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Abstract

Networks provide a powerful and unified framework to study complex systems. By
abstracting systems down to entities and their connections, network models provide
insight into the structure and dynamics of critical systems across multiple domains. In
this thesis, we study diffusion in social networks. Diffusion through networked systems
corresponds to numerous consequential processes, and we focus on epidemic spread and
information diffusion. We study these processes by applying and extending ideas from
statistical inference. Inference, which focuses on estimation, testing, and uncertainty
quantification, provides the mathematical tools to learn from data rigorously. This
thesis utilizes both theory and data in order to address several real-world challenges.

In the first chapter, we study epidemic spread and consider the problem of iden-
tifying infected individuals in a population of size 𝑁 . We introduce an approach
that uses significantly fewer than 𝑁 tests when infection prevalence is low. Our
approach utilizes network structure to improve the performance of a classical approach
called group testing. In the second chapter, we derive the performance of the most
common form of group testing, Dorfman testing, under imperfect tests. We derive
the full distribution of the number of tests needed, the number of false negatives, and
the number of false positives, taking into account the conditions faced by medical
practitioners. In the third chapter, we study information diffusion and introduce a
statistical testing framework to identify cascades in network data. We define a test
statistic that distinguishes between large, meaningful branches and the small branches
formed during normal periods, and apply our statistic to identify information cascades
in call detail record data. In the fourth chapter, we study the social network effects of
drone strikes, focusing on information and physical diffusion around strikes. Utilizing
a dataset of over 12 billion call detail records, we systematically analyze the impact
of 74 U.S. drone strikes on communication and mobility in Yemen between 2010 and
2012.
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Chapter 0

Introduction

0.1 Background

Networks provide a powerful and unified framework to study complex systems. By

abstracting systems down to entities and their connections, network models provide

insight into the structure and dynamics of critical systems across multiple domains.

Notable examples of networks include societies and social networks [1, 2], the financial

and banking sector [3, 4], and energy grids [5, 6]. As a field, network science utilizes a

common set of mathematical tools to study the formation, structure, function, and

dynamics of these systems [7–10].

In its simplest form, a network is a collection of nodes and edges (Figure 0-1). This

simple representation can model a wide variety of systems and capture a surprising

amount of information. For example, societies are incredibly intricate, but at their

core, they are composed of individuals and the relationships between them. As a

result, societies can be modeled as social networks like the one seen in Figure 0-2. The

social network representation provides insight into the structure and dynamics of the

society. For instance, the tightly connected nodes in Figure 0-2 correspond to closely

knit communities. The weak connections between some communities indicate parts of

the society may become disconnected if individuals leave. The network representation

can also answer consequential questions, such as how quickly would information or a

disease spread through the society?

15



Figure 0-1: An example of a network with eight nodes and ten edges. Image from [7].

Figure 0-2: A social network of student interactions from the Technical University of
Denmark. Nodes correspond to first-year students at the university and edges corre-
spond to their physical interactions, recorded using Bluetooth-enabled smartphones.
Node colors correspond to their community affiliation. Data provided by [11].

16



Network science, which studies complex systems using network models, is built on

mathematical graph theory, a subfield of discrete mathematics. The study of graph

theory began in 1736 with Leonhard Euler’s solution to the Bridges of Königsberg

problem [8]. The problem asked whether one could walk through the city of Königsberg

by crossing each of its seven bridges once and only once. In network language, Euler

modeled the bridges as edges and sections of the city as nodes. He then used the

properties of the network to prove that such a walk was impossible.

Since the Bridges of Königsberg problem, graph theory has grown into a vibrant

field. Theoreticians made notable advances in the 20th century with the introduction

of random graphs, which integrated probability into network representations [12,13].

Random graph models generate nodes and edges randomly according to predefined

rules. Different probabilistic rules result in different network structures and properties.

As a subfield of discrete math, graph theory has also benefited from advances in set

theory [14], linear algebra [15], and control theory [16,17].

The field of network science has exploded over the past two decades, driven by

the large-scale generation of data and by advances in computing power. Extensive

datasets have allowed researchers to study the structure and dynamics of real-world

networked systems. Researchers have mapped the structure of the Internet and

studied its resilience to connection issues [18]. Others have analyzed the billions of

individuals on Facebook, their friendships, cliques, and communities [1]. Papers have

analyzed Twitter and its role in spreading misinformation [2]. Research has studied

the interconnection between banks and the potential for insolvency and illiquidity to

spread through the financial system [4,19]. In industry, network science ideas form

the foundation of Google’s search algorithm [20], Amazon’s shipping optimization [21],

Instagram’s influencer advertising [22], and components of the Federal Reserve’s stress

test [23]. As the preceding examples demonstrate, a network science approach can

address problems with major societal significance. By acknowledging the importance

of intra-system connections, network models shed light on the structure and dynamics

of critical settings.

Research within network science is divisible into three categories: 1) empirical

17



study of network structure, 2) development and study of network models, and 3) study

of the dynamics of networks and processes on networks. First, empirical study of

network structure focuses on specific properties of a given network. Popular properties

include the importance of specific nodes (centrality) [3,24], the resilience of the network

to the removal of edges and nodes (connectivity) [25], and how tightly knit sections

of the network are (clustering and communities) [26, 27]. Second, network models

define rules that generate networks. For example, we can model a network as having a

fixed number of nodes and random edges that exist independently. Researchers study

network models to understand their properties and how they compare to real-world

systems [28, 29]. Third, a segment of research focuses on processes taking place on

networks. Examples include network search and navigation [30], random walks [31],

opinion dynamics [32], and diffusion processes [33].

Our work, which focuses on diffusion, falls within the third category. Diffusion

through networked systems corresponds to numerous consequential processes such as

information spread through societies, epidemics in populations, failure propagation in

energy grids, and cascading defaults in banking networks. As a result, the emergence

of diffusion has been studied and documented across several domains [2–5,19,34–38].

In this thesis, we study diffusion in social networks. We first study epidemic spread

through societies and how network information can be used to contain infection. We

then study information diffusion through populations and the structure and function

of information cascades.

Epidemic spread is one of the original reasons, and is still a primary reason, for

studying networks [7]. In an epidemic, a disease spreads from person to person

through contact. Networks provide a natural way to model such spread. Individuals

are represented by nodes and their physical connections are represented by edges. One

or more nodes are infected at the start of the epidemic. These infected nodes can then

infect their neighbors. Many network epidemic models have been introduced with

different rules for infection status and infection passing [39,40]. Research focuses on

understanding how network structure affects the speed and extent of an infection [41,42].

In addition, researchers use network models to design approaches to slow and stop

18



epidemic spread [43,44].

Information diffusion corresponds to the spread of information, news, rumors, or

gossip through a social network. From a mathematical standpoint, information spread

is often modeled using the same tools as epidemic spread. One or more individuals

has or is "infected" with information at the start. The individuals then spread

the information to their neighbors. Researchers have studied information diffusion

in multiple consequential domains. Misinformation spread on social networks can

affect elections [2]. News about violence in conflict regions can induce fleeing or

more violence [45,46]. Marketing campaigns leverage word-of-mouth sharing in social

networks to spread products [47], vaccines [48], or financial programs [3].

We study diffusion in networks by applying and extending statistical inference to a

network setting. Initial empirical work in network science often consists of exploratory

data analysis and utilizes data science heuristics. We use statistical methods for

disciplined analysis. Specifically, statistical inference, which focuses on estimation,

testing, and uncertainty quantification, provides the mathematical tools to learn from

data rigorously [49]. Inferential methods allow researchers to estimate key parameters

and models and, crucially, add confidence levels to data-driven results. Coupled with

identification, inference allows for the estimation of causal parameters, which quantify

the effect and effectiveness of interventions and can directly inform policy decisions [50].

By applying and extending inference, our work contributes to the development and

use of mathematical methods for data analysis in network science.

In our work, we utilize several aspects of inference to strengthen our results.

We use accurate confidence intervals to quantify the uncertainty around estimates

of effects and interventions. In addition, we include and discuss full distributions

when deriving new estimators or quantities of interest. Distributions allow us to

understand the variance of variables and provide confidence intervals. We also discuss

and develop formal testing procedures. These procedures and their associated test

statistics allow us to distinguish between meaningful results and background noise.

Finally, we use inferential methods to add causal interpretation to our results. We

leverage econometric methods to estimate the causal impact of certain events on other
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events using only experimental data. Throughout our work, inference plays a key role

in adding rigor to our results.

This thesis utilizes both theory and data in order to address several real-world

challenges. On the theory side, we develop and apply ideas from network science,

epidemic modeling, branching processes, econometrics, and statistics. On the data

side, we use social network data generated by smartphones and traditional cellphones.

We apply this theory and data to control epidemics, identify information diffusion,

and understand conflict.

0.2 Summary of individual chapters

0.2.1 Network group testing

In the first chapter, we study epidemic spread and consider the problem of identifying

infected individuals in a population of size 𝑁 . We introduce an approach based on

group testing that uses significantly fewer than 𝑁 tests when infection prevalence is

low. In its simplest form, group testing pools samples from individuals into groups for

an initial stage of testing. If a pooled sample tests negative, all individuals that made

up the pool are classified as negative for the disease. If a pooled sample tests positive,

all individuals that made up the pool are retested individually to identify the infected

members.

The most common form of group testing, Dorfman testing, groups individuals

randomly in the first stage of testing [51]. However, as communicable diseases spread

from individual to individual through underlying social networks, the position of each

individual in the network affects their infection probability. As a result, we utilize

network information to group individuals intelligently and improve the performance

of group testing. Specifically, we group individuals by their community.

We first introduce an epidemic model based on branching processes and a network

model based on a stochastic block model. We then analyze the performance of

a network grouping approach and derive the number of tests needed to screen a

20



population. We prove the number of tests needed under network grouping is less than

the number of tests needed under Dorfman testing. The extent of outperformance

is driven by the strength of community structure in the network. When networks

have strong community structure, network grouping achieves the lower bound for

two-stage group testing procedures. When networks have no community structure,

network grouping is equivalent to Dorfman testing. We also consider the performance

of network grouping when we cannot perfectly identify community structure. We

derive the number of tests needed under network grouping and imperfect community

detection, and prove network grouping still outperforms Dorfman. Extending our

analysis to general networks, we demonstrate network grouping outperforms Dorfman

on any network that has positive modularity.1

We then analyze the performance of network grouping under imperfect tests. Imper-

fect tests, which result in false negatives and false positives, are a major consideration

in practice. We derive the number of tests needed, the number of false negatives,

and the number of false positives under network grouping. We prove that network

grouping weakly dominates Dorfman testing across all metrics.

As a first empirical application, we consider the scenario of a university testing its

student body for COVID-19. We use a social network dataset that captures physical

interactions between first-year students at the Technical University of Denmark. After

simulating epidemic processes on the network, we demonstrate network grouping

requires significantly fewer tests than Dorfman testing to screen the population. As a

second empirical example, we build a mobility network of the US and apply network

grouping to screen the population of the country for COVID-19. We use mobility

data provided by SafeGraph and epidemic data provided by the New York Times. We

apply network grouping and demonstrate it significantly outperforms Dorfman and

individual testing.

Our work demonstrates social network information can be used to improve group

1Modularity is a core metric in network science that measures the extent of community structure
in a network [101,102]. Given a community partition, modularity records the observed fraction of
edges within communities minus the expected fraction of edges within communities. As a result,
networks with community structure have positive modularities.
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testing. We prove network grouping weakly dominates the most common form of group

testing, Dorfman testing, across all metrics. The performance of network grouping

depends on the strength of community structure in the network. Importantly, network

grouping is simple for practitioners to implement. In practice, individuals should be

grouped by family unit, social group, work group, or other community structure. Our

work demonstrates this simple approach can significantly reduce the number of tests

needed to keep populations healthy.

0.2.2 Performance of group testing under imperfect tests

In the second chapter, we continue our analysis of group testing and derive the

performance of Dorfman testing under imperfect tests. As mentioned, Dorfman

testing is the most common form of group testing in practice [52–55]. We derive the

distribution of the number of tests needed, the number of false negatives, and the

number of false positives.

The full distributions allow for the construction of confidence intervals and provide

better guidance for medical practitioners. For example, consider a university testing its

student population for COVID. Naive guidance would tell the university the number of

tests it needs on average to screen the population. However, the university may need

more tests in practice. Using confidence intervals, we can inform the university the

number of tests it needs with high probability, which is much more relevant information.

In our analysis, we recognize the flexibility available to medical practitioners and allow

first and second stage false negative and false positive rates to differ. This modeling

addition allows practitioners to use different tests in the first stage, when groups are

being tested, and in the second stage, when individuals are being tested.

We model first-stage sensitivity as dependent on the number of samples in each

group. Sensitivity is the fraction of infected individuals that correctly test positive,

and is equal to one minus the false negative rate. Modeling first-stage sensitivity as a

function of the number of samples accounts for viral-load dilution. As more samples

are placed in each pool, any viral material present is diluted and false negative rates

increase. In our work, we also derive and discuss optimal group sizes, approaches to
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maximize the number of people tested, and the impact of infection prevalence.

To facilitate the use of group testing, we have built a dashboard that allows

practitioners to analyze the performance of group testing under various parameters.

The dashboard can be found at group-testing.herokuapp.com. The dashboard takes

in various input parameters, including population size, infection prevalence, and first

and second stage false negative and false positive rates, and returns the number of

tests needed, the number of false negatives, and the number of false positives as a

function of group size. The outputs can help practitioners design, understand, and

implement various group testing programs.

Our work extends our understanding of the most common approach to group

testing, Dorfman testing. We derive the performance of Dorfman testing under

conditions faced by medical practitioners. Specifically, we derive the number of tests

needed, the number of false positives, and the number of false negatives under group

testing when tests are imperfect, tests have varying sensitivities and specificities, and

samples are diluted. Our work provides a theoretical foundation for the group testing

approaches used in practice; our derivations and discussion help practitioners design,

understand, and implement group testing programs in order to efficiently identify

infected individuals. By providing analytical results, we expand the understanding of

group testing, its performance in medical clinics and testing centers, and its potential

for large-scale surveillance testing of infectious diseases.

0.2.3 Tests for network cascades via branching processes

In the previous two chapters, we study epidemic spread. Epidemic spread in social

networks behaves similarly to information diffusion. In information diffusion, infor-

mation, news, or gossip spreads from individual to individual though a population,

much like an infection. While information exchange in social networks is common,

information cascades, in which a large number of individuals quickly contact each

other, are rare. These cascade often correspond to consequential events such as the

spreading of news following a violent event, the retweeting of viral fake news, or the

spreading of gossip through a social clique. In this chapter, we focus on identifying
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information cascades in social networks.

We introduce a statistical testing framework to identify information cascades in

network data. In many empirical network science studies, diffusion processes are

often described as cascades since they involves nodes contacting or "infecting" their

neighboring nodes, who in turn infect their neighbors [56–59]. However, in many

network settings, small scale diffusion regularly emerges during normal periods from

normal behavior. Only a small number of large cascades occur, motivating the need

to distinguish large, meaningful branch formation from the smaller, common branches

formed during normal periods. Call detail records, which record calls between phone

users, provide the motivating example for this chapter. Call detail records have been

used to demonstrate the emergence of calling cascades after disruptive events [60–66].

However, as individuals make calls during normal periods as well, even when no event

has occurred, call branches also form during normal periods.

We introduce a test statistic to distinguish between abnormally large branches,

which we term cascades, and the common branches formed during normal periods.

Our test statistic compares observed branch size to expected branch size under the null

of normal periods. We define a semiparametric model of edge formation under the null.

This model allows us to derive the expected size and variance of branches under the

null using the machinery of branching processes [67–69]. The test statistic we introduce

is semiparametric, consistent, and asymptotically distributed standard normal under

the null. A formal statistic allows us to quantify the probability observed branches

were formed during normal periods. Therefore, a rejection of the null indicates the

observed branches are significantly large and correspond to cascades.

As an empirical application, we apply the test statistic to call detail records from

Yemen. Our test statistic allows us to 1) add inference and significance results to

observed branches, and 2) detect anomalous periods based on branch size. We find a

significant calling cascade occurred after the Presidential Palace was bombed in 2011.

The emergence of a cascade implies information regarding the bombing spread quickly

and deeply through the underlying social network. In addition, we identify three

periods with significantly large call branches originating in Sana’a, Yemen’s capital,
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during March 2011. The detected periods line up with key violent events during the

2011 Yemeni Revolution. Crucially, by adding inference to observed branch structures,

our test statistic provides significance and confidence levels to our empirical findings.

0.2.4 The social network effects of drone strikes

In the fourth chapter, we study the social network effects of drone strikes, focusing on

information and physical diffusion around strikes. Following the previous chapter, we

analyze the emergence of information cascades around localized events. Here, we focus

on the formation of calling cascades around drone strikes. Drone strikes have become

a fixture of modern warfare, yet their effects and effectiveness remain unclear. Despite

their prevalence, their covert nature and the often isolated nature of their targets have

made strikes difficult to study quantitatively. We utilize a large dataset of call detail

records to systematically study the reaction of civilians and communities to strikes.

We utilize a dataset of 12 billion call detail records (CDRs) to study the mobility

and communication response to 74 U.S. drone strikes in Yemen between 2010 and

2012. As societies are intrinsically networked systems, we focus on the dynamics of the

underlying social networks around these localized, violent events. Networks provide a

powerful framework to study social interactions and structure as well as disruptions

to the social fabric [2, 7, 25,70,71].

We find large calling cascades form after strikes, where branches of calls emanate

out from the strike region. Over 95% of strikes are followed by cascades, with roughly

one third exhibiting increased call volume through four levels of callers. Calling

cascades allow information regarding strikes to diffuse quickly and deeply through

the social network. Compared to non-strike periods, proximal individuals call their

frequent and geographically close contacts more frequently. The shifts in calling

patterns imply people call their friends, family, and neighbors after strikes. Notably,

socially central individuals are called twice as often and proceed to spark large calling

cascades. Our findings add evidence to the key role central individuals play in diffusing

information.

