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Experimental Design

by

Jinglong Zhao
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on May 13, 2021, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Social and Engineering Systems and Statistics

Abstract

Digital innovation has gained increasing attention in today’s world. The explosion of
data that is generated through modern marketplaces provides new opportunities to
use data-driven tools to understand and optimize the marketplace operations. This
dissertation studies various problems around the following two pillars of data-driven
operations: optimization and econometrics.

In the first module we focus on optimization, in which we consider dynamic re-
source allocation problems under zero adaptivity. Dynamic resource allocation prob-
lems are omnipresent in modern business operations. In the revenue management
setting, there are unreplenishable resources to allocate to heterogeneous consumer
demands, immediately and irrevocably upon their arrivals. In such settings, zero
adaptivity refers to a policy whose actions are independent of the remaining resources.
Traditional revenue management literature has mainly focused on fully adaptive poli-
cies; and there is a gap between the provable effectiveness of adaptive policies in
theory, and the applicability of non-adaptive policies in practice. We show that un-
der different models of demand uncertainty, carefully designed non-adaptive policies
may provably perform almost as well as the best fully adaptive counterparts.

In the second module we focus on econometrics, in which we consider experimental
design problems. Experimental design is a widely adopted approach for firms to
evaluate the effectiveness of their initiatives, by comparing the standard offering to
a new initiative. Such a task is often challenging due to interference, both over time
and across units. Traditional experimental design methods suffer from large variances
of the estimators when accounting for interference; and practitioners have recognized
that insufficient precision may lead to unreliable inference. We build the theoretical
foundations to use optimization approach to maximize the precision when designing
experiments.

Finally, we conclude with discussions of the limitations of the models and methods
we have considered. We also provide practical suggestions to applied researchers and
data scientists.
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Chapter 1

Introduction

Traditionally, the field of revenue management is primarily concerned about the inter-

face with the market with the objective of increasing revenues, in the face of market

uncertainty (Talluri and Van Ryzin 2006). Over the past score years, with the aid of

the ever-growing computing power, a new type of business model has emerged that

places data and algorithms at the center of its operations, in the hope of quantifying

the uncertainty and making proper decisions under uncertainty. Many traditional

firms have recognized its value and have begun their own digital transformation.

Urged by such digital transformation, this dissertation studies various problems

around the following two pillars of data-driven operations: optimization and econo-

metrics. This dissertation draws techniques from these two fields to showcase the

possibility of increasing business revenues. The two modules of this thesis are dedi-

cated to one topic each.

In the first module we focus on optimization, in which we consider dynamic re-

source allocation problems under zero adaptivity. Dynamic resource allocation prob-

lems are omnipresent in modern business operations. In the revenue management

setting, there are unreplenishable resources to allocate to heterogeneous consumer

demands, immediately and irrevocably upon their arrivals. In such settings, zero

adaptivity refers to a policy whose actions are independent of the remaining resources.

Traditional revenue management literature has mainly focused on fully adaptive poli-

cies; and there is a gap between the provable effectiveness of adaptive policies in
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theory, and the applicability of non-adaptive policies in practice. We show that un-

der different models of demand uncertainty, carefully designed non-adaptive policies

may provably perform almost as well as the best fully adaptive counterparts.

In the second module we focus on econometrics, in which we consider experimental

design problems. Experimental design is a widely adopted approach for firms to

evaluate the effectiveness of their initiatives, by comparing the standard offering to

a new initiative. Such a task is often challenging due to interference, both over time

and across units. Traditional experimental design methods suffer from large variances

of the estimators when accounting for interference; and practitioners have recognized

that insufficient precision may lead to unreliable inference. We build the theoretical

foundations to use optimization approach to maximize the precision when designing

experiments.

Finally, we conclude with discussions of the limitations of the models and methods

we have considered. We also provide practical suggestions to applied researchers and

data scientists.

1.1 First Module: Dynamic Resource Allocation un-

der Zero Adaptivity

This module consists of Chapters 2– 4.

Chapter 2 is motivated by the operational problem in a large consumer packaged

goods (CPG) company. While the company appreciates the advantages of dynamic

pricing, they deem it operationally much easier to plan out a static price calendar in

advance. In this Chapter, we investigate the efficacy of static control policies for rev-

enue management problems whose optimal solution is inherently dynamic. In these

problems, a firm has limited inventory to sell over a finite time horizon, over which

heterogeneous customers stochastically arrive. We consider both pricing and assort-

ment controls, and derive simple static policies in the form of a price calendar or a

planned sequence of assortments, respectively. In the assortment planning problem,
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we also differentiate between the static vs. dynamic substitution models of customer

demand. We show that our policies are within 1-1/e (approximately 0.63) of the opti-

mum under stationary (IID) demand, and 1/2 of the optimum under non-stationary

demand, with both guarantees approaching 1 if the starting inventories are large. We

adapt the technique of prophet inequalities from optimal stopping theory to pric-

ing and assortment problems, and our results are relative to the linear programming

relaxation. Under the special case of IID single-item pricing, our results improve

the understanding of irregular and discrete demand curves, by showing that a static

calendar can be (1 − 1/𝑒)-approximate if the prices are sorted high-to-low. Finally,

we demonstrate on both data from the CPG company and synthetic data from the

literature that our simple price and assortment calendars are effective.

Chapter 3 focuses on the network revenue management problem and stochastic

packing problem under zero adaptivity, which extends the dynamic pricing problem

and joint assortment-and-pricing problem discussed in Chapter 2. In these problems,

a firm operates by selling a number of products, which consume limited inventory,

over a finite time horizon, over which homogeneous customers stochastically arrive.

We specifically focus on the revenue loss incurred due to the constraint of how many

changes in actions are allowed. We show that the techniques from Chapter 2 would

lead to a small revenue loss that scales sublinearly with the scale of the system, using

no more than a certain number of changes in actions. We also show that, such a

threshold of total number of changes in actions is critical, in the sense that if we

cannot make enough changes then a linear revenue loss is inevitable.

Chapter 4 focuses on an online knapsack problem where the items arrive sequen-

tially and must be either immediately packed into the knapsack or irrevocably dis-

carded. Each item has a different size and the objective is to maximize the total size

of items packed. We focus on the class of randomized algorithms which initially draw

a threshold from some distribution, and then pack every fitting item whose size is

at least that threshold. Threshold policies satisfy many desiderata including simplic-

ity, fairness, and incentive-alignment. We derive two optimal threshold distributions,

the first of which implies a competitive ratio of 0.432 relative to the optimal offline
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packing, and the second of which implies a competitive ratio of 0.428 relative to the

optimal fractional packing. We also consider the generalization to multiple knapsacks,

where an arriving item has a different size in each knapsack and must be placed in

at most one. We derive a randomized threshold algorithm for this problem which

is 0.214-competitive. We also show that any randomized algorithm for this problem

cannot be more than 0.461-competitive, providing the first upper bound strictly less

than 0.5. This online knapsack problem finds applications in many areas, like supply

chain ordering, online advertising, and healthcare scheduling, refugee integration, and

crowdsourcing. We show how our optimal threshold distributions can be naturally

implemented in the warehouses for a Latin American chain department store. We

run simulations on their large-scale order data, which demonstrate the efficacy of our

proposed algorithms.

1.2 Second Module: Experimental Design under In-

terference and Heterogeneity

This module consists of Chapter 5, which focuses on the design and analysis of switch-

back experiments. Switchback experiments, where a firm sequentially exposes an ex-

perimental unit to a random treatment, are among the most prevalent design used

in the technology sector, with applications ranging from ride-hailing platforms to on-

line marketplaces. Although practitioners have widely adopted this technique, the

derivation of the optimal design has been elusive, hindering practitioners from draw-

ing valid causal conclusions with enough statistical power. We address this limitation

by deriving the optimal design of switchback experiments under a range of different

assumptions on the order of the carryover effect —- the length of time a treatment

persists in impacting the outcome. We cast the optimal experimental design prob-

lem as a minimax discrete optimization problem, identify the worst-case adversarial

strategy, establish structural results, and solve the reduced problem via a continuous

relaxation. For switchback experiments conducted under the optimal design, we pro-
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vide two approaches for performing inference. The first provides exact randomization

based 𝑝-values, and the second uses a new finite population central limit theorem

to conduct conservative hypothesis tests and build confidence intervals. We further

provide theoretical results when the order of the carryover effect is misspecified and

provide a data-driven procedure to identify the order of the carryover effect. We

conduct extensive simulations to study the empirical properties of our results and

conclude with practical suggestions.
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Chapter 2

Dynamic Pricing under a Static

Calendar

2.1 Introduction

We consider the following general revenue management problem. A firm has finite

inventory of multiple items to sell over a finite time horizon. The starting inventory is

unreplenishable and exogenously given, having been determined by supply chain con-

straints or a higher-level managerial decision. The firm can control its sales through

sequential decisions in the form of accepting/rejecting customer requests, pricing, or

adjusting the assortment of items offered. Its objective is to maximize the cumulative

revenue earned before the time horizon or inventory runs out.

We consider the setting in which customer demand is distributionally-known and

independent over the time horizon; this can be estimated from, e.g., the historical sales

data of our partner consumer packaged goods (CPG) company. The literature has also

considered other settings, where an unknown IID demand distribution (Besbes and

Zeevi 2009, 2012, Agrawal et al. 2017) or an evolving demand process correlated across

time (Araman and Caldentey 2009, Ciocan and Farias 2012, Ahn et al. 2019) must

be dynamically learned, or where demand is adversarial (Ball and Queyranne 2009,

Eren and Maglaras 2010). In our setting, the firm’s decision at one point in time has

no impact on its estimate of the demand at another point in time, which is supported
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by our data (see Section 2.1.4 and Section 2.4.1 for further discussion). Instead,

the time periods are linked by the inventory constraints, and the firm must trade

off between revenue-centric decisions that maximize expected revenue irrespective of

inventory consumption and inventory-centric decisions that maximize the yield from

the remaining inventory.

Revenue-centric decisions tend to be myopic and maximize the sales volumes of

the most popular items, while inventory-centric decisions tend to be conservative and

charge higher prices or prioritize selling highly stocked items. Intuitively, the opti-

mal control policy would make revenue-centric decisions when the overall remaining

inventory is plentiful for the remaining time horizon, and inventory-centric decisions

when the overall remaining inventory is scarce relative to the remaining time horizon.

However, not all companies have the infrastructure to query the state of the in-

ventory in real-time or adjust their decisions instantaneously. In fact, in the case of

our partner CPG company, prices must be negotiated with the brick-and-mortar re-

tailers that sell their products. As a result, a price calendar for the year is planned in

advance. On the one hand, this allows the CPG company’s management to estimate

its promotional budget, make production plans, and coordinate logistics; on the other

hand, this allows the retailer to make advertisements, estimate marketing budgets,

and lay out shelf space and price labels accordingly.

Motivated by this problem, we analyze the performance of static policies, which

must plan out all of the firm’s decisions (in this case, the price for each week) at the

start of the time horizon (in this case, one year), in revenue management problems

that are intrinsically dynamic, where the optimal control would adapt based on the

inventory that remains for the time horizon. If an item’s inventory runs out before

the end of the time horizon, then its shelf/catalog price is still marked according to

the calendar, but no sales of that item can be realized, since its shelf at the brick-

and-mortar retailer would be empty. We show that our static policies are effective

on data provided by the CPG company. They are also structurally very simple and

have performance guarantees comparable to their dynamic counterparts.
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2.1.1 Models Considered

We consider the time horizon to consist of a discrete number of time periods. This does

not lose generality, since a continuous time horizon can be modeled by the limiting

case in which the time periods are arbitrarily granular. Similarly, we model each item

as having discrete “price points” at which it could be sold. This allows us to both

approximate a continuous price range and capture situations where fixed price points

have been predetermined by market standards. As is common for many retailers, our

CPG company typically chooses prices that end in $.99 (e.g. $15.99, $16.99, $17.99,

$19.99). Due to menu costs (Mankiw 1985, Stamatopoulos et al. 2017), such a price

ladder is rarely changed.

We will separately consider the following two demand models because the design

of effective policies differs significantly between them.

1. Stationary (Section 2.2.3): the demand distribution for a specific decision, e.g.

the purchase probability 𝑞𝑡(𝑝) associated with price 𝑝, is identical for all time

periods 𝑡.

2. Non-stationary (Sections 2.2.4 and 2.2.5): the demand distribution for any

decision can vary arbitrarily over time (but still independent across 𝑡).

We will also consider two types of decisions made by the firm.

1. Pricing (for a Single Item): There is a single item with a discrete starting

inventory. We are given, for each time period 𝑡 and each feasible price 𝑝, the

probability 𝑞𝑡(𝑝) of earning a sale if price 𝑝 is offered during period 𝑡. The goal

is to plan the price to offer during each period 𝑡, with no sales occurring if

inventory has stocked out.

2. Assortment (and Pricing): There are multiple items each with a discrete

starting inventory. We are given, for each time period 𝑡 and each assortment 𝑆

of items that could be offered (as well as corresponding prices), the probability

of selling each item in 𝑆 during period 𝑡. The goal is to plan out the assortment

29



of items (and prices) to offer during each period 𝑡, with no sales occurring if the

customer chooses an item that has stocked out.

If the assortment problem includes pricing, then it captures the pricing problem with

a single item.

Our results also generalize to the fractional-demand setting, where the demand

distribution given for each period 𝑡 and price 𝑝 is over the continuous interval [0,1]

(after normalizing), and the sales in the period equal the minimum of the realized de-

mand and remaining inventory. The generalization to [0, 1]-demand gives us consider-

able modeling power. The dynamic pricing literature (e.g. see Gallego and Van Ryzin

(1994), Talluri and Van Ryzin (2006), den Boer (2015), Bitran and Caldentey (2003),

Elmaghraby and Keskinocak (2003)) has focused on the case of Bernoulli demand

because the firm can control the price with arbitrary granularity and hence ensure

that at most one sale occurs during any “time period”. However, in the case of our

CPG company, they can only control prices at the week level, during which the de-

mand distribution can range anywhere from a few hundred to a few thousand units.

We will apply the generalization to [0,1]-demand on the data provided by the CPG

company in Section 2.4.1.

2.1.2 Differences between Our Static Policies and Existing

Policies

In this paper, we use the term “static” to describe a policy that prescribes a deter-

ministic pricing and/or assortment decision for each period 𝑡 at the very start of the

time horizon. Therefore, the decisions of the static policy must be independent of the

sales that end up being realized. Should an item that the calendar planned to offer

be out of stock, we distinguish between two models for how customers behave.

1. Static Substitution: customers still see the same marked prices (and assort-

ments), but if a customer would have chosen an out-of-stock item, then no sales

are realized.
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2. Dynamic Substitution: customers only see the calendar-planned items with

remaining inventory at the time. They never choose an out-of-stock item, and

may or may not substitute to another in-stock item.

This distinction is irrelevant for the dynamic policies previously studied in the liter-

ature, since they can be changed on-the-fly to never offer an out-of-stock item.

Our static policies are based on deterministic linear programs (see Section 2.2.1

for details), which can be formulated for a given problem instance (items, inventory,

prices, and demand distributions) in advance, and hence be used to derive static

policies. At a high level, the LPs use deterministic values to approximate the random

execution of a policy, and we can use its optimal solution as a “guide” in designing

actual policies.

Such an LP was first used for the single-item pricing problem under stationary

demand in Gallego and Van Ryzin (1994), who show that the LP will suggest a single

price to offer, and hence a static policy. A recent paper by Chen et al. (2018) also

proposes a similar single-price policy in the face of strategic customers, that achieves

the same 1 − 1/𝑒 guarantee. However, this single-price policy requires the critical

assumption that the demand, as a function over a continuous price range, is regular 1.

In the general setting with irregular demand or a demand function over discrete price

points, the LP will suggest two prices, in which case Gallego and Van Ryzin (1994)

develop a policy that adaptively switches between them.

By contrast, we show that it is always better to switch from the higher suggested

price to the lower suggested price, and furthermore, we show that a static switching

point can be computed in advance based on the LP. The original dynamic pricing

policy of Gallego and Van Ryzin (1994) allows the two prices to be offered in either

order, but we show that if the policy must be static, then only the high-to-low ordering

of prices is effective.

1The regularity assumptions (Assumptions 7.1, 7.2 and 7.3 in Talluri and Van Ryzin (2006))
require the demand function (as a function of price) to be strictly decreasing and continuously
differentiable and require the revenue function (as a function of demand) to be concave. However,
in practice, demand functions are usually not regular. See Figure 5.2 from Talluri and Van Ryzin
(2006).
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Moving to non-stationary demand, we can no longer directly follow the LP so-

lution. In fact, we may want to modify certain decisions suggested by the LP to

ensure that sufficient inventory is “reserved” for higher-revenue time periods (see Ex-

ample 2.1 in Section 2.2.4). To accomplish this, we introduce a bid price 𝑐𝑖 for each

item 𝑖, which can be interpreted as the opportunity cost of a unit of item 𝑖’s inven-

tory. Policies based on bid prices are common in revenue management, and bid prices

which vary with the time 𝑡 can be derived using the approximate dynamic program-

ming techniques in Adelman (2007), Rusmevichientong et al. (2020). By contrast,

our bid prices 𝑐𝑖 are time-invariant and reflect the aggregate value of item 𝑖 over the

non-stationary time horizon. This may be easier for managers to interpret, and also

shows managers that an aggregate forecast of demand over the time horizon is suffi-

cient for determining effective bid prices, if we translate those bid prices into a policy

appropriately.

Our static policy is to take the LP solution, remove from the suggested assortments

all instances where an item 𝑖 is offered at a price less than 𝑐𝑖, and then follow a de-

randomized version of the modified solution. We essentially treat 𝑐𝑖 as an acceptance

threshold. Our policy is similar to those of Wang et al. (2015), Gallego et al. (2016),

in that it imitates the LP solution and independently determines for each item 𝑖 when

to discard it from the assortment. However, our discarding rule is static and based

on our fixed time-invariant bid prices 𝑐𝑖, whereas their discarding rule is dynamic and

based on the realized inventory levels.

2.1.3 Performance Guarantees and Analytical Techniques

We establish performance guarantees for our static policies which, in many cases,

improve existing guarantees even for dynamic policies. All of our guarantees are

ratios relative to the optimal LP objective value, which is an upper bound on the

performance of any static or dynamic policy. Generally, these LPs are useful because

they portray a relaxation of the optimal policy, and hence an optimal LP solution

can be used as a “guide” in designing a policy for the corresponding problem. In this

paper, we will focus on converting the LP solution into a static policy.
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Table 2.1: Lower bounds on the performance of static and dynamic policies.

Dynamic Policies Static Policies

Stationary Demand 1− 1/𝑒
w/ error rate 𝑂(1/

√
𝑏)−−−−−−−−−−−−−−−→

𝑏→∞
1 1− 1/𝑒

w/ error rate 𝑂(1/
√
𝑏)−−−−−−−−−−−−−−−→

𝑏→∞
1

Single-item Pricing/Assignment [Gallego and Van Ryzin (1994)] [Theorem 2.2]
Assortment (and Pricing) [Liu and Van Ryzin (2008); Theorem 2.2]
Non-stationary Demand 1/2 1/2

Single-item Pricing/Assignment [Wang et al. (2015)] [Rusmevichientong et al. (2020);
Assortment (and Pricing) [Gallego et al. (2016)] Theorem 2.6]

Non-stationary Demand
w/ error rate 𝑂(1/

√
𝑏)−−−−−−−−−−−−−−−→

𝑏→∞
1

w/ error rate 𝑂(
√

log 𝑏/𝑏)
−−−−−−−−−−−−−−−−−−→

𝑏→∞
1

Single-item Pricing/Assignment [Wang et al. (2015)] [Hajiaghayi et al. (2007); Theorem 2.8]
Assortment (and Pricing) [Gallego et al. (2016)] [Theorem 2.8]

Note: Our new results are bolded. 𝑏 refers to the amount of starting inventory (or the smallest
starting inventory, if there are multiple items).

Our results are outlined in Table 2.1. The baseline performance ratio is 1−1/𝑒 for

stationary demand and 1/2 for non-stationary demand. That is, our static policies

always earn at least 50% of the optimum in expectation, with the ratio improving to

≈ 63.2% if the given demand distributions are stationary. Both of these ratios are

tight. The ratios also increase to 100% as 𝑏, the starting inventory level when demand

has been normalized to lie in [0,1] (or in the assortment setting, the minimum starting

inventory among the items), increases to ∞.

In the stationary-demand pricing problem, Gallego and Van Ryzin (1994) derived

both the lower bound of 1− 1/𝑒 and an asymptotic-optimality result. However, their

policy is in general dynamic, unless the demand function is regular over a continuous

interval – the concavity assumption allows for a single price in the LP. By contrast,

we show that the same results can be obtained using our high-to-low static policy,

regardless of demand regularity. Additionally, in our analysis, we derive the tightest

possible bound for every value of 𝑏 and 𝑇 (the number of time periods), which allows

us to establish asymptotic optimality in only 𝑏 (instead of scaling both 𝑇 → ∞ and

𝑏 → ∞).

In the stationary-demand assortment problem, we analyze the policies originally

proposed by Liu and Van Ryzin (2008) and obtain the same bounds as above that

are tight in both 𝑏 and 𝑇 . To our knowledge, this type of result, which includes

the baseline lower bound of 1− 1/𝑒 when starting inventory is 1, has been previously
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unknown2 for the assortment problem. Asymptotic optimality was previously derived

by Liu and Van Ryzin (2008) when both 𝑇 → ∞ and 𝑏 → ∞.

Moving to non-stationary demand, the lower bound of 1/2 which improves to 1

as 𝑏 → ∞ has been previously established using dynamic policies, in the assignment

problem of Wang et al. (2015) and the more general assortment problem of Gallego

et al. (2016). We establish the same bounds using static policies, with an extremely

simple analysis based on prophet inequalities from optimal stopping theory. However,

our convergence rate of 1 − 𝑂(
√︀

(log 𝑏)/𝑏) is worse than the rate of 1 − 𝑂(1/
√
𝑏)

achievable with their dynamic policies.

We should mention that the lower bound of 1/2 for static policies under non-

stationary demand was also recently established by Rusmevichientong et al. (2020).

Their bound and analysis differ from ours in that theirs are relative to the optimal

dynamic policy instead of the deterministic LP relaxation. One benefit of using the

LP is that it directly extends to the fractional-demand setting, since the LP does not

change when demand can take any value in [0,1], which is our application of interest

with the CPG company. By contrast, their framework is designed for a very general

setting where resources can be reused after a random amount of time. We numerically

compare the performance of their policy in Section 2.4.2.

2.1.4 Application on Data from CPG Company

We use aggregated weekly sales data from a CPG company to validate our model,

and test the performance of our proposed policies. We use random forest to build

prediction models that suggest demand distributions (normalized to lie in [0,1], pos-

sibly fractional numbers) under different prices. Then we take these distributions

as inputs, and numerically compare the performance of our policies to some basic

benchmarks.

2The results in Golrezaei et al. (2014) imply performance guarantees for our problem, but their
ratios are smaller than ours, since they are designed to hold under the more general setting of
adversarial demand. Under this demand model, they only obtain a (1 − 1/𝑒)-guarantee under
the additional assumptions that each item has a single price, and that starting inventories are
asymptotically large.
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Figure 2-1: Work flow: from data to prediction model

Working together with the CPG company, we used the work flow depicted in

Figure 2-1 to build our demand model. The average out-of-sample percent error in

its sales predictions is 19.41%. It is worth highlighting the features selected by the

random forest: the tagged price, external competitor prices, and some external fea-

tures such as seasonality. However, neither internal competitor prices (the prices of

other SKUs of the CPG company) nor historical prices were selected. This observa-

tion validates our model in the following two aspects: internal competitor prices not

being selected suggests that we can separately optimize the price calendar for each

item; historical prices not being selected suggests that demand can be modeled as

independent over time. The latter aspect is also validated by a stream of empirical

literature on the “pantry effect” (Ailawadi and Neslin 1998, Bell et al. 1999), which

observes for various consumable goods that if customers attempt to stockpile it when

the price is low, then they will untimately consume it more quickly; hence, the low

price did not necessarily cannibalize future demand.

Optimizing the price calendar based on our demand model, we find that for sce-

narios where the starting inventory is of moderate size compared to the total expected

demand (i.e., for SKUs that were initially neither overstocked nor understocked), our

static policies outperform basic LP-based static policies by 5% under stationarity

and 1% under non-stationarity. Furthermore, our static policies lose at most 1% un-

der stationarity and 4% under non-stationarity, compared to the optimal dynamic

policies.

Both our theoretical guarantees and computational experiments suggest that static

calendars perform nearly as well as their dynamic counterparts. Managers will not
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lose much from planning a sequence of prices / assortments in advance.

Further details about our demand modeling and calendar optimization with data

from the CPG company can be found in Sections 2.4.1 and A.1.

2.1.5 Related Work

Our 1/2 guarantee for the general assortment and pricing problem under non-stationary

demand (and small inventory) is motivated by prophet inequalities, which provide an

elegant method for bounding the performance of online vs. offline algorithms (see

Samuel-Cahn et al. (1984), Kleinberg and Weinberg (2012)). The basic idea is to

compute a threshold price for each item, based on the offline solution, such that ei-

ther we are satisfied if an item sells out at its threshold price; or, if it does not, we are

still satisfied from having had the opportunity to offer that item to every customer.

Using prophet inequalities, there are very general results for maximizing welfare in

online combinatorial auction settings (Feldman et al. 2014, Dütting et al. 2017).

However, to the best of our knowledge, it is important for these techniques that

the objective is welfare, where the decision maker earns a reward equal to the sum

of revenue and customer surplus generated. When the objective is revenue alone,

elegant connections have been made for the single-parameter domain (Chawla et al.

2010, Correa et al. 2019), which hold under multiple settings including different arrival

orderings. Our work is the first to make the connection to revenue maximization

for assortment optimization under substitutable choice models, which is essentially

a multi-parameter domain. The result is a simple and elegant 1/2 guarantee for

assortment and pricing relative to the well-studied linear programming based upper

bound, which holds without any assumptions on inventories being large or customers

having identical willingness-to-pay distribution. The fact that our thresholds and

guarantee are relative to the upper bound is also novel. The aforementioned literature

has focused on comparing against the expected value of a “prophet” who knows the

realized valuations in advance (a weaker benchmark than the LP).

We also compare our model in which demand is stochastic and distributionally

known, to the models in which demand is completely unknown, or adversarial. One
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of the benefits of the adversarial model is that it does not rely on correct “forecasts”

of demand over time. However, the drawback is that the resulting algorithm does

not make use of forecasted demand information. Starting with the online booking

problem of Ball and Queyranne (2009) in which the decision concerns whether to

accept or reject each customer, single-item pricing (Eren and Maglaras 2010, Ma

et al. 2018), assortment optimization (Golrezaei et al. 2014), and joint assortment

and pricing (Ma and Simchi-Levi 2017) have all been studied under the adversarial

demand model.

The guarantees relative to the optimum are worse than ours, because we have

more demand information—in fact, in all of the settings except Golrezaei et al. (2014),

the papers resort to instance-dependent competitive ratios because a universal non-

zero guarantee is impossible when inventories can be depleted at multiple potential

prices. These papers have also tested the empirical performance of their algorithms

on datasets and found that using a hybrid strategy (as proposed by Mahdian et al.

(2007)) which employs the algorithms from both the adversarial and stochastic de-

mand models performs best. This suggests that our algorithmic improvements in the

stochastic demand model are valuable even if the given demand distributions are not

100% correct.

2.1.6 Outline

In Section 2.2.1 we define our basic problems and state the assumptions. In Sec-

tion 2.2.2 we discuss some generalizations and their required assumptions. In Sec-

tions 2.2.3 – 2.2.5, we introduce randomized policies in stationary demand, non-

stationary demand, and non-stationary demand with large inventory, respectively.

Then, in Sections 2.3.1 and 2.3.2, we introduce general sampling-based de-randomization

methods, and structural de-randomization methods, respectively. These de-randomization

methods yield deterministic calendars that (i) have the same theoretical guarantees,

(ii) significantly improve computational performance, and (iii) are much easier for

companies to accept. Finally, in Sections 2.4.1 and 2.4.2, we conduct numerical ex-

periments using real data provided by the CPG company, and synthetic data from
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the literature. We also introduce how we estimate the demands from the data in

Section 2.4.1.

2.2 Problem Definitions and Performance Guaran-

tees via Randomized Static Policies

2.2.1 Problem Definitions

Let N and N0 denote the positive and non-negative integers, respectively. For any

positive integer 𝑛 ∈ N, let [𝑛] = {1, . . . , 𝑛}.

A firm has 𝑛 ∈ N items to sell over a finite time horizon of 𝑇 ∈ N time periods.

Each item 𝑖 is endowed with 𝑏𝑖 ∈ N units of starting inventory, which is unreplenish-

able. We assume that 𝑏𝑖 ≤ 𝑇 , which does not lose generality since at most one unit

of any item 𝑖 can be sold during any time period. Let 𝑏 denote min𝑖∈[𝑛] 𝑏𝑖.

The firm can offer each item at one of 𝑚 ∈ N prices, 𝑝1, . . . , 𝑝𝑚, which are positive

real numbers. We will refer to each item-price combination (𝑖, 𝑗) ∈ [𝑛] × [𝑚] as a

product, in which case the general assortment and pricing problem can be described

as offering a set of products to each customer.

We let 𝒮 be any downward-closed3 family, which can be used to capture both

physical constraints such as shelf-size limitations and business constraints whereby

certain items cannot be offered at certain prices (or the same item cannot be simul-

taneously offered at multiple prices in the form of different products). We allow for

a constraint on the sets of products that can be feasibly offered, imposing that they

must lie in some family 𝒮 of subsets of {(𝑖, 𝑗) : 𝑖 ∈ [𝑛], 𝑗 ∈ [𝑚]}. We will refer to

elements in 𝒮 as assortments.

A static policy is a calendar that must be fixed at the start, prescribing the

assortments 𝑆1, . . . , 𝑆𝑇 ∈ 𝒮 to offer over the time horizon. In this section, we allow

this calendar to be determined in a random fashion at the start. After this calendar

has been fixed, sequentially over time 𝑡 = 1, . . . , 𝑇 , customer 𝑡 arrives and chooses to

3A family of subsets 𝒮 is downward-closed if for any 𝑆 ∈ 𝒮 and 𝑆′ ⊆ 𝑆, we also have 𝑆′ ∈ 𝒮.
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purchase at most one product from assortment 𝑆𝑡. For the situation in which some

of the products (𝑖, 𝑗) in the planned assortment 𝑆𝑡 have had their items 𝑖 stock out

before time 𝑡, we distinguish between two models for how customers choose:

1. Customer 𝑡 always sees all of the products in 𝑆𝑡, and if her first choice from 𝑆𝑡

has stocked out, no sales are realized (static substitution);

2. Customer 𝑡 only sees the products in 𝑆𝑡 that are still in stock4, and chooses her

favorite product from this selection (dynamic substitution).

We note that dynamic policies, as traditionally studied in the literature, do not need

to distinguish between static vs. dynamic substitution, since they can decide the as-

sortments 𝑆𝑡 on-the-fly to never offer an out-of-stock item (Rusmevichientong et al.

2020). By contrast, for static policies, both models can be justified. Static substitu-

tion occurs in parking systems, where customers are often shown “phantom” parking

spots, only to drive there and discover that the spot is occupied (Owen and Simchi-

Levi 2017). On the other hand, dynamic substitution occurs if customers switch to

a different product when they see that the shelf for their favorite product is empty

(Anupindi et al. 1998, Mahajan and Van Ryzin 2001, Honhon et al. 2010, Goyal et al.

2016). One factor that possibly reduces the prevalence of dynamic substitution is

brand loyalty, under which customers commit to a favorite brand at the supermarket

and make no purchase if that brand has stocked out (Jacoby and Kyner 1973, Amine

1998, Roehm et al. 2002). For product categories where brand loyalty is less common,

dynamic substitution is more common.

In either case, for all 𝑡 ∈ [𝑇 ], 𝑆 ∈ 𝒮, and (𝑖, 𝑗) ∈ 𝑆, we let 𝑞𝑡(𝑖, 𝑗, 𝑆) be the

probability of customer 𝑡 choosing product (𝑖, 𝑗) when she sees assortment 𝑆. Note

that
∑︀

(𝑖,𝑗)∈𝑆 𝑞𝑡(𝑖, 𝑗, 𝑆) ≤ 1 for all 𝑡 and 𝑆, where 1 −
∑︀

(𝑖,𝑗)∈𝑆 𝑞𝑡(𝑖, 𝑗, 𝑆) denotes the

probability of customer 𝑡 purchasing nothing when she sees assortment 𝑆. If (𝑖, 𝑗) /∈ 𝑆,

then 𝑞𝑡(𝑖, 𝑗, 𝑆) = 0. If the choice probabilities 𝑞𝑡(𝑖, 𝑗, 𝑆) are equal across 𝑡 = 1, . . . , 𝑇 ,

for all assortments 𝑆 and (𝑖, 𝑗) ∈ 𝑆, then we say that demand is stationary. If so, we

omit the subscript 𝑡 and refer to the choice probabilities as 𝑞(𝑖, 𝑗, 𝑆).
4Since 𝒮 is downward-closed, it is guaranteed that this selection of products seen by the customer

is still feasible. Furthermore, ∅ ∈ 𝒮, the empty set is always allowable.
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Choice-based deterministic linear programs

Any (static or dynamic) policy for the assortment problem can be captured by the fol-

lowing LP: let 𝑥𝑡(𝑆),∀𝑡 ∈ [𝑇 ], ∀𝑆 ∈ 𝒮 represent the probability of offering assortment

𝑆 at time 𝑡.

𝐽𝐶𝐷𝐿𝑃−𝑁 = max
𝑇∑︁
𝑡=1

∑︁
𝑆∈𝒮

𝑥𝑡(𝑆)
∑︁

(𝑖,𝑗)∈𝑆

𝑝𝑗𝑞𝑡(𝑖, 𝑗, 𝑆) (2.1)

s.t.
𝑇∑︁
𝑡=1

∑︁
𝑆∈𝒮

𝑥𝑡(𝑆)
∑︁

𝑗:(𝑖,𝑗)∈𝑆

𝑞𝑡(𝑖, 𝑗, 𝑆) ≤ 𝑏𝑖 ∀ 𝑖 = 1, . . . , 𝑛 (2.2)

∑︁
𝑆∈𝒮

𝑥𝑡(𝑆) = 1 ∀ 𝑡 = 1, . . . , 𝑇 (2.3)

𝑥𝑡(𝑆) ≥ 0 ∀ 𝑡 = 1, . . . , 𝑇 ; ∀ 𝑆 ∈ 𝒮 (2.4)

Constraints (2.2) ensure that total units sold will not exceed the initial inventory,

in expectation; constraints (2.3) ensure that only one price can be chosen in each

time period. Note that we can assume equality in constraint (2.3) because 𝒮 (being

downward-closed) always contains the empty assortment ∅; hence, we can increase

𝑥𝑡(∅) until equality is achieved.

When demand is stationary, we let 𝑥(𝑆),∀𝑆 ∈ 𝒮 represent the probability of

offering assortment 𝑆 at any given time period. Constraints (2.3) are then equivalent

to the single constraint (2.7).

𝐽𝐶𝐷𝐿𝑃−𝑆 = max 𝑇 ·
∑︁
𝑆∈𝒮

𝑥(𝑆)
∑︁

(𝑖,𝑗)∈𝑆

𝑝𝑗𝑞(𝑖, 𝑗, 𝑆) (2.5)

s.t. 𝑇 ·
∑︁
𝑆∈𝒮

𝑥(𝑆)
∑︁

𝑗:(𝑖,𝑗)∈𝑆

𝑞(𝑖, 𝑗, 𝑆) ≤ 𝑏𝑖 ∀ 𝑖 = 1, . . . , 𝑛 (2.6)

∑︁
𝑆∈𝒮

𝑥(𝑆) = 1 (2.7)

𝑥(𝑆) ≥ 0 ∀ 𝑆 ∈ 𝒮 (2.8)

We derive performance guarantees for our policies, which are based on the deter-

ministic LPs, relative to the optimal objective values of those LPs. This also provides
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a performance guarantee relative to the revenue of any dynamic policy, which is upper-

bounded by the LP objective value—this is a well-known type of result in revenue

management.

Lemma 2.1 (Gallego and Van Ryzin (1994), Gallego et al. (2004)). The expected rev-

enue of any (static or dynamic) policy for the assortment problem is upper-bounded

by the optimal objective value of CDLP-N from (2.1) when demand is non-stationary,

and CDLP-S from (2.5) when demand is stationary. Analogously, the expected rev-

enue of any policy for the single-item pricing problem is upper-bounded by the optimal

objective value of DLP-S from (2.14) in Section 2.3.2.

Hereinafter, we will always use the LP objective value as our optimum and denote

it using OPTLP, where the distinction between the LPs will be clear from the context.

The following mild assumption is required for some of our results. It originated

from Golrezaei et al. (2014) and has been nearly omnipresent in the subsequent lit-

erature on inventory-constrained assortment optimization (Gallego et al. 2016, Chen

et al. 2016, Ma and Simchi-Levi 2017, Rusmevichientong et al. 2020, Ma et al. 2020b,

Cheung et al. 2018).

Assumption 2.1. For all 𝑡 ∈ [𝑇 ], 𝑆 ∈ 𝒮, 𝑆 ′ ⊆ 𝑆, and (𝑖, 𝑗) ∈ 𝑆 ′, we have

𝑞𝑡(𝑖, 𝑗, 𝑆
′) ≥ 𝑞𝑡(𝑖, 𝑗, 𝑆).

This assumption states that the probability of selling a product (𝑖, 𝑗) can only

be improved if it is offered as part of a smaller assortment 𝑆 ′ instead of a larger

assortment 𝑆. The condition on the choice probabilities is often called substitutability.

It is implied by any random-utility choice model (e.g., the multinomial logit choice

model used in our computational study in Section 2.4.2), which treats the products

as substitutes.

2.2.2 Generalized Model with Multi-Consumption and Frac-

tional Consumption

Before stating our results, we describe a generalized version of the model from Sec-

tion 2.2.1 that allows for multiple products, as well as fractional amounts of a product,
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to be consumed in the same time period. This generalization is natural if we interpret

each 𝑡 ∈ [𝑇 ] as a larger-scale epoch (e.g., one week in the case of our CPG company)

instead of the choice made by a single customer.

Multiple purchases

We first consider the generalization where a customer can choose multiple products

(but still demands exactly 1 unit of each product chosen). This requires the following

modifications to the model from Section 2.2.1.

We are now given the joint distribution for the set of products demanded, when

any assortment 𝑆 ∈ 𝒮 is seen by any customer 𝑡. We assume that the set demanded

never contains two different products (𝑖, 𝑗1), (𝑖, 𝑗2) corresponding to the same item 𝑖,

so that even when there is only one unit of 𝑖 in stock, there is no ambiguity about

whether (𝑖, 𝑗1) or (𝑖, 𝑗2) is purchased.

Note that this assumption can be enforced by restricting 𝒮 to not contain any

assortment that simultaneously offers different products (𝑖, 𝑗1), (𝑖, 𝑗2) corresponding

to the same 𝑖. Such a restriction is natural if the only difference between products

(𝑖, 𝑗1) and (𝑖, 𝑗2) is in price (𝑝𝑗1 vs. 𝑝𝑗2), in which case it is nonsensical to mark item

𝑖 at multiple prices.

The demand is said to be stationary if the distribution of the set of products

demanded is identical across 𝑡 = 1, . . . , 𝑇 for all assortments 𝑆 ∈ 𝒮. The definitions

of Assumption 2.1 and the CDLPs remain unchanged if 𝑞𝑡(𝑖, 𝑗, 𝑆) now represents the

marginal probability of product (𝑖, 𝑗) being demanded when assortment 𝑆 is seen by

customer 𝑡.

Fractional demand consumption.

The further generalization where demand can be fractional (for multiple products)

requires the following further modifications to the model.

We are now given the joint distribution for the quantity of each product demanded,

when any assortment 𝑆 ∈ 𝒮 is seen by any 𝑡. We assume that this is a joint distri-

bution over [0, 1]|𝑆|, where we have normalized the sales of any item within a time
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period to lie in [0, 1] (and scaled its prices accordingly). We now allow the starting

inventories 𝑏1, . . . , 𝑏𝑛 to be any real numbers that are at least 1. We can assume a

lower bound of 1 because any item 𝑖 with 𝑏𝑖 < 1 can have its demand scaled up by

1/𝑏𝑖 so that the maximum possible sales during a time period is 1.

When demand can be fractional, we assume that the joint distribution of demand

only depends on the assortment shown, not the exact quantity of each product avail-

able. As a result, we assume static substitution when demand can be fractional. Under

static substitution, for each 𝑡 ∈ [𝑇 ], 𝑆 ∈ 𝒮, and (𝑖, 𝑗) ∈ 𝑆, let 𝐹𝑡,(𝑖,𝑗,𝑆)(·) be the CDF

function for the quantity of product (𝑖, 𝑗) being demanded, should assortment 𝑆 be

offered during time 𝑡. 𝐹𝑡,(𝑖,𝑗,𝑆)(·) is given and known. As before, demand is said to

be stationary if the joint demand distribution is identical across time. In this case,

𝐹𝑡,(𝑖,𝑗,𝑆)(·) = 𝐹(𝑖,𝑗,𝑆)(·),∀𝑡 ∈ [𝑇 ],∀𝑆 ∈ 𝒮. The definitions of Assumption 2.1 and the

CDLPs remain unchanged if 𝑞𝑡(𝑖, 𝑗, 𝑆) = E𝑄∼𝐹𝑡,(𝑖,𝑗,𝑆)
[𝑄] now represents the expected

quantity of product (𝑖, 𝑗) demanded when assortment 𝑆 is shown at time 𝑡.

We state one final assumption that is required for our result under stationary

demand, only when demand can be fractional. This assumption is again very mild,

in that it automatically holds for {0,1}-demand, which is the case studied in all of

the existing literature. We have to add it as a technical assumption in the setting

of [0,1] demands. Whereas we do not make any assumptions (e.g. concavity) on the

demand distributions themselves, this assumption concerns the relationships between

the different CDF’s for the different prices.

Assumption 2.2. Let 𝐹(𝑖,𝑗,𝑆) denote the marginal CDF for the quantity of product

(𝑖, 𝑗) demanded when assortment 𝑆 is shown at time 𝑡. For all items 𝑖, feasible

assortments 𝑆, 𝑆 ′ ∈ 𝒮, and prices 𝑗, 𝑗′ with 𝑝𝑗 > 𝑝𝑗′, assume that for all 𝑐 ∈ [0, 1],

E𝑄∼𝐹(𝑖,𝑗,𝑆)
[min{𝑐,𝑄}]

E𝑄∼𝐹(𝑖,𝑗,𝑆)
[𝑄]

≥
E𝑄′∼𝐹(𝑖,𝑗′,𝑆′)

[min{𝑐,𝑄′}]

E𝑄′∼𝐹(𝑖,𝑗′,𝑆′)
[𝑄′]

.

The intuitive explanation of Assumption 2.2 is that for any amount of remaining

inventory 𝑐 for item 𝑖, the fraction of un-truncated demand sold
E𝑄∼𝐹(𝑖,𝑗,𝑆)

[min{𝑐,𝑄}]
E𝑄∼𝐹(𝑖,𝑗,𝑆)

[𝑄]

is greater at the higher price 𝑗. Assumption 2.2 can be seen as a weaker ver-
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sion of a stochastic dominance assumption on the hazard rates of the distributions

𝐹(𝑖,𝑗,𝑆)(𝑥), 𝐹(𝑖,𝑗′,𝑆′)(𝑥). We provide examples and detailed discussions in Section A.2

in Appendix A.

2.2.3 Stationary Demand

Statement of results

Our assortment policy probabilistically follows the LP solution, without specifically

re-ordering the decisions portrayed in the LP.

Algorithm 1 Assortment (and pricing) policy when demand is stationary
1: Solve CDLP-S, and let {𝑥*(𝑆) : 𝑆 ∈ 𝒮} denote an optimal solution.
2: Independently for each time 𝑡, set the assortment 𝑆𝑡 to be 𝑆 with probability

𝑥*(𝑆), for all 𝑆 ∈ 𝒮.

This policy that probabilistically imitates the LP was originally studied by Gallego

et al. (2004), Liu and Van Ryzin (2008), where it was shown to be empirically effective

and asymptotically optimal. We now derive the first provable guarantees for it in

the non-asymptotic setting, as well as a tight characterization of how the guarantee

depends on both 𝑇 and 𝑏.

Theorem 2.2. Under the static substitution model (with Assumption 2.2 needed if

demand is fractional), for the assortment (and pricing) problem under stationary

demand, if there are 𝑇 time periods and 𝑏 = min𝑖∈[𝑛] 𝑏𝑖, then Algorithm 1 earns

expected revenue of at least

E[min{Bin(𝑇, 𝑏/𝑇 ), 𝑏}]

𝑏
· OPTLP, (2.9)

where Bin(𝑇, 𝑏/𝑇 ) denotes a Binomial random variable consisting of 𝑇 trials of prob-

ability 𝑏/𝑇 .

If we let ∆𝐴𝑃𝑋 denote the term E[min{Bin(𝑇,𝑏/𝑇 ),𝑏}]
𝑏

from expression (2.9), then

∆𝐴𝑃𝑋 ≥ 1 − 𝑏𝑏

𝑏!
𝑒−𝑏, (2.10)
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which states that ∆𝐴𝑃𝑋 = 1 − 𝑂(1/
√
𝑏), and increases from 1 − 1/𝑒 to 1 as 𝑏 → ∞

(regardless of 𝑇 ).

In Section 2.2.3 we sketch our proof technique for Theorem 2.2, and in Section 2.2.3

we show that our approximation guarantee of ∆𝐴𝑃𝑋 = E[min{Bin(𝑇,𝑏/𝑇 ),𝑏}]
𝑏

is tight for

every value of 𝑇 and 𝑏. But first, we demonstrate why Theorem 2.2 does not hold

generally under the dynamic substitution model, and identify a special case when it

does hold.

Proposition 2.3. Under the dynamic substitution model and Assumption 2.1 (sub-

stitutability), there is an instance of the assortment and pricing problem for which the

expected revenue of Algorithm 1 is strictly less than (1 − 1/𝑒) · OPTLP.

The counterexample for Proposition 2.3 is detailed in Section A.7 in Appendix A.

Nonetheless, the counterexample requires both multiple prices (i.e., item 1 that can

be sold at multiple prices) and multiple items (i.e., a second item that “shields” the

first item from being sold at the lower price) to exist. Theorem 2.2 holds in both of

the canonical cases of:

1. Single item, multiple prices (because with a single item, dynamic and static

substitution are equivalent);

2. Multiple items, single price per item (this is the pure assortment problem with-

out pricing, as stated next in Proposition 2.4).

Proposition 2.4. Under the dynamic substitution model and Assumption 2.1 (sub-

stitutability), if each item has only one single price (pure assortment problem without

pricing), then Algorithm 1 earns expected revenue of at least ∆𝐴𝑃𝑋 · OPTLP.

We prove Proposition 2.4 and Theorem 2.2 together in Section A.5 in Appendix A.

Moreover, for the joint assortment and pricing problem under dynamic substitution,

a static calendar can still earn 1
2
·OPTLP, even when demand is non-stationary, as we

will show via Algorithm 2 in Section 2.2.4.
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Two-step proof sketch of Theorem 2.2

The proof can be divided into two steps, which we will illustrate using the following

example. Consider a problem instance with a single item, time periods 𝑇 = 3 and

starting inventory 𝑏 = 2. Suppose we have two prices. The higher price 𝑝H = 2 earns

a sale with probability 1/3; the lower price 𝑝L = 1 earns a sale with probability 1,

i.e. deterministically. The optimal LP solution from (2.5) – (2.8) suggests to offer a

higher price H for 1.5 time periods, and a lower price L for 1.5 time periods.

Let E[Rev(0.5H, 0.5L; 0.5H, 0.5L; 0.5H, 0.5L)] denote the expected revenue of a ran-

domized policy that offers H and L each with probability one half in each period. Sup-

pose, for the purpose of analysis, that there existed a virtual price 𝑝C = (E[𝑄H]𝑝H +

E[𝑄L]𝑝L)/(E[𝑄H] + E[𝑄L]) with CDF 𝐹C(𝑥) = 0.5𝐹H(𝑥) + 0.5𝐹L(𝑥),∀𝑥 ∈ [0, 1]. Note

that E[𝑄C] = 2/3. We then establish the following sequence of two inequalities:

OPTLP ·
E[min{Bin(3, 2

3
), 2}]

2
≤ E[Rev(C;C;C)] (2.11)

≤ E[Rev(0.5H, 0.5L; 0.5H, 0.5L; 0.5H, 0.5L)] (2.12)

Inequality (2.11) relates the LP optimum to the expected revenue of a virtual

calendar that always offers 𝑝C. We interpret the LHS as the expectation of some Bi-

nomial random variable truncated by initial inventory and the RHS as the expectation

of an identical-mean, smaller-variance random variable that is also truncated by ini-

tial inventory. Although this virtual calendar cannot actually be offered (because the

price 𝑝C never exists), it can bridge our analysis.

Inequality (2.12) is true under Assumption 2.2. If the demand is never truncated

by the amount of remaining inventory, then offering the virtual price 𝑝C is equivalent

to randomly choosing prices 𝑝H and 𝑝L each with probability one-half. However, if

there is truncation, then Assumption 2.2 guarantees that the revenue from randomly

choosing between the real prices 𝑝H and 𝑝L cannot be less.

The formal, general proof of Theorem 2.2 is deferred to Section A.5 in Appendix A.
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Tightness of results

We now show that the ratio produced in expression (2.9), which is dependent on 𝑏 and

𝑇 , is tight. The proof of Proposition 2.5 can be found in Section A.6 in Appendix A.

Proposition 2.5. For any positive integers 𝑇 and 𝑏, there exists an instance of the

stationary-demand single-item pricing problem with 𝑇 time periods and 𝑏 starting

inventory, for which the expected revenue of any policy is upper-bounded by expres-

sion (2.9).

2.2.4 Non-stationary Demand with Small Inventory

In this section, we present our results for non-stationary demand with small inventory.

Our results for non-stationary demand in the asymptotic regime will be discussed in

Section 2.2.5.

Statement of results

In contrast to stationary demand, under the more general setting of non-stationary

demand, following the LP solution may be undesirable, because it may be beneficial to

“reserve” inventory for the highest-revenue time periods. The following Example 2.1

demonstrates this idea.

Example 2.1. Let there be 𝑇 = 2 periods and 𝑏 = 1 unit of initial inventory. Let

𝜖 ∈ (0, 1) be some small positive number. Let there be two prices: 𝑝1 = 1/𝜖2, 𝑝2 = 1.

Let random demands be Bernoulli random variables. During day 1, the purchase

probability of offering the higher price 𝑝1 is 0; and the purchase probability of offering

the lower price 𝑝2 is 1 − 𝜖. During day 2, the purchase probability of offering both

prices is 𝜖. DLP-N suggests that we offer 𝑝2 in the first period, then 𝑝1 in the second

Prices Period 1 Period 2
𝑝1 0 𝜖
𝑝2 1 − 𝜖 𝜖

period. The objective value of DLP-N is (1 − 𝜖) + 𝜖 · 1
𝜖2

= 1 − 𝜖 + 1
𝜖
. By simply using

47



the DLP-N solution as a calendar, the expected revenue is (1 − 𝜖) + 𝜖 · 𝜖 · 1
𝜖2

= 2 − 𝜖.

We can pick 𝜖 to be arbitrarily small and thus directly using LP can be arbitrarily

bad.

Nonetheless, we can still use the LP as a guide for our reservation policies.

Algorithm 2 Assortment (and pricing) policy when demand is non-stationary
1: Solve CDLP-N, and let {𝑥*𝑡 (𝑆) : 𝑡 ∈ [𝑇 ], 𝑆 ∈ 𝒮} denote an optimal solution.
2: For each item 𝑖, let 𝑟*𝑖 =

∑︀𝑇
𝑡=1

∑︀
𝑆∈𝒮 𝑥

*
𝑡 (𝑆)

∑︀
𝑗:(𝑖,𝑗)∈𝑆 𝑝𝑗𝑞𝑡(𝑖, 𝑗, 𝑆) be the contribu-

tion from item 𝑖 to the optimal objective value (note that OPTLP =
∑︀𝑛

𝑖=1 𝑟
*
𝑖 ).

3: Independently for each time 𝑡, first randomly select a 𝑆𝑡 to be equal to each 𝑆 ∈ 𝒮
with probability 𝑥*𝑡 (𝑆), which is a proper probability distribution by constraint
(2.3). If

∑︀
𝑆 𝑥
*
𝑡 (𝑆) < 1, then select 𝑆𝑡 to be the empty set ∅ with the remaining

probability, where ∅ ∈ 𝒮 is guaranteed by the downward-closed statement in
Assumption 2.1.

4: Define a discarding rule 𝐷 : 𝒮 → 𝒮 to be

𝐷(𝑆𝑡) =

{︂
(𝑖, 𝑗) ∈ 𝑆𝑡

⃒⃒⃒⃒
𝑝𝑗 >

𝑟*𝑖
2𝑏𝑖

}︂
. (2.13)

After 𝑆𝑡 has been selected, set the final assortment to be 𝑆𝑡 = 𝐷(𝑆𝑡) ⊆ 𝑆𝑡, which
is a feasible assortment to offer since 𝒮 is downward-closed.

Our assortment policy under non-stationary demand uses each cost 𝑟*𝑖 /(2𝑏𝑖) as an

acceptance threshold. We remove from the planned assortments all products of item

𝑖 being offered at prices below their thresholds. It is probable that the final 𝑆𝑡 is an

empty set ∅, even if 𝑆𝑡 is not empty, because we discard all the products from 𝑆𝑡.

Theorem 2.6. Under Assumption 2.1 (substitutability), for the assortment (and pric-

ing) problem where demand may be non-stationary, Algorithm 2 earns expected rev-

enue of at least OPTLP/2.

Proof sketch of Theorem 2.6

By finding the assortment suggested by expression (2.13), each unit of item 𝑖 sold

earns at least one-half of the per-inventory revenue of the corresponding 𝑟*𝑖 , which is

its contribution to the LP objective. Thus, if inventory runs out during the horizon,

then we have earned in total at least one-half of the LP upper bound. If inventory
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never runs out, then the algorithm extracts the full “opportunity” from each time

period which also results in at least one-half of the LP upper bound. In other words,

setting one-half of the per-inventory revenue as an acceptance threshold is neither too

high nor too low, and results in a “win-win” situation. This argument is based on the

classical prophet inequalities from Krengel and Sucheston (1977), Samuel-Cahn et al.

(1984), where we have modified their argument for optimal stopping to the pricing

and assortment settings.

We outline two key steps here, and defer the details of our proof to Section A.8

in Appendix A.

1. To evaluate Algorithm 2, we take out 𝑟*𝑖
2𝑏𝑖

revenue earned from each period for

each product (𝑖, 𝑗). Since after the discarding rule, the prices should be no

less than the threshold, i.e. 𝑝𝑗 ≥ 𝑟*𝑖
2𝑏𝑖

. Thus, this difference should always be

non-negative. That is,

Rev ≥
𝑇∑︁
𝑡=1

∑︁
𝑆∈𝒮

𝐴𝑡(𝑆)
∑︁

(𝑖,𝑗)∈𝐷(𝑆)

(𝑝𝑗 −
𝑟*𝑖
2𝑏𝑖

) min{𝐵𝑡−1(𝑖), 𝑄𝑡(𝑖, 𝑗,𝐷(𝑆))}

+
𝑛∑︁

𝑖=1

𝑟*𝑖
2𝑏𝑖

(𝑏𝑖 −𝐵𝑇 (𝑖)),

where 𝐴𝑡(𝑆) is an indicator if assortment 𝑆𝑡 = 𝑆 was selected in period 𝑡,

before the discarding rule from Algorithm 2 was applied; the infimum between

𝐵𝑡−1(𝑖), the (random) remaining inventory of item 𝑖 at the end of period 𝑡− 1,

and 𝑄𝑡(𝑖, 𝑗,𝐷(𝑆)), the (random) quantity of product (𝑖, 𝑗) demanded, is the

actual inventory of item 𝑖 sold in period 𝑡.

2. We relate the first triple summation term to CDLP-N, the deterministic linear

program.

𝑇∑︁
𝑡=1

∑︁
𝑆∈𝒮

𝐴𝑡(𝑆)
∑︁

(𝑖,𝑗)∈𝐷(𝑆)

(𝑝𝑗 −
𝑟*𝑖
2𝑏𝑖

) min{𝐵𝑡−1(𝑖), 𝑄𝑡(𝑖, 𝑗,𝐷(𝑆))} ≥

𝑛∑︁
𝑖=1

E[𝐵𝑇 (𝑖)]

𝑏𝑖

(︂
𝑟*𝑖 −

𝑟*𝑖
2𝑏𝑖

· 𝑏𝑖
)︂
.
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Then after canceling and re-arranging terms we prove the desired result.

Tightness of results

We now show that the ratio in Theorem 2.6 is tight. It suffices to find an instance in

the single-item pricing problem to show that the general result of assortments (and

pricing) problem is tight. The proof of Proposition 2.7 can be found in Section A.9

in Appendix A.

Proposition 2.7. There exists an instance of the non-stationary demand single-item

pricing problem for which the expected revenue of any policy is upper-bounded by

OPTLP/2.

2.2.5 Non-stationary Demand with Large Inventory

We present alternative policies for non-stationary demand that conduct “reservation”

to a lesser degree than in Algorithm 2. Our policies have better performance if starting

inventory is large, where the law of large numbers reduces the necessity of reservation,

even under non-stationary demand.

We propose a different asymptotic regime from the literature Gallego and Van Ryzin

(1997), Talluri and Van Ryzin (1998), Cooper (2002), to name a few. This is be-

cause traditional scaling requires 𝑇 and 𝑏𝑖,∀𝑖 ∈ [𝑛] to scale up linearly, and under

non-stationarity it is unclear how to scale the system. Instead of letting all 𝑇 and

𝑏𝑖, ∀𝑖 ∈ [𝑛] to scale up linearly, we allow for arbitrary dependence among 𝑇 and

𝑏𝑖, ∀𝑖 ∈ [𝑛]. This asymptotic regime is more of theoretical interests, and is sometimes

used in the theoretical CS literature. Note that in practice, the number of initial

inventory of different items may be significantly different, which might require some

non-trivial normalization to fit into the standard asymptotic regime.

Statement of results

In Algorithm 3, 𝛿 can be interpreted as the “reservation” probability, which de-

creases to zero as initial inventory increases. We reserve inventory by offering the
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Algorithm 3 Assortment (and pricing) policy when demand is non-stationary and
inventory is large
1: Solve CDLP-N, and let {𝑥*𝑡 (𝑆) : 𝑡 ∈ [𝑇 ], 𝑆 ∈ 𝒮} denote an optimal solution.
2: For each time 𝑡, offer each assortment 𝑆 ∈ 𝒮 with probability 𝑥*𝑡 (𝑆) · (1− 𝛿), and

offer ∅ ∈ 𝒮 with probability 𝛿, where 𝛿 =
√︁

3 log (𝑏)
𝑏

.

empty set, which is always available. Note that Theorem 2.8 requires no assumption

in the static substitution model.

Theorem 2.8. Under either the static substitution model or under Assumption 2.1

(substitutability), for the assortment (and pricing) policy where demand may be non-

stationary, if 𝑏 ≥ 6, then Algorithm 3 earns revenue that is at least

(︃
1 −

√︃
3 log (𝑏)

𝑏

)︃
OPTLP

in expectation. In particular, Algorithm 3 is asymptotically optimal as the starting

inventories approach infinity.

Proof sketch of Theorem 2.8

Algorithm 3 scales the LP solution by a factor of 1−𝛿, where 𝛿 is a small “reservation”

probability. 𝛿 is selected to balance two factors. First, it is small enough such that if

we never stock out, then earning (1 − 𝛿) · OPTLP is an asymptotically optimal ratio.

On the other hand, 𝛿 is large enough such that we stock out with probability at most

1/𝑏. This intuition is motivated by a tutorial of Anupam Gupta (Gupta 2009), where

they introduced the original work of Hajiaghayi et al. (2007). We improve the bounds

in the original paper, so that our bound only depends on 𝑏, but not on 𝑇 . We also

generalize to assortment and pricing problems with fractional-demand consumptions.

We outline two key steps here and defer the details of our proof to Section A.10

in Appendix A. The intuition is as follows: conditioning on the event that “inventory

never runs out”, the expected revenue is at least 1 − 𝛿 fraction of the LP objective.

Then, we show that this event happens with high probability.
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Table 2.2: A summary of de-randomization methods

Single-item Pricing/Assignment Assortment (and Pricing)
Stationary Demand Theorem 2.11 (or 2.9) Theorem 2.9
Non-Stationary Demand Theorem 2.15 (or 2.9) Theorem 2.9
Non-Stationary Demand (Large Inventory) Theorem 2.9 Theorem 2.9

1. Lower bound the expected revenue by a multiplicative factor of the LP objective,

i.e. E[Rev] ≥ Pr[𝐵𝑇 > 0](1 − 𝛿)OPTLP, where 𝛿 is as defined in Algorithm 3.

2. Using concentration of inequality, lower bound the probability that inventory

never runs out, i.e.

Pr[𝐵𝑇 > 0] ≥ 1 − Pr

[︃
𝑇∑︁
𝑡=1

{𝑄𝑡 − E[𝑄𝑡]} ≥ 𝛿𝑏

]︃

≥ 1 − exp

(︃
− (𝛿𝑏)2

2Var(
∑︀𝑇

𝑡=1 𝑄𝑡) + 2/3𝛿𝑏

)︃
≥ 1 − exp

(︂
−𝛿2𝑏

2

)︂
= 1 − 1

𝑏
.

2.3 De-randomization Methods

In this section we introduce de-randomization methods, which yield deterministic

calendars that (i) have the same theoretical guarantees, (ii) significantly improve

computational performance (See Section 2.4.2), and (iii) are much easier to accept in

practice.

Specifically, we first introduce a general de-randomization method in Section 2.3.1

that applies to any randomized static policy for joint assortment and pricing that

we proposed in Section 2.2. Then we introduce two specialized de-randomization

methods for Algorithms 1 and 2 when there is only a single item. These methods

take advantage of the structural properties in the single-item pricing problem. The

de-randomization methods are summarized in Table 2.2.

2.3.1 General De-randomization Methods

In this section, we introduce a general simulation-based de-randomization method

that achieves the same guarantee as any policy suggested by Algorithms 1–3 does. We
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consider the general assortment (and pricing) problem under non-stationary demand,

which captures single-item pricing and stationary demand as special cases.

Any policy as suggested by Algorithms 1–3 that independently chooses the assort-

ment in each time period, implies a distribution over static calendars, which can be

characterized by the following vector:

𝑧 = (𝑧𝑡(𝑆) : 𝑡 ∈ [𝑇 ], 𝑆 ∈ 𝒮) ∈ [0, 1]𝑇 ·|𝒮|,

where 𝑧𝑡(𝑆) = Pr{𝑆𝑡 = 𝑆} is the probability that we offer 𝑆 in period 𝑡. Note

there might exist 𝑡 such that 𝑧𝑡(∅) > 0 because our policies could possibly suggest

offering nothing in some periods. We will use the following example to illustrate our

de-randomization procedure.

Example 2.2. Consider a three-period problem with three options 𝒮 = {𝑆𝐴, 𝑆𝐵, ∅}.

Note that ∅ is always available. Suppose that our randomized policy (possibly from

Algorithm 2) is characterized by

𝑧 = (𝑧1(𝑆𝐴) = 0.5, 𝑧1(𝑆𝐵) = 0.5, 𝑧1(∅) = 0;

𝑧2(𝑆𝐴) = 0.5, 𝑧2(𝑆𝐵) = 0, 𝑧2(∅) = 0.5;

𝑧3(𝑆𝐴) = 0, 𝑧3(𝑆𝐵) = 1, 𝑧3(∅) = 0)

This policy implies a distribution over static calendars such that it takes (𝑆𝐴, 𝑆𝐴, 𝑆𝐵)

with prob. 1/4, (𝑆𝐴, ∅, 𝑆𝐵) with prob. 1/4, (𝑆𝐵, 𝑆𝐴, 𝑆𝐵) with prob. 1/4, and

(𝑆𝐵, ∅, 𝑆𝐵) with prob. 1/4 (because the assortments for 𝑡 = 1 and 𝑡 = 2 are drawn

independently). The idea of our de-randomization method is to select one of them

that garners the same expected revenue as the distribution of calendars does.

In general, this distribution over static calendars has a finite but exponentially

large support; computing the expected revenue of each calendar using brute force is

impossible. Instead, our method identifies the best assortment to offer iteratively over

𝑡 = 1, . . . , 𝑇 , using simulation. Our method requires a simulator 𝜈(𝑧, 𝜉) : [0, 1]𝑇 ·|𝒮| ×

Ξ → R, whose source of randomness (e.g. the random seed) is characterized by
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𝜉 ∈ Ξ. In each single run of the simulator, it randomly generates (i) a calendar

of assortments 𝑆1, 𝑆2, ..., 𝑆𝑇 , based on the probabilities suggested by 𝑧, and (ii) a

sequence of demands based on the choice models and the assortments on the calendar.

Finally, the simulator calculates revenue based on the simulated assortments and

demands. The simulator generates revenue from a bounded interval [0, (𝑏1 + · · · +

𝑏𝑛)𝑝max], where 𝑝max = max𝑗∈[𝑚] 𝑝𝑗 is given.

Now that we have the simulator, if we query this simulator 𝐾 times, then we

obtain an estimator �̂�𝐾(𝑧) = 1
𝐾

∑︀𝐾
𝑘=1 𝜈(𝑧, 𝜉𝑘) of the expected revenue of policy 𝑧.

We can select 𝐾 to be a large number such that �̂�𝐾(𝑧) is close to E[Rev(𝑧)] via a

concentration inequality. We specify our de-randomization method in Algorithm 4.

Algorithm 4 Simulation-based de-randomization method for Algorithms 1–3
1: Initialize 𝑧 to be the distribution over calendars suggested by any of Algorithms 1–

3.
2: Fix 𝐾 = ⌈𝑇 2(𝑏1+···+𝑏𝑛)2𝑝2max

OPT2
LP

· 1
𝜖2
· (log 𝑛+ log 𝑇 )⌉, the number of samples to average

in each period.
3: for 𝑡 = 1, 2, ..., 𝑇 do
4: For each assortment 𝑆 ∈ 𝒮 with 𝑧𝑡(𝑆) > 0, estimate the revenue of the ran-

domized calendar 𝑧 with the assortment 𝑆𝑡 to offer at time 𝑡 deterministically
set to 𝑆. Let �̂�𝐾(𝑧 |𝑆𝑡 = 𝑆) denote the estimate realized (taking the average of
𝐾 simulation runs), for each 𝑆 ∈ 𝒮. Select

𝑆𝑡 ∈ arg max
𝑆∈{𝑆∈𝒮|𝑧𝑡(𝑆)>0.}

�̂�𝐾(𝑧|𝑆𝑡 = 𝑆).

5: Update 𝑧 such that 𝑧𝑡(𝑆𝑡) = 1, and 𝑧𝑡(𝑆) = 0 for all 𝑆 ̸= 𝑆𝑡.
6: Offer assortment 𝑆𝑡 at time 𝑡.
7: end for

Example 2.3 (Example 2.2 Continued). Let (0.5𝑆𝐴, 0.5𝑆𝐵; 0.5𝑆𝐴, 0.5∅;𝑆𝐵) denote

a randomized policy that offers 𝑆𝐴 and 𝑆𝐵 each with probability one half in the

first period, offers 𝑆𝐴 and ∅ each with half-probability in the second period, and

finally offers 𝑆𝐵 in the third period. Algorithm 4 first finds the better one between

(𝑆𝐴; 0.5𝑆𝐴, 0.5∅;𝑆𝐵) and (𝑆𝐵; 0.5𝑆𝐴, 0.5∅;𝑆𝐵). If the latter is better, in the second

iteration it finds the better one between (𝑆𝐵;𝑆𝐴;𝑆𝐵) and (𝑆𝐵; ∅;𝑆𝐵).
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This idea of iterative de-randomization, when the support of the randomized solu-

tion is exponentially sized, has commonly appeared in the computer science literature

(Motwani and Raghavan 1995). However, the need for a simulator to evaluate the

assortments at each iteration and the analysis of how many samples are needed to

lose at most 𝜖 in the final de-randomized solution are new to our paper, to the best

of our knowledge.

We prove the following result, the proof of which is deferred to Section A.11 in

Appendix A.

Theorem 2.9. If any policy from Algorithms 1 – 3 earns expected revenue of at least

𝛼 · OPTLP, then the static calendar suggested by Algorithm 4 earns expected revenue

of at least (𝛼− 𝜖) · OPTLP.

The time complexity of Algorithm 4 is 𝑂( (𝑏1+···+𝑏𝑛)2𝑝2max

OPT2
LP

· 1
𝜖2
𝑛2𝑇 4(log 𝑛 + log 𝑇 )).

2.3.2 Single-Item Stationary Demand

We now introduce a specific de-randomization method for Algorithm 1 (the algorithm

for stationary demand) in the special case of single-item pricing. While the generic

de-randomization method from Section 2.3.1 will also suffice, the one presented here

contains additional structural insights about the de-randomized calendar. Note that

with a single item, dynamic and static substitution are equivalent.

We establish a structural property in Section 2.3.2 which shows that sorting the

static calendar in order of high-to-low prices is dominating. We show that sorting in

the opposite order (low-to-high) earns strictly less expected revenue, in Example 2.4 in

Section 2.3.2. We also show that using only one price (without regularity assumptions)

earns strictly less expected revenue, in Proposition 2.14 in Section 2.3.2.

In the single-item pricing problem, we have 𝑛 = 1, and we will omit index 𝑖. To be

able to handle [0,1]-demand (instead of just {0,1}-demand), we require the following

assumption.

Assumption 2.3. For any 𝑗, 𝑗′ ∈ [𝑚], either 𝐹𝑗(𝑥) ≥ 𝐹𝑗′(𝑥), or 𝐹𝑗(𝑥) ≤ 𝐹𝑗′(𝑥), for

all 𝑥 ∈ [0, 1].
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When demand is stationary, we have the following LP. For simplicity, we omit the

infinite price, and we put an inequality instead of an equality in (2.16).

𝐽𝐷𝐿𝑃−𝑆 = max𝑇 ·
𝑚∑︁
𝑗=1

𝑝𝑗𝑞𝑗𝑥𝑗 (2.14)

s.t.𝑇 ·
𝑚∑︁
𝑗=1

𝑞𝑗𝑥𝑗 ≤ 𝑏 (2.15)

𝑚∑︁
𝑗=1

𝑥𝑗 ≤ 1 (2.16)

𝑥𝑗 ≥ 0 ∀ 𝑗 = 1, . . . ,𝑚 (2.17)

The LP for pricing under stationary demand has the following structure.

Lemma 2.10 (Gallego and Van Ryzin (1994)). The DLP-S defined by (2.14), (2.15),

(2.16), and (2.17) has a basic optimal solution (𝑥*𝑗)
𝑚
𝑗=1 with at most two non-zeros in

its support, which we will denote using 𝑥*H (“Higher price”) and 𝑥*L (“Lower price”),

with 𝑝H ≥ 𝑝L

Based on the above LP and the optimal structure from Lemma 2.10, we devise

the following policy. Our policy offers the prices in a high-to-low order, with a static

Algorithm 5 Single-item pricing policy when demand is stationary
1: Solve DLP-S, and let 𝑝H, 𝑝L, 𝑥*H, 𝑥*L correspond to an optimal solution as described

in Lemma 2.10. Denote 𝑠H = 𝑇 · 𝑥*H/(𝑥*H + 𝑥*L).
2: Set the price to be 𝑝H for 𝑡 = 1, . . . , 𝑠* and 𝑝L for 𝑡 = 𝑠* + 1, . . . , 𝑇 . Here 𝑠*, the

duration for which the higher price is offered, is either ⌊𝑠*H⌋ or ⌈𝑠*H⌉.

switching point. Intuitively, the high-to-low ordering is desirable, because should we

stock out early from higher-than-expected demand realizations, we would rather lose

low-priced sales at the end.

Theorem 2.11. Under Assumption 2.3, for the single-item pricing problem under

stationary demand with 𝑏 units of inventory to sell over 𝑇 periods, Algorithm 5 earns
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expected revenue at least

E[min{Bin(𝑇, 𝑏/𝑇 ), 𝑏}]

𝑏
· OPTLP,

We prove Theorem 2.11 in the next section.

Structural property: monotonicity

We begin by quickly establishing a structural property, Lemma 2.12, as a warm-up

to the proof of Lemma 2.13, which is the key to the de-randomization in the single-

item stationary demand setting. Let 𝑣𝑡 ∈ [𝑚] denote the price index for time 𝑡 in

a calendar, and 𝑣*𝑡 ∈ [𝑚] denote the optimal price index in a revenue-maximizing

calendar. We use 𝑣 to describe the calendar, a vector of price indices. The structural

property states the following:

Lemma 2.12. In any calendar 𝑣, if two consecutive price indices 𝑣𝑡, 𝑣𝑡+1 are such

that 𝑝𝑣𝑡 < 𝑝𝑣𝑡+1, then indices 𝑣𝑡 and 𝑣𝑡+1 can be exchanged in the calendar without

decreasing its expected revenue.

The proof of Lemma 2.12 is deferred to Section A.12 in Appendix A. From this

Lemma, we know that there exists an optimal static calendar, the prices of which are

non-increasing over time.

Now we strengthen the monotonicity property in Lemma 2.12. Consider a problem

instance with 𝑇 = 3 time periods and starting inventory 𝑏 = 2. Suppose we have

two prices. The higher price of 2 earns a sale with probability 1/3; the lower price

of 1 earns a sale with probability 1, i.e. deterministically. The optimal LP solution

(according to Lemma 2.10) suggests offering a higher price index H for 1.5 time

periods, and a lower price index L for 1.5 time periods.

We let E[Rev(H; 0.5H, 0.5L; L)] denote the expected revenue of a randomized policy

that offers H in the first period, offers H and L each with probability one half in the

second period, and offers L in the third period. Similarly, we also define the following

E[Rev(0.5H, 0.5L; 0.5H, 0.5L; 0.5H, 0.5L)].
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The structural property states that if there is a positive probability that one

policy offers a lower price before a higher price, then this policy can be improved. For

example,

E[Rev(0.5H, 0.5L; 0.5H, 0.5L; 0.5H, 0.5L)] ≤ E[Rev(H; 0.5H, 0.5L; L)], (2.18)

There is a positive probability that the policy (0.5H, 0.5L; 0.5H, 0.5L; 0.5H, 0.5L) does

so, since there is already a 1/4 chance that it offers L in period 1 and H in period

2. However, the randomized policy (H; 0.5H, 0.5L; L) could only lead to the calendars

(H;H; L) or (H; L; L); in either case it always offers higher prices before lower prices.

The conclusion of inequality (2.18) is that the first policy can be changed to the second

policy without reducing revenue; note that the total expected number of periods that

both H and L are offered is still the same (1.5 periods each).

We now formalize inequality (2.18). Let {𝑥} = 𝑥 − ⌊𝑥⌋ be the fractional part of

a real number 𝑥.

Lemma 2.13. Consider the following two policies:

1. A policy that offers in each period the same probabilistic mixture of two prices,

i.e. a probability 𝛼 of offering the higher price and a probability 1−𝛼 of offering

the lower price;

2. A policy that starts by deterministically offering the higher price for ⌊𝛼 · 𝑇 ⌋

periods, then in the next period offers the higher price with probability {𝛼 · 𝑇}

and the lower price with probability 1 − {𝛼 · 𝑇}, and finally switches to offering

the lower price in the last ⌈(1 − 𝛼) · 𝑇 ⌉ − 1 periods.

The expected revenue of the second policy is no less than the expected revenue of the

first policy.

The proof of Lemma 2.13 can be found in Section A.12.

Proof. Proof of Theorem 2.11. Observe that Algorithm 1 suggests the first calendar in

Lemma 2.13; Algorithm 5 suggests the second calendar in Lemma 2.13. Theorem 2.11

holds by invoking Theorem 2.2.
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Switching from high to low is necessary

We show that switching from a higher price to a lower price is necessary, in the sense

that if we switch from a lower price to a higher price, we may fail to achieve the

bound by expression (2.9).

Example 2.4. Let there be 𝑇 = 2 periods and 𝑏 = 1 unit of initial inventory. Let

there be two prices: 𝑝1 = 8, 𝑝2 = 1. The corresponding purchase probabilities are

𝑞1 = 0.1, 𝑞2 = 0.9. The LP suggests that we offer both 𝑝1 and 𝑝2 for exactly one

period. The LP objective is OPTLP = 𝑝1𝑞1 · 1 + 𝑝2𝑞2 · 1 = 1.7

We calculate the bound in expression (2.9): it suggests a E[min{Bin(𝑇, 𝑏), 𝑏}]/𝑏 =

75% guarantee.

If we offer 𝑝2 in period 1 and then 𝑝1 in period 2, this earns an expected revenue

of 𝑝2𝑞2 + (1 − 𝑞2)𝑝1𝑞1 = 0.98, which is 0.98/1.7 ≈ 57.6% of the LP upper bound.

If we offer 𝑝1 in period 1 and then 𝑝2 in period 2, this earns an expected revenue

of 𝑝1𝑞1 + (1 − 𝑞1)𝑝2𝑞2 = 1.61, which is 1.61/1.7 ≈ 94.7% of the LP upper bound.

This example demonstrates that switching from a lower price to a higher price is

worse than the bound by expression (2.9), and it is even worse than the 1 − 1/𝑒 ≈

63.2% ratio. On the other hand, switching from a higher price to a lower price

performs much better.

We also show that two prices are needed to obtain our results in Theorem 2.2.

This is because we do not assume regularity assumptions. We state Proposition 2.14

here and defer its proof to Section A.13 in Appendix A.

Proposition 2.14. There exists an instance of the stationary-demand single-item

pricing problem for which the expected revenue of any single price policy is strictly

smaller than expression (2.9).

2.3.3 Single-Item Non-Stationary Demand

Analogous to Section 2.3.2, we now introduce a specific de-randomization method

for Algorithm 2 (the algorithm for non-stationary demand) in the special case of

59



single-item pricing.

When demand is non-stationary, we have the following LP. Let 𝑥𝑡𝑗,∀𝑡 ∈ [𝑇 ], 𝑗 ∈

[𝑚] be the probability that we offer price 𝑗 in time 𝑡.

𝐽𝐷𝐿𝑃−𝑁 = max
𝑇∑︁
𝑡=1

𝑚∑︁
𝑗=1

𝑝𝑗𝑞𝑡𝑗𝑥𝑡𝑗

s.t.
𝑇∑︁
𝑡=1

𝑚∑︁
𝑗=1

𝑞𝑡𝑗𝑥𝑡𝑗 ≤ 𝑏

𝑚∑︁
𝑗=1

𝑥𝑡𝑗 ≤ 1 ∀ 𝑡 = 1, . . . , 𝑇

𝑥𝑡𝑗 ≥ 0 ∀ 𝑡 = 1, . . . , 𝑇 ; ∀ 𝑗 = 1, . . . ,𝑚

Algorithm 6 Single-item pricing policy when demand is non-stationary
1: Solve DLP-N, and let 𝑟* denote the optimal objective value.
2: For each time 𝑡, set the price to be 𝑝𝑗𝑡 , where

𝑗𝑡 ∈ arg max
𝑗

(𝑝𝑗 −
𝑟*

2𝑏
)𝑞𝑡𝑗. (2.19)

In (2.19), 𝑟*/𝑏 can be interpreted as the per-inventory revenue of the LP. Algo-

rithm 6 guarantees to sell inventory for at least half of this value, since at each time

𝑡, it maximizes the expected profit with a bid price (opportunity cost) of 𝑟*/(2𝑏).

The intuition is that when there is only one item, we can treat the threshold as a

bid price and maximize with respect to it to obtain a deterministic calendar. This

de-randomization is because we use maximization instead of a discarding rule.

Theorem 2.15. For the single-item pricing problem where demand may be non-

stationary, Algorithm 6 earns expected revenue at least OPTLP/2.

We defer the proof of Theorem 2.15 to Section A.14 in Appendix A.
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2.4 Computational Study

2.4.1 Computational Study: Using Real Data from A CPG

Company

We first describe the business model. Then in Section 2.4.1, we explain how we develop

the prediction model from data. We discuss the details of feature selection in Sec-

tion 2.4.1 and justify the motivation of our dynamic pricing model. In Section 2.4.1,

we explain how we adapt the prediction model such that its output is consistent with

managerial intuition and statistically effective. Finally, in Section 2.4.1, we explain

the numerical performance under our proposed policies.

At the end of each year, the CPG company requires a price calendar to be planned

for the next year. This calendar contains 52 weekly prices for each SKU. The CPG

company then brings this calendar to its channels (e.g. supermarkets) to negotiate

the price-to-customers (PTC). We assume that they are the same, since the CPG

company has full bargaining power. After the calendar is delivered to channels, the

channels decide their yearly advertising strategy, produce flyers, and make price tags.

These are the reasons (e.g., long lead time on flyers) why we need to plan a calendar

in advance. Customers will not see the prices until the channels release their prices,

so there is no anticipatory behavior.

The random forest model

In this section we explain in detail how we develop the prediction model from the

data. We will follow the workflow shown in Figure 2-1 from Section 2.1.4.

