 𝒳 (where 𝒳 ⊂

[0, 1]𝑚+1): 𝜋𝑖(𝒳 ) = P[(𝑍𝑖,X𝑖) ∈ 𝒳 ] = P[𝑓(𝑍𝑖,X𝑖) = 𝑑] = 𝜋𝑖(𝑑), and similarly
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1𝑖(𝒳 ) = 1[(𝑍𝑖,X𝑖) ∈ 𝒳 ] = 1𝑖(𝑑), or the potential outcome 𝑦𝑖(𝒳 ) = 𝑦𝑖(𝑑).

Our approach partitions [0, 1]𝑚+1 and determines exposure conditions based on

a decision tree regression [42].5 Decision trees can be used for clustering [164] and

typically have good interpretability in the decision making process [202]. Thus, it is

a proper machine learning algorithm to solve the partitioning problem. Each leaf of

the decision tree corresponds to a unique exposure condition (partition). Compared

with conventional decision tree regression, we need to have the following revisions:

1. (Positivity) Positivity ensures observations have a non-zero chance of being in

an exposure condition [260]. In our setting, it means that for all 𝑖 ∈ 𝒰 , 𝑑 ∈ 𝒟,

𝜋𝑖(𝒳 ) > 0. If any partition 𝑑 would lead to the existence of any observation 𝑖

that 𝜋𝑖(𝑑) = 0, we would be unable to estimate the average potential outcomes.

Mathematically, it would make the denominator in Equation 6.4 zero. Note that

the requirement is to set all observations (𝒰), rather than just the observations

that are randomly assigned to 𝒳 .

This is also part of the reason why we normalize the interference vector. Imagine

we use the number of each causal network motif as the elements of the interfer-

ence vector. If we decided a partition in which the number of 3c-2 (closed triads

with fully treated neighbors) is greater than 10, then all observations with fewer

than 10 open triads would have zero probability of belonging to this partition.

The necessity of positivity is illustrated in Figure 6-4.

The tree algorithm should not split a node if such splitting will lead to any child

node corresponding to an exposure condition in which any observation has zero

probability to belong. Since 𝜋𝑖(𝒳 ) is sometimes not solvable analytically, we

use Monte Carlo to approximate it (�̂�𝑖(𝒳 )) as mentioned previously for the

estimation of (�̂�𝑖(𝑑)). Moreover, we adjust the positivity requirement to non-

trivial probability, which allows a very few observations to have zero or near-zero

probability; non-zero 𝛿 and 𝜖 introduce a small bias but allow partitioning more

features.
5We only illustrate regressions because they can be generalized to binary outcome variables, but

our approach could be easily extended to classification.
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∑︁
𝑖∈𝒰

1[�̂�𝑖(𝒳 ) ≤ 𝜖] ≤ 𝛿|𝒰|. (6.5)

It means that the fraction of observations with �̂�𝑖(𝒳 ) ≤ 𝜖 is smaller than 𝛿.

2. (Honest splitting) One pitfall is that when we estimate the variance, the

algorithm is choosing a threshold to partition so that it would minimize its ob-

jective function; however, it may overfit the training data, selecting an improper

threshold when splitting, and eventually overestimating the difference between

the average potential outcomes indicated by the two child nodes. We thus split

the original training set into training and estimation sets — the training set is

used for tree partitioning and a separate estimation set is used for estimating

the mean and variance. This is a common approach to correcting confidence

intervals when using machine learning for causal inference [25, 151].

3. (Weighted sum of squared errors) Hajek estimator can be derived by min-

imizing weighted sum of squared errors given a candidate exposure condition,

which corresponds to a subset of [0, 1]𝑚+1 (denoted by 𝒳 ).

ˆ̄𝑦𝐻𝑎𝑗𝑒𝑘(𝑑) = arg min
𝑦

∑︁
𝑖∈𝒰 ,1𝑖(𝒳 )=𝑋

1

𝜋𝑖(𝒳 )
(𝑌𝑖 − 𝑦)2. (6.6)

In conventional decision tree regression, one common criterion that determines

whether the algorithm will continue to split a node is the reduction in sum of

squared errors. Since Hajek estimators can be solved through weighted linear

regressions, it is sensible to use a weighted sum of squared errors (WSSE). It can

be computed through a weighted linear regression where the weight is 1/𝜋𝑖(𝒳 ).6

WSSE(𝒳 ) =
∑︁

𝑖∈𝒰 ,1𝑖(𝒳 )=1

1

𝜋𝑖(𝒳 )
(𝑌𝑖 − ˆ̄𝑦𝐻𝑎𝑗𝑒𝑘(𝒳 ))2. (6.7)