We also study the mobility response to strikes. Physical mobility increases 27% on
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strike days compared to the pre-strike mean and thousands of individuals flee their

hometowns. While some return home quickly, a large number relocate permanently,

highlighting a prolonged impact to communities. In addition, we find the social and

physical network of the population explains where people choose to flee.

Our findings demonstrate drone strikes have a disruptive and widespread impact

on civilian life. Furthermore, our results imply information, opinions, and emotions

regarding strikes spread quickly through the population. The widespread impact is

in contrast to the prevailing political and military position that strikes are surgical.

As we discuss in the chapter, the disruptive impact of strikes has ethical, legal, and

strategic implications.
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Chapter 1

Network Group Testing

Abstract

We consider the problem of identifying infected individuals in a population of size 𝑁
and introduce a group testing approach that uses significantly fewer than 𝑁 tests when
infection prevalence is low. The most common approach to group testing, Dorfman
testing, groups individuals randomly. However, as communicable diseases spread from
individual to individual through underlying social networks, our approach utilizes
network structure to improve performance. We prove that network grouping, which
groups individuals by community, weakly dominates Dorfman in terms of the expected
number of tests used. When tests are imperfect, network grouping weakly dominates
Dorfman in terms of the expected number of false positives and false negatives.
Network grouping’s outperformance is determined by the strength of community
structure in the network. When networks have strong community structure, network
grouping achieves the lower bound for two-stage testing procedures. Using social
network data from multiple sources, we apply network grouping to screen populations
for COVID-19. We demonstrate network grouping requires significantly fewer tests
than Dorfman and individual testing. In contrast to many proposed group testing
approaches, network grouping is simple for practitioners to implement. In practice,
individuals can be grouped by family unit or social group.

1.1 Introduction

Group testing significantly improves testing capabilities for infectious diseases when

resources are limited. The standard approach to identify infected individuals in a

population of size 𝑁 is to test all population members individually, which requires

𝑁 tests. Group testing, in its simplest form, pools individual samples together into
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groups of size 𝑛 for an initial stage of testing. If a group tests negative, all individuals

within the group are classified as negative for the disease. If a group tests positive, all

individual samples from the group are individually retested to identify the infected

members. To illustrate the power of group testing, consider the scenario where 𝑁 = 50

and one individual is infected. If individuals are pooled into groups of size 𝑛 = 10 for

an initial stage of testing, one group will test positive and all 10 samples from the

group will be retested. The group testing approach uses 15 tests compared to the 50

used under individual testing.

Group testing was introduced by [51] to screen for syphilis in the US military. Dorf-

man’s insight was simple but powerful. As a result, group testing has been employed

numerous times in the medical field for diseases including influenza, chlamydia, and

malaria [52,72,73]. Within the US, group testing is commonly used in blood banks

and infertility prevention programs, where large numbers of individuals are routinely

tested [53, 74–76]. Group testing’s efficient use of resources has made it a valuable

technique in developing areas. Notably, group testing was used during the early stages

of the HIV pandemic in Africa when polymerase chain reaction (PCR) test costs were

high [77,78]. By reducing testing costs and increasing access to diagnostic information,

group testing plays an important role in increasing health equity.

Under Dorfman’s approach, each individual’s infection probability is treated as

homogenous and individuals are placed into groups randomly, which is equivalent to

ignoring any information regarding an individual’s susceptibility to infection. However,

as communicable diseases spread from individual to individual through underlying

social networks, an individual’s network location affects their infection probability.

In this work, we utilize network information to pool individuals for group testing.

Specifically, we group individuals by community as infections are more likely to spread

between closely connected community members than between members of distinct

communities.

In order to analyze the performance of a network grouping strategy, we first

introduce a network model and epidemic model. We utilize a stochastic block model

to generate the networks under consideration and the first stage of a branching process
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epidemic model to generate infections. Our chosen models provide insight into the

behavior of network grouping. With generative models in hand, we derive the number

of tests used under network grouping. We prove the expected number of tests used

under network grouping is upper bounded by Dorfman testing, which implies network

grouping weakly dominates Dorfman. The outperformance of network grouping is

driven by the strength of community structure in the network. In networks with

strong community structure, network grouping achieves the lower bound for two-stage

testing procedures. In networks with no structure, network grouping is equivalent to

Dorfman testing.

Our analytical results demonstrate network grouping weakly dominates Dorfman

testing across all metrics. We prove the number of tests used under network grouping

is upper bounded by Dorfman even when imperfect community detection algorithms

are employed. In addition, we analyze the performance of network grouping under

imperfect tests, which can result in false positives and negatives. The expected number

of false positives under network grouping is upper bounded by Dorfman testing and

the expected number of false negatives under network grouping is equivalent to

Dorfman. Extending our analysis to general networks, we demonstrate network

grouping outperforms Dorfman on any network that has positive modularity.

As a first empirical application, we consider the scenario of a university testing its

student body for COVID-19. We use a social network dataset that captures physical

interactions between first-year students at the Technical University of Denmark. After

simulating epidemic processes on the network, we demonstrate network grouping

requires significantly fewer tests than Dorfman testing to screen the population. As a

second empirical example, we build a mobility network of the US and apply network

grouping to screen the population of the country for COVID-19. We use mobility

data provided by SafeGraph and epidemic data provided by the New York Times. We

apply network grouping and demonstrate it significantly outperforms Dorfman and

individual testing.

Our work reinforces the benefit of group testing for communicable diseases, which

is consequential for the current COVID-19 pandemic. Multiple labs have demonstrated
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the efficacy of group testing for detecting the SARS-CoV-2 virus and several countries

have implemented group testing to increase their testing capabilities [55,79–81]. In

the US, the authors’ work on group testing has been used by the [82] to inform and

implement group testing in schools and businesses [83]. As testing resources still

remain constrained, we hope more institutions and governments will take advantage

of the power of group testing [84,85].

Our work contributes to recent literature on group testing with heterogenous

probabilities and connects the fields of group testing and network science. Over the

past few years, researchers have begun utilizing heterogenous infection probabilities to

intelligently group individuals and further reduce the number of tests used under group

testing [53, 76, 86]. These papers employ covariate information for each individual,

such as demographics and clinical observations, to determine individuals with high

probability of infection. In contrast, our work derives heterogenous probabilities from

the underlying social network. Several previous papers have studied group testing

on network structures using an information-theoretic approach [87, 88]. Our work

takes an applied statistics approach, with the goal of providing practitioners with a

group testing approach that is powerful, straightforward to understand, and simple to

implement. Importantly, instead of viewing the underlying network as a constraint

on the group testing problem, we use the information provided by the network to

improve performance.

Since Dorfman’s work in 1943, numerous group testing approaches with strong

performance have been introduced [53, 76, 86–95]. However, the complexity of the

proposed methods have limited their adoption in the medical field. As a result,

Dorfman’s original method of two-stage testing, in which individuals are grouped

randomly for an initial stage of testing and samples from positive groups are then

retested, remains the most common approach to group testing in practice [52–55].

Importantly, network grouping is simple for practitioners to implement. In practice,

individuals should be grouped by family unit, social group, work group, or other

community structure. Our work demonstrates this simple approach can significantly

reduce the number of tests needed to keep populations healthy.

30



1.2 Setup

In this section, we describe Dorfman testing and the lower bound for two-stage group

testing. Under two-stage testing, a population of size 𝑁 is split into 𝑁/𝑛 groups of size

𝑛 for an initial round of testing. Let 𝐺 denote the number of positive groups after the

initial stage. In the second stage of testing, all 𝑛 samples from each positive group

are retested individually. In total, 𝑁/𝑛 + 𝑛𝐺 tests are used.

Under Dorfman testing, one individual is infected with probability one and the

remaining 𝑁 − 1 individuals are infected independently with probability 𝑣. Note,

in Dorfman’s paper, all 𝑁 individuals are infected independently with probability

𝑣; we deviate slightly from his setup to ensure at least one individual is infected.

The expected number of infected individuals is therefore E[𝐼𝐷] = 1 + (𝑁 − 1)𝑣. The

expected number of tests used under Dorfman testing is

E[𝑇𝐷] =
𝑁

𝑛
+ 𝑛

[︂
1 +

(︂
𝑁

𝑛
− 1

)︂
𝑣′
]︂

(1.1)

where 𝑣′ = 1 − (1 − 𝑣)𝑛. The derivation of E[𝑇𝐷] was provided by Dorfman and is

provided in supplement 1.19.1 for completeness. When the infection prevalence 𝑣

is low, Dorfman testing uses significantly fewer than 𝑁 tests in expectation. As an

example, consider the scenario where 𝑁 = 1000 and 𝑣 = 0.05 (5% infection prevalence).

If we employ Dorfman testing and a group size of 𝑛 = 10, only 507 tests are needed in

expectation to test the entire population, a reduction of nearly 50% compared to the

𝑁 = 1000 tests used under individual testing.

Given a population, a certain number of infected individuals, and a group size, the

minimum number of tests under two-stage group testing is achieved by minimizing

the number of positive groups 𝐺. 𝐺 is minimized by perfect grouping, in which all

infected individuals are pooled together into the minimum possible number of groups.

The lower bound for two-stage testing procedures when 1 + (𝑁 − 1)𝑣 individuals are

infected is

𝑇𝐿𝐵 =
𝑁

𝑛
+ 𝑛 · max

(︂
1,

1 + (𝑁 − 1)𝑣

𝑛

)︂
(1.2)
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The derivation is provided in 1.19.2. Revisiting our example, if 𝑁 = 1000, 𝑣 = 0.05,

and 𝑛 = 10, the minimum number of tests needed under two-stage group testing is

151. The lower bound is unattainable in most scenarios as we do not know which

samples are infected a priori.

1.3 Model

In this work, we consider the population of 𝑁 individuals to be embedded in a network,

where each individual corresponds to a node and their physical interactions correspond

to edges. In our framework, the network underlying the population is generated by

a stochastic block model (SBM). Specifically, we consider an SBM with 𝑁 nodes

split into 𝑁/𝑚 communities of size 𝑚. Within each community of 𝑚 nodes, edges

exist between nodes independently with probability 𝑝. Edges exist between nodes in

different communities independently with probability 𝑞, where 𝑞 ≤ 𝑝. As a result,

nodes are more likely to be connected to other nodes in the same community than to

nodes in other communities.

For our epidemic model, we consider the initial stage of a branching process model.

Specifically, an epidemic starts with a single infected seed node, which is chosen at

random from the population. The seed node infects each of its neighbors independently

with probability 𝛼. The seed node has 𝑚− 1 possible neighbors within its community,

each connected with probability 𝑝, and 𝑁 − 𝑚 possible neighbors outside of its

community, each connected with probability 𝑞. As a result, the expected number

of infected individuals under this model, which will we use for network grouping, is

E[𝐼𝑁𝐺] = 1 + (𝑚− 1)𝑝𝛼 + (𝑁 −𝑚)𝑞𝛼.

The epidemic model describes the initial stage of an outbreak or, alternatively, a

super-spreader event. We set 𝛼 such that the expected number of infected individuals

in the epidemic model is equal to the expected number of infected individuals in the

Dorfman setting. Setting E[𝐼𝑁𝐺] = E[𝐼𝐷] and solving for 𝛼 yields 𝛼 = (𝑁 − 1)𝑣/[(𝑚−
1)𝑝 + (𝑁 −𝑚)𝑞]. Figure 1-1a provides a visual example of an SBM and our epidemic

model. For the remainder of this work, we assume the following.
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Assumption 1. Assume 1 ≤ 𝑛 ≤ 𝑁 , 1 < 𝑚 < 𝑁 , 0 ≤ 𝑞 ≤ 𝑝 ≤ 1, and 𝑣 ∈ [0, 1]. In

addition, assume 𝛼 ∈ [0, 1] set such that E[𝐼𝑁𝐺] = E[𝐼𝐷].

Assumption 1 states that pool and community sizes are less than the population

size, and that the probability an edge exists between nodes in different communities

is less than or equal to the probability an edge exists between nodes in the same

community, which ensures the network has community structure as mentioned above.

The condition on 𝛼 ensures that the expected number of infected individuals in the

epidemic model is equal to the expected number of infected individuals in the Dorfman

setting, which allows us to compare the performance of network grouping to Dorfman

testing.

1.4 Results

In this section, we introduce our main results on network grouping and its performance

compared to Dorfman testing. Under network grouping, we group individuals by their

community. In the simplest case, if communities have the same size as groups, 𝑚 = 𝑛,

each community is pooled into a unique group. If community size is divisible by group

size, the 𝑚 community members are pooled into 𝑚/𝑛 groups. If group size is divisible

by community size, each group of size 𝑛 consists of 𝑛/𝑚 communities. For example,

if 𝑚 = 20 and 𝑛 = 10, each community is pooled into two groups and if 𝑚 = 5 and

𝑛 = 10, each group consists of two communities. When 𝑚 not divisible by 𝑛 and 𝑛

not divisible by 𝑚, we keep communities intact as much as possible and remainder

community members are pooled into the remaining groups.

The expected number of tests used under network grouping is

E[𝑇𝑁𝐺] =
𝑁

𝑛
+ 𝑛

[︂
1 +

(︁𝑚
𝑛

− 1
)︁+

𝑝′ +

(︂
𝑁

𝑛
− 1 −

(︁𝑚
𝑛

− 1
)︁+)︂

𝑞′
]︂

(1.3)

where 𝑝′ = 1−(1−𝑝𝛼)𝑛, 𝑞′ = 1−(1−𝑞𝛼)𝑛, and (𝑥)+ = max(𝑥, 0). The full distribution

of the number of tests is provided in appendix 1.6.1 and derived in 1.19.3. The CDF

and variance of the number of tests, which are useful for constructing confidence
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intervals, are also provided in 1.6.1.

1.4.1 Performance of network grouping

With the number of tests used under network grouping, Dorfman testing, and the

lower bound derived, we come to the main result of our work. The expected number

of tests under network grouping is upper bounded by Dorfman testing and lower

bounded by the two-stage testing lower bound.

Theorem 1. Under the conditions of assumption 1, E[𝑇𝑁𝐺] is increasing in 𝑞 and

𝑇𝐿𝐵 ≤ E[𝑇𝑁𝐺] ≤ E[𝑇𝐷] (1.4)

Proofs for this subsection are in 1.19.4 and 1.19.5. Theorem 1 states network

grouping weakly dominates Dorfman testing in terms of the expected number of tests

used. The performance of network grouping is determined by 𝑞, the probability an

edge exists between nodes in different communities. When networks have strong

community structure, network grouping significantly outperforms Dorfman testing.

In fact, there are cases where network grouping achieves the lower bound, as seen in

corollary 1.

Corollary 1. Under the conditions of assumption 1, if 𝑞 = 0 and 𝑛 ≥ 𝑚,

E[𝑇𝑁𝐺] = 𝑇𝐿𝐵 (1.5)

Corollary 1 states there are cases where network grouping performs optimally.

When 𝑞 = 0, communities are disconnected from each other and all infected individuals

will reside within the same community. When 𝑛 ≥ 𝑚, each group is large enough to

capture each entire community and, as a result, all infected individuals will be grouped

together. However, there are also scenarios where network grouping is equivalent to

Dorfman testing, notably when 𝑞 = 𝑝 as seen in corollary 2.
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Corollary 2. Under the conditions of assumption 1, if 𝑞 = 𝑝,

E[𝑇𝑁𝐺] = E[𝑇𝐷] (1.6)

Corollary 2 states network grouping is equivalent to Dorfman testing when the

underlying network has no community structure. The reason is simple: since the

network has no communities, all nodes have the same probability of being infected and

the network provides no useful information for grouping. The corollary demonstrates

Dorfman testing is a special case of network grouping that arises when the social

network has no structure.

When 0 < 𝑞 < 𝑝, which is the setting one expects in practice, network grouping

can significantly outperform Dorfman testing. Consider the scenario of a university

testing its population for COVID-19 cases. Using MIT as our example, MIT has

roughly 𝑁 = 5000 undergraduates living in dorms of around 𝑚 = 400 students.

Assuming students within the same dorm are exposed to each other while students

across dorms are rarely allowed to interact due to social distancing restrictions, we

set 𝑝 = 0.8 and 𝑞 = 0.02. We set 𝑣 = 0.05, which is in line with COVID infection

prevalence in the US estimated by the COVID Tracking Project and [96]. Figure

1-1b displays the expected number of tests needed to test MIT’s population under

network grouping, Dorfman testing, and the two-stage lower bound as a function of

group size. In this context, network grouping simply groups students by dorm. While

Dorfman testing significantly improves upon individual testing, which uses 𝑁 = 5000

tests, network grouping significantly improves upon Dorfman testing. When 𝑛 = 10,

network grouping uses only 1429 tests in expectation, a 43% reduction compared to

Dorfman testing, which uses 2512 tests.

1.4.2 Imperfect community detection

Our previous results assume perfect community detection, where the precise community

of each individual is known. In practice, the community structure of a real-world

network may not be known a priori. In some cases, there may be natural communities
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Figure 1-1: (a) Example of an SBM and our epidemic model with 𝑁 = 100, 𝑚 = 10,
𝑝 = 0.99, 𝑞 = 0.01, and 𝑣 = 0.05. The infected seed node is colored red and its infected
neighbors are colored orange. The community structure present in SBMs is clearly
visible. (b) Comparison of network grouping, Dorfman testing, and the two-stage
lower bound as a function of group size. The figure displays the expected number of
tests used to test a population of size 𝑁 = 5000 where 𝑚 = 400, 𝑝 = 0.8, 𝑞 = 0.02,
and 𝑣 = 0.05. The shaded regions are 95% confidence intervals.
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to consider, such as dorms, family units, or friend groups. In other cases, a community

detection algorithm can be used to identify the underlying communities.