We begin with weekly sales data in the past 3 years. After cleaning the missing

data, we select SKUs that generated 90% of the revenue in the past three years and

eliminate the rest. We also eliminate SKUs that were newly introduced in the most

recent year. Some SKUs are already grouped together by the company. They are

similar brands sold at similar pack sizes. The company requires that all SKUs in the

same group be sold at the same price. There are 52 distinct groups in total. We build
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Table 2.3: Different combinations of features, and the resulting out-of-sample error
rates

Tagged price X X X X X
Seasonal industry trend (after moving average) X X X X X X
Total number of stores in the district X X X X X
Festivals and sports events X X X X
External competitor prices X X X X X
Internal competitor prices (within brand) X X X
History prices X X
Average error rate 32.21 21.07 21.09 19.47 19.41 19.80

Note: In the last row, the average error rate is taken over both time periods and different SKUs.

group-specific prediction models with the same combination of features, i.e., all SKUs

use the feature “tagged price”, but it refers to a different tagged price for each SKU.

We derive a list of features from the data that will be used to predict demand

at each time step. These features include the price that this group is tagged at, its

internal competitor prices, its external competitor prices, and its history prices. The

internal competitor prices are the prices of the brands owned by the same company.

The external competitor prices are the prices of its true competitors, owned by its

rival companies. The features of history prices are take from the past week to the

past 3 weeks, as 3 different features.

The external features include industry seasonal trend (after applying moving av-

erage), total number of stores in the district, festivals and sports events. The first two

features are provided by the company, and the rest are obtained by scripting from the

Internet. We create dummy variables for festivals and sports events to characterize

categorical data.

We tested a few algorithms and finally choose to use random forest (Liaw et al.

(2002), Ferreira et al. (2016)) as the prediction model. In Section 2.4.1 we will discuss

an important challenge associated with random forest prediction and how it is ad-

dressed. We aggregate all the features together, then simultaneously perform feature

selection and parameter tuning, by using a 5-fold cross-validation. Finally, the aver-

age prediction error is reported as 19.41%. This demonstrates a very good prediction

model, compared with the number in Ferreira et al. (2016).
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Feature selection

In this section we explain how we select features. We validated our model based

on the selected features, because this provides indications of the existence (or non-

existence) of different sources of cannibalization effects. For example, if we identified

a temporal cannibalization effect, which states that a promotion given today will take

away future sales, then our model should address it. Fortunately, there are no such

complications, as supported by the data.

In cross-validation, we evaluated each feature combination based on its median

absolute percentage error (MdAPE) on the validation set. During this procedure, we

engaged in rounds of discussions with the company to ensure that the features se-

lected are interpretable. There are some sub-optimal combinations that the company

believed would make more practical sense, and we followed their advice.

These features were both approved by the CPG company’s management as con-

sistent with their expedience and also resulted in the lowest out-of-sample prediction

errors — see Table 2.3 for the reported error rates. Each column depicts a combi-

nation of features, and the corresponding numbers are prediction errors under this

feature combination. The first column serves as a benchmark. We omit some trivial

duplicates of the same feature, but note that some rows represent many features, e.g.,

festivals and sports events.

The features that were ultimately selected include: the tagged price, external

competitor prices5, and some external features. Note that this list includes neither

internal competitor prices (from other SKUs of the CPG company) nor historical

prices. We validate our model with the following two observations, which suggest

that our model captures the real retail dynamics:

Cross-product cannibalization is not significant. A probable reason is that we

have already grouped similar brands sold at similar pack sizes. This suggests that we

can employ single-item calendar pricing without considering the joint optimization of

5We do not know the true competitor prices, but we can use ARIMA (Hyndman et al. 2007,
2020), a time series model, to predict competitor prices; by substituting true competitor prices with
predicted competitor prices we find the prediction accuracy evaluated on the testing set remains
almost unchanged. Thus, we use predicted competitor prices instead of true competitor prices.
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simultaneously deciding all SKUs’ calendars.

Inter-temporal cannibalization is also not significant. This suggests that demands

are not correlated across time, in alignment with our theoretical model. A good

explanation of this observation is due to the “pantry effect” (Ailawadi and Neslin

1998, Bell et al. 1999). Even if customers stockpile a product during promotions,

this accelerates their consumption rate. Thus, they ultimately purchase as much of

the product in subsequent time periods as they otherwise would have, especially for

products such as carbonated beverages and ice cream. Therefore, we model demands

as independent across time.

Monotone demand curve

If we focus on the price-demand relationship, we observe that the direct output of

random forest yields a non-monotone prediction. In Figure 2-2, the black dots show

the predicted price-demand curve for one SKU in one week. There are occasions

when the predicted demand has positive price elasticity, e.g. when price is between

225 and 230. Since we are selling consumer packaged goods, there is no conspicuous

leisure (Veblen 2017), and price elasticity should be negative. A non-decreasing de-

mand curve is not acceptable to the CPG company from a managerial perspective.

Theoretically, a non-decreasing demand curve might also (but not necessarily) violate

Assumption 2.3.

Figure 2-2: Predicted price-demand relationship, before and after curve fitting

Note: The prices are in industry units.

To solve this problem, we introduce curve fitting. First uniformly draw 100 sam-

ples (𝑃𝑖, 𝐷𝑖)
100
𝑖=1 from the demand curve. Then fit a piecewise linear function, written
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as

𝑓Θ(𝑥) =
𝑑−1∑︁
𝑖=1

1{𝑥𝑖<𝑥<𝑥𝑖+1}

(︂
𝑦𝑖+1 − 𝑦𝑖
𝑥𝑖+1 − 𝑥𝑖

(𝑥− 𝑥𝑖) + 𝑦𝑖

)︂
+

1{𝑥<𝑥1} (𝑎𝑙(𝑥− 𝑥1) + 𝑦1) + 1{𝑥>𝑥𝑑} (𝑎𝑟(𝑥− 𝑥𝑑) + 𝑦𝑑)

parameterized by Θ = {𝑥1, ..., 𝑥𝑑, 𝑦1, ..., 𝑦𝑑, 𝑎𝑙, 𝑎𝑟} ∈ R2𝑑+2
+ , where 𝑑 is the number of

breakpoints, and 1{𝑥>𝑎} are indicator functions equal to one if 𝑥 > 𝑎, zero if 𝑥 ≤ 𝑎.

We arbitrarily selected 𝑑 to be 10. Finally, we minimize the mean squared error over

these 100 sample points, with shape constraints enforcing a monotonic decreasing

function.

min
Θ∈ℛ2𝑑+2

100∑︁
𝑖=1

(𝑌𝑖 − 𝑓Θ(𝑋𝑖))
2

𝑠.𝑡. min
𝑗

𝑋𝑗 ≤ 𝑥1 < 𝑥2 < ... < 𝑥𝑑 ≤ max
𝑗

𝑋𝑗

max
𝑗

𝑌𝑗 ≥ 𝑦1 > 𝑦2 > ... > 𝑦𝑑 ≥ min
𝑗

𝑌𝑗

𝑎𝑙, 𝑎𝑟 < 0

We solve the above program using heuristics. The curve-fitting output is depicted in

Figure 2-2 as the red dots. The accuracy is slightly improved from 19.41% to 18.66%.

We do not view this improvement as tremendous, but we have built a model that is in

greater agreement with managerial suggestions. Finally, a monotone demand curve6

satisfies Assumption 2.3, as addressed in Section 2.3.2.

Computational performance of policies

In this section, we take distributions obtained from the above sections as inputs and

compare the performance of our policies to selected benchmarks. We fix the feasible

price set for each SKU to be the prices from its historical data. The planning horizon

is one year, 52 weeks. We normalize demands to take [0, 1] values by dividing the

6To be precise, we derive several scenarios for a specific SKU at a specific price to obtain a
discrete distribution, and this suggests a monotone demand curve under each scenario.
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predicted demands by the highest predicted demand. We consider different scenarios

in which the starting inventory ranges from 1 unit to 52 units and analyze both

stationary and non-stationary demand models.

We compute the expected revenue from our proposed policies (ALG1 from Algo-

rithm 1 under stationarity, ALG2 from Algorithm 2 under non-stationarity, ALG3

from Algorithm 3 under non-stationarity, and ALG5 from Algorithm 5 the deter-

ministic policy under stationarity), the LP upper bound, the Optimal DP for the

policy solving the optimal dynamic program, the Myopic policy as one benchmark,

and an LP-Based randomized policy as another benchmark. The results are shown

in Figures 2-3 and 2-4, where we have divided all numbers by the corresponding LP

upper bound, meaning that the performance ratio is always between 0 and 1, with

higher ratios indicating better performance.

Figure 2-3: Computational performance of polocies under stationary demand

For scenarios in which the starting inventory is of moderate size compared to

the total expected demand (i.e. for SKUs that were initially neither overstocked nor

understocked), our static policies outperform basic LP-based policies by 5% under

stationarity and 1% under non-stationarity. Furthermore, our static policies lose at
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Figure 2-4: Computational performance of polocies under non-stationary demand

most 1% under stationarity and 4% under non-stationarity, compared to the optimal

dynamic policies.

Note that in practice, it is rare for the initial inventory level to be very small

or very large, since it would have been pre-optimized7 to sell out exactly. When

inventory is of moderate size, our policies outperform the existing benchmarks under

both stationary and non-stationary demand settings.

In fact, if we consider the prediction model, the expected demand is approximately

0.2 ∼ 0.6 on each day under different prices, which corresponds to the dip when

inventory 𝑏 is around 10 ∼ 30. If we divide them by the time horizon of 𝑇 = 52

weeks, we see that the expected units sold per week 𝑏/𝑇 roughly meets the expected

(normalized) demand of 0.2 ∼ 0.6. This is the region where the pricing problem is

non-trivial in theory, and most common in practice. When the inventory level is such

that the problem falls into degenerate cases, all the curves are close to the LP upper

bound. This moderate inventory size corresponds to the moderate load scaling factor

of 0.6 ∼ 1.4, which is the ratio between initial inventory and mean demand in the

7Pre-optimized by some higher level managers, Talluri and Van Ryzin (2006).
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admission control problems originated from Zhang and Cooper (2005).

2.4.2 Computational Study: Using Synthetic Data from Lit-

erature

In this section, we study the joint assortment and pricing problem, using synthetic

data that are commonly adopted in the choice-based deterministic linear program

literature, such as Zhang and Cooper (2005), Liu and Van Ryzin (2008), Gallego

et al. (2016).

We closely follow their numerical setup. Let there be three items, each of which

can be consumed fractionally. The items have initial inventory proportional to 𝑏 =

(3, 5, 4). We will later normalize initial inventory by a load scaling factor 𝛼 ∈

{0.6, 0.8, 1.0, 1.2, 1.4}. Each item has two prices to be offered, high and low. We

fix the low prices 𝑝L = (400, 500, 300) and let the high price to change from 𝑝H ∈

{(800, 1000, 600), (8000, 10000, 6000)}. We also denote these prices as L1,L2,L3 and

H1,H2,H3.

We specify a choice model to be adopted in our computational study. It is an

adaption from a mixture of MNL models (see, e.g., Li et al. (2018), McFadden and

Train (2000)). However, we interpret the choice probabilities as purchasing market

shares, which are between [0,1]. The choice model can be explicitly written as follows

𝑄𝑡(𝑖, 𝑗, 𝑆) = 𝐴L
𝑡

∑︀
(𝑙,L𝑙)∈𝑆 1(𝑙,L𝑙)=(𝑖,𝑗) · 𝑣𝑙,L𝑙

𝑣𝐿∅ +
∑︀

(𝑙,L𝑙)∈𝑆 𝑣𝑙,L𝑙

+ 𝐴H
𝑡

∑︀
(𝑙,H𝑙)∈𝑆 1(𝑙,H𝑙)=(𝑖,𝑗) · 𝑣𝑙,H𝑙

𝑣𝐻∅ +
∑︀

(𝑙,H𝑙)∈𝑆 𝑣𝑙,H𝑙

,

where we adopt the fashion that 0
0

= 0. The randomness in this model comes from

the coefficients in the front of each single MNL model. We let 𝐴L
𝑡 and 𝐴H

𝑡 be Bernoulli

random variables. The mean values E[𝐴L
𝑡 ] and E[𝐴H

𝑡 ] are given for any 𝑡 ∈ [𝑇 ].

In our computational study, we distinguish between a stationary setting and a

non-stationary setting. In both settings, 𝑇 = 20. In the stationary setting, E[𝐴L
𝑡 ] =

0.3,E[𝐴H
𝑡 ] = 0.2,∀𝑡 ∈ [𝑇 ]. In the non-stationary setting, E[𝐴L

𝑡 ] = 0.8,E[𝐴H
𝑡 ] = 0,∀𝑡 ≤

12;E[𝐴L
𝑡 ] = 0.2,E[𝐴H

𝑡 ] = 0.2,∀𝑡 ≥ 13. We also specify the attractiveness vectors as
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𝑣L = (5, 1, 10),𝑣H = (5, 10, 1). We test four different no-purchase vectors to be

(𝑣L∅ , 𝑣
H
∅ ) ∈ {(0, 0), (1, 5), (5, 10), (10, 20)}.

In Tables 2.4–2.6, LP UB stands for the corresponding DLP upper bounds; My-

opic stands for the myopic policy that offers the assortment that gives the highest

expected revenue, regardless of inventory; LP-Sol stands for the CDLP benchmark,

which first solves the LP, then directly uses the optimal solution to implement a

(randomized) policy; ALG2 and ALG3 stand for the policy suggested by Algo-

rithm 2 and Algorithm 3, respectively; RST17 stands for the static policy suggested

by Rusmevichientong et al. (2020), by considering the extension in their Section 5.2;

and DeRLP, DeR2, and DeR3 stand for our de-randomization method from Algo-

rithm 4 applied to the LP-Sol, ALG2, and ALG3, respectively. All of the percentages

are relative to the LP upper bound.

Table 2.4: Computational performance in the stationary setting

LP UB Myopic LP-Sol RST17 DeRLP LP-UB Myopic LP-Sol RST17 DeRLP
𝛼 (0,0) (1,5)
0.6 4300.0 67.76% 74.51% 81.79% 82.19% 3800.0 71.15% 80.15% 86.62% 85.50%
0.8 5200.0 71.28% 80.27% 83.55% 83.90% 4266.7 75.93% 87.41% 88.23% 90.11%
1 6050.0 71.95% 82.77% 81.27% 83.22% 4566.7 78.22% 92.74% 89.74% 92.53%

1.2 6100.0 79.70% 90.54% 89.17% 90.88% 4586.7 83.13% 95.04% 93.77% 95.87%
1.4 6150.0 84.42% 93.46% 92.13% 94.45% 4606.7 86.61% 95.26% 95.85% 97.63%
𝛼 (5,10) (10,20)
0.6 3200.0 91.67% 87.92% 89.54% 91.23% 2468.9 94.46% 92.80% 91.05% 90.81%
0.8 3466.7 94.28% 94.20% 90.97% 93.32% 2533.3 97.47% 97.33% 94.78% 97.33%
1 3500.0 97.37% 97.46% 95.29% 97.47% 2533.3 99.29% 99.35% 98.23% 99.35%

1.2 3500.0 99.14% 99.13% 98.00% 99.09% 2533.3 99.76% 99.81% 99.41% 99.87%
1.4 3500.0 99.86% 99.81% 99.28% 99.89% 2533.3 100.06% 99.92% 99.94% 99.96%

In the stationary setting, we observe from Table 2.4 that Myopic performs the best

when inventory is too much, which is not surprising. LP-Sol and RST17 have similar

performance. The de-randomization method from Algorithm 4 uniformly improves

(7.68% ∼ −1.99%) on the randomized policy in most scenarios. It also has better

performance than RST17 in most scenarios.

Moving to non-stationary setting, we observe from Table 2.5 that when the price

difference (between 𝑝L and 𝑝H) is small, our ALG2 is identical to CDLP and performs

well (81.37% ∼ 99.87%). This is because in many cases, our virtual cost is not

large enough to discard any products from the assortment. ALG2 is among the best

algorithms in many of the simulation scenarios (𝑣𝐿∅ , 𝑣
𝐿
∅ ) ∈ {(1, 5), (5, 10), (10, 20)}.
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Table 2.5: Computational performance in the non-stationary setting when the price
difference is small

LP UB Myopic LP-Sol ALG2 ALG3 RST17 DeRLP DeR2 DeR3
𝛼 (0,0)
0.6 3936.0 53.76% 81.42% 81.37% 79.29% 84.13% 83.47% 83.40% 83.51%
0.8 4981.3 54.43% 84.65% 84.61% 82.34% 86.26% 86.80% 86.82% 85.39%
1 6026.7 54.50% 86.39% 86.41% 84.23% 84.16% 87.34% 87.59% 87.31%

1.2 6304.0 60.83% 87.17% 87.22% 84.94% 90.08% 89.72% 89.67% 89.60%
1.4 6581.3 66.59% 87.33% 87.38% 85.37% 90.58% 89.43% 89.37% 89.42%
𝛼 (1,5)
0.6 3696.0 65.96% 84.81% 84.75% 82.85% 87.85% 86.03% 85.93% 85.93%
0.8 4396.3 62.98% 91.80% 91.84% 88.75% 87.00% 91.67% 92.28% 92.23%
1 4535.0 66.91% 95.15% 95.16% 91.14% 92.00% 95.95% 96.02% 96.10%

1.2 4673.7 70.39% 94.91% 94.93% 91.38% 94.69% 96.12% 96.11% 96.11%
1.4 4765.1 74.26% 97.00% 96.87% 92.86% 95.20% 97.13% 97.21% 97.22%
𝛼 (5,10)
0.6 2862.7 84.17% 94.29% 94.16% 90.32% 85.83% 95.22% 95.19% 95.13%
0.8 3250.2 90.20% 94.56% 94.47% 90.77% 91.11% 95.50% 95.54% 95.45%
1 3633.9 90.88% 95.24% 95.17% 91.67% 93.20% 95.17% 95.14% 95.16%

1.2 3696.0 95.20% 97.20% 97.09% 92.92% 97.16% 97.50% 97.56% 97.55%
1.4 3730.3 97.96% 97.97% 97.92% 93.55% 98.16% 97.97% 97.85% 97.87%
𝛼 (10,20)
0.6 2364.1 92.34% 91.70% 91.80% 88.57% 92.83% 93.37% 93.37% 93.43%
0.8 2755.7 93.34% 94.63% 94.67% 91.17% 93.46% 95.07% 95.11% 95.08%
1 2878.3 96.58% 96.82% 96.83% 92.70% 96.52% 96.74% 96.65% 96.79%

1.2 2910.8 98.94% 98.97% 99.00% 94.40% 99.05% 98.98% 99.07% 98.99%
1.4 2910.8 99.92% 99.87% 99.87% 94.95% 99.88% 99.87% 99.90% 99.89%

RST17 also performs well (84.13% ∼ 99.88%) and is the best algorithm in some of

the simulation scenarios (𝑣𝐿∅ , 𝑣
𝐿
∅ ) ∈ {(0, 0), (10, 20)}. The de-randomization method

from Algorithm 4 also uniformly improves on the corresponding randomized policy

in almost all the scenarios and has better performance than RST17.

In Table 2.6, when the price difference is large, our algorithm performs uniformly

well (84.80% ∼ 99.87%), while CDLP does not (67.26% ∼ 100.02%). Note that when

𝛼 is large and (𝑣𝐿∅ , 𝑣
𝐿
∅ ) are large, this corresponds to scenarios when inventory is too

much. Myopic performs the best when inventory is too high, which is not surprising.

For the rest of the scenarios, ALG2 and RST17 have the best performance, and

sometimes one has better performance than the other. While it is difficult to say

which algorithm performs the best, we remark that RST17 requires more information

than ALG2, because RST17 needs to know the exact order in which customers 𝑡 arrive

to solve the DP, while ALG2 only needs to know the universe of customers to solve

the LP. Again, the de-randomization method from Algorithm 4 uniformly improves

on the corresponding randomized policy in almost all the scenarios and has better

performance than RST17.
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Table 2.6: Computational performance in the non-stationary setting when the price
difference is large

LP UB Myopic LP-Sol ALG2 ALG3 RST17 DeRLP DeR2 DeR3
𝛼 (0,0)
0.6 48034.0 11.54% 70.38% 92.04% 69.82% 87.43% 84.06% 90.88% 90.49%
0.8 50745.3 13.99% 71.22% 91.36% 71.16% 87.03% 86.35% 91.99% 89.14%
1 53456.7 16.15% 71.47% 89.96% 72.49% 85.30% 74.28% 89.91% 88.36%

1.2 54176.0 18.91% 69.99% 87.80% 71.65% 92.07% 82.56% 87.56% 88.78%
1.4 54895.3 22.73% 69.25% 84.80% 71.21% 92.41% 74.46% 84.25% 91.03%
𝛼 (1,5)
0.6 36064.0 70.34% 67.26% 85.89% 68.89% 87.00% 71.36% 85.82% 87.97%
0.8 37835.7 70.06% 84.14% 83.66% 82.85% 84.41% 87.79% 83.59% 92.26%
1 38195.4 71.51% 87.89% 84.81% 85.54% 85.50% 91.34% 84.36% 93.34%

1.2 38555.0 72.62% 88.64% 86.90% 86.62% 86.30% 94.42% 86.22% 93.61%
1.4 38831.1 73.61% 88.88% 87.01% 87.21% 87.44% 91.94% 87.12% 94.16%
𝛼 (5,10)
0.6 28569.7 76.22% 88.32% 88.41% 85.89% 89.11% 90.74% 89.03% 93.34%
0.8 29574.9 87.57% 88.32% 88.39% 86.34% 88.44% 94.87% 88.65% 96.43%
1 30580.1 96.76% 88.94% 87.70% 87.03% 87.55% 95.67% 87.58% 95.06%

1.2 30758.5 98.52% 99.06% 89.08% 94.47% 89.45% 98.79% 89.46% 92.86%
1.4 30855.2 98.95% 99.30% 99.26% 94.26% 90.88% 99.25% 99.41% 97.83%
𝛼 (10,20)
0.6 21379.9 83.74% 88.02% 86.44% 85.86% 87.89% 94.24% 86.18% 91.16%
0.8 22275.8 97.58% 92.11% 86.74% 90.23% 87.44% 93.75% 87.05% 95.77%
1 22594.0 98.92% 98.81% 91.26% 94.00% 89.01% 99.02% 91.38% 95.73%

1.2 22676.2 99.80% 99.61% 99.56% 95.03% 90.80% 99.71% 99.77% 95.90%
1.4 22676.2 99.96% 100.02% 99.87% 95.20% 92.55% 100.00% 99.79% 100.13%

2.5 Conclusions

We proposed and analyzed a calendar pricing problem that a consumer packaged

goods company favors given its operational convenience. We considered both single-

item pricing and assortment (and pricing) controls. We showed that our policies

are within 1-1/e (approximately 0.63) of the optimum under stationary demand and

1/2 of the optimum under non-stationary demand, with both guarantees approach-

ing 1 if the starting inventory is large. Our techniques to analyze the best-possible

performance guarantees are of theoretical interest per se. Finally, we fitted the real

problem faced by the CPG company into the fractional demand setting of our model

and demonstrated using data provided by the CPG company that our simple price

calendars are effective. We also tested our simple policies and literature benchmarks

on synthetic data, using the same numerical setup as in the literature.
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Chapter 3

Network Revenue Management and

Stochastic Packing under a Static

Calendar

3.1 Introduction

As an extension to the previous Chapter, in this Chapter we focus on the network rev-

enue management problem and the stochastic packing problem under a static calen-

dar. The NRM problem is a (full-information) stochastic control problem which orig-

inates from the airline industry (Gallego and Van Ryzin 1997, Talluri and Van Ryzin

1998), and has been extensively studied in the revenue management literature (Jasin

2014, Adelman 2007, Topaloglu 2009, Ma et al. 2020b) with diverse applications. The

stochastic packing problem is a more general form of the network revenue manage-

ment problem.

NRM Setup. Let there be discrete, finite time horizon with 𝑇 periods. Time starts

from period 1 and ends in period 𝑇 . Let there be 𝑛 different products generated by

𝑑 different resources, each resource endowed with finite initial inventory 𝐵𝑖, ∀𝑖 ∈ [𝑑].

Let 𝐴 = (𝑎𝑖𝑗)𝑖∈[𝑑],𝑗∈[𝑛] be the consumption matrix. Each entry 𝑎𝑖𝑗 ∈ R+ stands for the

amount of inventory 𝑖 ∈ [𝑑] used, if one unit of product 𝑗 ∈ [𝑛] is sold. Each column
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𝐴𝑗 stands for product 𝑗’s “unit consumption vector” of different resources, and we

assume each 𝐴𝑗 contains at least one nonzero entry. Let 𝐴𝑖 denote the 𝑖-th row of 𝐴.

Let 𝑎max = max𝑖,𝑗 𝑎𝑖𝑗 to be some bounded constant.

In each period 𝑡, a decision maker can post prices for the 𝑛 products by selecting

a price vector from a finite set of 𝐾 price vectors {𝑝1, ...,𝑝𝐾}, which we denote using

𝑧𝑡 ∈ [𝐾]. A price vector is 𝑝𝑘 = (𝑝1,𝑘, ..., 𝑝𝑛,𝑘), and 𝑝𝑗,𝑘 ∈ [0, 𝑝max] is the price for

product 𝑗 under 𝑝𝑘. This captures situations where fixed price points have been pre-

determined by market standards, e.g., a common menu of prices that end in $9.99:

$69.99, $79.99, $99.99. It also aligns with the stochastic packing setup, as we will

introduce shortly below.

Given price (vector) 𝑝𝑘, the demand for each product 𝑗 ∈ [𝑛] is a distributionally

known, bounded random variable, 𝑄𝑗,𝑘 := 𝑄𝑗(𝑝𝑘) ∈ [0, 1], the distribution of which

is known at the beginning of the entire horizon. Let 𝑞𝑗,𝑘 := E[𝑄𝑗,𝑘] denote the mean

demand for product 𝑗 under price 𝑝𝑘, and Q = (𝑄𝑗,𝑘)𝑗∈[𝑛],𝑘∈[𝐾], 𝑞 = (𝑞𝑗,𝑘)𝑗∈[𝑛],𝑘∈[𝐾].

For each unit of demand generated for product 𝑗 ∈ [𝑛] under price vector 𝑝𝑘, the

decision maker generates 𝑝𝑗,𝑘 units of revenue by depleting 𝑎𝑖𝑗 units of each inventory

𝑖 ∈ [𝑑]. If no demand is generated, all the remaining inventory is carried over into the

next period. The selling process stops immediately when the total cumulative demand

of any resource exceeds its initial inventory; see Section 3.1.1 for more discussions.

We use ℐ = (𝑇,𝐵, 𝐾, 𝑑, 𝑛,𝑝, 𝐴;Q) to stand for a NRM problem instance.

The objective of the decision maker is to maximize the expected total cumulative

revenue (collected before exhausting the resources) over 𝑇 periods. The performance

is measured by the regret, which is defined as the worst-case expected revenue loss

compared with the DLP objective (whihc we will present in Section 3.2). We assume

𝑇 and (𝐵𝑖)𝑖∈[𝑑] are in the same comparable order, and are much larger than any one

of (𝐾, 𝑑, 𝑛, 𝑝max, 𝑎max). see Section 3.1.1 for more discussions.

SP Setup. Similar to the NRM problem, let there be discrete, finite time horizon

with 𝑇 periods. Time starts from period 1 and ends in period 𝑇 . Unlike NRM, there

is no “product” nor “consumption matrix” in SP. Let there be 𝑑 different resources,
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each endowed with finite initial capacity 𝐵𝑖, ∀𝑖 ∈ [𝑑].

In each period 𝑡, the decision maker pulls one arm from a finite set of 𝐾 distinct

arms, which we denote using 𝑧𝑡 ∈ [𝐾]. Each time an arm 𝑘 ∈ [𝐾] is pulled, a

random reward 𝑅𝑘 ∈ [0, 𝑅max] is received at a random cost 𝐶𝑖,𝑘 ∈ [0, 𝐶max] of each

resource 𝑖, which we denote using the cost vector 𝐶𝑘 ∈ [0, 𝐶max]
𝑑. The distributions

of both the random reward and the random cost vector are fixed and distributionally

known to the decision maker, and are known at the beginning of the entire horizon.

The decision maker stops at the earlier time when one or more resource constraint is

violated, or when the time horizon ends. We use ℐ = (𝑇,𝐵, 𝐾, 𝑑;𝑅,𝐶) to stand for

one instance of the problem.

3.1.1 Related Modeling Components

We survey the related modeling components that have appeared in the literature,

including the stopping criterion and the regime for regret analysis.

Stopping Criterion.

At each point in time, as long as the remaining inventory for any resource is zero, the

selling horizon stops. This stopping criterion is standard in the blind network revenue

management and bandits with knapsacks literature when the distributional informa-

tion is unknown and has to be sequentially learned, see Besbes and Zeevi (2012),

Badanidiyuru et al. (2013). We refer to this stopping criterion as the “ungenerous”

stopping criterion.

There is a second stopping criterion that is common in the revenue management

literature when the stochastic distribution is known. This setup assumes time horizon

never stops. Even if some resources are stocked-out, the decision maker continues to

generate revenue from products that does not use the stocked-out resources. Either

the admissible policy eliminates the possibility to sell stocked-out resources Gallego

and Van Ryzin (1997), Rusmevichientong et al. (2020), or the realized demand in each

period is simply the minimum between the remaining inventory and the generated
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demand Ma et al. (2020a). We refer to this stopping criterion as the “generous”

stopping criterion.

Following each trajectory of randomness, the ungenerous stopping criterion stops

earlier than the generous stopping criterion, hence the regret is larger.

Regime for Regret Analysis.

We aim to derive finite-time bounds on the regret of policies in terms of the number

of time periods 𝑇 . Following the literature, we assume 𝑛, 𝑝max, 𝑎max, 𝑅max, 𝐶max =

𝑂(1). We adopt the following regret analysis regime: 𝑇 and (𝐵𝑖)𝑖∈[𝑑] are in the same

comparable order, and are much larger than 𝐾 and 𝑑. In other words, 𝐵𝑖 = Θ(𝑇 )

for all 𝑖 ∈ [𝑑], while 𝐾, 𝑑 = 𝑜(𝑇 ). This regime is standard in the network revenue

management literature (sometimes stated in a different “asymptotic” fashion), e.g.,

Gallego and Van Ryzin (1997), Liu and Van Ryzin (2008), Besbes and Zeevi (2012),

Jasin (2014), Bumpensanti and Wang (2018), Ferreira et al. (2018), Chen et al. (2019),

Chen and Shi (2019).

3.1.2 Overview of Results

Our techniques and results in this section are standard, yet provide a clean charac-

terization of the revenue loss. In this section we present:

• It is well known that the Deterministic Linear Programs (DLP’s) provide upper

bounds on the revenue generated from any admissible policy. We define the

DLP’s in Section 3.2.

• We present lower and upper bounds on the regret in Sections 3.3 and 3.4,

respectively. Combining both results, we show an intrinsic gap between linear

regret and sublinear regret, depending on the switching budget. See Figure 3-1.

When the DLP is non-degenerate, the number of resource constraints 𝑑 is the

minimum required number of switches to achieve a sublinear regret; when the

switching budget is strictly below 𝑑, a linear regret is inevitable.
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• Algorithmically, the use of a discounting factor 𝛾 and the action allocation rule

in Section 3.4 borrows ideas from Section 2.2.5 in Chapter 2. And to prove the

lower bound as shown in Section 3.3, the construction of the hard instances in

Theorem 3.1 is novel.

For any problem instance ℐ = (𝑇,𝐵, 𝐾, 𝑑, 𝑛,𝑝, 𝐴;𝑄) or any ℐ = (𝑇,𝐵, 𝐾, 𝑑;𝑅,𝐶),

we adopt the general notation 𝜋 : R𝑑 × [𝑠] × [𝑇 ] → ∆([𝐾]) to denote any policy

with the full information about stochastic distributions, which suggests a (possibly

randomized) price vector to use given the remaining inventory, remaining switching

budget, and the remaining periods. For any 𝑠 ∈ N, let Π[𝑠] be the set of policies

that changes prices for no more than 𝑠 times on this problem instance ℐ. For any

𝑠, 𝑠′ ∈ N such that 𝑠 ≤ 𝑠′, we know that Π[𝑠] ⊆ Π[𝑠′]. Let Π := lim𝑠→+∞Π[𝑠] be

the set of policies with an infinite switching budget (which is the set of all possible

policies). Let Rev(𝜋) be the expected revenue that policy 𝜋 generates on this problem

instance ℐ. Let 𝜋*[𝑠] ∈ arg max𝜋∈Π[𝑠] Rev(𝜋) be one of the optimal dynamic policies

with switching budget 𝑠.

3.2 The Deterministic Linear Programs

For any problem instance ℐ = (𝑇,𝐵, 𝐾, 𝑑, 𝑛,𝑝, 𝐴;𝑄), the literature have extensively

studied the following deterministic linear program (DLP) in the NRM setup. See

Gallego and Van Ryzin (1997), Cooper (2002), Maglaras and Meissner (2006), Liu

and Van Ryzin (2008).

JDLP = max
(𝑥1,...,𝑥𝐾)

∑︁
𝑘∈[𝐾]

∑︁
𝑗∈[𝑛]

𝑝𝑗,𝑘 𝑞𝑗,𝑘 𝑥𝑘 (3.1)

s.t.
∑︁
𝑘∈[𝐾]

∑︁
𝑗∈[𝑛]

𝑎𝑖𝑗 𝑞𝑗,𝑘 𝑥𝑘 ≤ 𝐵𝑖 ∀ 𝑖 ∈ [𝑑] (3.2)

∑︁
𝑘∈[𝐾]

𝑥𝑘 ≤ 𝑇 (3.3)

𝑥𝑘 ≥ 0 ∀ 𝑘 ∈ [𝐾] (3.4)
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It is well known that in the NRM setup, the above DLP serves as an upper bound on

the expected revenue of any policy, even an optimal policy with an infinite switching

budget (i.e., 𝜋*[∞]). It is well-known that the gap between the expected revenue

obtained by the optimal policy and the DLP upper bound is bounded by 𝑂(
√
𝑇 ) for

all instances, i.e., Rev(𝜋*[∞]) = JDLP −𝑂(
√
𝑇 ).

More generally, for any ℐ = (𝑇,𝐵, 𝐾, 𝑑;𝑅,𝐶), the literature have studied the

following generalization of the DLP, which we refer to as DLP-G.

JDLP−G = max
(𝑥1,...,𝑥𝐾)

∑︁
𝑘∈[𝐾]

𝑟𝑘 𝑥𝑘 (3.5)

s.t.
∑︁
𝑘∈[𝐾]

𝑐𝑖,𝑘𝑥𝑘 ≤ 𝐵𝑖 ∀ 𝑖 ∈ [𝑑] (3.6)

∑︁
𝑘∈[𝐾]

𝑥𝑘 ≤ 𝑇 (3.7)

𝑥𝑘 ≥ 0 ∀ 𝑘 ∈ [𝐾] (3.8)

Since such a linear program is a packing LP, this generalization of the NRM problem

is also referred to as the Stochastic Packing (SP) problem.

Let the set of optimal solutions to the DLP be

𝑋* = arg max
𝑥∈R𝐾

{(3.1) |(3.2), (3.3), (3.4) are satisfied}.

With a little abuse of notations, let the set of optimal solutions to the DLP-G be

the same notation 𝑋* = arg max𝑥∈R𝐾{(3.5) |(3.6), (3.7), (3.8) are satisfied}. The

distinction between DLP and DLP-G should be clear from the context. Let Λ =

min{‖𝑥‖0 |𝑥 ∈ 𝑋*} be the least number of non-zero variables of any optimal solu-

tion. Let 𝒳 = arg min{‖𝑥‖0 |𝑥 ∈ 𝑋*} be the set of such solutions. For any 𝑥* ∈ 𝒳 ,

let 𝒵(𝑥*) = {𝑘 ∈ [𝐾] |𝑥* ̸= 0} ⊆ [𝐾] be the subset of dimensions that are non-zero

in 𝑥*. Note that Λ is an instance-dependent quantity such that Λ ≤ 𝑑 + 1, where

𝑑 + 1 is the number of all constraints (resource constraints and time constraint) in

the linear program. When DLP (or DLP-G) is non-degenerate, then equality holds
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Figure 3-1: The intrinsic gap on the optimal regret Rev(𝜋*[∞]) − Rev(𝜋*[𝑠]) in the
distributionally-known setup

Note: while the Θ(𝑇 ) bound is tight for all 𝑠 < Λ− 1, the ̃︀𝑂(
√
𝑇 ) bound shown for 𝑠 ≥ Λ− 1 is not

necessarily tight for all 𝑠 ≥ Λ− 1; characterizing the exact rate of Rev(𝜋*[∞])−Rev(𝜋*[𝑠]) for every
𝑠 ≥ Λ− 1 is an interesting future direction.

and Λ = 𝑑 + 1.

In Sections 3.3 and 3.4 we show that for any problem instance, the instance-

dependent quantity (Λ−1) is a critical switching budget — greater or equal to which

the regret is in the order of ̃︀𝑂(
√
𝑇 ), and below which the regret is in the order of

Θ(𝑇 ). Combining the above results, we show that there is an intrinsic gap on the

regret, if one more critical price change is allowed. See Figure 3-1.

3.3 Lower Bounds

In this section we show that when the switching budget is below Λ−1 (at most Λ−2),

then a linear regret rate is inevitable. Recall that Π[Λ − 2] stands for the family of

admissible policies that make no more than Λ− 2 changes.

Theorem 3.1. For any problem instance ℐ = (𝑇,𝐵, 𝐾, 𝑑, 𝑛,𝑝, 𝐴;𝑄) under the NRM

setup, or any problem instance ℐ = (𝑇,𝐵, 𝐾, 𝑑;𝐶,𝑅) under the SP setup, there is
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an associated Λ number (defined in Section 3.2). Any policy 𝜋 ∈ Π[Λ − 2] earns an

expected revenue (or reward):

Rev(𝜋) ≤ JDLP − 𝑐 · 𝑇 or Rev(𝜋) ≤ JDLP−G − 𝑐 · 𝑇

where 𝑐 > 0 is some (distribution-dependent) constant independent of 𝑇 . Combined

with the known fact that Rev(𝜋*[∞]) ≥ JDLP − 𝑂(
√
𝑇 ) or Rev(𝜋*[∞]) ≥ JDLP−G −

𝑂(
√
𝑇 ), it holds that

Rev(𝜋) ≤ Rev(𝜋*[∞]) − Ω(𝑇 ),

i.e., the regret scales linearly with (𝑇,𝐵) when other parameters are fixed.

We outline three key steps here and defer the details of our proof to Appendix B.1.

We first identify a clean event, such that the realized demands are close to the expected

demands that the LP suggests. This clean event happens with high probability (1 −
2
𝑇 3 ). In the second step, conditioning on such event, the maximum amount of revenue

we generate is no more than 𝑂(
√
𝑇 ) compared to what the LP suggests; and the

minimum amount of inventory demanded is no less than 𝑂(
√
𝑇 ) compared to what

the LP suggests, resulting in no more than 𝑂(
√
𝑇 ) of realized revenue. In the third

step, we show that the regret from insufficient price changes scales in the order of

Ω(𝑇 ), which dominates the 𝑂(
√
𝑇 ) amount revenue due to randomness. Such clean

event analysis, originating from the online learning literature to prove upper bounds

(Badanidiyuru et al. 2013, Lattimore and Szepesvári 2018, Slivkins 2019), was recently

used in Arlotto and Gurvich (2019) to prove lower bounds.

The lower bound established in Theorem 3.1 is a per-instance lower bound, as

it holds for every single problem instance. Such a result is much stronger than the

worst-case type lower bounds that are widely considered in the revenue management

literature.
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3.4 Upper Bounds

In this section we show that when the switching budget is greater or equal to Λ− 1,

then the regret is ̃︀𝑂(
√
𝑇 ). Such a sub-linear guarantee is achieved by tweaking the

well-known static control policy in the network revenue management literature.

The static control policy (Gallego and Van Ryzin 1997, Cooper 2002, Maglaras and

Meissner 2006, Liu and Van Ryzin 2008) achieves a similar 𝑂(
√
𝑇 ) regret in a similar

setup, when the selling horizon stops immediately when the total cumulative demand

of any resource exceeds its initial inventory. In our setup the stopping criterion is

different1, which requires slightly different techniques. The static control policy was

also used in Besbes and Zeevi (2012) to prove a similar result in the NRM setup

under the same stopping criterion. However, their proof technique critically requires

the maximum price to be bounded, which does not generalize to the SP setup.

We tweak the static control policy, so that with high probability the selling horizon

never stops earlier than the last period 𝑇 . See Algorithm 7. This is achieved by

selecting the value of 𝛾 in the first step of Algorithm 7. Similar ideas have been

used in Hajiaghayi et al. (2007), Ma et al. (2020a), Balseiro et al. (2019) to prove

asymptotic results in different setups.

We explain the third step permutation. Suppose 𝒵(𝑥*) = {1, 3, 4}. In this case,

Λ = 3 and there are 6 permutations. There are 6 possible policies as suggested in

Algorithm 7. While some of these policies may have better empirical performance

than others, they all achieve ̃︀𝑂(
√
𝑇 ) regret.

Theorem 3.2. Any policy 𝜋 as defined in Algorithm 7 satisfies 𝜋 ∈ Π[Λ − 1] and

earns an expected revenue (or reward):

Rev(𝜋) ≥ JDLP − 𝑐
√︀
𝑇 log 𝑇 ≥ Rev(𝜋*[∞]) − 𝑐

√︀
𝑇 log 𝑇

or Rev(𝜋) ≥ JDLP−G − 𝑐
√︀

𝑇 log 𝑇 ≥ Rev(𝜋*[∞]) − 𝑐
√︀
𝑇 log 𝑇 ,

1Following each trajectory of randomness, the ungenerous stopping criterion stops earlier than
the generous criterion, hence the regret is larger. As a result, our upper bound under the ungenerous
stopping criterion is not a direct implication of Gallego and Van Ryzin (1997).
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Algorithm 7 Tweaked LP Policy
Input: ℐ = (𝑇,𝐵, 𝐾, 𝑑, 𝑛,𝑝, 𝐴;𝑄) in the NRM setup,

or ℐ = (𝑇,𝐵, 𝐾, 𝑑;𝑅,𝐶) in the SP setup.
Policy:
1: Define 𝛾 = 1 − 2 𝑎max

𝐵min

√
𝑛𝑇 log 𝑇 in the NRM setup; or 𝛾 = 1 − 2𝐶max

𝐵min

√
𝑇 log 𝑇 in

the SP setup.
2: Solve the DLP as defined by (3.1), (3.2), (3.3), and (3.4). Find an optimal solution

with the least number of non-zero variables, 𝑥* ∈ 𝒳 .
3: Arbitrarily choose any permutation 𝜎 : [Λ] → 𝒵(𝑥*) from all (Λ)! possibilities.
4: Execute, depending on the problem setup:
In the NRM setup, set the price vector to be 𝑝𝜎(1) for the first 𝛾 ·𝑥*𝜎(1) periods, then
𝑝𝜎(2) for the next 𝛾 ·𝑥*𝜎(2) periods, ..., and finally 𝑝𝜎(Λ) for the last 𝑇 −𝛾 ·

∑︀Λ−1
𝑙=1 𝑥*𝜎(𝑙)

periods (we assume that 𝑥𝑘,∀𝑘 ∈ [𝐾] are integers, because rounding issues incur a
regret of at most (𝑑 · max𝑘 𝑝

T
𝑘 · 𝑞𝑘), which is negligible compared with

√
𝑇 ).

In the SP setup, pull arm 𝜎(1) for the first 𝛾 · 𝑥*𝜎(1) periods, then 𝜎(2) for the next
𝛾 · 𝑥*𝜎(2) periods, ..., and finally 𝜎(Λ) for the last 𝑇 − 𝛾 ·

∑︀Λ−1
𝑙=1 𝑥*𝜎(𝑙) periods.

where 𝑐 > 0 is some constant independent of 𝑇,𝐾, 𝑑,Q.

The above upper bound uniformly holds for all instances. We outline two key

steps here and defer the details of our proof to Appendix B.2. In the first step, we

show that with high probability, the selling horizon never stops earlier than the last

period 𝑇 . Second, conditioning on this high probability event, the expected revenue

is at least 𝛾 fraction of the LP objective. Combining the two steps together we know

that the total regret is upper bounded by (1 − 𝛾)JDLP or (1 − 𝛾)JDLP−G.
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Chapter 4

Online Knapsack Using a Static

Threshold

4.1 Introduction

Consider the following problem. There is a knapsack of size 1 and an unknown

sequence of items with sizes at most 1. The items arrive one-by-one, and each item

must be irrevocably either packed into the knapsack or discarded upon arrival. An

item can be packed only if its size does not exceed the remaining knapsack capacity.

The goal is to maximize the sum of sizes of packed items, i.e. maximize the total

capacity filled.

The decision of whether to accept each item into the knapsack is made by an

online algorithm, which does not know the sizes of future items, nor the number of

future items. Meanwhile, for any sequence of items, one could consider its optimal

offline packing knowing the entire sequence in advance. For 𝑐 ≤ 1, a fixed (but

possibly randomized) online algorithm is said to be 𝑐-competitive if on any sequence,

its (expected) capacity packed is at least 𝑐 times the optimal offline packing. We are

interested in the highest-possible value of 𝑐, which is called the competitive ratio.

For this problem, randomization is necessary to achieve any non-trivial compet-

itive ratio. Indeed, a deterministic algorithm, when faced with an initial item of a

small size 𝜀 > 0, must either accept or reject. If it accepts, then it achieves a poor
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ratio when the item is followed by an item of size 1, packing size 𝜀 when the optimal

packing has size 1. On the other hand, if it rejects, then it achieves a poor ratio when

the sequence ends after the first item, packing 0 when the optimum is 𝜀.

With randomization, a simple idea, originally due to Han et al. (2015), yields a
1
2
-competitive algorithm. First, a fair coin is flipped. If Heads, then the algorithm

greedily packs any item that fits. If Tails, then the algorithm rejects all items until the

first one that the greedy policy would not have fit, and starts to greedily accept items

from that item (including that item). In expectation, this algorithm is 1
2
-competitive,

since either the greedy packing (which the algorithm mimics half the time) is optimal,

or the algorithm’s sum of capacity packed under the two outcomes exceeds 1, and

hence its expected packing exceeds 1
2
, while the optimum is at most 1. Furthermore,

it follows from the example above that 1
2

is the competitive ratio for the class of all

randomized algorithms.

4.1.1 Motivation for this Paper: Threshold Policies

In this paper, we derive the competitive ratio for a subclass of algorithms: (random)

threshold algorithms. Threshold algorithms initially draw a threshold 𝜏 ∈ [0, 1], and

then accept every item of size at least 𝜏 that fits, but never change the threshold

throughout the entire horizon after its initial draw. When 𝜏 = 0, the algorithm

mimics the greedy algorithm.

Threshold algorithms constitute a natural subclass of algorithms with many ben-

efits, as we outline below.

• Simplicity: First, threshold algorithms are logistically easy to implement, mak-

ing non-adaptive accept/reject decisions that do not require recording the his-

tory of past items. We can use them to derive a random-threshold algorithm

for a generalization of our problem to multiple knapsacks, as we discuss in

Section 4.1.3.

• Applicability: Second, a threshold algorithm is characterized by a CDF 𝐹 for

the threshold 𝜏 , which has a simple interpretation for how to implement this

84



randomized algorithm in practice. We implement simulations on an industry

partner’s data, as we discuss in Section 4.1.4.

• Incentive-compatibility: Most importantly, threshold algorithms treat iden-

tical items equally, in a first-come-first-serve order, which implies that the items

truthfully represent the demands for the knapsack.

We elaborate on this incentive issue. In many applications, an arriving “item”

corresponds to an order placed by a customer. Under a threshold algorithm,

a customer is incentivized to place a single order for her desired amount, im-

mediately upon her arrival. Indeed, there is no benefit to waiting since orders

exceeding 𝜏 are first-come-first-served; moreover, should the customer’s order

get rejected, there is no benefit to trying again later. Therefore, the sequence

of items observed truthfully represents the desires of the customers, in order.

By contrast, in the randomized algorithm described above (Han et al. 2015), a

customer can easily manipulate the system. For example, if the first customer

sees her order get rejected (because the coin in the algorithm landed Tails),

then she can repeatedly try placing the same order again. After generating

sufficiently many “fake” orders, the greedy policy cannot fit all the orders, and

hence the algorithm will accept her order.

• Fairness: As a final note, our random-threshold algorithms “treat similar in-

dividuals similarly”, which is the definition of fairness proposed in Dwork et al.

(2012). In particular, the probability of our random-threshold accepting an

item (which fits) is dependent on only the size of that item, and moreover, this

probability changes smoothly with respect to a change in size. Another notion

of fairness in sequential decision-making was introduced by Gupta and Kamble

(2019). Our random-threshold algorithms also satisfy their definition.
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4.1.2 Techniques for Analyzing Threshold Policies

The analysis for the subclass of random threshold algorithms also becomes move

involved, since a small change in 𝜏 could have a ripple effect on the items that fit and

hence the items that are packed by the policy. We derive the best-possible CDF’s

for threshold 𝜏 , and hence the tight competitive ratio for threshold algorithms, under

two different definitions of the optimal offline packing:

1. A 3
7
≈ 0.428-competitive random-threshold distribution, relative to the optimal

fractional packing;

2. A ≈ 0.432-competitive random-threshold distribution, relative to the optimal

integer packing.

While both optima know the set of items in advance, the difference between them

is that a fractional packing can potentially “truncate” items to obtain a perfect pack-

ing of size 1. Interestingly, there is a separation between the competitive ratio relative

to the stronger, fractional optimum and that relative to the weaker, integer optimum.

Moreover, there is a surprising difference between the two random-threshold algo-

rithms used to achieve these competitive ratios (see Figure 4-1). In particular, the

threshold for the 3
7
-competitive algorithm never exceeds 3

7
, while the threshold for the

0.432-competitive algorithm has positive support on all of [0,1]. By contrast, for arbi-

trary randomized algorithms, it follows from Han et al. (2015) that both competitive

ratios are 1
2
.

We now describe our techniques for establishing results 1–2 above. We first start

with the following randomized algorithm, which is neither of the two algorithms

described above. This algorithm flips an initial coin. With probability 2/3, the

algorithm greedily accepts any item which fits in the knapsack. With probability

1/3, the algorithm accepts only the first item to have size at least 1/2 (if such an

item exists).

We claim that this simple algorithm yields a constant competitiveness guarantee

of 1/3. To see why, first note that if the greedy policy can fit all the items, then it is

optimal, and since the algorithm is greedy with probability 2/3, it would be at least
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Figure 4-1: CDF functions of the thresholds from two random threshold algorithms

2/3-competitive. Therefore, suppose that the greedy policy cannot fit some items,

and consider two cases. If the sequence contains no items of size at least 1/2, then

the greedy policy must have packed size greater than 1/2 by the time it could not fit

an item, and hence the algorithm packs expected size at least 2/3×1/2 = 1/3. In the

other case, let 𝑚 denote the size of the first item to have size at least 1/2. When the

algorithm is not greedy, it packs size 𝑚; and when it is greedy, it packs size at least

min{𝑚, 1 −𝑚}, which equals 1 −𝑚 because 𝑚 ≥ 1/2. In expectation, the algorithm

packs size at least

1

3
𝑚 +

2

3
(1 −𝑚) =

2

3
− 1

3
𝑚 ≥ 1

3
.

Since the algorithm in both cases packs size at least 1/3, and the optimal offline pack-

ing cannot exceed 1, this completes the claim that the algorithm is 1/3-competitive.

Now, note that the previous algorithm effectively sets a random threshold whose

distribution is 0 with probability 2/3, and 1/2 with probability 1/3. To improve

upon it, we consider an arbitrary distribution for the threshold 𝜏 given by the CDF

𝐹 (𝑥) = Pr(𝜏 ≤ 𝑥), and generalize the above analysis. We now let 𝑚 denote the size

of the smallest item which the greedy policy does not fit. In the case where 𝑚 < 1/2,

we use similar arguments as above to deduce that the algorithm packs expected size
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at least

𝐹 (0)(1 −𝑚) + (𝐹 (𝑚) − 𝐹 (0)) min{𝑚, 1 −𝑚}. (4.1)

However, the other case where 𝑚 ≥ 1/2 is more challenging, because when 𝑚 = 1 both

terms in (4.1) equal 0. To refine the analysis, we define 𝑞 to be the maximum number

such that, at the time of arrival of the item of size 𝑚, it would not fit even if we could

“magically discard” every accepted item of size less than 𝑞. By the maximality of 𝑚,

there must exist an item of size 𝑞. After carefully analyzing the cases (including the

one where 𝑞 > 𝑚), we show that the algorithm’s expected packing size is minimized

in the case where it equals 𝑞 when the threshold is at most 𝑞, and 1 − 𝑞 + 𝜀 (for

an arbitrarily small 𝜀 > 0) when the threshold is greater than 𝑞. Therefore, it is

lower-bounded by

𝐹 (𝑞)𝑞 + (1 − 𝐹 (𝑞))(1 − 𝑞). (4.2)

Finally, we solve for the maximum 𝑐 at which there exists a threshold distribution

𝐹 such that both expressions (4.1) and (4.2) exceed 𝑐 (for all 𝑚 and 𝑞). This turns

out to be 𝑐 = 3/7 ≈ 0.428, and since the optimal fractional packing cannot exceed

1, the corresponding random-threshold algorithm is 0.428-competitive relative to the

stronger, fractional optimum, as shown in Theorem 4.2. This competitiveness is

tight relative to the stronger optimum, as shown in Theorem 4.3.

In Theorem 4.4, we improve the competitiveness to 0.432 relative to the weaker,

integer optimum. The previous analysis with expressions (4.1) and (4.2) is no longer

tight, because it merely lower-bounded the algorithm’s expected packing size without

considering the consequences on the optimal integer packing. To improve upon the

previous distribution, we perturb it to have a positive mass on all of [0,1] (instead

of never setting a threshold above 3/7, as shown in Figure 4-1). Intuitively, this

prevents the adversary from making the optimal packing size always 1 by appending

a size-1 item to the end of any sequence, because if he did, then there will always be a

positive probability that the algorithm sets a threshold high enough to get the size-1
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item. In fact, this perturbed threshold distribution, which yields a 0.432-competitive

algorithm, is best-possible for threshold algorithms relative to the optimal integer

packing, as shown in Theorem 4.5.

4.1.3 Generalization to Static Policies for Multiple Knapsacks

We generalize to an assignment problem for multiple knapsacks, defined as follows.

In this setting, there are multiple knapsacks, with potentially different capacities.

An arriving item takes up a potentially different size in each knapsack, and must be

irrevocably assigned to a knapsack where it fits, or outright rejected. The objective

is to maximize the sum of capacities packed across all the knapsacks.

For this problem, we derive a randomized 3
14

≈ 0.214-competitive algorithm using

a static policy which, again, does not require recording the history of past items. In

particular, each item is first routed to the knapsack where it takes the greatest size

(without knowing whether it would get accepted), and then an independent threshold

policy at that knapsack controls whether to accept the item. This greedy routing

policy is a simple implementation of threshold policies with multiple knapsacks, and is

shown to be 1
2
× 3

7
= 3

14
-competitive relative to the stronger optimum in Theorem 4.7,

assuming that each knapsack’s threshold is chosen randomly according to the CDF

which is 3
7
-competitive for a single knapsack. Interestingly, the CDF which improves

the competitiveness to 0.432 for a single knapsack, relative to the weaker optimum,

does not appear to translate to a competitiveness result for multiple knapsacks. Also,

for multiple knapsacks we derive an upper bound of 0.461 on the competitive ratio

for arbitrary randomized algorithms, in Theorem 4.8. This shows that the tight
1
2
-competitiveness for a single knapsack does not hold with multiple knapsacks, even

if one could go beyond static policies.

To our knowledge, we are the first to study our generalized online assignment prob-

lem with multiple unit-density knapsacks, and derive constant-factor competitiveness

results. However, our problem and results are closely related to two problems from

the literature, as we outline below.
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• AdWords: Our only difference from the AdWords problem studied in online

advertising is that items cannot be “truncated”. That it, in AdWords, an item

can be assigned to a knapsack where it exceeds the remaining capacity, and

have its size “reduced” to fit the knapsack. With this truncation allowed, Mehta

et al. (2005) derive a 1
2
-competitive algorithm in general, and a best-possible

(1 − 1
𝑒
)-competitive algorithm under the “small bids” assumption that initial

capacities (“advertiser budgets”) are large compared to the sizes an item can

take (“bids”).

The competitiveness guarantee in our setting relative to the fractional optimum

can only be worse than the 1
2
-competitiveness for AdWords, since the offline

optimum is the same (being able to truncate using fractions), while the online

algorithm is restricted from truncating. Our 0.214-competitive result can be

seen as a weaker guarantee which holds for weaker online algorithms.

• Appointment Scheduling in Healthcare: Our only difference from the ap-

pointment scheduling problem of Stein et al. (2018) is that the sequence of

items are completely unknown, instead of drawn independently from known

distributions. That is, our arrival sequence can be seen as “adversarial” instead

of “stochastic”. Stein et al. (2018) derive a 0.321-competitive algorithm in the

stochastic setting, where the definition of competitiveness takes an expectation

over the arrival sequence when evaluating both the online algorithm and the

offline optimum.

The adversarial competitive ratio can only be worse than the stochastic one.

Our 0.214-competitive result can be seen as a weaker guarantee which holds in

a more general setting.

Our aforementioned results, including those for a single knapsack, are summarized in

Table 4.1. Note that our Theorem 4.7 also implies a 1
4
-competitiveness guarantee for

general multi-knapsack algorithms.
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Table 4.1: Summary of lower and upper bounds on the competitive ratio, for different
classes of algorithms, relative to different optima, in different settings

Relative to Stronger Optimum Relative to Weaker Optimum
Single Knapsack
random-threshold algorithms [0.428 (Thm. 4.2), 0.428 (Thm. 4.3)] [0.432 (Thm. 4.4), 0.432 (Thm. 4.5)]
arbitrary algorithms [0.5 (Han et al. 2015), −→] [←−, 0.5 (Han et al. 2015)]
Multiple Knapsacks
static algorithms [0.214 (Thm. 4.7), −→] [←−, ↓]
arbitrary algorithms [0.25 (Thm. 4.7), −→] [←−, 0.461 (Thm. 4.8)]
AdWords (truncation allowed) [0.5a (Mehta et al. 2005), −→] [←−, 0.632 (Karp et al. 1990)]
Scheduling (stochastic arrivals) [0.321 (Stein et al. 2018), −→] [←−, 0.5 (Stein et al. 2018)]

Note: Results from this paper are bolded. An arrow indicates that the best-known lower (resp.
upper) bound is implied by that from a more restricted (resp. less restricted) setting, pointing in
the direction of that setting. Note that our paper is the only one to establish a separation between
the competitiveness relative to the two different optima.

aImproves to 1− 1/𝑒 ≈ 0.632 under the small bids assumption.

4.1.4 Simulations Using Supply Chain Data of A Latin Amer-

ican Chain Department Store

We now describe how our optimal random-threshold distributions for a single knap-

sack can be implemented across the supply chain of our industry partner, a Latin

American chain department store. They sell 974 SKU’s in the young women’s fash-

ion category. There are 21 warehouses, and every SKU is stored in a subset of different

warehouses. Every (SKU, warehouse)-pair faces a stream of orders, each for a specific

number of units. Orders cannot be split or redirected to a different warehouse, so

order sizes greater than the available inventory must be rejected. Therefore, our in-

dustry partner faces the same accept/reject problem on order sizes, and has the same

goal of maximizing total inventory fulfilled, equal to the sum of sizes of accepted

orders.

The data we observe is the sizes of all orders accepted by a greedy First-Come-

First-Serve (FCFS) policy. The sum of all observed order sizes for each of our (SKU,

warehouse)-pairs is then at most the starting inventory, since the order sizes that

cannot be fulfilled have been censored. To create non-trivial instances, we re-scale

the starting inventory amounts (which we know) for each SKU at each warehouse by

a factor 𝛼 ∈ [0, 1], and test the performance of different accept/reject policies over

different scaling factors 𝛼.
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To implement our random-threshold policies, we take 21 evenly-spaced percentiles

of the threshold distribution 𝐹 , that is, we take the 21 thresholds defined by 𝐹−1(0),

𝐹−1(0.05), ..., 𝐹−1(0.95), 𝐹−1(1). Then we assign them (i.e. randomly permute them)

over the 21 warehouses, making accept/reject decisions at each warehouse based on

the assigned threshold (scaled by the starting inventory). We believe this assignment

of percentiles to warehouses is how our threshold distribution 𝐹 would be implemented

in practice. We then average the fulfillment ratios over the warehouses to determine

the performance for a specific SKU. We take an outer average over many independent

random permutations of warehouses to define a final performance ratio for each of

the 974 SKU’s.

We find that the greedy FCFS policy has the best average-case performance ratio,

even when the scaling factor 𝛼 for initial inventory is small. While this is discouraging,

we believe that the way in which order sizes are censored in our data favors FCFS,

since large orders cannot come at the end. Nonetheless, for any 𝛼, if we look at the

worst-case SKU, then our random-threshold policy has the best performance. Indeed,

the way in which it distributes different thresholds over the warehouses provides a

form of “hedging” for each SKU, and our random-threshold policy being robust to the

worst case is consistent with it having the best competitive ratio. This robustness is

not achieved by FCFS, the algorithm of Han et al. (2015), or even any deterministic-

threshold algorithm.

4.1.5 Other Related Work and Applications

To the best of our knowledge, we are the first to use threshold policies to study the

competitive ratios of randomized algorithms for this foundational unit-density1 on-

line knapsack problem. Without the unit-density assumption, the non-existence of

any constant competitive ratio guarantee 𝑐 > 0, even for randomized algorithms on a

single knapsack, was first established in Marchetti-Spaccamela and Vercellis (1995).

Tight instance-dependent competitive ratios (where the guarantee 𝑐 can depend on

1In our problem, since the objective is capacity packed, the reward from packing each item is
equal to its size, and hence the term “unit-density”.
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parameters based on the sequence of items) have also been established in Zhou et al.

(2008). For a thorough discussion of recent results across many variants online knap-

sack, we refer to Cygan et al. (2016).

There is also a rich literature which studies the stochastic online knapsack problem,

that assumes the arrival sequences are drawn from a given distribution. There are

papers on the optimal policies on a single knapsack; see Kleywegt and Papastavrou

(1998), Papastavrou et al. (1996) when the order of arriving items is fixed. When

the items can be inserted in any order but their sizes are stochastic, the concept

of “adaptivity gap” between adaptive and non-adaptive algorithms was proposed in

Dean et al. (2008). Using their language, the adaptivity gap for our problem on a

single knapsack is within 7%; see Table 4.1. Variants where the arrival sequence could

be (partially) learned over time are studied in Modaresi et al. (2019), Hwang et al.

(2018).

We briefly mention some other applications areas (other than Adwords and health-

care scheduling) where online knapsack/assignment problems with unit density and

no truncation arise.

Refugee Integration: Bansak et al. (2018) have studied a refugee integration

problem. This is a real problem in many developed democracies, where “refugees

face challenges integrating into host societies”. Refugees in non-splittable groups

(e.g. families) arrive in an online fashion, and democracies assign refugees across

resettlement locations subject to capacity constraints. If a group of refugees do not

have a suitable settlement location, they temporarily stay in the refugee camps. The

objective is to maximize the number of assigned refugees.

Crowdsourcing: Ho and Vaughan (2012) have studied a problem in online

crowdsourcing, where a requester asks workers that arrive online to finish his / her

tasks, and cannot split tasks into two. Each worker spends some time to finish the

assigned work. The objective is to maximize the total benefit that the requester ob-

tains from the completed work, given time constraints. In a variant (Assadi et al.

2015), each worker picks a subset of tasks, along with task-specific bid numbers. The

requester has to assign no more than one task to each worker, by paying the worker

93



the on the bid. The objective of the requester is to either maximize the number of

assigned tasks to workers, while not violating the budget constraint.

4.1.6 Roadmap

In Section 4.2 we introduce the model and notations. In Section 4.3 we introduce our

results on a single knapsack. Section 4.3.1 introduces the 3/7 competitive algorithm

relative to the optimal fractional packing, and Section 4.3.2 introduces the 0.432

competitive algorithm relative to the optimal integer packing. Then in Section 4.4

we introduce our results on multiple knapsacks. Section 4.4.1 introduces the 0.214

competitive algorithm, and Section 4.4.2 introduces the impossibility result for a 0.461

competitive algorithm. Finally in Section 4.5, we conduct computational study using

real data from a Latin American chain department Store, and show the efficacy of

threshold algorithms.

4.2 Definition of Problems, Notations

In this paper we denote [𝑇 ] = {1, 2, ..., 𝑇}, for any positive integer 𝑇 . Let the capacity

of the knapsack be 1. Let the entire set of items be indexed by 𝑡 ∈ [𝑇 ], the sequence

of its arrival. For any 𝑡 ∈ [𝑇 ], 𝑠𝑡 refers to the size of item 𝑡. The entire sequence

of item sizes is then 𝑆 = (𝑠1, 𝑠2, ..., 𝑠𝑇 ). For any 𝐴 ⊆ [𝑇 ], a subset of indices, let

size(𝐴) =
∑︀

𝑡∈𝐴 𝑠𝑡 be the total size of items in 𝐴.

Suppose there is a clairvoyant decision maker who knows the entire sequence in

advance. This decision maker is going to take the optimal actions (accept / reject)

over the process. Let this policy be OPT. Note that OPT does not necessarily

guarantee to fill all the capacity of the knapsack, but it must be upper bounded by 1.

For any specific sequence of 𝑆, let ALG(𝑆) denote the total amount filled by ALG

on this instance in expectation, where expectation is taken over the randomness of the

algorithm. Here ALG is any generic algorithm, where in the following sections we will

specify which algorithm it is by using slightly different notations for each algorithm.

Let OPT(𝑆) denote the total amount filled by OPT on this sequence. Note that
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OPT(𝑆) = max𝐴⊆[𝑇 ]:size(𝐴)≤1 size(𝐴). We will also refer to a stronger optimum OPT+

which is not only clairvoyant, but allowed to truncate items at will, with

OPT+(𝑆) = min{𝑠1 + · · · + 𝑠𝑇 , 1} (4.3)

It is self-evident that OPT(𝑆) ≤ OPT+(𝑆) for any 𝑆. We also use ALG,OPT and

OPT+ for ALG(𝑆),OPT(𝑆), and OPT+(𝑆), respectively, if the sequence 𝑆 is clear

from the context.

Under any policy, we say that an item 𝑠𝑡 is rejected because it fails to meet the

admission critrion of this policy, e.g. failure to exceed the threshold of a threshold

policy. If an item is rejected under a policy, we say that this policy rejects this item.

Under any policy, we say that an item 𝑠𝑡 is blocked at the moment it arrives, if

the remaining capacity of the knapsack is not enough for 𝑠𝑡 to fit in. An item is said

to be blocked regardless of the fact if it would have been rejected by the policy. If an

item is blocked under a policy, we say that this policy blocks this item.

The focus of this paper is on randomized (non-adaptive) threshold algorithms.

We define threshold algorithms as follows: Let THR(𝜏),∀𝜏 ∈ [0, 1] be a threshold

algorithm that accepts any item whose size is greater or equal to 𝜏 , as long as it can

fit into the knapsack. A THR(0) policy is also referred to as a greedy policy, Greedy:

accept any item regardless of its size, as long as it can fit into the knapsack. We will

interchangeably use THR(0) and Greedy for the same policy.

We say that threshold algorithms are non-adaptive, because the decision of whether

to accept an item (assuming it fits) is dependent on only the item’s size, and not the

past items observed. Note that a threshold algorithm can be randomized, in which

case 𝜏 is chosen from a probability distribution at the start and then fixed over time.

4.3 A Single Knapsack

We first start with a single knapsack. We introduce the algorithm from Han et al.

(2015) here.
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Definition 4.1. [Algorithm TwoBins, Han et al. (2015)]

1. Randomly flip a fair coin, with probability 1/2 on each side.

2. If Heads, apply Greedy.

3. If Tails, reject everything until the first one that Greedy would have not fit.

Then apply Greedy (including this item).

Note that when Tails, the algorithm has to adapt on what are the items that have

been rejected. So unlike our algorithms, this is an adaptive algorithm. Nonetheless,

it provides the best possible competitive ratio.

Proposition 4.1 (Theorem 1, Han et al. (2015)). The algorithm from Definition 4.1

is 1/2 competitive, and it is tight for any algorithm, i.e. ∀𝑆,

inf
𝑆

TwoBin(𝑆)

OPT+(𝑆)
=

1

2
.

The proof is very simple, as we outlined in the Introduction. Either greedy is

optimal, in which case the algorithm is optimal half the time, or the sum of the

algorithm’s packing under Heads and Tails exceeds 1, in which case the algorithm’s

expected packing must be at least half of the optimum.

Next, in Section 4.3.1, we prove a tight 3/7 competitive ratio relative to the opti-

mal fractional packing, in the family of non-adaptive threshold algorithms, by lower

bounding the performance of our proposed algorithm and loosely upper bounding the

optimal fractional packing by 1. In Section 4.3.2, we prove a tight 0.432 competitive

ratio relative to the optimal integer packing, in the family of non-adaptive threshold

algorithms, by lower bounding the performance of our proposed algorithm and upper

bounding the exact optimal integer packing at the same time.

4.3.1 A 0.428 Competitive Algorithm Relative to the Optimal

Fractional Packing

We propose a randomized threshold policy, ALGN4.2, and prove it is 3/7-competitive.
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Definition 4.2. Let ALGN4.2 be a randomized threshold policy that runs as follows,

1. At the beginning of the entire process, randomly draw 𝜏 from a distribution

whose cumulative distribution function (CDF) is given by

𝐹N4.2(𝑥) =

⎧⎪⎨⎪⎩
4/7 − 𝑥

1 − 2𝑥
, 𝑥 ∈ [0, 3/7]

1, 𝑥 ∈ (3/7, 1]

(4.4)

2. We apply THR(𝜏) policy throughout the process.

Notice that 𝐹N4.2(0) = 4/7. This is the point mass we put on 𝜏 = 0. This means

that with probability 4/7, we will perform Greedy.

It is easy to check that our desired algorithm does not know how many items are

there in total, not does it know the sizes of the items.

Now we state and prove our first result.

Theorem 4.2.

inf
𝑆

ALGN4.2(𝑆)

OPT+(𝑆)
≥ 3

7

Proof. Proof of Theorem 4.2. For any instance of arrival sequence 𝑆, we will show
ALGN4.2(𝑆)

OPT+(𝑆)
≥ 3/7.

First of all, Greedy always accepts something. Denote the set of items accepted

by Greedy as 𝐺. Denote |𝐺| = 𝑔. If 𝐺 = [𝑇 ] then Greedy is optimal. In this case

ALGN4.2

OPT+ ≥ Pr(𝜏 = 0) · 1 + Pr(𝜏 > 0) · 0 ≥ 𝐹 (0) = 4/7 ≥ 3/7.

If 𝐺 $ [𝑇 ], let 𝑀 = [𝑇 ]∖𝐺 denote the set of items blocked by Greedy. Since

Greedy always accepts an item as long as it can fill in, any item blocked by Greedy

must exceed the remaining space of the knapsack, at the moment it is blocked. We

also know that 𝐺 ∪𝑀 = [𝑇 ], 𝐺 ∩𝑀 = 𝜑.

Let 𝑚 be the smallest size in 𝑀 , i.e. 𝑚 = min𝑡∈𝑀 𝑠𝑡. Define index 𝑡𝑚 for the
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smallest item, or the first smallest item, if there are multiple smallest items.

𝑡𝑚 = min {𝑡 ∈ [𝑇 ] |𝑠𝑡 = 𝑚} . (4.5)

Denote 𝐺′ as the set of items accepted by Greedy, at the moment item 𝑡𝑚 is blocked.

Let 𝑔′ = size(𝐺′). See Figure 4-2. A straightforward, but useful information about 𝑚

is:

𝑔′ + 𝑚 > 1, (4.6)

because 𝑚 is blocked by Greedy. We wish to understand when we can pack an item

of size at least 𝑚, by selecting a proper threshold 𝜏 .

Figure 4-2: Illustration of the items that Greedy accepts, and blocks

We distinguish two cases: 𝑚 ≥ 1/2 and 𝑚 < 1/2.

Case 1: 𝑚 ≥ 1/2.

Let 𝑆THR(𝜏) be the set of items that have sizes at least 𝜏 , i.e. 𝑆THR(𝜏) = {𝑡 ∈ 𝑆 |𝑠𝑡 ≥ 𝜏 }.

Now define

𝑞 = max 𝜏

𝑠.𝑡. 𝑚 + size(𝑆THR(𝜏) ∩𝐺′) > 1
(4.7)

This means that if we adopt a THR(𝑞) policy, then the size 𝑚 item must be blocked

(possibly it will also be rejected, due to 𝑞 > 𝑚, which leads to the discussion in Case

1.1).

Now consider the items in 𝑆THR(𝑞) ∩ 𝐺′. These items have sizes at least 𝑞. We

count how many size 𝑞 items are there, and let 𝑛 be the number of size 𝑞 items. Denote
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Figure 4-3: Illustration of Case 1 (and specifically, Case 1.2)

the total size of the remaining items be 𝑥. We know that size(𝑆THR(𝑞)∩𝐺′) = 𝑛𝑞+𝑥.

See Figure 4-3.

We make the following observations:

1. There must exist some item from 𝐺′ that is of size 𝑞, i.e.

∃𝑡𝑞 ∈ 𝐺′ ⊆ [𝑇 ], 𝑠.𝑡. 𝑠𝑡𝑞 = 𝑞. (4.8)

This is because otherwise we can select the smallest item size in 𝐺′ that is also

larger than 𝑞. This item size satisfies (4.7), and violates the maximum property

of 𝑞.

2. Size 𝑚 items can not fit in together with all the items in 𝑆THR(𝑞) ∩𝐺′, i.e.

𝑛𝑞 + 𝑥 + 𝑚 > 1 (4.9)

This is because size(𝑆THR(𝑞) ∩𝐺′) = 𝑛𝑞 + 𝑥. This is implied by (4.7).

3. A size 𝑚 item can fit in together with items 𝑆THR(𝜏) ∩𝐺′,∀𝜏 > 𝑞, i.e.

𝑥 + 𝑚 ≤ 1 (4.10)

This is because otherwise we could further increase 𝑞 to 𝑞, so that 𝑞 still satisfy

equation (4.7). Define 𝑞 = min𝜀>0,𝑡∈𝑆THR(𝑞+𝜀)∩𝐺′ 𝑠𝑡. We know (i) 𝑞 > 𝑞; (ii)

size(𝑆THR(𝑞) ∩𝐺′) + 𝑚 > 1. So 𝑞 violates the maximum property of 𝑞.

We further distinguish two cases: 𝑞 > 𝑚, and 𝑞 ≤ 𝑚.
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Case 1.1: 𝑞 > 𝑚.

In this case, if we adopt Greedy then we can get as much as 𝑔.

If we adopt THR(𝜏),∀𝜏 ∈ (0, 𝑞] then we can get no less than 𝑞. This is because

due to (4.8) there must exist some item 𝑡𝑞 ∈ 𝐺′ of size 𝑞. We either accept it, in

which case we immediately earn 𝑞, or we have blocked it because we admitted some

item 𝑧 ∈ [𝑇 ] from 𝑀 and consumed too much space. But Greedy blocks item 𝑧 earlier

than it accepts item 𝑡𝑞, which means that 𝑠𝑧 ≥ 𝑠𝑡𝑞 = 𝑞. So in either case we earn 𝑞.

We have the following:

ALGN4.2 ≥ Pr(𝜏 = 0) · 𝑔 + Pr(0 < 𝜏 ≤ 𝑞) · 𝑞

= 𝐹N4.2(0) · 𝑔 + (𝐹N4.2(𝑞) − 𝐹N4.2(0)) · 𝑞

≥ 𝐹N4.2(0) · (1 − 2𝑞) + 𝐹N4.2(𝑞) · 𝑞

= 4/7 · (1 − 2𝑞) + 1 · 𝑞

= 4/7 − 1/7 · 𝑞

≥ 3/7

where the second inequality is because 𝑔 ≥ 𝑔′ > 1−𝑚 (due to (4.6)) and 1−𝑚 > 1−𝑞

(Case 1.1: 𝑞 > 𝑚); second equality is because 𝑞 > 𝑚 ≥ 1/2 and the way we defined

𝐹N4.2(·) in (4.4) so 𝐹N4.2(𝑞) = 1; last inequality is because 𝑞 ≤ 1.

Since OPT+ ≤ 1, we have ALGN4.2

OPT+ ≥ 3
7
.

Case 1.2: 𝑞 ≤ 𝑚.

In this case, if we adopt Greedy then we can get as much as 𝑔. This is the definition

of 𝑔.

If we adopt THR(𝜏),∀𝜏 ∈ (0, 𝑞] then we get no less than 𝑞. This is because due

to (4.8) there must exist some item 𝑡𝑞 ∈ 𝐺′ of size 𝑞. We either accept it, in which

case we immediately earn 𝑞, or we have blocked it because we admitted some item

𝑧 ∈ [𝑇 ] from 𝑀 and consumed too much space. But Greedy blocks item 𝑧 earlier than

it accepts item 𝑡𝑞, which means that 𝑠𝑧 ≥ 𝑠𝑡𝑞 = 𝑞. So in either case we earn 𝑞.

If we adopt THR(𝜏), ∀𝜏 ∈ (𝑞,𝑚] then we get no less than 𝑚. This is because due

to (4.10), any item in 𝑆THR(𝜏) ∩ 𝐺′ will not block item 𝑡𝑚 (from expression (4.5));
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and 𝜏 ≤ 𝑚 so we will not reject item 𝑡𝑚. We either accept item 𝑡𝑚, in which case we

immediately earn 𝑚, or we have blocked it because we admitted some item 𝑧 ∈ [𝑇 ]

from M and consumed too much space. But 𝑚 is smallest item size in 𝑀 , which

means that 𝑠𝑧 ≥ 𝑚. So in either case we earn 𝑚.

We have the following:

ALGN4.2 ≥ Pr(𝜏 = 0) · 𝑔 + Pr(0 < 𝜏 ≤ 𝑞) · 𝑞 + Pr(𝑞 < 𝜏 ≤ 𝑚) ·𝑚

= 𝐹N4.2(0) · 𝑔 + (𝐹N4.2(𝑞) − 𝐹N4.2(0)) · 𝑞 + (𝐹N4.2(𝑚) − 𝐹N4.2(𝑞)) ·𝑚

≥ 𝐹N4.2(0) · (𝑛𝑞 + 𝑥) + (𝐹N4.2(𝑞) − 𝐹N4.2(0)) · 𝑞+

(𝐹N4.2(𝑚) − 𝐹N4.2(𝑞)) · (1 − (𝑛𝑞 + 𝑥))

= (𝐹N4.2(𝑞) − 𝐹N4.2(0)) · 𝑞 + 1 − 𝐹N4.2(𝑞) + (𝐹N4.2(𝑞) − 3/7) · (𝑛𝑞 + 𝑥)

≥ (𝐹N4.2(𝑞) − 𝐹N4.2(0)) · 𝑞 + 1 − 𝐹N4.2(𝑞) + (𝐹N4.2(𝑞) − 3/7) · 𝑞

= 𝐹N4.2(𝑞) · (2𝑞 − 1) + 1 − 𝑞

where the second inequality is because 𝑔 ≥ 𝑔′ ≥ 𝑛𝑞 + 𝑥 and 𝑚 > 1− (𝑛𝑞 + 𝑥) (due to

(4.9)); second equality is because 𝑚 ≥ 1/2 and the way we defined 𝐹N4.2(·) in (4.4)

so 𝐹N4.2(𝑚) = 1; the last inequality is because 𝐹N4.2(𝑞) ≥ 𝐹N4.2(0) = 4/7 > 3/7, so

the coefficient in front of 𝑛𝑞 + 𝑥 is positive.

Now we plug in the expression of 𝐹N4.2(𝑞) as defined in (4.4). If 𝑞 ≤ 3/7 then

ALGN4.2 ≥ 4/7−𝑞
1−2𝑞 · (2𝑞 − 1) + 1 − 𝑞 = 3/7; If 𝑞 > 3/7 then ALGN4.2 ≥ 𝑞 > 3/7. So in

either case we have shown ALGN4.2 ≥ 3/7.

Since OPT+ ≤ 1, we have ALGN4.2

OPT+ ≥ 3
7
.

Case 2: 𝑚 < 1/2.

In this case, a crude analysis is enough. See Figure 4-4.

Figure 4-4: Illustration of Case 2
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If we adopt Greedy then we can get as much as 𝑔. This is because 𝑔 is defined this

way.

If we adopt THR(𝜏),∀𝜏 ∈ (0,𝑚] then we either get 𝑚, or 𝑚 is blocked, in which

case we must have already earned at least 1 −𝑚 to block 𝑚.

We have the following:

ALGN4.2 ≥ Pr(𝜏 = 0) · 𝑔 + Pr(0 < 𝜏 ≤ 𝑚) · min{𝑚, 1 −𝑚}

≥ Pr(𝜏 = 0) · 𝑔 + Pr(0 < 𝜏 ≤ 𝑚) ·𝑚

= 𝐹N4.2(0) · 𝑔 + (𝐹N4.2(𝑚) − 𝐹N4.2(0)) ·𝑚

≥ 𝐹N4.2(0) · (1 −𝑚) + (𝐹N4.2(𝑚) − 𝐹N4.2(0)) ·𝑚

= 𝐹N4.2(𝑚) ·𝑚 + 4/7 · (1 − 2𝑚)

where the second inequality is because 𝑚 < 1/2; the last inequality is because 𝑔 ≥

𝑔′ > 1 −𝑚 (due to (4.6)).