When considering splitting the partition 𝒳 to sub-partitions 𝒳𝑙 and 𝒳𝑟, we

6In practice, we replace it by 1/𝜋𝑖(𝒳 ).
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cannot simply compare WSSE(𝒳𝑙) + WSSE(𝒳𝑟) versus WSSE(𝒳 ). This is be-

cause E[
∑︀

𝑖∈𝒰 ,1𝑖(𝒳 )=1
1

𝜋𝑖(𝒳 )
] = E[

∑︀
𝑖∈𝒰 ,1𝑖(𝒳𝑙)=1

1
𝜋𝑖(𝒳𝑙)

] = E[
∑︀

𝑖∈𝒰 ,1𝑖(𝒳𝑟)=1
1

𝜋𝑖(𝒳𝑟)
] =

|𝒰|, WSSE(𝒳𝑙) + WSSE(𝒳𝑟) is generally greater than WSSE(𝒳 ). We thus ad-

just the splitting criterion by taking a weighted average between WSSE(𝒳𝑙) and

WSSE(𝒳𝑟):

(𝒳 *
𝑙 ,𝒳 *

𝑟 ) =arg min
𝑋𝑙,𝑋𝑟

∑︀
𝑖 1𝑖(𝒳𝑙)∑︀
𝑖 1𝑖(𝒳 )

WSSE(𝒳𝑙)+∑︀
𝑖 1𝑖(𝒳𝑟)∑︀
𝑖 1𝑖(𝒳 )

WSSE(𝒳𝑟),

where
∑︀

𝑖 1𝑖(𝒳𝑙)∑︀
𝑖 1𝑖(𝒳 )

WSSE(𝒳𝑙) +

∑︀
𝑖 1𝑖(𝒳𝑟)∑︀
𝑖 1𝑖(𝒳 )

WSSE(𝒳𝑟)

< WSSE(𝒳 ) − 𝛾

and
∑︁
𝑖

1𝑖(𝒳𝑙) ≥ 𝜅 and
∑︁
𝑖

1𝑖(𝒳𝑟) ≥ 𝜅.

(6.8)

𝛾 is a hyper-parameter used to require non-trivial reduction in WSSE. Similar to

conventional decision trees, we can also set the minimum leaf size (𝜅) to prevent

the tree from growing unnecessarily deep.7 However, if the constraints cannot

be satisfied, (𝒳 *
𝑙 ,𝒳 *

𝑟 ) is an empty set and the algorithm would not further split

𝒳 .

Our algorithm is implemented by recursion. Split is a procedure used to partition

a given space. One can use Split([0, 1]𝑚+1) to start the recursion algorithm. The

data used for the algorithm is a random half of the original training set. We then use

the separate half to estimate the mean and variance. Empirically, direct effects (the

impact of 𝑍𝑖) are usually larger than indirect effects X𝑖 (the impact of X𝑖). Thus, the

first partition is more inclined to split on 𝑍𝑖: that is, it splits into two trees, in which

one corresponds to treated observations and the other corresponds to non-treated

observations.
7An empirically effective alternative is to require

∑︀
𝑖∈𝒰,1𝑖(𝒳 )=1

1
�̂�𝑖(𝒳 ) to be very close to |𝒰|; e.g.,

(1 − 𝜑)|𝒰| ≤
∑︀

𝑖∈𝒰,1𝑖(𝒳 )=1
1

�̂�𝑖(𝒳 ) ≤ (1 + 𝜑)|𝒰|, where 𝜑 is a small number. This helps us to avoid
partitions with a small number of observations, which may have a high degree of randomness in∑︀

𝑖∈𝒰,1𝑖(𝒳 )=1
1

�̂�𝑖(𝒳 ) and consequently, ^̄𝑦𝐻𝑎𝑗𝑒𝑘(𝒳 ).
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Figure 6-5: Implementation for the tree-based algorithm
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The bottleneck for computational efficiency is Line 5 — the loop that iterates

every element in 𝒰 . An improvement is to replace this for-loop by randomly choosing

𝜂 observations in 𝒰 . This may not help select the optimal cutoff but would provide

good cutoffs if 𝜂 is not too small. We also have several hyperparameters — 𝛾, 𝜅, 𝛿,

𝜖, and 𝜂. To tune those parameters, we can apply cross-validation to find the best

choice that minimizes WSSE*([0, 1]𝑚+1).