When precise community structure is not known, grouping individuals by commu-

nity will rely on imperfect community detection methods. Let 𝜆 ∈ [0, 1] denote the

imperfection of the employed detection method. When 𝜆 = 0, community detection

is perfect and we group individuals by their precise community, as in the previous

subsection. When 𝜆 = 1, community detection is completely imperfect, meaning

individuals are assigned to communities, and therefore to groups, uniformly at random.

Any employed community detection method, such as heuristic grouping by family unit

or systematic grouping by an algorithm like modularity maximization, will correspond

to a 𝜆 between these two extremes.

In other words, 𝜆 captures the performance of the employed community detection

method by measuring its error rate. When 𝜆 = 0, the community detection method

has no error and perfectly detects the true communities of the network. When 𝜆 = 1,

the community detection method has maximum error and is equivalent to randomly

assigning nodes to communities. As above, any employed community detection method

will perform between these two extremes and will correspond to a 𝜆 between 0 and 1.

The expected number of tests used under network grouping and imperfect com-

munity detection, E[𝑇 𝜆
𝑁𝐺], is provided in 1.6.2 and derived in 1.19.6. The expected

number of tests, E[𝑇 𝜆
𝑁𝐺], is upper bounded by Dorfman testing and lower bounded by

network group testing under perfect community detection.

Theorem 2. Under the conditions of assumption 1 and imperfect community detection

with 𝜆 ∈ [0, 1], E[𝑇 𝜆
𝑁𝐺] is increasing in 𝜆 and

E[𝑇𝑁𝐺] ≤ E[𝑇 𝜆
𝑁𝐺] ≤ E[𝑇𝐷] (1.7)

If 𝜆 = 0, then E[𝑇 𝜆
𝑁𝐺] = E[𝑇𝑁𝐺] and if 𝜆 = 1, then E[𝑇 𝜆

𝑁𝐺] = E[𝑇𝐷].

The proof of theorem 2 is in 1.19.7. Importantly, theorem 2 states network grouping

under imperfect community detection still weakly dominates Dorfman testing in terms

of the expected number of tests used. The expected number of tests used is increasing

37



in the imperfection of the community detection method, 𝜆. When 𝜆 = 0, community

detection is perfect and E[𝑇 𝜆
𝑁𝐺] simplifies to our previous network grouping result.

When 𝜆 = 1, community detection is completely imperfect, individuals are not grouped

based on network information, and network grouping is equivalent to Dorfman testing.

Interestingly, the theorem implies we recover Dorfman testing as a special case of

network grouping when network information is not used to group individuals.

1.4.3 Imperfect tests

Imperfect tests are a major consideration in the medical field when testing for infectious

diseases. False negatives miss infected individuals who may spread the infection further.

False positives result in undue stress and unnecessary quarantines. In this subsection,

we analyze the performance of network grouping under imperfect tests in terms of the

number of tests used, false negatives, and false positives.

The performance of a diagnostic test is measured by two parameters: sensitivity

and specificity. The sensitivity of a test is the fraction of infected individuals who

correctly test positive. Therefore, sensitivity equals one minus the false negative rate.

The specificity of a test is the fraction of non-infected individuals who correctly test

negative. Therefore, specificity equals one minus the false positive rate. Relating

the medical terms to statistical terminology, sensitivity is the power of the test and

specificity is one minus the size of the test.

In our analysis, we allow the sensitivity and specificity of tests to differ between

the first stage and second stage of testing in group testing procedures. This allows

practitioners to use different tests for the first stage, when groups are tested, and the

second stage, when individual samples are tested. We denote first-stage sensitivity

as 𝑠𝑒1,𝑛, second-stage sensitivity as 𝑠𝑒2 , first-stage specificity as 𝑠𝑝1 , and second-stage

specificity as 𝑠𝑝2 . We explicitly allow first-stage sensitivity, 𝑠𝑒1,𝑛, to depend on the

group size 𝑛, since pooling samples dilutes the viral load of an infected sample and

can therefore reduce test sensitivity. We leave 𝑠𝑒1,𝑛, 𝑠𝑒2 , 𝑠𝑝1 , and 𝑠𝑝2 as exogenous

parameters for medical practitioners to input.

Under perfect tests, 𝑠𝑒1,𝑛, 𝑠𝑒2 , 𝑠𝑝1 , and 𝑠𝑝2 all equal 1, which results in no false
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negatives or false positives. Under completely imperfect tests, 𝑠𝑒1,𝑛, 𝑠𝑒2 , 𝑠𝑝1 , and 𝑠𝑝2 all

equal 0.5, which corresponds to tests marking samples positive or negative completely

at random. Therefore, we include the following assumption in our analysis.

Assumption 2. Assume 𝑠𝑒1,𝑛, 𝑠𝑒2, 𝑠𝑝1, and 𝑠𝑝2 are all ∈ [0.5, 1].

The expected number of tests, false positives, and false negatives under individual

testing, Dorfman testing, the two-stage lower bound, and network grouping are

provided in 1.6.3 and derived in 1.19.8–1.19.11. Under imperfect tests, the expected

number of tests used under group testing changes since infected groups may incorrectly

test negative and non-infected groups may incorrectly test positive. However, theorem

1 and corollaries 1 and 2 still hold under imperfect tests. Under imperfect tests, the

expected number of tests used under network grouping is upper bounded by Dorfman

testing and lower bounded by the two-stage lower bound. We formally state and prove

this result in 1.19.12.

Under imperfect tests, the expected number of false positives under network

grouping is upper bounded by the expected number under Dorfman testing, which in

turn is upper bounded by the expected number under individual testing.

Theorem 3. Under the conditions of assumptions 1 and 2 and imperfect tests,

E[𝐹𝑃𝑁𝐺] ≤ E[𝐹𝑃𝐷] ≤ E[𝐹𝑃𝐼 ] (1.8)

Both E[𝐹𝑃𝑁𝐺] and E[𝐹𝑃𝐷] are increasing in 𝑛. In addition, E[𝐹𝑃𝑁𝐺] is increasing

in 𝑞 and when 𝑞 = 𝑝, E[𝐹𝑃𝑁𝐺] = E[𝐹𝑃𝐷].

The proof of theorem 3 is in 1.19.13. Theorem 3 states network grouping weakly

dominates Dorfman testing and individual testing in terms of the expected number

of false positives. Two-stage group testing approaches outperform individual testing

since individuals are tested twice, making it less probable for a non-infected individual

to test positive. Network grouping outperforms Dorfman testing since intelligent

grouping results in fewer groups testing positive in the first stage. As a result, fewer

individuals are tested in the second stage, which reduces the number of possible false
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positives. The theorem also states false positives under both of the group testing

approaches are increasing in 𝑛. As group size increases, the number of individuals who

are tested in the second stage increases, increasing the opportunity for false positives.

Lastly, the expected number of false positives under network grouping is increasing

in 𝑞. When 𝑞 = 𝑝, the network has no community structure and provides no useful

information for network grouping. As a result, network grouping performs identically

to Dorfman testing.

Under imperfect tests, the expected number of false negatives under network

grouping is equal to the expected number under Dorfman testing and lower bounded

by the expected number under individual testing.

Theorem 4. Under the conditions of assumptions 1 and 2 and imperfect tests,

E[𝐹𝑁𝐼 ] ≤ E[𝐹𝑁𝑁𝐺] = E[𝐹𝑁𝐷] (1.9)

The proof of theorem 4 is in 1.19.14. Theorem 4 states network grouping performs

identically to Dorfman testing in terms of false negatives. Both of the two-stage group

testing approaches underperform individual testing. The reasoning is simple: for an

infected individual to test positive under a two-stage approach, they must correctly

test positive twice, once in the first stage as part of a group and again in the second

stage individually. As a result, infected individuals have a greater chance of being

missed under two-stage group testing than under individual testing.

Recall our example of MIT screening its undergraduate population of 𝑁 = 5000 for

COVID-19. Under imperfect tests, the different testing approaches result in varying

numbers of false positives and false negatives. For this example, we set first and

second-stage specificity and second-stage sensitivity to 0.95. First-stage sensitivity

for 𝑛 = 1, 𝑠𝑒1,𝑛=1, is set to 0.95 and decreases linearly to 𝑠𝑒1,𝑛=30 = 0.90 at 𝑛 = 30.

Figure 1-2a displays the expected number of false positives after testing the population

using network grouping, Dorfman testing, and individual testing. Network grouping

significantly outperforms the other two approaches. Using a group size of 𝑛 = 10,

network grouping produces only 42 false positives in expectation compared to 90
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false positives under Dorfman testing and 237 under individual testing. In line with

theorem 3, the number of false positives under the group testing approaches increases

with group size.

Figure 1-2b displays the expected number of false negatives after testing MIT’s

population. As stated in theorem 4, the number of false negatives under network

grouping equals the number under Dorfman testing. Both group testing approaches

underperform individual testing. The number of false negatives increases with group

size under network grouping and Dorfman testing as first-stage sensitivity 𝑠𝑒1,𝑛 de-

creases with 𝑛. Using tests with higher sensitivity or repeat testing of the population

can reduce the number of false negatives under group testing. Since group testing often

uses significantly fewer tests than individual testing, both approaches are economical

in many scenarios.

1.4.4 Application to a university social network

In this subsection, we apply network grouping to the scenario of a university testing

its population for COVID-19 using social network data collected from a Danish

university. In 2013, researchers distributed smartphones to first-year students at the

Technical University of Denmark as part of the Copenhagen Networks Study [11]. The

smartphones recorded physical interactions between students using Bluetooth. The

dataset, which was published in 2019, is an ideal application for our methodology

because it provides the social network of a university population where edges correspond

to physical interactions. Using the dataset, we build the student social network,

simulate an epidemic process, apply network grouping, and compare its performance

to Dorfman testing.

We build the social network using one day’s worth of Bluetooth interactions. After

taking the largest connected component, the network has 310 nodes, which correspond

to students, and 1503 edges, which correspond to their interactions. As we are dealing

with a real-world network, we must identify the communities using a community

detection algorithm. We use the Louvain method for community detection due to its

popularity and strong performance [97]. The Louvain method is a heuristic approach
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Figure 1-2: (a) Comparison of false positives under network grouping, Dorfman
testing, and individual testing as a function of group size. The figure displays the
expected number of false positives after testing a population of size 𝑁 = 5000 where
𝑚 = 400, 𝑝 = 0.8, 𝑞 = 0.02, 𝑣 = 0.05, and 𝑠𝑝1 = 𝑠𝑝2 = 𝑠𝑒2 = 0.95. First-stage
sensitivity for 𝑛 = 1, 𝑠𝑒1,𝑛=1, equals 0.95 and decreases linearly to 𝑠𝑒1,𝑛=30 = 0.90 at
𝑛 = 30. (b) Comparison of false negatives under network grouping, Dorfman testing,
and individual testing as a function of group size. The figure displays the expected
number of false negatives after testing a population with the same parameters as in
figure 1-2a.
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that aims to maximize the modularity of the resulting partition, which measures the

density of edges within communities. Applying the Louvain method to our network

results in 11 communities with an average size of 28 individuals.

The social network with nodes colored by their community is displayed in figure

1-3a. The network contains highly-connected communities that are weakly connected

to other communities, such as the community in the upper left of the figure, as well

as a few communities that are well connected to each other. We estimate 𝑝, the

probability an edge exists between two nodes within the same community, as the

number of edges that exist within communities divided by the total possible number

of edges within communities. Similarly, we estimate 𝑞, the probability an edge exists

between two nodes in different communities, as the number of edges that exist between

communities divided by the total possible number of edges between communities. The

resulting estimates are 𝑝 = 0.18 and 𝑞 = 0.01, indicating a sparse graph with strong

community structure.

In order to analyze the performance of group testing, we simulate an epidemic

process using the branching process model outlined in section 1.3. We set 𝛼, the

probability of infection passing, to 0.95, which results in an estimated infection

prevalence of 0.03. For each group size 𝑛, we run 1000 epidemic simulations, apply

network grouping and Dorfman testing, and record the number of tests used under each

approach. Network grouping groups individuals based on their detected communities

while Dorfman testing groups individuals randomly. Figure 1-3b displays the average

number of tests used as a function of group size. Network grouping strongly outperforms

Dorfman testing. When 𝑛 = 10, Dorfman testing uses 112 tests on average while

network grouping uses 75 tests to screen the population of 310 students, a reduction

of 33%. In addition, figure 1-3b demonstrates our analytical result for the number of

tests used under network grouping, provided in equation 1.3, is a strong approximation

for the number of tests used in a real network setting, even though the underlying

network is not a stochastic block model.
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Figure 1-3: (a) Social network of student interactions from the Technical University
of Denmark. Nodes correspond to first-year students at the university and edges
correspond to their physical interactions, recorded using Bluetooth-enabled smart-
phones. Nodes are colored by their community affiliation, which is determined using
the Louvain algorithm. (b) Comparison of testing approaches applied to the Danish
university social network. The figure displays the average number of tests used to
screen the population of 𝑁 = 310 as a function of group size.
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1.4.5 Application to a mobility network of the United States

In this subsection, we build a network of the United States (US) and apply network

grouping to screen the population of the country for COVID-19. We use data provided

by SafeGraph to build a mobility network where nodes correspond to counties and edges

correspond to mobility between locations, measured using mobile devices. We then use

COVID data from the New York Times to capture the spread of the pandemic through

the country. By building a county-level network, we are able to use real epidemic

spread data for our analysis. Finally, we apply two network grouping approaches to

the data and compare their performance to Dorfman testing and individual testing.

To begin, we build a mobility network using data provided by [98]. SafeGraph is

a data provider that specializes in location and mobility data derived from mobile

phone usage. Using their data, we build a network of the US where nodes correspond

to counties and edges correspond to mobility between locations. Specifically, in our

analysis, an edge exists between two nodes if more than 50 individuals traveled between

the locations on March 2, 2020, the first Monday of the month. The resulting network

has 2858 nodes and 14,473 edges. Similar to the previous subsection, we use the

Louvain method to detect communities in the network. Applying the method to our

network results in 18 communities with an average size of 159 nodes.

The mobility network with nodes colored by their community and positioned

according to their geographical location is displayed in figure 1-4a. The outline of the

US is clear from the network, even though no country borders are drawn. In addition,

the Louvain method, which has no information about the geographical locations of

the nodes, produces communities of nodes that are geographically clustered. Different

communities in the network clearly correspond to different regions of the country.

Similar to the previous subsection, we estimate 𝑝, the probability an edge exists

between two nodes within the same community, and 𝑞, the probability an edge exists

between two nodes in different communities. The resulting estimates are 𝑝 = 0.04 and

𝑞 = 0.0006, indicating a very sparse graph with strong community structure.

Instead of simulating an epidemic process on the network, we use real data from
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Figure 1-4: (a) Mobility network of the US where nodes correspond to counties and
edges correspond to mobility between them, measured using mobile phones. Nodes are
colored by their community affiliation, which is determined using the Louvain algorithm.
(b) Mobility network of the US where nodes are colored red if the corresponding
county had active COVID cases as of March 11, 2020. (c) Comparison of testing
approaches applied to the mobility network. The figure displays the number of tests
needed to screen the US population as a function of group size.
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the COVID-19 pandemic. Using data provided by the [99], we record the number of

active COVID cases in each county as of March 11, 2020, the day the [100] declared

the COVID outbreak a pandemic. By March 11, 2020, 203 counties in the US had

active cases, and infection prevalence in the population was around 6.8% [96]. Figure

1-4b displays the mobility network with infected counties colored red. By mid-March,

the virus had spread to several areas of the country. Importantly, we see infections are

localized in a few counties that are clustered together, which validates our modeling

approach that models an infection as spreading from node to node through the network.

We apply two forms of network grouping to screen the entire US population of

330,000,000 individuals. We first group individuals by their community, as detected

by the Louvain algorithm. Specifically, groups in the first stage of testing contain

only individuals from the same community. For our second approach to group testing,

we group individuals by their county, meaning groups in the first stage contain only

individuals from the same county. The two approaches use different resolutions of

network structure to form groups. We compare these two network grouping approaches

to Dorfman testing, which groups individuals randomly.

Figure 1-4c displays the number of tests needed to screen the US population as

a function of group size for the different approaches. Under individual testing, we

need 𝑁 = 330, 000, 000 tests to screen the population. Dorfman testing significantly

improves upon individual testing, requiring 40% fewer tests when group size equals

10. Both network grouping approaches strongly outperform individual testing and

Dorfman testing. When 𝑛 = 10, network grouping by community uses 51% fewer

tests than individual testing and 18% fewer tests than Dorfman. Network grouping by

county uses 75% fewer tests than individual testing and 58% fewer tests than Dorfman.

Network grouping by county performs strongly and approaches the lower bound for

two-stage testing procedures. The approach performs well because infections are

localized in a few counties, so grouping by county results in only a few positive groups.

This example uses real epidemic data to demonstrate the power of group testing,

and network grouping specifically, for screening large populations. Reducing the

number of tests needed to screen a population by 75% compared to the status quo
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of individual testing results in significant cost and time savings. Fewer nasal swabs,

reagents, PCR machines, medical professionals, and other resources are needed, making

large-scale testing a viable option and a powerful tool to combat the pandemic. In

addition, network grouping is intuitive and simple to implement. At the country level,

the intuition is obvious: individuals should be grouped with nearby individuals. In

this work, we have demonstrated this intuition holds for social networks for any size.

1.4.6 Extension to general networks

Our analysis uses a stochastic block model (SBM) to generate the networks under

consideration. The SBM transparently models community structure and provides

insight into the behavior of network grouping. However, as seen in our empirical

example, SBMs are only an approximation for the structure of real-world networks.