Now we plug in the expression of 𝐹N4.2(𝑚) as defined in (4.4). If 𝑚 > 3/7 then

ALGN4.2 ≥ 4/7 − 1/7 ·𝑚 ≥ 3/7, because 𝑚 < 1/2 ≤ 1; If 𝑚 ≤ 3/7 then

ALGN4.2 ≥
4/7 −𝑚

1 − 2𝑚
·𝑚 +

4

7
· (1 − 2𝑚) =

9

28
· (1 − 2𝑚) +

1

28
· 1

1 − 2𝑚
+

3

14

≥ 2

√︂
9

28
· 1

28
+

3

14
=

3

7
.

So in either case we have ALGN4.2 ≥ 3/7.

Since OPT+ ≤ 1, we have ALGN4.2

OPT+ ≥ 3
7
.

In all, we have enumerated all the possible cases, to find
ALGN4.2

OPT+ ≥ 3

7
always

holds.

Tightness proof of the 3/7 competitive algorithm.

In this section we show that the guarantee of inf𝑆
ALGN4.2(𝑆)

OPT+(𝑆)
≥ 3

7
from Definition 4.2 is

best-possible, relative to OPT+, among all randomized threshold policies. To do this,

we invoke the minimax theorem of Yao (1977), which says that it suffices to construct
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a distribution 𝒮 over sequences 𝑆 for which

sup
ALG:ALG=THR(𝜏),𝜏∈[0,1]

E𝑆∼𝒮 [ALG(𝑆)]

E𝑆∼𝒮 [OPT+(𝑆)]
≤ 3

7
.

In particular, we only need to establish that E𝑆∼𝒮 [ALG(𝑆)]

E𝑆∼𝒮 [OPT+(𝑆)]
≤ 3

7
for deterministic thresh-

old policies specified by a 𝜏 ∈ [0, 1].

Theorem 4.3. There exists a distribution 𝒮 over arrival sequences 𝑆 such that for

any 𝜏 ∈ [0, 1], the algorithm ALG = THR(𝜏) has E𝑆∼𝒮 [ALG(𝑆)]

E𝑆∼𝒮 [OPT+(𝑆)]
≤ 3

7
.

Proof. Proof of Theorem 4.3. Prove by construction. Let the random arrival sequence

be 𝑆:

𝑆 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(1/3, 2/3 + 𝜀), with prob. 3/7;

(𝜀, 𝜀, ..., 𝜀⏟  ⏞  
2/3+𝜀

, 1/3), with prob. 3/7;

(𝜀, 1), with prob. 1/7;

(4.11)

Following each realization of 𝑆, OPT+(𝑆) = 1. So we have E𝑆[OPT+(𝑆)] = 1.

For any ALG = THR(𝜏), 𝜏 ∈ [0, 1], we enumerate all the potential values of 𝜏 in

the following.

Case 1: 0 ≤ 𝜏 ≤ 𝜀. In this case,

E𝑆[ALG(𝑆)] =
1

3
· 3

7
+

(︂
2

3
+ 𝜀

)︂
· 3

7
+ 𝜀 · 1

7
=

3

7
+

4

7
· 𝜀

Case 2: 𝜀 < 𝜏 ≤ 1/3. In this case,

E𝑆[ALG(𝑆)] =
1

3
· 3

7
+

1

3
· 3

7
+ 1 · 1

7
=

3

7

Case 3: 1/3 < 𝜏 ≤ 2/3 + 𝜀. In this case,

E𝑆[ALG(𝑆)] =

(︂
2

3
+ 𝜀

)︂
· 3

7
+ 0 · 3

7
+ 1 · 1

7
=

3

7
+

3

7
· 𝜀

103



Case 4: 2/3 + 𝜀 < 𝜏 ≤ 1. In this case,

E𝑆[ALG(𝑆)] = 1 · 1

7
=

1

7

In all, we have enumerated all the values that a threshold can take. In all cases,

the performance of the threshold THR(𝜏) policy has an expected performance of no

more than 3/7 + 4/7 · 𝜀. But E𝑆[OPT+(𝑆)] = 1. By taking 𝜀 → 0+ we finish the

proof.

4.3.2 A 0.432 Competitive Algorithm Relative to the Optimal

Integer Packing

In this section we are going to introduce a threshold policy that achieves the best-

possible competitive ratio in the non-adaptive threshold family. In Section 4.3.2 we

will show it is best-possible.

We first define some parameters that are going to be useful in the following anal-

ysis.

Let 𝐻 : [3/7, 1/2) × (0, 1/2) → R+ be a bivariate real function defined as follows:

𝐻(𝑐, 𝑥) =
1 − 2𝑐

𝑥
− (1 − 2𝑐) ln (1 − 𝑥)

1 − 2𝑥
− (1 − 𝑐)

Now fix 𝑐 to be any number between [3/7, 1/2). Define 𝑞N4.3 to be the only local

minimizer on the second coordinate of 𝐻(𝑐, 𝑥), between (0, 1/2) – it can be implicitly

given as the only solution between [3/7, 1/2), such that

2𝑞3N4.3 − 7𝑞2N4.3 + 5𝑞N4.3 − 1 − 2(1 − 𝑞N4.3)𝑞2N4.3 ln (1 − 𝑞N4.3) = 0,

or, approximately,

𝑞N4.3 ≈ 0.31847.
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Define 𝑐N4.3 to be the only solution between [3/7, 1/2), such that

𝐻(𝑐N4.3, 𝑞N4.3) =
1 − 2𝑐N4.3

𝑞N4.3
− (1 − 2𝑐N4.3) ln (1 − 𝑞N4.3)

1 − 2𝑞N4.3
− (1 − 𝑐N4.3) = 0, (4.12)

or, approximately,

𝑐N4.3 ≈ 0.43236.

We can check the following inequality: ∀𝑞 ∈ (0, 1/2),

𝐻(𝑐N4.3, 𝑞) ≥ 𝐻(𝑐N4.3, 𝑞N4.3) = 0 (4.13)

We propose another randomized threshold policy, ALGN4.3, using another random

threshold. It gives us an improved 0.432 competitive guarantee.

Definition 4.3. Let ALGN4.3 be a randomized threshold policy that runs as follows,

1. At the beginning of the entire process, randomly draw 𝜏 from a distribution

whose CDF is given by

𝐹N4.3(𝑥) =

⎧⎪⎨⎪⎩
(1 − 𝑐N4.3) − (1 − 2𝑐N4.3) ln (1 − 𝑥)

1 − 2𝑥
, 𝑥 ∈ [0, 𝑞N4.3]

2(1 − 𝑐N4.3) − 1 − 2𝑐N4.3

𝑥
, 𝑥 ∈ (𝑞N4.3, 1]

(4.14)

2. We apply THR(𝜏) policy throughout the process.

Notice that 𝐹N4.3(0) = 1 − 𝑐N4.3. This is the point mass we put on 𝜏 = 0. This

means that with probability 1 − 𝑐N4.3 ≈ 0.568, we will perform Greedy.

We state our main result here.

Theorem 4.4.

inf
𝑆

ALGN4.3(𝑆)

OPT(𝑆)
≥ 𝑐N4.3 ≈ 0.432

The proof idea is the same as in Theorem 4.2, but in order to improve it, we are

more careful in upper bounding the performance of OPT. To compare to the proof of

Theorem 4.2, Case 1.2 will be different. The proof details are deferred to Section C.1.
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Tightness proof of the 0.432 competitive algorithm.

In this section we show that the guarantee of inf𝑆
ALG(𝑆)
OPT(𝑆)

≥ 𝑐N4.3 from Definition 4.3

is best-possible among all randomized threshold policies. As in Section 4.3.1, we

invoke the minimax theorem of Yao (1977), which says that it suffices to construct a

distribution 𝒮 over sequences 𝑆 for which

sup
ALG:ALG=THR(𝜏),𝜏∈[0,1]

E𝑆∼𝒮 [ALG(𝑆)]

E𝑆∼𝒮 [OPT(𝑆)]
≤ 𝑐N4.3.

Theorem 4.5. There exists a distribution 𝒮 over arrival sequences 𝑆 such that for

any 𝜏 ∈ [0, 1], the algorithm ALG = THR(𝜏) has E𝑆∼𝒮 [ALG(𝑆)]
E𝑆∼𝒮 [OPT(𝑆)]

≤ 𝑐N4.3 ≈ 0.432.

Proof. Proof of Theorem 4.5. Prove by construction. Let the random arrival sequence

be 𝑆:

𝑆 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(𝜀, 𝜀, ..., 𝜀⏟  ⏞  
1−𝑞+𝜀

, 𝑞), where 𝑞 ∈ [1 − 𝑞N4.3, 1] conforms 𝑢(·);

(𝑞N4.3, 1 − 𝑞N4.3 + 𝜀, 1 − 𝑞N4.3 + 2𝜀, ..., 1), with prob. 𝑥;

(𝜀, 𝜀, ..., 𝜀⏟  ⏞  
1−𝑞N4.3+𝜀

, 𝑞N4.3), with prob. 𝑦;

(𝜀, 1), with prob. 𝑧;

(4.15)

where

𝑥 =
1 − 2𝑐N4.3

1 − 2𝑞N4.3
≈ 0.37112; 𝑦 =

1 − 2𝑐N4.3

𝑞N4.3
≈ 0.42309;

𝑧 = 𝑐N4.3 − 𝑥 ≈ 0.00954; 𝑢(𝑞) =
𝑥

𝑞
.

We can verify that

𝑥+𝑦+𝑧+

∫︁ 1

1−𝑞N4.3

𝑥

𝑞
d𝑞 = 𝑥+

1 − 2𝑐N4.3

𝑞N4.3
+(𝑐N4.3−𝑥)− 1 − 2𝑐N4.3

1 − 2𝑞N4.3
· ln (1 − 𝑞N4.3) = 1,

by plugging the expressions into the equation and using 𝐻(𝑐N4.3, 𝑞N4.3) = 0 from

(4.12). This equation shows that our construction conforms a legitimate probability
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measure.

Following each realization of 𝑆, OPT(𝑆) = 1. So we have E𝑆[OPT(𝑆)] = 1.

For any ALG = THR(𝜏), 𝜏 ∈ [0, 1], we enumerate all the potential values of 𝜏 in

the following.

Case 1: 0 ≤ 𝜏 ≤ 𝜀. In this case,

E𝑆[ALG(𝑆)] = 𝑞N4.3 · 𝑥 + (1 − 𝑞N4.3 + 𝜀) · 𝑦 + 𝜀 · 𝑧 +

∫︁ 1

1−𝑞N4.3

(1 − 𝑞 + 𝜀) · 𝑢(𝑞)d𝑞

= 𝑞N4.3 · 𝑥 + (1 − 𝑞N4.3) · 1 − 2𝑐N4.3

𝑞N4.3
− 1 − 2𝑐N4.3

1 − 2𝑞N4.3
· ln (1 − 𝑞N4.3)

− 𝑥 · 𝑞N4.3 + 𝜀 · (1 − 𝑥)

=
1 − 2𝑐N4.3

𝑞N4.3
− 1 − 2𝑐N4.3

1 − 2𝑞N4.3
· ln (1 − 𝑞N4.3) − (1 − 2𝑐N4.3) + 𝜀 · (1 − 𝑥)

= 𝑐N4.3 + 𝜀 · (1 − 𝑥)

where the last equality is due to (4.12).

Case 2: 𝜀 < 𝜏 ≤ 𝑞N4.3. In this case,

E𝑆[ALG(𝑆)] = 𝑞N4.3 · 𝑥 + 𝑞N4.3 · 𝑦 + 1 · 𝑧 +

∫︁ 1

1−𝑞N4.3

𝑞 · 𝑢(𝑞)d𝑞

= 𝑞N4.3 ·
1 − 2𝑐N4.3

1 − 2𝑞N4.3
+ 𝑞N4.3 ·

1 − 2𝑐N4.3

𝑞N4.3
+ 𝑐N4.3 −

1 − 2𝑐N4.3

1 − 2𝑞N4.3

+ 𝑞N4.3 ·
1 − 2𝑐N4.3

1 − 2𝑞N4.3

= 𝑐N4.3 + (1 − 2𝑐N4.3)

(︂
2

𝑞N4.3

1 − 2𝑞N4.3
+ 1 − 1

1 − 2𝑞N4.3

)︂
= 𝑐N4.3

Case 3: 𝑞N4.3 < 𝜏 ≤ 1 − 𝑞N4.3 + 𝜀. In this case,

E𝑆[ALG(𝑆)] = (1 − 𝑞N4.3 + 𝜀) · 𝑥 + 1 · 𝑧 +

∫︁ 1

1−𝑞N4.3

𝑞 · 𝑢(𝑞)d𝑞

= (1 − 𝑞N4.3) · 1 − 2𝑐N4.3

1 − 2𝑞N4.3
+ 𝑐N4.3 −

1 − 2𝑐N4.3

1 − 2𝑞N4.3
+ 𝑞N4.3 ·

1 − 2𝑐N4.3

1 − 2𝑞N4.3
+ 𝜀 · 𝑥

= 𝑐N4.3 + 𝜀 · 𝑥
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Case 4: 1 − 𝑞N4.3 + 𝜀 < 𝜏 ≤ 1. In this case,

E𝑆[ALG(𝑆)] = 𝜏 · 𝑥 + 1 · 𝑧 +

∫︁ 1

𝜏

𝑞 · 𝑢(𝑞)d𝑞

= 𝜏 · 𝑥 + 𝑐N4.3 − 𝑥 + (1 − 𝜏) · 𝑥

= 𝑐N4.3

In all, we have enumerated all the values that a threshold can take. In all cases,

the performance of the threshold THR(𝜏) policy has an expected performance of no

more than 𝑐N4.3 + 𝜀 · (1 − 𝑥). But E𝑆[OPT(𝑆)] = 1. By taking 𝜀 → 0+ we finish the

proof.

4.4 Multiple Knapsacks

In this section we generalize our results to multiple knapsacks. We define the problem

here, then in Section 4.4.1 we introduce the 0.214 competitive algorithm, and in

Section 4.4.2 we introduce the impossibility result for a 0.461 competitive algorithm.

We manage 𝑁 divisible knapsacks indexed as 𝑗 ∈ [𝑁 ], each having size 𝐵𝑗, ∀𝑗 ∈

[𝑁 ]. In each period of time, one item 𝑡 ∈ [𝑇 ] arrives with an associated vector of 𝑁

sizes (𝑠𝑡1, 𝑠𝑡2, ..., 𝑠𝑡𝑁) ∈ (0, 1]𝑁 . The sizes are revealed upon arrival, and each item

must immediately be either entirely accepted by one knapsack, in which case 𝑠𝑡𝑗

amount is filled up in knapsack 𝑗, or entirely rejected (there is no partial fulfillment).

The objective is to maximize the sum of sizes of accepted items from all knapsacks,

i.e. maximize the space in the knapsacks filled.

We compare the algorithm’s performance relative to the space filled by an optimal

offline packing, who knows the entire sequence of items in advance. This generaliza-

tion can be seen as a modification of the AdWords budgeted allocation problem as in

Mehta et al. (2005), where we do not allow the partial allocation of any queries that

go over budget.
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4.4.1 A 0.214 Competitive Algorithm

We first overview the AdWords problem originally proposed in Mehta et al. (2005).

The language we use are from the tutorial Mehta et al. (2013). In each period of

time, one item 𝑠𝑡 arrives with an associated vector of 𝑁 sizes (𝑠𝑡1, 𝑠𝑡2, ..., 𝑠𝑡𝑁) ∈

(0, 1]𝑁 . Suppose that, at this moment, some 𝑏𝑗 amount of space has been filled in

each knapsack 𝑗 ∈ [𝑁 ]. If we assign the item to knapsack 𝑗, then min{1 − 𝑏𝑗, 𝑠𝑡𝑗}

amount of stock from knapsack 𝑗 will be filled – we allow for truncation in the

AdWords problem. For this AdWords problem, the following greedy algorithm is

well-known.

Definition 4.4 (Algorithm 8, Mehta et al. (2013)). When item 𝑡 arrives, find �̃� ∈

arg max𝑗∈[𝑁 ] 𝑠𝑡𝑗, and fit the item to knapsack �̃�.

We make the following comments.

1. This greedy algorithm is irrespective to how much each knapsack has been

filled. It is possible that the algorithm routes one item to a full knapsack, and

completely wastes it.

2. This greedy algorithm is non-adaptive, in the sense that it routes items to

knapsacks only based on the current item sizes, but not on the status of the

knapsacks, nor the historically accepted / rejected item sizes (as long as there

is remaining capacity).

It is well known that the greedy algorithm defined above achieves a competitive

ratio of 1/2. For any instance 𝑆, let ALGAW(𝑆) denote the total amount filled by the

greedy algorithm from Definition 4.4, which is allowed to truncate. Let OPTAW(𝑆)

denote the total amount filled by a clairvoyant decision maker, which is also allowed

to truncate.

Proposition 4.6 (Theorem 5.1, Mehta et al. (2013)). The greedy algorithm from

Definition 4.4 is 1/2 competitive for the AdWords problem, i.e. ∀𝑆,

ALGAW(𝑆) ≥ 1

2
OPTAW(𝑆).

109



Now we return to our multiple knapsack problem without truncation.

Definition 4.5. We define our proposed algorithm, which essentially combines the

two algorithms from Definitions 4.2 and 4.4.

1. For each item 𝑡, find �̃� ∈ arg max𝑗∈[𝑁 ] 𝑠𝑡𝑗, and route item 𝑡 to knapsack �̃�.

2. Adopt a single-knapsack policy from Definition 4.2, to decide if we accept item

𝑡 or not.

3. Actually accept item 𝑡 by matching it to knapsack �̃�, if both we accept item 𝑡,

and it fits.

We do not prescribe the correlations between the thresholds for each knapsack.

They can be arbitrarily correlated, and they can also be independent. In other words,

we use the algorithm from Definition 4.4 to route items to knapsacks, and then use

our algorithms to decide if we actually accept it.

For any instance 𝑆, let ALG(𝑆) denote the total amount filled by the combined

algorithm from Definition 4.5, which is not allowed to truncate. Let OPT(𝑆) denote

the total amount filled by a clairvoyant decision maker, which is also not allowed to

truncate.

Theorem 4.7. The combined algorithm from Definition 4.5 is 1
2
𝑐 competitive, i.e.

inf
𝑆

ALG(𝑆)

OPT(𝑆)
≥ 1

2
𝑐,

where 𝑐 is the performance guarantee of any algorithm on a single-knapsack relative

to OPT+ as defined in (4.3).

In particular, if we adopt the algorithm from Definition 4.5, then 𝑐 = 3/7; if we

adopt the algorithm from Definition 4.1, then 𝑐 = 1/2.

Proof. Proof of Theorem 4.7 For any knapsack 𝑗, let 𝐼𝑗 be the set of items routed to it

in Step 1 of Definition 4.5 (𝐼𝑗 includes items that are later discarded by the threshold

of knapsack 𝑗). Note that 𝐼𝑗 does not depend on the adoption of single-knapsack

algorithms from Step 2.
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Denote OPT+
𝑗 = min{

∑︀
𝑖∈𝐼𝑗 𝑠𝑖𝑗, 𝐵𝑗},∀𝑗 ∈ [𝑁 ]. It is obvious that ALGAW =∑︀

𝑗∈[𝑁 ] OPT
+
𝑗 ., due to the allowance of truncation in ALGAW.

From Definition 4.2, we earn at least 𝑐 · (
∑︀

𝑖∈𝐼𝑗 𝑠𝑖𝑗) = 𝑐 ·OPT+
𝑗 , in expectation. So

that

ALG ≥ 𝑐 · OPT+
𝑗 ≥ 𝑐 · (

1

2
OPTAW) ≥ 𝑐

2
OPT

where the first inequality is because on each knapsack ALG earns at least 𝑐 fraction

of what ALGAW does; the second inequality is from Proposition 4.6; and the third

inequality is simply the fact that OPTAW ≥ OPT, because any optimal assignment

when truncation is not allowed is a feasible solution to the problem when truncation

is allowed.

4.4.2 An upper bound for multiple knapsacks strictly less than

0.5

Fix a small 𝜀 > 0. There are 𝑁 knapsacks with sizes 𝐵1 = · · · = 𝐵𝑁 = 1. The

arrival sequence 𝑆 deterministically starts with 𝑁 items each of which take size 𝜀 in

a particular knapsack, and size 0 in all other knapsacks. Specifically,

𝑠𝑡,𝑡′ =

⎧⎪⎨⎪⎩𝜀, if 𝑡 = 𝑡′

0, otherwise
∀ 𝑡, 𝑡′ ∈ [𝑁 ].

After item 𝑁 , with probability 𝛼, the arrival sequence terminates; with probability

1−𝛼, there are 𝑁 more items whose sizes adhere to a “upper-triangular graph”, defined

as follows. A permutation 𝜋 : [𝑁 ] → [𝑁 ] is chosen uniformly at random among all 𝑁 !

possibilities. Item 𝑁 + 1 takes size 1 in all knapsacks. Item 𝑁 + 2 takes size 1 in all

knapsacks, except knapsack 𝜋(1), where it takes size 0. Item 𝑁 + 3 takes size 1 in all

knapsacks, except knapsacks 𝜋(1) and 𝜋(2), where it takes size 0. This construction
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is repeated until item 2𝑁 , which takes size 1 only in knapsack 𝜋(𝑁). Formally,

𝑠𝑁+𝑡,𝑡′ =

⎧⎪⎨⎪⎩1, if 𝑡′ /∈ {𝜋(1), . . . , 𝜋(𝑡− 1)}

0, if 𝑡′ ∈ {𝜋(1), . . . , 𝜋(𝑡− 1)}
∀ 𝑡, 𝑡′ ∈ [𝑁 ].

The optimal solution matches items 1, . . . , 𝑁 to their corresponding knapsacks if

the arrival sequence terminates after item 𝑁 , and rejects items 1, . . . , 𝑁 otherwise,

matching items 𝑁 + 1, . . . , 2𝑁 to knapsacks 𝜋(1), . . . , 𝜋(𝑁), respectively, instead.

Therefore

E𝑆[OPT(𝑆)] = (𝛼)𝑁𝜀 + (1 − 𝛼)𝑁. (4.16)

Meanwhile, the algorithm does not know whether the arrival sequence will ter-

minate after item 𝑁 , nor does it know 𝜋. In the first phase, any algorithm can be

captured by how many 𝜀’s it accepts, which we denote using 𝑒 ∈ {0, 1, ..., 𝑁}. Should

the second phase occur, by the symmetry of the random permutation, an algorithm

cannot do better than placing an arriving item arbitrarily into an empty knapsack

(where it will take size 1) whenever possible. Therefore, the expected reward of any

algorithm when the second phase does occur is completely determined by 𝑒.

We now formalize this construction to derive an upper bound on the competitive

ratio.

Theorem 4.8. There exists a distribution 𝒮 over arrival sequences 𝑆 such that for

any (adaptive or non-adaptive) algorithm ALG, we have E𝑆∼𝒮 [ALG(𝑆)]
E𝑆∼𝒮 [OPT(𝑆)]

≤ 35
76

≈ 0.461.

By Yao’s minimax theorem, the competitive ratio cannot be greater than 35/76.

Proof. Proof of Theorem 4.8. Consider the example we described above, where 𝑁 = 4,

and 𝛼 = 1 − 12
7
𝜀. By equation (4.16) above,

E𝑆[OPT(𝑆)] = (1 − 12

7
𝜀)𝑁𝜀 + (

12

7
𝜀)𝑁 = 76/7𝜀− 48/7𝜀2.

Now we analyze the maximum possible value of E𝑆[ALG(𝑆)]. As discussed before,
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any algorithm is characterized by 𝑒 ∈ {0, 1, . . . , 4}, which is the number of size-𝜀

items accepted.

Case 1: 𝑒 = 0. With probability 𝛼, the arrival sequence terminates with 0

accepted; with probability 1 − 𝛼, there are 𝑁 more items. We enumerate all the

24 possibilities, to find there are 6 cases that a deterministic algorithm accepts 2 of

them, 17 cases that accepts 3, and 1 case that accepts 4. In expectation we fill 67/24

into the knapsacks. In this case

E𝑆[ALG(𝑆)]

E𝑆[OPT(𝑆)]
=

12/7𝜀 · 67/24

76/7𝜀− 48/7𝜀2
=

67

152 − 96𝜀
.

Case 2: 𝑒 = 1. With probability 𝛼, the arrival sequence terminates with 𝜀

accepted; with probability 1−𝛼, there are 𝑁 more items. Out of all the 24 possibilities,

there are 16 cases that a deterministic algorithm accepts 2 of them, and 8 cases that

accepts 3. In expectation we fill 56/24 into the knapsacks. In this case

E𝑆[ALG(𝑆)]

E𝑆[OPT(𝑆)]
=

1 · 𝜀 + 12/7𝜀 · 56/24

76/7𝜀− 48/7𝜀2
=

35

76 − 48𝜀
.

Case 3: 𝑒 = 2. With probability 𝛼, the arrival sequence terminates with 2𝜀

accepted; with probability 1−𝛼, there are 𝑁 more items. Out of all the 24 possibilities,

there are 6 cases that a deterministic algorithm accepts 1 of them, and 18 cases that

accepts 2. In expectation we fill 42/24 into the knapsacks. In this case

E𝑆[ALG(𝑆)]

E𝑆[OPT(𝑆)]
=

2 · 𝜀 + 12/7𝜀 · 42/24

76/7𝜀− 48/7𝜀2
=

35

76 − 48𝜀
.

Case 4: 𝑒 = 3. With probability 𝛼, the arrival sequence terminates with 3𝜀

accepted; with probability 1 − 𝛼, there are 𝑁 more items. The algorithm must be

able to fill one item into the unfilled knapsack in the first round of phase two. In this

case
E𝑆[ALG(𝑆)]

E𝑆[OPT(𝑆)]
=

3 · 𝜀 + 12/7𝜀 · 1

76/7𝜀− 48/7𝜀2
=

33

76 − 48𝜀
.

Case 5: 𝑒 = 4. With probability 𝛼, the arrival sequence terminates with 3𝜀
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accepted; with probability 1 − 𝛼, there are 𝑁 more items. But the algorithm cannot

fill in any because all the knapsacks are all occupied with 𝜀’s. In this case

E𝑆[ALG(𝑆)]

E𝑆[OPT(𝑆)]
=

4 · 𝜀 + 12/7𝜀 · 0

76/7𝜀− 48/7𝜀2
=

28

76 − 48𝜀
.

In all cases, any policy has an expected performance of no more than 35
76−48𝜀 . By

taking 𝜀 → 0+ we finish the proof.

4.5 Computational Study: Using Real Data from A

Latin American Chain Department Store

We use supply chain data from a Latin American chain department store, to compu-

tationally study the performance of our algorithms. The supply chain data contains

974 SKU’s, and their associated order quantities from different local stores to a total

of 21 regional warehouses.

The category that we focus on is young women’s fashion products. Since fashion

products are highly unpredictable in its sales, we adopt the lens of competitive analy-

sis, which is natural when there is no knowledge about future arrival sequences. There

is typically only 1 selling season, and the selling season typically lasts for 3-6 months.

At the beginning of the selling season, there is an initial stock placed in each regional

warehouse. There is no inventory replenishment throughout this process. Orders to

a specific warehouse cannot be split or redirected to a different warehouse, because

there is a specific warehouse which serves each local store, so order sizes greater than

the available inventory must be rejected. Therefore, our industry partner faces the

same accept/reject problem on order sizes, and has the same goal of maximizing total

inventory fulfilled, equal to the sum of sizes of accepted orders.

To give a concrete example, here is an arrival sequence in the winter between year

2015 and 2016, for one SKU of women purse.

𝑆 = (7, 18, 80, 41, 1, 30, 12, 17). (4.17)
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This selling season spans the Revolution Day2, Christmas, and New Year. And the

order quantities are in commercial units.

Sequence 𝑆 is an observed sequence of order sizes, accepted by greedy (FCFS)

in the real world supply chain. The sum of all the order sizes is smaller than the

starting inventory, which, in this case, is 208 units. Any orders which could not

have been fulfilled are censored from the data. As a result, we create non-trivial

instances by re-scaling the starting inventory amounts (which we know) for each

SKU at each warehouse by a factor 𝛼 ∈ [0, 1], and then test the performance of

different accept/reject policies over different scaling factors 𝛼. This is a limitation

of our computational study. Nonetheless, we believe that this censoring only favors

FCFS in our computational study, because large orders rarely appear in the end of a

sequence (which would cause FCFS to perform poorly). Such an experiment setup to

vary the initial inventory level is very common in the revenue management literature;

see Zhang and Cooper (2005), Liu and Van Ryzin (2008).

We compute the expected revenue from our proposed random threshold algorithm

from Definition 4.2, named Random-Threshold; the (deterministic) revenue from

first-come-first-serve policy, named FCFS; and the expected revenue from the algo-

rithm suggested in Han et al. (2015), named HKM15. The results are shown in

Figure 4-5, where we have divided all the numbers by its corresponding offline opti-

mal integer packing. The offline optimal packing serves as an upper bound, so that

the performance ratio is always between 0 and 1, with higher ratios indicating better

performance.

When inventory level is either very small or very large, first-come-first-serve achieves

near-optimal performance. This is not surprising, because FCFS always tries to ac-

cept an order if possible: when inventory is large then FCFS could almost accept

everything except for the ones that arrive late. In our specific example shown in

(4.17), the late items are fairly small – and this is why FCFS is near-optimal. On

the other hand, when inventory is small then anything that FCFS successfully fits

into the knapsack is already very large, relative to the small capacity. So FCFS has

2A Mexican black Friday
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Figure 4-5: Computational performance using a real arrival sequence. The sequence
is as shown in Equation (4.17).

a near-optimal performance when inventory is very small. For scenarios where the

starting inventory is of moderate size (i.e. for SKU’s that were neither overstocked

nor understocked initially), our proposed algorithm has a relatively smaller variance.

4.5.1 Average and Worst-case Performance over all SKU’s

The earlier results shown for a specific SKU was used to illustrate the experimental

setup. Now we show aggregate experimental results over all the SKU’s.

There are 974 different SKU’s, carried in 21 different warehouses over the country.

For any fixed scaling factor, we first compute the average performance over different

SKU’s.

We compute our Random-Threshold algorithm in the following manner. We

take 21 evenly-spaced percentiles3 of the threshold distribution 𝐹 , that is, we take the

21 thresholds defined by 𝐹−1(0), 𝐹−1(0.05), ..., 𝐹−1(0.95), 𝐹−1(1). These are 21 natu-

ral thresholds to be implemented over the 21 warehouses. Then we randomly permute

them and assign them over the 21 warehouses, making accept/reject decisions at each

warehouse based on the assigned threshold (scaled by the starting inventory). We
3Note that some SKU’s are only stored in a subset of them, say, only 6 warehouses. And we take

6 evenly-spaced percentiles.
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Figure 4-6: Computational of the average case performance using real arrival se-
quences over the country. The 10 non-overlapping lines from top to bottom corre-
spond to the ten fixed thresholds, 3%, 5%, 10%, ..., 80%, respectively.

then average the fulfillment ratios over the warehouses to determine the performance

for a specific SKU. Finally we take an outer average over many independent random

permutations of warehouses to define a final performance ratio for each SKU.

We compare our performance against the (deterministic) revenue from the greedy

first-come-first-serve policy, named FCFS; the expected revenue from the algorithm

suggested in Han et al. (2015), named HKM15; and the deterministic revenues

of 10 fixed-threshold algorithms, named Fixed-Thresholds. The fixed thresholds

are re-scaled to be 3%, 5%, 10%, 15%, 20%, 30%, 40%, 50%, 60%, 80% of the initial ca-

pacity. The results are shown in Figure 4-6, where we have divided all the num-

bers by its corresponding offline optimal integer packing. The performance of the

Fixed-Thresholds algorithms have a decreasing performance ratio with respect to

their thresholds. FCFS, if we interpret it as a threshold policy with threshold equal

to zero, has the best performance. Interestingly, we integrate the CDF function and
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Figure 4-7: Computational of the worst case performance using real arrival sequences
over the country. Some curves from Fixed-Thresholds are removed, for clarity.

find the expected threshold suggested by our Random-Threshold policy to be roughly

28% – and the performance of our Random-Threshold policy coincides to be between

the 20% and 30% curves of the Fixed-Thresholds policies.

Again, we see that when inventory is either very small or very large, FCFS and

the Fixed-Thresholds whose thresholds are small, they all achieve near-optimal per-

formance. We find that the FCFS policy has the best average-case performance ratio.

And the higher thresholds we increase for the Fixed-Thresholds, the worse perfor-

mance it yields.

While this is discouraging, we believe that the way in which order sizes are cen-

sored in our data favors FCFS, since large orders cannot come at the end. Moreover,

the gap between FCFS and our Random-Threshold algorithm is always smaller than

7%. Also, note that our Random-Threshold algorithm always outperforms HKM15.

The gap between these two algorithms is between 5%–27%.
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Finally, to illustrate the benefit of our Random-Threshold algorithm, we also

display the worst-case performance of each algorithm over the SKU’s, for each scaling

factor. The computational results are shown in Figure 4-7.

Again, we see that when inventory is either very small or very large, FCFS,

HKM15, our Random-Threshold, and the Fixed-Threshold algorithms whose thresh-

olds are small all achieve near-optimal performance. However, our Random-Threshold

algorithm has the best worst-case performance for a large fraction of scaling factors.

This shows that setting different thresholds at different warehouses, according to the

distributions we derived, indeed provides the best baseline guarantee on the fulfillment

of any SKU.

We see that as we increase the thresholds, the Fixed-Threshold policies tend to

have worse performance. Note that the performance of FCFS or any Fixed-Threshold

policy does not have any guarantee – FCFS and the Fixed-Threshold policies whose

thresholds are less or equal to 5% can have a performance as bad as 15%; and the

Fixed-Threshold policies whose thresholds are at least 10% can have a worst-case

performance guarantee of 0. By contrast, the worst-case performance of our algorithm

over all of the scaling factors is 44% (close to the theoretical guarantee of 43%).

Meanwhile, the performance for HKM15 always equals its theoretical guarantee of

50%.

4.6 Conclusion

In this paper, we study an online knapsack problem and its competitive analysis.

We focus on a particular class of random threshold algorithms, that initially draw

a random threshold and never change the threshold throughout the entire hori-

zon. This class of algorithms benefit us from simplicity, applicability, and incentive-

compatibility, which are important in real-world applications.

We start from the single knapsack problem, and study its generalization to the

multiple knapsack problems. We provide constant factor competitive results that

are tight on a single knapsack, relative to two different offline optimal packing opti-
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mum. Numerical experiments suggest that the performance is better than merely our

theoretical guarantees.

120



Chapter 5

Design and Analysis of Switchback

Experiments

5.1 Introduction

Academic scholars have appreciated the benefits that experimentation brings to firms

for many decades (March 1991, Sitkin 1992, Sarasvathy 2001, Thomke 2001, Kohavi

and Thomke 2017, Sun et al. 2018, Xiong et al. 2019). However, widespread adoption

of the practice has only taken off in the last decade, partly fueled by the rapid cost re-

ductions achieved by firms in the technology sector (Kohavi et al. 2007, 2009, Azevedo

et al. 2019, Kohavi et al. 2020). Most large firms now possess internal tools for ex-

perimentation, and a growing number of smaller and more conventional companies

are purchasing the capabilities from third-party sellers that offer full-stack integra-

tion (Thomke 2020). These tools typically allow simple “A/B” tests that compare the

standard offering “A” to a new or improved version “B”. The comparisons are made

across a range of different business outcomes, and the tests are usually conducted for

at least a week (Kohavi et al. 2020). This simple practice has provided tremendous

value to firms (Koning et al. 2019).

Some firms and authors, however, have recognized the limitations of these simple

A/B tests (Gupta et al. 2019, Bojinov et al. 2020b). Technology firms have identified

two common challenges in conducting A/B tests. The first challenge is in handling
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interference, the scenario where the assignment of one subject impacts another. Many

online platforms and retail marketplaces often observe varying levels of interference

when conducting experiments. See Chamandy (2016), Cui et al. (2017), Kastelman

and Ramesh (2018), Farronato et al. (2018), Glynn et al. (2020), Holtz et al. (2020)

for online platforms (e.g., Airbnb, DoorDash, Lyft, Uber), and Caro and Gallien

(2012), Ferreira et al. (2016), Cui et al. (2019), Ma et al. (2020a) for retail markets

(e.g., Amazon, AB InBev, Rue la la, Zara). The second challenge is in estimating

heterogeneous (or personalized) effects. See Nie et al. (2018), Deshpande et al. (2018),

Hadad et al. (2019).

In this paper, we simultaneously tackle both of these challenges by developing

a theoretical framework for the optimal design and analysis of switchback experi-

ments under the minimal amount of assumptions. In switchback experiments, we

sequentially expose a unit to a random treatment, measure its response, and repeat

the procedure for a fixed period of time (Robins 1986, Bojinov and Shephard 2019).

By administering alternate treatments to the same unit, we can directly estimate an

individual level causal effect and alleviate the challenges posed by interference.

The minimal amount of assumptions gains our framework validity compared to

the literature. Some literature assumes specific outcome models under interference.

Wager and Xu (2019), Johari et al. (2020) both work on experimental design for two-

sided online platforms, by assuming that the interference can be captured via mean-

field approximation. Glynn et al. (2020) assumes an underlying Markov Chain model

and formulates the experimental design problem as estimating the difference between

two steady state reward distributions. Some other literature directly models the

interference through a network, e.g. Li et al. (2015), Athey et al. (2018), Eckles et al.

(2016), Sussman and Airoldi (2017), Basse et al. (2019a), Puelz et al. (2019). In such

models, a treatment assigned to one node of the network creates a “spillover effect,”

which impacts the outcomes of the neighboring nodes. All of the above methods

make specific assumptions on the outcome models. If these assumptions hold, the

above methods correctly identify the causal effects (or the model parameters); if

these assumptions do not hold, the estimates are likely biased.
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In this paper, no specific outcome models are assumed. Instead, we make general

assumptions about the existence of the carryover effects. The carryover effects refer

to the persistence of past interventions in impacting the future outcomes; and the

order of carryover effects refers to the duration of time periods of such persistence.

In this paper, we establish results on the optimal design of switchback experiments

under different assumptions of the order of the carryover effects; we also propose a

data-driven procedure to estimate the order of the carryover effects.

Applications. There are two classes of applications where switchback experiments

are widely used in practice. The first arises when units interfere with each other

either through a network or some more complicated unknown structure. For exam-

ple, consider a ride-hailing platform that wants to test a new fare pricing algorithm’s

effectiveness in a large city (Farronato et al. 2018). Administering the test version

to a subset of drivers can impact their behavior, which, in turn, could change the

behavior of drivers that are receiving the old version. Directly comparing the revenue

generated by the drivers across the two groups will likely provide a biased estimate of

what would happen if everyone were assigned to the new version compared to the old.

Instead, practitioners treat the city as a single aggregated unit and use a switchback

experiment to estimate the intervention’s effectiveness, thereby alleviating the prob-

lem caused by interference. A similar issue often arises in revenue management when,

for example, a retailer wants to test the effectiveness of a new promotion planning

algorithm (Ferreira et al. 2016). Administering the new version to a subset of stock

keeping units (SKU’s) cannibalizes the sales from the other SKU’s. Again comparing

the generated revenue across the two groups is unlikely to provide an accurate mea-

sure of the promotion’s effectiveness. Instead, practitioners can treat all the SKU’s as

a single aggregated unit and use a switchback experiment to obtain accurate estimates

of the promotion’s effectiveness.

The second application arises when we have a limited number of experimental

units, and we believe the effects are likely to be heterogeneous. For example, Bojinov

and Shephard (2019) used switchback experiments to make causal claims about the

relative effectiveness of algorithms compared with humans at executing large financial
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trades across a range of financial markets. More generally, psychologists and biostatis-

ticians regularly use switchback experiments whenever studying the effectiveness of

an intervention on a single unit, e.g., Lillie et al. (2011) and Boruvka et al. (2018).

Main Contributions. There are three significant challenges to using switchback

experiments. The first is that causal estimators from switchback experiments have

large variances as the precision is a function of the total number of assignments.

The second is that past interventions are likely to impact future outcomes; this is

often referred to as a carryover effect. Typically, many authors assume that there

are no carryover effects (Chamberlain 1982, Athey and Imbens 2018, Imai and Kim

2019), although some recent work has relaxed this assumption (Robins 1986, Sobel

2012, Bojinov et al. 2020a). The third is that standard super population inference

— where researchers either assume a model for the outcome, or that the units are

sampled from an infinitely large population — requires unrealistic assumptions that

fail to capture the problem’s personalized nature (Bojinov and Shephard 2019).

This paper’s main contributions are to address these three challenges and present a

framework that allows firms and researchers to run reliable switchback experiments.

First, we derive optimal designs for switchback experiments, ensuring that we can

select a design that leads to the lowest variance among the most popular class as-

signment mechanisms. The designs are optimal in the sense that we search for both

the optimal randomization points, as well as the optimal randomization probabilities,

which, together, capture a general class of randomization mechanisms. Second, we

assume the presence of a carryover effect and show that our estimation and infer-

ence are valid both when the order of the carryover effect is correctly specified and

misspecified, the later leading to a minor increase in the variance. For practitioners,

we also propose a method to identify the order of the carryover effect by running a

series of carefully designed switchback experiments. Finally, we take a purely design-

based perspective on uncertainty; that is, we treat the outcomes as unknown but

fixed (or equivalently, we condition on the set of potential outcomes) and assume

that the assignment mechanism is the only source of randomness (Fisher et al. 1937,

Kempthorne 1955, Rubin 1980, Abadie et al. 2020). The main benefit of a design-
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based perspective is that the inference, and in turn the causal conclusions, do not

depend on our ability to correctly specify a model describing the phenomena we are

studying, ensuring that our findings are wholly non-parametric and robust to model

misspecification (Imbens and Rubin 2015, Chapter 5).

Roadmap. The paper is structured as follows. In Section 5.2 we define the notations,

the assumptions, and the assignment mechanism that we focus on, which we will refer

to as the regular switchback experiments. In Section 5.3, we discuss how to design

an effective regular switchback experiment under the minimax rule. The design is

optimal with respect to (i) the optimal treatment assignment probability, and (ii) the

randomization frequency and randomization points. We cast the design problem as a

minimax discrete optimization problem, identify the worst-case adversarial strategy,

establish structural results, and then explicitly find the optimal design. In Section 5.4,

we discuss how to perform inference and conduct statistical testing based on the

results obtained from an optimally designed switchback experiment. We propose an

exact test for sharp null hypotheses, and an asymptotic test for testing the average

treatment effect. We also discuss how to make inference when the carryover effect

is misspecified, and how to conduct hypothesis testing to identify the true order of

the carryover effect. In Section 5.5, we run simulations to test the correctness and

effectiveness of our proposed theoretical results under various simulation setups. In

Section 5.6, we give empirical illustrations on how to conduct a switchback experiment

in practice and conclude with limitations which may lead to future research directions.

All technical proofs are in the Appendix.

5.2 Notations, Assumptions, and Regular Switch-

back Experiments

5.2.1 Assignment Paths and Potential Outcomes

We focus our discussion on a single experimental unit. For example, this unit could

be a ride-hailing platform testing the effectiveness of a new fare pricing algorithm
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in a city. At each time point 𝑡 ∈ [𝑇 ] = {1, 2, ..., 𝑇}, we assign the unit to receive

an intervention 𝑊𝑡 ∈ {0, 1}. For example, one experimental period could be one to

two hours for a ride-hailing platform and 𝑇 could be two weeks, i.e., 𝑇 = 336 when

one period is one hour. In some applications, external factors determine the time

horizon 𝑇 , e.g., a typical experimental duration for a ride-hailing platform is a few

weeks; however, when 𝑇 is not pre-determined, Section 5.6 provides details for how

to choose an appropriate 𝑇 . Throughout most of this paper, with the exception being

the derivation of our asymptotic results, we consider 𝑇 to be a known, fixed constant.

Following convention, we say that the unit is assigned to treatment if 𝑊𝑡 = 1

and control when 𝑊𝑡 = 0; in A/B testing terminology, “A” is control and “B” is

treatment. For example, Chamandy (2016) studied how a new surge-pricing subsidy

(the treatment) compared to the current setup without the subsidy (the control). The

assignment path is then the collection of assignments and is denoted using a vector

notation whose dimensions are specified in the subscript, 𝑊1:𝑇 = (𝑊1,𝑊2, ...,𝑊𝑇 ) ∈

{0, 1}𝑇 . We adopt the convention that 𝑊1:𝑇 stands for a random assignment path,

while 𝑤1:𝑇 stands for one realization.

After administering the assigned intervention, we observe a corresponding out-

come. For example, this could be the average ride-matching rate during each two

hour experimental period. Following the extended potential outcomes framework, at

time 𝑡 ∈ [𝑇 ], we posit that for each possible assignment path 𝑤1:𝑇 there exists a cor-

responding potential outcome denoted by 𝑌𝑡(𝑤1:𝑇 ); the set of all potential outcomes

are collected in Y = {𝑌𝑡(𝑤1:𝑇 )}𝑡∈[𝑇 ],𝑤1:𝑇∈{0,1}𝑇 with support Y ∈ 𝒴 .

Example 5.1. When 𝑇 = 4, there are 16 assignment paths as shown in Figure 5-

1. Associated with each assignment path 𝑤1:4 are four potential outcomes 𝑌1(𝑤1:4),

𝑌2(𝑤1:4), 𝑌3(𝑤1:4), and 𝑌4(𝑤1:4).

Throughout this paper, we do not directly model the potential outcomes or im-

pose a parametric relationship with the assignment path; instead, we treat them as

unknown but fixed quantities, or, equivalently, we implicitly condition on Y. Our

setup does not preclude the possibility that the potential outcomes were generated
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Figure 5-1: Illustrator of assignment paths and potential outcomes when 𝑇 = 4. The
green path stands for one assignment path 𝑤1:4 = (1, 1, 0, 0). Following the green path
there are four potential outcomes. The two red dots each stands for two potential
outcomes that are equal under Assumption 5.1. And the potential outcomes at the
two red dots are equal if Assumption 5.2 is further assumed.

through a dynamic process; however, it allows us to be completely agnostic to the

data generating process, making our causal claims more objective. To make inference

possible, we rely on the variation introduced by the random assignment path; this

is commonly referred to as finite-sample or design-based perspective and has a long

history going back to Neyman (1923), Fisher et al. (1937), Kempthorne (1955), Rubin

(1980). Unlike traditional sampling-based inference, the design-based approach does

not require a hypothetical population from which to sample experimental units, see

the textbook reference Imbens and Rubin (2015) and a recent paper Abadie et al.

(2020) for recent reviews.

We make two assumptions that limit the dependence of the potential outcomes

on assignment paths. Below let {𝑡 : 𝑡′} = {𝑡, 𝑡 + 1, ..., 𝑡′}, for any 𝑡 < 𝑡′ ∈ [𝑇 ].

Assumption 5.1 (Non-anticipating Potential Outcomes). For any 𝑡 ∈ [𝑇 ], 𝑤1:𝑡 ∈

{0, 1}𝑡, and for any 𝑤′𝑡+1:𝑇 ,𝑤
′′
𝑡+1:𝑇 ∈ {0, 1}𝑇−𝑡,

𝑌𝑡(𝑤1:𝑡,𝑤
′
𝑡+1:𝑇 ) = 𝑌𝑡(𝑤1:𝑡,𝑤

′′
𝑡+1:𝑇 ).
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Assumption 5.1 states that the potential outcomes at time 𝑡 do not depend on

future treatments (Bojinov and Shephard 2019, Basse et al. 2019b, Rambachan and

Shephard 2019). Since we control the assignment mechanism instead of letting the

experimental units to administer future assignments (e.g., at a ride-hailing platform,

a passenger does not know the price in the next hour), the design ensures that this

assumption is satisfied.

Example 5.2 (Example 5.1 Continued). Under Assumption 5.1, 𝑌3(1, 1, 1, 1) =

𝑌3(1, 1, 1, 0). In Figure 5-1 the red dot at 𝑌3(1, 1, 1) stands for both 𝑌3(1, 1, 1, 1)

and 𝑌3(1, 1, 1, 0).

Assumption 5.2 (𝑚-Carryover Effects). There exists a fixed and given 𝑚, such that

for any 𝑡 ∈ {𝑚 + 1,𝑚 + 2, ..., 𝑇},𝑤𝑡−𝑚:𝑇 ∈ {0, 1}𝑇−𝑡+𝑚+1, and for any 𝑤′1:𝑡−𝑚−1,

𝑤′′1:𝑡−𝑚−1 ∈ {0, 1}𝑡−𝑚−1,

𝑌𝑡(𝑤
′
1:𝑡−𝑚−1,𝑤𝑡−𝑚:𝑇 ) = 𝑌𝑡(𝑤

′′
1:𝑡−𝑚−1,𝑤𝑡−𝑚:𝑇 ).

Assumption 5.2 restricts the order of the carryover effect (Laird et al. 1992, Senn

and Lambrou 1998, Bojinov and Shephard 2019, Basse et al. 2019b). The validity of

Assumption 5.2 depends on the setting and requires practitioners to use their domain

knowledge to choose an appropriate 𝑚. Examples arise in ride-hailing, in which

the effect of surge pricing on a ride-hailing platform typically dissipates after one or

two hours, depending on the city size (Garg and Nazerzadeh 2019). Moreover, we

propose in Section 5.4.4 a hypothesis testing method to select appropriate 𝑚 using

an experimental approach.

Assumptions 5.1 and 5.2 allow us to simplify notation. For any 𝑡 ∈ {𝑚+ 1, ..., 𝑇}

and any two assignment paths 𝑤1:𝑇 ,𝑤
′
1:𝑇 ∈ {0, 1}𝑚+1, whenever 𝑤𝑡−𝑚:𝑡 = 𝑤′𝑡−𝑚:𝑡 this

leads to

𝑌𝑡(𝑤1:𝑇 ) = 𝑌𝑡(𝑤
′
1:𝑇 ).

In the remainder of this paper, we will write 𝑌𝑡(𝑤𝑡−𝑚:𝑡) := 𝑌𝑡(𝑤1:𝑇 ) to emphasize

the dependence on treatments 𝑤𝑡−𝑚:𝑡. For example, the potential outcomes at the
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two red dots in Figure 5-1 are equal, i.e., 𝑌3(1, 1) := 𝑌3(1, 1, 1, 1) = 𝑌3(1, 1, 1, 0) =

𝑌3(0, 1, 1, 1) = 𝑌3(0, 1, 1, 0)

5.2.2 Causal Effects

In the potential outcomes approach to causal inference, any comparison of potential

outcomes has a causal interpretation. In this paper, we focus on a special set of causal

estimands that measure the relative effectiveness of persistently assigning a unit to

treatment as opposed to control. For any 𝑝 ∈ {0, 1, ..., 𝑇 − 1}, let 1𝑝+1 = (1, 1, ..., 1)

be a vector of (𝑝 + 1) ones; let 0𝑝+1 = (0, 0, ..., 0) be a vector of (𝑝 + 1) zeros. Define

the average lag-𝑝 causal effect of consecutive treatments on the outcome, for any

𝑝 ∈ {0, 1, ..., 𝑇 − 1},

𝜏𝑝(Y) =
1

𝑇 − 𝑝

𝑇∑︁
𝑡=𝑝+1

[𝑌𝑡(1𝑝+1) − 𝑌𝑡(0𝑝+1)]. (5.1)

This estimand captures the effects of permanently deploying a new policy, and has

been widely studied in the longitudinal experiments since the early work of Robins

(1986).

Remark 5.1. Although we focus on an average causal effect, all of our results and

analysis trivially extend to the total causal effect, which does not normalize, i.e.,

(𝑇−𝑝)𝜏𝑝(Y). The optimal design as we will show in Section 5.3 will remain unchanged.

It is worth noting that 𝑝 reflects the experimental designer’s knowledge of the

order of the carryover effect. See discussion below Assumption 5.2. Such a knowledge

is sometimes correct, which we refer to as the perfect knowledge case (𝑝 = 𝑚 ); it

is sometimes incorrect, which we refer to as the “misspecified” 𝑚 case1 (𝑝 ̸= 𝑚). In

this section we focus on the 𝑝 = 𝑚 case; Section 5.4.3 discusses the 𝑝 ̸= 𝑚 case.

Section 5.4.4 introduces a procedure to identify 𝑚.

The challenge of causal inference on switchback experiments is that we only ob-

serve one assignment path. In other words, for each period 𝑡, we observe at most
1Some authors specifically focus on 𝑝 < 𝑚, particularly when 𝑚 is of the same order as 𝑇 (Bojinov

and Shephard 2019).
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either 𝑌𝑡(1𝑝+1) or 𝑌𝑡(0𝑝+1) (and sometimes neither). After conducting a switch-

back experiment, the observed data contains 𝑤obs
1:𝑇 the realized assignment path, and

𝑌 obs
𝑡 = 𝑌𝑡(𝑤

obs
1:𝑇 ) the observed outcome at time 𝑡 under the realized assignment path

𝑤obs
1:𝑇 . To link the observed and potential outcomes, we assume there is only one

version of the treatment2, and that there is no non-compliance.

5.2.3 Regular Switchback Experiments

The design of switchback experiment induces a probabilistic distribution over as-

signment paths 𝑤1:𝑇 ∈ {0, 1}𝑇 . Formally, a design of switchback experiment is any

𝜂 : {0, 1}𝑇 → [0, 1] such that

∑︁
𝑤1:𝑇∈{0,1}𝑇

𝜂(𝑤1:𝑇 ) = 1, 𝜂(𝑤1:𝑇 ) ≥ 0, ∀ 𝑤1:𝑇 ∈ {0, 1}𝑇 .

Explicitly, 𝜂(·) is the underlying discrete distribution of the random assignment path

𝑊1:𝑇 .

In this paper, we narrow our scope to the family of regular switchback experiments.

This family of experiments are parameterized by T and Q, defined as

T = {𝑡0 = 1 < 𝑡1 < 𝑡2 < ... < 𝑡𝐾} ⊆ [𝑇 ],

where 𝐾 < 𝑇 is a positive integer, and T contains a total of 𝐾 + 1 integers, which is

a subset of all the time indices; and

Q = (𝑞0, 𝑞1, ..., 𝑞𝐾) ∈ (0, 1)𝐾+1 := 𝒬,

where Q is a vector of 𝐾 + 1 real numbers between (0, 1). For the ease of notations

also denote 𝑡𝐾+1 = 𝑇 + 1, though our time horizon is only 𝑇 periods.

Definition 5.1 (Regular Switchback Experiments). For any T = {𝑡0 = 1 < 𝑡1 < ... <

2When combined with non-interference if there were multiple units, this is known as the stable
unit treatment value assumption (Rubin 1980).
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𝑡𝐾} ⊆ [𝑇 ], and any Q = (𝑞0, 𝑞1, ..., 𝑞𝐾) ∈ (0, 1)𝐾+1, a regular switchback experiment

(T,Q) administers a probabilistic treatment at any time 𝑡, given by:

Pr(𝑊𝑡 = 1) = 𝑞𝑘, if 𝑡𝑘 ≤ 𝑡 ≤ 𝑡𝑘+1 − 1 (5.2)

In words, the experimental designer jointly decides on a collection of randomiza-

tion points, which consists of flipping biased coins at each period 𝑡 ∈ {𝑡0, ..., 𝑡𝐾}, as

well as a collection of randomization probabilities behind the biased coins, (𝑞0, ..., 𝑞𝐾).

If the resulting flip at period 𝑡𝑘 is heads, then the experimental designer assigns the

unit to treatment during periods (𝑡𝑘, 𝑡𝑘 + 1, ..., 𝑡𝑘+1 − 1); otherwise, if tails, assigns

the unit to control during periods (𝑡𝑘, 𝑡𝑘 + 1, ..., 𝑡𝑘+1 − 1).

Example 5.3. When 𝑇 = 4, T = {𝑡0 = 1, 𝑡1 = 3},Q = (𝑞0, 𝑞1) = (1/2, 1/2) corre-

sponds to the following design: with probability 1/4, 𝑊1:4 = (1, 1, 1, 1); with proba-

bility 1/4, 𝑊1:4 = (1, 1, 0, 0); with probability 1/4, 𝑊1:4 = (0, 0, 1, 1); with probability

1/4, 𝑊1:4 = (0, 0, 0, 0). See Figure 5-2 (left figure) for the four assignment paths that

are in the support of the discrete probability distribution.

Example 5.4. Not all switchback experiments are regular. For example, when 𝑇 = 4:

with probability 1/4, 𝑊1:4 = (1, 1, 1, 0); with probability 1/4, 𝑊1:4 = (1, 0, 0, 0);

with probability 1/4, 𝑊1:4 = (0, 1, 1, 1); with probability 1/4, 𝑊1:4 = (0, 0, 0, 1). See

Figure 5-2 (right figure) for the four assignment paths that are in the support of the

discrete probability distribution.

It has been widely acknowledged in the literature that a good design should be

the one that flips fair coins, i.e., 𝑞𝑘 = 1/2,∀ 𝑘 ∈ {0, 1, ..., 𝐾}. The reason behind fair

coin flips reflects experimental designer’s limited assumption on the outcome model,

and the inherent symmetry in the potential outcomes. The literature has either

shown that fair coin flips are optimal, e.g., Wu (1981), Li (1983), Basse et al. (2019b)

where they make mild assumptions on permutation invariance; or has explicitly made

assumptions that the coins flips be fair, e.g., Bai (2019), Harshaw et al. (2019). In

Section 5.3, we show that fair coin flipping is indeed optimal, under a mild assumption
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Figure 5-2: Two designs of switchback experiments

Note: The blue lines stand for the possible treatment assignments that a design could adminis-
ter. Left: regular switchback experiment (Example 5.3); Right: irregular switchback experiment
(Example 5.4).

that is different from permutation invariance.

Since most firms design the entire experiment before the experiment is launched,

the treatment assignments are typically not updated based on the observed outcomes;

therefore, we do not consider adaptively changing the treatment assignments. We

briefly outline adaptive experimental designs as future extensions in Section 5.6.

For any regular switchback experiment (T,Q), we may also use T to refer to the

same experiment when Q is clear from the context. We denote the underlying discrete

probability distribution using 𝜂T,Q(·). For any T and Q, the discrete probability

distribution has a total of 2𝐾+1 many supports. The assignment path is random, and

follows the discrete probability distribution 𝜂T,Q(·):

𝜂T,Q(𝑤1:𝑇 ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝐾∏︁
𝑘=0

1{𝑤𝑡𝑘 = 1}
𝑞𝑡𝑘

· 1{𝑤𝑡𝑘 = 0}
𝑞𝑡𝑘

, if ∀ 𝑘 ∈ {0, 1, ..., 𝐾},

𝑤𝑡𝑘 = 𝑤𝑡𝑘+1 = ... = 𝑤𝑡𝑘+1−1,

0, otherwise.
(5.3)

In the remainder of this paper, unless explicitly noted, all probabilities and expecta-

tions are taken with respect to this discrete probability distribution 𝜂T,Q(·).
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5.2.4 Estimation

Now that 𝜂T,Q(·) is determined, following any realization of the assignment path 𝑤1:𝑇 ,

we use the Horvitz-Thompson estimator to estimate the causal effect:

𝜏𝑝(𝜂T,Q,𝑤1:𝑇 ,Y) =
1

𝑇 − 𝑝

𝑇∑︁
𝑡=𝑝+1

{︂
𝑌 obs
𝑡

1{𝑤𝑡−𝑝:𝑡 = 1𝑝+1}
Pr(𝑊𝑡−𝑝:𝑡 = 1𝑝+1)

− 𝑌 obs
𝑡

1{𝑤𝑡−𝑝:𝑡 = 0𝑝+1}
Pr(𝑊𝑡−𝑝:𝑡 = 0𝑝+1)

}︂
.

(5.4)

We emphasize that the estimator 𝜏𝑝(·, ·, ·) depends on (i) the probability distribution

that the assignment path is sampled from, (ii) the realization of the assignment path,

and (iii) the set of potential outcomes.

Example 5.5. Suppose 𝑇 = 4, 𝑝 = 𝑚 = 1. Suppose the assignments are probabilistic

and Pr(𝑊𝑡 = 1) = Pr(𝑊𝑡 = 0) = 1/2,∀𝑡 ∈ [4]. With probability 1/16 the green

assignment path as in Figure 5-1 is administered, 𝑊1:4 = (1, 1, 0, 0). The estimator

is then 𝜏1 = 1
3
{4𝑌2(1, 1) + 0 − 4𝑌4(0, 0)} .

Since the assignment path 𝑊1:𝑇 is random, this Horvitz-Thompson estimator is

also random. Moreover, when the assignment path satisfies a regular switchback,

the probabilities in the denominator are known. As we will show in Theorem 5.4,

under the optimal design, these probabilities will be multiplicatives of 1/2, allowing

us to avoid the known stability issues of the Horvitz-Thompson estimator when the

probabilities are extreme (either close to 0 or close to 1). It is well-known that the

Horvitz-Thompson estimator is unbiased if the treatment and control probabilities

are both non-zero.

Proposition 5.2 (Unbiasedness of the Horvitz-Thompson Estimator). In a regular

switchback experiment, under Assumptions 5.1 and 5.2, the Horvitz-Thompson es-

timator is unbiased for the average lag-𝑝 causal effect of consecutive treatments on

outcome, i.e.,

E[𝜏𝑝(𝜂T,Q,𝑊1:𝑇 ,Y)] = 𝜏𝑝(Y).

The expectation E[·] is taken with respect to the random assignment 𝑊1:𝑇 ∼
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𝜂T,Q(·). when it is obvious we will compress the subscript in the expectation writing

E[·] to mean E𝑊1:𝑇∼𝜂T,Q [·]. The proof to Proposition 5.2 is standard, by checking the

expectations. We defer its proof to Section D.2 in the Appendix.

5.2.5 Evaluation of Experiments: the Decision-Theoretic Frame-

work

To evaluate the quality of a design of experiment, we adopt the decision-theoretic

framework (Berger 2013, Bickel and Doksum 2015). When the random design is

𝜂T,Q(·), for any realization of the assignment path 𝑤1:𝑇 and any set of potential

outcomes Y, we define the loss function

𝐿(𝜂T,Q,𝑤1:𝑇 ,Y) = (𝜏𝑝(𝜂T,Q,𝑤1:𝑇 ,Y) − 𝜏𝑝(Y))2

and the risk function

𝑟(𝜂T,Q,Y) =
∑︁

𝑤1:𝑇∈{0,1}𝑇
𝜂T,Q(𝑤1:𝑇 ) · (𝜏𝑝(𝜂T,Q,𝑤1:𝑇 ,Y) − 𝜏𝑝(Y))2 (5.5)

Such a risk function quantifies the expected squared difference between our estimand

and estimator. Since the estimator is unbiased, the risk function also has a second

interpretation: the variance of the estimator. A design with a lower risk is also a

design whose estimator has a lower variance.

Example 5.6 (Examples 5.3 and 5.5 Revisited). Suppose 𝑇 = 4 and 𝑝 = 𝑚 = 1.

As in Example 5.3, T = {1, 3}. With probability 1/4, 𝑊1:4 = (1, 1, 0, 0), 𝜏1(T) =

1
3
{2𝑌2(1, 1)−2𝑌4(0, 0)}, 𝐿(𝜂T,Q,𝑤1:𝑇 ,Y) = 1

9
{𝑌2(1, 1) +𝑌2(0, 0)−𝑌3(1, 1) +𝑌3(0, 0)−

𝑌4(1, 1) − 𝑌4(0, 0)}2. As in Example 5.5, T̃ = {1, 2, 3, 4}. With probability 1/16,

𝑊1:4 = (1, 1, 0, 0), 𝜏1(T̃) = 1
3
{4𝑌2(1, 1) − 4𝑌4(0, 0)}, 𝐿(𝜂T̃,Q,𝑤1:𝑇 ,Y) = 1

9
{3𝑌2(1, 1) +

𝑌2(0, 0) − 𝑌3(1, 1) + 𝑌3(0, 0) − 𝑌4(1, 1) − 3𝑌4(0, 0)}2.

Example 5.6 suggests that, even if the two realizations of the assignment path are

the same and the potential outcomes are the same, since the probability distributions
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𝜂T,Q and 𝜂T̃,Q are distinct, the corresponding estimators 𝜏1(T) and 𝜏1(T̃) could be

different, and the corresponding loss functions 𝐿(𝜂T,Q,𝑤1:𝑇 ,Y) and 𝐿(𝜂T̃,Q,𝑤1:𝑇 ,Y)

could also be different. This observation suggests that there exists some design 𝜂T*

that has a small risk. In the next section we find such a design when 𝑚 is correctly

specified.

5.3 Design of Regular Switchback Experiments un-

der Minimax Rule

The goal of this section is to find the optimal design of regular switchback experi-

ments, i.e., to select the optimal randomization points and the optimal randomization

probabilities. Throughout this section we assume 𝑚 is known and we set 𝑝 = 𝑚.

We formalize our experimental design problem through the minimax framework.

The minimax decision rule (Berger 2013, Wu 1981, Li 1983) finds an optimal design of

experiment such that the worst-case risk against an adversarial selection of potential

outcomes is minimized,

min
T∈[𝑇 ],Q∈𝒬

max
Y∈𝒴

𝑟(𝜂T,Q,Y) = min
T∈[𝑇 ],Q∈𝒬

max
Y∈𝒴

∑︁
𝑤1:𝑇∈{0,1}𝑇

𝜂T,Q(𝑤1:𝑇 ) · (𝜏𝑝(𝑤1:𝑇 ,Y) − 𝜏𝑝(Y))2 .

(5.6)

One compelling reason to adopt the minimax framework, as commented in the seminal

work of Wu (1981), is that “the experimenter’s information about the model is never

perfect. When a model is proposed, there is always the possibility that the ‘true’

model deviates from the assumed model.” Instead of finding the best possible design

by imposing a model, we try to derive the best possible design for the worse possible

set of potential outcomes.

To overcome minimaxity and to lay out the foundation for inference, we impose an

additional assumption on the support of the potential outcome. Since the potential

outcomes are unknown but fixed, we assume that their absolute values are bounded

from above, and that bound is attainable at every time period.
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Assumption 5.3 (Bounded Potential Outcomes). The potential outcomes are bounded

by some constant, i.e., ∃ 𝐵 > 0, 𝑠.𝑡. ∀ 𝑡 ∈ [𝑇 ], ∀ 𝑤 ∈ {0, 1}𝑇 , |𝑌𝑡(𝑤)| ≤ 𝐵, or,

equivalently, Y ∈ 𝒴 = [−𝐵,𝐵]𝑇 .

Assumption 5.3 is often satisfied since it assumes that the potential outcomes

are bounded by the same (possibly a large) constant, (e.g., the ride-matching rate

from each experimental period is always a finite quantity) and that the extreme could

possibly occur at any point in time (e.g., the maximum ride-matching rate could be

observed at any time). In particular, knowledge about the magnitude of 𝐵 is not

required, and, as we show below, the optimal design does not depend on 𝐵.

The reason to make Assumption 5.3 is two fold. First, for optimization purposes,

Assumption 5.3 reflects the inherent symmetry in the potential outcomes under both

treatment and control, which is in the same spirit as the permutation invariance

assumption (Wu 1981, Li 1983, Basse et al. 2019b). It is such symmetry that ensures

the optimality of fair coin flipping. See Theorem 5.4 below. Second, for inferential

purposes, Assumption 5.3 ensures that the variance of the estimator is well-behaved,

which is commonly assumed in the finite-sample inference literature (Aronow et al.

2017, Chin 2018, Bojinov et al. 2019, Bojinov and Shephard 2019, Li et al. 2020, Han

et al. 2021). It is the well-behaved variance that lays the foundation of our limiting

distribution in Theorem 5.7.

To solve the minimax problem (5.6), we start by focusing on the inner maximiza-

tion part. We characterize the worst-case potential outcomes by identifying two dom-

inating strategies for the adversarial selection of potential outcomes. Denote Y+ =

{𝑌𝑡(1𝑚+1) = 𝑌𝑡(0𝑚+1) = 𝐵}𝑡∈{𝑚+1:𝑇} and Y− = {𝑌𝑡(1𝑚+1) = 𝑌𝑡(0𝑚+1) = −𝐵}𝑡∈{𝑚+1:𝑇}

Lemma 5.3. Under Assumptions 5.1–5.3, Y+ and Y− are the only two dominating

strategies for the adversarial selection of potential outcomes. That is, for any T ⊆ [𝑇 ]

and for any Y ∈ 𝒴,

𝑟(𝜂T,Q,Y+) ≥ 𝑟(𝜂T,Q,Y); 𝑟(𝜂T,Q,Y−) ≥ 𝑟(𝜂T,Q,Y).

Moreover, for any Y ∈ 𝒴 such that Y ̸= Y+,Y ̸= Y−, the above two inequalities are
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strict.

The proof of Lemma 5.3 can be found in Section D.3.3. Lemma 5.3 simplifies the

minimax problem in (5.6), as it allows us to replace Y by Y* = Y+ or Y* = Y−, and

reduce the minimax problem (5.6) into a minimization problem

min
T∈[𝑇 ],Q∈𝒬

𝑟(𝜂T,Q,Y*).

Next we solve this minimization problem by first finding the optimal Q values.

Theorem 5.4 (Optimality of Fair Coin Flipping). Under Assumptions 5.1–5.3, any

optimal design of experiment (T,Q) must satisfy 𝑞0 = 𝑞1 = ... = 𝑞𝐾 = 1/2.

The proof of Theorem 5.4 can be found in Section D.3.4. Theorem 5.4 suggests

that the optimal randomization probabilities should be 1/2. So we can restrict our

scope to only finding the experiments induced by fair coin flipping, and focus on the

trade-off behind the number and timing of the randomization points.

The trade-off lies between having too many randomization points (corresponding

to large 𝐾) and too few randomization points (corresponding to small 𝐾). Intuitively,

too many decreases the probability of observing consecutive treatments 1𝑚+1 or con-

trols 0𝑚+1, which, in turn, decreases the amount of useful data. On the other hand,

too few decreases the number of independent observations and reduces our ability

to produce reliable results. Both of these scenarios reduce our ability to draw valid

causal claims. This is the objective of Theorem 5.5.

Theorem 5.5 (Optimal Design). Under Assumptions 5.1–5.3, the optimal solution to

the design of regular switchback experiment as we have introduced in (5.6) is equivalent

to the optimal solution to the following subset selection problem.

min
T⊂[𝑇 ]

{︃
4

𝐾∑︁
𝑘=0

(𝑡𝑘+1 − 𝑡𝑘)2 + 8𝑚(𝑡𝐾 − 𝑡1) + 4𝑚2𝐾 − 4𝑚2 + 4
𝐾−1∑︁
𝑘=1

[(𝑚− 𝑡𝑘+1 + 𝑡𝑘)+]2

}︃
(5.7)
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Table 5.1: An example of the optimal design T* = {1, 5, 7, 9} when 𝑇 = 12 and
𝑝 = 𝑚 = 2

1 2 3 4 5 6 7 8 9 10 11 12
T* X − − − X − X − X − − −

Note: Each checkmark beneath a time period 𝑡 indicates that 𝑡 is a randomization point.

In particular, when 𝑚 = 0 then T* = {1, 2, 3, ..., 𝑇}; when 𝑚 > 0, and if there exists

𝑛 ≥ 4 ∈ N, s.t. 𝑇 = 𝑛𝑚, then T* = {1, 2𝑚 + 1, 3𝑚 + 1, ..., (𝑛− 2)𝑚 + 1}.

The proof of Theorem 5.5 is deferred to Section D.3.6 in the appendix. Theo-

rem 5.5 presents the optimal design in a class of perfect cases when the time horizon

splits into several equal-length epochs. See Figure 5.1 for an example. In practice,

when possible, we recommend selecting 𝑇 that satisfies the condition in Theorem 5.5.

See Section 5.6 for a discussion. For other imperfect cases when 𝑇 is not divisible by

𝑚, we can also solve (5.7) and find the optimal design. However, we do not present

closed-form solutions to such subset selection problem due to integrality issues. Tech-

nical discussions about the optimal design in such imperfect cases are deferred to

Section D.3.6 in the Appendix.

There are two important implications of Theorem 5.5. First, the optimal random-

ization frequency depends on the physical duration of the carryover effect, regardless

of the granularity of one single experimental period. This observation suggests that

practitioners may set each period to be almost as long as the order of the carryover

effect, which sheds some light on the selection of granularity when practitioners de-

sign the experiment. See Example 5.7. Second, an important special case arises when

experimental designers believe there is very little carryover effect, in which case the

optimal designs are almost the same. This observation suggest a layer of robustness.

See Example 5.8.

Example 5.7 (Two Granularity Levels). In the ride-sharing application, suppose the

firm has two options to treat one single time period either as 0.5 hour or 1 hour;

and suppose the carryover effect lasts for 2 hours. When one single experimental

period corresponds to 0.5 hour, the carryover effect lasts for 𝑚 = 4 periods. When
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one single experimental period corresponds to 1 hour, the carryover effect lasts for

𝑚 = 2 periods. From Theorem 5.5, the optimal design exhibits an optimal structure

that randomizes once every 𝑚 periods (except for the first and last epoch, which lasts

for 2𝑚 time periods each). In both cases, the optimal design would randomize once

every two hours.

Example 5.8 (Little Carryover Effect). For example, Theorem 5.5 suggests that the

optimal design when 𝑚 = 0 is T* = {1, 2, 3, ..., 𝑇}, and when 𝑚 = 1 is T* =

{1, 3, 4, ..., 𝑇 − 1}. This suggests that the minimax optimal design in the absence

of a carryover effect is robust to the existence of a short carryover effect.

5.4 Inference and Statistical Testing

After designing and running the experiment, we obtain two time series. The first

is the observed assignment path 𝑤obs
1:𝑇 , and the second is the corresponding observed

outcomes 𝑌 obs
1:𝑇 . See Figure 5-3. To draw inference from this data we propose two

methods, an exact randomization based test and a finite population conservative test

that establishes asymptotic result.

In Sections 5.4.1 and 5.4.2, we assume perfect knowledge of 𝑚, i.e., 𝑝 = 𝑚, and we

will write 𝜏𝑚 and 𝜏𝑚 to stand for 𝜏𝑝 and 𝜏𝑝, respectively. We discuss in Section 5.4.3

the case when 𝑝 ̸= 𝑚 and show that our inference methods are still valid. To conclude

this section, we provide in Section 5.4.4 a data-driven procedure to identify a possible

value for the carryover effect by running multiple experiments. Such a procedure

relaxes Assumption 5.2 and is of great practical relevance.

5.4.1 Exact Inference

We propose an exact non-parametric test for the sharp null of no effect at every time

point (Fisher et al. 1937, Rubin 1980):

𝐻0 : 𝑌𝑡(𝑤𝑡−𝑚:𝑡) − 𝑌𝑡(𝑤
′
𝑡−𝑚:𝑡) = 0 for all 𝑤𝑡−𝑚:𝑡,𝑤

′
𝑡−𝑚:𝑡, 𝑡 ∈ {𝑚 + 1 : 𝑇}. (5.8)
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Figure 5-3: Illustrator of the observed assignment path 𝑤obs
1:𝑇 (blue and red dots) and

the observed outcomes 𝑌 obs
𝑝+1:𝑇 (black curve)

Note: The dashed lines are the potential outcomes under consecutive treatments / controls.

The sharp null hypothesis implies that 𝑌𝑡(𝑤
obs
𝑡−𝑚:𝑡) = 𝑌𝑡(𝑤𝑡−𝑚:𝑡) for all 𝑤𝑡−𝑚:𝑡 ∈

{0, 1}𝑡. That is, regardless of the assignment path 𝑤𝑡−𝑚:𝑡 we would have observed

the same outcomes.

We can conduct exact tests by using the known assignment mechanism to sim-

ulate new assignment paths; see Algorithm 8 for details. The test depends on the

observation that, under the sharp null hypothesis of no treatment effect (5.8), any

assignment path 𝑤
[𝑖]
1:𝑇 leads to the same observed outcomes. In particular, in Step 3,

we assume the observed outcomes remain unchanged. Thus all treatment paths lead

to the same observed outcomes 𝑌 obs
𝑚+1:𝑇 . To obtain a confidence interval, we propose

inverting a sequence of exact hypothesis tests to identify the region outside of which

(5.8) is violated at the prespecified nominal level (Imbens and Rubin 2015, Chap-

ter 5). In practice, obtaining confidence intervals through this approach is somewhat

challenging; instead, we refer the reader to the subsequent section that provides a less

computationally intensive approach.
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Algorithm 8 Algorithm for performing a sharp-null hypothesis test
Require: Fix 𝐼, total number of samples drawn.
1: for i in 1 : 𝐼 do
2: Sample a new assignment path 𝑤

[𝑖]
1:𝑇 according to the assignment mechanism.

3: Hold 𝑌 obs
𝑝+1:𝑇 unchanged. Compute 𝜏 [𝑖] according to (5.4),

𝜏 [𝑖] =
1

𝑇 −𝑚

𝑇∑︁
𝑡=𝑚+1

{︃
𝑌 obs
𝑡

1{𝑤[𝑖]
𝑡−𝑚:𝑡 = 1𝑚+1}

Pr(𝑊𝑡−𝑚:𝑡 = 1𝑚+1)
− 𝑌 obs

𝑡

1{𝑤[𝑖]
𝑡−𝑚:𝑡 = 0𝑚+1}

Pr(𝑊𝑡−𝑚:𝑡 = 0𝑚+1)

}︃
.

4: end for
5: Compute 𝑝F = 𝐼−1

∑︀𝐼
𝑖=1 1

{︀⃒⃒
𝜏 [𝑖]
⃒⃒
> |𝜏 |

}︀
6: return 𝑝F, the estimated 𝑝-value. For large 𝐼, this is exact.

5.4.2 Asymptotic Inference

We now introduce a conservative test for the null of no average treatment effect:

𝐻0 : 𝜏𝑚 =
1

𝑇 −𝑚

𝑇∑︁
𝑡=𝑚+1

[𝑌𝑡(1𝑚+1) − 𝑌𝑡(0𝑚+1)] = 0. (5.9)

To test such a null, we derive a finite population central limit theorem to approximate

the distribution of the Horvitz-Thompson estimator.

Assume 𝑛 = 𝑇/𝑚 ≥ 4 is an integer, then under the optimal design as shown

in Theorems 5.4 and 5.5, the assignment path is determined by the realizations

at 𝑊1,𝑊2𝑚+1, ...,𝑊(𝑛−2)𝑚+1. To make the dependence on randomization clear, we

introduce the following notations. For any 𝑘 ∈ {0, 1, ..., 𝑛 − 2}, let 𝑌𝑘(1𝑚+1) =∑︀(𝑘+2)𝑚
𝑡=(𝑘+1)𝑚+1 𝑌𝑡(1𝑚+1) and 𝑌𝑘(0𝑚+1) =

∑︀(𝑘+2)𝑚
𝑡=(𝑘+1)𝑚+1 𝑌𝑡(0𝑚+1). Moreover, for any

𝑘 ∈ {0, 1, ..., 𝑛 − 2}, let 𝑌 obs
𝑘 =

∑︀(𝑘+2)𝑚
𝑡=(𝑘+1)𝑚+1 𝑌

obs
𝑡 be the sum of the observed out-

comes.

Lemma 5.6 (Variance of the Horvitz-Thompson Estimator Under the Optimal De-

sign). Under Assumptions 5.1–5.3 and under the optimal design as shown in Theo-

rems 5.4 and 5.5, if 𝑛 = 𝑇/𝑚 ≥ 4 is an integer, then the variance of the Horvitz-
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Thompson estimator, Var(𝜏𝑚), is

Var(𝜏𝑚) =
1

(𝑇 −𝑚)2

{︃
𝑌0(1𝑚+1)

2 + 𝑌0(0𝑚+1)
2 + 2𝑌0(1𝑚+1)𝑌0(0𝑚+1)

+
𝑛−3∑︁
𝑘=1

[︀
3𝑌𝑘(1𝑚+1)

2 + 3𝑌𝑘(0𝑚+1)
2 + 2𝑌𝑘(1𝑚+1)𝑌𝑘(0𝑚+1)

]︀
+ 𝑌𝑛−2(1𝑚+1)

2 + 𝑌𝑛−2(0𝑚+1)
2 + 2𝑌𝑛−2(1𝑚+1)𝑌𝑛−2(0𝑚+1)

+
𝑛−3∑︁
𝑘=0

2
[︀
𝑌𝑘(1𝑚+1) + 𝑌𝑘(0𝑚+1)

]︀
·
[︀
𝑌𝑘+1(1𝑚+1) + 𝑌𝑘+1(0𝑚+1)

]︀}︃
(5.10)

Lemma 5.6 provides the variance of the Horvitz-Thompson estimator under the

optimal design. Since we never observe all the potential outcomes, most of the cross-

product terms in (5.10) can not be directly estimated. Instead, we provide the fol-

lowing upper bound to (5.10) and propose an unbiased estimator.

Corollary 5.6.1. Under the conditions in Lemma 5.6, there exists an upper bound for

the variance of the Horvitz-Thompson estimator, Var(𝜏𝑚) ≤ VarU(𝜏𝑚), which can be

estimated by �̂�2
U, defined as:

�̂�2
U =

1

(𝑇 −𝑚)2

{︃
8(𝑌 obs

0 )2 +
𝑛−3∑︁
𝑘=1

32(𝑌 obs
𝑘 )21{𝑊𝑘𝑚+1 = 𝑊(𝑘+1)𝑚+1} + 8(𝑌 obs

𝑛−2)
2

}︃
.

Moreover, �̂�2
U is unbiased, i.e., E[�̂�2

U] = VarU(𝜏𝑚).

Corollary 5.6.1 provides the foundation to make conservative inference. We make

the following technical assumption for the asymptotic normal distribution to hold.