In addition to estimating the average potential outcome, our approach can also

be applied to estimating global average treatment effects and heterogeneous direct

effects with indirect effects fixed as explained:

1. Global average treatment effects. The global average treatment effect of an

experiment is the difference between the average outcome in a counterfactual

world where everyone is treated versus that in a counterfactual world where

everyone is non-treated [248]. This is fundamentally unsolvable unless assump-

tions such as SUTVA or our assumptions are made. In our approach, these two

counterfactual worlds belong to two separate partitions. We can just identify

these two partitions and compare the difference in the two average potential

outcomes to compute the global average treatment effect.

Specifically, when the tree algorithm terminates, we have two special subsets of

[0, 1]𝑚+1, denoted by 𝒳0 and 𝒳1 respectively. 𝒳0 is the partition that contains

the cases where 𝑍𝑖 = 0, all elements of X𝑖 that represent fully non-treated

neighborhood (2-0, 3o-0, 3c-0, 4o-0, ...) are equal to 1, and the rest equal 0;

𝒳1 is the partition that contains the cases where 𝑍𝑖 = 1 and all elements of X𝑖

that represent fully treated neighborhood (2-1, 3o-2, 3c-2, 4o-2, ...) are equal to

1, and the rest equal 0. Then we can use ˆ̄𝑦(𝒳1) − ˆ̄𝑦(𝒳0) to estimate the global

average treatment effect. Variance can be estimated by the method proposed

in [22].

2. Heterogeneous direct effects with indirect effects fixed. As discussed,

our algorithm tends to split on 𝑍𝑖 first if direct effects are larger than indirect

effects. Once the tree grows to two sub-trees that correspond to treated and non-
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treated observations, respectively, the further partitioning is not synchronized

in these two trees. However, what if we want to understand how direct effects

vary across different network interference conditions? Let 𝒳 (1) and 𝒳 (0) be the

two spaces such that 𝑍
(1)
𝑖 = 1 for all (𝑍

(1)
𝑖 ,X

(1)
𝑖 ) ∈ 𝒳 (1); and 𝑍

(0)
𝑖 = 0 for all

(𝑍
(0)
𝑖 ,X

(0)
𝑖 ) ∈ 𝒳 (0). 𝒳 (1) and 𝒳 (0) are complementary if for all (0,X

(0)
𝑖 ) ∈ 𝒳 (0)

𝑖 ,

we have (1,X
(0)
𝑖 ) ∈ 𝒳 (1)

𝑖 , and for all (1,X
(1)
𝑖 ) ∈ 𝒳 (1)

𝑖 , we have (0,X
(1)
𝑖 ) ∈ 𝒳 (0)

𝑖 .

We can then revise our tree algorithm by only partitioning on a space [0, 1]𝑚

(i.e., on X𝑖) and not partitioning on 𝑍𝑖. In each node, including leaves, the goal

is no longer estimating the average potential outcome. Instead, we estimate the

heterogeneous direct effects (𝒳 = {X|(1,X) ∈ 𝒳 (1)})

𝜏𝑑𝑖𝑟𝑒𝑐𝑡(𝒳 ) = 𝑦𝐻𝑎𝑗𝑒𝑘(𝒳 (1)) − 𝑦𝐻𝑎𝑗𝑒𝑘(𝒳 (0)) (6.9)

𝒳 (1) indicates the cases where neighborhood assignment conditions are in a

given region (e.g., high structural diversity, high echo chamber, or any other

interference conditions) and the ego is treated; and 𝒳 (0) indicates the cases

where the ego is non-treated but neighborhood interference conditions are the

same. In this case, 𝜏𝑑𝑖𝑟𝑒𝑐𝑡(𝒳 ) represents the average direct effect under that

interference conditions.

If estimating heterogeneous direct effects with indirect effects fixed, two main

revisions in Figure 6-5 are made. First, we adjust the weighted linear regres-

sions. Remember that the coefficient for the constant variable represented the

Hajek estimator; in this case, we need to add the 𝑍𝑖 into the regression, and

report the coefficient for this variable to estimate 𝜏𝑑𝑖𝑟𝑒𝑐𝑡(𝒳 ). WSSE is still de-

rived from the error term for the weighted linear regression. The partitioning

space becomes [0, 1]𝑚. Second, the variance of the estimator is more compli-

cated to estimate. Essentially, the variance estimation is similar to the methods

proposed in [25].
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6.3 Results

We evaluate our algorithm in a synthetic Watts-Strogatz (WS) network where we

can verify our approach recovers the ground-truth which we know, and a real-world

A/B test of a new product feature on Facebook to illustrate the scalability of our

approach.