Using SBMs, we have proven network grouping outperforms Dorfman testing under

the assumption 𝑞 < 𝑝, the probability edges exist between communities is less than

the probability edges exist within communities. The 𝑞 < 𝑝 condition guarantees the

network has community structure. When 𝑞 = 𝑝, the network has no community

structure and network grouping is equivalent to Dorfman testing. Extending our

analysis to general networks, we derive a condition on network structure that guarantees

network grouping outperforms Dorfman testing.

The expected number of tests used under network grouping for general networks,

E[𝑇 *
𝑁𝐺], is provided in 1.6.4 and derived in 1.19.15. To ensure network grouping

outperforms Dorfman, we provide a condition based on the modularity of the network.

Modularity is a core metric in network science that measures the extent of community

structure in a network [101,102]. Given a community partition, modularity records

the observed fraction of edges within communities minus the expected fraction of

edges within communities. As a result, networks with no community structure have

modularities near zero. Networks with community structure have positive modularities

and networks with inverse community structure have negative modularity. Networks

with inverse community structure have more edges between communities than within

communities. The definition of modularity is provided below and is derived in 1.19.16.
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Definition 1. Given a community partition, the modularity 𝑄 of a network is

𝑄 =
|𝑖𝑛𝑡|
|𝐸| − 𝑚− 1

𝑁 − 1
(1.10)

where |𝑖𝑛𝑡| is the number of edges within communities, |𝐸| is the number of edges in

the network, 𝑚 is the average community size, and 𝑁 is the number of nodes.

We provide a lower bound on modularity that ensures network grouping outperforms

Dorfman testing on a general network.

Theorem 5. If

𝑄 ≥ 1 − 𝑚− 1

𝑁 − 1
− 𝑁(𝑁 −𝑚)

2|𝐸|
log
(︁

1 − |𝐸|
𝑁(𝑁−1)/2

𝛼
)︁

log(1 − 𝛼)
(1.11)

then E[𝑇 *
𝑁𝐺] ≤ E[𝑇𝐷]. As 𝛼 → 0, the condition in equation 1.11 goes to 𝑄 ≥ 0.

The proof of theorem 5 is in 1.19.17. Theorem 5 states if a general network has

strong community structure, then network grouping will use less tests than Dorfman

in expectation. The condition simplifies nicely as 𝛼, the probability of infection

passing, goes to zero. As 𝛼 → 0, the condition simplifies to 𝑄 ≥ 0. If the general

network has community structure (measured by positive modularity), network grouping

outperforms Dorfman testing.

Theorem 5 reinforces the main idea behind network group testing: when the

underlying network has community structure, the structure can be used to intelligently

group individuals, and network grouping will outperform the random grouping of

Dorfman testing.

1.5 Conclusions

In this work, we have introduced the idea of using network information to improve group

testing. Since communicable diseases spread from individual to individual through

underlying social networks, grouping individuals by community can significantly reduce
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the number of tests needed to screen a population. We demonstrate network grouping

weakly dominates Dorfman testing, the most common group testing approach, in terms

of the number of tests used, false positives, and false negatives. The outperformance of

network grouping transparently depends on the strength of community structure in the

network. We also establish a link between modularity, a core network science metric,

and the outperformance of network group testing. Importantly, network grouping

is simple to implement in practice, which is in contrast to many proposed group

testing approaches. Practitioners can group individuals by family unit, friend group,

office group, or other community structure. Our work aims to improve and increase

diagnostic and surveillance testing, which are key methods for mitigating pandemics

and advancing public health.

This work opens several fruitful areas for future research. Future work can analyze

the performance of network grouping under different network structures, epidemic

models, and community detection algorithms. In this paper, we implement network

grouping by grouping individuals by community. Future research can utilize other

network information and group individuals by clique, cluster, centrality, or some other

network characteristic. In addition, covariate information, such as an individual’s

demographics and clinical results, can supplement and enhance network grouping. The

network grouping approach can also be applied to one-stage group testing algorithms,

which may produce fewer false negatives. Finally, network grouping can be applied to

non-medical settings as in [103], such as communication networks, cybersecurity, and

compressed sensing.
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1.6 Appendix

1.6.1 Distribution of network grouping

The distribution of the number of tests used under network grouping is

𝑇𝑁𝐺 ∼ 𝑁

𝑛
+ 𝑛

[︂
1 + 𝐵𝑖𝑛

(︂(︁𝑚
𝑛

− 1
)︁+

, 𝑝′
)︂

+ 𝐵𝑖𝑛

(︂
𝑁

𝑛
− 1 −

(︁𝑚
𝑛

− 1
)︁+

, 𝑞′
)︂]︂

(1.12)

where 𝑝′ = 1 − (1 − 𝑝𝛼)𝑛 and 𝑞′ = 1 − (1 − 𝑞𝛼)𝑛. The equations in this subsection are

derived in 1.19.3. The variance of 𝑇𝑁𝐺 is

Var(𝑇𝑁𝐺) = 𝑛2
(︁𝑚
𝑛

− 1
)︁+

𝑝′(1 − 𝑝′) + 𝑛2

(︂
𝑁

𝑛
− 1 −

(︁𝑚
𝑛

− 1
)︁+)︂

𝑞′(1 − 𝑞′) (1.13)

where 𝑝′ = 1− (1− 𝑝𝛼)𝑛 and 𝑞′ = 1− (1− 𝑞𝛼)𝑛. The CDF of 𝑇𝑁𝐺, which is useful for

constructing confidence intervals and quantiles, is

P(𝑇𝑁𝐺 ≤ 𝑧) =

⌊𝑘⌋∑︁

𝑥=0

𝑥∑︁

𝑦=0

[︃(︂
(𝑚/𝑛 − 1)+

𝑦

)︂
(𝑝′)𝑦(1 − 𝑝′)(

𝑚/𝑛−1)+−𝑦

·
(︂

𝑁/𝑛 − 1 − (𝑚/𝑛 − 1)+

𝑥− 𝑦

)︂
(𝑞′)𝑥−𝑦(1 − 𝑞′)

𝑁/𝑛−1−(𝑚/𝑛−1)+−(𝑥−𝑦)

]︃

(1.14)

where 𝑘 = 𝑧/𝑛 − 𝑁/𝑛2 − 1, 𝑝′ = 1 − (1 − 𝑝𝛼)𝑛, and 𝑞′ = 1 − (1 − 𝑞𝛼)𝑛.

1.6.2 Imperfect community detection

The expected number of tests used under network grouping and imperfect community

detection is

E[𝑇 𝜆
𝑁𝐺] =

𝑁

𝑛
+ 𝑛

[︂
1 +

(︁𝑚
𝑛

− 1
)︁+

𝑝′𝜆 +

(︂
𝑁

𝑛
− 1 −

(︁𝑚
𝑛

− 1
)︁+)︂

𝑞′𝜆

]︂
(1.15)

𝑝′𝜆 = 1 −
[︂
(1 − 𝜆)(1 − 𝑝𝛼) + 𝜆

(︂
𝑚− 1

𝑁 − 1
(1 − 𝑝𝛼) +

𝑁 −𝑚

𝑁 − 1
(1 − 𝑞𝛼)

)︂]︂𝑛

𝑞′𝜆 = 1 −
[︂
(1 − 𝜆)(1 − 𝑞𝛼) + 𝜆

(︂
𝑚− 1

𝑁 − 1
(1 − 𝑝𝛼) +

𝑁 −𝑚

𝑁 − 1
(1 − 𝑞𝛼)

)︂]︂𝑛
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where (𝑥)+ = max(𝑥, 0). The derivation of equation 1.15 is provided in 1.19.6.

1.6.3 Imperfect tests

Individual testing, Dorfman testing, and the two-stage lower bound Indi-

vidual testing uses 𝑁 tests to screen a population of size 𝑁 . The expected number of

false negatives and false positives under individual testing, 𝐹𝑁𝐼 and 𝐹𝑃𝐼 , are given

below.

E[𝐹𝑁𝐼 ] = (1 + (𝑁 − 1)𝑣)(1 − 𝑠𝑒2) (1.16)

E[𝐹𝑃𝐼 ] = (𝑁 − 1)(1 − 𝑣)(1 − 𝑠𝑝2) (1.17)

The derivations of equations 1.16 and 1.17 are in 1.19.8.

The expected number of tests used under Dorfman testing and imperfect tests is

E[𝑇𝐷] =
𝑁

𝑛
+ 𝑛

[︂
𝑠𝑒1,𝑛 +

(︂
𝑁

𝑛
− 1

)︂
𝑣′𝑛

]︂
(1.18)

where 𝑣′𝑛 = 𝑠𝑒1,𝑛(1 − (1 − 𝑣)𝑛) + (1 − 𝑠𝑝1)(1 − 𝑣)𝑛. The derivation of Dorfman testing

results under imperfect tests is in 1.19.9. The expected number of false negatives and

false positives under Dorfman testing and imperfect tests are

E[𝐹𝑁𝐷] = (1 + (𝑁 − 1)𝑣)(1 − 𝑠𝑒1,𝑛𝑠𝑒2) (1.19)

E[𝐹𝑃𝐷] = (𝑛− 1)(1 − 𝑣)(1 − 𝑠𝑝2)𝑠𝑒1,𝑛 + (𝑁 − 𝑛)(1 − 𝑣)(1 − 𝑠𝑝2)𝑣
′
𝑛−1 (1.20)

where 𝑣′𝑛−1 = 𝑠𝑒1,𝑛(1 − (1 − 𝑣)𝑛−1) + (1 − 𝑠𝑝1)(1 − 𝑣)𝑛−1.

The two-stage group testing lower bound under imperfect tests is

E[𝑇𝐿𝐵] =
𝑁

𝑛
+ 𝑛

[︂
𝑠𝑒1,𝑛 · max

(︂
1,

1 + (𝑁 − 1)𝑣

𝑛

)︂

+ (1 − 𝑠𝑝1)

(︂
𝑁

𝑛
− max

(︂
1,

1 + (𝑁 − 1)𝑣

𝑛

)︂)︂]︂
(1.21)

The derivation of equation 1.21 is in 1.19.10.
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Network grouping The expected number of tests used under network grouping

and imperfect tests is

E[𝑇𝑁𝐺] =
𝑁

𝑛
+ 𝑛

[︂
𝑠𝑒1,𝑛 +

(︁𝑚
𝑛

− 1
)︁+

𝑝′𝑛 +

(︂
𝑁

𝑛
− 1 −

(︁𝑚
𝑛

− 1
)︁+)︂

𝑞′𝑛

]︂
(1.22)

𝑝′𝑛 = 𝑠𝑒1,𝑛(1 − (1 − 𝑝𝛼)𝑛) + (1 − 𝑠𝑝1)(1 − 𝑝𝛼)𝑛

𝑞′𝑛 = 𝑠𝑒1,𝑛(1 − (1 − 𝑞𝛼)𝑛) + (1 − 𝑠𝑝1)(1 − 𝑞𝛼)𝑛

where (𝑥)+ = max(𝑥, 0). The derivation of network grouping results under imperfect

tests is in 1.19.11. We note E[𝑇𝑁𝐺] under imperfect tests can be either higher or lower

than E[𝑇𝑁𝐺] under perfect tests, depending on 𝑠𝑒1,𝑛 and 𝑠𝑝1 .

The expected number of false negatives under network grouping is

E[𝐹𝑁𝑁𝐺] = (1 + (𝑚− 1)𝑝𝛼 + (𝑁 −𝑚)𝑞𝛼)(1 − 𝑠𝑒1,𝑛𝑠𝑒2) (1.23)

The expected number of false positives under network grouping is

E[𝐹𝑃𝑁𝐺] = (min(𝑛,𝑚) − 1)(1 − 𝑝𝛼)(1 − 𝑠𝑝2)𝑠𝑒1,𝑛 +

(𝑛− min(𝑛,𝑚))(1 − 𝑞𝛼)(1 − 𝑠𝑝2)𝑠𝑒1,𝑛 +

(𝑚− 𝑛)+(1 − 𝑝𝛼)(1 − 𝑠𝑝2)𝑝
′
𝑛−1 +

(𝑁 − max(𝑛,𝑚))(1 − 𝑞𝛼)(1 − 𝑠𝑝2)𝑞
′
𝑛−1 (1.24)

𝑝′𝑛−1 = 𝑠𝑒1,𝑛(1 − (1 − 𝑝𝛼)𝑛−1) + (1 − 𝑠𝑝1)(1 − 𝑝𝛼)𝑛−1

𝑞′𝑛−1 = 𝑠𝑒1,𝑛(1 − (1 − 𝑞𝛼)𝑛−1) + (1 − 𝑠𝑝1)(1 − 𝑞𝛼)𝑛−1

where (𝑥)+ = max(𝑥, 0). Note, under our notation for 𝑝′𝑛−1 and 𝑞′𝑛−1, the sensitivity

𝑠𝑒1,𝑛 depends on the original group size 𝑛.

The overall sensitivity of network grouping, 𝑠𝑒𝑁𝐺
, is one minus the overall false

negative rate. Likewise, the overall specificity of network grouping, 𝑠𝑝𝑁𝐺
, is one minus

the overall false positive rate. Therefore,

𝑠𝑒𝑁𝐺
= 1 − E[𝐹𝑁𝑁𝐺]

E[𝐼𝑁𝐺]
(1.25)

53



𝑠𝑝𝑁𝐺
= 1 − E[𝐹𝑃𝑁𝐺]

𝑁 − E[𝐼𝑁𝐺]
(1.26)

where E[𝐼𝑁𝐺] = 1 + (𝑚− 1)𝑝𝛼 + (𝑁 −𝑚)𝑞𝛼.

1.6.4 Extension to general networks

The expected number of tests used under network grouping for general networks is

E[𝑇 *
𝑁𝐺] =

𝑁

𝑛
+ 𝑛

⎡
⎣1 +

1

𝑁

∑︁

𝑖∈𝒩

∑︁

𝑔∈𝒢∖𝑔𝑖

(1 − (1 − 𝛼)𝑛𝑔,𝑖)

⎤
⎦ (1.27)

where 𝒩 is the set of nodes, 𝒢 is the set of groups, 𝑔𝑖 is the group that contains node

𝑖, and 𝑛𝑔,𝑖 is the number of nodes in group 𝑔 connected to node 𝑖. The derivation

of equation 1.27 is provided in 1.19.15. Note, given a network, the computation of

E[𝑇 *
𝑁𝐺] does not rely on any unknown information.
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1.19 Supplementary materials

1.19.1 Derivation of Dorfman testing

Under Dorfman testing, a population of size 𝑁 is split into 𝑁/𝑛 groups of size 𝑛

for an initial round of testing. Let 𝐺 denote the number of positive groups after

the initial round. In the second round of testing, all 𝑛 samples from each positive

group are retested individually. In total, 𝑁/𝑛 + 𝑛𝐺 tests are used. 𝐺 is a random

variable. Of the 𝑁/𝑛 groups, one is positive with probability one as there is at least

one infected individual. The remaining 𝑁/𝑛− 1 groups are positive independently with

some probability 𝑣′. As a result, 𝐺 is distributed 1 + 𝐵𝑖𝑛(𝑁/𝑛 − 1, 𝑣′).

The probability 𝑣′ is derived as follows. Each of the remaining 𝑁 − 𝑛 individuals

(that are not in the first group) are infected with probability 𝑣 and not infected with

probability 1 − 𝑣. The probability that all 𝑛 individuals in a group are not infected is

(1 − 𝑣)𝑛. The probability that at least one individual in the group is infected, and

therefore the group tests positive, is 𝑣′ = 1 − (1 − 𝑣)𝑛. Putting everything together,

the number of tests used under Dorfman testing is distributed

𝑇𝐷 ∼ 𝑁

𝑛
+ 𝑛

[︂
1 + 𝐵𝑖𝑛

(︂
𝑁

𝑛
− 1, 𝑣′

)︂]︂
(1.28)

Taking the expectation of 𝑇𝐷 provides E[𝑇𝐷] as displayed in equation 1.1.

1.19.2 Derivation of the two-stage lower bound

Under two-stage group testing, a population of size 𝑁 is split into 𝑁/𝑛 groups of size

𝑛 for an initial round of testing. Let 𝐺 denote the number of positive groups after

the initial round. In the second round of testing, all 𝑛 samples from each positive

group are retested individually. In total, 𝑁/𝑛 + 𝑛𝐺 tests are used. Given a population,

a certain number of infected individuals, and a group size, the minimum number of

tests is achieved by minimizing the number of positive groups 𝐺. 𝐺 is minimized

by perfect grouping, in which all infected individuals are pooled together into the

minimum possible number of groups.
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When 1 + (𝑁 − 1)𝑣 individuals are infected, the minimum number of positive

groups of size 𝑛 is [1 + (𝑁 − 1)𝑣]/𝑛. For example, if 20 individuals are infected and

𝑛 = 10, the minimum number of positive groups is two. When the number of infected

individuals is less than or equal to 𝑛, the minimum number of positive groups will be

one. Note, there is always at least one infected individual in our framework. Putting

everything together, the lower bound for the number of tests needed under two-stage

group testing is

𝑇𝐿𝐵 =
𝑁

𝑛
+ 𝑛 · max

(︂
1,

1 + (𝑁 − 1)𝑣

𝑛

)︂
(1.29)

1.19.3 Derivation of network grouping

Under two-stage group testing, a population of size 𝑁 is split into 𝑁/𝑛 groups of size

𝑛 for an initial round of testing. Let 𝐺 denote the number of positive groups after the

initial round. In the second round of testing, all 𝑛 samples from each positive group

are retested individually. In total, 𝑁/𝑛 + 𝑛𝐺 tests are used. 𝐺 is a random variable.

The network contains 𝑁/𝑚 communities of size 𝑚. We consider cases where 𝑛

divisible by 𝑚 or 𝑚 divisible by 𝑛. We consider cases where 𝑛 not divisible by 𝑚 and

𝑚 not divisible by 𝑛 in 1.19.18. First consider the case where 𝑚 ≤ 𝑛. Since we group

individuals by community (as described at the beginning of section 1.4), the infected

seed node and its 𝑚 − 1 community members will be contained in the same group.