Assumption 5.4 (Non-negligible Variance). Assume that the randomization distribu-

tion has a non-negligible variance, i.e.,

Var(𝜏𝑚) ≥ Ω(𝑛−1). (5.11)

In particular, one sufficient condition for (5.11) is to assume that all the potential out-

142



comes are positive, i.e., there exists some constant 𝑏 > 0, such that ∀𝑡 ∈ [𝑇 ],∀𝑤1:𝑇 ∈

{0, 1}𝑇 , 𝑌𝑡(𝑤1:𝑇 ) ≥ 𝑏.

Intuitively, the key to most central limit theorems is that all the variables roughly

have variances of the same order. In other words, there cannot be a small number of

variables that compromise the majority of the variance. Since under Assumption 5.3

the potential outcomes are bounded, each variable contributes to the total variance

of order 𝑂(𝑛−2). Assumption 5.4 suggests that the total variance is large enough,

such that it cannot come from only a few of the time periods.

Theorem 5.7 (Asymptotic Normality). Let 𝑚 be fixed. For any 𝑛 ≥ 4 ∈ N, define an

𝑛-replica experiment such that there are 𝑇 = 𝑛𝑚 time periods. We take the optimal

design as in Theorem 5.5 whose randomization points are at T* = {1, 2𝑚 + 1, 3𝑚 +

1, ..., (𝑛 − 2)𝑚 + 1}. Under Assumptions 5.1–5.2, and under Assumption 5.4, the

limiting distribution of the Horvitz-Thompson estimator in the 𝑛-replica experiment

has an asymptotic normal distribution. That is, let Var(𝜏𝑚) be defined in Lemma 5.6.

As 𝑛 → +∞,

𝜏𝑚 − 𝜏𝑚√︀
Var(𝜏𝑚)

𝐷−→ 𝒩 (0, 1).

Theorem 5.7 is in the spirit of the finite population central limit theorems as in

Li and Ding (2017), Aronow et al. (2017), Chin (2018), Bojinov et al. (2019, 2020a),

Han et al. (2021). Note that, Theorem 5.7 does not require Var(𝜏𝑚) to converge as

𝑛 → +∞.

To conduct inference, we replace Var(𝜏𝑚) by �̂�2
U as provided in Corollary 5.6.1.

Define the test statistic to be 𝑧 = |𝜏𝑚| /
√︀
�̂�2
U. When the alternative hypothesis is

two-sided, the estimated 𝑝-value is given by 𝑝N = 2 − 2Φ(𝑧), where Φ is the CDF of

a standard normal distribution.

The proofs of Lemma 5.6, Corollary 5.6.1, and Theorem 5.7 are deferred to Sec-

tions D.4.2, D.4.3, and D.4.4 in the Appendix, respectively.
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5.4.3 Inference under Misspecified 𝑚

Up to now, we assumed that we knew the order of the carryover effect 𝑚, and set

𝑝 = 𝑚. In practice, we may not know the exact value of the carryover effect, and we

have to select 𝑝 either based on domain knowledge or the procedure we recommend

in Section 5.4.4. In this section, we consider what happens when 𝑝 ̸= 𝑚 and show

that the estimation and inference are still valid and meaningful, although the design

from Theorem 5.5 is no longer optimal.

Below we distinguish two cases: 𝑝 > 𝑚 and 𝑝 < 𝑚. When 𝑝 > 𝑚, due to

Assumption 5.2, 𝑌𝑡(1𝑝+1) = 𝑌𝑡(1𝑚+1), ∀𝑡 ∈ {𝑝 + 1 : 𝑇}, and the lag-𝑝 causal effect

is essentially the lag-𝑚 causal effect. So all the estimation and inference results still

hold.

However, when 𝑝 < 𝑚, the Horvitz-Thompson estimator (5.4) will be biased for

the causal estimand. See Section D.4.5 for more discussions. When 𝑝 < 𝑚, the exact

inference procedure as in Section 5.4.1 remains valid. For the asymptotic inference

procedure, a similar result to Theorem 5.7 still holds when 𝑚 is misspecified, as we

state in Corollary 5.7.1. The only difference is that when 𝑝 < 𝑚, the asymptotic

normal distribution will not be centered around the causal estimand as we defined in

(5.1), but some quantity that we will discuss in Section D.4.5. The proof is deferred

to Section D.4.7 in the Appendix.

Corollary 5.7.1 (Asymptotic Normality when 𝑚 is Misspecified). For any 𝑛 ≥ 4 ∈ N,

define an 𝑛-replica experiment such that there are 𝑇 = 𝑛𝑝 time periods. Take the

optimal design as in Theorem 5.5 whose randomization points are at T* = {1, 2𝑝 +

1, 3𝑝 + 1, ..., (𝑛− 2)𝑝 + 1}. We have the following two observations.

i When 𝑝 > 𝑚, under Assumptions 5.1–5.2, the variance of the Horvitz-Thompson

estimator, Var(𝜏𝑝), is explicitly given by (5.10).

ii Furthermore, no matter if 𝑝 > 𝑚 or 𝑝 < 𝑚, under Assumptions 5.1–5.3 and

assume Var(𝜏𝑝) ≥ Ω(𝑛−1), the limiting distribution of the Horvitz-Thompson

estimator in the 𝑛-replica experiment has an asymptotic normal distribution.
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That is, as 𝑛 → +∞,

𝜏𝑝 − 𝜏𝑝√︀
Var(𝜏𝑝)

𝐷−→ 𝒩 (0, 1).

Corollary 5.7.1, together with Theorem 5.7, is the key to identification of 𝑚, the

order of the carryover effect. In Section 5.4.4 we provide a procedure to identify 𝑚.

5.4.4 Identifying the Order of the Carryover Effect

We borrow Theorem 5.7 and Corollary 5.7.1 to define a hypothesis testing procedure,

which, combined with a searching method, estimates the order of the carryover effect.

To build intuition, suppose we have access to two comparable experimental units.

The two experimental units could be two separate units or two time epochs on one

experimental unit such that the two epochs are far enough such that the carryover

effect from one does not affect the outcomes of the other. Suppose, on the first

experimental unit, we design an optimal experiment under 𝑝 = 𝑝1 and on the second

unit, we use 𝑝 = 𝑝2; without loss of generality let 𝑝1 < 𝑝2.

After running the experiment and collecting the results, consider the following

two statistics. For the first unit, we calculate 𝜏𝑝1 , the sampling average, and �̂�2
𝑝1

, the

conservative sampling variance as suggested by Corollary 5.6.1. For the second unit,

we calculate 𝜏𝑝2 and �̂�2
𝑝2

.

Define a procedure that tests the following null hypothesis:

𝐻0 : 𝑚 ≤ 𝑝1 (5.12)

Under the null hypothesis (5.12), 𝜏𝑝1 = 𝜏𝑝2 = 𝜏𝑚, and so both 𝜏𝑝1 and 𝜏𝑝2 are unbiased

estimators of 𝜏𝑚. Furthermore, given that the two estimators both conform asymp-

totic normal distributions, and that the two experimental units are independent, the

difference between the two estimators should be an asymptotic normal distribution

centered around zero, i.e., (𝜏𝑝1 − 𝜏𝑝2)/
√︀
Var(𝜏𝑝1) + Var(𝜏𝑝2)

𝐷−→ 𝒩 (0, 1). To test the

null hypothesis (5.12), define the test statistic to be 𝑧 = |𝜏𝑝1 − 𝜏𝑝2| /
√︀

�̂�2
𝑝1

+ �̂�2
𝑝2

. The
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estimated 𝑝-value is given by 𝑝 = 2−2Φ(𝑧), where Φ is the CDF of a standard normal

distribution.

The above procedure enables us to test the null hypothesis (5.12). We can combine

such a procedure with any searching method to identify 𝑚.

5.5 Simulation Study

There are five goals for this simulation study. First, to show that the optimal design

in Theorem 5.5 has the smallest risk compared against two benchmarks. There are

two dimensions for our comparison: the worst-case risk and the risk under a spe-

cific outcome model. Second, to verify the asymptotic normal distribution under a

non-asymptotic setup, and to study the quality of the upper bound proposed in Corol-

lary 5.6.1. Third, to understand the rejection rate and its dependence on the length

of time horizon. Fourth, to study the performance of the optimal design under a

misspecified 𝑚, and to compare the difference of the two inference methods proposed

in Section 5.4. Fifth, to study the performance of the hypothesis testing procedure

as proposed in Section 5.4.4, which identifies 𝑚 the length of the carryover effect.

We start with a simple linear additive carryover effect model which originates from

Oman and Seiden (1988), Hedayat et al. (1978), Jones and Kenward (2014).

𝑌𝑡(𝑤1:𝑡) = 𝜇 + 𝛼𝑡 + 𝛿(1)𝑤𝑡 + 𝛿(2)𝑤𝑡−1 + ... + 𝛿(𝑡)𝑤1 + 𝜖𝑡 (5.13)

where 𝜇 is a fixed effect; 𝛼𝑡 is a fixed effect associated to period 𝑡; 𝛿(1), 𝛿(2), ..., 𝛿(𝑡)

are non-stochastic coefficients; 𝑤𝑡, 𝑤𝑡−1, ..., 𝑤1 are the treatment indicators; 𝜖𝑡 is the

random noise in period 𝑡. We will run many simulations based on this model. For

a more detailed discussion of the flexibility of the potential outcome framework, see

Section D.5.1 in the Appendix.
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5.5.1 Comparison of the Risk Functions

Simulation setup

We consider two setups. The first setup is for the worst-case risk. We consider 𝑇 =

120, 𝑝 = 𝑚 = 2 where 𝑚 is correctly identified, and 𝑌𝑡(13) = 𝑌𝑡(03) = 10. We compare

three different designs of switchback experiments. The first one is our proposed

optimal design as in Theorem 5.5, such that T* = {1, 5, 7, ..., 117}. The second one

is the most common and naive switchback experiment, which independently assign

treatment/control in every period with half-half probability. It is parameterized by

TH1 = {1, 2, 3, ..., 120}. The third one is the “intuitive” experiment discussed in

Table 5.1, which divides the time horizon into several epochs each with length 𝑚+1 =

3. It is parameterized by TH2 = {1, 4, 7, ..., 118}.

Second, we run simulations based on the outcome model as in (5.13). Similar to

the first setup, we consider again 𝑇 = 120, 𝑝 = 𝑚 = 2 where 𝑚 is correctly identified.

For the outcome model, we consider 𝜇 = 0, 𝛼𝑡 = log (𝑡), and 𝜖𝑡 ∼ 𝑁(0, 1) are i.i.d.

standard normal distributions. For any 𝑡 > 3, let 𝛿(𝑡) = 0. We will vary the values

of 𝛿(1), 𝛿(2), 𝛿(3) ∈ {1, 2} and conduct experiments under 23 = 8 different scenarios.

Again we compare the same three different designs of switchback experiments. T* =

{1, 5, 7, ..., 117},TH1 = {1, 2, 3, ..., 120}, and TH2 = {1, 4, 7, ..., 118}.

We simulate one assignment path at a time, and conduct an experiment following

this assignment path. Since the outcome model is prescribed, we can calculate both

the causal estimand and and the observed outcomes (along the simulated assignment

path). Then, we calculate the Horvitz-Thompson estimator based on the simulated

assignment path and the simulated observed outcomes. With both the estimand and

estimator, we can calculate the loss function. We repeat the above procedure enough

(100000) times to obtain an accurate approximation of the risk function.

Simulation results

First, we calculate the worst-case risk functions via simulations. Notice that, when

𝑝 = 𝑚 = 2, we could explicitly calculate the worst-case risk functions under the
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three different designs of switchback experiments T*,TH1, and TH2. Even though we

can explicitly calculate them via the following expression (See Lemma D.9 in the

Appendix for details),

𝐵2

(𝑇 −𝑚)2

{︃
4
𝐾+1∑︁
𝑘=1

(𝑡𝑘 − 𝑡𝑘−1)
2 + 8𝑚(𝑡𝐾 − 𝑡1) + 4𝑚2𝐾 − 4𝑚2 + 4

𝐾∑︁
𝑘=2

[(𝑚− 𝑡𝑘 + 𝑡𝑘−1)
+]2

}︃
,

(5.14)

we still use the simulation to confirm this result. See Table 5.2 for our simulation

results.

The causal effect is 𝜏2 = 0 because 𝑌𝑡(13) = 𝑌𝑡(03) = 10. The simulated estimator

is E[𝜏 *2 ] = −0.0291 for our proposed optimal design, and E[𝜏H12 ] = 0.0104 and E[𝜏H22 ] =

−0.0478 for the two benchmarks, respectively. The risk function is 𝑟(𝜂T*) = 26.78

for our proposed optimal design, and 𝑟(𝜂TH1) = 33.67 and 𝑟(𝜂TH1) = 27.85 for the two

benchmarks, respectively. Such simulation results suggest that our proposed optimal

design have the smallest risk, under the worst case outcome model. In the last three

columns are the risk functions of the three designs, all suggested by expression (5.14).

The risk functions calculated from theory take values that are very close to the risk

functions calculated from expression (5.14), which verifies our theory.

Table 5.2: Simulation results for the worst-case risk function

𝜏2 E[𝜏 *2 ] E[𝜏H12 ] E[𝜏H22 ] 𝑟(𝜂T*) 𝑟(𝜂TH1) 𝑟(𝜂TH2) 𝑟(𝜂T*) 𝑟(𝜂TH1) 𝑟(𝜂TH2)
0 0.0250 0.0200 0.0059 26.78 33.67 27.85 26.67 33.96 27.81

Note: The optimal design T* as suggested by Theorem 5.5 yields the smallest risk, both in theory
and confirmed by simulations.

Second, we calculate the risk functions based on the outcome model in (5.13). See

Table 5.3. As we vary the values of 𝛿(1), 𝛿(2) and 𝛿(3), the total lag-2 causal effect is

being changed. All three estimators are able to reflect the change as the estimand

changes. The risk function can be simulated and we see that the risk function associ-

ated with the first benchmark TH1 is 28% ∼ 32% larger than the optimal design; and

the second benchmark TH2 is 1% ∼ 2% larger. Such simulation results suggest again

that our proposed optimal design have the smallest risk. Moreover, as 𝑟(𝜂TH2) is close
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Table 5.3: Simulation results for the risk function based on the outcome model in
(5.13)

𝛿(1) 𝛿(2) 𝛿(3) 𝜏2 E[𝜏 *2 ] E[𝜏H12 ] E[𝜏H22 ] 𝑟(𝜂T*) 𝑟(𝜂TH1) 𝑟(𝜂TH2)
1 1 1 3 3.016 3.012 3.002 7.96 10.22 8.11
1 1 2 4 4.018 4.013 4.002 9.57 12.39 9.74
1 2 1 4 4.018 4.013 4.002 9.57 12.39 9.74
2 1 1 4 4.018 4.013 4.002 9.57 12.39 9.74
1 2 2 5 5.020 5.015 5.003 11.34 14.81 11.52
2 1 2 5 5.020 5.015 5.003 11.34 14.81 11.52
2 2 1 5 5.020 5.015 5.003 11.34 14.81 11.52
2 2 2 6 6.022 6.016 6.003 13.28 17.48 13.47

Note: For each row, the random seed that generates the simulation setup is fixed. The optimal
design T* as suggested in Theorem 5.5, though solved from a minimax program, still yields the
smallest risk for the outcome model in (5.13). A few rows are redundant because our switchback
experiment, combining with the causal estimand (5.1), is only able to measure the total additive
treatment effect. We cannot distinguish the source of the additive treatment effects, i.e., we are
unable to distinguish 𝛿(1), 𝛿(2), and 𝛿(3).

to 𝑟(𝜂T*) and both are much smaller than 𝑟(𝜂TH1), our results suggest that when 𝑚 is

unknown, it is better to select 𝑝 to be slightly larger than the true 𝑚 as opposed to

significantly smaller.

As the magnitude of treatment effects increase, the associated risk functions also

increase. The relative difference between risk functions of 𝑟(𝜂TH1) and 𝑟(𝜂T*) increases,

while the relative difference between 𝑟(𝜂TH1) and 𝑟(𝜂T*) decreases. This coincides with

the intuitions discussed in Section 5.3.

5.5.2 Asymptotic Normality

Simulation setup

We run simulations based on the outcome model in (5.13), with 𝑇 = 120 and 𝑚 = 2.

We will consider three cases: (i) 𝑚 is correctly specified so 𝑝 = 2; (ii) 𝑝 = 3, and

we estimate lag-3 causal estimand as in (5.1); (iii) 𝑝 = 1, and we pretend as if we

estimated the lag-1 causal estimand. However, as the lag-1 causal estimand is not

well defined, we instead estimate a different quantity, which we refer to as the “𝑚-

misspecified lag-𝑝 causal estimand” (See details and definition in (D.10)).
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For the outcome model, we consider 𝜇 = 0, 𝛼𝑡 = log (𝑡), and 𝜖𝑡 ∼ 𝑁(0, 1) are

i.i.d. standard normal distributions. For any 𝑡 > 3, let 𝛿(𝑡) = 0. For simplicity, let

𝛿(1) = 𝛿(2) = 𝛿(3) = 𝛿. We vary 𝛿 ∈ {1, 2, 3} and conduct experiments under 3 different

scenarios. We simulate one assignment path at a time, and conduct experiments fol-

lowing this assignment path. Since the outcome model is prescribed, we calculate the

observed outcomes based on the simulated assignment path. Then we calculate the

Horvitz-Thompson estimator, and the conservative estimator of the randomization

variance (Corollary 5.6.1), based on the simulated assignment path and the simu-

lated observed outcomes. On the other hand, the lag-𝑝 causal estimand is easy to

calculate once the outcome model is prescribed. Yet the 𝑚-misspecified lag-𝑝 causal

estimand has to be calculated in conjunction with the simulated assignment path.

By repeating the above procedure enough (100000) times we obtain a distribution of

the estimator.

Simulation results

In Figure 5-4, the dotted dark blue line is the Probability Density Function of the

standard normal distribution. The pink histogram corresponds to the distribution

induced by 𝜏𝑝−𝜏𝑝√
Var(𝜏𝑝)

, which is the estimator (after re-centering at zero) normalized

by the square root of the true randomization variance3. Such a distribution, as sug-

gested by Theorem 5.7, converges to a standard normal distribution when 𝑇 is large.

Comparing to the dotted dark blue line, Figure 5-4 suggests that Theorem 5.7 ap-

proximately holds for moderate values of 𝑇 . The light blue histogram corresponds

to the distribution induced by 𝜏𝑝−𝜏𝑝√
E[�̂�2

𝑈 ]
, which is the estimator (after re-centering at

zero) normalized by the expectation of the conservative upper bound of the random-

ization variance. Since we replace the true variance by the conservative upper bound,

the shape of the distribution is more concentrated around zero, as we see from the

“taller” histogram. The red vertical line is the expected value of the randomization

distribution for the pink histogram. The cases of 𝛿 = 1 and 𝛿 = 2 are similar, and the

3We numerically find such variance Var(𝜏𝑝), and the expectation of the conservative upper bound
E[�̂�2

𝑈 ]
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cases of overestimated 𝑚 and underestimated 𝑚 are also similar. We discuss them in

Section D.5.2 in the Appendix.

Figure 5-4: Approximate normality of the randomization distribution when 𝑚 =
2, 𝑝 = 2, 𝛿 = 3.

For all the nine cases (𝑝 ∈ {1, 2, 3} and 𝛿 ∈ {1, 2, 3}), see Table 5.4 for the

expected values and the variances of the randomization distributions, as well as the

conservative estimator of the randomization variances. Note that the three cases all

have the same underlying outcome model. It is the different knowledge of 𝑚 that

leads to three different designs of experiments.

Table 5.4: Simulation results for the randomization distribution

𝜏𝑝 𝜏
[𝑚]
𝑝 E[𝜏𝑝] Var(𝜏𝑝) E[�̂�2

U]

𝑚 = 2, 𝑝 = 2
𝛿 = 1 3 − 3.016 7.96 8.48
𝛿 = 2 6 − 6.022 13.28 15.16
𝛿 = 3 9 − 9.028 20.10 24.25

𝑚 = 2, 𝑝 = 3
𝛿 = 1 3 − 3.006 11.92 12.67
𝛿 = 2 6 − 6.009 19.89 22.70
𝛿 = 3 9 − 9.012 30.10 36.32

𝑚 = 2, 𝑝 = 1
𝛿 = 1 − 2 2.016 4.00 4.13
𝛿 = 2 − 4 4.026 6.69 7.06
𝛿 = 3 − 6 6.037 10.14 10.92

Note: The randomization distribution is unbiased in all 9 cases (when 𝑝 < 𝑚 it is unbiased for
the 𝑚-misspecified average lag-1 causal effect). The conservative estimation of the variance upper
bound from Corollary 5.6.1 is close to the true variance.

From Table 5.4, we make the following two observations. (i) Unbiasedness

of the Horvitz-Thompson estimator. When 𝑚 is correctly specified, R[𝜏𝑝] is
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very close to 𝜏𝑝, verifying the unbiasedness of the estimator. When 𝑚 = 2, 𝑝 =

3, the estimand remains unchanged, and the estimator remains unbiased. But the

variance of the estimator is larger. When 𝑚 = 2, 𝑝 = 1, the estimand is the 𝑚-

misspecified estimand, and the estimator is unbiased for this 𝑚-misspecified estimand.

(ii) Quality of Corollary 5.6.1 and 5.7.1. As we increase 𝛿, the variances of

the randomization distributions also increase. The conservative estimators of the

randomization variances are very close to the true variances, which suggests that

Corollary 5.6.1 and 5.7.1 approximate the true variances quite well.

Robustness check

In this section we run simulations under almost the same setup as introduced in

Section 5.5.2, with the only difference that we select each 𝜖𝑡 to be an i.i.d. Student’s

t-distribution with 1 degree of freedom. The purpose of this section is to verify our

theory when 𝜖𝑡 are drawn from heavy tailed distributions.

When 𝑚 = 2, 𝑝 = 2, 𝛿 = 1, as we can see from Figure 5-5, the randomization

distribution is significantly different from a standard normal distribution. This is

because 𝑇 = 120 is too small. Alternatively, we increase 𝑇 = 1200 to see that the

randomization distribution behaves like a normal distribution. In other words, when

𝜖𝑡 noises are heavy tailed, our Theorem 5.7 has a slower convergence rate to a normal

distribution. We conduct extensive simulation study under other parameters, as we

will show in Section D.5.2 in the Appendix.

5.5.3 Rejection Rates

Simulation setup

In this simulation, we run multiple simulations based on the outcome model as in

(5.13). We vary 𝑇 ∈ {120, 240, ..., 1200}. We consider 𝑝 = 𝑚 = 2 where 𝑚 is

correctly specified. Similar to Section 5.5.2, we consider the same parameterization

and conduct experiments under 3 different scenarios 𝛿 ∈ {1, 2, 3}.

We simulate one assignment path at a time, and conduct experiments following
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Figure 5-5: Randomization distribution when random noises are Student’s t-
distributions, and when 𝑚 = 2, 𝑝 = 2, 𝛿 = 1, 𝑇 = 120.

Figure 5-6: Randomization distribution when random noises are Student’s t-
distributions, and when 𝑚 = 2, 𝑝 = 2, 𝛿 = 1, 𝑇 = 1200.

this assignment path. We first calculate the observed outcomes and the Horvitz-

Thompson estimator. Then we conduct the two inference methods as proposed in

Section 5.4, and obtain two estimated 𝑝-values. For the asymptotic inference method,

we plug in �̂�2
U, the conservative upper bound of the variance. We reject the corre-

sponding null hypothesis when the 𝑝-value is smaller than 0.1 (In Section D.5.3 we

run additional simulations by replacing such 0.1 threshold by 0.05 and 0.01). By

repeating the above procedure enough (in this simulation, 1000) times we obtain the

frequency of a null hypothesis being rejected, which we refer to as the rejection rate.
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Simulation results

We calculate the rejection rates via simulations and then plot Figure 5-7. The blue

dots are rejection rates under exact inference; the red dots are under asymptotic

inference. In all the simulations, 𝛿 ̸= 0, 𝜏𝑝 ̸= 0. So, ideally, we would wish to reject

both the Fisher’s null hypothesis (5.8) and the Neyman’s null hypothesis (5.9).

Figure 5-7: Rejection rates and their dependence on 𝑇/𝑚. Left: 𝛿 = 1; Middle:
𝛿 = 2; Right: 𝛿 = 3

From Figure 5-7 we make the following three observations. (i) Dependence

on 𝑇/𝑚. The rejection rates increase as the length of the horizon increases – more

specifically, as 𝑇/𝑚 the total number of epochs increases. In practice, when firms

have to capability to choose the length of 𝑇 , they can refer to Figure 5-7 to choose 𝑇

properly. Also see discussion in Section 5.6. (ii) Between two inference methods.

In all three cases, the rejection rate from testing a sharp null hypothesis (5.8) is

slightly higher than that from testing the Neyman’s null (5.9). This coincides with our

intuition that a sharp null is more likely to be rejected. We discuss this in Section 5.5.4

together with the associated 𝑝-values. (iii) Dependence on the signal-to-noise

ratio. The rejection rates all increase as 𝛿 increases from 1 to 3 (while holding the

noise from the model fixed). This suggests that when the treatment effect is relatively

larger, we do not require a long experimental horizon to achieve a desired rejection

rate.
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5.5.4 Estimation under a Misspecified 𝑚

Simulation setup

We run simulations based on the outcome model as in (5.13). We consider 𝑇 =

120,𝑚 = 2. We consider three cases: (i) 𝑚 correctly specified so 𝑝 = 2; (ii) 𝑝 = 3,

and we estimate the lag-3 causal estimand as in (5.1); (iii) 𝑝 = 1, and we pretend

as if we estimated the lag-1 causal estimand. However, the lag-1 causal estimand is

not well defined. Instead, we estimate the 2-misspecified lag-1 causal estimand as in

(D.10).

For the outcome model, we consider the same parameterization as in Section 5.5.2,

and conduct experiments under 3 different scenarios 𝛿 ∈ {1, 2, 3}.

We only simulate one assignment path. Since the outcome model is prescribed,

we calculate the observed outcomes. There is only one time series of such observed

outcomes. We calculate the Horvitz-Thompson estimator based on the simulated

assignment path and the simulated observed outcomes. We calculate the lag-𝑝 causal

estimand directly, and also the 𝑚-misspecified lag-𝑝 causal estimand in conjunction

with the simulated assignment path. Finally, we perform the two inference methods

from Section 5.4, and report their associated estimated 𝑝-values. For the asymptotic

inference method we plug in �̂�2
U the conservative upper bound of the variance. We

choose 𝐼 = 100000 to be the number of samples drawn in the exact inference method

as shown in Algorithm 8.

Simulation results

Notice this is only one experiment under one simulated experimental setup from one

simulated assignment path. So the estimators 𝜏𝑝 we derive are different from 𝜏𝑝. But

they are still following the true causal effects which they estimate. See Table 5.5.

From Table 5.5 we see that both our estimator and the estimated variance are

well defined in all the cases when 𝑝 = 𝑚, 𝑝 > 𝑚, and 𝑝 < 𝑚. In each case, as 𝛿

increases from 1 to 3, the associated 𝑝-values exhibit decreasing trends, suggesting a

stronger rejection rate against the null hypothesis. Moreover, the 𝑝-values suggested
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Table 5.5: Simulation results for correctly specified 𝑚 case, and two misspecified 𝑚
cases

𝜏𝑝 𝜏
[𝑚]
𝑝 𝜏𝑝 �̂�2

U2 𝑝F 𝑝N

𝑚 = 2, 𝑝 = 2
𝛿 = 1 3 − 1.35 8.81 0.626 0.648
𝛿 = 2 6 − 4.30 15.16 0.231 0.269
𝛿 = 3 9 − 7.25 23.88 0.101 0.138

𝑚 = 2, 𝑝 = 3
𝛿 = 1 3 − 1.77 14.26 0.606 0.639
𝛿 = 2 6 − 5.00 24.69 0.262 0.314
𝛿 = 3 9 − 8.23 39.00 0.136 0.188

𝑚 = 2, 𝑝 = 1
𝛿 = 1 − 2 -1.03 3.87 0.590 0.599
𝛿 = 2 − 4 0.41 6.28 0.866 0.870
𝛿 = 3 − 6 1.86 9.47 0.530 0.547

Note: The simulation setup for the three 𝛿 = 1 cases is the same; so are the 𝛿 = 2 cases and 𝛿 = 3
cases. The estimated 𝑝-values 𝑝F derived from the exact inference are slightly smaller than the
𝑝-values 𝑝N derived from the asymptotic inference.

by the exact inference are always slightly smaller than the 𝑝-values suggested by the

asymptotic inference. This coincides with our intuition that: (i) the exact inference

method possesses a stronger null hypothesis (5.8) which implies the null hypothesis

of (5.9); (ii) in the asymptotic inference we replaced the true randomization variance

by its conservative upper bound, which further leads to a larger 𝑝-value.

5.5.5 Estimation of 𝑚

We run simulations based on the outcome model as in (5.13), to test the performance

of the procedure described in Section 5.4.4. In this section we only focus on 𝛿 = 3.

Suppose we have narrowed down the range of the order of the carryover effect to be

𝑚 ≤ 3. In the first round, we use our procedure to test a null hypothesis 𝑚 ≤ 2.

Then we would observe row 3 and 6 from Table 5.5, with 𝜏2 = 7.25, �̂�2
2 = 23.88; 𝜏3 =

8.23, �̂�2
3 = 39.00. So the estimated 𝑝-value for the null hypothesis 𝑚 ≤ 2 is estimated

to be 𝑝 = 0.902, which is too large to reject the null hypothesis. In the second round,

we consult the procedure to test a null hypothesis 𝑚 ≤ 1. Then we would observe

row 3 and 9 from Table 5.5, with 𝜏1 = 1.86, �̂�2
3 = 9.47; 𝜏2 = 7.25, �̂�2

2 = 23.88. The

estimated 𝑝-value for the null hypothesis 𝑚 ≤ 1 is estimated to be 𝑝 = 0.350. This is

still rather large, yet a significant difference from 0.902.
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We conduct a few more numerical simulations with different time periods. The

setup is the same as in Section 5.5.4, except that 𝑇 takes values in 𝑇 ∈ {210, 1020, 2010}4.

When 𝑇 = 210, in the first round the estimated 𝑝-value for the null hypothesis 𝑚 ≤ 2

is estimated to be 𝑝 = 0.956; in the second round the estimated 𝑝-value for the null

hypothesis 𝑚 ≤ 1 is estimated to be 𝑝 = 0.182. When 𝑇 = 1020, in the first round

the estimated 𝑝-value for the null hypothesis 𝑚 ≤ 2 is estimated to be 𝑝 = 0.869; in

the second round the estimated 𝑝-value for the null hypothesis 𝑚 ≤ 1 is estimated to

be 𝑝 = 0.163. When 𝑇 = 2010, in the first round the estimated 𝑝-value for the null

hypothesis 𝑚 ≤ 2 is estimated to be 𝑝 = 0.760; in the second round the estimated

𝑝-value for the null hypothesis 𝑚 ≤ 1 is estimated to be 𝑝 = 0.037. In practice, we

suggest increasing the horizon’s length to a degree such that 𝑇/𝑝 > 100.

5.6 Practical Implications, Limitations, and Conclud-

ing Remarks

When a firm decides to use a switchback experiment for the evaluation of a new

product or initiative, they have to make multiple decisions to ensure that the results

are reliable, practical, and replicable. First, the firm must determine an appropriate

outcome(s) that adequately captures the relative effectiveness of the change. In prac-

tice, this requires substantive domain knowledge combined with an understanding of

the likely impact of the change; see Kohavi et al. (2020) for an in-depth discussion of

metric definition strategies.

Second, as part of the design of the experiment, the firm often have control over

the granularity of one single experimental period. As we have shown in Example 5.7,

as long as each time period is smaller than the length of the carryover effect and

the length of the carryover effect is divisible by the length of one time unit, the

selection of granularity makes no difference to the optimal design and analysis of

switchback experiments. On the other hand, setting each period’s length longer than

4The values of 𝑇 were selected such that they were both divisible by both 2 and 3, the possible
values of the carryover effect.
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the carryover effect will lead to a loss in precisions. Consider an extreme case where

the carryover effect is 1 minute, while each period is selected to be an hour. Had

we set each period to be a minute, we would have collected order of magnitude more

useful data. Hence, we suggest that each period’s length be smaller than the carryover

effect duration.

Third, the firm must form a knowledge and decide an appropriate value 𝑝 for

the order of the carryover effect 𝑚. This, again, would require substantive domain

knowledge. When domain knowledge is not accurate, or when the firm would like

to reaffirm the domain knowledge, we have discussed in Section 5.4.4 a procedure to

estimate the likely order of the carryover effect through hypothesis testing. we do

encourage empirical researchers who apply our method to use domain knowledge to

narrow down 𝑚 first, before using the procedure in Section 5.4.4 to identify 𝑚. This

is because, in theory, when 𝑚 is relatively large compared to 𝑇 , this procedure could

accept (not reject) the null hypothesis simply due to insufficient statistical power.

So this procedure could require too many testing periods. And in practice, each

hypothesis testing to identify (5.12) needs to consume experimental resources at the

scale of 𝑇/𝑚 > 100 to distinguish two candidate values, which could be luxurious

when the resource is scarce.

Fourth, when the firm have control over the horizon of the experiment, the firm

usually set 𝑝 = 𝑚 and control the overall duration of the experiment 𝑛 = 𝑇/𝑝 =

𝑇/𝑚. We suggest choosing 𝑛 by referring to the rejection rate curve, as shown in

Section 5.5.3; intuitively, this procedure resembles a typical power analysis. We begin

with selecting our inference method, as described in Section 5.4. We then use our

domain knowledge to estimate the expected signal-to-noise ratio; this could be done

by looking at historical experiments or through dummy experiments. Finally, we

choose the desired rejection rate and find out the length of the horizon required.

Finally, using the above four three steps, the firm decide the collection of random-

ization points and samples the assignment path from the appropriate randomization

distribution. This final step has already been discussed at length, as we showed in

Section 5.3 the optimal design is obtained from Theorems 5.4 and 5.5. In cases when
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the time horizon is pre-determined and when 𝑇/𝑝 is not an integer, our optimization

formulation as shown in Theorem 5.5 can always be used to find an optimal solu-

tion without discarding any periods. Just in the “imperfect cases” we do not have

closed-form solutions. Our suggestion is that if the experimental designer wishes not

to discard any periods, then solve the optimal solution (using any commercial soft-

ware); if the experimental designer wishes not to solve an optimization problem, then

discard a few periods and consult the explicit solution suggested in Theorem 5.5.

After designing the experiment, the firm can use the data collected from the test

to draw causal conclusions about the new innovation’s performance using the two

inferential methods as discussed in Section 5.4.
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Chapter 6

Conclusions

As mentioned in Chapter 1, it is the market uncertainty that has made the rev-

enue management problems challenging. In this dissertation, we have showcased how

minimax optimization, and, more specifically, competitive analysis, could guide op-

erational decisions. Such a solution concept is powerful not only in the traditional

revenue management problem, but also in statistical decision making problems. We

conclude this dissertation by pointing out the limitations, possible variations, and

open questions associated with all the models.

In Chapter 2, there are three limitations and possible variations. First, if we were

introducing new products to the market or if there were very little data to generate ac-

curate demand distributions, then we should treat demand distributions as unknown,

instead of distributionally-known. One interesting question is to address the unknown

demand distributions. The second possible variant is to consider strategic customers.

If we observed significant inter-temporal cannibalization, it would be interesting to

develop a strategic customer model. The literature (Gul et al. 1986, Chen et al. 2018)

suggests that commitment power gains an advantage in the presence of strategic cus-

tomers. Calendar pricing is naturally such a commitment policy. A third possible

variant is to consider oligopoly pricing. If we observed cross-SKU cannibalization,

then it would be worthwhile to consider how the incentives of different agents align

with one another and even with the retailers that carry all competitors’ products.

In Chapter 4, there are two unsolved questions. First, what does the best non-
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adaptive policy look like? Or are there structural properties concerning the optimal

policy? Second, a potentially easier question to asnwer is in the network revenue

management setting, where the static control policy is a well studied policy that

suggests a combination of actions to execute. Using the actions suggested by the

deterministic LP, it remains open to understand which permutation of the actions

might lead to superior performance.

In Chapter 4, there are two possible variations. First, we could extend our model

to consider multiple consumptions over different knapsacks. Suppose we are managing

a manufacturing plant that requires different resources to make products, instead of a

warehouse managing a single stock. One arriving item could potentially require more

than one single resource to be produced. For each unit of resource consumed, there

is an associated revenue / cost. Our goal is to maximize the total revenue / minimize

the total cost throughout the horizon. Second, we could also extend our model to

reusable products. Suppose there is a fixed total amount of cloud computing resources

whose capacity is 1, and an unknown sequence of tasks with sizes at most 1. These

resources immediately become available after the usage time. If one unit of resource

is occupied for one period of time, a constant amount of revenue is generated. Our

goal is to maximize the total revenue generated throughout the horizon.

In Chapter 5, there are three limitations and open questions. First, when 𝑚,

the order of the carryover effect is as large as comparable to 𝑇 the horizon’s length,

our method, though still unbiased in theory, incurs a large variance that typically

prohibits the firm from making meaningful inference. This is because our method

is general and requires the minimum amount of modeling assumptions. If we have

strong domain knowledge about the outcome model, we can incorporate them to

improve the design. Second, our method only considers flipping independent coins

before the experiment even begins. We do not consider adaptively changing the coin

flip probabilities, as it requires further assumptions about the outcome model, e.g.,

some time-homogeneity of the data generating process. Third, in this paper we have

only considered the estimand as in (5.1), which is motivated when firms want to

decide whether to permanently adopt a policy. If the primary focus is on some other
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general causal estimands, our results do not directly apply. It remains open to derive

new results for other estimands, using a similar strategy that we have employed.
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Appendix A

Appendix to Chapter 2

A.1 Building the Random Forest Model

In this section we explain in detail how we built the prediction model from the data.

We follow the workflow shown in Figure 2-1.

We begin with weekly sales data in the past 3 years. After cleaning the missing

data, we select SKUs that generated 90% of the revenue in the past three years and

eliminate the rest. We also eliminate SKUs that were newly introduced in the most

recent year. Some SKUs are already grouped together by the company. They are

similar brands sold at similar pack sizes. The company requires that all SKUs in the

same group be sold at the same price. There are 52 distinct groups in total. We build

group-specific prediction models with the same combination of features, i.e., all SKUs

use the feature “tagged price”, but it refers to a different tagged price for each SKU.

We derive a list of features from the data that will be used to predict demand

at each time step. These features include the price that this group is tagged at, its

internal competitor prices, its external competitor prices, and its history prices. The

internal competitor prices are the prices of the brands owned by the same company.

The external competitor prices are the prices of its true competitors, owned by its

rival companies. The features of history prices are take from the past week to the

past 3 weeks, as 3 different features.

The external features include industry seasonal trend (after applying moving av-
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erage), total number of stores in the district, festivals and sports events. The first two

features are provided by the company, and the rest are obtained by scripting from the

Internet. We create dummy variables for festivals and sports events to characterize

categorical data.

We tested a few algorithms and finally choose to use random forest (Liaw et al.

(2002), Ferreira et al. (2016)) as the prediction model. Random forest provides us

the flexibility to use piecewise constant functions to approximate any true demand

function, possibly nonlinear functions. Random forest provides us better performance

than simpler models such as linear regression. On the other hand, it preserves some

interpretability of the features, compared to more advanced methods such as neural

networks.

Then we aggregate all the features together and simultaneously perform feature

selection and parameter tuning by using a 5-fold cross-validation. We use stepwise

backward selection to select features. In the cross-validation, we evaluate each com-

bination based on its performance on the validation set.

During this procedure, we engaged in rounds of discussions with the company

to ensure that the features selected are interpretable. There are some sub-optimal

combinations that the company believed would make more practical sense, and we

followed their advice. These features were both approved by the CPG company’s

management as consistent with their expedience and also resulted in the lowest out-

of-sample prediction errors — see Table 2.3 for the reported error rates. Each column

depicts a combination of features, and the corresponding numbers are prediction

errors under this feature combination. The first column serves as a benchmark. We

omit some trivial duplicates of the same feature, but note that some rows represent

many features, e.g., festivals and sports events.

The average prediction error is reported as 19.41%.
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A.2 Further Justification of Assumptions 2.2 and 2.3

In this section we provide further explanation of Assumptions 2.2 and 2.3. Through-

out this section we assume that the prices are sorted in decreasing order, i.e. 𝑝1 >

𝑝2 > ... > 𝑝𝑚. This is without any loss of generality.

A.2.1 Two Examples

We provide two examples here to illustrate our assumptions.

(a) Example A.1: CDF for normalized binomials
(b) Example A.2: CDF for truncated exponen-
tials

Example A.1. Normalized binomial distributions. Let us restrict ourselves to normal-

ized binomial distributions that have the same number of coin flips, i.e. Bin(𝑁, 𝛽𝑗)/𝑁 ,

where 𝑁 denotes the total number of coin flips, and 𝛽𝑗 denotes the probability of head-

ups. We normalize it by 𝑁 so that this is a proper distribution with bounded support

within [0, 1].

Assumption 2.3 is naturally satisfied. From Lemma A.6 we know that ∀𝑗 <

𝑗′, 𝛽𝑗 ≤ 𝛽𝑗′ ensures Assumption 2.2 to hold.

Example A.2. Truncated exponential distributions. Let us restrict ourselves to trun-

cated exponential distributions with bounded support on [0, 1], whose CDF can be

written as

𝐹 (𝑥) =
1 − 𝑒−𝜆𝑥

1 − 𝑒−𝜆
,∀𝑥 ∈ [0, 1].

Again Assumption 2.3 is naturally satisfied.
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Assumption 2.2 states that ∀𝑗 < 𝑗′, 𝑐 ∈ [0, 1],
E[𝑄𝑗 ]

E[𝑄𝑗′ ]
≤ E[min{𝑐,𝑄𝑗}]

E[min{𝑐,𝑄𝑗′}]
. Notice that

E[𝑋] = 1
𝜆
,E[min{𝑐,𝑋}] = 1−𝑒−𝜆𝑐

𝜆(1−𝑒−𝜆)
. So we have

E[𝑄𝑗]

E[𝑄𝑗′ ]
≤ E[min{𝑐,𝑄𝑗}]

E[min{𝑐,𝑄𝑗′}]
⇐⇒ 𝜆𝑗′

𝜆𝑗

≤ 𝜆𝑗′

𝜆𝑗

1−𝑒−𝜆𝑗𝑐

𝜆𝑗(1−𝑒−𝜆𝑗 )

1−𝑒−𝜆𝑗′𝑐

𝜆𝑗′ (1−𝑒
−𝜆𝑗′ )

⇐⇒ 𝜆𝑗 ≥ 𝜆𝑗′

So Assumption 2.2 holds if and only if ∀𝑗 < 𝑗′, 𝜆𝑗 ≥ 𝜆𝑗′ .

A.2.2 Necessity of Assumption 2.2

Notice that inequality (2.12) holds if and only if Assumption 2.2 holds. So if Assump-

tion 2.2 does not hold then inequality (2.12) and Theorem 2.2 break down.

A.2.3 Necessity of Assumption 2.3 Through Examples

We show an example that does not satisfy Assumption 2.3 and breaks Lemma 2.13.

Example A.3. Let there be 𝑇 = 2 periods and 𝑏 = 1 unit of initial inventory. Let

𝜖 ∈ (0, 1) be some small positive number. Let there be two prices: 𝑝1 = 1 + 𝜖, 𝑝2 = 1.

Demand at the higher price 𝑝1 is deterministically 1/2 − 𝜖; and demand at the lower

price 𝑝2 is 1 with probability 1/2, and 2𝜖 with probability 1/2.

DLP-S suggests that we offer both prices 𝑝1 and 𝑝2 for one period, since that

uses up the 𝑏 = 1 inventory exactly in expectation. Indeed, if we ignore the 𝜖 terms,

Rev(H; L) ≈ 3/4; and Rev(0.5H, 0.5L; 0.5H0.5L) ≈ 13/16 > 3/4. So Inequality (2.18)

and Lemma 2.13 break down.

A.3 Inequalities Involving Truncations

Lemma A.1. ∀𝑐, 𝑥, 𝑦 ≥ 0,

min{𝑐, 𝑥} + min{𝑐, 𝑦} ≥ min{𝑐, 𝑥 + 𝑦}
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Proof. Proof. We prove by discussing all the possibilities. If 𝑐 ≤ min{𝑥, 𝑦}, then

following from 𝑐 ≥ 0 we know that min{𝑐, 𝑥}+ min{𝑐, 𝑦} = 𝑐+ 𝑐 ≥ 𝑐 = min{𝑐, 𝑥+𝑦}.

If min{𝑥, 𝑦} ≤ 𝑐 ≤ max{𝑥, 𝑦}, then following from 𝑥, 𝑦 ≥ 0 we know that

min{𝑐, 𝑥} + min{𝑐, 𝑦} = min{𝑥, 𝑦} + 𝑐 ≥ 𝑐 = min{𝑐, 𝑥 + 𝑦}.

If 𝑐 ≥ max{𝑥, 𝑦} then we know that min{𝑐, 𝑥} + min{𝑐, 𝑦} = 𝑥 + 𝑦 ≥ min{𝑐, 𝑥 +

𝑦}.

Lemma A.2. For any 𝑝 > 0, 𝑐 ≥ 0, 𝑥 ≥ 𝑤 ≥ 0, 𝑧 ≥ 𝑦 ≥ 0, if 𝐽 is differentiable,

𝐽(0) = 0, 0 ≤ 𝐽 ′(𝑢) ≤ 𝑝, and 𝐽 is a concave function, then the following holds:

0 ≤− 𝑝min{𝑐, 𝑤 + 𝑦} + 𝑝min{𝑐, 𝑤 + 𝑧}

+ 𝑝min{𝑐, 𝑥 + 𝑦} − 𝑝min{𝑐, 𝑥 + 𝑧}

− 𝐽((𝑐− 𝑤 − 𝑦)+) + 𝐽((𝑐− 𝑤 − 𝑧)+)

+ 𝐽((𝑐− 𝑥− 𝑦)+) − 𝐽((𝑐− 𝑥− 𝑧)+)

Proof. Proof. We prove by enumerating all the possibilities. If 𝑐 ≤ 𝑤 + 𝑦, then 0 ≤ 0

we are done.

If 𝑤+𝑦 ≤ 𝑐 ≤ min{𝑤+𝑧, 𝑥+𝑦}, then it suffices to show that 0 ≤ 𝑝(𝑐−𝑤−𝑦)−𝐽(𝑐−

𝑤−𝑦), which is proved by 𝐽(𝑐−𝑤−𝑦) =
∫︀ 𝑐−𝑤−𝑦
0

𝐽 ′(𝑢)d𝑢 ≤
∫︀ 𝑐−𝑤−𝑦
0

𝑝d𝑢 = 𝑝(𝑐−𝑤−𝑦).

If min{𝑤+𝑧, 𝑥+𝑦} ≤ 𝑐 ≤ max{𝑤+𝑧, 𝑥+𝑦}, without loss of generality we assume

𝑤 + 𝑧 ≤ 𝑥+ 𝑦. So it suffices to show that 0 ≤ 𝑝(𝑧− 𝑦) + 𝐽(𝑐−𝑤− 𝑧)− 𝐽(𝑐−𝑤− 𝑦),

which is proved by 𝐽(𝑐−𝑤− 𝑦) =
∫︀ 𝑐−𝑤−𝑦
0

𝐽 ′(𝑢)d𝑢 ≤
∫︀ 𝑐−𝑤−𝑧
0

𝐽 ′(𝑢)d𝑢+
∫︀ 𝑐−𝑤−𝑦
𝑐−𝑤−𝑧 𝑝d𝑢 =

𝐽(𝑐− 𝑤 − 𝑧) + 𝑝(𝑧 − 𝑦).

If max{𝑤 + 𝑧, 𝑥 + 𝑦} ≤ 𝑐 ≤ 𝑥 + 𝑧, it suffices to show that 𝐽(𝑐 − 𝑤 − 𝑧) + 𝐽(𝑐 −

𝑥− 𝑦) + 𝑝(𝑥 + 𝑧 − 𝑐) ≥ 𝐽(𝑐− 𝑤 − 𝑦). Since 𝐽 is concave, 𝐽 ′ is non-increasing.

𝐽(𝑐− 𝑤 − 𝑧) + 𝐽(𝑐− 𝑥− 𝑦) + 𝑝(𝑥 + 𝑧 − 𝑐)

=

∫︁ 𝑐−𝑤−𝑧

0

𝐽 ′(𝑢)d𝑢 +

∫︁ 𝑐−𝑥−𝑦

0

𝐽 ′(𝑢)d𝑢 +

∫︁ 𝑐−𝑤−𝑦

2𝑐−𝑤−𝑥−𝑦−𝑧
𝑝d𝑢

≥
∫︁ 𝑐−𝑤−𝑧

0

𝐽 ′(𝑢)d𝑢 +

∫︁ 𝑐−𝑥−𝑦

0

𝐽 ′(𝑢 + (𝑐− 𝑤 − 𝑧))d𝑢 +

∫︁ 𝑐−𝑤−𝑦

2𝑐−𝑤−𝑥−𝑦−𝑧
𝑝d𝑢
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=

∫︁ 𝑐−𝑤−𝑧

0

𝐽 ′(𝑢)d𝑢 +

∫︁ 2𝑐−𝑤−𝑥−𝑦−𝑧

𝑐−𝑤−𝑧
𝐽 ′(𝑢)d𝑢 +

∫︁ 𝑐−𝑤−𝑦

2𝑐−𝑤−𝑥−𝑦−𝑧
𝑝d𝑢

≥
∫︁ 𝑐−𝑤−𝑧

0

𝐽 ′(𝑢)d𝑢 +

∫︁ 2𝑐−𝑤−𝑥−𝑦−𝑧

𝑐−𝑤−𝑧
𝐽 ′(𝑢)d𝑢 +

∫︁ 𝑐−𝑤−𝑦

2𝑐−𝑤−𝑥−𝑦−𝑧
𝐽 ′(𝑢)d𝑢

=𝐽(𝑐− 𝑤 − 𝑦)

where the first inequality is due to concavity of 𝐽 ; second inequality due to 𝐽 ′(𝑢) ≤ 𝑝.

Finally if 𝑐 ≥ 𝑥 + 𝑧, it suffices to show that 0 ≤ −𝐽(𝑐− 𝑤 − 𝑦) + 𝐽(𝑐− 𝑤 − 𝑧) +

𝐽(𝑐− 𝑥− 𝑦) − 𝐽(𝑐− 𝑥− 𝑧), which is due to concavity of 𝐽 .

A.4 Lemmas for the proof of Theorem 2.2

These Lemmas are of independent interests. We state them here, and prove them one

by one.

Lemma A.3. Let 𝑐 ∈ R+ be any positive real number, 𝑇 ∈ N any positive integer, and

𝑝 ∈ [0, 1] be any positive fractional number. Let {𝑋𝑡}, 𝑡 = 1, 2, ..., 𝑇 be i.i.d. random

variables with bounded support over [0, 1], such that E[𝑋𝑡] = 𝑝, ∀𝑡 = 1, 2, ..., 𝑇. Let

{𝑌𝑡}, 𝑡 = 1, 2, ..., 𝑇 be i.i.d. Bernoulli random variables, such that with probability 𝑝,

𝑌𝑡 = 1,∀𝑡 = 1, 2, ..., 𝑇 . Then we have

E

[︃
min{𝑐,

𝑇∑︁
𝑡=1

𝑋𝑡}

]︃
≥ E

[︃
min{𝑐,

𝑇∑︁
𝑡=1

𝑌𝑡}

]︃
.

Lemma A.4. Suppose 𝑎𝑖, 𝑏𝑖 > 0,∀𝑖 ∈ [𝑛], and 𝑎1
𝑏1

≥ 𝑎2
𝑏2

≥ ... ≥ 𝑎𝑛
𝑏𝑛

; suppose 𝛽1 ≥ 𝛽2 ≥

... ≥ 𝛽𝑛 ≥ 0. Then we have ∑︀
𝑖∈[𝑛] 𝛽𝑖𝑎𝑖∑︀
𝑖∈[𝑛] 𝛽𝑖𝑏𝑖

≥
∑︀

𝑖∈[𝑛] 𝑎𝑖∑︀
𝑖∈[𝑛] 𝑏𝑖

Lemma A.5. Let 𝑐 ∈ R+ be any positive real number, 𝑇 ∈ N any positive integer, the

following function 𝑓 : (0, 1] → R+ is non-increasing in 𝑥.

𝑓(𝑥) =
E [min{𝑐,Bin(𝑇, 𝑥)}]

𝑇𝑥
.
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Lemma A.6. Let 𝑇 ∈ N be any positive integer. For any positive real numbers 𝑥, 𝑦

such that 𝑇 ≥ 𝑥 ≥ 𝑦 > 0, we have

E[min{Bin(𝑇, 𝑥/𝑇 ), 𝑥}]

𝑥
≥ E[min{Bin(𝑇, 𝑦/𝑇 ), 𝑦}]

𝑦
.

A.4.1 Proof of Lemma A.3

Proof. Proof of Lemma A.3. Let 𝐹𝑋(·) and 𝐹𝑌 (·) denote the CDF of 𝑋1 and 𝑌1,

respectively. First we show ∀𝑐 ≥ 0,

E [min{𝑐,𝑋1}] ≥ E [min{𝑐, 𝑌1}] . (A.1)

This is obvious when 𝑐 ≥ 1, and now we focus on 𝑐 < 1 case.

E [min{𝑐,𝑋1}] =

∫︁
[0,1]

min{𝑐, 𝑥}d𝐹𝑋(𝑥)

=

∫︁
[0,1]

𝑥d𝐹𝑋(𝑥) −
∫︁
[𝑐,1]

(𝑥− 𝑐)d𝐹𝑋(𝑥)

=E[𝑋1] −
{︂∫︁

[𝑐,1]

𝑥d𝐹𝑋(𝑥) − 𝑐(1 − 𝐹𝑋(𝑐))

}︂
=E[𝑋1] −

{︂
1 − 𝑐𝐹𝑋(𝑐) −

∫︁
[𝑐,1]

𝐹𝑋(𝑥− 0+)d𝑥− 𝑐(1 − 𝐹𝑋(𝑐))

}︂
=E[𝑋1] − (1 − 𝑐) +

∫︁
[𝑐,1]

𝐹𝑋(𝑥)d𝑥

where the fourth equality is due to integration by part, as a corollary of Fubini’s

theorem. Due to similar analysis, E [min{𝑐, 𝑌1}] = E[𝑌1]− (1− 𝑐) +
∫︀
[𝑐,1]

𝐹𝑌 (𝑥)d𝑥. So

it suffices to show
∫︀
[𝑐,1]

𝐹𝑋(𝑥)d𝑥 ≥
∫︀
[𝑐,1]

𝐹𝑌 (𝑥)d𝑥.

Note that
∫︀
[0,1]

𝐹𝑋(𝑥)d𝑥 =
∫︀
[0,1]

𝐹𝑌 (𝑥)d𝑥, that 𝐹𝑌 (𝑥) = 𝑝, ∀𝑥 ∈ [0, 1) is a constant,

and that 𝐹𝑋(𝑥) is non-decreasing over 𝑥 ∈ [0, 1). Denote 𝑥0 to be the smallest

number from 𝑥0 = arg min𝑥∈[0,1) {𝑥 |𝐹𝑋(𝑥) ≥ 𝑝, lim𝑢→𝑥− 𝐹𝑋(𝑢) ≤ 𝑝}. Since 𝐹𝑋(·) is

right-continuous, lim𝑢→𝑥+ 𝐹𝑋(𝑢) = 𝐹𝑋(𝑥).

We distinguish the following two cases. When 𝑐 ≥ 𝑥0, ∀𝑥 ∈ [𝑐, 1], 𝐹𝑋(𝑥) ≥ 𝐹𝑌 (𝑥).

So we know
∫︀
[𝑐,1]

𝐹𝑋(𝑥)d𝑥 ≥
∫︀
[𝑐,1]

𝐹𝑌 (𝑥)d𝑥. When 𝑐 ≤ 𝑥0, ∀𝑥 ∈ [0, 𝑐), 𝐹𝑋(𝑥) ≤
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𝐹𝑌 (𝑥). So we know
∫︀
[𝑐,1]

𝐹𝑋(𝑥)d𝑥 =
∫︀
[0,1]

𝐹𝑋(𝑥)d𝑥−
∫︀
[0,𝑐)

𝐹𝑋(𝑥)d𝑥 ≥
∫︀
[0,1]

𝐹𝑌 (𝑥)d𝑥−∫︀
[0,𝑐)

𝐹𝑌 (𝑥)d𝑥 =
∫︀
[𝑐,1]

𝐹𝑌 (𝑥)d𝑥. In both cases, we have shown that ∀𝑐 ≥ 0,E [min{𝑐,𝑋1}] ≥

E [min{𝑐, 𝑌1}].

Then we prove the desired conclusion by pairwise switching 𝑋𝑡 into 𝑌𝑡. Fix 𝜏 .

For any realization of random variables except 𝑋𝜏 , 𝑌𝜏 , i.e., for any realization of

𝑋𝑡 = 𝑥𝑡, 𝑌𝑡 = 𝑦𝑡,∀𝑡 ̸= 𝜏 , we have the following:

E

[︃
min{𝑐,

𝜏∑︁
𝑡=1

𝑋𝑡 +
𝑇∑︁

𝑡=𝜏+1

𝑌𝑡}

]︃

=E

[︃
min{𝑐,

𝜏−1∑︁
𝑡=1

𝑥𝑡 +
𝑇∑︁

𝑡=𝜏+1

𝑦𝑡 + 𝑋𝜏}

]︃

=E

⎡⎣min

⎧⎨⎩
(︃
𝑐−

𝜏−1∑︁
𝑡=1

𝑥𝑡 −
𝑇∑︁

𝑡=𝜏+1

𝑦𝑡

)︃+

, 𝑋𝜏

⎫⎬⎭
⎤⎦+ min

{︃
𝑐,

𝜏−1∑︁
𝑡=1

𝑥𝑡 +
𝑇∑︁

𝑡=𝜏+1

𝑦𝑡

}︃

≥E

⎡⎣min

⎧⎨⎩
(︃
𝑐−

𝜏−1∑︁
𝑡=1

𝑥𝑡 −
𝑇∑︁

𝑡=𝜏+1

𝑦𝑡

)︃+

, 𝑌𝜏

⎫⎬⎭
⎤⎦+ min

{︃
𝑐,

𝜏−1∑︁
𝑡=1

𝑥𝑡 +
𝑇∑︁

𝑡=𝜏+1

𝑦𝑡

}︃

=E

[︃
min{𝑐,

𝜏−1∑︁
𝑡=1

𝑋𝑡 +
𝑇∑︁

𝑡=𝜏

𝑌𝑡}

]︃

where the inequality is due to (A.1).

Repeatedly applying the above inequality, we have

E

[︃
min{𝑐,

𝑇∑︁
𝑡=1

𝑋𝑡}

]︃
≥ E

[︃
min{𝑐,

𝑇∑︁
𝑡=1

𝑌𝑡}

]︃
,∀𝑐 ≥ 0.

A.4.2 Proof of Lemma A.4

Proof. Proof of Lemma A.4. Since 𝑎1
𝑏1

≥ 𝑎2
𝑏2

≥ ... ≥ 𝑎𝑛
𝑏𝑛

, we have ∀𝑖 ∈ [𝑛− 1],

∑︀
𝑗∈[𝑖] 𝑎𝑗∑︀
𝑗∈[𝑖] 𝑏𝑗

≥
∑︀

𝑗∈[𝑛] 𝑎𝑗∑︀
𝑗∈[𝑛] 𝑏𝑗

.
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Then we plug it into the following fraction, and use the fact that 𝛽𝑖 ≥ 𝛽𝑖+1,∀𝑖 ∈ [𝑛−1]:∑︀
𝑖∈[𝑛] 𝛽𝑖𝑎𝑖∑︀
𝑖∈[𝑛] 𝛽𝑖𝑏𝑖

=

∑︀
𝑖∈[𝑛−1](𝛽𝑖 − 𝛽𝑖+1) ·

∑︀
𝑗∈[𝑖] 𝑎𝑗 + 𝛽𝑛 ·

∑︀
𝑗∈[𝑛] 𝑎𝑗∑︀

𝑖∈[𝑛−1](𝛽𝑖 − 𝛽𝑖+1) ·
∑︀

𝑗∈[𝑖] 𝑏𝑗 + 𝛽𝑛 ·
∑︀

𝑗∈[𝑛] 𝑏𝑗

≥
∑︀

𝑖∈[𝑛−1](𝛽𝑖 − 𝛽𝑖+1) ·
∑︀

𝑗∈[𝑛] 𝑎𝑗 + 𝛽𝑛 ·
∑︀

𝑗∈[𝑛] 𝑎𝑗∑︀
𝑖∈[𝑛−1](𝛽𝑖 − 𝛽𝑖+1) ·

∑︀
𝑗∈[𝑛] 𝑏𝑗 + 𝛽𝑛 ·

∑︀
𝑗∈[𝑛] 𝑏𝑗

=

∑︀
𝑖∈[𝑛] 𝑎𝑖∑︀
𝑖∈[𝑛] 𝑏𝑖

A.4.3 Proof of Lemma A.5

Similar to Lemma A.4, we can show the following

Lemma A.7. Suppose 𝑎𝑖, 𝑏𝑖 > 0,∀𝑖 ∈ [𝑛], and 𝑎0
𝑏0

≥ 𝑎1
𝑏1

≥ ... ≥ 𝑎𝑛
𝑏𝑛

; suppose 0 ≤ 𝛽0 ≤

𝛽1 ≤ ... ≤ 𝛽𝑛. Then we have

∑︀𝑛
𝑖=0 𝑎𝑖∑︀𝑛
𝑖=0 𝑏𝑖

≥
∑︀𝑛

𝑖=0 𝛽𝑖𝑎𝑖∑︀𝑛
𝑖=0 𝛽𝑖𝑏𝑖

.

The proof is the same as the proof of Lemma A.4.

Proof. Proof of Lemma A.5. Observe that Binomial distribution is a discrete distri-

bution. It only suffices to prove Lemma A.5 in the case when 𝑐 ∈ N is an integer.

Let 𝐶 𝑙
𝑇 be 𝑇 choose 𝑙.

Take any 𝑥, 𝑦 ∈ [0, 1] such that 𝑥 < 𝑦. Notice that Binomial distributions Bin(𝑇, 𝑥)

and Bin(𝑇, 𝑦) only have finite supports over {0, 1, ..., 𝑇}. It is trivial when 𝑐 ≥ 𝑇

because the truncation does not take effect and both fractions equal to 1. Take any

𝑧 ∈ {0, 1, ..., 𝑇 −1}. Since both enumerators are linear in 𝑐 ∈ (𝑧, 𝑧+1), it only suffices

to check for 𝑐 ∈ {0, 1, ..., 𝑇 − 1}, i.e. when 𝑐 is an integer.

First notice that 𝑥(1−𝑦)
𝑦(1−𝑥) ≤ 1. ∀𝑙 ∈ {0, 1, ..., 𝑇 − 1},

(︂
𝑥(1 − 𝑦)

𝑦(1 − 𝑥)

)︂𝑙

≥
(︂
𝑥(1 − 𝑦)

𝑦(1 − 𝑥)

)︂𝑙+1

.
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Both multiply by
(︁

1−𝑥
1−𝑦

)︁𝑇
we have ∀𝑙 ∈ {0, 1, ..., 𝑇 − 1},

𝑥𝑙(1 − 𝑥)𝑇−𝑙

𝑦𝑙(1 − 𝑦)𝑇−𝑙
≥ 𝑥𝑙+1(1 − 𝑥)𝑇−𝑙−1

𝑦𝑙+1(1 − 𝑦)𝑇−𝑙−1
.

Further multiply by some constants to both enumerators and denominators the in-

equality still holds.

𝐶 𝑙
𝑇𝑥

𝑙(1 − 𝑥)𝑇−𝑙 · 𝑙
𝐶 𝑙

𝑇𝑦
𝑙(1 − 𝑦)𝑇−𝑙 · 𝑙

≥ 𝐶 𝑙+1
𝑇 𝑥𝑙+1(1 − 𝑥)𝑇−𝑙−1 · (𝑙 + 1)

𝐶 𝑙+1
𝑇 𝑦𝑙+1(1 − 𝑦)𝑇−𝑙−1 · (𝑙 + 1)

.

∀𝑙 ∈ {0, 1, ..., 𝑇}, let 𝑎𝑙 = 𝐶 𝑙
𝑇𝑥

𝑙(1 − 𝑥)𝑇−𝑙 · 𝑙; 𝑏𝑙 = 𝐶 𝑙
𝑇𝑦

𝑙(1 − 𝑦)𝑇−𝑙 · 𝑙.

∀𝑖 ∈ {0, 1, ..., 𝑐}, let 𝛽𝑖 = 0; ∀𝑖 ∈ {𝑐 + 1, 𝑐 + 2, ..., 𝑇}, 𝛽𝑖 = (𝑖 − 𝑐)/𝑖. It is easy to

verify that 0 ≤ 𝛽0 ≤ 𝛽1 ≤ ... ≤ 𝑇 .

Invoking Lemma A.7, we have

∑︀𝑇
𝑙=0𝐶

𝑙
𝑇𝑥

𝑙(1 − 𝑥)𝑇−𝑙 · 𝑙∑︀𝑇
𝑙=0𝐶

𝑙
𝑇𝑦

𝑙(1 − 𝑦)𝑇−𝑙 · 𝑙
≥
∑︀𝑇

𝑙=𝑐𝐶
𝑙
𝑇𝑥

𝑙(1 − 𝑥)𝑇−𝑙 · (𝑙 − 𝑐)∑︀𝑇
𝑙=𝑐 𝐶

𝑙
𝑇𝑦

𝑙(1 − 𝑦)𝑇−𝑙 · (𝑙 − 𝑐)
.

Re-arranging terms,

∑︀𝑐−1
𝑙=0 𝐶

𝑙
𝑇𝑥

𝑙(1 − 𝑥)𝑇−𝑙 · 𝑙 +
∑︀𝑇

𝑙=𝑐 𝐶
𝑙
𝑇𝑥

𝑙(1 − 𝑥)𝑇−𝑙 · 𝑐∑︀𝑇
𝑙=0𝐶

𝑙
𝑇𝑥

𝑙(1 − 𝑥)𝑇−𝑙 · 𝑙
≥∑︀𝑐−1

𝑙=0 𝐶
𝑙
𝑇𝑦

𝑙(1 − 𝑦)𝑇−𝑙 · 𝑙 +
∑︀𝑇

𝑙=𝑐𝐶
𝑙
𝑇𝑦

𝑙(1 − 𝑦)𝑇−𝑙 · 𝑐∑︀𝑇
𝑙=0 𝐶

𝑙
𝑇𝑦

𝑙(1 − 𝑦)𝑇−𝑙 · 𝑙
.

Equivalently,

E [min{𝑐,Bin(𝑇, 𝑥)}]

𝑇𝑥
≥ E [min{𝑐,Bin(𝑇, 𝑦)}]

𝑇𝑦
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A.4.4 Proof of Lemma A.6

Proof. Proof of Lemma A.6. It suffices to prove the following

E[min{𝑦
𝑥
· Bin(𝑇,

𝑥

𝑇
), 𝑦}] ≥ E[min{Bin(𝑇,

𝑦

𝑇
), 𝑦}]

For any 𝑡 ∈ [𝑇 ], denote 𝑋𝑡 = 𝑦
𝑥
·Ber(𝑇, 𝑥

𝑇
) as a Bernoulli random variable such that

E[𝑋𝑡] = 𝑦/𝑇 , and 𝑋𝑡 ∈ [0, 1] has bounded support between [0, 1]; For any 𝑡 ∈ [𝑇 ],

denote 𝑌𝑡 = Ber(𝑇, 𝑦
𝑇

) as a Bernoulli random variable such that with probability 𝑦/𝑇 ,

𝑌𝑡 = 1. Pick 𝑐 = 𝑦 to be a positive real number.

From Lemma A.3 we have

E[min{
∑︁
𝑡∈[𝑇 ]

𝑋𝑡, 𝑦}] ≥ E[min{
∑︁
𝑡∈[𝑇 ]

𝑌𝑡, 𝑦}],

which finishes the proof.

A.5 Proof of Theorem 2.2 and Proposition 2.4

We write the most general proof precisely by combining Theorem 2.2 and Proposi-

tion 2.4.

Theorem A.8. Under one of the following three conditions:

(i) the static substitution model with integral demand;

(ii) the static substitution model with fractional demand and Assumption 2.2;

(iii) the dynamic substitution model with integral demand and Assumptions 2.1 (sub-

stitutability), and when one item has only one single price (pure assortment

problem without pricing);

for the assortment (and pricing) problem under stationary demand, if there are 𝑇

time periods and 𝑏 = min𝑖∈[𝑛] 𝑏𝑖, then Algorithm 1 earns expected revenue of at least

E[min{Bin(𝑇, 𝑏/𝑇 ), 𝑏}]

𝑏
· OPTLP, (A.2)
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where Bin(𝑇, 𝑏/𝑇 ) denotes a Binomial random variable consisting of 𝑇 trials of prob-

ability 𝑏/𝑇 .

If we let ∆𝐴𝑃𝑋 denote the term E[min{Bin(𝑇,𝑏/𝑇 ),𝑏}]
𝑏

from expression (2.9), then

∆𝐴𝑃𝑋 ≥ 1 − 𝑏𝑏

𝑏!
𝑒−𝑏, (A.3)

which states that ∆𝐴𝑃𝑋 = 1 − 𝑂(1/
√
𝑏), and increases from 1 − 1/𝑒 to 1 as 𝑏 → ∞

(regardless of 𝑇 ).

It is easy to see that Theorem 2.2 corresponds to (i) and (ii) of Theorem A.8, and

Proposition 2.4 corresponds to (iii) of Theorem A.8 Now we prove Theorem A.8.

Proof. Proof of Theorem A.8. This proof consists of two steps. In the first step, we

lower bound the performance of Algorithm 1, which is a randomized policy, by the

performance of a virtual calendar. We define the choice model of this virtual calendar

to have only static substitution, yet it is a lower bound to the performance of our

Algorithm 1, under both static and dynamic substitution. In the second step, we

lower bound the performance of this virtual calendar by ∆𝐴𝑃𝑋 · OPTLP. Under all

three conditions as stated in Theorem 2.2, the virtual calendar is the same. We state

this virtual calendar in its most general form as in Step 0, and illustrate how the three

conditions simplifies to this most general form. Under three conditions, the first step

that lower bounds the performance of Algorithm 1 to the performance of this virtual

calendar may be different, as we shall see in Step 1. Under all three conditions, the

second step is the same, as we prove in Step 2.

Now we introduce the following random variables, which depict a run of our as-

sortment policy. Let 𝑆𝑡 be the assortment that we select to offer in period 𝑡. Let

𝐵𝑡(𝑖) be the remaining inventory of item 𝑖 at the end of time 𝑡. We have 𝐵0(𝑖) = 𝑏𝑖.

Under all three conditions, let 𝑅𝑡(𝑖, 𝑗) be the amount of sales that a customer chooses

product (𝑖, 𝑗) during period 𝑡. We will always specify the distribution of 𝑅𝑡(𝑖, 𝑗), by

using a conditional probability. For example, we will use E[𝑅𝑡(𝑖, 𝑗) |𝑆𝑡 = 𝑆,𝐵𝑡 = 𝐵 ],

for the expected sales that a customer chooses product (𝑖, 𝑗) during period 𝑡, when we
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plan to offer assortment 𝑆, and when the remaining inventory level for each resource

is 𝐵 = (𝐵1, 𝐵2, ..., 𝐵𝑛).

Under condition (i), under static substitution and when demand is integral, 𝑅𝑡(𝑖, 𝑗) ∈

{0, 1} is binary. Conditional on any 𝑆 ∈ 𝒮,𝐵 ∈ N𝑛
0 , 𝑅𝑡(𝑖, 𝑗) = 1{𝐵𝑖>0}𝑄, where 𝑄

is a binary random variable, which takes 1 with probability 𝑞(𝑖, 𝑗, 𝑆). Under condi-

tion (ii) under static substitution and when demand is fractional, 𝑅𝑡(𝑖, 𝑗) ∈ [0, 1] is

continuous. Conditional on any 𝑆 ∈ 𝒮,𝐵 ∈ R𝑛
+, 𝑅𝑡(𝑖, 𝑗) = min{𝐵𝑖, 𝑄}, where 𝑄

is a random variable whose CDF is 𝐹(𝑖,𝑗,𝑆)(·). Under condition (iii) under dynamic

substitution and when demand is integral, 𝑅𝑡(𝑖, 𝑗) ∈ {0, 1} is binary. Conditional

on any 𝑆 ∈ 𝒮,𝐵 ∈ N𝑛
0 , 𝑅𝑡(𝑖, 𝑗) takes 1 with probability 𝑞(𝑖, 𝑗, 𝑆). Here we define

𝑆 = {(𝑖, 𝑗) ∈ 𝑆 |𝐵𝑖 > 0} to be a function of 𝑆.

Under condition (iii), Assumption 2.1 suggests that 𝑞(𝑖, 𝑗, 𝑆) ≥ 𝑞(𝑖, 𝑗, 𝑆), ∀(𝑖, 𝑗) ∈

𝑆, because 𝑆 ⊆ 𝑆. The demand that originally would have chosen the stocked out

items would go to their substitutes (as well as leaving, in which case the inequality

takes equality). On the other hand, 𝑞(𝑖, 𝑗, 𝑆) = 0,∀(𝑖, 𝑗) /∈ 𝑆. The demand for any

stocked out item is zero.

We can use indicator variables to write the above inequalities in a compact form

𝑞(𝑖, 𝑗, 𝑆) ≥ 1{𝐵𝑡−1(𝑖)>0}𝑞(𝑖, 𝑗, 𝑆) (A.4)

For any period 𝑡, given the remaining inventory from the last period to be 𝐵𝑡−1,

conditional on any 𝑆 ∈ 𝒮, the remaining inventory updates in the following fashion,

𝐵𝑡(𝑖) = 𝐵𝑡−1(𝑖) −𝑅𝑡(𝑖, 𝑗),∀𝑖.

Note that no item can be offered multiple times at different prices in one assortment.

Also note that we have defined 𝑅𝑡(𝑖, 𝑗) as the amount of sales, so 𝑅𝑡(𝑖, 𝑗) can never

go beyond 𝐵𝑡−1(𝑖).

Step 0 Statement of the virtual calendar.

Consider Algorithm 1 that offers each assortment randomly. Define the set of items

𝐼𝑥*(𝑆) = {𝑖 ∈ [𝑛] |∃𝑗 ∈ [𝑚],∃𝑆 ∈ 𝒮, 𝑠.𝑡.(𝑖, 𝑗) ∈ 𝑆, 𝑥*(𝑆) > 0}. These are the items that
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are relevant to the probablistic offering of assortments from Algorithm 1. In other

words, 𝐼𝑥*(𝑆) is the set of items such that there is a positive probability that Algo-

rithm 1 suggests an assortment that contains item 𝑖.

Associated with each item in 𝐼𝑥*(𝑆), there is a unique price 𝑝C,𝑖. For any 𝑖 ∈ 𝐼𝑥*(𝑆),

define

𝑝C,𝑖 =

∑︀
𝑆∈𝒮 𝑥

*(𝑆)
∑︀

𝑗:(𝑖,𝑗)∈𝑆 𝑝𝑗𝑞(𝑖, 𝑗, 𝑆)∑︀
𝑆∈𝒮 𝑥

*(𝑆)
∑︀

𝑗:(𝑖,𝑗)∈𝑆 𝑞(𝑖, 𝑗, 𝑆)
.

We have
∑︀

𝑆∈𝒮 𝑥
*(𝑆) = 1, and 𝑥*(𝑆) ≥ 0,∀𝑆 ∈ 𝒮 due to constraints (2.3) and (2.4).

Notice that, here we only use 𝑞(𝑖, 𝑗, 𝑆).

Under conditions (i) and (ii), 𝑝C,𝑖 cannot be simplified. Under condition (iii), since

each product has only one single price, we can define 𝑗𝑖, ∀𝑖 ∈ [𝑛] to be the price index

that item 𝑖 can be offered. The price offered is simply 𝑝C,𝑖 = 𝑝𝑗𝑖 .

Now in each period suppose we had an option to offer a deterministic assortment

𝑆C that consists of the products 𝑆C =
{︀

(𝑖, 𝑝C,𝑖)
⃒⃒
∀𝑖 ∈ 𝐼𝑥*(𝑆)

}︀
.

Associated with each product (𝑖, 𝑝C,𝑖),∀𝑖 ∈ 𝐼𝑥*(𝑆), we prescribe a choice model.

Under conditions (i) and (ii), we use the following notation. Let 𝑄(𝑖, 𝑝C,𝑖, 𝑆C),∀𝑖 ∈

𝐼𝑥*(𝑆) be a random variable for the quantity that customers attempt to purchase prod-

uct (𝑖, 𝑝C,𝑖), should assortment 𝑆C be offered. Here we directly define the choice model

to be under static substitution, for this virtual calendar. Nonetheless, as we will show

in Step 1, the performance of this virtual calendar is a lower bound to the performance

of our Algorithm 1, under both static and dynamic substitutions. We define the CDF

function of 𝑄(𝑖, 𝑝C,𝑖, 𝑆C) to be 𝐹(𝑖,𝑝C,𝑖,𝑆C)(·) =
∑︀

𝑆∈𝒮 𝑥
*(𝑆)

∑︀
𝑗:(𝑖,𝑗)∈𝑆 𝐹(𝑖,𝑗,𝑆)(·). Notice

that 𝑗 : (𝑖, 𝑗) ∈ 𝑆 selects only one price, because no item can be offered multiple times

at different prices in one assortment.

Under condition (iii), since we only consider dynamic substitution with integral

demand, we can simplify the notations. Let 𝑞(𝑖, 𝑗𝑖, 𝑆C), ∀𝑖 ∈ 𝐼𝑥*(𝑆) be the probability

that product (𝑖, 𝑗𝑖) is demanded, should assortment 𝑆C be offered. And assortment

𝑆C is under static substitution – 𝑞(𝑖, 𝑗𝑖, 𝑆C) is unchanged even if some items from the

assortment stocks out. Denote 𝑞(𝑖, 𝑗𝑖, 𝑆C) =
∑︀

𝑆∈𝒮 𝑥
*(𝑆)𝑞(𝑖, 𝑗𝑖, 𝑆).

We wish to show that the expected revenue earned from this deterministic assort-
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ment is a lower bound to the probablistic offering of assortments from Algorithm 1.

Denote 𝐽C(𝑏, 𝑡) as the expected revenue earned from always offering the determin-

istic assortment 𝑆C, if at the beginning of period 𝑡 we are endowed with 𝑏 units of

inventory—this corresponds to the expression in line (2.11). The expectation has only

one source of randomness, which comes from the random demand. Denote Rev(𝑏, 𝑡)

as the expected revenue earned by the policy from Algorithm 1, if at the beginning of

period 𝑡 we are endowed with 𝑏 units of inventory—this corresponds to the expression

in line (2.12). The expectation has two sources of randomness, which come from both

the random demand, and the randomization from Algorithm 1.

Step 1 Lower bounding the performance of Algorithm 1.

In this step, we distinguish the following two cases: static substitution and dy-

namic substitution. Under static substitution, we talk about conditions (i) and (ii);

under dynamic substitution, we talk about condition (iii).

Case 1 Static substitution

This proof unifies conditions (i) and (ii). Note that condition (i) is integral,

Bernoulli demand, which naturally satisfies Assumption 2.2.

Assumption 2.2 suggests that ∀𝑖 ∈ [𝑛],∀𝑆, 𝑆 ′ ∈ 𝒮, for all 𝑗, 𝑗′ ∈ [𝑚] such that

𝑝𝑗 > 𝑝𝑗′ , we have ∀𝑐 ∈ [0, 1],

𝑥*(𝑆)E𝑄∼𝐹(𝑖,𝑗,𝑆)
[min{𝑐,𝑄}]

𝑥*(𝑆)E𝑄∼𝐹(𝑖,𝑗,𝑆)
[𝑄]

≥
𝑥*(𝑆 ′)E𝑄∼𝐹(𝑖,𝑗′,𝑆′)

[min{𝑐,𝑄}]

𝑥*(𝑆 ′)E𝑄∼𝐹(𝑖,𝑗′,𝑆′)
[𝑄]

.