Watts-Strogatz Simulation Network.

In studies of causal inference, a common challenge is that the ground-truth potential

outcomes under either treatment or control for a given unit 𝑖 is missing — that is,

for each observation, we can only observe one single potential outcome given either a

treatment or control assignment; with presence of network interference, we can only

observe the outcome under one exposure condition. Therefore, we rely on a simulation

study, which is often used to verify the effectiveness of causal inference methods.

We generate a Watts-Strogatz network [258] with |𝒰|=200,000. The Watts-Strogatz

model is a random graph generator that preserves network properties such as clus-

tering and the “small-world phenomenon.” To ensure a large variation in the local

structure of individuals’ neighborhood, we set a high rewiring rate for edges — 50%.

We set the number of replicates 𝑅 = 100.

To be as general as possible and also complement the real-world independent

assignment experiment, we use graph cluster randomization [248] in the simulation

study. We use a simple clustering approach — we cluster every 10 nodes on the ring

of the WS network, and we assign the treatment randomly and independently on the

cluster level. We consider the following four different data-generating processes for

outcomes, assuming that 𝜀𝑖 is randomly drawn from Gaussian distribution with the

mean of 0 and the variance of 1:

1. Cutoff Outcome.

𝑌
(1)
𝑖 = 0.1|𝒩𝑖| + 𝑔𝑒𝑛𝑑𝑒𝑟𝑖 + 2𝑍𝑖 × 1[𝑋𝑖,3𝑐−2 > 0.7] + 𝜀𝑖. (6.10)
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𝑔𝑒𝑛𝑑𝑒𝑟𝑖 is a covariate independent of any other independent variables, which is

randomly assigned to 1 or 0. Since this function has clear cutoffs, we can use it

to validate that our tree-based algorithm splits on the corresponding cutoff.

2. Causal Structural Diversity Outcome.

𝑌
(2)
𝑖 = 0.1|𝒩𝑖| + 𝑔𝑒𝑛𝑑𝑒𝑟𝑖 + 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙_𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦_𝑜𝑓_𝑡𝑟𝑒𝑎𝑡𝑒𝑑+

𝑍𝑖 × 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙_𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦_𝑜𝑓_𝑡𝑟𝑒𝑎𝑡𝑒𝑑 + 𝜀𝑖

(6.11)

Structural diversity is the number of disjointed components in an observation’s

neighborhood (or ego network). “structural_diversity_of_treated ” is defined

as the structural diversity given the set of treated neighbors. Although it was

found that structural diversity predicts a higher product adoption rate [247], it

is unclear whether this is a causal impact or just correlation. A causal impact

means it is actually the structural diversity of the treated neighbors that mat-

ters, while correlation means that the behavior is reflected by network structure,

regardless of assignment conditions [233]. Our approach can analyze whether

the causal impact of structural diversity exists in experimental data. Especially,

the numbers of fully treated open triads or tetrads indicate the structure diver-

sity of treated neighbors (3o-2 or 4o-3), and we expect our algorithm to split

on these features.

3. Correlational Structural Diversity Outcome.

𝑌
(3)
𝑖 = 0.1|𝒩𝑖| + 𝑔𝑒𝑛𝑑𝑒𝑟𝑖 + 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙_𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦+

𝑍𝑖 × 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙_𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 + 𝜀𝑖

(6.12)

“structural_diversity” is the structural diversity given all neighbors, regardless

of their assignment conditions. Therefore, we do not expect the tree algorithm

to split on any features.
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4. Validation Under Null Effect.

𝑌
(4)
𝑖 = |𝒩𝑖| + 𝜀𝑖. (6.13)

As a sanity check, we use as a covariate – the number of neighbors as the

outcome variable. We do not expect the tree algorithm to split on any features.

Figure 6-6: The result trees for the simulation experiment using all specified
network motifs. The two trees represent 𝑌 (1) or the Validation Cutoff Outcome (left) and
𝑌 (2) or the Causal Structural Diversity Outcome (right), respectively. The numbers in each
leaf represents the average potential outcome and standard error (square root of variance)
of the corresponding partition (exposure condition).