This group will be positive with probability one. The remaining 𝑁/𝑛 − 1 groups each

contain 𝑛 nodes that belong to different communities than the seed node. As a result,

each node in the remaining 𝑁/𝑛 − 1 groups is not infected with probability 1 − 𝑞𝛼,

as they are only infected if they are both connected to the seed, with probability 𝑞,

and infected by the seed, with probability 𝛼. The probability all 𝑛 nodes within a

group are not infected is (1 − 𝑞𝛼)𝑛. The probability that at least one individual in

a group is infected, and therefore the group tests positive, is 𝑞′ = 1 − (1 − 𝑞𝛼)𝑛. In

summary, the remaining 𝑁/𝑛 − 1 groups are positive independently with probability

𝑞′. Putting everything together, the distribution of the number of tests used under
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network grouping when 𝑚 ≤ 𝑛 is

𝑇𝑁𝐺 ∼ 𝑁

𝑛
+ 𝑛

[︂
1 + 𝐵𝑖𝑛

(︂
𝑁

𝑛
− 1, 𝑞′

)︂]︂
(1.30)

where 𝑞′ = 1 − (1 − 𝑞𝛼)𝑛.

Now consider the case where 𝑚 > 𝑛. As we group individuals by community, there

will be one group that contains the infected seed node and 𝑛 − 1 of its community

members. This group will be positive with probability one. The remaining 𝑚 − 𝑛

nodes from the seed node’s community will be pooled into (𝑚− 𝑛)/𝑛 = 𝑚/𝑛 − 1 other

groups. Each node in these groups will be infected with probability 1−𝑝𝛼, as they are

only infected if they are both connected to the seed, with probability 𝑝, and infected

by the seed, with probability 𝛼. Following the same logic as the 𝑚 ≤ 𝑛 case, each of

these 𝑚/𝑛 − 1 groups is positive independently with probability 𝑝′ = 1 − (1 − 𝑝𝛼)𝑛.

After accounting for the infected seed’s group and the other 𝑚/𝑛− 1 groups, 𝑁/𝑛− 𝑚/𝑛

groups still remain. Each of the 𝑛 nodes in these groups are members of different

communities than the seed node. Therefore, each of the 𝑁/𝑛 − 𝑚/𝑛 groups is positive

independently with probability 𝑞′ = 1 − (1 − 𝑞𝛼)𝑛. Putting everything together, the

distribution of the number of tests used under network grouping when 𝑚 > 𝑛 is

𝑇𝑁𝐺 ∼ 𝑁

𝑛
+ 𝑛

[︂
1 + 𝐵𝑖𝑛

(︁𝑚
𝑛

− 1, 𝑝′
)︁

+ 𝐵𝑖𝑛

(︂
𝑁

𝑛
− 𝑚

𝑛
, 𝑞′
)︂]︂

(1.31)

where 𝑝′ = 1 − (1 − 𝑝𝛼)𝑛 and 𝑞′ = 1 − (1 − 𝑞𝛼)𝑛.

The two cases, 𝑚 ≤ 𝑛 and 𝑚 > 𝑛, can be easily combined. Defining (𝑥)+ =

max(𝑥, 0), we have (𝑚/𝑛 − 1)+ = 0 when 𝑚 ≤ 𝑛. Therefore, we can write the

distribution of the number of tests used under network grouping in the general case as

𝑇𝑁𝐺 ∼ 𝑁

𝑛
+ 𝑛

[︂
1 + 𝐵𝑖𝑛

(︂(︁𝑚
𝑛

− 1
)︁+

, 𝑝′
)︂

+ 𝐵𝑖𝑛

(︂
𝑁

𝑛
− 1 −

(︁𝑚
𝑛

− 1
)︁+

, 𝑞′
)︂]︂

(1.32)

where 𝑝′ = 1 − (1 − 𝑝𝛼)𝑛 and 𝑞′ = 1 − (1 − 𝑞𝛼)𝑛. Taking the expectation of 𝑇𝑁𝐺 in

equation 1.32 provides E[𝑇𝑁𝐺] as displayed in equation 1.3.
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Variance and CDF of network grouping The distribution of the number of

tests used under network grouping is the convolution (sum) of independent binomial

distributions. The variance of the distribution is straightforward to derive as the

variance of a sum of independent random variables is the sum of the variances. The

variance of 𝑇𝑁𝐺 is therefore

Var(𝑇𝑁𝐺) = 𝑛2
(︁𝑚
𝑛

− 1
)︁+

𝑝′(1 − 𝑝′) + 𝑛2

(︂
𝑁

𝑛
− 1 −

(︁𝑚
𝑛

− 1
)︁+)︂

𝑞′(1 − 𝑞′) (1.33)

where 𝑝′ = 1 − (1 − 𝑝𝛼)𝑛 and 𝑞′ = 1 − (1 − 𝑞𝛼)𝑛.

The CDF of 𝑇𝑁𝐺, which is useful for constructing confidence intervals and quantiles,

also follows from equation 1.32. The CDF is shown below, followed by its derivation.

P(𝑇𝑁𝐺 ≤ 𝑧) =

⌊𝑘⌋∑︁

𝑥=0

𝑥∑︁

𝑦=0

[︃(︂
(𝑚/𝑛 − 1)+

𝑦

)︂
(𝑝′)𝑦(1 − 𝑝′)(

𝑚/𝑛−1)+−𝑦

·
(︂

𝑁/𝑛 − 1 − (𝑚/𝑛 − 1)+

𝑥− 𝑦

)︂
(𝑞′)𝑥−𝑦(1 − 𝑞′)

𝑁/𝑛−1−(𝑚/𝑛−1+)−(𝑥−𝑦)

]︃

(1.34)

where 𝑘 = 𝑧/𝑛 − 𝑁/𝑛2 − 1, 𝑝′ = 1 − (1 − 𝑝𝛼)𝑛, and 𝑞′ = 1 − (1 − 𝑞𝛼)𝑛.

To derive equation 1.34 from equation 1.32, we note

P (𝑇𝑁𝐺 ≤ 𝑧) = P (𝐵𝑖𝑛(𝑔1, 𝑝
′) + 𝐵𝑖𝑛(𝑔2, 𝑞

′) ≤ 𝑧/𝑛 − 𝑁/𝑛2 − 1) (1.35)

where 𝑔1 = (𝑚/𝑛 − 1)+ and 𝑔2 = 𝑁/𝑛 − 1 − (𝑚/𝑛 − 1)+. We define 𝑘 = 𝑧/𝑛 − 𝑁/𝑛2 − 1.

Note, 𝐵𝑖𝑛(𝑔1, 𝑝
′) and 𝐵𝑖𝑛(𝑔2, 𝑞

′) are independent binomials. Their sum equals some

value 𝑥 if one equals 𝑦 ≤ 𝑥 and the other equals 𝑥− 𝑦. The probability their sum is

less than or equal to some value 𝑘 is the sum of probabilities that their sum equals all

values from 0 to 𝑘. As a result,

P (𝐵𝑖𝑛(𝑔1, 𝑝
′) + 𝐵𝑖𝑛(𝑔2, 𝑞

′) ≤ 𝑘) =

⌊𝑘⌋∑︁

𝑥=0

𝑥∑︁

𝑦=0

P (𝐵𝑖𝑛(𝑔1, 𝑝
′) = 𝑦) · P (𝐵𝑖𝑛(𝑔2, 𝑞

′) = 𝑥− 𝑦)

(1.36)
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Plugging in the standard binomial PMFs provides the CDF of 𝑇𝑁𝐺 as shown in

equation 1.34.

1.19.4 Proof of theorem 1

Upper bound To prove E[𝑇𝑁𝐺] ≤ E[𝑇𝐷], we prove E[𝑇𝑁𝐺] is increasing in 𝑞 under

assumption 1 and equals E[𝑇𝐷] when 𝑞 is set to its maximum value under assumption

1, 𝑞 = 𝑝. This also proves corollary 2. To prove E[𝑇𝑁𝐺] is increasing in 𝑞, we consider

the cases where 𝑚 > 𝑛 and 𝑚 ≤ 𝑛 separately.

Case 1: We first consider the case where 𝑚 > 𝑛. When 𝑚 > 𝑛, E[𝑇𝑁𝐺] is given by

E[𝑇𝑁𝐺] =
𝑁

𝑛
+ 𝑛

[︂
1 +

(︁𝑚
𝑛

− 1
)︁
𝑝′ +

(︂
𝑁

𝑛
− 𝑚

𝑛

)︂
𝑞′
]︂

(1.37)

where 𝑝′ = 1 − (1 − 𝑝𝛼)𝑛 and 𝑞′ = 1 − (1 − 𝑞𝛼)𝑛. Under assumption 1,

𝛼 = (𝑁 − 1)𝑣/[(𝑚− 1)𝑝 + (𝑁 −𝑚)𝑞]. Taking the derivative of equation 1.37 with

respect to 𝑞 and simplifying yields

𝜕 E[𝑇𝑁𝐺]

𝜕𝑞
=

𝑛𝑣(𝑁 − 1)(𝑁 −𝑚)
[︀
𝑝(𝑚− 1) (1 − 𝑞𝛼)𝑛−1 − 𝑝(𝑚− 𝑛) (1 − 𝑝𝛼)𝑛−1]︀

[(𝑚− 1)𝑝 + (𝑁 −𝑚)𝑞]2

(1.38)

Demonstrating equation 1.38 is nonnegative proves equation 1.37 is increasing in 𝑞.

The denominator is nonnegative due to the square and 𝑛, 𝑣, 𝑁 − 1, and 𝑁 −𝑚 are

nonnegative by assumption 1. Examining the bracket term in the numerator, we note

𝑝(𝑚− 1) ≥ 𝑝(𝑚− 𝑛) as 𝑛 ≥ 1 and (1 − 𝑞𝛼)𝑛−1 ≥ (1 − 𝑝𝛼)𝑛−1 as 𝑝 ≥ 𝑞. Note, both

1 − 𝑞𝛼 and 1 − 𝑝𝛼 are probabilities between 0 and 1 as 𝑝 and 𝛼 are between 0 and

1. As a result, the bracket term is nonnegative and the entirety of equation 1.38 is

nonnegative.

Case 2: We now consider the case where 𝑚 ≤ 𝑛. When 𝑚 ≤ 𝑛, E[𝑇𝑁𝐺] is given by

E[𝑇𝑁𝐺] =
𝑁

𝑛
+ 𝑛

[︂
1 +

(︂
𝑁

𝑛
− 1

)︂
𝑞′
]︂

(1.39)

where 𝑞′ = 1 − (1 − 𝑞𝛼)𝑛. Again, 𝛼 = (𝑁 − 1)𝑣/[(𝑚− 1)𝑝 + (𝑁 −𝑚)𝑞]. Taking the
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derivative of equation 1.39 with respect to 𝑞 and simplifying yields

𝜕 E[𝑇𝑁𝐺]

𝜕𝑞
=

𝑛𝑣𝑝(𝑁 − 1)(𝑁 − 𝑛)(𝑚− 1) (1 − 𝑞𝛼)𝑛

[(𝑚− 1)𝑝 + (𝑁 −𝑚)𝑞] [(𝑚− 1)𝑝 + (𝑁 −𝑚)𝑞 + 𝑞(1 −𝑁)𝑣]
(1.40)

All terms in the numerator and the first bracket term in the denominator are nonneg-

ative by assumption 1. The second bracket term in the denominator is nonnegative

if

(𝑚− 1)𝑝 + (𝑁 −𝑚)𝑞 + 𝑞(1 −𝑁)𝑣 ≥ 0 (1.41)

Rearranging equation 1.41 yields

𝑞(𝑁 − 1)𝑣

(𝑚− 1)𝑝 + (𝑁 −𝑚)𝑞
≤ 1 (1.42)

𝑞𝛼 ≤ 1 (1.43)

which is true by assumption 1. As a result, equation 1.40 is nonnegative and equation

1.39 is increasing in 𝑞.

Final step: We have shown E[𝑇𝑁𝐺] is increasing in 𝑞 for 𝑚 > 𝑛 and 𝑚 ≤ 𝑛.

Setting 𝑞 to its maximum value under assumption 1, 𝑞 = 𝑝, we have 𝑝′ = 𝑞′ as

1 − (1 − 𝑝𝛼)𝑛 = 1 − (1 − 𝑞𝛼)𝑛. In addition, 𝛼 simplifies to 𝑣/𝑝 and 𝑝𝛼 = 𝑣. Therefore,

𝑝′ = 𝑞′ = 𝑣′ where 𝑣′ = 1 − (1 − 𝑣)𝑛. E[𝑇𝑁𝐺] in the general case simplifies to

E[𝑇𝑁𝐺] =
𝑁

𝑛
+ 𝑛

[︂
1 +

(︁𝑚
𝑛

− 1
)︁+

𝑝′ +

(︂
𝑁

𝑛
− 1 −

(︁𝑚
𝑛

− 1
)︁+)︂

𝑞′
]︂

(1.44)

=
𝑁

𝑛
+ 𝑛

[︂
1 +

(︂
𝑁

𝑛
− 1

)︂
𝑣′
]︂

(1.45)

and we have E[𝑇𝑁𝐺] = E[𝑇𝐷], completing the upper bound portion of the proof.

Lower bound To prove E[𝑇𝑁𝐺] ≥ 𝑇𝐿𝐵, we prove E[𝑇𝑁𝐺] − 𝑇𝐿𝐵 ≥ 0 for the three

cases of 1) group size larger than (or equal to) the expected number of infected

individuals, 𝑛 ≥ 1+(𝑁 −1)𝑣, 2) group size less than infected individuals and less than

community size, 𝑛 < 1 + (𝑁 − 1)𝑣 and 𝑛 < 𝑚, and 3) group size less than infected
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individuals and greater than (or equal to) community size, 𝑛 < 1 + (𝑁 − 1)𝑣 and

𝑛 ≥ 𝑚.

Case 1: When group size is larger than or equal to the expected number of infected

individuals, 𝑛 ≥ 1 + (𝑁 − 1)𝑣, the lower bound in equation 1.2 simplifies to 𝑁/𝑛 + 𝑛.

Therefore,

E[𝑇𝑁𝐺] − 𝑇𝐿𝐵 = 𝑛
(︁𝑚
𝑛

− 1
)︁+

𝑝′ + 𝑛

(︂
𝑁

𝑛
− 1 −

(︁𝑚
𝑛

− 1
)︁+)︂

𝑞′ (1.46)

where 𝑝′ = 1 − (1 − 𝑝𝛼)𝑛 and 𝑞′ = 1 − (1 − 𝑞𝛼)𝑛. By assumption 1, 𝑛 ≥ 1 and both 𝑝′

and 𝑞′ are probabilities between 0 and 1, as 1 − 𝑝𝛼 and 1 − 𝑞𝛼 are between 0 and 1.

In addition, the term (𝑁/𝑛− 1 − (𝑚/𝑛− 1)+) is nonnegative as 𝑁 ≥ 𝑛 and 𝑁 > 𝑚. As

a result, the entirety of equation 1.46 is nonnegative.

Case 2: When group size is smaller than the expected number of infected individuals

and community size, 𝑛 < 1 + (𝑁 − 1)𝑣 and 𝑛 < 𝑚, we can write the lower bound 𝑇𝐿𝐵

as

𝑇𝐿𝐵 =
𝑁

𝑛
+ 1 + (𝑁 − 1)𝑣 (1.47)

=
𝑁

𝑛
+ 1 + (𝑚− 1)𝑝𝛼 + (𝑁 −𝑚)𝑞𝛼 (1.48)

=
𝑁

𝑛
+ 𝑛 + (𝑚− 1)(1 − (1 − 𝑝𝛼)) + (𝑁 −𝑚)(1 − (1 − 𝑞𝛼)) − (𝑛− 1) (1.49)

where the second equality makes use of the 𝐸[𝐼𝐷] = 𝐸[𝐼𝑁𝐺] equivalence specified in

assumption 1. Equation 1.49 is a slight rearrangement of equation 1.48. As 𝑛 < 𝑚,

E[𝑇𝑁𝐺] becomes

E[𝑇𝑁𝐺] =
𝑁

𝑛
+ 𝑛 + (𝑚− 𝑛)𝑝′ + (𝑁 −𝑚)𝑞′ (1.50)

=
𝑁

𝑛
+ 𝑛 + (𝑚− 1)𝑝′ + (𝑁 −𝑚)𝑞′ − (𝑛− 1)𝑝′ (1.51)
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Subtracting equation 1.49 from equation 1.51 yields

E[𝑇𝑁𝐺] − 𝑇𝐿𝐵 =

(𝑚− 1)[𝑝′ − (1 − (1 − 𝑝𝛼))] + (𝑁 −𝑚)[𝑞′ − (1 − (1 − 𝑞𝛼))] + (𝑛− 1)(1 − 𝑝′)

(1.52)

By assumption 1, we have 𝑚 > 1, 𝑁 > 𝑚, and 𝑛 ≥ 1. In addition, 1 ≥ 𝑝′ as 𝑝′ =

1− (1−𝑝𝛼)𝑛 is a probability between 0 and 1. Lastly, 𝑝′ = 1− (1−𝑝𝛼)𝑛 ≥ 1− (1−𝑝𝛼)

as (1 − 𝑝𝛼)𝑛 ≤ (1 − 𝑝𝛼). Similarly, 𝑞′ = 1 − (1 − 𝑞𝛼)𝑛 ≥ 1 − (1 − 𝑞𝛼). As a result,

E[𝑇𝑁𝐺] − 𝑇𝐿𝐵 is nonnegative.

Case 3: We consider the case where group size is smaller than the expected number

of infected individuals but larger than (or equal to) community size, 𝑛 < 1 + (𝑁 − 1)𝑣

and 𝑛 ≥ 𝑚. Using equation 1.48 and the inequality 𝑚 ≥ 1 + (𝑚− 1)𝑝𝛼, we have the

following inequality for the lower bound 𝑇𝐿𝐵.