From Lemma A.4, if we treat 𝑝𝑗 ≥ 𝑝𝑗′ as 𝛽’s, then we have ∀𝑖 ∈ [𝑛],∀𝑐 ∈ [0, 1],

∑︀
𝑆∈𝒮 𝑥

*(𝑆)
∑︀

𝑗:(𝑖,𝑗)∈𝑆 𝑝𝑗E𝑄∼𝐹(𝑖,𝑗,𝑆)
[min{𝑐,𝑄}]∑︀

𝑆∈𝒮 𝑥
*(𝑆)

∑︀
𝑗:(𝑖,𝑗)∈𝑆 𝑝𝑗E𝑄∼𝐹(𝑖,𝑗,𝑆)

[𝑄]
≥∑︀

𝑆∈𝒮 𝑥
*(𝑆)

∑︀
𝑗:(𝑖,𝑗)∈𝑆 E𝑄∼𝐹(𝑖,𝑗,𝑆)

[min{𝑐,𝑄}]∑︀
𝑆∈𝒮 𝑥

*(𝑆)
∑︀

𝑗:(𝑖,𝑗)∈𝑆 E𝑄∼𝐹(𝑖,𝑗,𝑆)
[𝑄]

which simplifies to

∑︀
𝑆∈𝒮 𝑥

*(𝑆)
∑︀

𝑗:(𝑖,𝑗)∈𝑆 𝑝𝑗E𝑄∼𝐹(𝑖,𝑗,𝑆)
[min{𝑐,𝑄}]∑︀

𝑆∈𝒮 𝑥
*(𝑆)

∑︀
𝑗:(𝑖,𝑗)∈𝑆 E𝑄∼𝐹(𝑖,𝑗,𝑆)

[min{𝑐,𝑄}]
≥ 𝑝C,𝑖
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=

∑︀
𝑆∈𝒮 𝑥

*(𝑆)
∑︀

𝑗:(𝑖,𝑗)∈𝑆 𝑝𝑗E𝑄∼𝐹(𝑖,𝑗,𝑆)
[𝑄]∑︀

𝑆∈𝒮 𝑥
*(𝑆)

∑︀
𝑗:(𝑖,𝑗)∈𝑆 E𝑄∼𝐹(𝑖,𝑗,𝑆)

[𝑄]
(A.5)

Now we prove by backward induction on 𝑡. In the last period 𝑇,∀𝑐 ≥ 0,

Rev(𝑐, 𝑇 ) =
∑︁
𝑖∈[𝑛]

∑︁
𝑆∈𝒮

𝑥*(𝑆)
∑︁

𝑗:(𝑖,𝑗)∈𝑆

𝑝𝑗E𝑄∼𝐹(𝑖,𝑗,𝑆)
[min{𝑐𝑖, 𝑄}]

≥
∑︁
𝑖∈[𝑛]

𝑝C,𝑖
∑︁
𝑆∈𝒮

𝑥*(𝑆)
∑︁

𝑗:(𝑖,𝑗)∈𝑆

E𝑄∼𝐹(𝑖,𝑗,𝑆)
[min{𝑐𝑖, 𝑄}] = 𝐽C(𝑐, 𝑇 ) (A.6)

The first equality is because each item can only be offered at one price in each as-

sortment. So when truncation happens, there is no ambiguity which price of demand

is lost. And the inequality is due to (A.5).

To continue the induction, if we can show Rev(𝑐, 𝑡 + 1) ≥ 𝐽C(𝑐, 𝑡 + 1),∀𝑐 ≥ 0,

then we can show:

Rev(𝑐, 𝑡)

=
∑︁
𝑖∈[𝑛]

∑︁
𝑆∈𝒮

𝑥*(𝑆)
∑︁

𝑗:(𝑖,𝑗)∈𝑆

𝑝𝑗E𝑄∼𝐹(𝑖,𝑗,𝑆)
[min{𝑐𝑖, 𝑄}] +

∑︁
𝑆∈𝒮

𝑥*(𝑆)E𝑄[Rev(max{0, 𝑐−𝑄}, 𝑡 + 1)]

≥
∑︁
𝑖∈[𝑛]

𝑝C,𝑖
∑︁
𝑆∈𝒮

𝑥*(𝑆)
∑︁

𝑗:(𝑖,𝑗)∈𝑆

E𝑄∼𝐹(𝑖,𝑗,𝑆)
[min{𝑐𝑖, 𝑄}] +

∑︁
𝑆∈𝒮

𝑥*(𝑆)E𝑄[𝐽C(max{0, 𝑐−𝑄}, 𝑡 + 1)]

=𝐽C(𝑐, 𝑡)

where we use 𝑄 = (𝑄1, ..., 𝑄𝑛) as a vector form to stand for the joint distribution.

Specifically, 𝑄𝑖 ∼ 𝐹(𝑖,𝑗𝑖,𝑆),∀𝑖 ∈ [𝑛] specifies the distribution of demand associated

with 𝑖 ∈ [𝑛], and 𝑗𝑖 : (𝑖, 𝑗) ∈ 𝑆 specifies the price that is uniquely determined.

Now we explain this block of inequalities. The inequality is due to (A.5) and due

to induction hypothesis. By induction on 𝑡 we show Rev(𝑏, 𝑡) ≥ 𝐽C(𝑏, 𝑡). That is, the

expected revenue earned from deterministic assortment 𝑆C is a lower bound to the

probabilistic offering of assortments from Algorithm 1.

Case 2 Dynamic substitution

This proof is for condition (iii), for integral demand. We prove by backward
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induction on 𝑡. In the last period 𝑇,∀𝑐 ≥ 0,

Rev(𝑐, 𝑇 ) =
∑︁
𝑖∈[𝑛]

∑︁
𝑆∈𝒮

𝑥*(𝑆)𝑝𝑗𝑖𝑞(𝑖, 𝑗𝑖, 𝑆)

≥
∑︁
𝑖∈[𝑛]

𝑝𝑗𝑖1{𝑐𝑖>0}
∑︁
𝑆∈𝒮

𝑥*(𝑆)𝑞(𝑖, 𝑗𝑖, 𝑆)

=
∑︁
𝑖∈[𝑛]

𝑝𝑗𝑖1{𝑐𝑖>0}𝑞(𝑖, 𝑗𝑖, 𝑆C) = 𝐽C(𝑐, 𝑇 )

The inequality is due to (A.4).

To continue the induction, if we can show Rev(𝑐, 𝑡+ 1) ≥ 𝐽C(𝑐, 𝑡+ 1),∀𝑐 ≥ 0, then

we can show:

Rev(𝑐, 𝑡)

=
∑︁
𝑖∈[𝑛]

∑︁
𝑆∈𝒮

𝑥*(𝑆)𝑝𝑗𝑖𝑞(𝑖, 𝑗𝑖, 𝑆) +
∑︁
𝑆∈𝒮

𝑥*(𝑆)

⎧⎨⎩∑︁
𝑖∈[𝑛]

𝑞(𝑖, 𝑗𝑖, 𝑆) · Rev(max{0, 𝑐− 𝑒𝑖}, 𝑡 + 1)

+(1 −
∑︁
𝑖∈[𝑛]

𝑞(𝑖, 𝑗𝑖, 𝑆)) · Rev(𝑐, 𝑡 + 1)

⎫⎬⎭
≥
∑︁
𝑖∈[𝑛]

∑︁
𝑆∈𝒮

𝑥*(𝑆)𝑝𝑗𝑖𝑞(𝑖, 𝑗𝑖, 𝑆) +
∑︁
𝑆∈𝒮

𝑥*(𝑆)

⎧⎨⎩∑︁
𝑖∈[𝑛]

𝑞(𝑖, 𝑗𝑖, 𝑆) · 𝐽C(max{0, 𝑐− 𝑒𝑖}, 𝑡 + 1)

+(1 −
∑︁
𝑖∈[𝑛]

𝑞(𝑖, 𝑗𝑖, 𝑆)) · 𝐽C(𝑐, 𝑡 + 1)

⎫⎬⎭
=
∑︁
𝑆∈𝒮

𝑥*(𝑆)

⎧⎨⎩∑︁
𝑖∈[𝑛]

𝑞(𝑖, 𝑗𝑖, 𝑆)
{︀
𝑝𝑗𝑖 + 𝐽C(max{0, 𝑐− 𝑒𝑖}, 𝑡 + 1) − 𝐽C(𝑐, 𝑡 + 1)

}︀⎫⎬⎭+ 𝐽C(𝑐, 𝑡 + 1)

≥
∑︁
𝑆∈𝒮

𝑥*(𝑆)

⎧⎨⎩∑︁
𝑖∈[𝑛]

𝑞(𝑖, 𝑗𝑖, 𝑆)
{︀
𝑝𝑗𝑖 + 𝐽C(max{0, 𝑐− 𝑒𝑖}, 𝑡 + 1) − 𝐽C(𝑐, 𝑡 + 1)

}︀⎫⎬⎭+ 𝐽C(𝑐, 𝑡 + 1)

=𝐽C(𝑐, 𝑡)

where the first inequality is due to induction hypothesis; the second equality is taking

out 𝐽C(𝑐, 𝑡+ 1) and re-arranging terms; the second inequality is because the marginal

revenue of one extra unit of resource 𝑖 is bounded by 𝑝𝑗𝑖 , and because 𝑞(𝑖, 𝑗𝑖, 𝑆) ≥
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𝑞(𝑖, 𝑗𝑖, 𝑆). By induction on 𝑡 we show Rev(𝑏, 𝑡) ≥ 𝐽C(𝑏, 𝑡). That is, the expected

revenue earned from deterministic assortment 𝑆C is a lower bound to the probablistic

offering of assortments from Algorithm 1.

Step 2 Lower bounding the performance of the virtual calendar.

Now we further lower bound the expected revenue earned from deterministic as-

sortment 𝑆C. Since we have defined the choice model of the virtual calendar to be

under static substitution, in all the remaining proof, we will only use notations like

𝑄(𝑖, 𝑗, 𝑆), for the random quantity that customers attempt to purchase product (𝑖, 𝑗),

should assortment 𝑆 be offered, no matter if any of the items from the assortment

is stocked out. We do this because now we are under static substitution. The total

quantity of demands attempting to consume inventory 𝑖 is

𝑄𝑖 :=
∑︁
𝑆∈𝒮

𝑥*(𝑆)
∑︁

𝑗:(𝑖,𝑗)∈𝑆

𝑄(𝑖, 𝑗, 𝑆) (A.7)

Note that 𝑄𝑖 does not depend on 𝑡. By the independence of both policy decisions

and customer decisions across time, the total sales of inventory 𝑖 is a sum of 𝑇

trials of independent random variables 𝑄𝑖, truncated by the starting inventory 𝑏𝑖. To

summarize, the expected consumption of item 𝑖, regardless of inventory availability,

is E[min{
∑︀

𝑡∈[𝑇 ] 𝑄𝑖(𝜉𝑡), 𝑏𝑖}], with 𝑄𝑖 defined as in (A.7), for all 𝑖 ∈ [𝑛]. We have used

𝜉𝑡 to emphasize the randomness in each trial.

Now denote 𝜌𝑖 :=
∑︀

𝑆∈𝒮 𝑥
*(𝑆)

∑︀
𝑗:(𝑖,𝑗)∈𝑆 𝑞(𝑖, 𝑗, 𝑆). Due to Lemma A.3, we have

E[min{
∑︀

𝑡∈[𝑇 ] 𝑄𝑖(𝜉𝑡), 𝑏𝑖}] ≥ E[min{Bin(𝑇, 𝜌𝑖), 𝑏𝑖}]. Summing over all 𝑖 ∈ [𝑛], the

expected revenue of the policy is

𝑛∑︁
𝑖=1

E[min{Bin(𝑇, 𝜌𝑖), 𝑏𝑖}] · 𝑝C,𝑖

=
𝑛∑︁

𝑖=1

E[min{Bin(𝑇, 𝜌𝑖), 𝑏𝑖}]

𝑇𝜌𝑖

∑︁
𝑆∈𝒮

𝑥*(𝑆)
∑︁

𝑗:(𝑖,𝑗)∈𝑆

𝑝𝑗𝑞(𝑖, 𝑗, 𝑆)

≥
𝑛∑︁

𝑖=1

E[min{Bin(𝑇, 𝑏𝑖/𝑇 ), 𝑏𝑖}]

𝑇 · (𝑏𝑖/𝑇 )

∑︁
𝑆∈𝒮

𝑥*(𝑆)
∑︁

𝑗:(𝑖,𝑗)∈𝑆

𝑝𝑗𝑞(𝑖, 𝑗, 𝑆)
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≥E[min{Bin(𝑇, 𝑏/𝑇 ), 𝑏}]

𝑏

𝑛∑︁
𝑖=1

∑︁
𝑆∈𝒮

𝑥*(𝑆)
∑︁

𝑗:(𝑖,𝑗)∈𝑆

𝑝𝑗𝑞(𝑖, 𝑗, 𝑆).

The first inequality follows from Lemma A.5, because 𝜌𝑖 ≤ 𝑏𝑖/𝑇 for all 𝑖, since the LP

solution 𝑥*(𝑆) satisfies constraints (2.2). The second inequality is due to Lemma A.6.

Proposition A.9. For all 𝑏 ≤ 𝑇 , ∆𝐴𝑃𝑋 = E[min{Bin(𝑇, 𝑏/𝑇 ), 𝑏}]/𝑏 is non-increasing

in 𝑇 , and

lim
𝑇→+∞

∆𝐴𝑃𝑋 =

(︂
1 − ⌊𝑏⌋⌊𝑏⌋

⌊𝑏⌋!
𝑒−⌊𝑏⌋

)︂
≥ 1 − 1/𝑒

Proof. Proof of Proposition A.9. Since 𝑇 ∈ [𝑁 ], and 𝑇 ≥ 𝑏 ≥ ⌊𝑏⌋ > 0, from

Lemma A.6 we have

∆𝐴𝑃𝑋 =
E[min{Bin(𝑇, 𝑏/𝑇 ), 𝑏}]

𝑏
≥ E[min{Bin(𝑇, ⌊𝑏⌋/𝑇 ), ⌊𝑏⌋}]

⌊𝑏⌋
.

Since we have normalized 𝑏 such that 𝑏 ≥ 1, we know that ⌊𝑏⌋ ≥ 1. Now we wish

to prove Proposition A.9 when 𝑏 ∈ [𝑁 ] is any positive integer, i.e. we wish to show

that for any positive integer 𝑏 ≤ 𝑇 ,

lim
𝑇→+∞

∆𝐴𝑃𝑋 =

(︂
1 − 𝑏𝑏

𝑏!
𝑒−𝑏
)︂

≥ 1 − 1/𝑒

Denote 𝑎 = 𝑏/𝑇 . We prove the first equality by telescoping. Denote 𝐶𝑚
𝑛 = 𝑛!

𝑚!(𝑛−𝑚)!

as 𝑛 choose 𝑚.

𝑏∆𝐴𝑃𝑋 =𝐸 [min {𝐵𝑖𝑛(𝑇, 𝑏/𝑇 ), 𝑏}]

=𝑇𝑎−
𝑇∑︁

𝑖=𝑏+1

𝐶𝑖
𝑇 (𝑎𝑖(1 − 𝑎)𝑇−𝑖)(𝑖− 𝑏)

=𝑇𝑎−
𝑇∑︁

𝑖=𝑏+1

𝑇 !

(𝑖− 1)!(𝑇 − 𝑖)!
𝑎𝑖(1 − 𝑎)𝑇−𝑖 +

𝑇∑︁
𝑖=𝑏+1

𝑏𝑇 !

𝑖!(𝑇 − 𝑖)!
𝑎𝑖(1 − 𝑎)𝑇−𝑖

=𝑇𝑎− 𝑇 !

𝑏!(𝑇 − 𝑏− 1)!
𝑎𝑏+1(1 − 𝑎)𝑇−𝑏−1 +

𝑏𝑇 !

𝑇 !0!
𝑎𝑇 (1 − 𝑎)0
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−
𝑇−1∑︁
𝑖=𝑏+1

𝑇 !

𝑖!(𝑇 − 𝑖− 1)!
𝑎𝑖+1(1 − 𝑎)𝑇−𝑖−1 +

𝑇−1∑︁
𝑖=𝑏+1

𝑏𝑇 !

𝑖!(𝑇 − 𝑖)!
𝑎𝑖(1 − 𝑎)𝑇−𝑖

=𝑇𝑎− 𝑇 !

𝑏!(𝑇 − 𝑏− 1)!
𝑎𝑏+1(1 − 𝑎)𝑇−𝑏−1 + 𝑏𝑎𝑇

+
𝑇−1∑︁
𝑖=𝑏+1

𝑇 !

𝑖!(𝑇 − 𝑖)!
𝑎𝑖(1 − 𝑎)𝑇−𝑖−1 (𝑏(1 − 𝑎) − 𝑎(𝑇 − 𝑖))⏟  ⏞  

=𝑎(𝑖−𝑏)+(𝑏−𝑎𝑇 )≥0

≥𝑏
(︀
1 + 𝑎𝑇 − 𝐶𝑏

𝑇−1𝑎
𝑏(1 − 𝑎)𝑇−𝑏−1

)︀
=𝑏
(︀
1 + 𝑎𝑇 − 𝐶𝑏

𝑇𝑎
𝑏(1 − 𝑎)𝑇−𝑏

)︀
where the fourth equality follows from telescoping. Then we can take 𝑇 → +∞ and

use Stirling’s formula:

lim
𝑇→+∞

∆𝐴𝑃𝑋 = lim
𝑇→+∞

1 + 𝑎𝑇 − 𝐶𝑏
𝑇𝑎

𝑏(1 − 𝑎)𝑇−𝑏

=1 + lim
𝑇→+∞

(︂
𝑏

𝑇

)︂𝑇

− lim
𝑇→+∞

𝑇 !𝑏𝑏(𝑇 − 𝑏)𝑇−𝑏

𝑏!(𝑇 − 𝑏)!𝑇 𝑏𝑇 𝑇−𝑏

=1 + 0 − lim
𝑇→+∞

√
2𝜋𝑇 𝑇𝑇

𝑒𝑇
(𝑇 − 𝑏)𝑇−𝑏√︀

2𝜋(𝑇 − 𝑏) (𝑇−𝑏)
𝑇−𝑏

𝑒𝑇−𝑏 𝑇 𝑇

𝑏𝑏

𝑏!

=1 − 𝑏𝑏

𝑏!
𝑒−𝑏

This term is increasing in 𝑏. So it obtains minimum when 𝑏 = 1:

lim
𝑇→+∞

∆𝐴𝑃𝑋 = 1 − 𝑏𝑏

𝑏!
𝑒−𝑏 ≥ 1 − 1

𝑒

A.6 Tightness of Theorem 2.2: Proof of Proposi-

tion 2.5

Proof. Proof of Proposition 2.5. Construct the following instance. There is only one

price option, i.e. 𝑚 = 1. So there only exists one calendar to sell at this single price

everyday. For any given 𝑏 and 𝑇 , the only price option has a purchase probability of
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𝑏/𝑇 , and earns 1 unit revenue.

The LP upper bound suggests a total of 𝑏 units of revenue. And the only calendar

earns E [min {𝐵𝑖𝑛(𝑇, 𝑏/𝑇 ), 𝑏}] units of revenue. So the expected revenue of the only

policy is exactly expression (2.9), which finishes the tightness proof.

A.7 Necessity of Assumptions for Theorem 2.2: Proof

of Proposition 2.3

Proof. Proof of Proposition 2.3. Consider the following problem with 𝑇 = 5 periods.

There are 3 products, 𝐴, 𝐵, and 𝐶. Products 𝐴 and 𝐵 use the first resource, and

product 𝐶 uses the second resource. Both resources have initial inventory 1. Product

𝐴 is sold at 𝑝H = 1, and products 𝐵 and 𝐶 are sold at 𝑝L = 𝜖.

The choice model is a distribution of ordinal preferences: it takes 𝐶 ≻ 𝐵 ≻ ∅

with probability 1/5, 𝐴 ≻ ∅ with probability 1/5 − 𝜖, 𝐵 ≻ ∅ with probability 𝜖,

and ∅ with probability 3/5. Since this choice model is prescribed by a distribution

of ordinal preferences, it satisfies Assumption 2.1, the substitutability assumption.

Since consumptions from this choice model are binary, it satisfies Assumption 2.2.

The optimal solution from the LP is to offer assortment {𝐴,𝐵,𝐶} in all 5 periods.

And the LP objective value is 1 + 𝑂(𝜖). With some calculation, the actual expected

revenue is 1959/3125+𝑂(𝜖). Taking 𝜖 → 0+ we have 1959/3125 ≈ 0.6269 < 0.6321 ≈

1 − 1/𝑒.

A.8 Proof of Theorem 2.6

Proof. Proof of Theorem 2.6. Denote the following random variables, which depict a

run of our assortment policy from Algorithm 2. Let 𝐴𝑡(𝑆) be the indicator random

variable for 𝑆𝑡 = 𝑆, where 𝑆𝑡 was the assortment selected before discarding in (2.13)

was applied. Let 𝐵𝑡(𝑖) be the remaining inventory of item 𝑖 at the end of time 𝑡.

Defined for all 𝑖 ∈ [𝑛] and 𝑡 = 0, . . . , 𝑇 , where 𝐵0(𝑖) = 𝑏𝑖 for all 𝑖.

Under either static or dynamic substitution, let 𝑅𝑡(𝑖, 𝑗) be the amount of sales
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that a customer chooses product (𝑖, 𝑗) during period 𝑡. We will always specify the

distribution of 𝑅𝑡(𝑖, 𝑗), by using a conditional probability. For example, we will use

E[𝑅𝑡(𝑖, 𝑗) |𝑆𝑡 = 𝑆,𝐵𝑡 = 𝐵 ], for the expected sales that a customer chooses product

(𝑖, 𝑗) during period 𝑡, when we plan to offer assortment 𝑆, and when the remaining

inventory level for each resource is 𝐵 = (𝐵1, 𝐵2, ..., 𝐵𝑛).

Under static substitution, conditional on any 𝑆 ∈ 𝒮,𝐵 ∈ R𝑛
+, 𝑅𝑡(𝑖, 𝑗) = min{𝐵𝑖, 𝑄},

where 𝑄 is a random variable whose CDF is 𝐹𝑡,(𝑖,𝑗,𝑆)(·). Under dynamic substitution,

conditional on any 𝑆 ∈ 𝒮,𝐵 ∈ N𝑛
0 , 𝑅𝑡(𝑖, 𝑗) takes 1 with probability 𝑞𝑡(𝑖, 𝑗, 𝑆). Here

we define 𝑆 = {(𝑖, 𝑗) ∈ 𝑆 |𝐵𝑖 > 0} to be a function of 𝑆.

Under dynamic substitution, Assumption 2.1 suggests that 𝑞𝑡(𝑖, 𝑗, 𝑆) ≥ 𝑞𝑡(𝑖, 𝑗, 𝑆),

∀(𝑖, 𝑗) ∈ 𝑆, because 𝑆 ⊆ 𝑆. The demand that originally would have chosen the

stocked out items would go to their substitutes (as well as leaving, in which case the

inequality takes equality). On the other hand, 𝑞𝑡(𝑖, 𝑗, 𝑆) = 0,∀(𝑖, 𝑗) /∈ 𝑆. The demand

for any stocked out item is zero. We can use indicator variables to write the above

inequalities in a compact form 𝑞𝑡(𝑖, 𝑗, 𝑆) ≥ min{𝐵𝑡−1(𝑖), 𝑞𝑡(𝑖, 𝑗, 𝑆)}.

In all, we have

E[𝑅𝑡(𝑖, 𝑗) |𝑆𝑡 = 𝑆,𝐵𝑡 = 𝐵 ] ≥ E𝑄∼𝐹𝑡,(𝑖,𝑗,𝑆)
[min{𝐵𝑡−1(𝑖), 𝑄}] (A.8)

where 𝐹𝑡,(𝑖,𝑗,𝑆) may prescribe a Bernoulli distribution, e.g. under dynamic substitu-

tion.

For any period 𝑡, given the remaining inventory from the last period to be 𝐵𝑡−1,

conditional on any 𝑆 ∈ 𝒮, the remaining inventory updates in the following fashion,

𝐵𝑡(𝑖) = 𝐵𝑡−1(𝑖) −𝑅𝑡(𝑖, 𝑗),∀𝑖.

Note that no item can be offered multiple times at different prices in one assortment.

Also note that we have defined 𝑅𝑡(𝑖, 𝑗) as the amount of sales, so 𝑅𝑡(𝑖, 𝑗) can never

go beyond 𝐵𝑡−1(𝑖).

Following each sample path, we let Rev denote the revenue earned by the policy
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suggested in Algorithm 2.

E[Rev]

=
𝑇∑︁
𝑡=1

∑︁
𝑆∈𝒮

𝐴𝑡(𝑆)
∑︁

(𝑖,𝑗)∈𝐷(𝑆)

𝑝𝑗E[𝑅𝑡(𝑖, 𝑗) |𝑆𝑡 = 𝐷(𝑆),𝐵𝑡 = 𝐵𝑡−1 ]

≥
𝑇∑︁
𝑡=1

∑︁
𝑆∈𝒮

𝐴𝑡(𝑆)
∑︁

(𝑖,𝑗)∈𝐷(𝑆)

𝑝𝑗E𝑄∼𝐹𝑡,(𝑖,𝑗,𝐷(𝑆))
[min{𝐵𝑡−1(𝑖), 𝑄}]

=
𝑇∑︁
𝑡=1

∑︁
𝑆∈𝒮

𝐴𝑡(𝑆)
∑︁

(𝑖,𝑗)∈𝐷(𝑆)

(𝑝𝑗 −
𝑟*𝑖
2𝑏𝑖

)E𝑄∼𝐹𝑡,(𝑖,𝑗,𝐷(𝑆))
[min{𝐵𝑡−1(𝑖), 𝑄}]

+
𝑛∑︁

𝑖=1

𝑟*𝑖
2𝑏𝑖

𝑇∑︁
𝑡=1

∑︁
𝑆∈𝒮

𝐴𝑡(𝑆)
∑︁

𝑗:(𝑖,𝑗)∈𝐷(𝑆)

E𝑄∼𝐹𝑡,(𝑖,𝑗,𝐷(𝑆))
[min{𝐵𝑡−1(𝑖), 𝑄}]

=
𝑇∑︁
𝑡=1

∑︁
𝑆∈𝒮

𝐴𝑡(𝑆)
∑︁

(𝑖,𝑗)∈𝐷(𝑆)

(𝑝𝑗 −
𝑟*𝑖
2𝑏𝑖

)E𝑄∼𝐹𝑡,(𝑖,𝑗,𝐷(𝑆))
[min{𝐵𝑡−1(𝑖), 𝑄}] +

𝑛∑︁
𝑖=1

𝑟*𝑖
2𝑏𝑖

(𝑏𝑖 − E𝑄[𝐵𝑇 (𝑖)])

where the first inequality is due to (A.8); the second equality is due to our discarding

rule from (2.13); the last equality is counting how much inventory has been sold

throughout the horizon, where we implicitly use 𝑄 to stand for the randomness from

all periods.

We further observe that, ∀𝑡 ∈ [𝑇 ], 𝑆 ∈ 𝒮, (𝑖, 𝑗) ∈ 𝑆,

E𝑄∼𝐹𝑡,(𝑖,𝑗,𝑆);𝐵𝑡−1(𝑖)[min{𝐵𝑡−1(𝑖), 𝑄𝑡(𝑖, 𝑗, 𝑆)}]

=E𝑄∼𝐹𝑡,(𝑖,𝑗,𝑆);𝐵𝑡−1(𝑖)

[︂
𝐵𝑡−1(𝑖) ·𝑄

max{𝐵𝑡−1(𝑖), 𝑄}

]︂
≥E𝑄∼𝐹𝑡,(𝑖,𝑗,𝑆),𝐵𝑡−1(𝑖)

[︂
𝐵𝑡−1(𝑖) ·𝑄

𝑏𝑖

]︂
=
E𝐵𝑡−1(𝑖)[𝐵𝑡−1(𝑖)]

𝑏𝑖
· E𝑄∼𝐹𝑡,(𝑖,𝑗,𝑆)

[𝑄]

≥E[𝐵𝑇 (𝑖)]

𝑏𝑖
· 𝑞𝑡(𝑖, 𝑗, 𝑆)

(A.9)

where the first inequality is due to 𝐵𝑡−1(𝑖) ≤ 𝑏𝑖 inventory is no more than initial

inventory level, and 𝑄 ≤ 𝑏𝑖,∀𝑡 ∈ [𝑇 ] demand is smaller than initial inventory; the

second equality is because 𝐵𝑡−1(𝑖) is independent to any consumption that occurs at
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time 𝑡; the last inequality is because 𝐵𝑡(𝑖) is non-increasing in 𝑡, and evaluating the

expectation of E𝑄∼𝐹𝑡,(𝑖,𝑗,𝑆)
[𝑄] = 𝑞𝑡(𝑖, 𝑗, 𝑆).

Finally, the expectation of the our policy’s revenue can be decomposed as

E[Rev]

=
𝑛∑︁

𝑖=1

𝑇∑︁
𝑡=1

∑︁
𝑆∈𝒮

E[𝐴𝑡(𝑆)]
∑︁

𝑗:(𝑖,𝑗)∈𝐷(𝑆)

(𝑝𝑗 −
𝑟*𝑖
2𝑏𝑖

)E𝑄∼𝐹𝑡,(𝑖,𝑗,𝐷(𝑆))
[min{𝐵𝑡−1(𝑖), 𝑄}] +

𝑛∑︁
𝑖=1

𝑟*𝑖
2𝑏𝑖

(𝑏𝑖 − E[𝐵𝑇 (𝑖)])

≥
𝑛∑︁

𝑖=1

E[𝐵𝑇 (𝑖)]

𝑏𝑖

𝑇∑︁
𝑡=1

∑︁
𝑆∈𝒮

𝑥*𝑡 (𝑆)
∑︁

𝑗:(𝑖,𝑗)∈𝐷(𝑆)

(𝑝𝑗 −
𝑟*𝑖
2𝑏𝑖

)𝑞𝑡(𝑖, 𝑗,𝐷(𝑆)) +
𝑛∑︁

𝑖=1

𝑟*𝑖
2𝑏𝑖

(𝑏𝑖 − E[𝐵𝑇 (𝑖)])

≥
𝑛∑︁

𝑖=1

E[𝐵𝑇 (𝑖)]

𝑏𝑖

𝑇∑︁
𝑡=1

∑︁
𝑆∈𝒮

𝑥*𝑡 (𝑆)
∑︁

𝑗:(𝑖,𝑗)∈𝑆

(𝑝𝑗 −
𝑟*𝑖
2𝑏𝑖

)𝑞𝑡(𝑖, 𝑗, 𝑆) +
𝑛∑︁

𝑖=1

𝑟*𝑖
2𝑏𝑖

(𝑏𝑖 − E[𝐵𝑇 (𝑖)])

≥
𝑛∑︁

𝑖=1

E[𝐵𝑇 (𝑖)]

𝑏𝑖

(︂
𝑟*𝑖 −

𝑟*𝑖
2𝑏𝑖

· 𝑏𝑖
)︂

+
𝑛∑︁

𝑖=1

𝑟*𝑖
2𝑏𝑖

(𝑏𝑖 − E[𝐵𝑇 (𝑖)])

=
𝑛∑︁

𝑖=1

𝑟*𝑖
2

where the first equality is because the selection of set 𝑆𝑡 is independent to the re-

maining inventory 𝐵𝑡−1(𝑖), and also independent to the consumption 𝑄 ∼ 𝐹𝑡,(𝑖,𝑗,𝐷(𝑆))

in period 𝑡; the first inequality is because of (A.9) and evaluating the expectation of

E[𝐴𝑡(𝑆)] = 𝑥*𝑡 (𝑆); the second inequality is because (i) we include non-positive terms

into the summation, and (ii) 𝑞𝑡(𝑖, 𝑗,𝐷(𝑆)) ≥ 𝑞𝑡(𝑖, 𝑗, 𝑆) since 𝐷(𝑆) ⊆ 𝑆, due to As-

sumption 2.1. the third inequality is due to the definition of 𝑟*𝑖 in the policy, and the

fact that the inventory constraint (2.2) in the LP is satisfied. Thus we complete the

proof of the theorem.

A.9 Tighness of Theorem 2.6: Proof of Proposition 2.7

Proof. Proof of Proposition 2.7. We use the problem instance suggested by Exam-

ple 2.1. Observe that any revenue-maximizing policy offers 𝑝1 in Day 2. So the only

decision to make is in Day 1. Since offering 𝑝1 in Day 1 sells nothing, the outside

option of selling nothing on Day 1 is simply the same as offering 𝑝1 in Day 1.
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Now we parameterize any revenue-maximizing policy by 𝑥, its probability in of-

fering 𝑝1 in Day 1; and 1−𝑥 is the probability in offering 𝑝2 in Day 1. In expectation,

this policy earns E[Rev] = 𝑥 · (0 + 𝜖 · 1/𝜖) + (1 − 𝑥) · ((1 − 𝜖) · 1 + 𝜖 · 1/𝜖) = 1 unit of

revenue. But the LP objective is 2 − 𝜖. So taking 𝜖 → 0+, the expected revenue of

any policy is upper-bounded by OPTLP/2.

A.10 Proof of Theorem 2.8

Proof. Proof of Theorem 2.8. Denote 𝛿 =
√︁

2 log (𝑏)
𝑏

. And note that 𝛿𝑏𝑖 − 1 ≥ 𝛿𝑏𝑖,∀𝑖 ∈

[𝑛], because 𝑏 ≥ 6.

Denote the following random variables, which depict a run of our assortment policy

from Algorithm 2. Let 𝐴𝑡(𝑆) be the indicator random variable for 𝑆𝑡 = 𝑆, where 𝑆𝑡

was the assortment selected before discarding in (2.13) was applied. Let 𝐵𝑡(𝑖) be

the remaining inventory of item 𝑖 at the end of time 𝑡. Defined for all 𝑖 ∈ [𝑛] and

𝑡 = 0, . . . , 𝑇 , where 𝐵0(𝑖) = 𝑏𝑖 for all 𝑖.

Under either static or dynamic substitution, let 𝑅𝑡(𝑖, 𝑗) be the amount of sales

that a customer chooses product (𝑖, 𝑗) during period 𝑡. We will always specify the

distribution of 𝑅𝑡(𝑖, 𝑗), by using a conditional probability. For example, we will use

E[𝑅𝑡(𝑖, 𝑗) |𝑆𝑡 = 𝑆,𝐵𝑡 = 𝐵 ], for the expected sales that a customer chooses product

(𝑖, 𝑗) during period 𝑡, when we plan to offer assortment 𝑆, and when the remaining

inventory level for each resource is 𝐵 = (𝐵1, 𝐵2, ..., 𝐵𝑛).

Under static substitution, conditional on any 𝑆 ∈ 𝒮,𝐵 ∈ R𝑛
+, 𝑅𝑡(𝑖, 𝑗) = min{𝐵𝑖, 𝑄},

where 𝑄 is a random variable whose CDF is 𝐹𝑡,(𝑖,𝑗,𝑆)(·). Under dynamic substitution,

conditional on any 𝑆 ∈ 𝒮,𝐵 ∈ N𝑛
0 , 𝑅𝑡(𝑖, 𝑗) takes 1 with probability 𝑞𝑡(𝑖, 𝑗, 𝑆). Here

we define 𝑆 = {(𝑖, 𝑗) ∈ 𝑆 |𝐵𝑖 > 0} to be a function of 𝑆.

Under dynamic substitution, Assumption 2.1 suggests that 𝑞𝑡(𝑖, 𝑗, 𝑆) ≥ 𝑞𝑡(𝑖, 𝑗, 𝑆),

∀(𝑖, 𝑗) ∈ 𝑆, because 𝑆 ⊆ 𝑆. The demand that originally would have chosen the

stocked out items would go to their substitutes (as well as leaving, in which case the

inequality takes equality). On the other hand, 𝑞𝑡(𝑖, 𝑗, 𝑆) = 0,∀(𝑖, 𝑗) /∈ 𝑆. The demand

for any stocked out item is zero. We can use indicator variables to write the above
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inequalities in a compact form 𝑞𝑡(𝑖, 𝑗, 𝑆) ≥ min{𝐵𝑡−1(𝑖), 𝑞𝑡(𝑖, 𝑗, 𝑆)}.

In all, we have

E[𝑅𝑡(𝑖, 𝑗) |𝑆𝑡 = 𝑆,𝐵𝑡 = 𝐵 ] ≥ E𝑄∼𝐹𝑡,(𝑖,𝑗,𝑆)
[min{𝐵𝑡−1(𝑖), 𝑄}] (A.10)

where 𝐹𝑡,(𝑖,𝑗,𝑆) may prescribe a Bernoulli distribution, e.g. under dynamic substitu-

tion.

For any period 𝑡, given the remaining inventory from the last period to be 𝐵𝑡−1,

conditional on any 𝑆 ∈ 𝒮, the remaining inventory updates in the following fashion,

𝐵𝑡(𝑖) = 𝐵𝑡−1(𝑖) −𝑅𝑡(𝑖, 𝑗),∀𝑖.

Note that no item can be offered multiple times at different prices in one assortment.

Also note that we have defined 𝑅𝑡(𝑖, 𝑗) as the amount of sales, so 𝑅𝑡(𝑖, 𝑗) can never

go beyond 𝐵𝑡−1(𝑖).

Following each sample path, we let Rev denote the revenue earned by the policy

suggested in Algorithm 3.

E[Rev] =
𝑇∑︁
𝑡=1

∑︁
𝑆∈𝒮

𝐴𝑡(𝑆)
∑︁

(𝑖,𝑗)∈𝑆

𝑝𝑗E[𝑅𝑡(𝑖, 𝑗) |𝑆𝑡 = 𝑆,𝐵𝑡 = 𝐵𝑡−1 ]

≥
𝑇∑︁
𝑡=1

∑︁
𝑆∈𝒮

𝐴𝑡(𝑆)
∑︁

(𝑖,𝑗)∈𝑆

𝑝𝑗E𝑄∼𝐹𝑡,(𝑖,𝑗,𝑆)
[min{𝐵𝑡−1(𝑖), 𝑄}]

Under static substitution, this inequality takes equality, and requires no assumption;

under dynamic substitution, this inequality is true due to Assumption 2.1.

Taking expectation we have the following:

E[Rev] (A.11)

=
𝑇∑︁
𝑡=1

∑︁
𝑆∈𝒮

E[𝐴𝑡(𝑆)]
∑︁

(𝑖,𝑗)∈𝑆

𝑝𝑗E𝑄∼𝐹𝑡,(𝑖,𝑗,𝑆)
[min{𝐵𝑡−1(𝑖), 𝑄}]

≥
𝑇∑︁
𝑡=1

∑︁
𝑆∈𝒮

E[𝐴𝑡(𝑆)]
∑︁

(𝑖,𝑗)∈𝑆

𝑝𝑗E𝑄∼𝐹𝑡,(𝑖,𝑗,𝑆)
[min{𝐵𝑡−1(𝑖), 𝑄} |𝐵𝑡−1(𝑖) > 1] · Pr{𝐵𝑡−1(𝑖) > 1}
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=
𝑇∑︁
𝑡=1

∑︁
𝑆∈𝒮

E[𝐴𝑡(𝑆)]
∑︁

(𝑖,𝑗)∈𝑆

𝑝𝑗E𝑄∼𝐹𝑡,(𝑖,𝑗,𝑆)
[𝑄 |𝐵𝑡−1(𝑖) > 1] · Pr{𝐵𝑡−1(𝑖) > 1} (A.12)

≥
𝑇∑︁
𝑡=1

∑︁
𝑆∈𝒮

E[𝐴𝑡(𝑆)]
∑︁

(𝑖,𝑗)∈𝑆

𝑝𝑗E𝑄∼𝐹𝑡,(𝑖,𝑗,𝑆)
[𝑄] · Pr{𝐵𝑇 (𝑖) > 1}

=
𝑛∑︁

𝑖=1

Pr{𝐵𝑇 (𝑖) > 1}
𝑇∑︁
𝑡=1

∑︁
𝑆∈𝒮

(1 − 𝛿)𝑥*𝑡 (𝑆)
∑︁

𝑗:(𝑖,𝑗)∈𝑆

𝑝𝑗𝑞𝑡(𝑖, 𝑗, 𝑆)

where the first equality is because the random variables 𝐴𝑡(𝑆), 𝐵𝑡−1(𝑖) and 𝑄 ∼

𝐹𝑡,(𝑖,𝑗,𝑆) are independent; the first inequality is re-writing the expectation by a con-

ditional expectation, while ignoring the happening of other events “𝐵𝑡−1(𝑖) ≤ 1”;

the second equality is because conditioning on 𝐵𝑡−1(𝑖) > 1, there must not be trun-

cated demands during periods 𝑡 ∈ [𝑇 ]; the second inequality is because random

variables 𝐵𝑡−1(𝑖) and 𝑄 ∼ 𝐹𝑡,(𝑖,𝑗,𝑆) are independent, and that 𝐵𝑡(𝑖) is non-increasing

in 𝑡,∀𝑡 ∈ [𝑇 ].

We first lower bound Pr{𝐵𝑇 (𝑖) > 1} = Pr{
∑︀𝑇

𝑡=1

∑︀
𝑆∈𝒮 𝐴𝑡(𝑆)

∑︀
𝑗:(𝑖,𝑗)∈𝑆 𝑄𝑡(𝑖, 𝑗, 𝑆) <

𝑏𝑖 − 1}, the probability that inventory 𝑖 never runs out. Conditioning on the event

that inventory never runs out, we know that dynamic substitution will never happen.

In all the remaining proof, we will only use notations like 𝑄(𝑖, 𝑗, 𝑆), for the random

quantity that customers attempt to purchase product (𝑖, 𝑗), should assortment 𝑆 be

offered, no matter if any of the items from the assortment is stocked out. Note that

the expected amount of inventory sold is strictly less than 𝑏𝑖 − 1:

E[
𝑇∑︁
𝑡=1

∑︁
𝑆∈𝒮

𝐴𝑡(𝑆)
∑︁

𝑗:(𝑖,𝑗)∈𝑆

𝑄𝑡(𝑖, 𝑗, 𝑆)] =

(1 − 𝛿)
𝑇∑︁
𝑡=1

∑︁
𝑆∈𝒮

𝑥*𝑡 (𝑆)
∑︁

𝑗:(𝑖,𝑗)∈𝑆

𝑞𝑡(𝑖, 𝑗, 𝑆) ≤ (1 − 𝛿)𝑏𝑖 < 𝑏𝑖 − 1, (A.13)

where the first inequality is due to constraint (2.2); the second inequality due to 𝑏 ≥ 6.

Since strict inequality holds, we can lower bound Pr{𝐵𝑇 (𝑖) > 0} as follows.

Pr{𝐵𝑇 (𝑖) > 0}

191



=1 − Pr

⎧⎨⎩
𝑇∑︁
𝑡=1

∑︁
𝑆∈𝒮

𝐴𝑡(𝑆)
∑︁

𝑗:(𝑖,𝑗)∈𝑆

𝑄𝑡(𝑖, 𝑗, 𝑆) ≥ 𝑏𝑖

⎫⎬⎭
≥1 − Pr

⎧⎨⎩
𝑇∑︁
𝑡=1

∑︁
𝑆∈𝒮

𝐴𝑡(𝑆)
∑︁

𝑗:(𝑖,𝑗)∈𝑆

𝑄𝑡(𝑖, 𝑗, 𝑆) − E[
𝑇∑︁
𝑡=1

∑︁
𝑆∈𝒮

𝐴𝑡(𝑆)
∑︁

𝑗:(𝑖,𝑗)∈𝑆

𝑄𝑡(𝑖, 𝑗, 𝑆)] ≥ 𝛿𝑏𝑖

⎫⎬⎭
≥1 − exp

(︃
− (𝛿𝑏𝑖)

2

2Var(
∑︀𝑇

𝑡=1

∑︀
𝑆∈𝒮 𝐴𝑡(𝑆)

∑︀
𝑗:(𝑖,𝑗)∈𝑆 𝑄𝑡(𝑖, 𝑗, 𝑆)) + 2/3𝛿𝑏𝑖

)︃

≥1 − exp

(︃
−𝛿2𝑏𝑖

2

)︃
≥1 − 1

𝑏
, (A.14)

where the first inequality is due to (A.13); second inequality is Bernstein Inequality,

where ∀𝑡,
⃒⃒⃒∑︀

𝑆∈𝒮 𝐴𝑡(𝑆)
∑︀

𝑗:(𝑖,𝑗)∈𝑆 𝑄𝑡(𝑖, 𝑗, 𝑆) − E[
∑︀

𝑆∈𝒮 𝐴𝑡(𝑆)
∑︀

𝑗:(𝑖,𝑗)∈𝑆 𝑄𝑡(𝑖, 𝑗, 𝑆)]
⃒⃒⃒
≤ 1

are zero-mean random variables and almost surely bounded by 1, and because 𝛿𝑏𝑖−1 ≥

𝛿𝑏𝑖, ∀𝑖 ∈ [𝑛]; third inequality is because

Var(
𝑇∑︁
𝑡=1

∑︁
𝑆∈𝒮

𝐴𝑡(𝑆)
∑︁

𝑗:(𝑖,𝑗)∈𝑆

𝑄𝑡(𝑖, 𝑗, 𝑆))

≤
𝑇∑︁
𝑡=1

⎛⎝∑︁
𝑆∈𝒮

(1 − 𝛿)𝑥*𝑡 (𝑆)
∑︁

𝑗:(𝑖,𝑗)∈𝑆

𝑞𝑡(𝑖, 𝑗, 𝑆) ·

⎛⎝1 −
∑︁
𝑆∈𝒮

(1 − 𝛿)𝑥*𝑡 (𝑆)
∑︁

𝑗:(𝑖,𝑗)∈𝑆

𝑞𝑡(𝑖, 𝑗, 𝑆)

⎞⎠⎞⎠
≤

𝑇∑︁
𝑡=1

∑︁
𝑆∈𝒮

(1 − 𝛿)𝑥*𝑡 (𝑆)
∑︁

𝑗:(𝑖,𝑗)∈𝑆

𝑞𝑡(𝑖, 𝑗, 𝑆)

≤(1 − 𝛿)𝑏𝑖 ≤ (1 − 𝛿)𝑏𝑖.

This is because if one random variable with bounded support over [0, 1] has the same

mean as a Bernoulli random variable, its variance should be smaller than that of the

Bernoulli random variable.

Finally putting (A.14) into (A.12) we have

E[Rev] ≥
𝑛∑︁

𝑖=1

Pr{𝐵𝑇 (𝑖) > 0}
𝑇∑︁
𝑡=1

∑︁
𝑆∈𝒮

(1 − 𝛿)𝑥*𝑡 (𝑆)
∑︁

𝑗:(𝑖,𝑗)∈𝑆

𝑝𝑗𝑞𝑡(𝑖, 𝑗, 𝑆)
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≥(1 − 1

𝑏
)(1 − 𝛿)

𝑛∑︁
𝑖=1

𝑇∑︁
𝑡=1

∑︁
𝑆∈𝒮

𝑥*𝑡 (𝑆)
∑︁

𝑗:(𝑖,𝑗)∈𝑆

𝑝𝑗𝑞𝑡(𝑖, 𝑗, 𝑆)

=(1 − 1

𝑏
)(1 −

√︃
3 log (𝑏)

𝑏
)OPTLP = (1 −

√︃
3 log (𝑏)

𝑏
+ 𝑜(

√︃
log (𝑏)

𝑏
))OPTLP

which finishes the proof. By taking 𝑏 → ∞ we see the calendar is asymptotically

optimal.

A.11 Proof of Theorem 2.9

Proof. Proof of Theorem 2.9. We introduce the following notations. Denote

�̂�𝐾(𝑧 |𝑆𝜏 = 𝑆𝜏 (𝑧),∀𝜏 ≤ 𝑡, 𝑆𝑡 = 𝑆 )

Denote “𝑧
⃒⃒⃒
𝑆𝜏 = 𝑆𝜏 ,∀𝜏 ∈ Γ ⊆ 𝒮 ” to be a tweaked vector from 𝑧, such that 𝑧𝜏 (X) =

1X=𝑆𝜏
,∀𝜏 ∈ Γ, ∀X ∈ 𝒮; 𝑧𝜚(𝑋) = 𝑧𝜚(𝑋),∀𝜚 /∈ Γ,∀𝑋 ∈ 𝒮. For example, 𝑧 |𝑆1 = 𝑆

is defined by 𝑧1(X) = 1X=𝑆,∀X ∈ 𝒮; 𝑧𝜚(𝑋) = 𝑧𝜚(𝑋),∀𝜚 ≥ 2, 𝑋 ∈ 𝒮. Similarly,

denote E[Rev
⃒⃒⃒
𝑆𝜏 = 𝑆𝜏 ,∀𝜏 ∈ Γ] to be the expected revenue earned from a probabilistic

offering of 𝑧
⃒⃒⃒
𝑆𝜏 = 𝑆𝜏 ,∀𝜏 ∈ Γ .

Notice that, rigorously, 𝑆𝑡(𝑧) should be a random assortment based on the simula-

tion results that are random. So rigorously, we should use E𝜉[E[Rev |𝑆𝜏 = 𝑆𝜏 (𝑧),∀𝜏 ≤ 𝑡 ]],

because the conditioned event is a random event based on the simulation results. We

take the outer expectation over the simulation randomness 𝜉. In the inner expecta-

tion where we do not epecifically designate the source of randomness, the expectation

is taken to find the expected revenue.

In each iteration of Algorithm 4, denote also 𝑆*𝑡 (𝑧) to be any element from

𝑆*𝑡 (𝑧) ∈ arg max
𝑆∈{𝑆∈𝒮|𝑧𝑡(𝑆)>0}

E[Rev |𝑆𝜏 = 𝑆𝜏 (𝑧),∀𝜏 ≤ 𝑡, 𝑆𝑡 = 𝑆 ],

which is the true best assortment to select in this iteration, if we were given a perfect

oracle to query the expected revenue of a policy (instead of a simulator).
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In each iteration, denote 𝑂𝑡 = {𝑆 ∈ 𝒮 |𝑧𝑡(𝑆) > 0} to be the set of candidate

assortments to choose from. Let 𝑜𝑡 = |𝑂𝑡|. In each iteration, we can upper bound

the sampling error incurred due to selecting the best empirical assortment, instead of

(possibly) the true best assortment. ∀𝑡 ∈ [𝑇 ]

E[Rev |𝑆𝜏 = 𝑆𝜏 (𝑧), ∀𝜏 ≤ 𝑡− 1, 𝑆𝑡 = 𝑆*𝑡 (𝑧) ] − E𝜉[E[Rev |𝑆𝜏 = 𝑆𝜏 (𝑧), ∀𝜏 ≤ 𝑡 ]]

=E[Rev |𝑆𝜏 = 𝑆𝜏 (𝑧),∀𝜏 ≤ 𝑡− 1, 𝑆𝑡 = 𝑆*𝑡 (𝑧) ] − E[�̂�𝐾(𝑧 |𝑆𝜏 = 𝑆𝜏 (𝑧),∀𝜏 ≤ 𝑡− 1, 𝑆𝑡 = 𝑆*𝑡 (𝑧))]+

E[�̂�𝐾(𝑧 |𝑆𝜏 = 𝑆𝜏 (𝑧),∀𝜏 ≤ 𝑡− 1, 𝑆𝑡 = 𝑆*𝑡 (𝑧))] − E𝜉[�̂�𝐾(𝑧 |𝑆𝜏 = 𝑆𝜏 (𝑧),∀𝜏 ≤ 𝑡)]+

E𝜉[�̂�𝐾(𝑧 |𝑆𝜏 = 𝑆𝜏 (𝑧),∀𝜏 ≤ 𝑡)] − E𝜉[E[Rev |𝑆𝜏 = 𝑆𝜏 (𝑧),∀𝜏 ≤ 𝑡 ]]

≤E𝜉[�̂�𝐾(𝑧 |𝑆𝜏 = 𝑆𝜏 (𝑧), ∀𝜏 ≤ 𝑡)] − E𝜉[E[Rev |𝑆𝜏 = 𝑆𝜏 (𝑧),∀𝜏 ≤ 𝑡 ]] + 0 + 0

≤E𝜉[max
𝑆∈𝑂𝑡

{�̂�𝐾(𝑧 |𝑆𝜏 = 𝑆𝜏 (𝑧),∀𝜏 ≤ 𝑡− 1, 𝑆𝑡 = 𝑆 ) − E[Rev |𝑆𝜏 = 𝑆𝜏 (𝑧), ∀𝜏 ≤ 𝑡− 1, 𝑆𝑡 = 𝑆 ]}]

where the equality is how we decompose the difference by three differences; the first

inequality is because the second difference is non-negative, since we are selecting the

optimizer for the empirical performance, and because the first difference is zero, since

given any fixed assortment, the empirical estimation is an unbiased estimation.

Now we further bound the sampling error. ∀ℎ > 0,

E𝜉[max
𝑆∈𝑂𝑡

{�̂�𝐾(𝑧 |𝑆𝜏 = 𝑆𝜏 (𝑧), ∀𝜏 ≤ 𝑡− 1, 𝑆𝑡 = 𝑆 )

−E[Rev |𝑆𝜏 = 𝑆𝜏 (𝑧),∀𝜏 ≤ 𝑡− 1, 𝑆𝑡 = 𝑆 ]}]

=
1

ℎ
log exp

(︂
ℎ · E𝜉[max

𝑆∈𝑂𝑡

{�̂�𝐾(𝑧 |𝑆𝜏 = 𝑆𝜏 (𝑧),∀𝜏 ≤ 𝑡− 1, 𝑆𝑡 = 𝑆 )

−E[Rev |𝑆𝜏 = 𝑆𝜏 (𝑧),∀𝜏 ≤ 𝑡− 1, 𝑆𝑡 = 𝑆 ]}]

)︂
≤1

ℎ
logE𝜉

[︂
exp

(︂
ℎ · max

𝑆∈𝑂𝑡

{�̂�𝐾(𝑧 |𝑆𝜏 = 𝑆𝜏 (𝑧),∀𝜏 ≤ 𝑡− 1, 𝑆𝑡 = 𝑆 )

−E[Rev |𝑆𝜏 = 𝑆𝜏 (𝑧),∀𝜏 ≤ 𝑡− 1, 𝑆𝑡 = 𝑆 ]}
)︂]︂

=
1

ℎ
logE𝜉

[︃
max
𝑆∈𝑂𝑡

{︃
exp

(︃
ℎ

𝐾
· (

𝐾∑︁
𝑘=1

𝜈(𝑧 |𝑆𝜏 = 𝑆𝜏 (𝑧),∀𝜏 ≤ 𝑡− 1, 𝑆𝑡 = 𝑆 , 𝜉𝑘)

− E[Rev |𝑆𝜏 = 𝑆𝜏 (𝑧),∀𝜏 ≤ 𝑡− 1, 𝑆𝑡 = 𝑆 ])

)︂}︂]︂
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≤1

ℎ
logE𝜉

[︃∑︁
𝑆∈𝑂𝑡

exp

(︃
ℎ

𝐾
· (

𝐾∑︁
𝑘=1

𝜈(𝑧 |𝑆𝜏 = 𝑆𝜏 (𝑧),∀𝜏 ≤ 𝑡− 1, 𝑆𝑡 = 𝑆 , 𝜉𝑘)

− E[Rev |𝑆𝜏 = 𝑆𝜏 (𝑧), ∀𝜏 ≤ 𝑡− 1, 𝑆𝑡 = 𝑆 ])

)︂]︂
=

1

ℎ
log

∑︁
𝑆∈𝑂𝑡

𝐾∏︁
𝑘=1

E𝜉

[︂
exp

(︂
ℎ

𝐾
· (𝜈(𝑧 |𝑆𝜏 = 𝑆𝜏 (𝑧), ∀𝜏 ≤ 𝑡− 1, 𝑆𝑡 = 𝑆 , 𝜉𝑘)

− E[Rev |𝑆𝜏 = 𝑆𝜏 (𝑧),∀𝜏 ≤ 𝑡− 1, 𝑆𝑡 = 𝑆 ])

)︂]︂
≤1

ℎ
log

∑︁
𝑆∈𝑂𝑡

𝐾∏︁
𝑘=1

exp

(︂
ℎ2

𝐾2
· (2(𝑏1 + · · · + 𝑏𝑛)𝑝max)

2

8

)︂
=

log 𝑜𝑡
ℎ

+
ℎ(𝑏1 + · · · + 𝑏𝑛)2𝑝2max

2𝐾

where the first equality is re-writing the same expression; the first inequality is due

to Jensen’s inequality, because ∀ℎ > 0, 𝑓(𝑥) = exp (ℎ · 𝑥) is a convex function in 𝑥;

the second equality is from the definition of �̂�𝐾(·); the second inequality is because

all the exponentials are positive, and we are replacing the maximum with their sum;

the third equality is due to linearity of expectations and due to the independence of

different simulations under randomness 𝜉𝑘; the third inequality is due to Hoeffding’s

Lemma, where each random simulation yields a number bounded by (𝑏1+· · ·+𝑏𝑛)𝑝max.

The above bound holds for any ℎ > 0. If we pick ℎ =
√︁

2𝐾 log 𝑜𝑡
(𝑏1+···+𝑏𝑛)2𝑝2max

, then the

above term can be simplified as

E[Rev |𝑆𝜏 = 𝑆𝜏 (𝑧),∀𝜏 ≤ 𝑡− 1, 𝑆𝑡 = 𝑆*𝑡 (𝑧) ] − E𝜉[E[Rev |𝑆𝜏 = 𝑆𝜏 (𝑧),∀𝜏 ≤ 𝑡 ]]

≤
√︂

log 𝑜𝑡
2𝐾

(𝑏1 + · · · + 𝑏𝑛)𝑝max

=

√︃
log 𝑜𝑡

2(log 𝑛 + log 𝑇 )
· 𝜖 · OPTLP. (A.15)

Finally we conclude the proof by induction on 𝑡. In the first iteration of Algo-

rithm 4, we can re-write E[Rev] as follows,

E[Rev] =
∑︁

𝑆∈{𝑆∈𝒮|𝑧1(𝑆)>0}

E[Rev |𝑆1 = 𝑆 ] · 𝑧1(𝑆) ≥ 𝛼 · OPTLP, (A.16)
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where the inequality holds due to Theorems 2.2 – 2.8. Since we have selected the 𝑆’s

such that 𝑧1(𝑆) > 0, and that
∑︀

𝑆∈{𝑆∈𝒮|𝑧1(𝑆)>0} 𝑧1(𝑆) = 1. So

E[Rev |𝑆1 = 𝑆*1(𝑧) ] = max
𝑆∈{𝑆∈𝒮|𝑧1(𝑆)>0}

E[Rev |𝑆1 = 𝑆 ] ≥ 𝛼 · OPTLP,

because otherwise the summation in (A.16) is strictly smaller than 𝛼·OPTLP. Then we

can plug in inequality (A.15), so that E𝜉[E[Rev |𝑆1 = 𝑆1(𝑧) ]] ≥ (𝛼−
√︁

log 𝑜1
2(log𝑛+log 𝑇 )

𝜖) ·

OPTLP

Suppose we have shown that

E𝜉[E[Rev |𝑆𝜏 = 𝑆𝜏 (𝑧),∀𝜏 ≤ 𝑡 ]] ≥ (𝛼−
𝑡∑︁

𝜏=1

√︃
log 𝑜𝜏

2(log 𝑛 + log 𝑇 )
𝜖) · OPTLP.

In the (𝑡 + 1)th iteration of Algorithm 4, we can re-write the expected revenue as

follows,

E𝜉[E[Rev |𝑆𝜏 = 𝑆𝜏 (𝑧), ∀𝜏 ≤ 𝑡 ]]

=
∑︁

𝑆∈{𝑆∈𝒮|𝑧𝑡+1(𝑆)>0}

E[Rev |𝑆𝜏 = 𝑆𝜏 (𝑧),∀𝜏 ≤ 𝑡, 𝑆𝑡+1 = 𝑆 ] · 𝑧𝑡+1(𝑆)

≥(𝛼−
𝑡∑︁

𝜏=1

√︃
log 𝑜𝜏

2(log 𝑛 + log 𝑇 )
𝜖) · OPTLP,

Similarly, we have

E𝜉[E[Rev
⃒⃒
𝑆𝜏 = 𝑆𝜏 (𝑧),∀𝜏 ≤ 𝑡, 𝑆𝑡+1 = 𝑆*𝑡+1(𝑧) ]] ≥ (𝛼−

𝑡∑︁
𝜏=1

√︃
log 𝑜𝜏

2(log 𝑛 + log 𝑇 )
𝜖)·OPTLP,

and then using inequality (A.15) we have E𝜉[E[Rev |𝑆𝜏 = 𝑆𝜏 (𝑧),∀𝜏 ≤ 𝑡 + 1]] ≥ (𝛼 −∑︀𝑡+1
𝜏=1

√︁
log 𝑜𝜏

2(log𝑛+log 𝑇 )
𝜖) · OPTLP.

By induction, we have

E𝜉[E[Rev |𝑆𝜏 = 𝑆𝜏 (𝑧),∀𝜏 ≤ 𝑇 ]] ≥(𝛼−
𝑇∑︁

𝜏=1

√︃
log 𝑜𝜏

2(log 𝑛 + log 𝑇 )
𝜖) · OPTLP
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≥(𝛼−

⎯⎸⎸⎷ log
(︁∑︀𝑇

𝜏=1 𝑜𝜏

)︁
2(log 𝑛 + log 𝑇 )

𝜖) · OPTLP

≥(𝛼− 𝜖) · OPTLP

where the first inequality is due to concavity of
√

log 𝑥; the second inequality is

because
∑︀𝑇

𝜏=1 𝑜𝜏 ≤ 2(log 𝑛+log 𝑇 ). In the context of non-stationary arrivals,
∑︀𝑇

𝜏=1 𝑜𝜏

is the total number of non-zero variables from CDLP, can be upper bounded by the

total number of constraints, which is 𝑛 + 𝑇 . In the context of stationary arrivals,∑︀𝑇
𝜏=1 𝑜𝜏 has bounded supports of 𝑛 + 1 in each of the 𝑇 periods – so it could be

bounded by (𝑛 + 1) · 𝑇 .

Finally, we analyze the time complexity. In each iteration, we enumerate over

all the assortments {𝑆 ∈ 𝒮 |𝑧𝑡(𝑆) > 0} to find the empirical maximizer 𝑆𝑡, which

involves 𝐾 queries to the simulator �̂�(·). There are at most 𝑛+1 non-zero variables to

enumerate. So the total number of queries are no more than 𝐾 ·(𝑛+1) ·𝑇 = 𝑂(𝐾𝑛𝑇 ).

In each query of the simulator �̂�(·), it takes no more than (𝑛 + 1)𝑇 operations to

generate a sequence of 𝑇 assortments. On the other hand, since we know the CDF

of the demand in each period, it takes only 𝑂(1) operations to generate a random

demand. So the total number of arithmetic operations for our de-randomization

method is 𝑂(𝐾𝑛2𝑇 2). As suggested by Algorithm 3, 𝐾 is also polynomial in 𝑛, 𝑇 ,

and 1/𝜖.

A.12 Lemmas for the Proof of Theorem 2.11

In this section we prove Lemmas 2.12 and 2.13.

A.12.1 Proof of Lemma 2.12

Proof. Proof of Lemma 2.12. Let (𝑥)+ = max{𝑥, 0} denote the maximum of 𝑥 and

0. Let 𝑄𝑣𝑡 denote the random demand if we offer price 𝑣𝑡 on day 𝑡, which follows a

distribution of 𝐹𝑣𝑡(·).
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Similar to the proof to Lemma 2.12, the idea is to exchange a pair of two consec-

utive prices. Given any calendar 𝑣 = (𝑣1, 𝑣2, ..., 𝑣𝑇 ), if there exists 𝑡 ∈ [𝑇 − 1], such

that 𝑝𝑣𝑡 < 𝑝𝑣𝑡+1 , we compare to another calendar:

𝑣* = (𝑣1, 𝑣2, ..., 𝑣𝑡−1, 𝑣𝑡+1, 𝑣𝑡, 𝑣𝑡+2, ..., 𝑣𝑇 ).

Since we only exchange this pair of two prices, the expected revenue change comes

only from these two periods: Before 𝑡 the expected revenue is trivially not changed.

Since under both calendars, the distribution of total units of inventory consumed

during 𝑡 and 𝑡 + 1 are exactly the same, we know that the distribution of initial

inventory at the end of 𝑡 + 1 will also be the same. So after period 𝑡 + 1 the revenue

will not be changed, neither.

Let 𝐴(𝑐, 𝑡) denote the event “𝑐 units of inventory left at the beginning of period

𝑡”, where 𝑐 ∈ [0, 𝑏], 𝑡 ∈ [𝑇 ]. Let Rev(𝑣) be a random variable for the expected revenue

from all time periods under 𝑣. Let Rev𝑡,𝑡+1(𝑣) be a random variable for the expected

revenue from 𝑡 and 𝑡 + 1 under 𝑣. Then for any 𝑐 ∈ [0, 𝑏], conditioning on 𝐴(𝑐, 𝑡) we

have:

E[Rev𝑡,𝑡+1(𝑣) |𝐴(𝑐, 𝑡) ] =𝑝𝑣𝑡E [min{𝑐,𝑄𝑣𝑡}] + 𝑝𝑣𝑡+1E
[︀
min{(𝑐−𝑄𝑣𝑡)

+, 𝑄𝑣𝑡+1}
]︀

=(𝑝𝑣𝑡 − 𝑝𝑣𝑡+1)E [min{𝑐,𝑄𝑣𝑡}] + 𝑝𝑣𝑡+1E
[︀
min{𝑐,𝑄𝑣𝑡 + 𝑄𝑣𝑡+1}

]︀
where the second equation holds because min{(𝑐 − 𝑄𝑣𝑡)

+, 𝑄𝑣𝑡+1} = min{𝑐,𝑄𝑣𝑡 +

𝑄𝑣𝑡+1} − min{𝑐,𝑄𝑣𝑡}, and linearity of expectations.

Now let us compare the expected revenue from two calendars, still conditioning

on 𝐴(𝑐, 𝑡):

E[Rev(𝑣*) |𝐴(𝑐, 𝑡) ] − E[Rev(𝑣) |𝐴(𝑐, 𝑡) ]

=(𝑝𝑣𝑡+1 − 𝑝𝑣𝑡)E
[︀
min{𝑐,𝑄𝑣𝑡+1}

]︀
+ 𝑝𝑣𝑡E

[︀
min{𝑐,𝑄𝑣𝑡+1 + 𝑄𝑣𝑡}

]︀
− (𝑝𝑣𝑡 − 𝑝𝑣𝑡+1)E [min{𝑐,𝑄𝑣𝑡}] − 𝑝𝑣𝑡+1E

[︀
min{𝑐,𝑄𝑣𝑡 + 𝑄𝑣𝑡+1}

]︀
=(𝑝𝑣𝑡+1 − 𝑝𝑣𝑡)(E [min{𝑐,𝑄𝑣𝑡}] + E

[︀
min{𝑐,𝑄𝑣𝑡+1}

]︀
− E

[︀
min{𝑐,𝑄𝑣𝑡 + 𝑄𝑣𝑡+1}

]︀
)

≥0
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where the last inequality is due to the fact that min{𝑐, 𝑥} + min{𝑐, 𝑦} ≥ min{𝑐, 𝑥 +

𝑦},∀𝑐, 𝑥, 𝑦 ≥ 0, which is proved in the appendix as Lemma A.1. Notice that this is

true for all 𝑐 ∈ [0, 𝑏].

By integrating over 𝑐 ∈ [0, 𝑏] we have E[Rev(𝑣*)] ≥ E[Rev(𝑣)], which finishes the

proof.

Corollary A.9.1. There exists an optimal static calendar whose prices are non-increasing

over time, i.e. 𝑝𝑣*𝑡 ≥ 𝑝𝑣*𝑡+1
, ∀𝑡 ∈ [𝑇 − 1].

Proof. Proof of Corollary A.9.1. Directly follows from Lemma 2.12. We can start

from any calendar and use a finite number (no more than 𝑇 !) of exchange operations

to achieve the optimal non-decreasing structure.

A.12.2 Bridge from Lemma 2.12 to Lemma 2.13

Lemma A.10. Under [0,1]-demand, in any two-price randomized policy 𝑣, if two con-

secutive probabilities 𝑣𝑡, 𝑣𝑡+1 are such that 𝑣𝑡 < 𝑣𝑡+1, then probabilities 𝑣𝑡, 𝑣𝑡+1 can be

exchanged in the calendar without decreasing its expected revenue.

Proof. Proof of Lemma A.10. Let (𝑥)+ = max{𝑥, 0} denote the maximum of 𝑥 and

0. Let 𝑄H,𝑡 and 𝑄L,𝑡 denote the random demand if we offer the higher price and the

lower price on day 𝑡, which follows a distribution of 𝐹𝐻(·) and 𝐹𝐿(·), respectively.

The idea is to exchange a pair of two consecutive prices. Given any calendar

𝑣 = (𝑣1, 𝑣2, ..., 𝑣𝑇 ), if there exists 𝑡 ∈ [𝑇 − 1], such that 𝑣𝑡 < 𝑣𝑡+1, we compare to

another calendar:

𝑣* = (𝑣1, 𝑣2, ..., 𝑣𝑡−1, 𝑣𝑡+1, 𝑣𝑡, 𝑣𝑡+2, ..., 𝑣𝑇 ).

Since we only exchange this pair of two prices, the expected revenue before 𝑡 is trivially

not changed.

Let 𝐽𝑣,𝑡(𝑐) denote the expected revenue we would earn under calendar 𝑣 if we

were endowed with 𝑐 units of inventory at the beginning of period 𝑡. Its expectation

is taken over future demand randomness. Let 𝐴(𝑐, 𝑡) denote the event “𝑐 units of
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inventory at the beginning of period 𝑡”, where 𝑐 ∈ [0, 𝑏], 𝑡 ∈ [𝑇 ]. Then for any

𝑐 ∈ [0, 𝑏], conditioning on 𝐴(𝑐, 𝑡) we have:

𝐽𝑣,𝑡(𝑐) =𝑣𝑡E [min{𝑐,𝑄H,𝑡}] 𝑝H + 𝑣𝑡𝑣𝑡+1E
[︀
min{(𝑐−𝑄H,𝑡)

+, 𝑄H,𝑡+1}
]︀
𝑝H

+ 𝑣𝑡(1 − 𝑣𝑡+1)E
[︀
min{(𝑐−𝑄H,𝑡)

+, 𝑄L,𝑡+1}
]︀
𝑝L

+ 𝑣𝑡𝑣𝑡+1E
[︀
𝐽𝑣,𝑡+2((𝑐−𝑄H,𝑡 −𝑄H,𝑡+1)

+)
]︀

+ 𝑣𝑡(1 − 𝑣𝑡+1)E
[︀
𝐽𝑣,𝑡+2((𝑐−𝑄H,𝑡 −𝑄L,𝑡+1)

+)
]︀

+ (1 − 𝑣𝑡)E [min{𝑐,𝑄L,𝑡}] 𝑝L + (1 − 𝑣𝑡)𝑣𝑡+1E
[︀
min{(𝑐−𝑄L,𝑡)

+, 𝑄H,𝑡+1}
]︀
𝑝H

+ (1 − 𝑣𝑡)(1 − 𝑣𝑡+1)E
[︀
min{(𝑐−𝑄L,𝑡)

+, 𝑄L,𝑡+1}
]︀
𝑝L

+ (1 − 𝑣𝑡)𝑣𝑡+1E
[︀
𝐽𝑣,𝑡+2((𝑐−𝑄L,𝑡 −𝑄H,𝑡+1)

+)
]︀

+ (1 − 𝑣𝑡)(1 − 𝑣𝑡+1)E
[︀
𝐽𝑣,𝑡+2((𝑐−𝑄L,𝑡 −𝑄L,𝑡+1)

+)
]︀

Plugging in min{(𝑐− 𝑥)+, 𝑦} = min{𝑐, 𝑥 + 𝑦} − min{𝑐, 𝑥},∀𝑐, 𝑥, 𝑦 ≥ 0 we have:

𝐽𝑣,𝑡(𝑐) =𝑣𝑡E [min{𝑐,𝑄H,𝑡}] 𝑝H + 𝑣𝑡𝑣𝑡+1E [min{𝑐,𝑄H,𝑡 + 𝑄H,𝑡+1}] 𝑝H

+ 𝑣𝑡(1 − 𝑣𝑡+1)E [min{𝑐,𝑄H,𝑡 + 𝑄L,𝑡+1}] 𝑝L

− 𝑣𝑡𝑣𝑡+1E [min{𝑐,𝑄H,𝑡}] 𝑝H − 𝑣𝑡(1 − 𝑣𝑡+1)E [min{𝑐,𝑄H,𝑡}] 𝑝L

+ 𝑣𝑡𝑣𝑡+1E
[︀
𝐽𝑣,𝑡+2((𝑐−𝑄H,𝑡 −𝑄H,𝑡+1)

+)
]︀

+ 𝑣𝑡(1 − 𝑣𝑡+1)E
[︀
𝐽𝑣,𝑡+2((𝑐−𝑄H,𝑡 −𝑄L,𝑡+1)

+)
]︀

+ (1 − 𝑣𝑡)E [min{𝑐,𝑄L,𝑡}] 𝑝L + (1 − 𝑣𝑡)𝑣𝑡+1E [min{𝑐,𝑄L,𝑡 + 𝑄H,𝑡+1}] 𝑝H

+ (1 − 𝑣𝑡)(1 − 𝑣𝑡+1)E [min{𝑐,𝑄L,𝑡 + 𝑄L,𝑡+1}] 𝑝L

− (1 − 𝑣𝑡)𝑣𝑡+1E [min{𝑐,𝑄L,𝑡}] 𝑝H − (1 − 𝑣𝑡)(1 − 𝑣𝑡+1)E [min{𝑐,𝑄L,𝑡}] 𝑝L

+ (1 − 𝑣𝑡)𝑣𝑡+1E
[︀
𝐽𝑣,𝑡+2((𝑐−𝑄L,𝑡 −𝑄H,𝑡+1)

+)
]︀

+ (1 − 𝑣𝑡)(1 − 𝑣𝑡+1)E
[︀
𝐽𝑣,𝑡+2((𝑐−𝑄L,𝑡 −𝑄L,𝑡+1)

+)
]︀

Merging similar expressions we have the following:

𝐽𝑣,𝑡(𝑐) =𝑣𝑡(1 − 𝑣𝑡+1)(𝑝H − 𝑝L)E [min{𝑐,𝑄H,𝑡}]
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− (1 − 𝑣𝑡)𝑣𝑡+1(𝑝H − 𝑝L)E [min{𝑐,𝑄L,𝑡}]

+ 𝑣𝑡𝑣𝑡+1𝑝HE [min{𝑐,𝑄H,𝑡 + 𝑄H,𝑡+1}]

+ 𝑣𝑡(1 − 𝑣𝑡+1)𝑝LE [min{𝑐,𝑄H,𝑡 + 𝑄L,𝑡+1}]

+ (1 − 𝑣𝑡)𝑣𝑡+1𝑝HE [min{𝑐,𝑄L,𝑡 + 𝑄H,𝑡+1}]

+ (1 − 𝑣𝑡)(1 − 𝑣𝑡+1)𝑝LE [min{𝑐,𝑄L,𝑡 + 𝑄L,𝑡+1}]

+ 𝑣𝑡𝑣𝑡+1E
[︀
𝐽𝑣,𝑡+2((𝑐−𝑄H,𝑡 −𝑄H,𝑡+1)

+)
]︀

+ 𝑣𝑡(1 − 𝑣𝑡+1)E
[︀
𝐽𝑣,𝑡+2((𝑐−𝑄H,𝑡 −𝑄L,𝑡+1)

+)
]︀

+ (1 − 𝑣𝑡)𝑣𝑡+1E
[︀
𝐽𝑣,𝑡+2((𝑐−𝑄L,𝑡 −𝑄H,𝑡+1)

+)
]︀

+ (1 − 𝑣𝑡)(1 − 𝑣𝑡+1)E
[︀
𝐽𝑣,𝑡+2((𝑐−𝑄L,𝑡 −𝑄L,𝑡+1)

+)
]︀

(A.17)

Similarly we have 𝐽𝑣*,𝑡(𝑐), the expected revenue under calendar 𝑣*, as following:

𝐽𝑣*,𝑡(𝑐) =𝑣𝑡+1(1 − 𝑣𝑡)(𝑝H − 𝑝L)E [min{𝑐,𝑄H,𝑡}]

− (1 − 𝑣𝑡+1)𝑣𝑡(𝑝H − 𝑝L)E [min{𝑐,𝑄L,𝑡}]

+ 𝑣𝑡+1𝑣𝑡𝑝HE [min{𝑐,𝑄H,𝑡 + 𝑄H,𝑡+1}]

+ 𝑣𝑡+1(1 − 𝑣𝑡)𝑝LE [min{𝑐,𝑄H,𝑡 + 𝑄L,𝑡+1}]

+ (1 − 𝑣𝑡+1)𝑣𝑡𝑝HE [min{𝑐,𝑄L,𝑡 + 𝑄H,𝑡+1}]

+ (1 − 𝑣𝑡+1)(1 − 𝑣𝑡)𝑝LE [min{𝑐,𝑄L,𝑡 + 𝑄L,𝑡+1}]

+ 𝑣𝑡+1𝑣𝑡E
[︀
𝐽𝑣,𝑡+2((𝑐−𝑄H,𝑡 −𝑄H,𝑡+1)

+)
]︀

+ 𝑣𝑡+1(1 − 𝑣𝑡)E
[︀
𝐽𝑣,𝑡+2((𝑐−𝑄H,𝑡 −𝑄L,𝑡+1)

+)
]︀

+ (1 − 𝑣𝑡+1)𝑣𝑡E
[︀
𝐽𝑣,𝑡+2((𝑐−𝑄L,𝑡 −𝑄H,𝑡+1)

+)
]︀

+ (1 − 𝑣𝑡+1)(1 − 𝑣𝑡)E
[︀
𝐽𝑣,𝑡+2((𝑐−𝑄L,𝑡 −𝑄L,𝑡+1)

+)
]︀

The equality holds because calendars 𝑣 and 𝑣* are the same from period 𝑡 + 2.

On the other hand, we know that ∀𝑐, 𝑥, 𝑦 ≥ 0,min{𝑐, 𝑥 + 𝑦} ≥ 0 and 𝐽𝑣,𝑡+2((𝑐 −

𝑥− 𝑦)+) ≥ 0. Due to Fubini’s theorem, we can exchange the double integration:

E [min{𝑐,𝑄H,𝑡 + 𝑄L,𝑡+1}] = E [min{𝑐,𝑄L,𝑡 + 𝑄H,𝑡+1}] (A.18)
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E
[︀
𝐽𝑣,𝑡+2((𝑐−𝑄H,𝑡 −𝑄L,𝑡+1)

+)
]︀

= E
[︀
𝐽𝑣,𝑡+2((𝑐−𝑄L,𝑡 −𝑄H,𝑡+1)

+)
]︀

(A.19)

Then we calculate their difference, conditioning on 𝐴(𝑐, 𝑡):

𝐽𝑣*,𝑡(𝑐) − 𝐽𝑣,𝑡(𝑐)

=(𝑣𝑡+1 − 𝑣𝑡)(𝑝H − 𝑝L) (E [min{𝑐,𝑄H,𝑡}] + E [min{𝑐,𝑄L,𝑡}] − E [min{𝑐,𝑄H,𝑡 + 𝑄L,𝑡+1}])

=(𝑣𝑡+1 − 𝑣𝑡)(𝑝H − 𝑝L) (E [min{𝑐,𝑄H,𝑡}] + E [min{𝑐,𝑄L,𝑡+1}] − E [min{𝑐,𝑄H,𝑡 + 𝑄L,𝑡+1}])

≥0

where the inequality holds because three components are all greater or equal to zero,

the third component due to Lemma A.1. Notice that this is true for all 𝑐 ∈ [0, 𝑏].

By integrating over 𝑐 ∈ [0, 𝑏] we have E[Rev(𝑣*)] ≥ E[Rev(𝑣)], which finishes the

proof.

Corollary A.10.1. There exists an optimal two-price randomized policy whose proba-

bilities are non-increasing over time, i.e. 𝑣𝑡 ≥ 𝑣𝑡+1,∀𝑡 ∈ [𝑇 − 1].

Proof. Proof of Corollary A.10.1. Directly follows from Lemma 2.12. We can start

from any calendar and use a finite number (no more than 𝑇 !) of exchange operations

to achieve the optimal non-increasing structure.

Notice that Lemma A.10 and Corollary A.10.1 are assumption-free.

A.12.3 Proof of Lemma 2.13

Lemma A.11. Under Assumption 2.3, in any two-price randomized policy 𝑣, if two

consecutive probabilities 𝑣𝑡, 𝑣𝑡+1 are such that 𝑣𝑡 ≥ 𝑣𝑡+1, 𝑣𝑡 < 1, 𝑣𝑡+1 > 0, then the

last pair of probabilities indexed by 𝑡 = sup𝜏∈[𝑇−1] {𝑣𝜏 < 1, 𝑣𝜏+1 > 0, 𝑣𝜏 ≥ 𝑣𝜏+1} can be

changed from (𝑣𝑡, 𝑣𝑡+1) to (𝑣𝑡 + 𝛿, 𝑣𝑡+1 − 𝛿) where 0 ≤ 𝛿 ≤ max{1 − 𝑣𝑡, 𝑣𝑡+1}, without

decreasing its expected revenue.

Proof. Proof. Let (𝑥)+ = max{𝑥, 0} denote the maximum of 𝑥 and 0. Let 𝑄H,𝑡 and

𝑄L,𝑡 denote the random demand if we offer the higher price and the lower price on
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day 𝑡, which follows a distribution of 𝐹𝐻(·) and 𝐹𝐿(·), respectively.

Again our idea is to modify a pair of consecutive probabilities, to achieve a greater

revenue. Given any calendar 𝑣 = (𝑣1, 𝑣2, ..., 𝑣𝑛), where 𝑣1 ≥ 𝑣2 ≥ ... ≥ 𝑣𝑇 . If

∃𝜏 ∈ [𝑇 − 1], such that 𝑣𝜏 < 1, 𝑣𝜏+1 > 0, 𝑣𝜏 ≥ 𝑣𝜏+1, we compare to another calendar:

𝑣* = (𝑣1, 𝑣2, ..., 𝑣𝑡−1, 𝑣𝑡 + 𝛿, 𝑣𝑡+1 − 𝛿, 𝑣𝑡+2, ..., 𝑣𝑇 )

where 𝑡 = sup𝜏∈[𝑇−1] {𝑣𝜏 < 1, 𝑣𝜏+1 > 0, 𝑣𝜏 ≥ 𝑣𝜏+1} and 0 ≤ 𝛿 ≤ min{1 − 𝑣𝑡, 𝑣𝑡+1}.

Notice that 𝑡 is the largest element in this set {𝑣𝜏 < 1, 𝑣𝜏+1 > 0, 𝑣𝜏 ≥ 𝑣𝜏+1}, which

indicates that ∀𝜏 ≥ 𝑡 + 2, 𝑣𝜏 = 0. Since we are changing probabilities from period 𝑡,

the expected revenue does not change before period 𝑡.