Results are presented in Figure 6-6 and summarized below:

1. Cutoff Outcome (𝑌 (1)
𝑖 ): As expected, after splitting treated versus control,

it splits on fully treated closed triads (3c-2), with a threshold of 69%. This

is consistent with the parameter 0.7 set in Equation 6.10. Also, as expected,

it does not further split on control groups. However, the algorithm has an

unexpected split on 3o-1, although the difference between the resulting 𝑑1 and

𝑑2 is not statistically significant. With further investigation, we find that this is

because when partitioning the tree using the training set, it overfits the noise;

however, since we use the estimation set for the average potential outcome

and its variance (i.e. honest splitting), the resulting tree does not show this

significant difference. This result also demonstrates the importance of honest

splitting.
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2. Causal Structural Diversity Outcome (𝑌 (2)): The result is presented in the

right panel in Figure 6-6. It first splits on treated versus control. For treated

observations, it first splits on fully treated open tetrad (4o-3), which is positively

correlated with the degree of structural diversity of treated neighbors. When

the fraction of fully treated open tetrad is greater than 6.6%, the algorithm

terminates splitting, providing a partition (exposure condition) with the largest

average potential outcome. If the fraction of fully treated open tetrad is smaller

than 6.6%, it further splits on open triads (3o-1). If the fraction of 3o-1 is greater

than 63%, the resulting exposure condition gives the smaller average potential

outcome within treated observations. For control observations, partially because

the structural diversity plays a smaller effect in the outcome function, it simply

splits on the dyad level and terminates.

3. Correlational Structural Diversity Outcome (𝑌 (3)) and Validation Un-

der Null Effect (𝑌 (4)): As expected, it terminates after splitting samples into

treated and control groups. Note these examples have nothing to illustrate.

We compare our results with a baseline method used in [22]. The study exam-

ines four exposure conditions: no effect, direct effect, indirect effect, and direct +

indirect effects. For example, when 𝑌
(1)
𝑖 is the outcome, most observations belong to

either “indirect effect” (1.4981 ± 0.0035, 48.1%) or “direct + indirect effects” (2.9182

± 0.0034, 50.0%). Similar results are derived in other outcomes. Therefore, this

specification approach is not suitable for our experimental data. Moreover, such a

partition cannot reveal the effects of specific network motifs or understand theories

such as structural diversity.

We also compare our result to the specification of the fractional 𝑞-neighborhood

exposure condition in [248], which is equivalent to the proposed algorithm using dyad

features only. This comparison can help highlight the importance of accounting for

network motifs rather than simply counting treated friends. When using only dyad

features, the algorithm splits treated observations on 2-1 (i.e. fraction of treated

neighbors), resulting in an average of potential outcome of 2.0472 (±0.0189) and
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3.2137 (±0.0085) for less than or equal to, or greater than 60%, respectively. It does

not split the control observations either.

We use estimated global treatment effects [248, 64] as a reference for the advantage

of using causal network motif over simply accounting for proportions of treatment

neighbors. Here we use 𝑌
(1)
𝑖 but similar results are derived in other settings. Using

dyads features only (i.e., the proportion of treated neighbors, see Figure 6-7) gives

(3.2137−1.4976 =) 1.7161 (±0.0112) while using all proposed motif features provides

(𝑑3 and 𝑑4 in the left panel of Figure 6-6, 3.5038 − 1.5057 =) 1.9981 (±0.0102); as

a baseline, the true global treatment effect is 2.0000, and the average treatment

effect under SUTVA is (2.9262− 1.5057 =) 1.4205 (±0.0118). In sum, using network

motifs helps reduce more bias than using dyads features only when we estimate the

global treatment effects because it characterizes network complex structure rather

than purely counting the fraction of treated neighbors.

We also investigate heterogeneous direct effects given different network interfer-

ence conditions. As shown in Figure 6-8, for both 𝑌 (1) and 𝑌 (2), it splits on the correct

threshold: for 𝑌 (1), 𝑍𝑖 only matters then the fraction of 3c-2 is greater than 70%;

for 𝑌 (2), it splits on important feature (4o-3), and the heterogeneous direct effect is

larger when this fraction is greater.8 As expected, no effect is observed for 𝑌 (3) and

𝑌 (4).

Care Reaction Rollout.