𝑇𝐿𝐵 =
𝑁

𝑛
+ 1 + (𝑚− 1)𝑝𝛼 + (𝑁 −𝑚)𝑞𝛼 (1.53)

≤ 𝑁

𝑛
+ 𝑚 + (𝑁 −𝑚)𝑞𝛼 (1.54)

=
𝑁

𝑛
+ 𝑛 + (𝑁 −𝑚)(1 − (1 − 𝑞𝛼)) − (𝑛−𝑚) (1.55)

Since 𝑛 ≥ 𝑚, E[𝑇𝑁𝐺] becomes

E[𝑇𝑁𝐺] =
𝑁

𝑛
+ 𝑛 + (𝑁 − 𝑛) 𝑞′ (1.56)

=
𝑁

𝑛
+ 𝑛 + (𝑁 −𝑚) 𝑞′ − (𝑛−𝑚)𝑞′ (1.57)

Subtracting equation 1.55 from equation 1.57 yields

E[𝑇𝑁𝐺] − 𝑇𝐿𝐵 ≥ (𝑁 −𝑚)[𝑞′ − (1 − (1 − 𝑞𝛼))] + (𝑛−𝑚)(1 − 𝑞′) (1.58)

By assumption, 𝑁 > 𝑚 and 𝑛 ≥ 𝑚. In addition, 1 ≥ 𝑞′ as 𝑞′ is a probability between

0 and 1. Lastly, 𝑞′ = 1 − (1 − 𝑞𝛼)𝑛 ≥ 1 − (1 − 𝑞𝛼) as (1 − 𝑞𝛼)𝑛 ≤ (1 − 𝑞𝛼). As a
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result, the difference E[𝑇𝑁𝐺] − 𝑇𝐿𝐵 is nonnegative.

We have proven E[𝑇𝑁𝐺] − 𝑇𝐿𝐵 ≥ 0 for the three cases under consideration, com-

pleting the lower bound portion of the proof and completing the proof of theorem

1.

1.19.5 Proof of corollary 1 and 2

Corollary 1 follows directly from the definition of E[𝑇𝑁𝐺]. When 𝑞 = 0, we have

𝑞′ = 1 − (1 − 𝑞𝛼)𝑛 = 0. When 𝑛 ≥ 𝑚 and 𝑞′ = 0, E[𝑇𝑁𝐺] simplifies to

E[𝑇𝑁𝐺] =
𝑁

𝑛
+ 𝑛 (1.59)

By assumption 1, 𝛼 = (𝑁 − 1)𝑣/[(𝑚− 1)𝑝 + (𝑁 −𝑚)𝑞] ≤ 1. When 𝑞 = 0, we have

(𝑁 − 1)𝑣/[(𝑚− 1)𝑝] ≤ 1, which implies 𝑣 ≤ (𝑚− 1)𝑝/(𝑁 − 1). Recall the number of

infected individuals is 1 + (𝑁 − 1)𝑣. We now have 1 + (𝑁 − 1)𝑣 ≤ 1 + (𝑚− 1)𝑝 and

1 + (𝑚− 1)𝑝 ≤ 𝑚 as 𝑝 ≤ 1. Since 𝑚 ≤ 𝑛, we have 1 + (𝑁 − 1)𝑣 ≤ 𝑛. Therefore, the

lower bound 𝑇𝐿𝐵 is

𝑇𝐿𝐵 =
𝑁

𝑛
+ 𝑛 (1.60)

and E[𝑇𝑁𝐺] = 𝑇𝐿𝐵, completing the proof.

Note, the assumption 𝛼 ≤ 1 in assumption 1 sets an upper bound for the infection

prevalence 𝑣 as 𝛼 is a function of 𝑣. However, this is not restrictive as group testing is

employed in cases when 𝑣 is low.

Corollary 2 is proved during the proof of theorem 1. See the upper bound portion

of the proof in 1.19.4.

1.19.6 Derivation of imperfect community detection

Under two-stage testing procedures, a population of size 𝑁 is pooled into 𝑁/𝑛 groups

of size 𝑛 for the initial stage of testing. As described in 1.19.3, the 𝑁/𝑛 groups under

network grouping can be split into three categories under perfect community detection:
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1) one group that contains the infected seed individual, 2) (𝑚/𝑛 − 1)+ groups that

contain individuals from the same community as the infected seed, and 3) the remaining

𝑁/𝑛 − 1 − (𝑚/𝑛 − 1)+ groups that contain individuals from different communities than

the infected seed.

Under imperfect community detection, individuals from communities other than

the infected seed’s may be incorrectly placed in the (𝑚/𝑛 − 1)+ groups and individuals

from the same community as the infected seed may be incorrectly placed in the

𝑁/𝑛 − 1 − (𝑚/𝑛 − 1)+ groups. As a result, the probabilities the (𝑚/𝑛 − 1)+ groups

and the 𝑁/𝑛 − 1 − (𝑚/𝑛 − 1)+ groups test positive change under imperfect community

detection.

Under perfect community detection, the (𝑚/𝑛 − 1)+ groups each contain 𝑛 individ-

uals that are each not infected with probability 1 − 𝑝𝛼. Under completely imperfect

community detection, individuals are placed into groups uniformly at random. There

are 𝑚− 1 out of 𝑁 − 1 individuals in the population from the same community as the

infected seed and each is not infected with probability 1 − 𝑝𝛼. In addition, there are

𝑁 −𝑚 out of 𝑁 − 1 individuals from different communities than the infected seed and

each is not infected with probability 1 − 𝑞𝛼. As a result, when an individual is chosen

uniformly at random from the population and placed into a group, the probability the

individual is not infected is (𝑚−1/𝑁−1)(1 − 𝑝𝛼) + (𝑁−𝑚/𝑁−1)(1 − 𝑞𝛼).

The parameter 𝜆 ∈ [0, 1] records the imperfection of the community detection

algorithm used. Perfect community detection corresponds to 𝜆 = 0 and completely

imperfect community detection, under which individuals are grouped uniformly at

random, corresponds to 𝜆 = 1. Therefore, the probability an individual in the

(𝑚/𝑛 − 1)+ groups is not infected can be written as

(1 − 𝜆)(1 − 𝑝𝛼) + 𝜆

(︂
𝑚− 1

𝑁 − 1
(1 − 𝑝𝛼) +

𝑁 −𝑚

𝑁 − 1
(1 − 𝑞𝛼)

)︂
(1.61)

In words, the probability an individual in a group is not infected is the convex combina-

tion of their probability under perfect community detection and their probability under

completely imperfect community detection. When 𝜆 = 0, equation 1.61 simplifies
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to 1 − 𝑝𝛼, the probability of non-infection under perfect community detection, and

when 𝜆 = 1, equation 1.61 simplifies to (𝑚−1/𝑁−1)(1 − 𝑝𝛼) + (𝑁−𝑚/𝑁−1)(1 − 𝑞𝛼), the

probability of non-infection under completely imperfect community detection. As

a result, for the (𝑚/𝑛 − 1)+ groups, the probability that at least one individual in a

group of size 𝑛 is infected, and therefore the group tests positive, is

𝑝′𝜆 = 1 −
[︂
(1 − 𝜆)(1 − 𝑝𝛼) + 𝜆

(︂
𝑚− 1

𝑁 − 1
(1 − 𝑝𝛼) +

𝑁 −𝑚

𝑁 − 1
(1 − 𝑞𝛼)

)︂]︂𝑛
(1.62)

Under perfect community detection, the 𝑁/𝑛 − 1 − (𝑚/𝑛 − 1)+ groups each contain

𝑛 individuals that are each not infected with probability 1 − 𝑞𝛼. The probability each

group has at least one infected individual and therefore tests positive under imperfect

community detection, which we denote 𝑞′𝜆, is derived identically to 𝑝′𝜆.

Putting everything together, under imperfect community detection, 𝑁/𝑛 groups

are tested in the first stage. In the second stage, 𝑛𝐺 samples are tested where

𝐺 denotes the number of positive groups from the first stage. Of the 𝑁/𝑛 groups,

one will be positive with probability one as it contains the infected seed, (𝑚/𝑛 − 1)+

groups will be positive independently with probability 𝑝′𝜆 as described above, and the

remaining 𝑁/𝑛− 1 − (𝑚/𝑛 − 1)+ groups will be positive independently with probability

𝑞′𝜆. Therefore, the expected number of tests used under network grouping and imperfect

community detection is as given in equation 1.15.

1.19.7 Proof of theorem 2

To prove E[𝑇 𝜆
𝑁𝐺] ≤ E[𝑇𝐷] under imperfect community detection, we prove E[𝑇 𝜆

𝑁𝐺] is

increasing in 𝜆 under assumption 1 and equals E[𝑇𝐷] when 𝜆 is set to its maximum

value of 1. To prove E[𝑇 𝜆
𝑁𝐺] is increasing in 𝜆, we consider the cases where 𝑚 ≤ 𝑛

and 𝑚 > 𝑛 separately.
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Case 1: We first consider the case where 𝑚 ≤ 𝑛. When 𝑚 ≤ 𝑛, E[𝑇 𝜆
𝑁𝐺] under

imperfect community detection is given by

E[𝑇 𝜆
𝑁𝐺] =

𝑁

𝑛
+ 𝑛

[︂
1 +

(︂
𝑁

𝑛
− 1

)︂
𝑞′𝜆

]︂
(1.63)

𝑞′𝜆 = 1 −
[︂
(1 − 𝜆)(1 − 𝑞𝛼) + 𝜆

(︂
𝑚− 1

𝑁 − 1
(1 − 𝑝𝛼) +

𝑁 −𝑚

𝑁 − 1
(1 − 𝑞𝛼)

)︂]︂𝑛
(1.64)

Taking the derivative of equation 1.63 with respect to 𝜆 and simplifying yields

𝜕 E[𝑇 𝜆
𝑁𝐺]

𝜕𝜆
=

𝑛𝛼(𝑁 − 𝑛)(𝑚− 1)(𝑝− 𝑞)

𝑁 − 1

(︂
𝜆(1 − 𝑝𝛼)(𝑚− 1) + (1 − 𝑞𝛼)(𝑁 − 1 − 𝜆(𝑚− 1))

𝑁 − 1

)︂𝑛−1

(1.65)

The terms 𝑛, 𝛼, 𝑁 − 𝑛, 𝑚− 1, 𝑝− 𝑞, 𝑁 − 1, 𝜆, 1− 𝑝𝛼, and 1− 𝑞𝛼 are all nonnegative

by assumption 1 and the assumption 𝜆 ∈ [0, 1]. To show the remaining term 𝑁 −
1 − 𝜆(𝑚− 1) is nonnegative, we note it is decreasing in 𝜆. Therefore, setting 𝜆 = 1

lower bounds the term by 𝑁 −𝑚, which is positive. Therefore, the remaining term is

nonnegative, equation 1.65 is nonnegative, and equation 1.63 is increasing in 𝜆.

Case 2: We now consider the case where 𝑚 > 𝑛. When 𝑚 > 𝑛, E[𝑇 𝜆
𝑁𝐺] under

imperfect community detection is given by

E[𝑇 𝜆
𝑁𝐺] =

𝑁

𝑛
+ 𝑛

[︂
1 +

(︁𝑚
𝑛

− 1
)︁
𝑝′𝜆 +

(︂
𝑁

𝑛
− 𝑚

𝑛

)︂
𝑞′𝜆

]︂
(1.66)

𝑝′𝜆 = 1 −
[︂
(1 − 𝜆)(1 − 𝑝𝛼) + 𝜆

(︂
𝑚− 1

𝑁 − 1
(1 − 𝑝𝛼) +

𝑁 −𝑚

𝑁 − 1
(1 − 𝑞𝛼)

)︂]︂𝑛
(1.67)

𝑞′𝜆 = 1 −
[︂
(1 − 𝜆)(1 − 𝑞𝛼) + 𝜆

(︂
𝑚− 1

𝑁 − 1
(1 − 𝑝𝛼) +

𝑁 −𝑚

𝑁 − 1
(1 − 𝑞𝛼)

)︂]︂𝑛
(1.68)

Taking the derivative of equation 1.66 with respect to 𝜆 and simplifying yields

𝜕 E[𝑇 𝜆
𝑁𝐺]

𝜕𝜆
=

𝑛𝛼(𝑁 −𝑚)(𝑝− 𝑞)

𝑁 − 1

[︃
(𝑚− 1)

(︂
(1 − 𝑞𝛼)(𝑁 − 1) − 𝜆𝛼(𝑚− 1)(𝑝− 𝑞)

𝑁 − 1

)︂𝑛−1

− (𝑚− 𝑛)

(︂
(1 − 𝑝𝛼)(𝑁 − 1) + 𝜆𝛼(𝑁 −𝑚)(𝑝− 𝑞)

𝑁 − 1

)︂𝑛−1
]︃

(1.69)
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All terms in the leading factor before the bracket are nonnegative by assumption

1. Within the bracket, we note 𝑚 − 1 ≥ 𝑚 − 𝑛. Therefore, we only have to show

the first numerator, (1 − 𝑞𝛼)(𝑁 − 1) − 𝜆𝛼(𝑚− 1)(𝑝− 𝑞), is larger than the second

numerator, (1− 𝑝𝛼)(𝑁 − 1) +𝜆𝛼(𝑁 −𝑚)(𝑝− 𝑞), to prove the entire bracketed term is

nonnegative. To do so, we first note the difference of the numerator terms is decreasing

in 𝜆, which can be seen by taking the derivative of the difference with respect to 𝜆.

Taking the derivative and simplifying yields −𝛼(𝑁 − 1)(𝑝− 𝑞), which is nonpositive.

Therefore, setting 𝜆 = 1 provides a lower bound on the difference of the numerator

terms. When 𝜆 = 1, the difference of the numerator terms simplifies to 0, indicating

the first numerator is greater than or equal to the second. As a result, equation 1.69

is nonnegative and equation 1.66 is increasing in 𝜆.

Final step: We have shown E[𝑇 𝜆
𝑁𝐺] under imperfect community detection is

increasing in 𝜆 for 𝑚 ≤ 𝑛 and 𝑚 > 𝑛. Setting 𝜆 to its maximum value of 1,

plugging in 𝛼 = (𝑁 − 1)𝑣/[(𝑚− 1)𝑝 + (𝑁 −𝑚)𝑞] which holds under assumption 1,

and simplifying yields

𝑝′𝜆=1 = 𝑞′𝜆=1 = 1 −
(︂
𝑚− 1

𝑁 − 1
(1 − 𝑝𝛼) +

𝑁 −𝑚

𝑁 − 1
(1 − 𝑞𝛼)

)︂𝑛

= 1 − (1 − 𝑣)𝑛 (1.70)

Therefore, 𝑝′𝜆=1 = 𝑞′𝜆=1 = 𝑣′ and E[𝑇 𝜆
𝑁𝐺] simplifies to

E[𝑇 𝜆
𝑁𝐺] =

𝑁

𝑛
+ 𝑛

[︂
1 +

(︂
𝑁

𝑛
− 1

)︂
𝑣′
]︂

(1.71)

and we have E[𝑇 𝜆
𝑁𝐺] = E[𝑇𝐷] under imperfect community detection when 𝜆 = 1.

Alternatively, when 𝜆 = 0, we have 𝑝′𝜆 = 1−(1−𝑝𝛼)𝑛 = 𝑝′ and 𝑞′𝜆 = 1−(1−𝑞𝛼)𝑛 =

𝑞′. Therefore, E[𝑇 𝜆
𝑁𝐺] = E[𝑇𝑁𝐺] when 𝜆 = 0.

1.19.8 Derivation of individual testing under imperfect tests

Under our setup, the population of size 𝑁 has 1 + (𝑁 − 1)𝑣 infected individuals in

expectation. Under individual testing, each person in the population of is tested

individually. We use 𝑠𝑒2 to denote the sensitivity of the tests, where sensitivity is 1
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minus the false negative rate. Each infected individual will test falsely negative with

probability 1 − 𝑠𝑒2 and, as a result, we have (1 + (𝑁 − 1)𝑣)(1 − 𝑠𝑒2) false negatives in

expectation.

The population of size 𝑁 has (𝑁−1)(1−𝑣) non-infected individuals in expectation.

We use 𝑠𝑝2 to denote the specificity of the tests, where specificity is 1 minus the false

positive rate. Each non-infected individual will test falsely positive with probability

1 − 𝑠𝑝2 and, as a result, we have (𝑁 − 1)(1 − 𝑣)(1 − 𝑠𝑝2) false positives in expectation.

Note, we use 𝑠𝑒2 and 𝑠𝑝2 for individual testing (as opposed to 𝑠𝑒1,𝑛 and 𝑠𝑝1) because

the second-stage tests screen individual samples whereas the first-stage tests screen

group samples. Using 𝑠𝑒2 and 𝑠𝑝2 therefore provide a more natural benchmark when

comparing individual testing to Dorfman testing and network group testing.

1.19.9 Derivation of Dorfman testing under imperfect tests

Number of tests The number of tests used by two-stage testing procedures is

𝑁/𝑛 + 𝑛𝐺 where 𝑁 is the population size, 𝑛 is the group size, and 𝐺 is the number of

groups that test positive in the first stage of testing. 𝐺 is a random variable. Under

perfect tests, the expected number of tests used under Dorfman testing is provided in

equation 1.1. Under imperfect tests, the expectation of 𝐺 changes as truly positive

groups may test negative incorrectly and truly negative groups may test positive

incorrectly.

Under Dorfman testing, one group is positive with probability one and the remaining

𝑁/𝑛 − 1 are positive independently with probability 1 − (1 − 𝑣)𝑛. Under imperfect

tests, the first group (which is truly positive) tests positive with probability 𝑠𝑒1,𝑛 and

the remaining 𝑁/𝑛 − 1 groups test positive independently with some probability 𝑣′𝑛.