Let 𝐽𝑣,𝑡(𝑐) denote the expected revenue we would earn under calendar 𝑣 if we

were endowed with 𝑐 units of inventory at the beginning of period 𝑡. Its expectation

is taken over future demand randomness.

Let 𝐴(𝑐, 𝑡) denote the event “𝑐 units of inventory at the beginning of period 𝑡”,

where 𝑐 ∈ [0, 𝑏], 𝑡 ∈ [𝑇 ]. Then for any 𝑐 ∈ [0, 𝑏], conditioning on 𝐴(𝑐, 𝑡) we can expand

the expression of the expected revenue. We proceed from equation (A.17):

𝐽𝑣*,𝑡(𝑐) =(𝑣𝑡 + 𝛿)(1 − 𝑣𝑡+1 + 𝛿)(𝑝H − 𝑝L)E [min{𝑐,𝑄H,𝑡}]

− (1 − 𝑣𝑡 − 𝛿)(𝑣𝑡+1 − 𝛿)(𝑝H − 𝑝L)E [min{𝑐,𝑄L,𝑡}]

+ (𝑣𝑡 + 𝛿)(𝑣𝑡+1 − 𝛿)𝑝HE [min{𝑐,𝑄H,𝑡 + 𝑄H,𝑡+1}]

+ (𝑣𝑡 + 𝛿)(1 − 𝑣𝑡+1 + 𝛿)𝑝LE [min{𝑐,𝑄H,𝑡 + 𝑄L,𝑡+1}]

+ (1 − 𝑣𝑡 − 𝛿)(𝑣𝑡+1 − 𝛿)𝑝HE [min{𝑐,𝑄L,𝑡 + 𝑄H,𝑡+1}]

+ (1 − 𝑣𝑡 − 𝛿)(1 − 𝑣𝑡+1 + 𝛿)𝑝LE [min{𝑐,𝑄L,𝑡 + 𝑄L,𝑡+1}]

+ (𝑣𝑡 + 𝛿)(𝑣𝑡+1 − 𝛿)E
[︀
𝐽𝑣,𝑡+2((𝑐−𝑄H,𝑡 −𝑄H,𝑡+1)

+)
]︀

+ (𝑣𝑡 + 𝛿)(1 − 𝑣𝑡+1 + 𝛿)E
[︀
𝐽𝑣,𝑡+2((𝑐−𝑄H,𝑡 −𝑄L,𝑡+1)

+)
]︀

+ (1 − 𝑣𝑡 − 𝛿)(𝑣𝑡+1 − 𝛿)E
[︀
𝐽𝑣,𝑡+2((𝑐−𝑄L,𝑡 −𝑄H,𝑡+1)

+)
]︀

+ (1 − 𝑣𝑡 − 𝛿)(1 − 𝑣𝑡+1 + 𝛿)E
[︀
𝐽𝑣,𝑡+2((𝑐−𝑄L,𝑡 −𝑄L,𝑡+1)

+)
]︀

(A.20)

203



where equality holds because calendars 𝑣 and 𝑣* are the same from period 𝑡 + 2.

Using (A.18) and (A.19), we subtract (A.20) and (A.17) to calculate their differ-

ence, conditioning on 𝐴(𝑐, 𝑡):

𝐽𝑣*,𝑡(𝑐) − 𝐽𝑣,𝑡(𝑐) =𝛿(1 − 𝑣𝑡+1 + 𝑣𝑡 + 𝛿)(𝑝H − 𝑝L)E [min{𝑐,𝑄H,𝑡}]

+ 𝛿(1 − 𝑣𝑡 + 𝑣𝑡+1 − 𝛿)(𝑝H − 𝑝L)E [min{𝑐,𝑄L,𝑡}]

+ 𝛿(𝑣𝑡+1 − 𝑣𝑡 − 𝛿)𝑝HE [min{𝑐,𝑄H,𝑡 + 𝑄H,𝑡+1}]

+ 𝛿(1 − 𝑣𝑡+1 + 𝑣𝑡 + 𝛿)𝑝LE [min{𝑐,𝑄H,𝑡 + 𝑄L,𝑡+1}]

+ 𝛿(−1 + 𝑣𝑡 − 𝑣𝑡+1 + 𝛿)𝑝HE [min{𝑐,𝑄L,𝑡 + 𝑄H,𝑡+1}]

+ 𝛿(−𝑣𝑡 + 𝑣𝑡+1 − 𝛿)𝑝LE [min{𝑐,𝑄L,𝑡 + 𝑄L,𝑡+1}]

+ 𝛿(𝑣𝑡+1 − 𝑣𝑡 − 𝛿)E
[︀
𝐽𝑣,𝑡+2((𝑐−𝑄H,𝑡 −𝑄H,𝑡+1)

+)
]︀

+ 𝛿(−𝑣𝑡+1 + 𝑣𝑡 + 𝛿)E
[︀
𝐽𝑣,𝑡+2((𝑐−𝑄H,𝑡 −𝑄L,𝑡+1)

+)
]︀

+ 𝛿(𝑣𝑡 − 𝑣𝑡+1 + 𝛿)E
[︀
𝐽𝑣,𝑡+2((𝑐−𝑄L,𝑡 −𝑄H,𝑡+1)

+)
]︀

+ 𝛿(−𝑣𝑡 + 𝑣𝑡+1 − 𝛿)E
[︀
𝐽𝑣,𝑡+2((𝑐−𝑄L,𝑡 −𝑄L,𝑡+1)

+)
]︀

Merging similar expressions we have the following:

𝐽𝑣*,𝑡(𝑐) − 𝐽𝑣,𝑡(𝑐)

𝛿

=(𝑝H − 𝑝L) {E [min{𝑐,𝑄H,𝑡}] + E [min{𝑐,𝑄L,𝑡}] − E [min{𝑐,𝑄H,𝑡 + 𝑄L,𝑡+1}]}

+ (𝑣𝑡 − 𝑣𝑡+1 + 𝛿)(𝑝H − 𝑝L)E [min{𝑐,𝑄H,𝑡}]

− (𝑣𝑡 − 𝑣𝑡+1 + 𝛿)(𝑝H − 𝑝L)E [min{𝑐,𝑄L,𝑡}]

− (𝑣𝑡 − 𝑣𝑡+1 + 𝛿)𝑝HE [min{𝑐,𝑄H,𝑡 + 𝑄H,𝑡+1}]

+ (𝑣𝑡 − 𝑣𝑡+1 + 𝛿)𝑝LE [min{𝑐,𝑄H,𝑡 + 𝑄L,𝑡+1}]

+ (𝑣𝑡 − 𝑣𝑡+1 + 𝛿)𝑝HE [min{𝑐,𝑄L,𝑡 + 𝑄H,𝑡+1}]

− (𝑣𝑡 − 𝑣𝑡+1 + 𝛿)𝑝LE [min{𝑐,𝑄L,𝑡 + 𝑄L,𝑡+1}]

− (𝑣𝑡 − 𝑣𝑡+1 + 𝛿)E
[︀
𝐽𝑣,𝑡+2((𝑐−𝑄H,𝑡 −𝑄H,𝑡+1)

+)
]︀

+ (𝑣𝑡 − 𝑣𝑡+1 + 𝛿)E
[︀
𝐽𝑣,𝑡+2((𝑐−𝑄H,𝑡 −𝑄L,𝑡+1)

+)
]︀

+ (𝑣𝑡 − 𝑣𝑡+1 + 𝛿)E
[︀
𝐽𝑣,𝑡+2((𝑐−𝑄L,𝑡 −𝑄H,𝑡+1)

+)
]︀
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− (𝑣𝑡 − 𝑣𝑡+1 + 𝛿)E
[︀
𝐽𝑣,𝑡+2((𝑐−𝑄L,𝑡 −𝑄L,𝑡+1)

+)
]︀

≥(𝑣𝑡 − 𝑣𝑡+1 + 𝛿)(𝑝H − 𝑝L) {E [min{𝑐,𝑄H,𝑡}] + E [min{𝑐,𝑄L,𝑡}]

−E [min{𝑐,𝑄H,𝑡 + 𝑄L,𝑡+1}]}

+ (𝑣𝑡 − 𝑣𝑡+1 + 𝛿)(𝑝H − 𝑝L)E [min{𝑐,𝑄H,𝑡}]

− (𝑣𝑡 − 𝑣𝑡+1 + 𝛿)(𝑝H − 𝑝L)E [min{𝑐,𝑄L,𝑡}]

− (𝑣𝑡 − 𝑣𝑡+1 + 𝛿)𝑝HE [min{𝑐,𝑄H,𝑡 + 𝑄H,𝑡+1}]

+ (𝑣𝑡 − 𝑣𝑡+1 + 𝛿)𝑝LE [min{𝑐,𝑄H,𝑡 + 𝑄L,𝑡+1}]

+ (𝑣𝑡 − 𝑣𝑡+1 + 𝛿)𝑝HE [min{𝑐,𝑄L,𝑡 + 𝑄H,𝑡+1}]

− (𝑣𝑡 − 𝑣𝑡+1 + 𝛿)𝑝LE [min{𝑐,𝑄L,𝑡 + 𝑄L,𝑡+1}]

− (𝑣𝑡 − 𝑣𝑡+1 + 𝛿)E
[︀
𝐽𝑣,𝑡+2((𝑐−𝑄H,𝑡 −𝑄H,𝑡+1)

+)
]︀

+ (𝑣𝑡 − 𝑣𝑡+1 + 𝛿)E
[︀
𝐽𝑣,𝑡+2((𝑐−𝑄H,𝑡 −𝑄L,𝑡+1)

+)
]︀

+ (𝑣𝑡 − 𝑣𝑡+1 + 𝛿)E
[︀
𝐽𝑣,𝑡+2((𝑐−𝑄L,𝑡 −𝑄H,𝑡+1)

+)
]︀

− (𝑣𝑡 − 𝑣𝑡+1 + 𝛿)E
[︀
𝐽𝑣,𝑡+2((𝑐−𝑄L,𝑡 −𝑄L,𝑡+1)

+)
]︀

where the inequality holds because 𝛿 ≤ min{1 − 𝑣𝑡, 𝑣𝑡+1} so 𝑣𝑡 − 𝑣𝑡+1 + 𝛿 ≤ 1, and

because of Lemma A.1.

Further merging similar expressions, while using (A.18) and (A.19) we have the

following:

𝐽𝑣*,𝑡(𝑐) − 𝐽𝑣,𝑡(𝑐)

𝛿(𝑣𝑡 − 𝑣𝑡+1 + 𝛿)
≥(𝑝H − 𝑝L) {2E [min{𝑐,𝑄H,𝑡}] − E [min{𝑐,𝑄H,𝑡 + 𝑄H,𝑡+1}]}

− 𝑝LE [min{𝑐,𝑄H,𝑡 + 𝑄H,𝑡+1}]

+ 𝑝LE [min{𝑐,𝑄H,𝑡 + 𝑄L,𝑡+1}]

+ 𝑝LE [min{𝑐,𝑄L,𝑡 + 𝑄H,𝑡+1}]

− 𝑝LE [min{𝑐,𝑄L,𝑡 + 𝑄L,𝑡+1}]

− E
[︀
𝐽𝑣,𝑡+2((𝑐−𝑄H,𝑡 −𝑄H,𝑡+1)

+)
]︀

+ E
[︀
𝐽𝑣,𝑡+2((𝑐−𝑄H,𝑡 −𝑄L,𝑡+1)

+)
]︀

+ E
[︀
𝐽𝑣,𝑡+2((𝑐−𝑄L,𝑡 −𝑄H,𝑡+1)

+)
]︀
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− E
[︀
𝐽𝑣,𝑡+2((𝑐−𝑄L,𝑡 −𝑄L,𝑡+1)

+)
]︀

≥− 𝑝LE [min{𝑐,𝑄H,𝑡 + 𝑄H,𝑡+1}]

+ 𝑝LE [min{𝑐,𝑄H,𝑡 + 𝑄L,𝑡+1}]

+ 𝑝LE [min{𝑐,𝑄L,𝑡 + 𝑄H,𝑡+1}]

− 𝑝LE [min{𝑐,𝑄L,𝑡 + 𝑄L,𝑡+1}]

− E
[︀
𝐽𝑣,𝑡+2((𝑐−𝑄H,𝑡 −𝑄H,𝑡+1)

+)
]︀

+ E
[︀
𝐽𝑣,𝑡+2((𝑐−𝑄H,𝑡 −𝑄L,𝑡+1)

+)
]︀

+ E
[︀
𝐽𝑣,𝑡+2((𝑐−𝑄L,𝑡 −𝑄H,𝑡+1)

+)
]︀

− E
[︀
𝐽𝑣,𝑡+2((𝑐−𝑄L,𝑡 −𝑄L,𝑡+1)

+)
]︀

where the second inequality is due to Lemma A.1.

Now let us introduce a coupling argument: suppose 𝑈𝜏 , 𝜏 = 𝑡, 𝑡+1 are two uniform

distributions over [0, 1], and let 𝑄H,𝜏 = 𝐹−1H (𝑈𝜏 ), 𝑄L,𝜏 = 𝐹−1L (𝑈𝜏 ), 𝜏 = 𝑡, 𝑡 + 1. Since

𝐹H and 𝐹L are CDF’s of distributions, they are monotone increasing, thus the inverse

function exists. And for any specific realization of 𝑈𝜏 , 𝜏 = 𝑡, 𝑡 + 1, we know that

𝑄H,𝜏 ≤ 𝑄L,𝜏 or 𝑄H,𝜏 ≥ 𝑄L,𝜏 , due to Assumption 2.3.

Now we only need to understand 𝐽𝑣,𝑡+2(𝑐) as a function of 𝑐 ∈ [0, 𝑏]. Apparently

𝐽𝑣,𝑡+2(0) = 0. Let us denote the distribution of random demands in the last 𝑇 − 𝑡+ 1

periods as 𝑋, whose CDF denoted as 𝐹 . 𝑋 is a non-negative random variable. We sell

at the lower price from period 𝑡+ 2, and so the expected revenue in the last 𝑇 − 𝑡+ 1

periods is calculated as 𝐽𝑣,𝑡+2(𝑐) = 𝑝LE[min{𝑐,𝑋}] = 𝑝L
∫︀
[0,𝑏]

min{𝑐, 𝑢}d𝐹 (𝑢). Due to

Fubini’s theorem, we can perform integration by part, and have:

𝐽𝑣,𝑡+2(𝑐) =𝑝L

∫︁
[0,𝑏]

min{𝑐, 𝑢}d𝐹 (𝑢)

=𝑝L

∫︁
[0,𝑐]

𝑢d𝐹 (𝑢) + 𝑝L

∫︁
[𝑐,𝑏]

𝑐d𝐹 (𝑢)

=𝑝L(𝑐𝐹 (𝑐) −
∫︁
[0,𝑐]

𝐹 (𝑢)d𝑢) + 𝑝L(𝑐− 𝑐𝐹 (𝑐))

=𝑝L(𝑐−
∫︁
[0,𝑐]

𝐹 (𝑢)d𝑢)
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This is a differentiable function with respect to 𝑐. Taking derivative we have: 𝐽 ′𝑣,𝑡+2(𝑐) =

𝑝L(1 − 𝐹 (𝑐)) ∈ [0, 𝑝L]. Since 𝐹 (𝑐) is a CDF, thus non-decreasing, we know that

𝐽 ′𝑣,𝑡+2(𝑐) is non-increasing. So 𝐽𝑣,𝑡+2(𝑐) is concave. Due to Lemma A.2 we finish our

proof.

Now let us prove Lemma 2.13.

Proof. Proof of Lemma 2.13. Let us start from the second calendar described in

Lemma 2.12. We will show that by finitely applying Corollary A.10.1 and Lemma A.11

we can obtain the first calendar described in Lemma 2.12, which earns a greater

revenue.

First deduct from Corollary A.10.1 that the randomized policy is non-increasing.

Then by Lemma A.11 we can change the last pair of probabilities with non-increasing

order, i.e. 𝑡 = sup𝜏∈[𝑇−1] {𝑣𝜏 < 1, 𝑣𝜏+1 > 0, 𝑣𝜏 ≥ 𝑣𝜏+1}, from (𝑣𝑡, 𝑣𝑡+1) to (𝑣𝑡+𝛿, 𝑣𝑡+1−

𝛿) with 𝛿 = max{1 − 𝑣𝑡, 𝑣𝑡+1} ≥ 0 to achieve a larger revenue. After such change,

either 𝑣𝑡 = 1 or 𝑣𝑡+1 = 0 so we know that the total number of fractional (strictly

greater than 0 and smaller than 1) periods have decreased by 1. By repeatedly

applying Corollary A.10.1 and Lemma A.11 we will obtain the optimal randomized

policy as described.

A.13 Necessity of Two Prices in Single-Item Pricing

Problem: Proof of Proposition 2.14

Proof. Proof of Proposition 2.14. Construct the following instance. Let there be 𝑇

periods and 𝑏 = 1 unit of initial inventory. Let 𝑇 be some large number. There are

two prices 𝑝1 = 3, 𝑝2 = 2. Let random demand be Bernoulli random variables. The

purchase probability of offering the higher price 𝑝1 is 𝑞1 = 1/2𝑇 ; of offering the lower

price 𝑝2 is 𝑞2 = 1.

The LP upper bound suggests a total of 4𝑇−3
2𝑇−1 ≈ 2 units of revenue. Only offering

the higher price 𝑝1 suggests a total of 3 ·E[min{Bin(𝑇, 1/2𝑇 ), 1}] = 3 · (1− 1/2𝑇 )𝑇 ≈

1 · (1− 𝑒−1) ≈ 1.180 units of revenue. Only offering the lower price 𝑝2 suggests a total
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of 1 unit of revenue. max{1.180, 1} < 2 · (1 − 1/𝑒) ≈ 1.264. So the expected revenue

of either single-price policy is strictly smaller than expression (2.9), which finishes the

tightness proof.

A.14 Proof of Theorem 2.15

We prove Theorem 2.15 in the general [0,1]-demand setting; the {0,1}-demand setting

is a special case of it.

Proof. Proof of Theorem 2.15. Let 𝑗𝑡,∀𝑡 ∈ [𝑇 ] denote the prices selected from ex-

pression (2.19). Denote 𝐵𝑡 to be the remaining inventory at the end of time 𝑡, with

𝐵0 = 0. Denote 𝑄𝑡 to be the inventory at time 𝑡 that customer would have de-

manded if price 𝑝𝑗𝑡 is offered in time period 𝑡, which can take any value in [0, 1].

Then min{𝑄𝑡, 𝐵𝑡−1} is the actual sales at time 𝑡.

We let E[Rev] denote the expected revenue earned by the deterministic calendar

suggested in Algorithm 6, which can be written as:

E[Rev] =
𝑇∑︁
𝑡=1

𝑝𝑗𝑡E[min{𝑄𝑡, 𝐵𝑡−1}]

=
𝑇∑︁
𝑡=1

(𝑝𝑗𝑡 −
OPTLP

2𝑏
)E[min{𝑄𝑡, 𝐵𝑡−1}] +

OPTLP

2𝑏

𝑇∑︁
𝑡=1

E[min{𝑄𝑡, 𝐵𝑡−1}]

=
𝑇∑︁
𝑡=1

(𝑝𝑗𝑡 −
OPTLP

2𝑏
)E[min{𝑄𝑡, 𝐵𝑡−1}] +

OPTLP

2𝑏
(𝑏− E[𝐵𝑇 ])

Now, note that the inventory level 𝐵𝑡 is decreasing in 𝑡 and that each (𝑝𝑎𝑡− OPTLP

2𝑏
)

term is non-negative, so we can bound each 𝐵𝑡−1 from below by 𝐵𝑇 . The following

can then be derived:

E[Rev] =
𝑇∑︁
𝑡=1

(𝑝𝑗𝑡 −
OPTLP

2𝑏
)E[min{𝑄𝑡, 𝐵𝑡−1} ·

𝑄𝑡𝐵𝑡−1

min{𝑄𝑡, 𝐵𝑡−1}max{𝑄𝑡, 𝐵𝑡−1}
]

+
OPTLP

2
(1 − E[𝐵𝑇 ]

𝑏
)
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≥
𝑇∑︁
𝑡=1

(𝑝𝑗𝑡 −
OPTLP

2𝑏
)E[

𝑄𝑡𝐵𝑡−1

𝑏
] +

OPTLP

2
(1 − E[𝐵𝑇 ]

𝑏
)

≥ E[𝐵𝑇 ]

𝑏

𝑇∑︁
𝑡=1

(𝑝𝑗𝑡 −
OPTLP

2𝑏
)𝑞𝑡𝑗𝑡 +

OPTLP

2
(1 − E[𝐵𝑇 ]

𝑏
)

≥ E[𝐵𝑇 ]

𝑏

𝑇∑︁
𝑡=1

𝐽∑︁
𝑗=1

(𝑝𝑗 −
OPTLP

2𝑏
)𝑞𝑡𝑗𝑥

*
𝑡𝑗 +

OPTLP

2
(1 − E[𝐵𝑇 ]

𝑏
)

≥ E[𝐵𝑇 ]

𝑏

(︁
OPTLP − OPTLP

2𝑏
· 𝑏
)︁

+
OPTLP

2
(1 − E[𝐵𝑇 ]

𝑏
)

=
OPTLP

2

where the first inequality is because ∀𝑡 ∈ [𝑇 ], 𝑄𝑡 ≤ 𝑏 and 𝐵𝑡 ≤ 𝑏; second inequality

is because 𝐵𝑡 is decreasing in 𝑡; third inequality follows from the optimality of 𝑗𝑡 in

expression (2.19); and the fourth inequality follows from constraint (2.15) in DLP-

N.
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Appendix B

Appendix to Chapter 3

B.1 Proof of Theorem 3.1.

Proof. Proof of Theorem 3.1 under NRM setup. For any problem instance ℐ =

(𝑇,𝐵, 𝐾, 𝑑, 𝑛,𝑝, 𝐴;𝑄). Any policy 𝜋 ∈ Π[Λ − 2] only selects no more than (Λ − 1)

many price vectors. For any 𝑘 ∈ [𝐾], let 𝜏𝑘 be the total number of periods that price

𝑝𝑘 is offered during the selling horizon, under policy 𝜋. Notice that 𝜏𝑘 is a random

variable, i.e., it is determined by the random trajectory of demand realization and

action selection. Since 𝜋 ∈ Π[Λ− 2], we know that for any realization of the random

vector (𝜏1, . . . , 𝜏𝐾), it has at most Λ − 1 non-zero components.

Now denote 𝑌𝑗,𝑘 as the random amount of product 𝑗 sold, during the 𝜏𝑘 periods

that price vector 𝑘 is offered. Here 𝜏𝑘 is a random amount, so we cannot directly

use Hoeffding inequality to connect 𝑌𝑗,𝑘 with 𝜏𝑘𝑞𝑗,𝑘. But we can adapt the trick from

Chapter 1.3 of Slivkins (2019). Suppose there was a tape of length 𝑇 for each product

𝑗 ∈ [𝑛] and each price vector 𝑘 ∈ [𝐾], with each cell independently sampled from the

distribution of 𝑄𝑗,𝑘. This tape serves as a coupling of the random demand: in each

period 𝑡 if price vector 𝑘 is offered, we simply generate a demand of each product

𝑗 ∈ [𝑛] from the 𝑡th cell of the tape associated with product 𝑗 and price vector 𝑘. Let

𝑌𝑗,𝑘(𝑡) denote the random amount of product 𝑗 sold, during the first 𝑡 periods that

the price vector 𝑘 is offered. Now we can use Hoeffding inequality on each reward
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tape:

∀𝑘,∀𝑗,∀𝑡,Pr
(︁
|𝑌𝑗,𝑘(𝑡) − 𝑡𝑞𝑗,𝑘| ≤

√︀
3𝑡 log 𝑇

)︁
≥ 1 − 2

𝑇 6
.

Denote the following “clean event” 𝐸:

∀𝑘,∀𝑗,∀𝑡, |𝑌𝑗,𝑘(𝑡) − 𝑡𝑞𝑗,𝑘| ≤
√︀

3𝑡 log 𝑇 .

Using a union bound we have:

Pr
(︁
∀𝑘,∀𝑗,∀𝑡, |𝑌𝑗,𝑘 − 𝑡𝑞𝑗,𝑘| ≤

√︀
3𝑡 log 𝑇

)︁
≥ 1 − 2

𝑇 3

because 𝐾,𝑛 are both less than 𝑇 , and each arm cannot be pulled longer than 𝑇

periods. The happening of such event implies that

∀𝑗,∀𝑘, |𝑌𝑗,𝑘 − 𝜏𝑘𝑞𝑗,𝑘| ≤
√︀

3𝜏𝑘 log 𝑇 ,

i.e., the realized demands are close to the expected demands, suggesting that we can

use LP to approximately bound the revenue generated by any policy 𝜋 ∈ Π[Λ− 2].

Specifically, we use the following arguments. If we focus on the usage of any price

vector indexed by 𝑘 ∈ [𝐾], the total revenue is
∑︀

𝑗∈[𝑛] 𝑌𝑗,𝑘𝑝𝑗,𝑘. Thus, conditional on

𝐸, the total revenue generated by policy 𝜋 during the entire horizon can be upper

bounded by

∑︁
𝑘∈[𝐾]

∑︁
𝑗∈[𝑛]

𝑌𝑗,𝑘𝑝𝑗,𝑘 ≤
∑︁
𝑘∈[𝐾]

∑︁
𝑗∈[𝑛]

(𝑞𝑗,𝑘𝜏𝑘 +
√︀

3𝑇 log 𝑇 )𝑝𝑗,𝑘

≤ (
∑︁
𝑘∈[𝐾]

∑︁
𝑗∈[𝑛]

𝑞𝑗,𝑘𝜏𝑘𝑝𝑗,𝑘) + 𝑛𝑑𝑝max

√︀
3𝑇 log 𝑇 ,

where the last inequality follows from 𝜋 ∈ Π[Λ − 2] and Λ ≤ 𝑑 + 1. On the other

hand, the consumption of resource 𝑖 must not violate the resource constraints.

∑︁
𝑘∈[𝐾]

∑︁
𝑗∈[𝑛]

𝑌𝑗,𝑘𝑎𝑖𝑗 ≤ 𝐵𝑖.
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Lower bounding 𝑌𝑗,𝑘 by 𝑞𝑗,𝑘𝜏𝑘 −
√

3𝑇 log 𝑇 we have

∑︁
𝑘∈[𝐾]

∑︁
𝑗∈[𝑛]

𝑎𝑖𝑗𝑞𝑗,𝑘𝜏𝑘 ≤ 𝐵𝑖 +
∑︁
𝑘∈[𝐾]

∑︁
𝑗∈[𝑛]

√︀
3𝑇 log 𝑇 ≤ 𝐵𝑖 + 𝑛𝑑

√︀
3𝑇 log 𝑇 .

These suggest that conditional on 𝐸, any policy 𝜋 ∈ Π[Λ − 2] always satisfies the

following constraints:

∑︁
𝑘∈[𝐾]

∑︁
𝑗∈[𝑛]

𝑎𝑖𝑗 𝑞𝑗,𝑘 𝜏𝑘 ≤ 𝐵𝑖 + 𝑛2
√︀

3𝑇 log 𝑇 ∀ 𝑖 ∈ [𝑑]

∑︁
𝑘∈[𝐾]

𝜏𝑘 ≤ 𝑇

𝜏𝑙 = 0 ∃𝑙 ∈ [𝐾]

𝜏𝑘 ≥ 0 ∀ 𝑘 ∈ [𝐾],

with its total revenue upper bounded by

∑︁
𝑘∈[𝐾]

∑︁
𝑗∈[𝑛]

𝑝𝑗,𝑘𝑞𝑗,𝑘𝜏𝑘 + 𝑛𝑑𝑝max

√︀
3𝑇 log 𝑇 .

Recall that the optimal solution to the DLP uses Λ many price vectors. We have

used 𝒵(𝑥*) to denote the set of price indices that are non-zero in the optimal solution

to the DLP. For any 𝑙 ∈ 𝒵(𝑥*), define a family of linear programs parameterized by

𝑙,

(DLPl) JDLP
𝑙 = max

(𝑥𝑘)𝑘∈[𝐾]

∑︁
𝑘∈[𝐾]

∑︁
𝑗∈[𝑛]

𝑝𝑗,𝑘 𝑞𝑗,𝑘 𝑥𝑘

s.t.
∑︁
𝑘∈[𝐾]

∑︁
𝑗∈[𝑛]

𝑎𝑖𝑗 𝑞𝑗,𝑘 𝑥𝑘 ≤ 𝐵𝑖 ∀ 𝑖 ∈ [𝑑]

∑︁
𝑘∈[𝐾]

𝑥𝑘 ≤ 𝑇

𝑥𝑙 = 0

𝑥𝑘 ≥ 0 ∀ 𝑘 ∈ [𝐾],
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such that this family of linear programs use no more than (Λ− 1) non-zero variables.

Now construct the following LP’s, which we denote as “perturbed LP’s”:

(DLPl Perturbed) JPerturbed𝑙 = max
(𝑥𝑘)𝑘∈[𝐾]

∑︁
𝑘∈[𝐾]

∑︁
𝑗∈[𝑛]

𝑝𝑗,𝑘 𝑞𝑗,𝑘 𝑥𝑘

s.t.
∑︁
𝑘∈[𝐾]

∑︁
𝑗∈[𝑛]

𝑎𝑖𝑗 𝑞𝑗,𝑘 𝑥𝑘 ≤ 𝐵𝑖 + 𝑛𝑑
√︀

3𝑇 log 𝑇 ∀ 𝑖 ∈ [𝑑]

∑︁
𝑘∈[𝐾]

𝑥𝑘 ≤ 𝑇

𝑥𝑙 = 0

𝑥𝑘 ≥ 0 ∀ 𝑘 ∈ [𝐾],

Since from each solution 𝑥* of the Perturbed DLPl, we can find a corresponding dis-

counted solution 𝑥*/(1 + (𝑛𝑑
√

3𝑇 log 𝑇 )/𝐵min) that is feasible to the DLPl. This

suggests that JPerturbed𝑙 ≤ JDLP
𝑙 · (1 + (𝑛𝑑

√
3𝑇 log 𝑇 )/𝐵min), because DLPl is a maxi-

mization problem.

Next we define an instance-dependent gap between the maximum objective value

of DLPl, and the objective value of DLP. Let ∆ = (JDLP−max𝑙∈𝒵(𝑥*) J
DLP
𝑙 )/JDLP−G be

such an instance-dependent gap normalized by JDLP. Importantly, while JDLP scales

linearly with 𝑇 and 𝐵, ∆ remain fixed as 𝑇 and 𝐵 grow.

Putting everything together, we obtain the following result: conditional on event

𝐸 that happens with probability at least 1 − 2
𝑇 3 , for any policy 𝜋 ∈ Π[Λ − 2] and

any possible realization of (𝜏1, . . . , 𝜏𝐾), the total revenue collected during the selling

horizon is upper bounded by

max
𝑙∈𝒵(𝑥*)

JPerturbed𝑙 + 𝑛𝑑
√︀

3𝑇 log 𝑇𝑝max

≤ max
𝑙∈𝒵(𝑥*)

JDLP
𝑙 · (1 +

𝑛𝑑
√

3𝑇 log 𝑇

𝐵min
) + 𝑛𝑑

√︀
3𝑇 log 𝑇𝑝max

≤ (JDLP − ∆JDLP) · (1 +
𝑛𝑑

√
3𝑇 log 𝑇

𝐵min
) + 𝑛𝑑

√︀
3𝑇 log 𝑇𝑝max,
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which suggests that

Rev(𝜋) ≤ (JDLP −∆JDLP) · (1 +
𝑛𝑑

√
3𝑇 log 𝑇

𝐵min
) + 𝑛𝑑

√︀
3𝑇 log 𝑇𝑝max + 1 = JDLP −Ω(𝑇 ).

Proof. Proof of Theorem 3.1 under SP Setup. In this setup, for any problem instance

ℐ = (𝑇,𝐵, 𝐾, 𝑑;𝐶,𝑅), we consider an arbitrary policy 𝜋 ∈ Π[Λ− 2] that only selects

no more than (Λ−1) many arms. For any 𝑘 ∈ [𝐾], let 𝜏𝑘 be the total number of periods

that action 𝑘 is offered during the selling horizon, under policy 𝜋. Notice that 𝜏𝑘 is a

random variable, i.e., it is determined by the random trajectory of reward and cost

realization and action selection. Since 𝜋 ∈ Π[Λ− 2], we know that for any realization

of the random vector (𝜏1, . . . , 𝜏𝐾), it has at most Λ − 1 non-zero components.

Now denote 𝐶𝑠
𝑖,𝑘 as the random amount of resource 𝑖 consumed, during the 𝜏𝑘

periods that arm 𝑘 is pulled; denote 𝑅𝑠
𝑘 as the random amount of rewards generated,

during the 𝜏𝑘 periods that arm 𝑘 is pulled. Here 𝜏𝑘 is a random amount, so we

cannot directly use Hoeffding inequality. But again we can use the “reward tape”

trick demonstrated in the previous proof under the NRM setup. Let 𝐶𝑠
𝑖,𝑘(𝑡) denote

the random amount of resource 𝑖 consumed, during the first 𝑡 periods that the arm 𝑘

is pulled; let 𝑅𝑠
𝑘(𝑡) denote the random amount of rewards generated, during the first

𝑡 periods that arm 𝑘 is pulled. Now we can use Hoeffding inequality on each reward

tape:

∀𝑘,∀𝑖, ∀𝑡,Pr
(︁⃒⃒
𝐶𝑠

𝑖,𝑘(𝑡) − 𝑡𝑐𝑖,𝑎𝑙
⃒⃒
≤ 𝐶max

√︀
3𝑡 log 𝑇

)︁
≥ 1 − 2

𝑇 6
;

∀𝑘,∀𝑡,Pr
(︁
|𝑅𝑠

𝑘(𝑡) − 𝑡𝑟𝑘| ≤ 𝑅max

√︀
3𝑡 log 𝑇

)︁
≥ 1 − 2

𝑇 6
.

Denote the following event 𝐸:

∀𝑘,∀𝑖, ∀𝑡,
⃒⃒
𝐶𝑠

𝑖,𝑘(𝑡) − 𝑡𝑐𝑖,𝑘
⃒⃒
≤ 𝐶max

√︀
3𝑡 log 𝑇 ;

∀𝑘,∀𝑡, |𝑅𝑠
𝑘(𝑡) − 𝑡𝑟𝑘| ≤ 𝑅max

√︀
3𝑡 log 𝑇 .
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Using a union bound we have:

Pr (𝐸) ≥ 1 − 4

𝑇 3

because 𝐾, 𝑑 are both less than 𝑇 , and each arm cannot be pulled longer than 𝑇

periods. The happening of such event implies that

∀𝑘,∀𝑖,
⃒⃒
𝐶𝑠

𝑖,𝑘 − 𝜏𝑘𝑐𝑖,𝑘
⃒⃒
≤ 𝐶max

√︀
3𝜏𝑘 log 𝑇 ,

∀𝑘, |𝑅𝑠
𝑘 − 𝜏𝑘𝑟𝑘| ≤ 𝑅max

√︀
3𝜏𝑘 log 𝑇 ,

i.e., the realized rewards and costs are close to the expected values, suggesting that

we can use LP to approximately bound the total reward collected by any policy

𝜋 ∈ Π[Λ− 2].

Specifically, we use the following arguments. Conditional on 𝐸, for any realization

of (𝜏1, . . . , 𝜏𝐾), the total reward collected by policy 𝜋 during the entire horizon can

be upper bounded by

∑︁
𝑘∈[𝐾]

𝑅𝑠
𝑘 ≤

∑︁
𝑘∈[𝐾]

(𝑟𝑘𝜏𝑘 + 𝑅max

√︀
3𝑇 log 𝑇 )

≤ (
∑︁
𝑘∈[𝐾]

𝑟𝑘𝜏𝑘) + 𝑑𝑅max

√︀
3𝑇 log 𝑇 ,

where the last inequality follows from 𝜋 ∈ Π[Λ − 2] and Λ ≤ 𝑑 + 1. On the other

hand, the consumption of each resource 𝑖 must not violate the resource constraints.

∑︁
𝑘∈[𝐾]

𝐶𝑠
𝑖,𝑘 ≤ 𝐵𝑖.

Lower bounding 𝐶𝑠
𝑖,𝑘 by (𝜏𝑘𝑐𝑖,𝑘 − 𝐶max

√
3𝑇 log 𝑇 ) we have

∑︁
𝑘∈[𝐾]

𝜏𝑘𝑐𝑖,𝑘 ≤ 𝐵𝑖 +
∑︁
𝑘∈[𝐾]

𝐶max

√︀
3𝑇 log 𝑇 ≤ 𝐵𝑖 + 𝑑𝐶max

√︀
3𝑇 log 𝑇 .

These suggest that conditional on 𝐸, any policy 𝜋 ∈ Π[Λ − 2] always satisfies the
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following constraints:

∑︁
𝑘∈[𝐾]

𝑟𝑖,𝑘 𝜏𝑘 ≤ 𝐵𝑖 + 𝑑𝐶max

√︀
3𝑇 log 𝑇 ∀ 𝑖 ∈ [𝑑]

∑︁
𝑘∈[𝐾]

𝜏𝑘 ≤ 𝑇

𝜏𝑙 = 0 ∃𝑙 ∈ [𝐾]

𝜏𝑘 ≥ 0 ∀ 𝑘 ∈ [𝐾],

with its total collected reward is upper bounded by

∑︁
𝑘∈[𝐾]

𝑟𝑖,𝑘𝜏𝑘 + 𝑑𝑅max

√︀
3𝑇 log 𝑇 .

Recall that the optimal solution to the DLP-G uses Λ many prices. We have used

𝒵(𝑥*) to denote the set of price indices that are non-zero in the optimal solution to

the DLP-G. For any 𝑙 ∈ 𝒵(𝑥*), define a family of linear programs parameterized by

𝑙,

(DLPl − G) JDLP−G
𝑙 = max

(𝑥𝑘)𝑘∈[𝐾]

∑︁
𝑘∈[𝐾]

𝑟𝑘 𝑥𝑘

s.t.
∑︁
𝑘∈[𝐾]

𝑐𝑖,𝑘 𝑥𝑘 ≤ 𝐵𝑖 ∀ 𝑖 ∈ [𝑑]

∑︁
𝑘∈[𝐾]

𝑥𝑘 ≤ 𝑇

𝑥𝑙 = 0

𝑥𝑘 ≥ 0 ∀ 𝑘 ∈ [𝐾].

such that this family of linear programs use no more than (Λ− 1) non-zero variables.

Now construct the following LP’s, which we denote as “perturbed LP’s”:

(DLPl − G Perturbed) JPerturbed−G𝑙 = max
(𝑥𝑘)𝑘∈[𝐾]

∑︁
𝑘∈[𝐾]

𝑟𝑘 𝑥𝑘
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s.t.
∑︁
𝑘∈[𝐾]

𝑐𝑖,𝑘 𝑥𝑘 ≤ 𝐵𝑖 + 𝑑𝐶max

√︀
3𝑇 log 𝑇 ∀ 𝑖 ∈ [𝑑]

∑︁
𝑘∈[𝐾]

𝑥𝑘 ≤ 𝑇

𝑥𝑙 = 0

𝑥𝑘 ≥ 0 ∀ 𝑘 ∈ [𝐾].

Since from each solution 𝑥* of the Perturbed DLPl − G, we can find a corresponding

discounted solution 𝑥*/(1 + 𝑑𝐶max
√
3𝑇 log 𝑇

𝐵min
) that is feasible to the DLPl − G. This sug-

gests that JPerturbed𝑙 ≤ JDLP−G
𝑙 · (1 + 𝑑𝐶max

√
3𝑇 log 𝑇

𝐵min
), because DLP-G is a maximization

problem.

Next we define an instance-dependent gap between the maximum objective value

of DLPl, and the objective value of DLP-G. Let ∆ = (JDLP−G−max𝑙∈𝒵(𝑥*) J
DLP−G
𝑙 )/JDLP−G

be such an instance-dependent gap normalized by JDLP−G. Importantly, while JDLP

scales linearly with 𝑇 and 𝐵, ∆ remain fixed as 𝑇 and 𝐵 grow.

Putting everything together, we obtain the following result: conditional on event

𝐸 that happens with probability at least 1− 4
𝑇 3 , for any policy 𝜋 ∈ Π[Λ− 2] and any

possible realization of (𝜏1, . . . , 𝜏𝐾), the total collected reward is upper bounded by

max
𝑙∈𝒵(𝑥*)

JPerturbed−G𝑙 + 𝑑𝑅max

√︀
3𝑇 log 𝑇

≤ max
𝑙∈𝒵(𝑥*)

JDLP−G
𝑙 · (1 +

𝑑𝐶max

√
3𝑇 log 𝑇

𝐵min
) + 𝑑𝑅max

√︀
3𝑇 log 𝑇

≤ (JDLP−G − ∆JDLP−G) · (1 +
𝑑𝐶max

√
3𝑇 log 𝑇

𝐵min
) + 𝑑𝑅max

√︀
3𝑇 log 𝑇 ,

which suggests that

Rev(𝜋) ≤ (JDLP−G−∆JDLP−G)·(1+
𝑑𝐶max

√
3𝑇 log 𝑇

𝐵min
)+𝑑𝑅max

√︀
3𝑇 log 𝑇+1 = JDLP−Ω(𝑇 ).
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B.2 Proof of Theorem 3.2

In this section we prove Theorem 3.2 under two setups. For better exposition we

prove it two times under the two setups.

Proof. Proof of Theorem 3.2 under NRM Setup. Let 𝜋 be any policy suggested in

Algorithm 7. Let 𝑥* be the associated optimal solution. We prove Theorem 3.2 by

comparing the expected revenue earned by Algorithm 7 against a virtual policy 𝜋v.

This virtual policy 𝜋v mimics Algorithm 7 in steps 1–3. But in step 4, it sets the price

vector to be 𝑝𝜎(1) for the first 𝛾 ·𝑥*𝜎(1) periods, then 𝑝𝜎(2) for the next 𝛾 ·𝑥*𝜎(2) periods,

..., 𝑝𝜎(Λ) for the next 𝛾 · 𝑥*𝜎(Λ) periods, and finally 𝑝∞ for the last (𝑇 − 𝛾 ·
∑︀Λ

𝑙=1 𝑥
*
𝜎(𝑙))

periods. Here 𝑝∞ is a shut-off price, under which 𝑄𝑗(𝑝∞) = 0,∀𝑗 ∈ [𝑛].

Policy 𝜋v is virtual because it requires a shut-off price 𝑝∞ that may or may not

be available. Moreover, it requires Λ many price changes, which is more than (Λ− 1)

many changes as suggested in Algorithm 7.

Policy 𝜋v serves to bridge our analysis. It breaks our Theorem 3.2 into two in-

equalities that we will prove separately.

Rev(𝜋) ≥ Rev(𝜋v) ≥

(︃
1 − 2𝑎max

√︃
𝑛𝑇 log 𝑇

𝐵2
min

− 𝑑

𝑇 2

)︃
· JDLP (B.1)

For any policy 𝜋 as defined in Algorithm 7 and its associated virtual policy 𝜋v,

they both solve the same DLP and have the same optimal solution. To prove the

first inequality, note that both 𝜋 and 𝜋v commit to the same prices in the first

𝑇 := 𝛾 ·
∑︀Λ

𝑙=1 𝑥
*
𝜎(𝑙) time periods, and earns the same revenue following each trajectory

of random demand. At the end of period 𝑇 , policy 𝜋 still commits to 𝑝𝜎(Λ), while

policy 𝜋v makes one change and sets 𝑝∞. At the end of period 𝑇 , if the selling horizon

has ended due to inventory stock-outs, then either policy earns zero revenue, so 𝜋 and

𝜋v makes no difference. If the selling horizon has not ended and there is remaining

inventory for any resource, then policy 𝜋 earns non-negative revenue, while 𝜋v earns

zero by setup a shut-off price. Following each trajectory of random demand, policy

𝜋 earns more revenue than 𝜋v. As a result, Rev(𝜋) ≥ Rev(𝜋v).
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To prove the second inequality, we introduce the following notations. Let 1𝑡,𝑘,∀𝑘 ∈

[𝐾], 𝑡 ∈ [𝑇 ] be an indicator of whether or not policy 𝜋v offers price 𝑝𝑘 in period 𝑡.

1𝑡,𝑘 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1, if 𝑘 = 𝜎(1), 𝑡 ≤ 𝛾𝑥*𝜎(1);

1, if ∃1 < 𝑙0 ≤ Λ, 𝑠.𝑡.𝜎(𝑙0) = 𝑘, 𝛾

𝑙0−1∑︁
𝑙=1

𝑥*𝜎(𝑙) < 𝑡 ≤ 𝛾

𝑙0∑︁
𝑙=1

𝑥*𝜎(𝑙);

0, otherwise

1𝑡,𝑘 is deterministic once policy 𝜋v is determined.

Under policy 𝜋v, following each trajectory of random demand, we define the length

of the effective selling horizon 𝜏 as a function of a stopping time 𝑡0:

𝜏 = 𝑇 ∧ min

⎧⎨⎩𝑡0 − 1

⃒⃒⃒⃒
⃒⃒∃𝑖, 𝑠.𝑡. 𝑡0∑︁

𝑡=1

∑︁
𝑘∈[𝐾]

1𝑡,𝑘

∑︁
𝑗∈[𝑛]

𝑄𝑗,𝑘 · 𝑎𝑖𝑗 > 𝐵𝑖

⎫⎬⎭
The effective selling horizon is the minimum between (i) last period before the cu-

mulative demand of any resource exceeds its initial inventory, and (ii) the last period

before policy 𝜋v switches to the shut-off price.

Let 𝐷𝑡,𝑖 be the remaining inventory of resource 𝑖 at the end of period 𝑡. Under this

notation, 𝐷0,𝑖 = 𝐵𝑖. Note that 𝐷𝑡,𝑖 are random variables, and during the effective

selling horizon, inventory updates in the following fashion

∀𝑡 ∈ [𝜏 ], 𝐷𝑡,𝑖 = 𝐷𝑡−1,𝑖 −
∑︁
𝑘∈[𝐾]

1𝑡,𝑘

∑︁
𝑗∈[𝑛]

𝑄𝑗,𝑘 · 𝑎𝑖𝑗 ≥ 0 (B.2)

Now we calculate the expected revenue.

Rev(𝜋v) ≥ E𝑄𝑗,𝑘

⎡⎣ 𝑇∑︁
𝑡=1

1{∀𝑖,𝐷𝑡−1,𝑖≥𝑛𝑎max}
∑︁
𝑘∈[𝐾]

1𝑡,𝑘

∑︁
𝑗∈[𝑛]

𝑝𝑗,𝑘𝑄𝑗,𝑘

⎤⎦
=

𝑇∑︁
𝑡=1

Pr(∀𝑖,𝐷𝑡−1,𝑖 ≥ 𝑛𝑎max)
∑︁
𝑘∈[𝐾]

1𝑡,𝑘

∑︁
𝑗∈[𝑛]

𝑝𝑗,𝑘𝑞𝑗,𝑘
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≥ Pr(∀𝑖,𝐷𝑇 ,𝑖 ≥ 𝑛𝑎max)
𝑇∑︁
𝑡=1

∑︁
𝑘∈[𝐾]

1𝑡,𝑘

∑︁
𝑗∈[𝑛]

𝑝𝑗,𝑘𝑞𝑗,𝑘 (B.3)

We explain the inequalities. The first inequality is because we only focus on the

revenue earned if event {∀𝑖,𝐷𝑡−1,𝑖 ≥ 𝑛𝑎max} happens, while ignoring the revenue

earned if event {∀𝑖,𝐷𝑡−1,𝑖 ≥ 𝑛𝑎max} does not happen; and when event {∀𝑖,𝐷𝑡−1,𝑖 ≥

𝑛𝑎max} does happen, the maximum amount of any resource 𝑖 demanded in one single

period cannot exceed 𝑛𝑎max. The first equality is expanding the expectations, where

we use the fact that 1{∀𝑖,𝐷𝑡−1,𝑖≥𝑛𝑎max} and
∑︀

𝑘∈[𝐾] 1𝑡,𝑘

∑︀
𝑗∈[𝑛] 𝑝𝑗,𝑘𝑄𝑗,𝑘 are independent,

because the indicator is a random event happening up to period 𝑡 − 1, while the

summation term is a random amount happening in period 𝑡. The third inequality is

due to (B.2), 𝐷𝑡,𝑖 is decreasing in 𝑡, so 𝐷𝑡−1,𝑖 ≥ 𝐷𝑇 ,𝑖.

In this block of inequalities (B.3), the summation term

𝑇∑︁
𝑡=1

∑︁
𝑘∈[𝐾]

1𝑡,𝑘

∑︁
𝑗∈[𝑛]

𝑝𝑗,𝑘𝑞𝑗,𝑘 =
Λ∑︁

𝑙=1

∑︁
𝑘∈{𝜎(𝑙)=𝑘}

𝛾𝑥*𝑘
∑︁
𝑗∈[𝑛]

𝑝𝑗,𝑘𝑞𝑗,𝑘 = 𝛾JDLP,

since the indicators 1𝑡,𝑘 locate which 𝑘 counts into this summation. So the next thing

we do is to lower bound the probability.

Note that

E

⎡⎣ 𝑇∑︁
𝑡=1

∑︁
𝑘∈[𝐾]

1𝑡,𝑘

∑︁
𝑗∈[𝑛]

𝑄𝑗,𝑘 · 𝑎𝑖𝑗

⎤⎦ =
𝑇∑︁
𝑡=1

∑︁
𝑘∈[𝐾]

1𝑡,𝑘

∑︁
𝑗∈[𝑛]

𝑞𝑗,𝑘 · 𝑎𝑖𝑗

=
Λ∑︁

𝑙=1

∑︁
𝑘∈{𝜎(𝑙)=𝑘}

𝛾𝑥*𝑘
∑︁
𝑗∈[𝑛]

𝑞𝑗,𝑘𝑎𝑖𝑗

≤ 𝛾𝐵𝑖

< 𝐵𝑖 − 𝑛𝑎max

where the last (strict) inequality is because we plug in 𝛾 = 1 − 2𝑎max

√︁
𝑛𝑇 log 𝑇
𝐵2

min
.

This above inequality suggests that for any 𝑖 ∈ [𝑑], the expected cumulative

demand generated up till period 𝑇 is strictly less than 𝐵𝑖 − 𝑛𝑎max. So we can use
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concentration inequalities.

Pr(∀𝑖,𝐷𝑇 ,𝑖 ≥ 𝑛𝑎max)

= 1 − Pr

⎛⎝∃𝑖, 𝑠.𝑡.
𝑇∑︁
𝑡=1

∑︁
𝑘∈[𝐾]

1𝑡,𝑘

∑︁
𝑗∈[𝑛]

𝑄𝑗,𝑘 · 𝑎𝑖𝑗 ≥ 𝐵𝑖 − 𝑛𝑎max

⎞⎠
≥ 1 −

∑︁
𝑖∈[𝑑]

Pr

⎛⎝ 𝑇∑︁
𝑡=1

∑︁
𝑘∈[𝐾]

1𝑡,𝑘

∑︁
𝑗∈[𝑛]

𝑄𝑗,𝑘 · 𝑎𝑖𝑗 − 𝛾𝐵𝑖 ≥ (1 − 𝛾)𝐵𝑖 − 𝑛𝑎max

⎞⎠
≥ 1 −

∑︁
𝑖∈[𝑑]

exp

(︂
−2((1 − 𝛾)𝐵𝑖 − 𝑛𝑎max)

2

𝑎2max𝑛𝑇

)︂

≥ 1 − 𝑑 exp

(︂
−2((1 − 𝛾)𝐵min − 𝑛𝑎max)

2

𝑎2max𝑛𝑇

)︂
≥ 1 − 𝑑

𝑇 2
(B.4)

where the first inequality is due to union bound; the second inequality is due to

Hoeffding inequality, 𝑄𝑗,𝑘𝑎𝑖𝑗 is bounded by 𝑎max, and there are no more than 𝑛 · 𝑇

such terms; the third inequality is because we lower bound each 𝐵𝑖 by 𝐵min; the last

inequality is when we plug in 1 − 𝛾 = 2𝑎max

√︁
𝑛𝑇 log 𝑇
𝐵2

min
, and we know that 𝑇 > 𝑛.

Putting (B.4) into (B.3) we finish the proof. Note that Theorem 3.2 follows from

(B.1) and JDLP ≤ 𝑝max𝐵min.

Proof. Proof of Theorem 3.2 under SP Setup. Let 𝜋 be any policy suggested in

Algorithm 7 under SP Setup. Let 𝑥* be the associated optimal solution. We prove

Theorem 3.2 by comparing the expected revenue earned by Algorithm 7 against a

virtual policy 𝜋v. This virtual policy 𝜋v mimics Algorithm 7 in steps 1–3. But in

step 4, it pulls arm 𝜎(1) for the first 𝛾 · 𝑥*𝜎(1) periods, then arm 𝜎(2) for the next

𝛾 · 𝑥*𝜎(2) periods, ..., 𝜎(Λ) for the next 𝛾 · 𝑥*𝜎(Λ) periods, and finally halts for the last

(𝑇 − 𝛾 ·
∑︀Λ

𝑙=1 𝑥
*
𝜎(𝑙)) periods pulling no arms. Such a halting notion was introduced in

Badanidiyuru et al. (2013).

Policy 𝜋v serves to bridge our analysis. It breaks our Theorem 3.2 into two in-
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equalities that we will prove separately.

Rev(𝜋) ≥ Rev(𝜋v) ≥
(︂

1 − 2𝐶max

𝐵min

√︀
𝑇 log 𝑇 − 𝑑

𝑇 2

)︂
· JDLP−G (B.5)

For any policy 𝜋 as defined in Algorithm 7 and its associated virtual policy 𝜋v, they

both solve the same DLP-G and have the same optimal solution. To prove the first

inequality, note that both 𝜋 and 𝜋v pull the same arm in the first 𝑇 := 𝛾 ·
∑︀Λ

𝑙=1 𝑥
*
𝜎(𝑙)

time periods, and earns the same revenue following each trajectory of random demand.

At the end of period 𝑇 , policy 𝜋 still pulls arm 𝜎(Λ), while policy 𝜋v halts. At the end

of period 𝑇 , if the selling horizon has ended due to inventory stock-outs, then both

policies earn zero reward, so 𝜋 and 𝜋v make no difference. If the selling horizon has

not ended and there is remaining inventory for some resource, then policy 𝜋 earns non-

negative reward, while 𝜋v halts and earns zero. Following each trajectory of random

demand, policy 𝜋 earns more revenue than 𝜋v. As a result, Rev(𝜋) ≥ Rev(𝜋v).

To prove the second inequality, we introduce the following notations. Let 1𝑡,𝑘,∀𝑘 ∈

[𝐾], 𝑡 ∈ [𝑇 ] be an indicator of whether or not policy 𝜋v pulls arm 𝑘 in period 𝑡.

1𝑡,𝑘 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1, if 𝑘 = 𝜎(1), 𝑡 ≤ 𝛾𝑥*𝜎(1);

1, if ∃1 < 𝑙0 ≤ Λ, 𝑠.𝑡.𝜎(𝑙0) = 𝑘, 𝛾

𝑙0−1∑︁
𝑙=1

𝑥*𝜎(𝑙) < 𝑡 ≤ 𝛾

𝑙0∑︁
𝑙=1

𝑥*𝜎(𝑙);

0, otherwise

1𝑡,𝑘 is deterministic once policy 𝜋v is determined.

Under policy 𝜋v, following each trajectory of random demand, we define the length

of the effective selling horizon 𝜏 as a function of a stopping time 𝑡0:

𝜏 = 𝑇 ∧ min

⎧⎨⎩𝑡0 − 1

⃒⃒⃒⃒
⃒⃒∃𝑖, 𝑠.𝑡. 𝑡0∑︁

𝑡=1

∑︁
𝑘∈[𝐾]

1𝑡,𝑘𝐶𝑖,𝑘 > 𝐵𝑖

⎫⎬⎭
The effective selling horizon is the minimum between (i) last period before the cu-

mulative demand of any resource exceeds its initial inventory, and (ii) the last period

before policy 𝜋v halts.
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Let 𝐷𝑡,𝑖 be the remaining inventory of resource 𝑖 at the end of period 𝑡. Under this

notation, 𝐷0,𝑖 = 𝐵𝑖. Note that 𝐷𝑡,𝑖 are random variables, and during the effective

selling horizon, inventory updates in the following fashion

∀𝑡 ∈ [𝜏 ], 𝐷𝑡,𝑖 = 𝐷𝑡−1,𝑖 −
∑︁
𝑘∈[𝐾]

1𝑡,𝑘𝐶𝑖,𝑘 ≥ 0 (B.6)

Now we calculate the expected revenue.

Rev(𝜋v) ≥ E𝑄𝑗,𝑘

⎡⎣ 𝑇∑︁
𝑡=1

1{∀𝑖,𝐷𝑡−1,𝑖≥𝐶max}
∑︁
𝑘∈[𝐾]

1𝑡,𝑘𝑅𝑘

⎤⎦
=

𝑇∑︁
𝑡=1

Pr(∀𝑖,𝐷𝑡−1,𝑖 ≥ 𝐶max)
∑︁
𝑘∈[𝐾]

1𝑡,𝑘𝑅𝑘

≥ Pr(∀𝑖,𝐷𝑇 ,𝑖 ≥ 𝐶max)
𝑇∑︁
𝑡=1

∑︁
𝑘∈[𝐾]

1𝑡,𝑘𝑅𝑘 (B.7)

We explain the inequalities. The first inequality is because we only focus on the

revenue earned if event {∀𝑖,𝐷𝑡−1,𝑖 ≥ 𝐶max} happens, while ignoring the revenue earned

if event {∀𝑖,𝐷𝑡−1,𝑖 ≥ 𝐶max} does not happen; and when event {∀𝑖,𝐷𝑡−1,𝑖 ≥ 𝐶max} does

happen, the maximum amount of any resource 𝑖 demanded in one single period cannot

exceed 𝐶max. The first equality is expanding the expectations, where we use the fact

that 1{∀𝑖,𝐷𝑡−1,𝑖≥𝐶max} and
∑︀

𝑘∈[𝐾] 1𝑡,𝑘𝑅𝑘 are independent, because the indicator is a

random event happening up to period 𝑡− 1, while the summation term is a random

amount happening in period 𝑡. The third inequality is due to (B.6), 𝐷𝑡,𝑖 is decreasing

in 𝑡, so 𝐷𝑡−1,𝑖 ≥ 𝐷𝑇 ,𝑖.

In this block of inequalities (B.7), the summation term

𝑇∑︁
𝑡=1

∑︁
𝑘∈[𝐾]

1𝑡,𝑘𝑅𝑘 =
Λ∑︁

𝑙=1

∑︁
𝑘∈{𝜎(𝑙)=𝑘}

𝛾𝑥*𝑘𝑅𝑘 = 𝛾JDLP−G,

since the indicators 1𝑡,𝑘 locate which 𝑘 counts into this summation. So the next thing

we do is to lower bound the probability term, Pr(∀𝑖,𝐷𝑇 ,𝑖 ≥ 𝐶max).
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Note that for any 𝑖 ∈ [𝑑],

E

⎡⎣ 𝑇∑︁
𝑡=1

∑︁
𝑘∈[𝐾]

1𝑡,𝑘𝐶𝑖,𝑘

⎤⎦ =
𝑇∑︁
𝑡=1

∑︁
𝑘∈[𝐾]

1𝑡,𝑘𝑐𝑖,𝑘

=
Λ∑︁

𝑙=1

∑︁
𝑘∈{𝜎(𝑙)=𝑘}

𝛾𝑥*𝑘𝑐𝑖,𝑘

≤ 𝛾𝐵𝑖

< 𝐵𝑖 − 𝐶max

where the last inequality is because we plug in 𝛾 = 1 − 2𝐶max

𝐵min

√
𝑇 log 𝑇 , and that

2
√
𝑇 log 𝑇 > 1.

This above inequality suggests that for any 𝑖 ∈ [𝑑], the expected cumulative

demand generated up till period 𝑇 is strictly less than 𝐵𝑖 − 𝐶max. So we can use

concentration inequalities.

Pr(∀𝑖,𝐷𝑇 ,𝑖 ≥ 𝐶max) = 1 − Pr

⎛⎝∃𝑖, 𝑠.𝑡.
𝑇∑︁
𝑡=1

∑︁
𝑘∈[𝐾]

1𝑡,𝑘𝐶𝑖,𝑘 ≥ 𝐵𝑖 − 𝐶max

⎞⎠
≥ 1 −

∑︁
𝑖∈[𝑑]

Pr

⎛⎝ 𝑇∑︁
𝑡=1

∑︁
𝑘∈[𝐾]

1𝑡,𝑘𝐶𝑖,𝑘 − 𝛾𝐵𝑖 ≥ (1 − 𝛾)𝐵𝑖 − 𝐶max

⎞⎠
≥ 1 −

∑︁
𝑖∈[𝑑]

exp

(︂
−2((1 − 𝛾)𝐵𝑖 − 𝐶max)

2

𝐶2
max𝑛𝑇

)︂

≥ 1 − 𝑑 exp

(︂
−2((1 − 𝛾)𝐵min − 𝐶max)

2

𝐶2
max𝑛𝑇

)︂
≥ 1 − 𝑑

𝑇 2
(B.8)

where the first inequality is due to union bound; the second inequality is due to

Hoeffding inequality, 𝐶𝑖,𝑘 is bounded by 𝐶max; the third inequality is because we lower

bound each 𝐵𝑖 by 𝐵min; the last inequality is when we plug in 1− 𝛾 = 2𝐶max

𝐵min

√
𝑇 log 𝑇 ,

and that
√
𝑇 log 𝑇 > 1.

Putting (B.8) into (B.7) we finish the proof. Note that Theorem 3.2 follows from

(B.5), JDLP ≤ 𝑅max𝑇 , and 𝑇/𝐵min = 𝑂(1).
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Appendix C

Appendix to Chapter 4

C.1 Proof of Theorem 4.4

Proof. Proof of Theorem 4.4. We are going to show that, for any instance of arrival

sequence 𝑆, we have ALGN4.3(𝑆)
OPT(𝑆)

≥ 𝑐N4.3. We lower bound ALGN4.3(𝑆) and upper bound

OPT(𝑆) at the same time.

First of all, Greedy always accepts something. Denote the set of items accepted

by Greedy as 𝐺. Denote size(𝐺) = 𝑔. If 𝐺 = [𝑇 ] then Greedy is optimal. In this case

ALGN4.3

OPT
≥ Pr(𝜏 = 0) · 1 + Pr(𝜏 > 0) · 0 ≥ 𝐹N4.3(0) = 1 − 𝑐N4.3 ≥ 𝑐N4.3.

If 𝐺 $ [𝑇 ], let 𝑀 = [𝑇 ]∖𝐺 denote the set of items blocked by Greedy. Since

Greedy always accepts an item as long as it can fill in, any item blocked by Greedy

must exceed the remaining space of the knapsack, at the moment it is blocked. We

also know that 𝐺 ∪𝑀 = [𝑇 ], 𝐺 ∩𝑀 = 𝜑.

Let 𝑚 be the smallest size in 𝑀 , i.e. 𝑚 = min𝑡∈𝑀 𝑠𝑡. Define index 𝑡𝑚 for the

smallest item, or the first smallest item, if there are multiple smallest items.

𝑡𝑚 = min {𝑡 ∈ [𝑇 ] |𝑠𝑡 = 𝑚} . (C.1)

Denote 𝐺′ as the set of items accepted by Greedy, at the moment 𝑠𝑡𝑚 is blocked. Let
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𝑔′ = size(𝐺′). See Figure 4-2. A straightforward, but useful information about 𝑚 is:

𝑔′ + 𝑚 > 1, (C.2)

because 𝑚 is blocked by Greedy. We wish to understand when we can admit an item

of size at least 𝑚, by selecting a proper threshold 𝜏 .

We distinguish two cases: 𝑚 > 1/2 and 𝑚 ≤ 1/2.

Case 1: 𝑚 > 1/2.

Let 𝑆THR(𝜏) be the set of items that have sizes at least 𝜏 , i.e. 𝑆THR(𝜏) = {𝑡 ∈ 𝑆 |𝑠𝑡 ≥ 𝜏 }.

Now define

𝑞 = max 𝜏

𝑠.𝑡. 𝑚 + size(𝑆THR(𝜏) ∩𝐺′) > 1
(C.3)

This means that if we adopt a THR(𝑞) policy, then the size 𝑚 item must be blocked

(possibly it will also be rejected, due to 𝑞 > 𝑚).

Now consider the items in 𝑆THR(𝑞) ∩ 𝐺′. See Figure 4-3. These items have sizes

at least 𝑞. We count how many size 𝑞 items are there, and let 𝑛 be the number of

size 𝑞 items. Denote the total size of the remaining items be 𝑥. We know that

size(𝑆THR(𝑞) ∩𝐺′) = 𝑛𝑞 + 𝑥. (C.4)

We make the following observations:

1. There must exist some item from 𝐺′ that is of size 𝑞, i.e.

∃𝑡𝑞 ∈ 𝐺′ ⊆ [𝑇 ], 𝑠.𝑡. 𝑠𝑡𝑞 = 𝑞. (C.5)

This is because otherwise we can select the smallest item size in 𝐺′ that is also

larger than 𝑞. This item size satisfies (C.3), and violates the maximum property

of 𝑞.
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2. Size 𝑚 items can not fit in together with items 𝑆THR(𝑞) ∩𝐺′, i.e.

𝑛𝑞 + 𝑥 + 𝑚 > 1 (C.6)

This is because size(𝑆THR(𝑞) ∩𝐺′) = 𝑛𝑞 + 𝑥. This is implied by (C.3).

3. A size 𝑚 item can fit in together with items 𝑆THR(𝜏) ∩𝐺′,∀𝜏 > 𝑞, i.e.

𝑥 + 𝑚 ≤ 1 (C.7)

This is because otherwise we could further increase 𝑞 to 𝑞 so that size(𝑆THR(𝑞)∩

𝐺′) + 𝑚 > 1, which violates the maximum property of 𝑞.

We further distinguish two cases: 𝑞 > 𝑚, and 𝑞 ≤ 𝑚.

Case 1.1: 𝑞 > 𝑚.

In this case, if we adopt Greedy then we can get as much as 𝑔. This is because 𝑔 is

defined this way.

If we adopt THR(𝜏),∀𝜏 ∈ (0, 𝑞] then we can get no less than 𝑞. This is because

due to (C.5) there must exist some item 𝑡𝑞 ∈ 𝐺′ of size 𝑞. We either accept it, in

which case we immediately earn 𝑞, or we have blocked it because we admitted some

item 𝑧 ∈ [𝑇 ] from 𝑀 and consumed too much space. But Greedy blocks item 𝑧 earlier

than it accepts item 𝑡𝑞, which means that 𝑠𝑧 ≥ 𝑠𝑡𝑞 = 𝑞. So in either case we earn 𝑞.

We have the following:

ALGN4.3 ≥ Pr(𝜏 = 0) · 𝑔 + Pr(0 < 𝜏 ≤ 𝑞) · 𝑞

= 𝐹N4.3(0) · 𝑔 + (𝐹N4.3(𝑞) − 𝐹N4.3(0)) · 𝑞

≥ 𝐹N4.3(0) · (1 − 2𝑞) + 𝐹N4.3(𝑞) · 𝑞

= (1 − 𝑐N4.3) · (1 − 2𝑞) +

[︂
2(1 − 𝑐N4.3) − 1 − 2𝑐N4.3

𝑞

]︂
· 𝑞

= 𝑐N4.3

where the second inequality is because 𝑔 ≥ 𝑔′ > 1−𝑚 (due to (C.2)) and 1−𝑚 > 1−𝑞
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(Case 1.1: 𝑞 > 𝑚); second equality is because 𝑞 > 𝑚 ≥ 1/2 > 𝑞N4.3, so we plug in

𝐹N4.3(·) as defined in (4.14).

Since OPT ≤ 1, we have ALG
OPT

≥ 𝑐N4.3.

Case 1.2: 𝑞 ≤ 𝑚.

First we wish to upper bound OPT. OPT selects some items from [𝑇 ] = 𝐺∪𝑀 , where

𝐺 ∩𝑀 = 𝜑. Notice that 𝑚 > 1/2 so there is at most 1 item from 𝑀 that OPT can

select. If OPT selects no item from 𝑀 , then OPT ≤ 𝑔. With probability 𝐹N4.3(0),

ALGN4.3 adopts Greedy and earns 𝑔. So we have

ALGN4.3

OPT
≥ Pr(𝜏 = 0) · 1 + Pr(𝜏 > 0) · 0 ≥ 𝐹N4.3(0) = 1 − 𝑐N4.3 ≥ 𝑐N4.3.

If OPT selects one item from 𝑀 , let 𝑡𝑚′ ∈ [𝑇 ] be this item. So 𝑠𝑡𝑚′ = 𝑚′ ≥ 𝑚.

See Figure C-1.

Figure C-1: Illustration of the items accepted by OPT

We can partition all the items in 𝑆 into three sets:

𝑀 ; 𝑆THR(𝑞) ∩𝐺′; 𝐺∖(𝑆THR(𝑞) ∩𝐺′)

Let 𝑔 = size(𝐺∖(𝑆THR(𝑞) ∩ 𝐺′)). Since 𝑆THR(𝑞) ∩ 𝐺′ and 𝐺∖(𝑆THR(𝑞) ∩ 𝐺′) form a

partition of 𝐺, we have 𝑔 = (𝑛𝑞+𝑥)+𝑔. From (C.6) we know that 𝑚′+size(𝑆THR(𝑞)∩

𝐺′) ≥ 𝑚 + size(𝑆THR(𝑞) ∩𝐺′) > 1. This means that even OPT cannot pack 𝑠𝑡𝑚′ and

𝑆THR(𝑞)∩𝐺′ together. OPT must block at least one item from {𝑡𝑚′}∪ (𝑆THR(𝑞)∩𝐺′)

– and the smallest item from this union is of size 𝑞 (because 𝑞 ≤ 𝑚 ≤ 𝑚′). So we
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upper bound OPT by:

OPT ≤min
{︀

1,
[︀
𝑚′ + size(𝑆THR(𝑞) ∩𝐺′)

]︀
− 𝑞 + size(𝐺∖(𝑆THR(𝑞) ∩𝐺′))

}︀
= min {1,𝑚′ + (𝑛𝑞 + 𝑥) − 𝑞 + 𝑔}

(C.8)

Then we analyze ALGN4.3. If we adopt Greedy then we can get as much as 𝑔. This

is because 𝑔 is defined this way.

If we adopt THR(𝜏),∀𝜏 ∈ (0, 𝑞] then we get no less than 𝑛𝑞 + 𝑥. This is because

due to (C.4) there must exist some items in 𝑆THR(𝑞) ∩ 𝐺′, which are of size 𝑛𝑞 + 𝑥.

For any subset of items 𝑆0 ⊆ (𝑆THR(𝑞) ∩ 𝐺′), we either accept it, in which case we

immediately earn size(𝑆0), or we have blocked it because we admitted some item

𝑧 ∈ [𝑇 ] from 𝑀 and consumed too much space. But Greedy blocks item 𝑧 earlier than

it accepts 𝑆0, which means that 𝑠𝑧 ≥ size(𝑆0). So in either case we earn size(𝑆0).

Since 𝑆0 is chosen arbitrarily, we will always get at least 𝑛𝑞 + 𝑥.

If we adopt THR(𝜏), ∀𝜏 ∈ (𝑞,𝑚] then we get no less than 𝑚. This is because due

to (C.7), any item in 𝑆THR(𝜏) ∩ 𝐺′ will not block item 𝑡𝑚 (from expression (C.1));

and 𝜏 ≤ 𝑚 so we will not reject item 𝑡𝑚. We either accept item 𝑡𝑚, in which case we

immediately earn 𝑚, or we have blocked it because we admitted some item 𝑧 ∈ [𝑇 ]

from M and consumed too much space. But 𝑚 is smallest item size in 𝑀 , which

means that 𝑠𝑧 ≥ 𝑚. So in either case we earn 𝑚.

If we adopt THR(𝜏), ∀𝜏 ∈ (𝑚,𝑚′] then we get no less than 𝜏 . This is because 𝑠𝑡𝑚′

does exist, and THR(𝜏) must accept at least one item. The least that THR(𝜏) can

get is 𝜏 .

We have the following:

ALGN4.3

≥ Pr(𝜏 = 0) · 𝑔 + Pr(0 < 𝜏 ≤ 𝑞) · (𝑛𝑞 + 𝑥) + Pr(𝑞 < 𝜏 ≤ 𝑚) ·𝑚 +

∫︁ 𝑚′

𝑚

𝜏 d𝐹N4.3(𝜏)

= 𝐹N4.3(0) · (𝑛𝑞 + 𝑥 + 𝑔) + (𝐹N4.3(𝑞) − 𝐹N4.3(0)) · (𝑛𝑞 + 𝑥)

+ (𝐹N4.3(𝑚) − 𝐹N4.3(𝑞)) ·𝑚 +

∫︁ 𝑚′

𝑚

𝜏 d𝐹N4.3(𝜏)
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= 𝐹N4.3(0) · 𝑔 + 𝐹N4.3(𝑞) · (𝑛𝑞 + 𝑥−𝑚) + 𝐹N4.3(𝑚′) ·𝑚′ −
∫︁ 𝑚′

𝑚

𝐹N4.3(𝜏) d𝜏

≥ 𝐹N4.3(0) · 𝑔 + 𝐹N4.3(𝑞) · (2(𝑛𝑞 + 𝑥) − 1) + 𝐹N4.3(𝑚′) ·𝑚′ −
∫︁ 𝑚′

1−(𝑛𝑞+𝑥)

𝐹N4.3(𝜏) d𝜏

where the second equality is due to integration by part (our definition of 𝐹N4.3(·) in

(4.14) is a continuous function); the last inequality is because 𝜕ALGN4.3

𝜕𝑚
= 𝐹N4.3(𝑚) −

𝐹N4.3(𝑞) ≥ 0, (because 𝑞 ≤ 𝑚, and 𝐹N4.3(·) is a increasing function), so that ALGN4.3

is increasing in 𝑚. Hence, ALGN4.3 achieves its minimum when 𝑚 is the smallest, and

𝑚 > 1 − (𝑛𝑞 + 𝑥) from (C.6).

Observe that

ALGN4.3 − 𝑐N4.3OPT

≥𝐹N4.3(0) · 𝑔 + 𝐹N4.3(𝑞) · (2(𝑛𝑞 + 𝑥) − 1) + 𝐹N4.3(𝑚′) ·𝑚′ −
∫︁ 𝑚′

1−(𝑛𝑞+𝑥)

𝐹N4.3(𝜏) d𝜏

− 𝑐N4.3 · min {1,𝑚′ + (𝑛𝑞 + 𝑥) − 𝑞 + 𝑔}

If we focus on the dependence of 𝑔, we find that

𝜕 (ALGN4.3 − 𝑐N4.3OPT)

𝜕𝑔
≥ 𝐹N4.3(0) − 𝑐N4.3 = 1 − 2𝑐N4.3 ≥ 0,

where the first inequality is because the subgradient of the subtracted term is either

0 or 𝑐N4.3. Since ALGN4.3 − 𝑐N4.3OPT is a increasing function of 𝑔, it achieves its

minimum when 𝑔 = 0.

We have further

ALGN4.3 − 𝑐N4.3OPT

≥𝐹N4.3(𝑞) · (2(𝑛𝑞 + 𝑥) − 1) + 𝐹N4.3(𝑚′) ·𝑚′ −
∫︁ 𝑚′

1−(𝑛𝑞+𝑥)

𝐹N4.3(𝜏) d𝜏

− 𝑐N4.3 · min {1,𝑚′ + (𝑛𝑞 + 𝑥) − 𝑞}

Now let 𝑦 = (𝑛− 1)𝑞 + 𝑥, and we plug in 𝐹N4.3(·) as we defined in (C.6).
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Case 1.2.1: When 𝑞 ≤ 𝑞N4.3, we have:

ALGN4.3 − 𝑐N4.3OPT

≥𝐹N4.3(𝑞) · (2(𝑞 + 𝑦) − 1) + 𝐹N4.3(𝑚′) ·𝑚′ −
∫︁ 𝑚′

1−(𝑞+𝑦)

𝐹N4.3(𝜏) d𝜏 − 𝑐N4.3 · min {1,𝑚′ + 𝑦}

=(1 − 𝑐N4.3)(2(𝑞 + 𝑦) − 1) +
(2𝑞 − 1 + 2𝑦)(1 − 2𝑐N4.3) ln (1 − 𝑞)

2𝑞 − 1
+ 2(1 − 𝑐N4.3)𝑚′ − (1 − 2𝑐N4.3)

− 2(1 − 𝑐N4.3)𝑚′ + 2(1 − 𝑐N4.3)[1 − (𝑞 + 𝑦)] + (1 − 2𝑐N4.3) [ln𝑚′ − ln (1 − (𝑞 + 𝑦))]

− 𝑐N4.3 · min {1,𝑚′ + 𝑦}

=𝑐N4.3 +
(2𝑞 − 1 + 2𝑦)(1 − 2𝑐N4.3) ln (1 − 𝑞)

2𝑞 − 1
+ (1 − 2𝑐N4.3) [ln𝑚′ − ln (1 − (𝑞 + 𝑦))]

− 𝑐N4.3 · min {1,𝑚′ + 𝑦}

If we focus on the dependence of 𝑚′, we will see that ALGN4.3 − 𝑐N4.3OPT has only

one local minimum: when 𝑚′ < 1 − 𝑦 we have

𝜕 (ALGN4.3 − 𝑐N4.3OPT)

𝜕𝑚′
=

1 − 2𝑐N4.3

𝑚′
− 𝑐N4.3 ≤

1 − 2𝑐N4.3

1/2
− 𝑐N4.3 = 2 − 5𝑐N4.3 < 0,

because 𝑚′ ≥ 𝑚 ≥ 1/2. So ALGN4.3 − 𝑐N4.3OPT is decreasing on 𝑚′ when 𝑚′ < 1− 𝑦.

When 𝑚′ > 1 − 𝑦 we have

𝜕 (ALGN4.3 − 𝑐N4.3OPT)

𝜕𝑚′
=

1 − 2𝑐N4.3

𝑚′
> 0,

so ALGN4.3 − 𝑐N4.3OPT is increasing on 𝑚′. Hence, ALGN4.3 − 𝑐N4.3OPT achieves its

minimum when 𝑚′ = 1 − 𝑦.

Plugging into 𝑚′ = 1 − 𝑦, we have further

ALGN4.3 − 𝑐N4.3OPT

≥(2𝑞 − 1 + 2𝑦)(1 − 2𝑐N4.3) ln (1 − 𝑞)

2𝑞 − 1
+ (1 − 2𝑐N4.3) [ln (1 − 𝑦) − ln (1 − (𝑞 + 𝑦))]
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If we focus on the dependence of 𝑦, we find that

𝜕 (ALGN4.3 − 𝑐N4.3OPT)

𝜕𝑦
= (1 − 2𝑐N4.3)

[︂
2

ln (1 − 𝑞)

2𝑞 − 1
− 1

1 − 𝑦
+

1

1 − 𝑦 − 𝑞

]︂
> 0,

because 𝑙𝑛(1 − 𝑞) < 0, 2𝑞 − 1 < 2𝑞N4.3 − 1 < 0, 1
1−𝑦−𝑞 − 1

1−𝑦 ≥ 0. Since ALGN4.3 −

𝑐N4.3OPT is increasing on 𝑦, it achieves its minimum when 𝑦 = 0.

Finally, plugging into 𝑦 = 0, we have

ALGN4.3 − 𝑐N4.3OPT ≥(2𝑞 − 1)(1 − 2𝑐N4.3) ln (1 − 𝑞)

2𝑞 − 1
− (1 − 2𝑐N4.3) ln (1 − 𝑞) = 0

Case 1.2.2: When 𝑞 > 𝑞N4.3, we have:

ALGN4.3 − 𝑐N4.3OPT

≥𝐹N4.3(𝑞) · (2(𝑞 + 𝑦) − 1) + 𝐹N4.3(𝑚′) ·𝑚′ −
∫︁ 𝑚′

1−(𝑞+𝑦)

𝐹N4.3(𝜏) d𝜏 − 𝑐N4.3 · min {1,𝑚′ + 𝑦}

=2(1 − 𝑐N4.3)(2(𝑞 + 𝑦) − 1) − (1 − 2𝑐N4.3)(2(𝑞 + 𝑦) − 1)

𝑞
+ 2(1 − 𝑐N4.3)𝑚′ − (1 − 2𝑐N4.3)

− 2(1 − 𝑐N4.3)𝑚′ + 2(1 − 𝑐N4.3)[1 − (𝑞 + 𝑦)] + (1 − 2𝑐N4.3) [ln𝑚′ − ln (1 − (𝑞 + 𝑦))]

− 𝑐N4.3 · min {1,𝑚′ + 𝑦}

=2(1 − 𝑐N4.3)(𝑦 + 𝑞) − (1 − 2𝑐N4.3) − (1 − 2𝑐N4.3)(2(𝑞 + 𝑦) − 1)

𝑞

+ (1 − 2𝑐N4.3) [ln𝑚′ − ln (1 − (𝑞 + 𝑦))] − 𝑐N4.3 · min {1,𝑚′ + 𝑦}

Again, if we focus on the dependence of 𝑚′, we will see that ALGN4.3 − 𝑐N4.3OPT has

only one local minimum when 𝑚′ = 1 − 𝑦.