Finally, we apply our approach on a real-world A/B test of a product launch at

Facebook. Facebook launched the 7th reaction, “Care”.9 When the reaction was

launched, users in the control group (50%) could not use the Care reaction but could

still observe other users reacting with care. The treated group (the other (50%),

could both use and see the Care reaction. The sample size is approximately 5% of

the Facebook population, and we only take into account users and neighbors who

are in this 5% sampled users. Note that we cannot compare treated users in this
8Note that for the tasks of heterogeneous direct effects with indirect effects fixed, the average

direct effect for a parent node does not necessarily lies between the values of its two child nodes.
9https://www.facebook.com/careers/life/the-story-of-facebooks-care-reaction
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Figure 6-7: The result trees for the simulation experiment using dyad network motifs only.
The two trees represent 𝑌 (1) or the Cutoff Outcome (top) and 𝑌 (2) or the Causal Structural
Diversity Outcome (bottom), respectively. The numbers in each leaf represents the average
potential outcome and standard error (square root of variance) of the corresponding partition
(exposure condition).
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avg=1.4258
se=0.0119

avg=0.0158
se=0.0130

avg=2.0464
se=0.0343

3c-2 ≤ 70% 3c-2 > 70%

𝑌(")

𝑌($)

d2d1

avg=5.6277
se=0.0271

avg=3.0620
se=0.0276

avg=4.9369
se=0.0323

4o-3 ≤ 3.8% 4o-3 > 3.8%

d2d1

Figure 6-8: The result trees for heterogeneous direct effects for the simulation
experiment using all specified network motifs. The numbers in each node or leaf
represents the average direct effect given the network interference condition and standard
error (square root of variance) of the corresponding partition (exposure condition).

5% versus all the rest of Facebook population because the database does not log

non-compliance: those who were assigned to the 5% rollout but did not activate the

treatment assignment (non-active users who did not attempt to use Care) are not

recorded in the database and thus such a comparison is biased by non-compliance.

Figure 6-9: The result trees for the Care experiment using all specified network motifs. The
left panel presents the result for the use of other reactions, and the right panel presents the
result for the use of Care. The numbers in each leaf represents the average potential out-
come and standard error (square root of variance) of the corresponding partition (exposure
condition).

In this experiment, we expect a user’s use of reactions to be impacted by the

number of their Facebook friends who could use Care and how those friends are
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Figure 6-10: The result trees for the Care experiment using dyads only. The
upper panel presents the result for the use of other reactions, and the lower panel presents
the result for the use of Care. The numbers in each leaf represents the average potential
outcome and standard error (square root of variance) of the corresponding partition.

connected which might impact their usage with each other. If a user has more friends

using Care, or a group of friends able to use Care, she might use more Care reactions.

There are two main outcome variables in this A/B test: (1) the number of Care

reaction uses during the week after the experiment was launched. In the control

group, the number of Care reaction uses is always zero; and (2) the number of other

reaction uses. To prevent the impact from extreme points, outcome variables are set

on the log scale (log10(𝑥 + 1)).

We randomly split our observations into approximately equal training and esti-

mation sets of sufficiently large sample sizes. We use the training set to partition the

tree and the estimation set for the average potential outcome and standard errors in

each leaf node. We compute only dyad and triad network motifs, which is mainly
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restricted by computational resources.

The results are presented in Figure 6-9. There are eight exposure conditions

determined by the algorithm when the outcome is other reactions, and four when

outcome is use of Care. Again, we observe heterogeneity among different network

interference conditions. For example, on the left panel, 𝑑1 and 𝑑2 have a difference of

(1.1601− 1.1365 =) 0.0236± 0.0064. As a reference, directly comparing the averages

between treated and control groups gives −0.0293, which shows the importance of

distinguishing between different network interference conditions.

Again, we also compare the results using all specified network motifs (Figure 6-

9) versus the results using only dyads (Figure 6-10) to illustrate the importance of

using network motifs beyond dyads. In the left panel of Figure 6-9, 𝑑3 contains the

scenario of a fully treated neighborhood and 𝑑5 the scenario of a fully non-treated

neighborhood. Therefore, we can estimate the global average treatment as (1.1419−

1.1833) = −0.0414 (±0.0049). The baseline average treatment effect by directly

comparing the averages between treated and control groups is −0.0293 (±0.0021).

Thus, simply comparing the difference in means between treated and control groups

could underestimate the true treatment effect by 25%. By contrast, in the upper

panel of Figure 6-10, comparing 𝑑2 and 𝑑3 only gives (1.1516 − 1.1690 =) −0.0174

(±0.0022). Similar analysis and conclusions also apply when the outcome is Care.