The 𝑁/𝑛 − 1 groups test positive if they are truly positive and test positive correctly,

which occurs with probability 𝑠𝑒1,𝑛(1 − (1 − 𝑣)𝑛), or if they are truly negative and

test positive incorrectly, which occurs with probability (1 − 𝑠𝑝1)(1 − 𝑣)𝑛. Therefore,
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𝑣′𝑛 = 𝑠𝑒1,𝑛(1 − (1 − 𝑣)𝑛) + (1 − 𝑠𝑝1)(1 − 𝑣)𝑛. Putting everything together,

E[𝐺] = 𝑠𝑒1,𝑛 +

(︂
𝑁

𝑛
− 1

)︂
𝑣′𝑛 (1.72)

and the expected number of tests used under Dorfman testing and imperfect tests is

as shown in equation 1.18.

False negatives Under Dorfman testing, individual samples can be split into three

categories: 1) the infected seed individual that is infected with probability one, 2) the

𝑛− 1 individuals that are placed in the same group as the infected seed, and 3) the

remaining 𝑁 − 𝑛 individuals. To derive the expected number of false negatives, we

derive the probability of a false negative for each category.

The infected seed tests falsely negative if its group tests falsely negative in the

first stage, which occurs with probability 1 − 𝑠𝑒1,𝑛, or if its group tests positive in the

first stage and then its sample tests negative in the second stage, which occurs with

probability 𝑠𝑒1,𝑛(1 − 𝑠𝑒2). As a result, the infected seed tests falsely negative with

probability 1 − 𝑠𝑒1,𝑛 + 𝑠𝑒1,𝑛(1 − 𝑠𝑒2). Each of the 𝑛 − 1 individuals in the infected

seed’s group tests falsely negative if they are truly positive and their group tests falsely

negative in the first stage or if they are truly positive, their group tests positive in the

first stage, and then their sample tests negative in the second stage. As a result, each of

these 𝑛−1 individuals test falsely negative with probability 𝑣(1−𝑠𝑒1,𝑛)+𝑣𝑠𝑒1,𝑛(1−𝑠𝑒2).

The remaining 𝑁 − 𝑛 individuals test falsely negative with the same probability, since

they also test falsely negative if they are truly positive and their group tests falsely

negative in the first stage or if they are truly positive, their group tests positive in the

first stage, and then their sample tests negative in the second stage.
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The expected number of false negatives under Dorfman testing and imperfect tests

is therefore given by

E[𝐹𝑁𝐷] = 1 − 𝑠𝑒1,𝑛 + 𝑠𝑒1,𝑛(1 − 𝑠𝑒2) +

(𝑛− 1)[𝑣(1 − 𝑠𝑒1,𝑛) + 𝑣𝑠𝑒1,𝑛(1 − 𝑠𝑒2)] +

(𝑁 − 𝑛)[𝑣(1 − 𝑠𝑒1,𝑛) + 𝑣𝑠𝑒1,𝑛(1 − 𝑠𝑒2)]

= (1 + (𝑁 − 1)𝑣)(1 − 𝑠𝑒1,𝑛𝑠𝑒2) (1.73)

False positives Under Dorfman testing, individual samples can be split into three

categories: 1) the infected seed individual that is infected with probability one, 2) the

𝑛− 1 individuals that are placed in the same group as the infected seed, and 3) the

remaining 𝑁 − 𝑛 individuals. To derive the expected number of false positives, we

derive the probability of a false positive for each category.

The infected seed cannot be falsely positive. The 𝑛 − 1 individuals test falsely

positive if they are truly negative, with probability 1 − 𝑣, their group tests positive in

the first stage, with probability 𝑠𝑒1,𝑛, and they test falsely positive in the second stage,

with probability 1 − 𝑠𝑝2 . As a result, each of the 𝑛− 1 individuals test falsely positive

with probability (1 − 𝑣)𝑠𝑒1,𝑛(1 − 𝑠𝑝2). The 𝑁 − 𝑛 individuals test falsely positive if

they are truly negative, with probability 1 − 𝑣, their group tests positive in the first

stage, with some probability 𝑣′𝑛−1, and they test falsely positive in the second stage,

with probability 1 − 𝑠𝑝2 . Since the individuals in question are truly negative, their

group tests positive in the first stage if at least one of the remaining 𝑛− 1 individuals

in the group is truly positive and the group tests positive correctly, with probability

𝑠𝑒1,𝑛(1 − (1 − 𝑣)𝑛−1), or if the remaining 𝑛 − 1 individuals in the group are truly

negative and the group tests positive incorrectly, with probability (1 − 𝑠𝑝1)(1 − 𝑣)𝑛−1.

As a result, 𝑣′𝑛−1 = 𝑠𝑒1,𝑛(1− (1−𝑣)𝑛−1)+(1−𝑠𝑝1)(1−𝑣)𝑛−1 and the 𝑁 −𝑛 individuals

test positive incorrectly with probability (1 − 𝑣)(1 − 𝑠𝑝2)𝑣
′
𝑛−1.

The expected number of false positives under Dorfman testing and imperfect tests
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is therefore given by

E[𝐹𝑃𝐷] = (𝑛− 1)(1 − 𝑣)(1 − 𝑠𝑝2)𝑠𝑒1,𝑛 + (𝑁 − 𝑛)(1 − 𝑣)(1 − 𝑠𝑝2)𝑣
′
𝑛−1 (1.74)

where 𝑣′𝑛−1 = 𝑠𝑒1,𝑛(1 − (1 − 𝑣)𝑛−1) + (1 − 𝑠𝑝1)(1 − 𝑣)𝑛−1. Note, under our notation for

𝑣′𝑛−1, the sensitivity 𝑠𝑒1,𝑛 depends on the original group size 𝑛.

1.19.10 Derivation of the lower bound under imperfect tests

The number of tests used by two-stage testing procedures is 𝑁/𝑛 + 𝑛𝐺 where 𝑁 is the

population size, 𝑛 is the group size, and 𝐺 is the number of groups that test positive

in the first stage of testing. The lower bound is achieved by using perfect pooling,

as described in 1.19.2. Under perfect pooling and perfect tests, the number of truly

positive groups and the number of groups that test positive are equivalent, with both

equal to 𝐺 = max(1, (1 + (𝑁 − 1)𝑣)/𝑛). However, under imperfect tests, 𝐺 changes as

truly positive groups may test negative incorrectly and truly negative groups may test

positive incorrectly. There are 𝑁/𝑛 groups in total, truly positive groups test positive

with probability 𝑠𝑒1,𝑛, and truly negative groups test positive with probability 1 − 𝑠𝑝1 .

As a result, under perfect pooling and imperfect tests,

E[𝐺] = 𝑠𝑒1,𝑛 · max

(︂
1,

1 + (𝑁 − 1)𝑣

𝑛

)︂
+ (1 − 𝑠𝑝1)

(︂
𝑁

𝑛
− max

(︂
1,

1 + (𝑁 − 1)𝑣

𝑛

)︂)︂

(1.75)

and the two-stage testing lower bound is as shown in equation 1.21.

1.19.11 Derivation of network grouping under imperfect tests

Number of tests The number of tests used by two-stage testing procedures is

𝑁/𝑛 + 𝑛𝐺 where 𝑁 is the population size, 𝑛 is the group size, and 𝐺 is the number of

groups that test positive in the first stage of testing. 𝐺 is a random variable. Under

perfect tests, the expected number of tests used under network grouping is provided

in equation 1.3 and is derived in 1.19.3. Under imperfect tests, the expectation of
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𝐺 changes as truly positive groups may test negative incorrectly and truly negative

groups may test positive incorrectly.

Recall under network grouping, 𝑚 is the number of individuals in each communities,

𝑝 is the probability of an edge between two individuals in the same community, 𝑞

is the probability of an edge between two individuals in different communities, and

𝛼 is the probability an infected individual passes on the infection to their network

neighbor. As described in 1.19.3, the 𝑁/𝑛 groups can be split into three categories:

1) the group that contains the infected seed individual, 2) the (𝑚/𝑛 − 1)+ groups

that contain individuals from the same community as the infected seed, and 3) the

𝑁/𝑛 − 1 − (𝑚/𝑛 − 1)+ groups that contain individuals from different communties than

the infected seed.

We derive the probability of testing positive for each of the three group categories.

The group that contains the infected seed tests positive with probability 𝑠𝑒1,𝑛. The

(𝑚/𝑛 − 1)+ groups test positive if they contain at least one infected individual, with

probability 1 − (1 − 𝑝𝛼)𝑛, and test positive correctly, with probability 𝑠𝑒1,𝑛, or if

they contain no infected individuals, with probability (1 − 𝑝𝛼)𝑛, and test positive

incorrectly, with probability (1 − 𝑠𝑝1). The probability each of the (𝑚/𝑛 − 1)+ groups

test positive is therefore 𝑝′𝑛 = 𝑠𝑒1,𝑛(1 − (1 − 𝑝𝛼)𝑛) + (1 − 𝑠𝑝1)(1 − 𝑝𝛼)𝑛. Similarly, the

𝑁/𝑛−1− (𝑚/𝑛−1)+ groups test positive if they contain at least one infected individual,

with probability 1 − (1 − 𝑞𝛼)𝑛, and test positive correctly, with probability 𝑠𝑒1,𝑛, or

if they contain no infected individuals, with probability (1 − 𝑞𝛼)𝑛, and test positive

incorrectly, with probability (1− 𝑠𝑝1). The probability each of the 𝑁/𝑛− 1− (𝑚/𝑛− 1)+

groups test positive is therefore 𝑞′𝑛 = 𝑠𝑒1,𝑛(1 − (1 − 𝑞𝛼)𝑛) + (1 − 𝑠𝑝1)(1 − 𝑞𝛼)𝑛.

Putting everything together, the expected number of groups that test positive in

the first stage under network grouping and imperfect tests is

E[𝐺] = 𝑠𝑒1,𝑛 +
(︁𝑚
𝑛

− 1
)︁+

𝑝′𝑛 +

(︂
𝑁

𝑛
− 1 −

(︁𝑚
𝑛

− 1
)︁+)︂

𝑞′𝑛 (1.76)

where 𝑝′𝑛 = 𝑠𝑒1,𝑛(1 − (1 − 𝑝𝛼)𝑛) + (1 − 𝑠𝑝1)(1 − 𝑝𝛼)𝑛, 𝑞′𝑛 = 𝑠𝑒1,𝑛(1 − (1 − 𝑞𝛼)𝑛) +

(1 − 𝑠𝑝1)(1 − 𝑞𝛼)𝑛, and (𝑥)+ = max(𝑥, 0). The expected number of tests used under
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network grouping and imperfect tests is therefore as shown in equation 1.22.

False negatives Under network grouping, individual samples can be split into

three categories: 1) the infected seed individual, 2) the 𝑚− 1 individuals from the

same community as the infected seed, and 3) the 𝑁 −𝑚 individuals from different

communities than the infected seed. To derive the expected number of false negatives,

we derive the probability of a false negative for each category.

The infected seed tests negative if its group tests falsely negative in the first stage,

which occurs with probability 1 − 𝑠𝑒1,𝑛, or if its group tests positive in the first stage

and then its sample tests negative in the second stage, which occurs with probability

𝑠𝑒1,𝑛(1 − 𝑠𝑒2). As a result, the infected seed tests falsely negative with probability

1 − 𝑠𝑒1,𝑛 + 𝑠𝑒1,𝑛(1 − 𝑠𝑒2). Each of the 𝑚− 𝑛 individuals from the same community as

the infected seed tests falsely negative if they are truly positive, with probability 𝑝𝛼,

and their group tests falsely negative in the first stage or if they are truly positive,

their group tests positive in the first stage, and then their sample tests negative in

the second stage. As a result, each of these 𝑚 − 𝑛 individuals test falsely negative

with probability 𝑝𝛼(1 − 𝑠𝑒1,𝑛) + 𝑝𝛼𝑠𝑒1,𝑛(1 − 𝑠𝑒2). Each of the 𝑁 −𝑚 individuals from

different communities than the infected seed tests falsely negative if they are truly

positive, with probability 𝑞𝛼, and their group tests falsely negative in the first stage

or if they are truly positive, their group tests positive in the first stage, and then their

sample tests negative in the second stage. As a result, each of these 𝑁 −𝑚 individuals

test falsely negative with probability 𝑞𝛼(1 − 𝑠𝑒1,𝑛) + 𝑞𝛼𝑠𝑒1,𝑛(1 − 𝑠𝑒2).

The expected number of false negatives under network grouping and imperfect

tests is therefore given by

E[𝐹𝑁𝑁𝐺] = 1 − 𝑠𝑒1,𝑛 + 𝑠𝑒1,𝑛(1 − 𝑠𝑒2) +

(𝑚− 1)[𝑝𝛼(1 − 𝑠𝑒1,𝑛) + 𝑝𝛼𝑠𝑒1,𝑛(1 − 𝑠𝑒2)] +

(𝑁 −𝑚)[𝑞𝛼(1 − 𝑠𝑒1,𝑛) + 𝑞𝛼𝑠𝑒1,𝑛(1 − 𝑠𝑒2)]

= (1 + (𝑚− 1)𝑝𝛼 + (𝑁 −𝑚)𝑞𝛼)(1 − 𝑠𝑒1,𝑛𝑠𝑒2) (1.77)
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False positives Under network grouping, individual samples can be split into five

categories: 1) the infected seed individual, 2) the (min(𝑛,𝑚)− 1) individuals from the

same community as the infected seed that are placed in the same group as the infected

seed, 3) the (𝑛− min(𝑛,𝑚)) individuals from different communities than the infected

seed that are placed in the same group as the infected seed, 4) the (𝑚−𝑛)+ individuals

from the same community as the infected seed that are placed in different groups than

the infected seed, and 5) the (𝑁 − max(𝑛,𝑚)) individuals from different communities

than the infected seed that are placed in different groups than the infected seed. Note,

when community size 𝑚 is greater than group size 𝑛, the group sizes are 1, 𝑛− 1, 0,

𝑚− 𝑛, and 𝑁 −𝑚 respectively. When 𝑚 ≤ 𝑛, the group sizes are 1, 𝑚− 1, 𝑛−𝑚, 0,

and 𝑁 − 𝑛 respectively. To derive the expected number of false positives, we derive

the probability of a false positive for each category.

The infected seed cannot test falsely positive. The (min(𝑛,𝑚) − 1) individuals

from the same community as the infected seed that are placed in the same group

as the infected seed test falsely positive if they are truly negative, with probability

1− 𝑝𝛼, their group tests correctly positive in the first stage, with probability 𝑠𝑒1,𝑛, and

they test incorrectly positive in the second stage, with probability 1− 𝑠𝑝2 . As a result,

each tests falsely positive with probability (1 − 𝑝𝛼)(1 − 𝑠𝑝2)𝑠𝑒1,𝑛. The (𝑛−min(𝑛,𝑚))

individuals from different communities than the infected seed that are placed in the

same group as the infected seed test falsely positive if they are truly negative, with

probability 1−𝑞𝛼, their group tests correctly positive in the first stage, with probability

𝑠𝑒1,𝑛, and they test incorrectly positive in the second stage, with probability 1 − 𝑠𝑝2 .

As a result, each tests falsely positive with probability (1 − 𝑞𝛼)(1 − 𝑠𝑝2)𝑠𝑒1,𝑛.

The (𝑚− 𝑛)+ individuals from the same community as the infected seed that are

placed in different groups than the infected seed test falsely positive if they are truly

negative, with probability 1 − 𝑝𝛼, their group tests positive in the first stage, with

some probability 𝑝′𝑛−1, and they test incorrectly positive in the second stage, with

probability 1 − 𝑠𝑝2 . Since the individuals in question are truly negative, their group

tests positive in the first stage if at least one of the remaining 𝑛 − 1 individuals in

the group is truly positive and the group tests positive correctly, with probability
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𝑠𝑒1,𝑛(1 − (1 − 𝑝𝛼)𝑛−1), or if the remaining 𝑛 − 1 individuals in the group are truly

negative and the group tests positive incorrectly, with probability (1− 𝑠𝑝1)(1− 𝑝𝛼)𝑛−1.

As a result, 𝑝′𝑛−1 = 𝑠𝑒1,𝑛(1 − (1 − 𝑝𝛼)𝑛−1) + (1 − 𝑠𝑝1)(1 − 𝑝𝛼)𝑛−1 and the (𝑚 − 𝑛)+

individuals test positive incorrectly with probability (1 − 𝑝𝛼)(1 − 𝑠𝑝2)𝑝
′
𝑛−1.

Similarly, the (𝑁 − max(𝑛,𝑚)) individuals from different communities than the

infected seed that are placed in different groups than the infected seed test falsely

positive if they are truly negative, with probability 1 − 𝑞𝛼, their group tests positive

in the first stage, with some probability 𝑞′𝑛−1, and they test incorrectly positive in the

second stage, with probability 1 − 𝑠𝑝2 . Following the derivation in the previous para-

graph, 𝑞′𝑛−1 = 𝑠𝑒1,𝑛(1 − (1 − 𝑞𝛼)𝑛−1) + (1 − 𝑠𝑝1)(1 − 𝑞𝛼)𝑛−1 and the (𝑁 − max(𝑛,𝑚))

individuals test positive incorrectly with probability (1 − 𝑞𝛼)(1 − 𝑠𝑝2)𝑞
′
𝑛−1.