Plugging into 𝑚′ = 1 − 𝑦, we have further

ALGN4.3 − 𝑐N4.3OPT

≥(1 − 𝑐N4.3)(2(𝑦 + 𝑞) − 1) − (1 − 2𝑐N4.3)(2(𝑞 + 𝑦) − 1)

𝑞
+ (1 − 2𝑐N4.3) [ln (1 − 𝑦) − ln (1 − (𝑞 + 𝑦))]

234



Again, if we focus on the dependence of 𝑦, we find that

𝜕 (ALGN4.3 − 𝑐N4.3OPT)

𝜕𝑦
= 2(1−𝑐N4.3−

1 − 2𝑐N4.3

𝑞
)+(1−2𝑐N4.3)

[︂
− 1

1 − 𝑦
+

1

1 − 𝑦 − 𝑞

]︂
> 0,

because 1− 𝑐N4.3 − 1−2𝑐N4.3
𝑞

≥ 1− 𝑐N4.3 − 1−2𝑐N4.3
𝑞N4.3

≈ 0.142 > 0, 1
1−𝑦−𝑞 −

1
1−𝑦 ≥ 0. Since

ALGN4.3 − 𝑐N4.3OPT is increasing on 𝑦, it achieves its minimum when 𝑦 = 0.

Finally, plugging into 𝑦 = 0, we have

ALGN4.3 − 𝑐N4.3OPT

≥(1 − 𝑐N4.3)(2𝑞 − 1) − (1 − 2𝑐N4.3)(2𝑞 − 1)

𝑞
− (1 − 2𝑐N4.3) ln (1 − 𝑞)

=(2𝑞 − 1)

[︂
(1 − 𝑐N4.3) − (1 − 2𝑐N4.3)

𝑞

]︂
− (1 − 2𝑐N4.3) ln (1 − 𝑞)

≥(2𝑞 − 1)

[︂
−(1 − 2𝑐N4.3) ln (1 − 𝑞)

1 − 2𝑞

]︂
− (1 − 2𝑐N4.3) ln (1 − 𝑞)

=0

where the second inequality is because 𝐻(𝑐N4.3, 𝑞) =
1−2𝑐N4.3

𝑞
− (1−2𝑐N4.3) ln (1−𝑞)

1−2𝑞 −

(1 − 𝑐N4.3) ≥ 0,∀𝑞 ∈ (0, 1/2) from (4.13), and when 𝑞 ∈ [1/2, 1], the second line

expression is an increasing function of 𝑞 (because 2𝑞 − 1; (1 − 𝑐N4.3) − (1−2𝑐N4.3)

𝑞
; and

−(1 − 2𝑐N4.3) ln (1 − 𝑞) are all increasing in 𝑞), thus plugging in 𝑞 = 1/2 we have

ALGN4.3 − 𝑐N4.3OPT ≥ −(1 − 2𝑐N4.3) ln (1 − 𝑞) > 0.

In all, ALGN4.3 ≥ 𝑐N4.3OPT.

Case 2: 𝑚 ≤ 1/2.

In this case, we only hope to get 𝑚, and a crude analysis is enough. See Figure 4-4.

If we adopt Greedy then we can get as much as 𝑔. This is because 𝑔 is defined this

way.

If we adopt THR(𝜏),∀𝜏 ∈ (0,𝑚] then we either get 𝑚, or 𝑚 is blocked, in which

case we must have already earned at least 1 −𝑚 to block 𝑚.

We have the following:

ALG ≥ Pr(𝜏 = 0) · 𝑔 + Pr(0 < 𝜏 ≤ 𝑚) · min{𝑚, 1 −𝑚}
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≥ Pr(𝜏 = 0) · 𝑔 + Pr(0 < 𝜏 ≤ 𝑚) ·𝑚

= 𝐹N4.3(0) · 𝑔 + (𝐹N4.3(𝑚) − 𝐹N4.3(0)) ·𝑚

≥ 𝐹N4.3(0) · (1 −𝑚) + (𝐹N4.3(𝑚) − 𝐹N4.3(0)) ·𝑚

= 𝐹N4.3(0) · (1 − 2𝑚) + 𝐹N4.3(𝑚) ·𝑚

= (1 − 𝑐N4.3)(1 − 2𝑚) +

[︂
2(1 − 𝑐N4.3) − 1 − 2𝑐N4.3

𝑚

]︂
·𝑚

= 𝑐N4.3

where the second inequality is because 𝑚 ≤ 1/2; the last inequality is because 𝑔 ≥

𝑔′ > 1−𝑚 (due to (C.2)); the third equality is because we plug in 𝐹N4.3(·) as defined

in (4.14).

Since OPT ≤ 1, we have ALG
OPT

≥ 𝑐N4.3.

In all, we have enumerated all the possible cases, to find
ALG

OPT
≥ 𝑐N4.3 always

holds.
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Appendix D

Appendix to Chapter 5

D.1 Theorems Used

We summarize here the results that we have directly used in our proofs.

Definition D.1 (𝜑-Dependent Random Variables, Hoeffding and Robbins (1948)). For

any sequence {𝑋1, 𝑋2, ...}, if there exists 𝜑 such that for any 𝑠− 𝑟 > 𝜑, the two sets

(𝑋1, 𝑋2, ..., 𝑋𝑟), (𝑋𝑠, 𝑋𝑠+1, ..., 𝑋𝑛)

are independent, then the sequence is said to be 𝜑-dependent.

Lemma D.1 (Romano and Wolf (2000), Theorem 2.1). Let {𝑋𝑛,𝑖} be a triangular array

of zero-mean random variables. Let 𝜑 ∈ N be a fixed constant. For each 𝑛 = 1, 2, ...,

let 𝑑 = 𝑑𝑛, and suppose that 𝑋𝑛,1, 𝑋𝑛,2, ..., 𝑋𝑛,𝑑 is an 𝜑-dependent sequence of random

variables. Define

𝐵2
𝑛,𝑘,𝑎 = Var

(︃
𝑎+𝑘−1∑︁
𝑖=𝑎

𝑋𝑛,𝑖

)︃
, 𝐵2

𝑛 = 𝐵2
𝑛,𝑑,1 = Var

(︃
𝑑∑︁

𝑖=1

𝑋𝑛,𝑖

)︃

For some 𝛿 > 0 and −1 ≤ 𝛾 ≤ 1, if the following conditions hold:

1. E |𝑋𝑛,𝑖|2+𝛿 ≤ ∆𝑛, for all 𝑖;

2. 𝐵2
𝑛,𝑘,𝑎/𝑘

1+𝛾 ≤ 𝐾𝑛, for all 𝑎 and 𝑘 ≥ 𝜑;
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3. 𝐵2
𝑛/(𝑑𝜑𝛾) ≥ 𝐿𝑛;

4. 𝐾𝑛/𝐿𝑛 = 𝑂(1);

5. ∆/𝐿
(2+𝛿)/2
𝑛 = 𝑂(1),

then

∑︀𝑑
𝑖=1𝑋𝑛,𝑖

𝐵𝑛

𝐷−→ 𝒩 (0, 1).

We explain Lemma D.1. The 𝐷−→ notation stands for convergence in distribution.

The definition of a sequence of 𝜑-dependent random variables is given in Defini-

tion D.1. To check if the conditions in Lemma D.1 hold, we will first calculate 𝐵2
𝑛,𝑘,𝑎

for any 𝑘 and 𝑎, and then construct some proper ∆𝑛, 𝐾𝑛, and 𝐿𝑛.

Lemma D.2. For any 𝑛 ∈ N and 𝑞1, ..., 𝑞𝑛 ∈ (0, 1), define

𝑓(𝑞1, ..., 𝑞𝑛) =
1∏︀𝑛
𝑖=1 𝑞𝑖

+
1∏︀𝑛

𝑖=1(1 − 𝑞𝑖)
.

Then

𝑓(𝑞1, ..., 𝑞𝑛) ≥ 2𝑛+1,

where equality holds if and only if 𝑞1 = 𝑞2 = ... = 𝑞𝑛 = 1/2.

The proof of Lemma D.2 is elegant and is of its own interests. We prove Lemma D.2

below.

Proof. Proof of Lemma D.2. For all 𝑖 ∈ [𝑛] denote 𝑞𝑖 = 1 − 𝑞𝑖. We re-write our

objective, such that we wish to find the minimum for

1∏︀𝑛
𝑖=1 𝑞𝑖

+
1∏︀𝑛
𝑖=1 𝑞𝑖

,

under the constraints that 𝑞𝑖 + 𝑞𝑖 = 1 for all 𝑖 ∈ [𝑛]. Note that
∏︀𝑛

𝑖=1(𝑞𝑖 + 𝑞𝑖) = 1. By

expanding expand the product term and we have

238



1∏︀𝑛
𝑖=1 𝑞𝑖

=

∏︀𝑛
𝑖=1(𝑞𝑖 + 𝑞𝑖)∏︀𝑛

𝑖=1 𝑞𝑖
=

1 +

(︂
𝑞1
𝑞1

+
𝑞2
𝑞2

+ . . . +
𝑞𝑛
𝑞𝑛

)︂
+

(︂
𝑞1𝑞2
𝑞1𝑞2

+
𝑞1𝑞3
𝑞1𝑞3

+ . . . +
𝑞𝑛−1𝑞𝑛
𝑞𝑛−1𝑞𝑛

)︂
+ . . . +

∏︀𝑛
𝑖=1 𝑞𝑖∏︀𝑛
𝑖=1 𝑞𝑖

And similarly we can expand the product term for the second fractional expression.

Putting them together we have:

1∏︀𝑛
𝑖=1 𝑞𝑖

+
1∏︀𝑛
𝑖=1 𝑞𝑖

=1 +

(︂
𝑞1
𝑞1

+
𝑞2
𝑞2

+ . . . +
𝑞𝑛
𝑞𝑛

)︂
+

(︂
𝑞1𝑞2
𝑞1𝑞2

+
𝑞1𝑞3
𝑞1𝑞3

+ . . . +
𝑞𝑛−1𝑞𝑛
𝑞𝑛−1𝑞𝑛

)︂
+ . . . +

∏︀𝑛
𝑖=1 𝑞𝑖∏︀𝑛
𝑖=1 𝑞𝑖

+ 1 +

(︂
𝑞1
𝑞1

+
𝑞2
𝑞2

+ . . . +
𝑞𝑛
𝑞𝑛

)︂
+

(︂
𝑞1𝑞2
𝑞1𝑞2

+
𝑞1𝑞3
𝑞1𝑞3

+ . . . +
𝑞𝑛−1𝑞𝑛
𝑞𝑛−1𝑞𝑛

)︂
+ . . . +

∏︀𝑛
𝑖=1 𝑞𝑖∏︀𝑛
𝑖=1 𝑞𝑖

Now focus on the right hand side. There are a total of 2𝑛+1 terms, and we match

them into 2𝑛 pairs. We match the first term in the first line with the first term in the

second line, the second term in the first line with the second term in the second line,

..., the last term in the first line with the last term in the second line. For each pair

indexed by subset 𝐼 ⊆ [𝑇 ], we have that∏︀
𝑖∈𝐼⊆[𝑇 ] 𝑞𝑖∏︀
𝑖∈𝐼⊆[𝑇 ] 𝑞𝑖

+

∏︀
𝑖∈𝐼⊆[𝑇 ] 𝑞𝑖∏︀
𝑖∈𝐼⊆[𝑇 ] 𝑞𝑖

≥ 2,

where equality holds if and only if
∏︀

𝑖∈𝐼⊆[𝑇 ] 𝑞𝑖 =
∏︀

𝑖∈𝐼⊆[𝑇 ] 𝑞𝑖. Putting all the 2𝑛 pairs

together we finish the proof.

D.2 Proof from Section 5.2

The only proof from Section 5.2 is the unbiasedness of the Horvitz-Thompson esti-

mator. We prove by checking the expectations.

Proof. Proof of Proposition 5.2. First observe that for regular switchback experi-

ments, both 0 < Pr(𝑊𝑡−𝑝:𝑡 = 1𝑝+1),Pr(𝑊𝑡−𝑝:𝑡 = 0𝑝+1) < 1. So for any 𝑡 ∈ {𝑝+1 : 𝑇},

with probability Pr(𝑊𝑡−𝑝:𝑡 = 1𝑝+1) ̸= 0, 1{𝑊𝑡−𝑝:𝑡 = 1𝑝+1} = 1, and 𝑌 obs
𝑡 = 𝑌𝑡(1𝑝+1).
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So E
[︁
𝑌 obs
𝑡

1{𝑊𝑡−𝑝:𝑡=1𝑝+1}
Pr(𝑊𝑡−𝑝:𝑡=1𝑝+1)

]︁
= 𝑌𝑡(1𝑚+1). Similarly E

[︁
𝑌 obs
𝑡

1{𝑊𝑡−𝑝:𝑡=0𝑝+1}
Pr(𝑊𝑡−𝑝:𝑡=0𝑝+1)

]︁
= 𝑌𝑡(0𝑝+1).

Sum them up for any 𝑡 ∈ {𝑝 + 1 : 𝑇} we finish the proof.

D.3 Proofs and Discussions from Section 5.3

In Section 5.3 we focus on the case when 𝑝 = 𝑚. Throughout this section in the

appendix, we use only 𝑚 instead of 𝑝.

D.3.1 Extra Notations Used in the Proofs from Section 5.3

Recall that any regular switchback experiment can be represented by T = {𝑡0, 𝑡1, ..., 𝑡𝐾} ⊆

[𝑇 ] and Q = (𝑞0, 𝑞1, ..., 𝑞𝐾) ∈ (0, 1)𝐾+1. We first focus on the dependence on T, the

randomization points. Define 𝑓T : [𝑇 ] → T to be the “determining randomization

point of period 𝑡”, i.e.,

𝑓T(𝑡) = max {𝑗 |𝑗 ∈ T, 𝑗 ≤ 𝑡}

such that the coin flip in period 𝑓T(𝑡) uniquely determines the distribution of 𝑊𝑡, i.e.,

𝑊𝑡 = 𝑊𝑓T(𝑡). When T is clear from the context we also omit the subscript and use

𝑓(𝑡) for 𝑓T(𝑡).

Similarly, we define 𝑓𝑚
T (𝑡) : [𝑇 ] → {0, 1}T, which maps a time period to a subset

of T, to be the “determining randomization points of periods {𝑡−𝑚, 𝑡−𝑚+ 1, ..., 𝑡}”,

i.e.

𝑓𝑚
T (𝑡) = {𝑗 |∃𝑖 ∈ {𝑡−𝑚, ..., 𝑡}, 𝑠.𝑡. 𝑗 = 𝑓T(𝑖)}

such that 𝑓𝑚
T (𝑡) ⊆ T ⊆ [𝑇 ]. And 𝑓𝑚

T (𝑡) contains all the time periods whose coin flips

uniquely determine the distributions of 𝑊𝑡−𝑚,𝑊𝑡−𝑚+1, ...,𝑊𝑡. Denote |𝑓𝑚
T (𝑡)| = 𝐽 ,

the cardinality of set 𝑓𝑚
T (𝑡). We keep in mind that 𝐽 depends on 𝑚, 𝑡 and T, yet they

are all omitted for brevity. Since the treatment assignments 𝑊𝑡−𝑚:𝑡 are determined

by at least one randomization point 𝑓(𝑡−𝑚), we know that 𝑓𝑚
T (𝑡) ̸= ∅ is non-empty,

i.e.,

|𝑓𝑚
T (𝑡)| = 𝐽 ≥ 1. (D.1)

240



Let the elements be 𝑓𝑚
T (𝑡) = {𝑢1, 𝑢2, ..., 𝑢𝐽}, and let 𝑢1 < 𝑢2 < ... < 𝑢𝐽 .

Finally, define “overlapping randomization points of periods {𝑡−𝑚, 𝑡−𝑚+1, ..., 𝑡}

and {𝑡′ −𝑚, 𝑡′ −𝑚 + 1, ..., 𝑡′}” to be

𝑂T(𝑡, 𝑡′) = 𝑓𝑚
T (𝑡) ∩ 𝑓𝑚

T (𝑡′)

Denote |𝑂T(𝑡, 𝑡′)| = 𝐽o. We keep in mind that 𝐽o depends on 𝑚, 𝑡, 𝑡′ and T, yet they

are all omitted for brevity.

Now we introduce an important short-hand notation. Recall that for any random-

ization point 𝑡𝑘, the associated 𝑞𝑘 is the probability that 𝑊𝑡𝑘 receives treatment, i.e.,

𝑞𝑘 = Pr(𝑊𝑡𝑘 = 1). And recall that 𝑞𝑘 = 1 − 𝑞𝑘. Now define for any 𝑡 ∈ {𝑚 + 1 : 𝑇},

1𝑡(T,Q,Y) = 𝑌𝑡(1𝑚+1)

[︃
1{𝑊𝑡−𝑚:𝑡 = 1𝑚+1}

𝐽∏︁
𝑗=1

1

𝑞𝑢𝑗

− 1

]︃

− 𝑌𝑡(0𝑚+1)

[︃
1{𝑊𝑡−𝑚:𝑡 = 0𝑚+1}

𝐽∏︁
𝑗=1

1

𝑞𝑢𝑗

− 1

]︃
(D.2)

where we use
∏︀𝐽

𝑗=1(1/𝑞𝑢𝑗
) and

∏︀𝐽
𝑗=1(1/𝑞𝑢𝑗

) to calculate the inverse propensity scores.

When T,Q and Y are clear from the context we omit them and use 1𝑡 for 1𝑡(T,Q,Y).

Using the above notation, we could re-write

𝜏𝑚 − 𝜏𝑚 =
1

𝑇 −𝑚

𝑇∑︁
𝑡=𝑚+1

1𝑡

Similar to Proposition 5.2, we can check the expectation of 1𝑡 by expanding the

probability governing 𝑊 (the only source of randomness is our assignment path 𝑊 ).

For any 𝑡 ∈ {𝑚 + 1,𝑚 + 2, ..., 𝑇},

E[1𝑡] = 0. (D.3)
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D.3.2 Preliminary Results

In this section we introduce two Lemmas for the proof of Theorem 5.4 and proof of

Lemma 5.3.

Lemma D.3. Under Assumptions 5.1–5.2, for any 𝑡 ∈ [𝑇 ], let |𝑓𝑚
T (𝑡)| = 𝐽 .

E[12
𝑡 ] =

(︃
𝐽∏︁

𝑗=1

1

𝑞𝑢𝑗

− 1

)︃
𝑌𝑡(1𝑚+1)

2 + 2𝑌𝑡(1𝑚+1)𝑌𝑡(0𝑚+1) +

(︃
𝐽∏︁

𝑗=1

1

𝑞𝑢𝑗

− 1

)︃
𝑌𝑡(0𝑚+1)

2.

(D.4)

Proof. Proof of Lemma D.3.

Denote |𝑓𝑚
T (𝑡)| = 𝐽 . Let the elements be 𝑓𝑚

T (𝑡) = {𝑢1, 𝑢2, ..., 𝑢𝐽}. Let 𝑢1 < 𝑢2 <

... < 𝑢𝐽 .

Using the notations defined earlier in Section D.3.1 and, in particular, the defini-

tion of (D.2), we can directly calculate the squared terms of E[12
𝑡 ] by consulting the

law of total expectation.

E[12
𝑡 ] = Pr (𝑊𝑡−𝑚:𝑡 = 1𝑚+1) · E[12

𝑡 |𝑊𝑡−𝑚:𝑡 = 1𝑚+1 ]

+ Pr (𝑊𝑡−𝑚:𝑡 = 1𝑚+1) · E[12
𝑡 |𝑊𝑡−𝑚:𝑡 = 1𝑚+1 ]

+ Pr (𝑊𝑡−𝑚:𝑡 = 1𝑚+1) · E[12
𝑡 |𝑊𝑡−𝑚:𝑡 = 1𝑚+1 ]

= Pr (𝑊𝑡−𝑚:𝑡 = 1𝑚+1) ·

{︃
𝑌𝑡(1𝑚+1)

(︃
𝐽∏︁

𝑗=1

1

𝑞𝑢𝑗

− 1

)︃
− 𝑌𝑡(0𝑚+1)(0 − 1)

}︃2

+ Pr (𝑊𝑡−𝑚:𝑡 = 0𝑚+1) ·

{︃
𝑌𝑡(1𝑚+1)(0 − 1) − 𝑌𝑡(0𝑚+1)

(︃
𝐽∏︁

𝑗=1

1

𝑞𝑢𝑗

− 1

)︃}︃2

+ Pr (𝑊𝑡−𝑚:𝑡 ̸= 1𝑚+1 or 0𝑚+1) · {𝑌𝑡(1𝑚+1)(0 − 1) − 𝑌𝑡(0𝑚+1)(0 − 1)}2

= Pr ((𝑊𝑢1 , ...,𝑊𝑢𝐽
) = 1𝐽) ·

{︃(︃
𝐽∏︁

𝑗=1

1

𝑞𝑢𝑗

− 1

)︃
𝑌𝑡(1𝑚+1) + 𝑌𝑡(0𝑚+1)

}︃2

+ Pr ((𝑊𝑢1 , ...,𝑊𝑢𝐽
) = 0𝐽) ·

{︃
−𝑌𝑡(1𝑚+1) −

(︃
𝐽∏︁

𝑗=1

1

𝑞𝑢𝑗

− 1

)︃
𝑌𝑡(0𝑚+1)

}︃2

+ Pr ((𝑊𝑢1 , ...,𝑊𝑢𝐽
) ̸= 1𝐽 or 0𝐽) · {−𝑌𝑡(1𝑚+1) + 𝑌𝑡(0𝑚+1)}2
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=
𝐽∏︁

𝑗=1

𝑞𝑢𝑗
·

{︃
𝐽∏︁

𝑗=1

1

𝑞𝑢𝑗

· 𝑌𝑡(1𝑚+1) − 𝑌𝑡(1𝑚+1) + 𝑌𝑡(0𝑚+1)

}︃2

+
𝐽∏︁

𝑗=1

𝑞𝑢𝑗
·

{︃
−

𝐽∏︁
𝑗=1

1

𝑞𝑢𝑗

· 𝑌𝑡(0𝑚+1) − 𝑌𝑡(1𝑚+1) + 𝑌𝑡(0𝑚+1)

}︃2

+

(︃
1 −

𝐽∏︁
𝑗=1

𝑞𝑢𝑗
−

𝐽∏︁
𝑗=1

𝑞𝑢𝑗

)︃
· {−𝑌𝑡(1𝑚+1) + 𝑌𝑡(0𝑚+1)}2

=

(︃
𝐽∏︁

𝑗=1

1

𝑞𝑢𝑗

− 1

)︃
𝑌𝑡(1𝑚+1)

2 + 2𝑌𝑡(1𝑚+1)𝑌𝑡(0𝑚+1) +

(︃
𝐽∏︁

𝑗=1

1

𝑞𝑢𝑗

− 1

)︃
𝑌𝑡(0𝑚+1)

2

which finishes the proof.

Lemma D.4. Under Assumptions 5.1–5.2, for any 𝑡 < 𝑡′ ∈ [𝑇 ], when |𝑂T(𝑡, 𝑡′)| =

𝐽o = 0,

E[1𝑡1𝑡′ ] =0. (D.5)

When |𝑂T(𝑡, 𝑡′)| = 𝐽o ≥ 1,

E[1𝑡1𝑡′ ] =(
𝐽o∏︁
𝑗=1

1

𝑞𝑢o
𝑗

− 1)𝑌𝑡(1𝑚+1)𝑌𝑡′(1𝑚+1) + 𝑌𝑡(1𝑚+1)𝑌𝑡′(0𝑚+1)

+ 𝑌𝑡(0𝑚+1)𝑌𝑡′(1𝑚+1) + (
𝐽o∏︁
𝑗=1

1

𝑞𝑢o
𝑗

− 1)𝑌𝑡(0𝑚+1)𝑌𝑡′(0𝑚+1). (D.6)

Proof. Proof of Lemma D.4. Denote |𝑓𝑚
T (𝑡)| = 𝐽 , |𝑓𝑚

T (𝑡′)| = 𝐽 ′, and |𝑂T(𝑡, 𝑡′)| = 𝐽o.

Let the elements be 𝑓𝑚
T (𝑡) = {𝑢1, 𝑢2, ..., 𝑢𝐽}, 𝑓𝑚

T (𝑡′) = {𝑢′1, 𝑢′2, ..., 𝑢′𝐽 ′}, and 𝑂T(𝑡, 𝑡′) =

{𝑢o
1, 𝑢

o
2, ..., 𝑢

o
𝐽o}. Let 𝑢1 < 𝑢2 < ... < 𝑢𝐽 , 𝑢′1 < 𝑢′2 < ... < 𝑢′𝐽 ′ , and 𝑢o

1 < 𝑢o
2 < ... < 𝑢o

𝐽o .

One time period could have different numberings in 𝑓𝑚
T (𝑡), 𝑓𝑚

T (𝑡′), and 𝑂T(𝑡, 𝑡′).

For example, 𝑢𝐽−𝐽o+1 = 𝑢′1 = 𝑢o
1, and 𝑢𝐽 = 𝑢′𝐽o = 𝑢o

𝐽o . See Table D.1 for an illustrator

of the determining randomization points and the overlapping randomization points.

First, when 𝐽o = 0, this implies that 1𝑡 and 1𝑡′ are independent. Then E[1𝑡1𝑡′ ] =

E[1𝑡]E[1𝑡′ ] = 0, where the second equality is due to (D.3).

When 𝐽o ≥ 1, this implies that 1𝑡 and 1𝑡′ are correlated. Using the notations
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Table D.1: Illustrator of the determining randomization points and the overlapping
randomization points

𝑢1 𝑢2 ... 𝑢𝐽−𝐽o+1 ... 𝑢𝐽

𝑢o
1 ... 𝑢o

𝐽o

𝑢′1 ... 𝑢′𝐽o 𝑢′𝐽o+1 ... 𝑢′𝐽 ′

Note: Each columns stands for one time period. The first row stands for the determining random-
ization points of 𝑓𝑚

T (𝑡); the second row for the overlapping randomization points of 𝑂T(𝑡, 𝑡
′); and

the third row for the determining randomization points of 𝑓𝑚
T (𝑡′).

defined above,

E[1𝑡1𝑡′ ] =E𝑊𝑢o1
,...,𝑊𝑢o

𝐽o

[︀
E
[︀
1𝑡1𝑡′

⃒⃒
𝑊𝑢o

1
, ...,𝑊𝑢o

𝐽o

]︀]︀
(D.7)

= Pr
(︀
(𝑊𝑢o

1
, ...,𝑊𝑢o

𝐽o
) = 1𝐽o

)︀
E
[︀
1𝑡1𝑡′

⃒⃒
(𝑊𝑢o

1
, ...,𝑊𝑢o

𝐽o
) = 1𝐽o

]︀
+ Pr

(︀
(𝑊𝑢o

1
, ...,𝑊𝑢o

𝐽o
) = 0𝐽o

)︀
E
[︀
1𝑡1𝑡′

⃒⃒
(𝑊𝑢o

1
, ...,𝑊𝑢o

𝐽o
) = 0𝐽o

]︀
+ Pr

(︀
(𝑊𝑢o

1
, ...,𝑊𝑢o

𝐽o
) ̸= 1𝐽o or 0𝐽o

)︀
E
[︀
1𝑡1𝑡′

⃒⃒
(𝑊𝑢o

1
, ...,𝑊𝑢o

𝐽o
) ̸= 1𝐽o or 0𝐽o

]︀
Next we go over the three cases of (𝑊𝑢o

1
, ...,𝑊𝑢o

𝐽o
) as decomposed above. Note

that conditional on (𝑊𝑢o
1
, ...,𝑊𝑢o

𝐽o
), 1𝑡 and 1𝑡′ are independent, i.e.,

E
[︀
1𝑡1𝑡′

⃒⃒
𝑊𝑢o

1
, ...,𝑊𝑢o

𝐽o

]︀
= E

[︀
1𝑡

⃒⃒
𝑊𝑢o

1
, ...,𝑊𝑢o

𝐽o

]︀
E
[︀
1𝑡′
⃒⃒
𝑊𝑢o

1
, ...,𝑊𝑢o

𝐽o

]︀
(1) With probability

∏︀𝐽o

𝑗=1 𝑞𝑢o
𝑗
, (𝑊𝑢o

1
, ...,𝑊𝑢o

𝐽o
) = 1𝐽o . In this case

E
[︀
1𝑡

⃒⃒
𝑊𝑢o

1
, ...,𝑊𝑢o

𝐽o

]︀
= Pr (𝑊𝑡−𝑚:𝑡 = 1𝑚+1) ·

{︃
𝑌𝑡(1𝑚+1)(

𝐽∏︁
𝑗=1

1

𝑞𝑢𝑗

− 1) + 𝑌𝑡(0𝑚+1)

}︃

+ Pr (𝑊𝑡−𝑚:𝑡 ̸= 1𝑚+1) · {𝑌𝑡(1𝑚+1)(0 − 1) + 𝑌𝑡(0𝑚+1)}

= Pr
(︀
(𝑊𝑢1 ,𝑊𝑢2 , ...,𝑊𝑢𝐽−𝐽o ) = 1𝐽−𝐽o

)︀
·

{︃
𝑌𝑡(1𝑚+1)(

𝐽∏︁
𝑗=1

1

𝑞𝑢𝑗

− 1) + 𝑌𝑡(0𝑚+1)

}︃

+ Pr
(︀
(𝑊𝑢1 ,𝑊𝑢2 , ...,𝑊𝑢𝐽−𝐽o ) ̸= 1𝐽−𝐽o

)︀
· {−𝑌𝑡(1𝑚+1) + 𝑌𝑡(0𝑚+1)}

=
𝐽−𝐽o∏︁
𝑗=1

𝑞𝑢𝑗
·

{︃
𝑌𝑡(1𝑚+1)(

𝐽∏︁
𝑗=1

1

𝑞𝑢𝑗

− 1) + 𝑌𝑡(0𝑚+1)

}︃
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+ (1 −
𝐽−𝐽o∏︁
𝑗=1

𝑞𝑢𝑗
) · {−𝑌𝑡(1𝑚+1) + 𝑌𝑡(0𝑚+1)}

=(
𝐽o∏︁
𝑗=1

1

𝑞𝑢o
𝑗

− 1)𝑌𝑡(1𝑚+1) + 𝑌𝑡(0𝑚+1)

where the third equality is due to (5.2). Similarly,

E
[︀
1𝑡′
⃒⃒
𝑊𝑢o

1
, ...,𝑊𝑢o

𝐽o

]︀
= Pr (𝑊𝑡′−𝑚:𝑡′ = 1𝑚+1) ·

{︃
𝑌𝑡′(1𝑚+1)(

𝐽 ′∏︁
𝑗=1

1

𝑞𝑢′
𝑗

− 1) + 𝑌𝑡′(0𝑚+1)

}︃

+ Pr (𝑊𝑡′−𝑚:𝑡′ ̸= 1𝑚+1) · {𝑌𝑡′(1𝑚+1)(0 − 1) + 𝑌𝑡′(0𝑚+1)}

= Pr
(︁

(𝑊𝑢′
𝐽o+1

,𝑊𝑢′
𝐽o+2

, ...,𝑊𝑢′
𝐽′ ) = 1𝐽 ′−𝐽o

)︁
·

{︃
𝑌𝑡′(1𝑚+1)(

𝐽 ′∏︁
𝑗=1

1

𝑞𝑢′
𝑗

− 1) + 𝑌𝑡′(0𝑚+1)

}︃

+ Pr
(︁

(𝑊𝑢′
𝐽o+1

,𝑊𝑢′
𝐽o+2

, ...,𝑊𝑢′
𝐽′ ) ̸= 1𝐽 ′−𝐽o

)︁
· {−𝑌𝑡′(1𝑚+1) + 𝑌𝑡′(0𝑚+1)}

=
𝐽 ′∏︁

𝑗=𝐽o+1

𝑞𝑢′
𝑗
·

{︃
𝑌𝑡′(1𝑚+1)(

𝐽 ′∏︁
𝑗=1

1

𝑞𝑢′
𝑗

− 1) + 𝑌𝑡′(0𝑚+1)

}︃

+ (1 −
𝐽 ′∏︁

𝑗=𝐽o+1

𝑞𝑢′
𝑗
) · {−𝑌𝑡′(1𝑚+1) + 𝑌𝑡′(0𝑚+1)}

=(
𝐽o∏︁
𝑗=1

1

𝑞𝑢o
𝑗

− 1)𝑌𝑡′(1𝑚+1) + 𝑌𝑡′(0𝑚+1)

(2) With probability
∏︀𝐽o

𝑗=1 𝑞𝑢o
𝑗
, (𝑊𝑢o

1
, ...,𝑊𝑢o

𝐽o
) = 0𝐽o . This case is similar to Case

(1), and we can calculate the expectation similarly.

E
[︀
1𝑡

⃒⃒
𝑊𝑢o

1
, ...,𝑊𝑢o

𝐽o

]︀
= Pr (𝑊𝑡−𝑚:𝑡 = 0𝑚+1) ·

{︃
−𝑌𝑡(1𝑚+1) − 𝑌𝑡(0𝑚+1)(

𝐽∏︁
𝑗=1

1

𝑞𝑢𝑗

− 1)

}︃

+ Pr (𝑊𝑡−𝑚:𝑡 ̸= 0𝑚+1) · {−𝑌𝑡(1𝑚+1) − 𝑌𝑡(0𝑚+1)(0 − 1)}

=
𝐽−𝐽o∏︁
𝑗=1

𝑞𝑢𝑗
·

{︃
−𝑌𝑡(1𝑚+1) − 𝑌𝑡(0𝑚+1)(

𝐽∏︁
𝑗=1

1

𝑞𝑢𝑗

− 1)

}︃
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+ (1 −
𝐽−𝐽o∏︁
𝑗=1

𝑞𝑢𝑗
) · {−𝑌𝑡(1𝑚+1) + 𝑌𝑡(0𝑚+1)}

= − 𝑌𝑡(1𝑚+1) − (
𝐽o∏︁
𝑗=1

1

𝑞𝑢o
𝑗

− 1)𝑌𝑡(0𝑚+1)

and again, similarly,

E
[︀
1𝑡′
⃒⃒
𝑊𝑢o

1
, ...,𝑊𝑢o

𝐽o

]︀
= Pr (𝑊𝑡′−𝑚:𝑡′ = 0𝑚+1) ·

{︃
−𝑌𝑡′(1𝑚+1) − 𝑌𝑡′(0𝑚+1)(

𝐽 ′∏︁
𝑗=1

1

𝑞𝑢′
𝑗

− 1)

}︃

+ Pr (𝑊𝑡′−𝑚:𝑡′ ̸= 0𝑚+1) · {−𝑌𝑡′(1𝑚+1) − 𝑌𝑡′(0𝑚+1)(0 − 1)}

=
𝐽 ′∏︁

𝑗=𝐽o+1

𝑞𝑢′
𝑗
·

{︃
−𝑌𝑡′(1𝑚+1) − 𝑌𝑡′(0𝑚+1)(

𝐽 ′∏︁
𝑗=1

1

𝑞𝑢′
𝑗

− 1)

}︃

+ (1 −
𝐽 ′∏︁

𝑗=𝐽o+1

𝑞𝑢′
𝑗
) · {−𝑌𝑡′(1𝑚+1) + 𝑌𝑡′(0𝑚+1)}

= − 𝑌𝑡′(1𝑚+1) − (
𝐽o∏︁
𝑗=1

1

𝑞𝑢o
𝑗

− 1)𝑌𝑡′(0𝑚+1)

(3) With probability 1 − 2 · (1/2𝐽o
), (𝑊𝑢o

1
, ...,𝑊𝑢o

𝐽o
) ̸= 1𝐽o or 0𝐽o . In this case

E
[︀
1𝑡

⃒⃒
𝑊𝑢o

1
, ...,𝑊𝑢o

𝐽o

]︀
= − 𝑌𝑡(1𝑚+1) + 𝑌𝑡(0𝑚+1)

E
[︀
1𝑡′
⃒⃒
𝑊𝑢o

1
, ...,𝑊𝑢o

𝐽o

]︀
= − 𝑌𝑡′(1𝑚+1) + 𝑌𝑡′(0𝑚+1)

Finally, putting all above together into (D.7), we have

E[1𝑡1𝑡′ ]

=
𝐽o∏︁
𝑗=1

𝑞𝑢o
𝑗
·

{︃
(
𝐽o∏︁
𝑗=1

1

𝑞𝑢o
𝑗

− 1)𝑌𝑡(1𝑚+1) + 𝑌𝑡(0𝑚+1)

}︃
·

{︃
(
𝐽o∏︁
𝑗=1

1

𝑞𝑢o
𝑗

− 1)𝑌𝑡′(1𝑚+1) + 𝑌𝑡′(0𝑚+1)

}︃

+
𝐽o∏︁
𝑗=1

𝑞𝑢o
𝑗
·

{︃
−𝑌𝑡(1𝑚+1) − (

𝐽o∏︁
𝑗=1

1

𝑞𝑢o
𝑗

− 1)𝑌𝑡(0𝑚+1)

}︃
·

{︃
−𝑌𝑡′(1𝑚+1) − (

𝐽o∏︁
𝑗=1

1

𝑞𝑢o
𝑗

− 1)𝑌𝑡′(0𝑚+1)

}︃
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+

{︃
1 −

𝐽o∏︁
𝑗=1

𝑞𝑢o
𝑗
−

𝐽o∏︁
𝑗=1

𝑞𝑢o
𝑗

}︃
· {−𝑌𝑡(1𝑚+1) + 𝑌𝑡(0𝑚+1)} · {−𝑌𝑡′(1𝑚+1) + 𝑌𝑡′(0𝑚+1)}

=(
𝐽o∏︁
𝑗=1

1

𝑞𝑢o
𝑗

− 1)𝑌𝑡(1𝑚+1)𝑌𝑡′(1𝑚+1) + 𝑌𝑡(1𝑚+1)𝑌𝑡′(0𝑚+1)

+ 𝑌𝑡(0𝑚+1)𝑌𝑡′(1𝑚+1) + (
𝐽o∏︁
𝑗=1

1

𝑞𝑢o
𝑗

− 1)𝑌𝑡(0𝑚+1)𝑌𝑡′(0𝑚+1)

which finishes the proof.

D.3.3 Lemma 5.3: Adversarial Selection of Potential Out-

comes

In this section, we first prove Lemma 5.3, and then discuss the implications of

Lemma 5.3.

Proof of Lemma 5.3.

The proof of Lemma 5.3 is through careful expansion of the risk function, the expected

square loss.

Proof. Proof of Lemma 5.3. From Lemma D.3 and Lemma D.4, all the terms are

quadratic, and all the coefficients are non-negative. After multiplying the constant

(𝑇 − 𝑚)2, we can expand, for any design of experiment (T,Q) and any potential

outcomes Y ∈ 𝒴 , the following terms:

(𝑇 −𝑚)2 · E
[︀
(𝜏𝑚 − 𝜏𝑚)2

]︀
=

𝑇∑︁
𝑡=𝑚+1

{︃(︃
𝐽∏︁

𝑗=1

1

𝑞𝑢𝑗

− 1

)︃
𝑌𝑡(1𝑚+1)

2 + 2𝑌𝑡(1𝑚+1)𝑌𝑡(0𝑚+1) +

(︃
𝐽∏︁

𝑗=1

1

𝑞𝑢𝑗

− 1

)︃
𝑌𝑡(0𝑚+1)

2

}︃

+
∑︁

𝑚+1≤𝑡<𝑡′≤𝑇
|𝑂T(𝑡,𝑡

′)|≥1

{︃(︃
𝐽o∏︁
𝑗=1

1

𝑞𝑢o
𝑗

− 1

)︃
𝑌𝑡(1𝑚+1)𝑌𝑡′(1𝑚+1) + 𝑌𝑡(1𝑚+1)𝑌𝑡′(0𝑚+1)

+ 𝑌𝑡(0𝑚+1)𝑌𝑡′(1𝑚+1) +

(︃
𝐽o∏︁
𝑗=1

1

𝑞𝑢o
𝑗

− 1

)︃
𝑌𝑡(0𝑚+1)𝑌𝑡′(0𝑚+1)

}︃
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where the equality is due to Lemma D.3 and Lemma D.4. Notice that in the first sum-

mation, all the coefficients in the front of 𝑌𝑡(1𝑚+1)
2, 𝑌𝑡(1𝑚+1)𝑌𝑡(0𝑚+1), and 𝑌𝑡(0𝑚+1)

2

are strictly positive, because 𝑞𝑢𝑗
are strictly between (0, 1). In the second summa-

tion, for those periods such that |𝑂T(𝑡, 𝑡′)| ≥ 1, all the coefficients in the front of

𝑌𝑡(1𝑚+1)𝑌𝑡′(1𝑚+1), 𝑌𝑡(1𝑚+1)𝑌𝑡′(0𝑚+1), 𝑌𝑡(0𝑚+1)𝑌𝑡′(1𝑚+1), and 𝑌𝑡(0𝑚+1)𝑌𝑡′(0𝑚+1) are

strictly positive as well, because 𝑞𝑢𝑗
are strictly between (0, 1).

For the squared terms in the above expression, 𝑌𝑡(1𝑚+1)
2 ≤ 𝐵2, 𝑌𝑡(0𝑚+1)

2 ≤

𝐵2 for any 𝑡 ∈ {𝑚 + 1 : 𝑇}. This is because 𝑓(𝑦) = 𝑦2 attains maximum at

the end points of the interval [−𝐵,𝐵]. For the cross-product terms in the above

expression, no matter if (𝑦1, 𝑦2) takes (𝑌𝑡(1𝑚+1), 𝑌𝑡(0𝑚+1)), (𝑌𝑡(1𝑚+1), 𝑌𝑡′(1𝑚+1)),

(𝑌𝑡(1𝑚+1), 𝑌𝑡′(0𝑚+1)), (𝑌𝑡(0𝑚+1), 𝑌𝑡′(1𝑚+1)), or (𝑌𝑡(0𝑚+1), 𝑌𝑡′(0𝑚+1))}, we have that

𝑦1 · 𝑦2 ≤ (𝑦21 + 𝑦22)/2 ≤ 𝐵2 where the first inequality is due to Cauchy-Schwarz, and

the second inequality is due to convexity. Combining that fact that all coefficients

are positive, 𝑟(𝜂T,Q,Y) ≤ 𝑟(𝜂T,Q,Y+) = 𝑟(𝜂T,Q,Y−).

Moreover, for any Y ∈ 𝒴 such that Y ̸= Y+ or Y−, if ∃ 𝑡 ∈ {𝑚 + 1, ..., 𝑇} such

that −𝐵 < 𝑌𝑡(1𝑚+1) < 𝐵. Then from inequality (D.1),
∏︀𝐽

𝑗=1
1

𝑞𝑢𝑗
− 1 > 0, so the

inequality is strict. Similarly, if ∃𝑡 ∈ {𝑚 + 1, ..., 𝑇} such that −𝐵 < 𝑌𝑡(0𝑚+1) < 𝐵,

then combine
∏︀𝐽

𝑗=1
1

𝑞𝑢𝑗
− 1 > 0, so the inequality is strict.

Implications of Lemma 5.3.

Lemma 5.3 simplifies the minimax problem in (5.6). Instead of thinking it as a mini-

max problem, we can now replace Y by either Y+ or Y−, and solve only a minimization

problem.

Here we state Lemma D.5 that is a direct implication of Lemma 5.3. It will be

frequently used later on.

Lemma D.5. When Y = Y+ or Y = Y−, under Assumptions 5.1–5.3, for any 𝑡 ∈ [𝑇 ],

E[12
𝑡 ] =

(︃
1∏︀𝐽

𝑗=1 𝑞𝑢𝑗

+
1∏︀𝐽

𝑗=1 𝑞𝑢𝑗

)︃
𝐵2.
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For any 𝑡 < 𝑡′ ∈ [𝑇 ], when |𝑂T(𝑡, 𝑡′)| = 𝐽o = 0,

E[1𝑡1𝑡′ ] =0

When |𝑂T(𝑡, 𝑡′)| = 𝐽o ≥ 1,

E[1𝑡1𝑡′ ] =

(︃
1∏︀𝐽o

𝑗=1 𝑞𝑢o
𝑗

+
1∏︀𝐽o

𝑗=1 𝑞𝑢o
𝑗

)︃
𝐵2

Proof. Proof of Lemma D.5. Replace 𝑌𝑡(1𝑚+1) = 𝑌𝑡(0𝑚+1) by 𝐵 or −𝐵 into the

expressions in Lemmas D.3 and D.4.

D.3.4 Theorem 5.4: Optimality of Fair Coin Flipping

In this section, we first prove Theorem 5.4, and then discuss the implications of

Theorem 5.4.

Proof of Theorem 5.4.

The proof of Theorem 5.4 is through an elegant inequality that highlights the balance

between treatment probabilities and control probabilities.

Proof. Proof of Theorem 5.4. Similar to the proof of Lemma 5.3, we expand the

quadratic terms using Lemma D.5. After multiplying the constant (𝑇 −𝑚)2, we can

expand, for any design of experiment (T,Q) and any potential outcomes Y ∈ 𝒴 , the

following terms:

(𝑇 −𝑚)2 · E
[︀
(𝜏𝑚 − 𝜏𝑚)2

]︀
=

𝑇∑︁
𝑡=𝑚+1

(︃
𝐽∏︁

𝑗=1

1

𝑞𝑢𝑗

+
𝐽∏︁

𝑗=1

1

𝑞𝑢𝑗

)︃
·𝐵2 +

∑︁
𝑚+1≤𝑡<𝑡′≤𝑇
|𝑂T(𝑡,𝑡

′)|≥1

(︃
𝐽o∏︁
𝑗=1

1

𝑞𝑢o
𝑗

+
𝐽o∏︁
𝑗=1

1

𝑞𝑢o
𝑗

)︃
·𝐵2

For each of them, due to Lemma D.2, the minimum is obtained at 𝑞0 = 𝑞1 = ... =

𝑞𝐾 = 1/2.
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Implications of Theorem 5.4.

Theorem 5.4 further simplifies the minimax problem in (5.6). Now that we have

identified the optimal randomization probabilities, we can directly plug in the optimal

probabilities being 1/2. Here we state Lemma D.6 that is a combination of Lemma D.5

and Theorem 5.4. It will be frequently used later on.

Lemma D.6. Under Assumptions 5.1–5.3, when Y = Y+ or Y = Y−, and when

𝑞0 = 𝑞1 = ... = 𝑞𝐾 = 1/2, for any 𝑡 ∈ [𝑇 ],

E[12
𝑡 ] =2𝐽+1𝐵2.

For any 𝑡 < 𝑡′ ∈ [𝑇 ], when |𝑂T(𝑡, 𝑡′)| = 𝐽o = 0,

E[1𝑡1𝑡′ ] =0

When |𝑂T(𝑡, 𝑡′)| = 𝐽o ≥ 1,

E[1𝑡1𝑡′ ] =2𝐽o+1𝐵2

Proof. Proof of Lemma D.6. Simply replace 𝑞0 = 𝑞1 = ... = 𝑞𝐾 = 1/2 into

Lemma D.5.

D.3.5 Structural Results of the Optimal Design

Using Lemma 5.3, we now establish two structural results that further characterize

the class of optimal designs of regular switchback experiments. Lemma D.7 states

the optimal starting and ending structure; Lemma D.8 states the optimal middle-case

structure. The proofs to Lemma D.7 and Lemma D.8 are deferred to Sections D.3.5

and D.3.5, respectively.

Lemma D.7. When Y = Y+ or Y = Y−, under Assumptions 5.1–5.3, any optimal
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design of experiment T must satisfy

𝑡1 ≥ 𝑚 + 2, and 𝑡𝐾 ≤ 𝑇 −𝑚.

Lemma D.7 states that the first randomization point on period 1 should be followed

by at least 𝑚 periods that do not flip a coin, and that the last randomization point

should be followed by at least 𝑚 periods that do not flip a coin. This guarantees that

the assignments during {1 : 𝑚 + 1} and during {𝑇 −𝑚 : 𝑇} both produce observed

data that can be used to estimate the lag-𝑚 effect.

Lemma D.8. When Y = Y+ or Y = Y−, under Assumptions 5.1–5.3, any optimal

design of experiment T must satisfy

𝑡𝑘+1 − 𝑡𝑘−1 ≥ 𝑚, ∀𝑘 ∈ [𝐾].

Lemma D.8 suggests that in every consecutive 𝑚 + 1 periods, there could be at

most 3 randomization points. Intuitively, too many randomization points in every

consecutive 𝑚+ 1 periods decreases the chance of observing a useful assignment path

of 1𝑚+1 or 0𝑚+1. Lemma D.8 formalizes such intuition, and suggests that as the

persistence of the carryover effect increases, the optimal design randomizes less often.

Lemmas D.7 and D.8 restrict the space of possible optimal regular switchback

experiment to a smaller class of switchback experiments. Under such a smaller class

of switchback experiments, we can explicitly express the risk function in closed form,

which we define below.

Lemma D.9 (Risk Function). When Y = Y+ or Y = Y−, under Assumptions 5.1–5.3,

as long as the following three conditions are satisfied,

𝑡1 ≥ 𝑚 + 2; 𝑡𝐾 ≤ 𝑇 −𝑚; 𝑡𝑘+1 − 𝑡𝑘−1 ≥ 𝑚, ∀𝑘 ∈ [𝐾],

the risk function for any switchback experiment is given by
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𝑟(𝜂T,Q,Y) =
1

(𝑇 −𝑚)2

{︃
4
𝐾+1∑︁
𝑘=1

(𝑡𝑘 − 𝑡𝑘−1)
2 + 8𝑚(𝑡𝐾 − 𝑡1) + 4𝑚2𝐾 − 4𝑚2

+4
𝐾∑︁
𝑘=2

[(𝑚− 𝑡𝑘 + 𝑡𝑘−1)
+]2

}︃
𝐵2 (D.8)

Lemma D.9 explicitly describes the risk function of any optimal design of regular

switchback experiments, which lies in the optimal sub-class of switchback experiments.

The proof of Lemma D.9 is deferred to Section D.3.5 in the appendix.

To understand the risk function in Lemma D.9, we separately examine each term

in (D.8). The first summation of the squares
∑︀𝐾+1

𝑘=1 (𝑡𝑘 − 𝑡𝑘−1)
2 suggests that the gap

between two consecutive randomization points should not be too large. The middle

term 8𝑚(𝑡𝐾 − 𝑡1) formalizes Lemma D.7, suggesting that the second randomization

point on period 𝑡1 should not be too early and the last randomization point on period

𝑡𝐾 should not be too late. The last summation of the squares
∑︀𝐾

𝑘=2[(𝑚− 𝑡𝑘 + 𝑡𝑘−1)
+]2

suggests that the gap should not be too small. Equation D.8 formalizes the trade-off

that we have described earlier in this section. First note that when we focus on the

optimal design, we treat 𝑇 and 𝑚 both as constants. So the constant of 1/(𝑇 −𝑚)

in the expression of the risk function does not affect the optimal design.

Proof of Lemma D.7.

Proof. Proof of Lemma D.7.

We prove the two parts separately, both by contradiction.

(1) Suppose there exists an optimal design T = {𝑡0 = 1, 𝑡1, 𝑡2, ..., 𝑡𝐾} such that

𝑡1 ≤ 𝑚+ 1. Then we try to construct another design T̃, such that
⃒⃒⃒
T̃
⃒⃒⃒

= 𝐾 = |T| − 1.

And the 𝐾 elements are T̃ = {𝑡0 = 1, 𝑡1 = 𝑡2, 𝑡2 = 𝑡3, ..., 𝑡𝐾−1 = 𝑡𝐾}.

Next we argue that when Y = Y+ or Y = Y−,

𝑟(T,Y) > 𝑟(T̃,Y),

which suggests that T is not the optimal design.

First, focus on the squared terms. For any 𝑚+1 ≤ 𝑡 ≤ 𝑡1+𝑚−1, 𝑡1 ∈ 𝑓𝑚
T (𝑡), 𝑡1 ̸=
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Table D.2: An example of two regular switchback experiments T and T̃ when 𝑚 = 4
and 𝑡1 = 3

1 2 3 4 5 6 ...
T X − X − − X ...
T̃ X − − − − X ...

Each checkmark beneath a number indicates that this number is within that set; and each dash
beneath a number indicates that this number is not within that set. For example, the checkmark X
beneath number 3 indicates that 3 ∈ T; and the dash − beneath number 3 indicates that 3 ̸= T̃.

𝑓𝑚
T̃ (𝑡). Moreover, 𝑡 −𝑚 ≤ 𝑡1 − 1, so that 𝑡0 ∈ 𝑓𝑚

T̃ (𝑡). So 𝑓𝑚
T (𝑡) − {𝑡1} = 𝑓𝑚

T̃ (𝑡), and⃒⃒⃒
𝑓𝑚
T̃ (𝑡)

⃒⃒⃒
≥ 1. As a result,

E[1𝑡(T)2] − E[1𝑡(T̃)2] ≥ (22+1 − 21+1)𝐵2 = 4𝐵2.

For any 𝑡 ≥ 𝑡1 + 𝑚, either (i) 𝑓T(𝑡 −𝑚) = 𝑡1, in which case 𝑓T̃(𝑡 −𝑚) = 𝑡0. This is

the only difference between 𝑓𝑚
T (𝑡) and 𝑓𝑚

T̃ (𝑡), i.e., 𝑓𝑚
T (𝑡) − {𝑡1} = 𝑓𝑚

T̃ (𝑡) − {𝑡0}. So

|𝑓𝑚
T (𝑡)| =

⃒⃒⃒
𝑓𝑚
T̃ (𝑡)

⃒⃒⃒
. The second case is (ii) 𝑓T(𝑡−𝑚) ≥ 𝑡2, in which case 𝑓𝑚

T (𝑡) = 𝑓𝑚
T̃ (𝑡).

Both cases suggest that

E[1𝑡(T)2] − E[1𝑡(T̃)2] = 0.

So we have

𝑇∑︁
𝑡=𝑚+1

E
[︀
1𝑡(T)2

]︀
−

𝑇∑︁
𝑡=𝑚+1

E
[︁
1𝑡(T̃)2

]︁
=

𝑡1+𝑚−1∑︁
𝑡=𝑚+1

(︁
E
[︀
1𝑡(T)2

]︀
− E

[︁
1𝑡(T̃)2

]︁)︁
+

𝑇∑︁
𝑡=𝑡1+𝑚

(︁
E
[︀
1𝑡(T)2

]︀
− E

[︁
1𝑡(T̃)2

]︁)︁
≥

𝑡1+𝑚−1∑︁
𝑡=𝑚+1

(4𝐵2) + 0

=4(𝑡1 − 1)𝐵2

>0

Second, focus on the cross product terms. For any 𝑡 and 𝑡′ such that 𝑚 + 1 ≤

𝑡 < 𝑡′ ≤ 𝑡1 + 𝑚 − 1, 𝑡1 ∈ 𝑂T(𝑡, 𝑡′), 𝑡1 ̸= 𝑂T̃(𝑡, 𝑡′). Moreover, 𝑡 −𝑚 ≤ 𝑡1 − 1, so that
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𝑡0 ∈ 𝑂T(𝑡, 𝑡′). So 𝑂T(𝑡, 𝑡′) − {𝑡1} = 𝑂T̃(𝑡, 𝑡′), and |𝑂T̃(𝑡, 𝑡′)| ≥ 1. As a result,

E[1𝑡(T)1𝑡′(T)] − E[1𝑡(T̃)1𝑡′(T̃)] ≥ (22+1 − 21+1)𝐵2 = 4𝐵2 > 0.

For any 𝑚+ 1 ≤ 𝑡 < 𝑡′ ≤ 𝑇 such that 𝑡′ ≥ 𝑡1 +𝑚, either (i) 𝑓T(𝑡′−𝑚) = 𝑡1, in which

case 𝑓T̃(𝑡′ −𝑚) = 𝑡0. So 𝑂T(𝑡, 𝑡′) − {𝑡1} = 𝑂T̃(𝑡, 𝑡′) − {𝑡0}. So |𝑂T(𝑡, 𝑡′)| = |𝑂T̃(𝑡, 𝑡′)|.

The second case is (ii) 𝑓T(𝑡′ −𝑚) ≥ 𝑡2, in which case 𝑂T(𝑡, 𝑡′) = 𝑂T̃(𝑡, 𝑡′). Both cases

suggest that

E[1𝑡(T)1𝑡′(T)] − E[1𝑡(T̃)1𝑡′(T̃)] = 0.

So we have

∑︁
𝑚+1≤𝑡<𝑡′≤𝑇

E [1𝑡(T)1𝑡′(T)] −
∑︁

𝑚+1≤𝑡<𝑡′≤𝑇

E
[︁
1𝑡(T̃)1𝑡′(T̃)

]︁
=

∑︁
𝑚+1≤𝑡<𝑡′≤𝑡1+𝑚−1

(︁
E [1𝑡(T)1𝑡′(T)] − E

[︁
1𝑡(T̃)1𝑡′(T̃)

]︁)︁
+

∑︁
𝑚+1≤𝑡<𝑡′≤𝑇

𝑡′≥𝑡1+𝑚

(︁
E [1𝑡(T)1𝑡′(T)] − E

[︁
1𝑡(T̃)1𝑡′(T̃)

]︁)︁

≥0

Combine both square terms and cross-product terms we know that

𝑟(T,Y) > 𝑟(T̃,Y).

(2) Suppose there exists an optimal design T = {𝑡0 = 1, 𝑡1, 𝑡2, ..., 𝑡𝐾} such that

𝑡𝐾 ≥ 𝑇 −𝑚 + 1. Then we try to construct another design T̃, such that
⃒⃒⃒
T̃
⃒⃒⃒

= 𝐾 =

|T| − 1. And the 𝐾 elements are T̃ = {𝑡0 = 1, 𝑡1 = 𝑡1, 𝑡2 = 𝑡2, ..., 𝑡𝐾−1 = 𝑡𝐾−1}.

Next we argue that when Y = Y+ or Y = Y−,

𝑟(T,Y) > 𝑟(T̃,Y),

which suggests that T is not the optimal design.

254



Table D.3: An example of two regular switchback experiments T and T̃ when 𝑚 = 4
and 𝑡𝐾 = 𝑇 − 2

... 𝑇 − 5 𝑇 − 4 𝑇 − 3 𝑇 − 2 𝑇 − 1 𝑇
T ... X − X X − −
T̃ ... X − X − − −

Note: Each checkmark beneath a number indicates that this number is within that set; and each dash
beneath a number indicates that this number is not within that set. For example, the checkmark X
beneath number 𝑇 − 2 indicates that 𝑇 − 2 ∈ T; and the dash − beneath number 𝑇 − 2 indicates
that 𝑇 − 2 ̸= T̃.

First focus on the squared terms. For any 𝑚 + 1 ≤ 𝑡 ≤ 𝑡𝐾 − 1, 𝑓𝑚
T (𝑡) = 𝑓𝑚

T̃ (𝑡) is

totally unchanged.

E[1𝑡(T)2] − E[1𝑡(T̃)2] = 0.

For any 𝑡𝐾 ≤ 𝑡 ≤ 𝑇 , 𝑡𝐾 /∈ 𝑓𝑚
T̃ (𝑡), 𝑡𝐾 ∈ 𝑓𝑚

T (𝑡). And all the other determining

randomization points are unchanged. So 𝑓𝑚
T̃ (𝑡) ⊂ 𝑓𝑚

T (𝑡) and 𝑓𝑚
T (𝑡) − {𝑡𝐾} = 𝑓𝑚

T̃ (𝑡)

and
⃒⃒⃒
𝑓𝑚
T̃ (𝑡)

⃒⃒⃒
≥ 1.

E[1𝑡(T)2] − E[1𝑡(T̃)2] ≥ (22+1 − 21+1)𝐵2 = 4𝐵2.

So we have

𝑇∑︁
𝑡=𝑚+1

E
[︀
1𝑡(T)2

]︀
−

𝑇∑︁
𝑡=𝑚+1

E
[︁
1𝑡(T̃)2

]︁
=

𝑡𝐾−1∑︁
𝑡=𝑚+1

(︁
E
[︀
1𝑡(T)2

]︀
− E

[︁
1𝑡(T̃)2

]︁)︁
+

𝑇∑︁
𝑡=𝑡𝐾

(︁
E
[︀
1𝑡(T)2

]︀
− E

[︁
1𝑡(T̃)2

]︁)︁
≥

𝑇∑︁
𝑡=𝑡𝐾

(4𝐵2) + 0

=4(𝑇 − 𝑡𝐾 + 1)𝐵2

>0

Next we focus on the cross-product terms. For any 𝑚 + 1 ≤ 𝑡 < 𝑡′ ≤ 𝑇 such that
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𝑡 ≤ 𝑡𝐾 − 1, 𝑂T(𝑡, 𝑡′) = 𝑂T̃(𝑡, 𝑡′) is totally unchanged.

E[1𝑡(T)1𝑡′(T)] − E[1𝑡(T̃)1𝑡′(T̃)] = 0.

For any 𝑡𝐾 ≤ 𝑡 < 𝑡′ ≤ 𝑇 , since 𝑡′ − 𝑚 ≤ 𝑇 − 𝑚 ≤ 𝑡𝐾 − 1, so 𝑓T̃(𝑡′ − 𝑚) < 𝑡𝐾 and

|𝑂T̃(𝑡, 𝑡′)| ≥ 1 must contain an element. Moreover, 𝑂T̃(𝑡, 𝑡′) ⊂ 𝑂T(𝑡, 𝑡′). So

E[1𝑡(T)1𝑡′(T)] − E[1𝑡(T̃)1𝑡′(T̃)] ≥ (22+1 − 21+1)𝐵2 ≥ 4𝐵2 > 0.

So we have

∑︁
𝑚+1≤𝑡<𝑡′≤𝑇

E [1𝑡(T)1𝑡′(T)] −
∑︁

𝑚+1≤𝑡<𝑡′≤𝑇

E
[︁
1𝑡(T̃)1𝑡′(T̃)

]︁
=

∑︁
𝑚+1≤𝑡<𝑡′≤𝑇

𝑡≤𝑡𝐾−1

(︁
E [1𝑡(T)1𝑡′(T)] − E

[︁
1𝑡(T̃)1𝑡′(T̃)

]︁)︁
+

∑︁
𝑡𝐾≤𝑡<𝑡′≤𝑇

(︁
E [1𝑡(T)1𝑡′(T)] − E

[︁
1𝑡(T̃)1𝑡′(T̃)

]︁)︁

≥0

Combine both square terms and cross-product terms we know that

𝑟(T,Y) > 𝑟(T̃,Y).

Proof of Lemma D.8.

Proof. Proof of Lemma D.8.

Recall that we denote 𝑡0 = 1 and 𝑡𝐾+1 = 𝑇 + 1. First, from Lemma D.7, 𝑡1 ≥

𝑚+2, 𝑡𝐾 ≤ 𝑇 −𝑚. So 𝑘 = 1 and 𝑘 = 𝐾 cases both hold. Next, when 2 ≤ 𝑘 ≤ 𝐾−1,

we prove by contradiction.

Suppose there exists some optimal design T, such that ∃2 ≤ 𝑘 ≤ 𝐾−1, 𝑠.𝑡. 𝑡𝑘+1−

𝑡𝑘−1 ≤ 𝑚− 1. Denote

K = {𝑘 ∈ {2 : 𝐾 − 1} |𝑡𝑘+1 − 𝑡𝑘−1 ≤ 𝑚− 1}.
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Since K ̸= ∅, pick 𝑗 = maxK to be the largest element in K. Apparently 𝑗 ≤ 𝐾 − 1

since 𝑗 ∈ {2 : 𝐾− 1}. We also know that 𝑡𝑗+2 ≥ 𝑡𝑗 +𝑚, because otherwise 𝑗 + 1 ∈ K,

which contradicts the maximality of 𝑗.

We now construct another design T̃ such that
⃒⃒⃒
T̃
⃒⃒⃒

= 𝐾 = |T| − 1, and the 𝐾

elements are T̃ = {𝑡0 = 1, 𝑡1 = 𝑡1, ..., 𝑡𝑗−1 = 𝑡𝑗−1, 𝑡𝑗 = 𝑡𝑗+1, ..., 𝑡𝐾−1 = 𝑡𝐾}.

Table D.4: An example of two regular switchback experiments T and T̃ when 𝑚 = 4
and 𝑡𝑗 = 𝑡𝑗+1 − 1 = 𝑡𝑗−1 + 2

... 𝑡𝑗−1 𝑡𝑗−1+1 𝑡𝑗 𝑡𝑗+1 𝑡𝑗+1+1 𝑡𝑗+1+2 𝑡𝑗+2 ...
T ... X − X X − − X ...
T̃ ... X − − X − − X ...

Each checkmark beneath a number indicates that this number is within that set; and each dash
beneath a number indicates that this number is not within that set. For example, the checkmark X
beneath number 𝑡𝑗 indicates that 𝑡𝑗 ∈ T; and the dash − beneath number 𝑡𝑗 indicates that 𝑡𝑗 ̸= T̃.

Next we argue that when Y = Y+ or Y = Y−,

𝑟(T,Y) > 𝑟(T̃,Y),

which suggests that T is not the optimal design.

First focus on the squared terms. When 𝑡 ≤ 𝑡𝑗 − 1, 𝑓𝑚
T (𝑡) = 𝑓𝑚

T̃ (𝑡) is totally

unchanged.

E[1𝑡(T)2] − E[1𝑡(T̃)2] = 0.

When 𝑡𝑗 ≤ 𝑡 ≤ 𝑡𝑗 + 𝑚 − 1, this suggests that 𝑡 − 𝑚 ≤ 𝑡𝐽 − 1 so that 𝑓T̃ ≤ 𝑡𝑗 − 1.

So 𝑡𝑗 /∈ 𝑓𝑚
T̃ (𝑡), 𝑡𝑗 ∈ 𝑓𝑚

T (𝑡). And all the other determining randomization points are

unchanged. So 𝑓𝑚
T̃ (𝑡) ⊂ 𝑓𝑚

T (𝑡) and 𝑓𝑚
T (𝑡) − {𝑡𝑗} = 𝑓𝑚

T̃ (𝑡) and
⃒⃒⃒
𝑓𝑚
T̃ (𝑡)

⃒⃒⃒
≥ 1.

E[1𝑡(T)2] − E[1𝑡(T̃)2] ≥ (22+1 − 21+1)𝐵2 = 4𝐵2.

When 𝑡𝑗 +𝑚 ≤ 𝑡 ≤ 𝑇 , either (i) 𝑓T(𝑡−𝑚) = 𝑡𝑗, in which case 𝑓T̃(𝑡−𝑚) = 𝑡𝑗−1. This

is the only difference between 𝑓𝑚
T (𝑡) and 𝑓𝑚

T̃ (𝑡), i.e., 𝑓𝑚
T (𝑡) − {𝑡𝑗} = 𝑓𝑚

T̃ (𝑡) − {𝑡𝑗−1}.

So |𝑓𝑚
T (𝑡)| =

⃒⃒⃒
𝑓𝑚
T̃ (𝑡)

⃒⃒⃒
. The second case is (ii) 𝑓T(𝑡−𝑚) ≥ 𝑡𝑗+1, in which case 𝑓𝑚

T (𝑡) =
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𝑓𝑚
T̃ (𝑡). Both cases suggest that

E[1𝑡(T)2] − E[1𝑡(T̃)2] = 0.

So we have

𝑇∑︁
𝑡=𝑚+1

E
[︀
1𝑡(T)2

]︀
−

𝑇∑︁
𝑡=𝑚+1

E
[︁
1𝑡(T̃)2

]︁
=

𝑡𝑗−1∑︁
𝑡=𝑚+1

(︁
E
[︀
1𝑡(T)2

]︀
− E

[︁
1𝑡(T̃)2

]︁)︁
+

𝑡𝑗+𝑚−1∑︁
𝑡=𝑡𝑗

(︁
E
[︀
1𝑡(T)2

]︀
− E

[︁
1𝑡(T̃)2

]︁)︁

+
𝑇∑︁

𝑡=𝑡𝑗+𝑚

(︁
E
[︀
1𝑡(T)2

]︀
− E

[︁
1𝑡(T̃)2

]︁)︁

≥0 +

𝑡𝑗+𝑚−1∑︁
𝑡=𝑡𝑗

(4𝐵2) + 0

=4(𝑚− 1)𝐵2

>0

Next we focus on the cross-product terms. Let 𝑚 + 1 ≤ 𝑡 < 𝑡′ ≤ 𝑇 . There are

many cases which we summarize in Table D.5

Table D.5: Summary of the differences between cross-product terms under two regular
switchback experiments T and T̃

T T̃
𝑚 + 1 ≤ 𝑡 ≤ 𝑡𝑗−1, 𝑡 < 𝑡′ ≤ 𝑇 unchanged
𝑡𝑗−1 ≤ 𝑡 ≤ 𝑡𝑗 − 1, 𝑡 < 𝑡′ ≤ 𝑡𝑗 + 𝑚− 1 unchanged
𝑡𝑗−1 ≤ 𝑡 ≤ 𝑡𝑗 − 1, 𝑡𝑗 + 𝑚 ≤ 𝑡′ ≤ 𝑡𝑗+1 + 𝑚− 1 0 4𝐵2

𝑡𝑗−1 ≤ 𝑡 ≤ 𝑡𝑗 − 1, 𝑡𝑗+1 + 𝑚 ≤ 𝑡′ ≤ 𝑇 unchanged
𝑡𝑗 ≤ 𝑡 < 𝑡′ ≤ 𝑡𝑗 + 𝑚− 1 2|𝑂T(𝑡,𝑡

′)|+1𝐵2 2|𝑂T̃(𝑡,𝑡
′)|+1𝐵2

𝑡𝑗 ≤ 𝑡 ≤ 𝑡𝑗 + 𝑚− 1, 𝑡𝑗 + 𝑚 ≤ 𝑡′ ≤ 𝑇 unchanged
𝑡𝑗 + 𝑚 ≤ 𝑡 < 𝑡′ ≤ 𝑇 unchanged

We explain Table D.5. When 𝑚 + 1 ≤ 𝑡 ≤ 𝑡𝑗−1, 𝑡 < 𝑡′ ≤ 𝑇 , all the overlapping

randomization points are earlier than 𝑡𝑗−1 − 1, i.e., ∀𝑎 ∈ 𝑂T(𝑡, 𝑡′), 𝑎 ≤ 𝑡𝑗−1 − 1;∀𝑎 ∈

𝑂T̃(𝑡, 𝑡′), 𝑎 ≤ 𝑡𝑗−1− 1. So 𝑡𝑗 /∈ 𝑂T(𝑡, 𝑡′), and the overlapping randomization points are
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unchanged, i.e., 𝑂T(𝑡, 𝑡′) = 𝑂T̃(𝑡, 𝑡′).

When 𝑡𝑗−1 ≤ 𝑡 ≤ 𝑡𝑗−1, 𝑡 < 𝑡′ ≤ 𝑡𝑗+𝑚−1, all the overlapping randomization points

are earlier than 𝑡𝑗−1, i.e., ∀𝑎 ∈ 𝑂T(𝑡, 𝑡′), 𝑎 ≤ 𝑡𝑗−1;∀𝑎 ∈ 𝑂T̃(𝑡, 𝑡′), 𝑎 ≤ 𝑡𝑗−1. So 𝑡𝑗 /∈

𝑂T(𝑡, 𝑡′), and the overlapping randomization points are unchanged, i.e., 𝑂T(𝑡, 𝑡′) =

𝑂T̃(𝑡, 𝑡′).

When 𝑡𝑗−1 ≤ 𝑡 ≤ 𝑡𝑗 − 1, 𝑡𝑗 + 𝑚 ≤ 𝑡′ ≤ 𝑡𝑗+1 + 𝑚 − 1, changing from T to T̃

increases the expected values. This is because 𝑡′ −𝑚 ≥ 𝑡𝑗 > 𝑡. So first, 𝑂T(𝑡, 𝑡′) = ∅.

But 𝑓T̃(𝑡′ − 𝑚) = 𝑡𝑗−1 and 𝑡𝑗−1 ∈ 𝑓𝑚
T̃ (𝑡), which suggests that 𝑡𝑗−1 ∈ 𝑂T̃(𝑡, 𝑡′). Also,

∀𝑎 ∈ 𝑓𝑚
T̃ (𝑡′), 𝑎 ≥ 𝑡𝑗−1;∀𝑎 ∈ 𝑓𝑚

T (𝑡), 𝑎 ≤ 𝑡𝑗−1, which suggests that 𝑡𝑗−1 is the only

overlapping element. So, 𝑂T̃(𝑡, 𝑡′) = {𝑡𝑗−1}. In this case,

E[1𝑡(T)1𝑡′(T)] − E[1𝑡(T̃)1𝑡′(T̃)] = (0 − 21+1)𝐵2 = −4𝐵2.

When 𝑡𝑗−1 ≤ 𝑡 ≤ 𝑡𝑗 − 1, 𝑡𝑗+1 + 𝑚 ≤ 𝑡′ ≤ 𝑇 , since 𝑡′ − 𝑚 ≥ 𝑡𝑗+1 > 𝑡𝑗 > 𝑡,

𝑂T(𝑡, 𝑡′) = 𝑂T̃(𝑡, 𝑡′) = ∅.

When 𝑡𝑗 ≤ 𝑡 < 𝑡′ ≤ 𝑡𝑗 + 𝑚− 1, 𝑡𝑗 ∈ 𝑂T(𝑡, 𝑡′) and 𝑡𝑗 /∈ 𝑂T̃(𝑡, 𝑡′). And all the other

overlapping randomization points are unchanged, so 𝑂T(𝑡, 𝑡′) − {𝑡𝑗} = 𝑂T̃(𝑡, 𝑡′) and

|𝑂T̃(𝑡, 𝑡′)| ≥ 1. In this case,

E[1𝑡(T)1𝑡′(T)] − E[1𝑡(T̃)1𝑡′(T̃)] ≥ (22+1 − 21+1)𝐵2 = 4𝐵2.

When 𝑡𝑗 ≤ 𝑡 ≤ 𝑡𝑗 + 𝑚 − 1, 𝑡𝑗 + 𝑚 ≤ 𝑡′ ≤ 𝑇 , either (i) 𝑓𝑚
T (𝑡′ −𝑚) = 𝑡𝑗, in which

case 𝑓T̃(𝑡′−𝑚) = 𝑡𝑗−1. This is the only difference between 𝑂T(𝑡, 𝑡′) and 𝑂T̃(𝑡, 𝑡′), i.e.,

𝑂T(𝑡, 𝑡′) − {𝑡𝑗} = 𝑂T̃(𝑡, 𝑡′) − {𝑡𝑗−1}. |𝑂T(𝑡, 𝑡′)| = |𝑂T̃(𝑡, 𝑡′)|. The second case is (ii)

𝑓T(𝑡′−𝑚) ≥ 𝑡𝑗+1, in which case 𝑂T(𝑡, 𝑡′) = 𝑂T̃(𝑡, 𝑡′) is unchanged. Both cases suggest

that E[1𝑡(T)1𝑡′(T)] − E[1𝑡(T̃)1𝑡′(T̃)] = 0.

When 𝑡𝑗 + 𝑚 ≤ 𝑡 < 𝑡′ ≤ 𝑇 , either (i) 𝑓𝑚
T (𝑡′ −𝑚) = 𝑡𝑗, in which case 𝑓T̃(𝑡′ −𝑚) =

𝑡𝑗−1. This is the only difference between 𝑂T(𝑡, 𝑡′) and 𝑂T̃(𝑡, 𝑡′), i.e., 𝑂T(𝑡, 𝑡′) − {𝑡𝑗} =

𝑂T̃(𝑡, 𝑡′)−{𝑡𝑗−1}. |𝑂T(𝑡, 𝑡′)| = |𝑂T̃(𝑡, 𝑡′)|. The second case is (ii) 𝑓T(𝑡′−𝑚) ≥ 𝑡𝑗+1, in

which case 𝑂T(𝑡, 𝑡′) = 𝑂T̃(𝑡, 𝑡′) is unchanged. Both cases suggest that E[1𝑡(T)1𝑡′(T)]−

E[1𝑡(T̃)1𝑡′(T̃)] = 0.
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So we have

∑︁
𝑚+1≤𝑡<𝑡′≤𝑇

E [1𝑡(T)1𝑡′(T)] −
∑︁

𝑚+1≤𝑡<𝑡′≤𝑇

E
[︁
1𝑡(T̃)1𝑡′(T̃)

]︁
=

∑︁
𝑡𝑗−1≤𝑡≤𝑡𝑗−1

𝑡𝑗+𝑚≤𝑡′≤𝑡𝑗+1+𝑚−1

(︁
E [1𝑡(T)1𝑡′(T)] − E

[︁
1𝑡(T̃)1𝑡′(T̃)

]︁)︁

+
∑︁

𝑡𝑗≤𝑡<𝑡′≤𝑡𝑗+𝑚−1

(︁
E [1𝑡(T)1𝑡′(T)] − E

[︁
1𝑡(T̃)1𝑡′(T̃)

]︁)︁
≥

∑︁
𝑡𝑗−1≤𝑡≤𝑡𝑗−1

𝑡𝑗+𝑚≤𝑡′≤𝑡𝑗+1+𝑚−1

(︀
−4𝐵2

)︀
+

∑︁
𝑡𝑗≤𝑡<𝑡′≤𝑡𝑗+𝑚−1

(︀
4𝐵2

)︀

= − (𝑡𝑗 − 𝑡𝑗−1)(𝑡𝑗+1 − 𝑡𝑗)4𝐵
2 +

𝑚(𝑚− 1)

2
4𝐵2

≥0

where the last inequality is because 𝑗 ∈ K, 𝑡𝑗+1−𝑡𝑗−1 ≤ 𝑚−1, so (𝑡𝑗−𝑡𝑗−1)(𝑡𝑗+1−𝑡𝑗) ≤
(𝑚−1)2

4
≤ 𝑚(𝑚−1)

2
.

Combine both square terms and cross-product terms we know that

𝑟(T,Y) > 𝑟(T̃,Y).

Proof of Lemma D.9.

Proof. Proof of Lemma D.9.

Think of E[12
𝑡 ] as E[1𝑡1𝑡], so that 𝑟(𝜂T,Q,Y) =

∑︀𝑇
𝑡=𝑚+1

∑︀𝑇
𝑡′=𝑚+1 E[1𝑡1𝑡′ ]. Then we

can decompose the risk function to be

(𝑇 −𝑚)2 · 𝑟(𝜂T,Q,Y) =

∑︁
𝑚+1≤𝑡,𝑡′≤𝑇

min{𝑡,𝑡′}≤𝑡1−1

E[1𝑡1𝑡′ ] +
𝐾−1∑︁
𝑘=1

⎛⎜⎜⎝ ∑︁
𝑡𝑘≤𝑡,𝑡′≤𝑇

min{𝑡,𝑡′}≤𝑡𝑘+1−1

E[1𝑡1𝑡′ ]

⎞⎟⎟⎠+
∑︁

𝑡𝐾≤𝑡,𝑡′≤𝑇

E[1𝑡1𝑡′ ] (D.9)

260



The core of this proof is to carefully count how many values can each E[1𝑡1𝑡′ ],∀𝑡, 𝑡′ ∈

{𝑚 + 1 : 𝑇} take. See Table D.6 for an illustration.

Table D.6: Illustrator of the different values of E[1𝑡1𝑡], when 𝑇 = 17,𝑚 = 4,T =
{1, 6, 8, 13}

(1 2 3 4) 5 6 7 8 9 10 11 12 13 14 15 16 17
(X − − −) − X − X − − − − X − − − −

− 4 4 4 4 4

X 4 8 8 8 8 4 4

− 4 8 8 8 8 4 4

X 4 8 8 16 16 8 8 4 4 4 4 4

− 4 8 8 16 16 8 8 4 4 4 4 4

− 4 4 8 8 8 8 4 4 4 4 4

− 4 4 8 8 8 8 4 4 4 4 4

− 4 4 4 4 4 4 4 4 4

X 4 4 4 4 4 8 8 8 8 4

− 4 4 4 4 4 8 8 8 8 4

− 4 4 4 4 4 8 8 8 8 4

− 4 4 4 4 4 8 8 8 8 4

− 4 4 4 4 4

In the second line, each checkmark beneath number 𝑡 indicates that period 𝑡 ∈ T, i.e. there is
a randomization point at period 𝑡. This table illustrates different values of E[1𝑡1𝑡′ ] when 𝑡, 𝑡′ ∈
{𝑚+ 1, 𝑇}, where the zero values are omitted. The 𝐵2 magnitudes are also omitted.

First we calculate the first block from equation (D.9). Because 𝑡1 ≥ 𝑚 + 2, for

any 𝑡, 𝑡′ such that 𝑚 + 1 ≤ min{𝑡, 𝑡′} ≤ 𝑡1 − 1, 𝑚 + 1 ≤ max{𝑡, 𝑡′} ≤ 𝑡1 + 𝑚 − 1,

we know that the only overlapping randomization point is 𝑡0. So E[1𝑡1𝑡′ ] = 4𝐵2. For

any 𝑡, 𝑡′ such that 𝑚 + 1 ≤ min{𝑡, 𝑡′} ≤ 𝑡1 − 1, 𝑡1 + 𝑚 ≤ max{𝑡, 𝑡′} ≤ 𝑇 , there is no

overlapping randomization point so E[1𝑡1𝑡′ ] = 0.

∑︁
𝑚+1≤𝑡,𝑡′≤𝑇

min{𝑡,𝑡′}≤𝑡1−1

E[1𝑡1𝑡′ ] = 𝐵2
(︀
4 · ((𝑡1 − 1)2 −𝑚2)

)︀

Then we calculate the second block from equation (D.9). For any 𝑘 ∈ [𝐾 − 1],

consider 𝑡𝑘 − 𝑡𝑘−1 and 𝑡𝑘+1− 𝑡𝑘, which jointly determine the values of E[1𝑡1𝑡′ ] for any
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𝑡, 𝑡′, such that 𝑡𝑘 ≤ min{𝑡, 𝑡′} ≤ 𝑡𝑘+1 − 1 and 𝑡𝑘 ≤ max{𝑡, 𝑡′} ≤ 𝑇 . We will go over

each of the four cases below.