We also examine heterogeneous direct effects under different network interference

conditions. Since use of Care is always zero for the control group, this analysis is

only meaningful when the outcome is other reactions. The algorithm splits on 3o-2

at 23% but does not provide significant differences between the two child nodes; we

do not provide a figure here.

6.4 Discussion

Network interference is much more complicated than simply being described as the

“indirect effect.” To examine and analyze heterogeneity of indirect effects in exper-

imental datasets, we provide a two-step solution. We first propose and employ the
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causal network motifs to characterize the network interference conditions, and then

develop a tree-based algorithm for partitioning. Our tree-based algorithm is inter-

pretable in terms of highlighting which exposure conditions are important for defining

potential outcomes, addresses selection bias and positivity issues, and avoids incorrect

standard error concerns via honest splitting.

Given the large number of researcher degrees of freedom in existing approaches

for network interference such as choosing the threshold for an exposure condition,

our approach provides a simple way to automatically specify exposure conditions.

In this way, researchers no longer need to define exposure conditions a priori, and

the exposure conditions generated by the algorithm are suitable for the given data

and experiment. We believe that methodological innovation for addressing network

interference concerns in A/B tests on networks will continue to be an important

area for development, and accounting for network motifs with treatment assignment

conditions provides a useful way to detect heterogeneous network interference effects.

Our work also falls at the intersection of graph mining and causal inference. Graph

mining methods are aimed at analyzing network properties such as the average num-

ber of connections, the number of communities, and more [58, 72]. We focus on one

type of graph property called a motif [180, 7, 2, 103]. However, we are not aware of any

applications that have used labeled network motifs in causal inference applications,

which is the focus of this work.

Moreover, we highlight our approach should not be confused with the Causal Tree

and relevant methods [25, 255]. The goal of our approach is to partition on the space

of random assignments, while the Causal Tree and similar methods partition only on

the covariate space. The critical difference in our setting is that in each partition of

the treatment space, all observations should have a (almost) non-zero probability of

belonging to that partition. In this way, we can construct certain unbiased estimators,

such as Hajek, to estimate the average outcome under certain treatment regions and

thus quantify a causal impact. By contrast, in Causal Tree and relevant methods,

covariates are not intervened by the experiment and each observation has only prob-

ability of zero or one of belonging to each partition. Therefore, their methods are
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primarily aimed at partitioning the covariate space (i.e., to identify heterogeneous

treatment effects for sub-groups in the sample) while our approach is to partition

the treatment space (i.e, to identify the causal effects of different treatment or more

specifically, exposure conditions). [27] is probably the most relevant recent paper,

which also characterizes ego network structure by motifs or other network features.

However, they focus on using matching to estimate average direct effects, and the

treatment assignments of neighbor nodes are not their main focus.

Practitioners using our approach may obtain important insights. For example,

they could understand how to utilize social contagion for product promotion when

they have constraints on the number of promos. Researchers may identify important

network interference conditions that are not theorized in certain experimental settings.

There remain many open questions or future directions based on our approach.

First, we can incorporate covariates into the algorithm such as demographic features.

One way is to also allow partitioning on the covariate space as well as the treatment

space as in this work. However, once the algorithm splits on a covariate, all the de-

scendants of that node only estimate the average potential outcome for the subsample

that satisfies the criterion. The other way is to incorporate covariates in the weighted

linear regressions in our algorithm. This helps reduce the variance for the estimators

and improve the precision when estimating average potential outcomes. We may also

want to account for tie strength as well.

Second, we may consider alternative machine learning algorithms. Decision trees

are not the only choice in our setting. We use a decision tree partially because it

is an interpretable machine learning algorithm and does not involve functional form

specification, except for assuming constant potential outcome. Our tree-based algo-

rithm can in fact be improved by the Hoeffding tree [78], which provides a streaming

algorithm to perform the partitioning efficiently. Instead of using sample split, we

may improve our methods by the conformal prediction theory [220]. Moreover, we

can imagine using nearest neighbor based algorithms and local regression instead to

estimate the potential outcome given any point or region in [0, 1]𝑚+1. In addition,

parametric methods can also be used when the goal is specific about estimating the
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potential outcome at certain points (e.g., fully treated neighbors) or estimating the

global treatment effect [64].

Finally, our approach can be extended to any experimental data with multiple

variables or continuous treatment variables, which are not necessarily only controlled

experiments on social networks. While existing causal inference literature has pri-

marily studied single binary or categorical treatments, fewer studies have approached

continuous or multiple variables [118, 130]. Our approach provides a way to automat-

ically convert multiple or continuous treatment variables to categorical treatments.

It would be interesting to further investigate how machine learning can be applied

to causal inference for continuous or multiple treatments as well as adapting this ap-

proach to observational causal inference settings.
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Chapter 7

Conclusion and future plans

My PhD thesis discusses the explorations I have conducted in the interaction between

social network analysis and computational techniques. Specifically, I have contributed

to both the understanding of social networks and the approaches that facilitate social

network analysis. The first part of my thesis focuses on understanding how social

exchange and long ties play important roles in social network formation and dynamics;

the second part focuses on products on online social media and their impacts on social

interactions and networks.

In the future, I plan to develop my research towards the following three directions.

Social Interactions and Social Networks for the Good

I am especially interested in how to utilize social preference and social contagion to

promote positive social interactions, and how social networks have shaped human

behavior and can be reshaped by digital technologies.

In the future, I will continue to use social network perspectives to understand

how to effectively promote various types of positive social interactions, including

cooperation, prosocial behavior, and intergroup contact. For example, I am interested

in how information and resources are diffused unequally through social networks and

how social platforms can reshape the structure of social networks to mitigate such

inequality. Another direction is to study the potential negative impact of social
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contagion of “good actions.” Although good actions may be contagious, they may also

increase the inequality between different social groups: in a segregated social network,

social contagion may further promote the level of prosociality in groups with a strong

prosocial and cooperative culture, but this may exacerbate the gap between the rich

and poor. Finally, as a long-term goal, I plan to design and implement mechanisms

on online social platforms that can effectively promote positive social interactions and

reshape the structure of social networks in our societies.

Complex Explanatory Models

Recent advances in machine learning have demonstrated the potential of complex

models with high-dimensional hypothesis space in prediction-based tasks. By con-

trast, explanatory models, which are intended to describe the mechanism of a phe-

nomenon, usually avoid such complexity. Take economic models for social networks as

an example. Explanatory models in their literature are parsimonious and tractable,

but typically do not account for heterogeneity in individual preferences and attributes

and cannot model the complexity of real-world social systems. Hence, when used to

predict individual decisions, these models may not achieve satisfactory performance.

My research thus aims to develop explanatory models with individual-level hetero-

geneity and predictability.

In the future, I will continue to explore the applications of advanced machine learn-

ing techniques in explanatory models, with a focus on social interactions and social

networks. Potentially useful techniques include multi-agent reinforcement learning,

deep learning (graph neural networks), and online learning.

Complex causal inference

In the big data era, computational scientists utilize cutting-edge computational and

machine learning techniques to detect and analyze interesting patterns. However, the

lack of exogeneity in observational studies poses challenges to valid causal identifica-

tions. Although causal inference is stressed in quantitative social science, it is not
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stressed enough in computer science and big data analytics. Importantly, existing

approaches may not be naturally applicable to large-scale data with complex data

structure. For example, the independent variable of interest (treatment variable) in

causal inference is typically binary (i.e., simply treatment or control), but in big data

the treatment variable may be continuous and high-dimensional, or partially random.

For observational data from online social platforms, randomness from computer

algorithms can manipulate treatment variables of interest to facilitate causal infer-

ence. For example, in Chapter 4, the monetary gift amount is (partially) randomly

determined by a computer algorithm algorithm, where the treatment variable is the

gift amount received. I use a directed acyclic graph (DAG) to illustrate the complex

causal relationships among observed and unobserved variables, guiding me to conduct

valid causal inference.

For experimental data, I have developed a machine learning approach to analyze

complex patterns of social contagion (in Chapter 6). In an experiment on social

networks, the outcome of an individual is affected both by her own treatment as-

signment, her network neighbor’s treatment assignment (e.g., Facebook friends), and

their social network structure. The treatment space in this case is high-dimensional

and contains network structure. This study provides a solution by combining net-

work motif analysis and machine learning to convert the high-dimensional treatment

assignments to low-dimensional ones.

In the future, I will continue to study interesting open questions in applied causal

inference, including identifying complicated heterogeneous treatment effects, tempo-

ral patterns of treatment effects, and the interaction effect between multiple treat-

ments.
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