(1) When 𝑡𝑘 − 𝑡𝑘−1 ≥ 𝑚, 𝑡𝑘+1 − 𝑡𝑘 ≥ 𝑚. Due to Lemma D.6, for all 𝑡, 𝑡′ ∈ {𝑡𝑘 :

𝑡𝑘 +𝑚− 1}, E[1𝑡1𝑡′ ] = 8𝐵2, because both 𝑡𝑘−1 ≤ 𝑡−𝑚 ≤ 𝑡𝑘 − 1 and 𝑡𝑘−1 ≤ 𝑡′−𝑚 ≤

𝑡𝑘 − 1, and both 𝑡𝑘−1 and 𝑡𝑘 are overlapping randomization points. For all 𝑡, 𝑡′ such

that 𝑡𝑘 ≤ min{𝑡, 𝑡′} ≤ 𝑡𝑘+1−1 and 𝑡𝑘+𝑚 ≤ max{𝑡, 𝑡′} ≤ 𝑡𝑘+1+𝑚−1, E[1𝑡1𝑡′ ] = 4𝐵2,

because 𝑡𝑘 ≤ min{𝑡, 𝑡′} ≤ 𝑡𝑘+1 − 1 and 𝑡𝑘 ≤ max{𝑡, 𝑡′} −𝑚 ≤ 𝑡𝑘+1 − 1 so only 𝑡𝑘 is

the overlapping randomization point. For all 𝑡, 𝑡′ such that 𝑡𝑘 ≤ min{𝑡, 𝑡′} ≤ 𝑡𝑘+1 − 1

and 𝑡𝑘+1 + 𝑚 ≤ max{𝑡, 𝑡′} ≤ 𝑇 , E[1𝑡1𝑡′ ] = 0.

In this case,

∑︁
𝑡𝑘≤𝑡,𝑡′≤𝑇

min{𝑡,𝑡′}≤𝑡𝑘+1−1

E[1𝑡1𝑡′ ] = 𝐵2
(︀
8 ·𝑚2 + 4 · ((𝑚 + 𝑡𝑘+1 − 𝑡𝑘)2 − 2𝑚2)

)︀

(2) When 𝑡𝑘 − 𝑡𝑘−1 ≥ 𝑚, 𝑡𝑘+1 − 𝑡𝑘 < 𝑚. Due to Lemma D.6, for all t, t’ such that

𝑡𝑘 ≤ min{𝑡, 𝑡′} ≤ 𝑡𝑘+1 − 1, 𝑡𝑘 ≤ max{𝑡, 𝑡′} ≤ 𝑡𝑘 + 𝑚 − 1, E[1𝑡1𝑡′ ] = 8𝐵2, because

both 𝑡, 𝑡′ ≤ 𝑡𝑘 + 𝑚 − 1, so 𝑡𝑘−1 ≤ 𝑡 − 𝑚 ≤ 𝑡𝑘 − 1 and 𝑡𝑘−1 ≤ 𝑡′ − 𝑚 ≤ 𝑡𝑘 − 1,

and both 𝑡𝑘−1 and 𝑡𝑘 are overlapping randomization points. For all 𝑡, 𝑡′ such that

𝑡𝑘 ≤ min{𝑡, 𝑡′} ≤ 𝑡𝑘+1 − 1 and 𝑡𝑘 + 𝑚 ≤ max{𝑡, 𝑡′} ≤ 𝑡𝑘+1 + 𝑚 − 1, E[1𝑡1𝑡′ ] = 4𝐵2,

because 𝑡𝑘 ≤ min{𝑡, 𝑡′} ≤ 𝑡𝑘+1 − 1 and 𝑡𝑘 ≤ max{𝑡, 𝑡′} −𝑚 ≤ 𝑡𝑘+1 − 1 so only 𝑡𝑘 is

the overlapping randomization point. For all 𝑡, 𝑡′ such that 𝑡𝑘 ≤ min{𝑡, 𝑡′} ≤ 𝑡𝑘+1 − 1

and 𝑡𝑘+1 + 𝑚 ≤ max{𝑡, 𝑡′} ≤ 𝑇 , E[1𝑡1𝑡′ ] = 0.

In this case,

∑︁
𝑡𝑘≤𝑡,𝑡′≤𝑇

min{𝑡,𝑡′}≤𝑡𝑘+1−1

E[1𝑡1𝑡′ ] = 𝐵2
(︀
8 · (𝑚2 − (𝑚− 𝑡𝑘+1 + 𝑡𝑘)2)+

4 · ((𝑚 + 𝑡𝑘+1 − 𝑡𝑘)2 − 2𝑚2 + (𝑚− 𝑡𝑘+1 − 𝑡𝑘)2)
)︀

(3) When 𝑡𝑘 − 𝑡𝑘−1 < 𝑚, 𝑡𝑘+1 − 𝑡𝑘 ≥ 𝑚. Due to Lemma D.6, for all 𝑡, 𝑡′ ∈ {𝑡𝑘 :

𝑡𝑘−1+𝑚−1}, E[1𝑡1𝑡′ ] = 16𝐵2, because 𝑡−𝑚 ≤ 𝑡𝑘−1−1 ≤ 𝑡𝑘 ≤ 𝑡 and 𝑡′−𝑚 ≤ 𝑡𝑘−1−1 ≤

𝑡𝑘 ≤ 𝑡′ so 𝑡𝑘−2, 𝑡𝑘−1, 𝑡𝑘 are three determining randomization points. Also 𝑡𝑘−𝑡𝑘−2 ≥ 𝑚
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so 𝑡𝑘−2 ≤ min{𝑡, 𝑡′} −𝑚 and 𝑡𝑘−3 is not a determining randomization point. For all

𝑡, 𝑡′ such that 𝑡𝑘 ≤ min{𝑡, 𝑡′} ≤ 𝑡𝑘 + 𝑚 − 1, 𝑡𝑘−1 + 𝑚 ≤ max{𝑡, 𝑡′} ≤ 𝑡𝑘 + 𝑚 − 1,

E[1𝑡1𝑡′ ] = 8𝐵2, because min{𝑡, 𝑡′} −𝑚 ≤ 𝑡𝑘 − 1 and 𝑡𝑘−1 ≤ max{𝑡, 𝑡′} −𝑚 ≤ 𝑡𝑘 − 1

so 𝑡𝑘−1 and 𝑡𝑘 are two determining randomization point. For all 𝑡, 𝑡′ such that 𝑡𝑘 ≤

min{𝑡, 𝑡′} ≤ 𝑡𝑘+1 − 1, 𝑡𝑘 + 𝑚 ≤ max{𝑡, 𝑡′} ≤ 𝑡𝑘+1 + 𝑚 − 1, E[1𝑡1𝑡′ ] = 4𝐵2, because

𝑡𝑘 ≤ max{𝑡, 𝑡′} − 𝑚 so 𝑡𝑘 is the only determining randomization point. For all 𝑡, 𝑡′

such that 𝑡𝑘 ≤ min{𝑡, 𝑡′} ≤ 𝑡𝑘+1 − 1, 𝑡𝑘+1 + 𝑚 ≤ max{𝑡, 𝑡′} ≤ 𝑇 , E[1𝑡1𝑡′ ] = 0.

In this case,

∑︁
𝑡𝑘≤𝑡,𝑡′≤𝑇

min{𝑡,𝑡′}≤𝑡𝑘+1−1

E[1𝑡1𝑡′ ] = 𝐵2
(︀
16 · (𝑚− 𝑡𝑘 + 𝑡𝑘−1)

2+

8 · (𝑚2 − (𝑚− 𝑡𝑘 + 𝑡𝑘−1)
2) + 4 · ((𝑚 + 𝑡𝑘+1 − 𝑡𝑘)2 − 2𝑚2)

)︀

(4) When 𝑡𝑘 − 𝑡𝑘−1 < 𝑚, 𝑡𝑘+1 − 𝑡𝑘 < 𝑚. Due to Lemma D.6, for all 𝑡, 𝑡′ ∈ {𝑡𝑘 :

𝑡𝑘−1+𝑚−1}, E[1𝑡1𝑡′ ] = 16𝐵2, because 𝑡−𝑚 ≤ 𝑡𝑘−1−1 ≤ 𝑡𝑘 ≤ 𝑡 and 𝑡′−𝑚 ≤ 𝑡𝑘−1−1 ≤

𝑡𝑘 ≤ 𝑡′ so 𝑡𝑘−2, 𝑡𝑘−1, 𝑡𝑘 are three determining randomization points. Also 𝑡𝑘−𝑡𝑘−2 ≥ 𝑚

so 𝑡𝑘−2 ≤ min{𝑡, 𝑡′} −𝑚 and 𝑡𝑘−3 is not a determining randomization point. For all

𝑡, 𝑡′ such that 𝑡𝑘 ≤ min{𝑡, 𝑡′} ≤ 𝑡𝑘+1 − 1, 𝑡𝑘−1 + 𝑚 ≤ max{𝑡, 𝑡′} ≤ 𝑡𝑘 + 𝑚 − 1,

E[1𝑡1𝑡′ ] = 8𝐵2, because min{𝑡, 𝑡′} −𝑚 < 𝑡𝑘 − 1 and 𝑡𝑘−1 ≤ max{𝑡, 𝑡′} −𝑚 ≤ 𝑡𝑘 − 1

so 𝑡𝑘−1 and 𝑡𝑘 are two determining randomization points. For all 𝑡, 𝑡′ such that

𝑡𝑘 ≤ min{𝑡, 𝑡′} ≤ 𝑡𝑘+1 − 1, 𝑡𝑘 + 𝑚 ≤ max{𝑡, 𝑡′} ≤ 𝑡𝑘+1 + 𝑚 − 1, E[1𝑡1𝑡′ ] = 4𝐵2,

because 𝑡𝑘 ≤ max{𝑡, 𝑡′} −𝑚 so 𝑡𝑘 is the only determining randomization point. For

all 𝑡, 𝑡′ such that 𝑡𝑘 ≤ min{𝑡, 𝑡′} ≤ 𝑡𝑘+1 − 1, 𝑡𝑘+1 + 𝑚 ≤ max{𝑡, 𝑡′} ≤ 𝑇 , E[1𝑡1𝑡′ ] = 0.

In this case,

∑︁
𝑡𝑘≤𝑡,𝑡′≤𝑇

min{𝑡,𝑡′}≤𝑡𝑘+1−1

E[1𝑡1𝑡′ ] = 𝐵2
(︀
16 · (𝑚− 𝑡𝑘 + 𝑡𝑘−1)

2+

8 · (𝑚2 − (𝑚− 𝑡𝑘 + 𝑡𝑘−1)
2 − (𝑚− 𝑡𝑘+1 + 𝑡𝑘)2)+

4 · ((𝑚 + 𝑡𝑘+1 − 𝑡𝑘)2 − 2𝑚2 + (𝑚− 𝑡𝑘+1 + 𝑡𝑘)2)
)︀

263



Finally we calculate the third block from equation (D.9). Observe that 𝑇−𝑡𝐾 ≥ 𝑚.

(1) When 𝑡𝐾 − 𝑡𝐾−1 ≥ 𝑚. Due to Lemma D.6, for all 𝑡, 𝑡′ ∈ {𝑡𝐾 : 𝑡𝐾 + 𝑚 − 1},

E[1𝑡1𝑡′ ] = 8𝐵2, because both 𝑡𝐾−1 ≤ 𝑡−𝑚 ≤ 𝑡𝐾 −1 and 𝑡𝐾−1 ≤ 𝑡′−𝑚 ≤ 𝑡𝐾 −1, and

both 𝑡𝐾−1 and 𝑡𝐾 are overlapping randomization points. For all 𝑡, 𝑡′ such that 𝑡𝐾 ≤

min{𝑡, 𝑡′} ≤ 𝑇, 𝑡𝐾 +𝑚 ≤ max{𝑡, 𝑡′} ≤ 𝑇 , E[1𝑡1𝑡′ ] = 4𝐵2, because 𝑡𝐾 ≤ max{𝑡, 𝑡′}−𝑚

so 𝑡𝐾 is the only determining randomization point.

In this case,

∑︁
𝑡𝐾≤𝑡,𝑡′≤𝑇

E[1𝑡1𝑡′ ] = 𝐵2
(︀
8 ·𝑚2 + 4 · ((𝑇 + 1 − 𝑡𝐾)2 −𝑚2)

)︀

(2) When 𝑡𝐾 − 𝑡𝐾−1 < 𝑚. Due to Lemma D.6, for all 𝑡, 𝑡′ ∈ {𝑡𝐾 : 𝑡𝐾−1 + 𝑚− 1},

E[1𝑡1𝑡′ ] = 16𝐵2, because 𝑡−𝑚 ≤ 𝑡𝐾−1 − 1 ≤ 𝑡𝐾 ≤ 𝑡 and 𝑡′−𝑚 ≤ 𝑡𝐾−1 − 1 ≤ 𝑡𝐾 ≤ 𝑡′

so 𝑡𝐾−2, 𝑡𝐾−1, 𝑡𝐾 are three determining randomization points. Also 𝑡𝐾 − 𝑡𝐾−2 ≥ 𝑚

so 𝑡𝐾−2 ≤ min{𝑡, 𝑡′} −𝑚 and 𝑡𝐾−3 is not a determining randomization point. For all

𝑡, 𝑡′ such that 𝑡𝐾 ≤ min{𝑡, 𝑡′} ≤ 𝑡𝐾 + 𝑚 − 1, 𝑡𝐾−1 + 𝑚 ≤ max{𝑡, 𝑡′} ≤ 𝑡𝐾 + 𝑚 − 1,

E[1𝑡1𝑡′ ] = 8𝐵2, because min{𝑡, 𝑡′}−𝑚 ≤ 𝑡𝐾 − 1 and 𝑡𝐾−1 ≤ max{𝑡, 𝑡′}−𝑚 ≤ 𝑡𝐾 − 1

so 𝑡𝐾−1 and 𝑡𝐾 are two determining randomization points. For all 𝑡, 𝑡′ such that 𝑡𝐾 ≤

min{𝑡, 𝑡′} ≤ 𝑇, 𝑡𝐾 +𝑚 ≤ max{𝑡, 𝑡′} ≤ 𝑇 , E[1𝑡1𝑡′ ] = 4𝐵2, because 𝑡𝐾 ≤ max{𝑡, 𝑡′}−𝑚

so 𝑡𝐾 is the only determining randomization point.

In this case,

∑︁
𝑡𝐾≤𝑡,𝑡′≤𝑇

E[1𝑡1𝑡′ ] = 𝐵2
(︀
16 · (𝑚− 𝑡𝐾 + 𝑡𝐾−1)

2+

8 · (𝑚2 − (𝑚− 𝑡𝐾 + 𝑡𝐾−1)
2) + 4 · ((𝑇 + 1 − 𝑡𝐾)2 −𝑚2)

)︀
Now we combine all above together.

Note that whenever there exists 𝑘 ∈ {2 : 𝐾} such that (𝑡𝑘 − 𝑡𝑘−1) < 𝑚, this

suggests that in ∑︁
𝑡𝑘≤𝑡,𝑡′≤𝑇

min{𝑡,𝑡′}≤𝑡𝑘+1−1

E[1𝑡1𝑡′ ]
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there is a 16(𝑚− 𝑡𝑘 + 𝑡𝑘−1)
2; but in

∑︁
𝑡𝑘−1≤𝑡,𝑡′≤𝑇

min{𝑡,𝑡′}≤𝑡𝑘−1

E[1𝑡1𝑡′ ]

there is a 8(−(𝑚− 𝑡𝑘 + 𝑡𝑘−1)
2). So when we sum them up, we break 16(𝑚− 𝑡𝑘 + 𝑡𝑘−1)

2

into two 8(𝑚− 𝑡𝑘 + 𝑡𝑘−1)
2, which cancels in two sumations. By telescoping,

(𝑇 −𝑚)2 · 𝑟(𝜂T,Q,Y)

=
∑︁

𝑚+1≤𝑡,𝑡′≤𝑇
min{𝑡,𝑡′}≤𝑡1−1

E[1𝑡1𝑡′ ] +
𝐾−1∑︁
𝑘=1

⎛⎜⎜⎝ ∑︁
𝑡𝑘≤𝑡,𝑡′≤𝑇

min{𝑡,𝑡′}≤𝑡𝑘+1−1

E[1𝑡1𝑡′ ]

⎞⎟⎟⎠+
∑︁

𝑡𝐾≤𝑡,𝑡′≤𝑇

E[1𝑡1𝑡′ ]

= 4𝐵2 ·
(︀
(𝑡1 − 1)2 −𝑚2

)︀
+

𝐾−1∑︁
𝑘=1

𝐵2 ·
(︁

8𝑚2 + 4
(︁

(𝑚 + 𝑡𝑘+1 − 𝑡𝑘)2 − 2𝑚2 +
(︀
(𝑚− 𝑡𝑘+1 + 𝑡𝑘)+

)︀2)︁)︁
+ 𝐵2 ·

(︀
8𝑚2 + 4

(︀
(𝑇 + 1 − 𝑡𝐾)2 −𝑚2

)︀)︀
= 𝐵2 ·

{︃
4

𝐾∑︁
𝑘=0

(𝑡𝑘+1 − 𝑡𝑘)2 + 8𝑚(𝑡𝐾 − 𝑡1) + 4𝑚2𝐾 − 4𝑚2 + 4
𝐾−1∑︁
𝑘=1

[(𝑚− 𝑡𝑘+1 + 𝑡𝑘)+]2

}︃

which finishes the proof.

D.3.6 Optimal Solutions to the Subset Selection Problem in

Theorem 5.5

Proof of Theorem 5.5.

Proof. Proof of Theorem 5.5.

Consider the problem as we have introduced in (5.6). Due to Lemma 5.3, Y+ =

{𝑌𝑡(1𝑚+1) = 𝑌𝑡(0𝑚+1) = 𝐵}𝑡∈{𝑚+1:𝑇} and Y− = {𝑌𝑡(1𝑚+1) = 𝑌𝑡(0𝑚+1) = −𝐵}𝑡∈{𝑚+1:𝑇}

are the only two dominating strategies for the adversarial selection of potential out-

comes.

Then due to Lemma D.7 and Lemma D.8, the optimal design of switchback ex-
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periment must satisfy the following three conditions.

𝑡1 ≥ 𝑚 + 2, 𝑡𝐾 ≤ 𝑇 −𝑚 𝑡𝑘+1 − 𝑡𝑘−1 ≥ 𝑚, ∀𝑘 ∈ [𝐾].

Due to Lemma D.9, the risk function of the optimal design of experiment is given

by

𝑟(𝜂T,Q,Y) =
1

(𝑇 −𝑚)2

{︃
4
𝐾+1∑︁
𝑘=1

(𝑡𝑘 − 𝑡𝑘−1)
2 + 8𝑚(𝑡𝐾 − 𝑡1)+

4𝑚2𝐾 − 4𝑚2 + 4
𝐾∑︁
𝑘=2

[(𝑚− 𝑡𝑘 + 𝑡𝑘−1)
+]2

}︃
𝐵2

So if we further take minimum over T ⊂ [𝑇 ] in the above risk function, we find

the optimal solution to the original problem introduced in (5.6). Note that 𝐵2 is a

constant and irrelevant to our decisions, and that 𝑇 and 𝑚 are inputs. So we solve,

for any given 𝑇 and 𝑚, the following subset selection problem:

min
T⊂[𝑇 ]

{︃
4

𝐾∑︁
𝑘=0

(𝑡𝑘+1 − 𝑡𝑘)2 + 8𝑚(𝑡𝐾 − 𝑡1) + 4𝑚2𝐾 − 4𝑚2 + 4
𝐾−1∑︁
𝑘=1

[(𝑚− 𝑡𝑘+1 + 𝑡𝑘)+]2

}︃
,

as stated in (5.7).

In particular, if there exists some constant 𝑛 ∈ N, 𝑛 ≥ 4, such that 𝑇 = 𝑛𝑚, we

can explicitly find the optimal design of experiment. Take the continuous relaxation

of this problem, such that for any 𝐾, {1 < 𝑡1 < 𝑡2 < ... < 𝑡𝐾 < 𝑇 + 1} ∈ [1, 𝑇 + 1]𝐾 .

min
𝐾∈N,

{1<𝑡1<𝑡2<...<𝑡𝐾<𝑇+1}∈[1,𝑇+1]𝐾

{︃
4

𝐾∑︁
𝑘=0

(𝑡𝑘+1 − 𝑡𝑘)2 + 8𝑚(𝑡𝐾 − 𝑡1)+

4𝑚2𝐾 − 4𝑚2 + 4
𝐾−1∑︁
𝑘=1

[(𝑚− 𝑡𝑘+1 + 𝑡𝑘)+]2

}︃

The relaxed problem provides a lower bound to the original subset selection problem

as stated in (5.7). We will argue later that it is a lucky coincidence that the optimal

solution to this relaxed problem is also an integer solution.
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First we argue that 𝑡1 − 𝑡0 = 𝑡𝐾+1 − 𝑡𝐾 . This is because otherwise if 𝑡1 − 𝑡0 ̸=

𝑡𝐾+1 − 𝑡𝐾 then denote 𝑎 = 𝑡1−𝑡0+𝑡𝐾+1−𝑡𝐾
2

. We could always pick for any 𝑘 ∈ {1 : 𝐾},

𝑡𝑘 = 𝑡𝑘 + 𝑎 − 𝑡1 + 1, such that 𝑡𝑘+1 − 𝑡𝑘 is unchanged for any 𝑘 ∈ {1 : 𝐾 − 1}. The

only change in the objective value comes from

(︀
2𝑎2
)︀
−
(︀
(𝑡1 − 𝑡0)

2 + (𝑡𝐾+1 − 𝑡𝐾)2
)︀
< 0,

which suggests that 𝑡1 − 𝑡0 ̸= 𝑡𝐾+1 − 𝑡𝐾 is not optimal.

Second, similarly, we argue that for any 𝑘′ < 𝑘′′ ∈ [𝐾− 1], 𝑡𝑘′+1− 𝑡𝑘′ = 𝑡𝑘′′+1− 𝑡𝑘′′

This is because otherwise if 𝑡𝑘′+1− 𝑡𝑘′ ̸= 𝑡𝑘′′+1− 𝑡𝑘′′ then denote 𝑏 =
𝑡𝑘′+1−𝑡𝑘′+𝑡𝑘′′+1−𝑡𝑘′′

2
.

We could always pick for any 𝑘 ∈ {𝑘′ + 1 : 𝑘′′}, 𝑡𝑘 = 𝑡𝑘 + 𝑏 − (𝑡𝑘′+1 − 𝑡𝑘′), such that

𝑡𝑘+1 − 𝑡𝑘 is unchanged for any 𝑘 ∈ {𝑘′+ 1 : 𝑘′′− 1}. The only change in the objective

value comes from

(︀
2𝑏2 + 2((𝑚− 𝑏)+)2

)︀
>(︀

(𝑡𝑘′+1 − 𝑡𝑘′)
2 + (𝑡𝑘′′+1 − 𝑡𝑘′′)

2 + ((𝑚− 𝑡𝑘′+1 + 𝑡𝑘′)
+)2 + ((𝑚− 𝑡𝑘′′+1 + 𝑡𝑘′′)

+)2
)︀
,

where 𝑥2 + ((𝑚−𝑥)+)2 is convex and the inequality holds due to Jensen’s Inequality.

This inequality suggests that 𝑡𝑘′+1 − 𝑡𝑘′ ̸= 𝑡𝑘′′+1 − 𝑡𝑘′′ is not optimal.

With the above two structural results, we can assume that there exists 𝑎, 𝑏 > 0,

such that 𝑡1 − 𝑡0 = 𝑡𝐾+1 − 𝑡𝐾 = 𝑎, and 𝑡𝑘+1 − 𝑡𝑘 = 𝑏, ∀𝑘 ∈ [𝐾 − 1] Also, it must be

satisfied that 2𝑎 + (𝐾 − 1)𝑏 = 𝑇 . Next we replace 𝐾 − 1 = 𝑇−2𝑎
𝑏

into the relaxed

problem, to have

min
𝑎,𝑏>0

{︀
4(2𝑎2 + (𝐾 − 1)𝑏2) + 8𝑚(𝐾 − 1)𝑏 + 4𝑚2(𝐾 − 1) + 4(𝐾 − 1)((𝑚− 𝑏)+)2

}︀
= min

𝑎,𝑏>0

{︂
8𝑎2 + 4(𝑇 − 2𝑎)𝑏 + 8𝑚(𝑇 − 2𝑎) + 4𝑚2𝑇 − 2𝑎

𝑏
+ 4

𝑇 − 2𝑎

𝑏
((𝑚− 𝑏)+)2

}︂

Either when 𝑏 ≥ 𝑚, the above is to minimize

min
𝑎,𝑏>0

{︂
8𝑎2 + 4(𝑇 − 2𝑎)𝑏 + 8𝑚(𝑇 − 2𝑎) + 4𝑚2𝑇 − 2𝑎

𝑏

}︂
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Note that

8𝑎2 + 4(𝑇 − 2𝑎)𝑏 + 8𝑚(𝑇 − 2𝑎) + 4𝑚2𝑇 − 2𝑎

𝑏

=8𝑎2 + 8𝑚(𝑇 − 2𝑎) + 4(𝑇 − 2𝑎)

(︂
𝑏 +

𝑚2

𝑏

)︂
≥8𝑎2 + 16𝑚(𝑇 − 2𝑎)

=8(𝑎− 2𝑚)2 + 16𝑚𝑇 − 32𝑚2

≥16𝑚𝑇 − 32𝑚2

where the first inequality takes equality if and only if 𝑏 = 𝑚2

𝑏
, which suggests 𝑏 = 𝑚;

the second inequality takes equality if and only if 𝑎 = 2𝑚.

Or when 𝑏 ≤ 𝑚, the above is to minimize

min
𝑎,𝑏>0

{︂
8𝑎2 + 4(𝑇 − 2𝑎)𝑏 + 8𝑚(𝑇 − 2𝑎) + 4𝑚2𝑇 − 2𝑎

𝑏
+ 4

𝑇 − 2𝑎

𝑏
(𝑚− 𝑏)2

}︂

Note that

8𝑎2 + 4(𝑇 − 2𝑎)𝑏 + 8𝑚(𝑇 − 2𝑎) + 4𝑚2𝑇 − 2𝑎

𝑏
+ 4

𝑇 − 2𝑎

𝑏
(𝑚− 𝑏)2

=8𝑎2 + 8(𝑇 − 2𝑎)

(︂
𝑏 +

𝑚2

𝑏

)︂
≥8𝑎2 + 16𝑚(𝑇 − 2𝑎)

=8(𝑎− 2𝑚)2 + 16𝑚𝑇 − 32𝑚2

≥16𝑚𝑇 − 32𝑚2

where the first inequality takes equality if and only if 𝑏 = 𝑚2

𝑏
, which suggests 𝑏 = 𝑚;

the second inequality takes equality if and only if 𝑎 = 2𝑚.

Combining both cases, the optimal solution is when 𝑎 = 2𝑚 and 𝑏 = 𝑚, which

happens to be an integer solution, thus optimal for the subset selection problem.

Translating into 𝑡1, ..., 𝑡𝐾 this suggests that 𝑡1 = 2𝑚 + 1, 𝑡2 = 3𝑚 + 1, ..., 𝑡𝐾 = (𝑛 −

2)𝑚 + 1.
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Solutions in the Imperfect Cases.

It is always worth noting that we are taking a design of experiments perspective. So

when practically we have control of 𝑇 , we can pick 𝑇 to be some multiples of 𝑚,

which fits our Theorem 5.5 perfectly. If we do not have control of 𝑇 , we can always

pick a smaller 𝑇 ′ such that 𝑇 ′ = ⌊𝑇/𝑚⌋ ·𝑚 is some multiples of 𝑚.

Nonetheless, from an optimization perspective, we establish the following optimal

structure for the subset selection problem as in (5.7). Recall that 𝑡𝐾+1 = 𝑇 + 1.

Lemma D.10. Under Assumptions 5.1–5.3, the optimal design of regular switchback

experiment must satisfy the following two conditions,

|(𝑡1 − 𝑡0) − (𝑡𝐾+1 − 𝑡𝐾)| ≤ 1, |(𝑡𝑗+1 − 𝑡𝑗) − (𝑡𝑗′+1 − 𝑡𝑗′)| ≤ 1,∀1 ≤ 𝑗, 𝑗′ ≤ 𝐾 − 1.

Proof. Proof of Lemma D.10. Prove by contradiction.

Case 1. Suppose there exists some optimal design T, such that (𝑡1−𝑡0)−(𝑡𝐾+1−𝑡𝐾) ≥

2. We now construct another design T̃, such that
⃒⃒⃒
T̃
⃒⃒⃒

= 𝐾 = |T|, and the 𝐾 elements

are T̃ = {𝑡0 = 1, 𝑡1 = 𝑡1−1, 𝑡2 = 𝑡2−1, ..., 𝑡𝐾 = 𝑡𝐾−1}. Now check the expression as in

(5.7). Note that 𝑡𝑘+1−𝑡𝑘 = 𝑡𝑘+1−𝑡𝑘 is unchanged for any 𝑘 ∈ [𝐾−1]; 𝑡𝐾−𝑡1 = 𝑡𝐾−𝑡1

is unchanged; and 𝑚−𝑡𝑘+1−𝑡𝑘 = 𝑚−𝑡𝑘+1−𝑡𝑘 in unchanged for any 𝑘 ∈ [𝐾−1]. But

(𝑡1− 𝑡0)
2 + (𝑡𝐾+1− 𝑡𝐾)2 = (𝑡1− 𝑡0− 1)2 + (𝑡𝐾+1− 𝑡𝐾 + 1)2 ≤ (𝑡1− 𝑡0)

2 + (𝑡𝐾+1− 𝑡𝐾)2,

because (𝑡1 − 𝑡0) − (𝑡𝐾+1 − 𝑡𝐾) ≥ 2 and due to convexity.

Similarly, if there exists some optimal design T, such that (𝑡𝐾+1−𝑡𝐾)−(𝑡1−𝑡0) ≥ 2,

then construct another design T̃ = {𝑡0 = 1, 𝑡1 = 𝑡1 + 1, 𝑡2 = 𝑡2 + 1, ..., 𝑡𝐾 = 𝑡𝐾 + 1}.

Case 2. Suppose there exists some optimal design T, and there exists 1 ≤ 𝑗 < 𝑗′ ≤

𝐾−1 such that (𝑡𝑗+1−𝑡𝑗)−(𝑡𝑗′+1−𝑡𝑗′) ≥ 2. We now construct another design T̃, such

that
⃒⃒⃒
T̃
⃒⃒⃒

= 𝐾 = |T|, and the 𝐾 elements are T̃ = {𝑡0 = 1, 𝑡1 = 𝑡1, ..., 𝑡𝑗 = 𝑡𝑗, 𝑡𝑗+1 =

𝑡𝑗+1 − 1, ..., 𝑡𝑗′ = 𝑡𝑗′ − 1, 𝑡𝑗′+1 = 𝑡𝑗′+1, ..., 𝑡𝐾 = 𝑡𝐾}. Now check the expression as in

(5.7). Note that 𝑡𝑘+1 − 𝑡𝑘 = 𝑡𝑘+1 − 𝑡𝑘 is unchanged for any 𝑘 ∈ {0 : 𝐾} except 𝑗 and

𝑗′; 𝑡𝐾 − 𝑡1 = 𝑡𝐾 − 𝑡1 is unchanged; and 𝑚− 𝑡𝑘+1 − 𝑡𝑘 = 𝑚− 𝑡𝑘+1 − 𝑡𝑘 in unchanged
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for any 𝑘 ∈ [𝐾 − 1] except 𝑗 and 𝑗′. Now focus on 𝑗 and 𝑗′.

(𝑡𝑗+1 − 𝑡𝑗)
2 + (𝑡𝑗′+1 − 𝑡𝑗′)

2 + [(𝑚− 𝑡𝑗+1 + 𝑡𝑗)
+]2 + [(𝑚− 𝑡𝑗′+1 + 𝑡𝑗′)

+]2

=(𝑡𝑗+1 − 𝑡𝑗 − 1)2 + (𝑡𝑗′+1 − 𝑡𝑗′ + 1)2 + [(𝑚− 𝑡𝑗+1 + 𝑡𝑗 + 1)+]2 + [(𝑚− 𝑡𝑗′+1 + 𝑡𝑗′ − 1)+]2

≤(𝑡𝑗+1 − 𝑡𝑗)
2 + (𝑡𝑗′+1 − 𝑡𝑗′)

2 + [(𝑚− 𝑡𝑗+1 + 𝑡𝑗)
+]2 + [(𝑚− 𝑡𝑗′+1 + 𝑡𝑗′)

+]2

To see why this inequality holds, define 𝑔(𝑥) = 𝑥2 + [(𝑚−𝑥)+]2 and note that 𝑔(𝑥) is

a univariate convex function. The inequality holds due to (𝑡𝑗+1− 𝑡𝑗)− (𝑡𝑗′+1− 𝑡𝑗′) ≥ 2

and convexity.

Similarly, if there exists some optimal design T, and there exists 1 ≤ 𝑗 < 𝑗′ ≤ 𝐾−1

such that (𝑡𝑗′+1 − 𝑡𝑗′) − (𝑡𝑗+1 − 𝑡𝑗) ≥ 2. Then construct another design T̃ = {𝑡0 =

1, 𝑡1 = 𝑡1, ..., 𝑡𝑗 = 𝑡𝑗, 𝑡𝑗+1 = 𝑡𝑗+1 + 1, ..., 𝑡𝑗′ = 𝑡𝑗′ + 1, 𝑡𝑗′+1 = 𝑡𝑗′+1, ..., 𝑡𝐾 = 𝑡𝐾}.

Combine both cases we finish the proof.

D.4 Proofs and Discussions from Section 5.4

In the first two sub-Sections of Section 5.4 we focus on the case when 𝑝 = 𝑚. In

Sections D.4.1–D.4.4 in the appendix, we also focus on the case when 𝑝 = 𝑚, and use

only 𝑚 instead of 𝑝. In Sections D.4.5–D.4.7, we will use both 𝑝 and 𝑚. Recall that

𝑚 is the order of the carryover effect, and 𝑝 is the experimenter’s knowledge of 𝑚.

D.4.1 Extra Notations Used in the Proofs from Section 5.4

For any 𝑡 ∈ {𝑚 + 1 : 𝑇}, we use the notations of 1𝑡 as defined in (D.2). Denote

1̄0 =
2𝑚∑︁

𝑡=𝑚+1

1𝑡

1̄𝑘 =

(𝑘+2)𝑚∑︁
𝑡=(𝑘+1)𝑚+1

1𝑡, ∀𝑘 ∈ [𝐾]

1̄𝐾+1 =

(𝐾+3)𝑚∑︁
𝑡=(𝐾+2)𝑚+1

1𝑡
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It is worth noting that under the optimal design as suggested by Theorem 5.5, when

𝑇/𝑚 = 𝑛 ∈ N is an integer, we have 𝐾 = 𝑛− 3. So (𝐾 + 3)𝑚 = 𝑇 . See Example D.1

below.

Example D.1 (An Optimal Design and Its 1̄𝑘 Notations). When 𝑇 = 12, 𝑝 = 𝑚 = 2,

the optimal design of regular switchback experiment is T* = {1, 5, 7, 9}, and 𝐾 = 3.

The 1̄𝑘 notations are defined below. Each 1̄𝑘 spans 𝑚 = 2 periods. See Table D.7.

Table D.7: An example of the optimal design T* and its 1̄𝑘 notations when 𝑇 = 12
and 𝑝 = 𝑚 = 2

1 2 3 4 5 6 7 8 9 10 11 12
T* X − − − X − X − X − − −

−{1̄𝑘}𝐾+1
𝑘=0 1̄0 1̄1 1̄2 1̄3 1̄4

Using the above notation, we could write

𝜏𝑚 − 𝜏𝑚 =
1

𝑇 −𝑚

𝐾+1∑︁
𝑘=0

1̄𝑘,

and so

Var(𝜏𝑚) =
1

(𝑇 −𝑚)2
Var

(︃
𝐾+1∑︁
𝑘=0

1̄𝑘

)︃
.

D.4.2 Proof of Lemma 5.6

The proof of Lemma 5.6 resembles the proof of Lemmas D.3 and D.4. The trick

here is to observe that for any 𝑘 ∈ [𝐾], the values of all the variables 1𝑡, where

(𝑘 + 1)𝑚 + 1 ≤ 𝑡 ≤ (𝑘 + 2)𝑚, are all determined by the randomization at time

𝑘𝑚 + 1 and (𝑘 + 1)𝑚 + 1. Since they are all correlated, we can use 1̄𝑘 to stand for∑︀(𝑘+2)𝑚
𝑡=(𝑘+1)𝑚+1 1𝑡 for short.

Proof. Proof of Lemma 5.6. First observe that 1̄𝑘 has zero mean for each 𝑘 ∈ {0 :

𝐾 + 1}. So we can decompose the variance into squared terms and cross-product
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terms,

(𝑇 −𝑚)2Var(𝜏𝑚) = Var

(︃
𝐾+1∑︁
𝑘=0

1̄𝑘

)︃
=

𝐾+1∑︁
𝑘=0

E
[︁
1̄
2
𝑘

]︁
+

∑︁
0≤𝑘<𝑘′≤𝐾+1

2E [1̄𝑘1̄𝑘′ ] .

We focus on the variance of the squared terms first,

E
[︁
1̄
2
𝑘

]︁
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑌0(1𝑚+1)

2 + 𝑌0(0𝑚+1)
2 + 2𝑌0(1𝑚+1)𝑌0(0𝑚+1), if 𝑘 = 0

3𝑌𝑘(1𝑚+1)
2 + 3𝑌𝑘(0𝑚+1)

2 + 2𝑌𝑘(1𝑚+1)𝑌𝑘(0𝑚+1), if 1 ≤ 𝑘 ≤ 𝐾

𝑌𝐾+1(1𝑚+1)
2 + 𝑌𝐾+1(0𝑚+1)

2 + 2𝑌𝐾+1(1𝑚+1)𝑌𝐾+1(0𝑚+1), if 𝑘 = 𝐾 + 1

This is because when 𝑘 = 0 or 𝑘 = 𝐾+1, then with probability 1/2, 1̄𝑘 = 𝑌0(1𝑚+1)+

𝑌0(0𝑚+1); with probability 1/2, 1̄𝑘 = −𝑌0(1𝑚+1) − 𝑌0(0𝑚+1). When 𝑘 ∈ [𝐾], with

probability 1/4, 1̄𝑘 = 3𝑌0(1𝑚+1)+𝑌0(0𝑚+1); with probability 1/2, 1̄𝑘 = −𝑌0(1𝑚+1)+

𝑌0(0𝑚+1); with probability 1/4, 1̄𝑘 = −𝑌0(1𝑚+1) − 3𝑌0(0𝑚+1).

Then for the cross-product terms, if 𝑘′ − 𝑘 ≥ 2, then 1̄𝑘 and 1̄𝑘′ are independent,

i.e., E [1̄𝑘1̄𝑘′ ] = 0. If 𝑘′ − 𝑘 = 1, then

E [1̄𝑘1̄𝑘+1] = (𝑌𝑘(1𝑚+1) + 𝑌𝑘(0𝑚+1)) · (𝑌𝑘+1(1𝑚+1) + 𝑌𝑘+1(0𝑚+1))

This is because the values of 1̄𝑘 and 1̄𝑘+1 are determined by the realization at 3

randomization points, 𝑊𝑘𝑚+1,𝑊(𝑘+1)𝑚+1,𝑊(𝑘+2)𝑚+1. With probability 1/8, 1̄𝑘1̄𝑘+1 =

(3𝑌𝑘(1𝑚+1)+𝑌𝑘(0𝑚+1)) · (3𝑌𝑘+1(1𝑚+1)+𝑌𝑘+1(0𝑚+1)); with probability 1/8, 1̄𝑘1̄𝑘+1 =

(3𝑌𝑘(1𝑚+1)+𝑌𝑘(0𝑚+1)) ·(−𝑌𝑘+1(1𝑚+1)+𝑌𝑘+1(0𝑚+1)); with probability 1/8, 1̄𝑘1̄𝑘+1 =

(−𝑌𝑘(1𝑚+1)+𝑌𝑘(0𝑚+1)) ·(3𝑌𝑘+1(1𝑚+1)+𝑌𝑘+1(0𝑚+1)); with probability 1/8, 1̄𝑘1̄𝑘+1 =

(−𝑌𝑘(1𝑚+1)+𝑌𝑘(0𝑚+1))·(−𝑌𝑘+1(1𝑚+1)+𝑌𝑘+1(0𝑚+1)); with probability 1/8, 1̄𝑘1̄𝑘+1 =

(−𝑌𝑘(1𝑚+1)+𝑌𝑘(0𝑚+1))·(−𝑌𝑘+1(1𝑚+1)+𝑌𝑘+1(0𝑚+1)); with probability 1/8, 1̄𝑘1̄𝑘+1 =

(−𝑌𝑘(1𝑚+1)+𝑌𝑘(0𝑚+1))·(−𝑌𝑘+1(1𝑚+1)−3𝑌𝑘+1(0𝑚+1)); with probability 1/8, 1̄𝑘1̄𝑘+1 =

(−𝑌𝑘(1𝑚+1)−3𝑌𝑘(0𝑚+1))·(−𝑌𝑘+1(1𝑚+1)+𝑌𝑘+1(0𝑚+1)); with probability 1/8, 1̄𝑘1̄𝑘+1 =

(−𝑌𝑘(1𝑚+1) − 3𝑌𝑘(0𝑚+1)) · (−𝑌𝑘+1(1𝑚+1) − 3𝑌𝑘+1(0𝑚+1)).

Combining the squared terms and the cross-product terms we finish the proof.
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D.4.3 Discssions and proof of Corollary 5.6.1

We first provide the details of the two variance upper bounds here.

VarU1(𝜏𝑚) =
1

(𝑇 −𝑚)2

{︃
3
[︀
𝑌0(1𝑚+1)

2 + 𝑌0(0𝑚+1)
2
]︀

+
𝑛−3∑︁
𝑘=1

6
[︀
𝑌𝑘(1𝑚+1)

2 + 𝑌𝑘(0𝑚+1)
2
]︀

+4
[︀
𝑌𝑛−2(1𝑚+1)

2 + 𝑌𝑛−2(0𝑚+1)
2
]︀

+
𝑛−3∑︁
𝑘=0

2
[︀
𝑌𝑘(1𝑚+1) · 𝑌𝑘+1(1𝑚+1) + 𝑌𝑘(0𝑚+1) · 𝑌𝑘+1(0𝑚+1)

]︀}︃
,

and

VarU2(𝜏𝑚) =
1

(𝑇 −𝑚)2

{︃
4
[︀
𝑌0(1𝑚+1)

2 + 𝑌0(0𝑚+1)
2
]︀

+
𝑛−3∑︁
𝑘=1

8
[︀
𝑌𝑘(1𝑚+1)

2 + 𝑌𝑘(0𝑚+1)
2
]︀

+ 4
[︀
𝑌𝑛−2(1𝑚+1)

2 + 𝑌𝑛−2(0𝑚+1)
2
]︀}︃

.

We prove Corollary 5.6.1 using the basic inequality that 2𝑥𝑦 ≤ 𝑥2 + 𝑦2. Such an

inequality is commonly used to find a conservative upper bound of the variance.

Proof. Proof of Corollary 5.6.1. From Lemma 5.6, the variance of the estimator is

given by

(𝑇 −𝑚)2Var(𝜏𝑚)

≤2
{︀
𝑌0(1𝑚+1)

2 + 𝑌0(0𝑚+1)
2
}︀

+
𝑛−3∑︁
𝑘=1

4
{︀
𝑌𝑘(1𝑚+1)

2 + 𝑌𝑘(0𝑚+1)
2
}︀

+ 2
{︀
𝑌𝑛−2(1𝑚+1)

2 + 𝑌𝑛−2(0𝑚+1)
2
}︀

+
𝑛−3∑︁
𝑘=0

2
[︀
𝑌𝑘(1𝑚+1) + 𝑌𝑘(0𝑚+1)

]︀
·
[︀
𝑌𝑘+1(1𝑚+1) + 𝑌𝑘+1(0𝑚+1)

]︀
≤2
{︀
𝑌0(1𝑚+1)

2 + 𝑌0(0𝑚+1)
2
}︀

+
𝑛−3∑︁
𝑘=1

4
{︀
𝑌𝑘(1𝑚+1)

2 + 𝑌𝑘(0𝑚+1)
2
}︀

+ 2
{︀
𝑌𝑛−2(1𝑚+1)

2 + 𝑌𝑛−2(0𝑚+1)
2
}︀

+
𝑛−3∑︁
𝑘=0

{︀
2𝑌𝑘(1𝑚+1)𝑌𝑘+1(1𝑚+1) + 2𝑌𝑘(0𝑚+1)𝑌𝑘+1(0𝑚+1)+

𝑌𝑘(1𝑚+1)
2 + 𝑌𝑘(0𝑚+1)

2 + 𝑌𝑘+1(1𝑚+1)
2 + 𝑌𝑘+1(0𝑚+1)

2
}︀

≤3
{︀
𝑌0(1𝑚+1)

2 + 𝑌0(0𝑚+1)
2
}︀

+
𝑛−3∑︁
𝑘=1

6
{︀
𝑌𝑘(1𝑚+1)

2 + 𝑌𝑘(0𝑚+1)
2
}︀

+ 3
{︀
𝑌𝑛−2(1𝑚+1)

2 + 𝑌𝑛−2(0𝑚+1)
2
}︀
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+
𝑛−3∑︁
𝑘=0

{︀
𝑌𝑘(1𝑚+1)

2 + 𝑌𝑘(0𝑚+1)
2 + 𝑌𝑘+1(1𝑚+1)

2 + 𝑌𝑘+1(0𝑚+1)
2
}︀

=4
{︀
𝑌0(1𝑚+1)

2 + 𝑌0(0𝑚+1)
2
}︀

+
𝑛−3∑︁
𝑘=1

8
{︀
𝑌𝑘(1𝑚+1)

2 + 𝑌𝑘(0𝑚+1)
2
}︀

+ 4
{︀
𝑌𝑛−2(1𝑚+1)

2 + 𝑌𝑛−2(0𝑚+1)
2
}︀

where the first inequality suggests Var(𝜏𝑚) ≤ VarU1(𝜏𝑚), and the last inequality sug-

gests VarU1(𝜏𝑚) ≤ VarU2(𝜏𝑚).

The unbiasedness part is due to the estimator of the variances being Horvitz-

Thompson type estimators.

D.4.4 Proof of Theorem 5.7

We prove Theorem 5.7 by using Lemma D.1. In particular, we derive 𝐵2
𝑛,𝑘,𝑎, and then

construct some proper ∆𝑛, 𝐾𝑛, and 𝐿𝑛.

Proof. Proof of Theorem 5.7. In the 𝑛-replica experiment, 𝜏𝑚−𝜏𝑚 = 1
(𝑛−1)𝑚

∑︀𝑛−2
𝑘=0 1̄𝑘,

and Var(𝜏𝑚) = 1
(𝑛−1)2𝑚2Var

(︀∑︀𝑛−2
𝑘=0 1̄𝑘

)︀
. To use the language from Lemma D.1, denote

𝑑 = 𝑛− 1. Denote for any 𝑖 ∈ [𝑛− 1], 𝑋𝑛,𝑖 = 1
(𝑛−1)𝑚 1̄𝑖−1 so we know that 𝜑 = 1, i.e.,

{𝑋𝑛,1, 𝑋𝑛,2, ...} is a sequence of 1-dependent random variables.

First note that 𝐵2
𝑛 = Var(𝜏𝑚), and we calculate 𝐵2

𝑛,𝑘,𝑎 as follows.

𝐵2
𝑛,𝑘,𝑎 =

1

(𝑛− 1)2𝑚2
Var

(︃
𝑎+𝑘−1∑︁
𝑖=𝑎

1̄𝑖−1

)︃

≤ 1

(𝑛− 1)2𝑚2

{︃
𝑎+𝑘−1∑︁
𝑖=𝑎

[︀
3𝑌𝑖−1(1𝑚+1)

2 + 3𝑌𝑖−1(0𝑚+1)
2 + 2𝑌𝑖−1(1𝑚+1)𝑌𝑖−1(0𝑚+1)

]︀
+

𝑎+𝑘−2∑︁
𝑖=𝑎

2[𝑌𝑖−1(1𝑚+1) + 𝑌𝑖−1(0𝑚+1)] · [𝑌𝑖(1𝑚+1) + 𝑌𝑖(0𝑚+1)]

}︃

≤ 8𝑘𝑚2𝐵2 + 8(𝑘 − 1)𝑚2𝐵2

(𝑛− 1)2𝑚2

≤ 16𝑘𝐵2

(𝑛− 1)2

Pick 𝛾 = 0, 𝛿 = 1, then ∆𝑛 = 𝐵3/(𝑛 − 1)3, 𝐾𝑛 = 16𝐵2/(𝑛 − 1)2, and 𝐿𝑛 =

Var(𝜏𝑚)/(𝑛− 1).
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We check that all the five conditions from Lemma D.1 are satisfied.

1. E |𝑋𝑛,𝑖|3 ≤ ∆𝑛 = 𝐵3/(𝑛− 1)3, because all the potential outcomes are bounded

by 𝐵, so that 𝑋𝑛,𝑖 ≤ 𝐵/(𝑛− 1).

2. 𝐵2
𝑛,𝑘,𝑎/𝑘 ≤ 𝐾𝑛 = 16𝐵2/(𝑛− 1)2.

3. 𝐵2
𝑛/(𝑛− 1) ≥ 𝐿𝑛 = Var(𝜏𝑚)/(𝑛− 1).

4. 𝐾𝑛/𝐿𝑛 = 16𝐵2/(𝑛 − 1)Var(𝜏𝑚) = 𝑂(1), where the last equality is due to As-

sumption 5.4.

5. ∆𝑛/𝐿
3/2
𝑛 = 𝐵3/(𝑛 − 1)3/2Var(𝜏𝑚)3/2 = 𝑂(1), where the last equality is due to

Assumption 5.4.

Due to Lemma D.1,

𝜏𝑚 − 𝜏𝑚√︀
Var(𝜏𝑚)

𝐷−→ 𝒩 (0, 1).

D.4.5 Interpretation for the Horvitz-Thompson Estimator un-

der Misspecified 𝑚 Case

For the remainder of this section, we discuss the cases when 𝑚 is misspecified.

Throughout this section in the appendix, we use both 𝑝 and 𝑚. Recall that 𝑚 is

the order of the carryover effect, and 𝑝 is the experimenter’s knowledge of 𝑚.

As we have discussed in Section 5.4.3, all our estimation and inference methods

will hold when 𝑝 ≥ 𝑚. When 𝑝 < 𝑚, the Horvitz-Thompson estimator as we defined

in (5.4) will no longer be unbiased in estimating the lag-𝑝 causal estimand as we

defined in (5.1). However, we can still interpret the Horvitz-Thompson estimator as

we defined in (5.4).

When 𝑝 < 𝑚, the lag-𝑝 effect in (5.1) is not well defined. Instead, we define the

𝑚-misspecified lag-𝑝 causal effect that pads the 𝑝 + 1 assignments with the earlier
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observed treatments.

𝜏 (𝑚)
𝑝 (Y) =

1

𝑇 − 𝑝

{︃
𝑚∑︁

𝑡=𝑝+1

[︀
𝑌𝑡(𝑤

obs
1:𝑡−𝑝−1,1𝑝+1) − 𝑌𝑡(𝑤

obs
1:𝑡−𝑝−1,0𝑝+1)

]︀
+

𝑇∑︁
𝑡=𝑚+1

[︀
𝑌𝑡(𝑤

obs
𝑡−𝑚:𝑡−𝑝−1,1𝑝+1) − 𝑌𝑡(𝑤

obs
𝑡−𝑚:𝑡−𝑝−1,0𝑝+1)

]︀}︃
. (D.10)

This is a special case of the weighted lag-𝑝 causal effect introduced in Bojinov and

Shephard (2019). Similarly to the average lag-𝑝 causal effect, 𝜏 (𝑚)
𝑝 (Y) captures how

administering 𝑝 + 1 consecutive treatments as opposed to 𝑝 + 1 consecutive controls

impact the outcomes at time 𝑡, conditional on the observed assignment path up to

time 𝑡− 𝑝− 1.1 See Section 5.5.4 for numerical results.

When 𝑝 > 𝑚, Proposition 5.2 still holds, i.e., E[𝜏𝑝] = 𝜏𝑝(Y) = 𝜏𝑚(Y). When

𝑝 < 𝑚, sometimes we have to slightly augment the results and study the conditional

expectation.

Define 𝑓T : [𝑇 ] → T to be the “determining randomization point of period 𝑡,”

𝑓T(𝑡) = max {𝑗 |𝑗 ∈ T, 𝑗 ≤ 𝑡}

such that, it is the realization at time 𝑓T(𝑡) that uniquely determines the assignment at

time 𝑡, i.e. 𝑊𝑡 = 𝑊𝑓T(𝑡),∀𝑡 ∈ [𝑇 ]. See Example D.2 for an illustration of 𝑓T(·). When

T is clear from the context we drop the subscript and use 𝑓(·) = 𝑓T(·). Depending on

if 𝑓(𝑡− 𝑝) ≤ 𝑡−𝑚, we establish an analogy of Proposition 5.2 for the 𝑝 < 𝑚 case.

Proposition D.11 (Conditional Unbiasedness of the Estimator when 𝑚 is Misspec-

ified). Under Assumptions 5.1 and 5.2, for 𝑝 < 𝑚, at each time 𝑡 ≥ 𝑚 + 1, the

Horvitz-Thompson estimator is either unbiased for the lag-𝑚 causal effect when 𝑓(𝑡−

𝑝) ≤ 𝑡−𝑚, or conditionally unbiased for the 𝑚-misspecified lag-𝑝 causal effect when

𝑓(𝑡 − 𝑝) > 𝑡 − 𝑚. When 𝑝 + 1 ≤ 𝑡 ≤ 𝑚, the Horvitz-Thompson estimator is either

unbiased for the lag-𝑡 causal effect when 𝑓(𝑡 − 𝑝) = 1, or conditionally unbiased for

the 𝑚-misspecified lag-𝑡 causal effect when 𝑓(𝑡− 𝑝) > 1.

1See (Bojinov and Shephard 2019, Section 3) for an extended discussion.
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To remove the conditional expectation, we can further take an outer loop of expec-

tation averaged over the past assignment paths. Although this is somewhat different

from the average lag-𝑝 effect introduced earlier in (5.1), it does capture the impact of

a sequence of treatment relative to a sequence of controls.

All the mathematical expressions of Proposition D.11, as well its proof, are stated

in Section D.4.6 in the Appendix. See Example D.2 below for a specific illustration

of Proposition D.11. For a numerical illustration of the estimand and estimator in

more general setups, see Section 5.5.4.

Example D.2 (Misspecified 𝑚). Suppose 𝑇 = 4,𝑚 = 2, 𝑝 = 1,T = {1, 3}. Then the

determining randomization points are 𝑓T(1) = 1, 𝑓T(2) = 1, 𝑓T(3) = 3, 𝑓T(4) = 3, and

E
[︂
𝑌 obs
2

1{𝑊1:2 = (1, 1)}
Pr(𝑊1:2 = (1, 1))

− 𝑌 obs
2

1{𝑊1:2 = (0, 0)}
Pr(𝑊1:2 = (0, 0))

]︂
= 𝑌2(1, 1) − 𝑌2(0, 0)

E
[︂
𝑌 obs
3

1{𝑊2:3 = (1, 1)}
Pr(𝑊2:3 = (1, 1))

− 𝑌 obs
3

1{𝑊2:3 = (0, 0)}
Pr(𝑊2:3 = (0, 0))

]︂
= 𝑌3(1, 1, 1) − 𝑌3(0, 0, 0)

E
[︂
𝑌 obs
4

1{𝑊3:4 = (1, 1)}
Pr(𝑊3:4 = (1, 1))

− 𝑌 obs
4

1{𝑊3:4 = (0, 0)}
Pr(𝑊3:4 = (0, 0))

]︂
=

1

2
[𝑌4(1, 1, 1) + 𝑌4(0, 1, 1)

−𝑌4(0, 0, 0) − 𝑌4(1, 0, 0)]

Note that this is the 2-misspecified lag-1 causal effect.

D.4.6 Unbiasedness of the Horvitz-Thompson Estimator when

𝑚 is Misspecified

We state here the omitted mathematics in Proposition D.11.

Under Assumptions 5.1 and 5.2, for 𝑝 < 𝑚, at each time 𝑡 ≥ 𝑚 + 1, the Horvitz-

Thompson estimator is either unbiased for the lag-𝑚 causal effect when 𝑓(𝑡 − 𝑝) ≤

𝑡−𝑚, i.e.,

E𝑊1:𝑇∼𝜂T,Q

[︂
𝑌 obs
𝑡

1{𝑊𝑡−𝑝:𝑡 = 1𝑝+1}
Pr(𝑊𝑡−𝑝:𝑡 = 1𝑝+1)

− 𝑌 obs
𝑡

1{𝑊𝑡−𝑝:𝑡 = 0𝑝+1}
Pr(𝑊𝑡−𝑝:𝑡 = 0𝑝+1)

]︂
= 𝑌𝑡(1𝑚+1) − 𝑌𝑡(0𝑚+1),

or conditionally unbiased for the 𝑚-misspecified lag-𝑝 causal effect when 𝑓(𝑡 − 𝑝) >

277



𝑡−𝑚, i.e.,

E𝑊1:𝑇∼𝜂T,Q

[︂{︂
𝑌 obs
𝑡

1{𝑊𝑡−𝑝:𝑡 = 1𝑝+1}
Pr(𝑊𝑡−𝑝:𝑡 = 1𝑝+1)

− 𝑌 obs
𝑡

1{𝑊𝑡−𝑝:𝑡 = 0𝑝+1}
Pr(𝑊𝑡−𝑝:𝑡 = 0𝑝+1)

}︂
−

{︀
𝑌𝑡(𝑤

obs
𝑡−𝑚:𝑓(𝑡−𝑝)−1,1𝑡−𝑓(𝑡−𝑝)+1) − 𝑌𝑡(𝑤

obs
𝑡−𝑚:𝑓(𝑡−𝑝)−1,0𝑡−𝑓(𝑡−𝑝)+1)

}︀ ⃒⃒⃒⃒
𝑊𝑡−𝑚:𝑓(𝑡−𝑝)−1 = 𝑤obs

𝑡−𝑚:𝑓(𝑡−𝑝)−1

]︂
= 0.

When 𝑝+1 ≤ 𝑡 ≤ 𝑚, the Horvitz-Thompson estimator is either unbiased for the lag-𝑡

causal effect when 𝑓(𝑡− 𝑝) = 1, i.e.,

E𝑊1:𝑇∼𝜂T,Q

[︂
𝑌 obs
𝑡

1{𝑊𝑡−𝑝:𝑡 = 1𝑝+1}
Pr(𝑊𝑡−𝑝:𝑡 = 1𝑝+1)

− 𝑌 obs
𝑡

1{𝑊𝑡−𝑝:𝑡 = 0𝑝+1}
Pr(𝑊𝑡−𝑝:𝑡 = 0𝑝+1)

]︂
= 𝑌𝑡(1𝑡) − 𝑌𝑡(0𝑡),

or conditionally unbiased for the 𝑚-misspecified lag-𝑡 causal effect when 𝑓(𝑡−𝑝) > 1,

i.e.,

E𝑊1:𝑇∼𝜂T,Q

[︂{︂
𝑌 obs
𝑡

1{𝑊𝑡−𝑝:𝑡 = 1𝑝+1}
Pr(𝑊𝑡−𝑝:𝑡 = 1𝑝+1)

− 𝑌 obs
𝑡

1{𝑊𝑡−𝑝:𝑡 = 0𝑝+1}
Pr(𝑊𝑡−𝑝:𝑡 = 0𝑝+1)

}︂
−

{︀
𝑌𝑡(𝑤

obs
1:𝑓(𝑡−𝑝)−1,1𝑡−𝑓(𝑡−𝑝)+1) − 𝑌𝑡(𝑤

obs
1:𝑓(𝑡−𝑝)−1,0𝑡−𝑓(𝑡−𝑝)+1)

}︀ ⃒⃒⃒⃒
𝑊1:𝑓(𝑡−𝑝)−1 = 𝑤obs

1:𝑓(𝑡−𝑝)−1

]︂
= 0.

To remove the conditional expectation, we can further take an outer loop of ex-

pectation averaged over the past assignment paths. So the estimator is estimating a

weighted average of lag-𝑝 effects. When 𝑡 ≥ 𝑚 + 1,

∑︁
𝑤𝑡−𝑚:𝑓(𝑡−𝑝)−1

Pr(𝑊𝑡−𝑚:𝑓(𝑡−𝑝)−1 = 𝑤𝑡−𝑚:𝑓(𝑡−𝑝)−1)

(𝑌𝑡(𝑤𝑡−𝑚:𝑓(𝑡−𝑝)−1,1𝑡−𝑓(𝑡−𝑝)+1) − 𝑌𝑡(𝑤𝑡−𝑚:𝑓(𝑡−𝑝)−1,0𝑡−𝑓(𝑡−𝑝)+1)),

and when 𝑝 + 1 ≤ 𝑡 ≤ 𝑚,

∑︁
𝑤1:𝑓(𝑡−𝑝)−1

Pr(𝑊1:𝑓(𝑡−𝑝)−1 = 𝑤1:𝑓(𝑡−𝑝)−1)(𝑌𝑡(𝑤1:𝑓(𝑡−𝑝)−1,1𝑡−𝑓(𝑡−𝑝)+1) − 𝑌𝑡(𝑤1:𝑓(𝑡−𝑝)−1,0𝑡−𝑓(𝑡−𝑝)+1)).

We prove Proposition D.11 as follows.

Proof. Proof of Proposition D.11. Focus on any specific 𝑡 ∈ {𝑚 + 1 : 𝑇}.
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When 𝑓(𝑡−𝑝) ≤ 𝑡−𝑚, both 0 < Pr(𝑊𝑡−𝑝:𝑡 = 1𝑝+1),Pr(𝑊𝑡−𝑝:𝑡 = 0𝑝+1) < 1. With

probability Pr(𝑊𝑡−𝑝:𝑡 = 1𝑝+1) ̸= 0, 1{𝑊𝑡−𝑝:𝑡 = 1𝑝+1} = 1, and 𝑌 obs
𝑡 = 𝑌𝑡(1𝑚+1). So

E
[︁
𝑌 obs
𝑡

1{𝑊𝑡−𝑝:𝑡=1𝑝+1}
Pr(𝑊𝑡−𝑝:𝑡=1𝑝+1)

]︁
= 𝑌𝑡(1𝑚+1). Similarly E

[︁
𝑌 obs
𝑡

1{𝑊𝑡−𝑝:𝑡=0𝑝+1}
Pr(𝑊𝑡−𝑝:𝑡=0𝑝+1)

]︁
= 𝑌𝑡(0𝑚+1). So

E𝑊1:𝑇∼𝜂T,Q

[︂{︂
𝑌 obs
𝑡

1{𝑊𝑡−𝑝:𝑡 = 1𝑝+1}
Pr(𝑊𝑡−𝑝:𝑡 = 1𝑝+1)

− 𝑌 obs
𝑡

1{𝑊𝑡−𝑝:𝑡 = 0𝑝+1}
Pr(𝑊𝑡−𝑝:𝑡 = 0𝑝+1)

}︂]︂
= 𝑌𝑡(1𝑚+1) − 𝑌𝑡(0𝑚+1).

When 𝑓(𝑡−𝑝) > 𝑡−𝑚, both 0 < Pr
(︁
𝑊𝑡−𝑝:𝑡 = 1𝑝+1

⃒⃒⃒
𝑊𝑡−𝑚:𝑓(𝑡−𝑝)−1 = 𝑤obs

𝑡−𝑚:𝑓(𝑡−𝑝)−1

)︁
<

1 and 0 < Pr
(︁
𝑊𝑡−𝑝:𝑡 = 0𝑝+1

⃒⃒⃒
𝑊𝑡−𝑚:𝑓(𝑡−𝑝)−1 = 𝑤obs

𝑡−𝑚:𝑓(𝑡−𝑝)−1

)︁
< 1. Conditional on

𝑊𝑡−𝑚:𝑓(𝑡−𝑝)−1 = 𝑤obs
𝑡−𝑚:𝑓(𝑡−𝑝)−1, it must be that with non-zero probability

Pr
(︀
𝑊𝑡−𝑝:𝑡 = 1𝑝+1

⃒⃒
𝑊𝑡−𝑚:𝑓(𝑡−𝑝)−1 = 𝑤obs

𝑡−𝑚:𝑓(𝑡−𝑝)−1
)︀
̸= 0,

we have 1{𝑊𝑡−𝑝:𝑡 = 1𝑝+1} = 1, and 𝑌 obs
𝑡 = 𝑌𝑡(𝑤

obs
𝑡−𝑚:𝑓(𝑡−𝑝)−1,1𝑡−𝑓(𝑡−𝑝)+1). So

E𝑊1:𝑇

[︂
𝑌 obs
𝑡

1{𝑊𝑡−𝑝:𝑡 = 1𝑝+1}
Pr(𝑊𝑡−𝑝:𝑡 = 1𝑝+1)

− 𝑌𝑡(𝑤
obs
𝑡−𝑚:𝑓(𝑡−𝑝)−1,1𝑡−𝑓(𝑡−𝑝)+1)

⃒⃒
𝑊𝑡−𝑚:𝑓(𝑡−𝑝)−1 = 𝑤obs

𝑡−𝑚:𝑓(𝑡−𝑝)−1

]︂
= 0.

Similarly, we have

E𝑊1:𝑇

[︂
𝑌 obs
𝑡

1{𝑊𝑡−𝑝:𝑡 = 0𝑝+1}
Pr(𝑊𝑡−𝑝:𝑡 = 0𝑝+1)

− 𝑌𝑡(𝑤
obs
𝑡−𝑚:𝑓(𝑡−𝑝)−1,0𝑡−𝑓(𝑡−𝑝)+1)

⃒⃒
𝑊𝑡−𝑚:𝑓(𝑡−𝑝)−1 = 𝑤obs

𝑡−𝑚:𝑓(𝑡−𝑝)−1

]︂
= 0,

which finishes the proof.

D.4.7 Asymptotic Normality when 𝑚 is Misspecified

The proof of Corollary 5.7.1 consists of two parts: 𝑝 > 𝑚 and 𝑝 < 𝑚. When 𝑝 > 𝑚

we consult Theorems 5.6 and 5.7. When 𝑝 < 𝑚 we prove Corollary 5.7.1 by using

Lemma D.1. In particular, we derive 𝐵2
𝑛,𝑘,𝑎, and then construct some proper ∆𝑛, 𝐾𝑛,

and 𝐿𝑛.

Proof. Proof of Corollary 5.7.1. The proof consists of two parts: 𝑝 > 𝑚 and 𝑝 < 𝑚.

First, when 𝑝 > 𝑚, we know that 𝜏𝑝 = 𝜏𝑚, 𝜏𝑝 = 𝜏𝑚,Var(𝜏𝑝) = Var(𝜏𝑚). Due to

Theorems 5.6 we prove part (i) the expression in (5.10). Due to Theorem 5.7 we
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know that

𝜏𝑝 − 𝜏𝑝√︀
Var(𝜏𝑝)

=
𝜏𝑚 − 𝜏𝑚√︀
Var(𝜏𝑚)

𝐷−→ 𝒩 (0, 1).

Second, when 𝑝 < 𝑚, then we follow the same trick as in Theorem 5.7. In the 𝑛-

replica experiment, 𝜏𝑝−E[𝜏
[𝑚]
𝑝 ] = 1

(𝑛−1)𝑝
∑︀𝑛−2

𝑘=0 1̄𝑘, and Var(𝜏𝑝) = 1
(𝑛−1)2𝑝2Var

(︀∑︀𝑛−2
𝑘=0 1̄𝑘

)︀
.

To use the language from Lemma D.1, denote 𝑑 = 𝑛− 1. Denote for any 𝑖 ∈ [𝑛− 1],

𝑋𝑛,𝑖 = 1
(𝑛−1)𝑝 1̄𝑖−1. We know that 𝜑 = ⌈𝑚

𝑝
⌉, so that {𝑋𝑛,1, 𝑋𝑛,2, ...} is a sequence of

𝜑-dependent random variables. See Table D.8 for an illustration of 𝜑.

Table D.8: An illustration of 𝜑 when 𝑚 = 5, 𝑝 = 3

−−−−−−−−−−−−−−−−−−−−−→
carryover effect

. . . 13 14 15 16 17 18 19 20 21 22 23 24 . . .
T* X − − X − − X − − X − −
{1̄𝑘}𝐾+1

𝑘=0 1̄3 1̄4 1̄5 1̄6

In this example 𝜑 = ⌈𝑚
𝑝 ⌉ = 2. The arrow above numbers 17 through 22 means that the assignment

on period 17 affects the outcome on period 22. So that 1̄4 and 1̄6 are correlated, but 1̄3 and 1̄6 are
independent.

First note that 𝐵2
𝑛 = Var(𝜏𝑝), and we calculate 𝐵2

𝑛,𝑘,𝑎 as follows. Note that 𝑘 ≥

𝜑 + 1.

𝐵2
𝑛,𝑘,𝑎 =

1

(𝑛− 1)2𝑝2
Var

(︃
𝑎+𝑘−1∑︁
𝑖=𝑎

1̄𝑖−1

)︃

≤ 1

(𝑛− 1)2𝑝2

(︃
𝑎+𝑘−1∑︁
𝑖=𝑎

E[1̄
2
𝑖−1] +

𝑎+𝑘−2∑︁
𝑖=𝑎

2E[1̄𝑖−11̄𝑖] + ... +

𝑎+𝑘−1+𝜑∑︁
𝑖=𝑎

2E[1̄𝑖−11̄𝑖−1+𝜑]

)︃

≤ 𝐶𝑝2𝐵2

(𝑛− 1)2𝑝2
· (𝑘 + (𝑘 − 1) + ... + (𝑘 − 𝜑))

≤ (𝜑 + 1)𝐶𝑘𝐵2

(𝑛− 1)2

where 𝐶 is some constant bounding the number of terms in each cross-product ex-

pectation 2E[1̄𝑖−11̄𝑖], ..., 2E[1̄𝑖−11̄𝑖−1+𝜑]; and 𝜑 + 1 is a constant as well.

Pick 𝛾 = 0, 𝛿 = 1, then ∆𝑛 = 𝐵3/(𝑛 − 1)3, 𝐾𝑛 = (𝜑 + 1)𝐶𝐵2/(𝑛 − 1)2, and

𝐿𝑛 = Var(𝜏𝑚)/(𝑛− 1).
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We check that all the five conditions from Lemma D.1 are satisfied.

1. E |𝑋𝑛,𝑖|3 ≤ ∆𝑛 = 𝐵3/(𝑛− 1)3, because all the potential outcomes are bounded

by 𝐵, so that 𝑋𝑛,𝑖 ≤ 𝐵/(𝑛− 1).

2. 𝐵2
𝑛,𝑘,𝑎/𝑘 ≤ 𝐾𝑛 = (𝜑 + 1)𝐶𝐵2/(𝑛− 1)2.

3. 𝐵2
𝑛/(𝑛− 1) ≥ 𝐿𝑛 = Var(𝜏𝑚)/(𝑛− 1).

4. 𝐾𝑛/𝐿𝑛 = (𝜑 + 1)𝐶𝐵2/(𝑛− 1)Var(𝜏𝑚) = 𝑂(1), where the last equality is due to

Assumption 5.4.

5. ∆𝑛/𝐿
3/2
𝑛 = 𝐵3/(𝑛 − 1)3/2Var(𝜏𝑚)3/2 = 𝑂(1), where the last equality is due to

Assumption 5.4.

Due to Lemma D.1,

𝜏𝑝 − 𝜏𝑝√︀
Var(𝜏𝑝)

𝐷−→ 𝒩 (0, 1).

D.5 Additional Simulation Results

D.5.1 Flexibility of the Outcome Models

As we will see below, it is easy to use the potential outcome framework to describe

many complex relationships between assignments and outcomes.

We start with a simple model which originates from Oman and Seiden (1988):

𝑌𝑡(𝑤1:𝑡) = 𝜇 + 𝛼𝑡 + 𝛿𝑤𝑡 + 𝛾𝑤𝑡−1 + 𝜖𝑡 (D.11)

where 𝜇 is a fixed effect; 𝛼𝑡 is a fixed effect associated to period 𝑡; 𝛿𝑤𝑡 is the contem-

poraneous effect, and 𝛾𝑤𝑡−1 is the carryover effect from period 𝑡− 1; 𝜖𝑡 is the random

noise in period 𝑡. Such a model as well as a few very similar ones are widely used in

the literature (Hedayat et al. 1978, Jones and Kenward 2014).
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A more general variant from the above model is to consider carryover effects of

any arbitrary order, which we have defined in (5.13) in the main body of the paper.

𝑌𝑡(𝑤1:𝑡) = 𝜇 + 𝛼𝑡 + 𝛿(1)𝑤𝑡 + 𝛿(2)𝑤𝑡−1 + ... + 𝛿(𝑡)𝑤1 + 𝜖𝑡

where 𝛿(1), 𝛿(2), ..., 𝛿(𝑡) are non-stochastic coefficients. The dotted terms are carryover

effects of higher orders. And all the other parameters are as defined in (D.11). We

will run simulations based on this more general model, which enables us to test the

performance of our proposed optimal design under a misspecified 𝑚.

The autoregressive model (Arellano 2003) is even more general: 𝑌1(𝑤1) = 𝛿1,1𝑤1 +

𝜖1 and ∀𝑡 > 1

𝑌𝑡(𝑤1:𝑡) = 𝜑𝑡,𝑡−1𝑌𝑡−1(𝑤1:𝑡−1) + 𝜑𝑡,𝑡−2𝑌𝑡−2(𝑤1:𝑡−2) + ... + 𝜑𝑡,1𝑌1(𝑤1)+

𝛿𝑡,𝑡𝑤𝑡 + 𝛿𝑡,𝑡−1𝑤𝑡−1 + ... + 𝛿𝑡,1𝑤1 + 𝜖𝑡 (D.12)

where 𝜑𝑡,𝑡 and 𝛿𝑡,𝑡 are non-stochastic coefficients; the dotted terms are carryover effects

of higher orders; 𝜖𝑡 is the random noise in period 𝑡. We can iteratively replace 𝑌𝑡(𝑤𝑡)

using a linear combination of 𝑤𝑡, 𝑤𝑡−1, ..., 𝑤1. So the autoregressive model in (D.12)

can be written in a similar form of (5.13). The only difference is that the coefficients

are different and dependent on 𝑡.

D.5.2 Additional Simulation Results for Section 5.5.2 Asymp-

totic Normality

In Section 5.5.2 we have only shown simulation results for the variance distribution,

when 𝑚 is correctly specified and under 𝛿 = 3, see asymptotic normality. In this

section we provide additional simulation results under 𝛿 = 1 and 𝛿 = 2.

See Figures D-1–D-3 for simulation results under 𝛿 = 1; See Figures D-4–D-6 for

simulation results under 𝛿 = 2. See Figures D-7–D-8 for simulation results under

𝛿 = 3.

By comparing all the results, we see that in all cases, the pink histograms approx-
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imately follow the standard normal distribution; whereas the light blue histograms,

since the distributions are induced by normalizing the expectation of the conservative

upper bound, are more concentrated around zero. Furthermore, as 𝛿 increases, the

light blue histograms become even more concentrated around zero, i.e., the distances

between the light blue histograms and the pink histograms grow larger.

Figure D-1: Approximate normality of the randomization distribution when 𝑚 =
2, 𝑝 = 2, 𝛿 = 1.

Figure D-2: Approximate normality of the randomization distribution when 𝑚 =
2, 𝑝 = 3, 𝛿 = 1.

Robustness Check.

In Section 5.5.2 we have shown results when 𝑚 = 2, 𝑝 = 2, 𝛿 = 1. In this section

we provide additional simulation results under other parameters. When 𝑇 = 120,
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Figure D-3: Approximate normality of the randomization distribution when 𝑚 =
2, 𝑝 = 1, 𝛿 = 1.

Figure D-4: Approximate normality of the randomization distribution when 𝑚 =
2, 𝑝 = 2, 𝛿 = 2.

Figure D-5: Approximate normality of the randomization distribution when 𝑚 =
2, 𝑝 = 3, 𝛿 = 2.
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Figure D-6: Approximate normality of the randomization distribution when 𝑚 =
2, 𝑝 = 1, 𝛿 = 2.

Figure D-7: Approximate normality of the randomization distribution when 𝑚 =
2, 𝑝 = 3, 𝛿 = 3.

Figure D-8: Approximate normality of the randomization distribution when 𝑚 =
2, 𝑝 = 1, 𝛿 = 3.
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the empirical distributions as shown in the histograms are significantly different from

normal distributions. See Figures 5-5, D-9, D-11, D-13, D-15, D-17, D-19, D-21, D-23.

When 𝑇 = 1200, the empirical distributions as shown in the histograms are much

closer to normal distributions. See Figures 5-6, D-10, D-12, D-14, D-16, D-18, D-

20, D-22, D-24. All the simulation results deliver the same message, that when 𝜖𝑡

noises are heavy tailed, the convergence to a standard normal distribution as we have

shown in Theorem 5.7 requires longer horizon.

Interestingly, if we make the comparison between the pink histogram and the light

blue histogram, we can see how much gap it incurs when we replace the true variance

with the conservative upper bound. If we compare Figure D-1 and Figure 5-6, then

we find that the conservative upper bound is a better approximation of the true

variance when the noises 𝜖𝑡 conform normal distributions, rather than heavy-tailed

distributions.

Figure D-9: Randomization distribution when random noises are Student’s t-
distributions, and when 𝑚 = 2, 𝑝 = 2, 𝛿 = 2, 𝑇 = 120.

D.5.3 Additional Simulation Results for Section 5.5.3 Rejec-

tion Rates

In Section 5.5.3 we have provided simulation results for the rejection rates when the

rejection threshold is 0.1. In this section we provide additional simulation results for

the rejection rates when the rejection threshold is replaced by 0.05 and 0.01. See
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Figure D-10: Randomization distribution when random noises are Student’s t-
distributions, and when 𝑚 = 2, 𝑝 = 2, 𝛿 = 2, 𝑇 = 1200.

Figure D-11: Randomization distribution when random noises are Student’s t-
distributions, and when 𝑚 = 2, 𝑝 = 2, 𝛿 = 3, 𝑇 = 120.

Figure D-12: Randomization distribution when random noises are Student’s t-
distributions, and when 𝑚 = 2, 𝑝 = 2, 𝛿 = 3, 𝑇 = 1200.
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Figure D-13: Randomization distribution when random noises are Student’s t-
distributions, and when 𝑚 = 2, 𝑝 = 3, 𝛿 = 1, 𝑇 = 120.

Figure D-14: Randomization distribution when random noises are Student’s t-
distributions, and when 𝑚 = 2, 𝑝 = 3, 𝛿 = 1, 𝑇 = 1200.

Figure D-15: Randomization distribution when random noises are Student’s t-
distributions, and when 𝑚 = 2, 𝑝 = 3, 𝛿 = 2, 𝑇 = 120.
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Figure D-16: Randomization distribution when random noises are Student’s t-
distributions, and when 𝑚 = 2, 𝑝 = 3, 𝛿 = 2, 𝑇 = 1200.

Figure D-17: Randomization distribution when random noises are Student’s t-
distributions, and when 𝑚 = 2, 𝑝 = 3, 𝛿 = 3, 𝑇 = 120.

Figure D-18: Randomization distribution when random noises are Student’s t-
distributions, and when 𝑚 = 2, 𝑝 = 3, 𝛿 = 3, 𝑇 = 1200.
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Figure D-19: Randomization distribution when random noises are Student’s t-
distributions, and when 𝑚 = 2, 𝑝 = 1, 𝛿 = 1, 𝑇 = 120.

Figure D-20: Randomization distribution when random noises are Student’s t-
distributions, and when 𝑚 = 2, 𝑝 = 1, 𝛿 = 1, 𝑇 = 1200.

Figure D-21: Randomization distribution when random noises are Student’s t-
distributions, and when 𝑚 = 2, 𝑝 = 1, 𝛿 = 2, 𝑇 = 120.
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Figure D-22: Randomization distribution when random noises are Student’s t-
distributions, and when 𝑚 = 2, 𝑝 = 1, 𝛿 = 2, 𝑇 = 1200.

Figure D-23: Randomization distribution when random noises are Student’s t-
distributions, and when 𝑚 = 2, 𝑝 = 1, 𝛿 = 3, 𝑇 = 120.

Figure D-24: Randomization distribution when random noises are Student’s t-
distributions, and when 𝑚 = 2, 𝑝 = 1, 𝛿 = 3, 𝑇 = 1200.
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Figures D-25 and D-26.

Figure D-25: Rejection rates and their dependence on 𝑇/𝑚, when the rejection thresh-
old is 0.05. Left: 𝛿 = 1; Middle: 𝛿 = 2; Right: 𝛿 = 3

Figure D-26: Rejection rates and their dependence on 𝑇/𝑚, when the rejection thresh-
old is 0.01. Left: 𝛿 = 1; Middle: 𝛿 = 2; Right: 𝛿 = 3

The blue dots are rejection rates under exact inference; the red dots are under

asymptotic inference. Similar to the simulation results in Section 5.5.3, we would

ideally wish to reject both the Fisher’s null hypothesis (5.8) and the Neyman’s null

hypothesis (5.9). Both figures illustrate such rejection rates.

Besides the three observations we make in Section 5.5.3 (namely, dependence on

𝑇/𝑚, between two inference methods, and dependence on the signal-to-noise ratio),

we make an extra observation here. When we decrease the rejection threshold, we

expect to reject the Neyman’s null hypothesis under smaller 𝑝-values. As a result,

as we decrease the rejection threshold, the rejection rates should be smaller, which is

supported by our simulation results in Figures D-25 and D-26.
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