The expected number of false positives under network grouping and imperfect

tests is therefore given by

E[𝐹𝑃𝑁𝐺] = (min(𝑛,𝑚) − 1)(1 − 𝑝𝛼)(1 − 𝑠𝑝2)𝑠𝑒1,𝑛+

(𝑛− min(𝑛,𝑚))(1 − 𝑞𝛼)(1 − 𝑠𝑝2)𝑠𝑒1,𝑛+

(𝑚− 𝑛)+(1 − 𝑝𝛼)(1 − 𝑠𝑝2)𝑝
′
𝑛−1+

(𝑁 − max(𝑛,𝑚))(1 − 𝑞𝛼)(1 − 𝑠𝑝2)𝑞
′
𝑛−1 (1.78)

𝑝′𝑛−1 = 𝑠𝑒1,𝑛(1 − (1 − 𝑝𝛼)𝑛−1) + (1 − 𝑠𝑝1)(1 − 𝑝𝛼)𝑛−1

𝑞′𝑛−1 = 𝑠𝑒1,𝑛(1 − (1 − 𝑞𝛼)𝑛−1) + (1 − 𝑠𝑝1)(1 − 𝑞𝛼)𝑛−1

where (𝑥)+ = max(𝑥, 0). Note, under our notation for 𝑝′𝑛−1 and 𝑞′𝑛−1, the sensitivity

𝑠𝑒1,𝑛 depends on the original group size 𝑛.

1.19.12 Test comparison under imperfect tests

Under imperfect tests, the expected number of tests used under network grouping is

upper bounded by Dorfman testing and lower bounded by the two-stage lower bound.

Theorem 6. Under the conditions of assumptions 1 and 2 and imperfect tests, E[𝑇𝑁𝐺]
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is increasing in 𝑞 and

E[𝑇𝐿𝐵] ≤ E[𝑇𝑁𝐺] ≤ E[𝑇𝐷] (1.79)

If 𝑞 = 0 and 𝑛 ≥ 𝑚, then E[𝑇𝑁𝐺] = E[𝑇𝐿𝐵]. If 𝑞 = 𝑝, then E[𝑇𝑁𝐺] = E[𝑇𝐷].

Under imperfect tests, E[𝑇𝐿𝐵] is given in equation 1.21, E[𝑇𝑁𝐺] is given in equation

1.22, and E[𝑇𝐷] is given in equation 1.18. The proof of theorem 6 is provided below.

Theorem 6 states network grouping weakly dominates Dorfman testing in terms of

the expected number of tests when using imperfect tests. Identically to the perfect

test setting, the expected number of tests used is increasing in 𝑞, the probability

edges exists between different communities. When 𝑞 = 0 and 𝑛 ≥ 𝑚, communities

are disconnected and group sizes are large enough to contain full communities. As a

result, network grouping under imperfect tests performs optimally and achieves the

two-stage lower bound under imperfect tests. Conversely, when 𝑞 = 𝑝, the network

has no community structure and network grouping under imperfect tests performs

equivalently to Dorfman testing under imperfect tests.

Proof of theorem 6

Upper bound To prove E[𝑇𝑁𝐺] ≤ E[𝑇𝐷] under imperfect tests, we prove E[𝑇𝑁𝐺]

is increasing in 𝑞 under assumptions 1 and 2 and equals E[𝑇𝐷] when 𝑞 is set to its

maximum value under assumption 1, 𝑞 = 𝑝. This also proves the statement "If 𝑞 = 𝑝,

then E[𝑇𝑁𝐺] = E[𝑇𝐷]." To prove E[𝑇𝑁𝐺] is increasing in 𝑞, we consider the cases where

𝑚 > 𝑛 and 𝑚 ≤ 𝑛 separately.

Case 1: We first consider the case where 𝑚 > 𝑛. When 𝑚 > 𝑛, E[𝑇𝑁𝐺] under

imperfect tests is given by

E[𝑇𝑁𝐺] =
𝑁

𝑛
+ 𝑛

[︂
𝑠𝑒1,𝑛 +

(︁𝑚
𝑛

− 1
)︁
𝑝′𝑛 +

(︂
𝑁

𝑛
− 𝑚

𝑛

)︂
𝑞′𝑛

]︂
(1.80)

where 𝑝′𝑛 = 𝑠𝑒1,𝑛(1− (1−𝑝𝛼)𝑛)+(1−𝑠𝑝1)(1−𝑝𝛼)𝑛 and 𝑞′𝑛 = 𝑠𝑒1,𝑛(1− (1−𝑞𝛼)𝑛)+(1−
𝑠𝑝1)(1 − 𝑞𝛼)𝑛. Under assumption 1, 𝛼 = (𝑁 − 1)𝑣/[(𝑚− 1)𝑝 + (𝑁 −𝑚)𝑞]. Taking
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the derivative of equation 1.80 with respect to 𝑞 and simplifying yields

𝜕 E[𝑇𝑁𝐺]

𝜕𝑞
=

𝑛𝑣𝑝(𝑁 − 1)(𝑁 −𝑚)(𝑠𝑒1,𝑛 + 𝑠𝑝1 − 1)
[︀
(𝑚− 1) (1 − 𝑞𝛼)𝑛−1 − (𝑚− 𝑛) (1 − 𝑝𝛼)𝑛−1]︀

[(𝑚− 1)𝑝 + (𝑁 −𝑚)𝑞]2

(1.81)

Demonstrating equation 1.81 is nonnegative proves equation 1.80 is increasing in 𝑞.

The denominator is nonnegative due to the square and 𝑛, 𝑣, 𝑝, 𝑁 − 1, 𝑁 −𝑚, and

𝑠𝑒1,𝑛 + 𝑠𝑝1 − 1 are nonnegative by assumptions 1 and 2. Examining the bracket term

in the numerator, we note 𝑚− 1 ≥ 𝑚− 𝑛 as 𝑛 ≥ 1 and (1 − 𝑞𝛼)𝑛−1 ≥ (1 − 𝑝𝛼)𝑛−1 as

𝑝 ≥ 𝑞. As a result, the bracket term is nonnegative and the entirety of equation 1.81

is nonnegative.

Case 2: We now consider the case where 𝑚 ≤ 𝑛. When 𝑚 ≤ 𝑛, E[𝑇𝑁𝐺] under

imperfect tests is given by

E[𝑇𝑁𝐺] =
𝑁

𝑛
+ 𝑛

[︂
𝑠𝑒1,𝑛 +

(︂
𝑁

𝑛
− 1

)︂
𝑞′𝑛

]︂
(1.82)

where 𝑞′𝑛 = 𝑠𝑒1,𝑛(1− (1− 𝑞𝛼)𝑛) + (1− 𝑠𝑝1)(1− 𝑞𝛼)𝑛. Again, 𝛼 = (𝑁 − 1)𝑣/[(𝑚− 1)𝑝+

(𝑁 −𝑚)𝑞]. Taking the derivative of equation 1.82 with respect to 𝑞 and simplifying

yields

𝜕 E[𝑇𝑁𝐺]

𝜕𝑞
=

𝑛𝑣𝑝(𝑁 − 1)(𝑁 − 𝑛)(𝑚− 1) (1 − 𝑞𝛼)𝑛 (𝑠𝑒1,𝑛 + 𝑠𝑝1 − 1)

[(𝑚− 1)𝑝 + (𝑁 −𝑚)𝑞] [(𝑚− 1)𝑝 + (𝑁 −𝑚)𝑞 + 𝑞(1 −𝑁)𝑣]
(1.83)

All terms in the numerator are nonnegative by assumptions 1 and 2. The denominator

is equal to the denominator in equation 1.40 which we prove is nonnegative in 1.19.4.

As a result, equation 1.83 is nonnegative and equation 1.82 is increasing in 𝑞.

Final step: We have shown E[𝑇𝑁𝐺] under imperfect tests is increasing in 𝑞 for

𝑚 > 𝑛 and 𝑚 ≤ 𝑛. Setting 𝑞 to its maximum value under assumption 1, 𝑞 = 𝑝, we

have 𝑝′𝑛 = 𝑞′𝑛. In addition, 𝛼 simplifies to 𝑣/𝑝 and 𝑝𝛼 = 𝑣. Therefore, 𝑝′𝑛 = 𝑞′𝑛 = 𝑣′𝑛

where 𝑣′𝑛 = 𝑠𝑒1,𝑛(1 − (1 − 𝑣)𝑛) + (1 − 𝑠𝑝1)(1 − 𝑣)𝑛. E[𝑇𝑁𝐺] under imperfect tests in
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the general case simplifies to

E[𝑇𝑁𝐺] =
𝑁

𝑛
+ 𝑛

[︂
𝑠𝑒1,𝑛 +

(︁𝑚
𝑛

− 1
)︁+

𝑝′𝑛 +

(︂
𝑁

𝑛
− 1 −

(︁𝑚
𝑛

− 1
)︁+)︂

𝑞′𝑛

]︂
(1.84)

=
𝑁

𝑛
+ 𝑛

[︂
𝑠𝑒1,𝑛 +

(︂
𝑁

𝑛
− 1

)︂
𝑣′𝑛

]︂
(1.85)

and we have E[𝑇𝑁𝐺] = E[𝑇𝐷] under imperfect tests, completing the upper bound

portion of the proof.

Lower bound To prove E[𝑇𝑁𝐺] ≥ 𝑇𝐿𝐵 under imperfect tests, we prove E[𝑇𝑁𝐺] −
𝑇𝐿𝐵 ≥ 0 for the two cases of 1) group size larger than (or equal to) the expected

number of infected individuals, 𝑛 ≥ 1 + (𝑁 − 1)𝑣, and 2) group size less than the

expected number of infected individuals, 𝑛 < 1 + (𝑁 − 1)𝑣.

Case 1: When group size is larger than or equal to the expected number of infected

individuals, 𝑛 ≥ 1 + (𝑁 − 1)𝑣, the lower bound in equation 1.21 simplifies to

𝑇𝐿𝐵 =
𝑁

𝑛
+ 𝑛

[︂
𝑠𝑒1,𝑛 + (1 − 𝑠𝑝1)

(︂
𝑁

𝑛
− 1

)︂]︂
(1.86)

Therefore,

E[𝑇𝑁𝐺] − 𝑇𝐿𝐵 = 𝑛
(︁𝑚
𝑛

− 1
)︁+

𝑝′𝑛 + 𝑛

(︂
𝑁

𝑛
− 1 −

(︁𝑚
𝑛

− 1
)︁+)︂

𝑞′𝑛 − (𝑁 − 𝑛) (1 − 𝑠𝑝1)

(1.87)

where 𝑝′𝑛 = 𝑠𝑒1,𝑛(1 − (1 − 𝑝𝛼)𝑛) + (1 − 𝑠𝑝1)(1 − 𝑝𝛼)𝑛, 𝑞′𝑛 = 𝑠𝑒1,𝑛(1 − (1 − 𝑞𝛼)𝑛) + (1 −
𝑠𝑝1)(1 − 𝑞𝛼)𝑛, and (𝑥)+ = max(𝑥, 0). To prove equation 1.87 is nonnegative, we prove

the first two terms, which are positive by assumptions 1 and 2, are larger than the

final negative term. To do so, we first show 𝑝′𝑛 ≥ 𝑞′𝑛 and then show 𝑞′𝑛 ≥ 1− 𝑠𝑝1 before

simplifying equation 1.87. First, we have 𝑝′𝑛 ≥ 𝑞′𝑛 as

𝑝′𝑛 − 𝑞′𝑛 = 𝑠𝑒1,𝑛(1 − (1 − 𝑝𝛼)𝑛) + (1 − 𝑠𝑝1)(1 − 𝑝𝛼)𝑛 − 𝑠𝑒1,𝑛(1 − (1 − 𝑞𝛼)𝑛) − (1 − 𝑠𝑝1)(1 − 𝑞𝛼)𝑛

= 𝑠𝑒1,𝑛[(1 − (1 − 𝑝𝛼)𝑛) − (1 − (1 − 𝑞𝛼)𝑛)] + (1 − 𝑠𝑝1)[(1 − 𝑝𝛼)𝑛 − (1 − 𝑞𝛼)𝑛]
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= ((1 − 𝑞𝛼)𝑛 − (1 − 𝑝𝛼)𝑛)(𝑠𝑒1,𝑛 + 𝑠𝑝1 − 1) (1.88)

which is nonnegative by assumptions 1 and 2. Now 𝑞′𝑛 ≥ 1 − 𝑠𝑝1 as

𝑞′𝑛 − (1 − 𝑠𝑝1) = 𝑠𝑒1,𝑛(1 − (1 − 𝑞𝛼)𝑛) + (1 − 𝑠𝑝1)(1 − 𝑞𝛼)𝑛 − (1 − 𝑠𝑝1)

= 𝑠𝑒1,𝑛(1 − (1 − 𝑞𝛼)𝑛) − (1 − 𝑠𝑝1)(1 − (1 − 𝑞𝛼)𝑛)

= (1 − (1 − 𝑞𝛼)𝑛)(𝑠𝑒1,𝑛 + 𝑠𝑝1 − 1) (1.89)

which is nonnegative again by assumptions 1 and 2. Therefore, we lower bound

equation 1.87 by replacing 𝑝′𝑛 with 𝑞′𝑛 yielding

E[𝑇𝑁𝐺] − 𝑇𝐿𝐵 ≥ 𝑛
(︁𝑚
𝑛

− 1
)︁+

𝑞′𝑛 + 𝑛

(︂
𝑁

𝑛
− 1 −

(︁𝑚
𝑛

− 1
)︁+)︂

𝑞′𝑛 − (𝑁 − 𝑛) (1 − 𝑠𝑝1)

(1.90)

= (𝑁 − 𝑛) 𝑞′𝑛 − (𝑁 − 𝑛) (1 − 𝑠𝑝1) (1.91)

which is nonnegative as 𝑞′𝑛 ≥ 1 − 𝑠𝑝1 . As a result, equation 1.87 is nonnegative.

Case 2: When group size is smaller than the expected number of infected individ-

uals, 𝑛 < 1 + (𝑁 − 1)𝑣, the lower bound 𝑇𝐿𝐵 under imperfect tests becomes

𝑇𝐿𝐵 =
𝑁

𝑛
+ 𝑛

[︂
𝑠𝑒1,𝑛

1 + (𝑁 − 1)𝑣

𝑛
+ (1 − 𝑠𝑝1)

(︂
𝑁

𝑛
− 1 + (𝑁 − 1)𝑣

𝑛

)︂]︂
(1.92)

Subtracting 𝑇𝐿𝐵 from E[𝑇𝑁𝐺] under imperfect tests and simplifying yields

E[𝑇𝑁𝐺] − 𝑇𝐿𝐵 = (𝑠𝑒1,𝑛 + 𝑠𝑝1 − 1)
[︁
(𝑁 − 1)(1 − 𝑣) − (𝑁 − 𝑛)(1 − 𝑞𝛼)𝑛

+ 𝑛
(︁𝑚
𝑛

− 1
)︁+

((1 − 𝑞𝛼)𝑛 − (1 − 𝑝𝛼)𝑛)
]︁

(1.93)

To prove equation 1.93 is nonnegative, we first show it is increasing in 𝑛. We then

set 𝑛 to its minimum value, providing a lower bound on equation 1.93, and we

demonstrate this lower bound is nonnegative. We prove equation 1.93 is increasing in

𝑛 by considering the 𝑛 ≥ 𝑚 and 𝑛 < 𝑚 cases separately. When 𝑛 ≥ 𝑚, differentiating
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with respect to 𝑛 yields

𝜕 (E[𝑇𝑁𝐺] − 𝑇𝐿𝐵)

𝜕𝑛
= (𝑠𝑒1,𝑛 + 𝑠𝑝1 − 1)(1 − 𝑞𝛼)𝑛(1 + (𝑛−𝑁) ln(1 − 𝑞𝛼)) (1.94)

We note 𝑛−𝑁 and ln(1 − 𝑞𝛼) are negative, ensuring (𝑛−𝑁) ln(1 − 𝑞𝛼) is positive.

Therefore, equation 1.94 is nonnegative by assumptions 1 and 2. When 𝑛 < 𝑚,

differentiating with respect to 𝑛 yields

𝜕 (E[𝑇𝑁𝐺] − 𝑇𝐿𝐵)

𝜕𝑛
= (𝑠𝑒1,𝑛 + 𝑠𝑝1 − 1)[(1 − 𝑞𝛼)𝑛(𝑚−𝑁) ln(1 − 𝑞𝛼)

+ (1 − 𝑝𝛼)𝑛(1 + (𝑛−𝑚) ln(1 − 𝑝𝛼))] (1.95)

We note 𝑚−𝑁 , ln(1−𝑞𝛼), 𝑛−𝑚, and ln(1−𝑝𝛼) are all negative, ensuring (𝑚−𝑁) ln(1−
𝑞𝛼) and (𝑛−𝑚) ln(1 − 𝑝𝛼) are positive. Therefore, equation 1.95 is nonnegative by

assumptions 1 and 2. As a result, equation 1.93 is increasing in 𝑛. Setting 𝑛 to its

minimum value of 1 provides a lower bound on equation 1.93.

E[𝑇𝑁𝐺] − 𝑇𝐿𝐵 ≥ (𝑠𝑒1,𝑛 + 𝑠𝑝1 − 1)
[︁
(𝑁 − 1)(1 − 𝑣) − (𝑁 − 1)(1 − 𝑞𝛼) + (𝑚− 1) ((1 − 𝑞𝛼) − (1 − 𝑝𝛼))

]︁

= (𝑠𝑒1,𝑛 + 𝑠𝑝1 − 1)[1 + (𝑚− 1)𝑝𝛼 + (𝑁 −𝑚)𝑞𝛼− (1 + (𝑁 − 1)𝑣)]

= 0 (1.96)

where the second equality makes use of the 𝐸[𝐼𝐷] = 𝐸[𝐼𝑁𝐺] equivalence specified in

assumption 1. As a result, equation 1.93 is nonnegative.

We have proven E[𝑇𝑁𝐺] − 𝑇𝐿𝐵 ≥ 0 under imperfect tests for the two cases under

consideration, completing the lower bound portion of the proof.

Equivalence at the lower and upper bounds The statement "If 𝑞 = 𝑝, then

E[𝑇𝑁𝐺] = E[𝑇𝐷]" is proved during the upper bound portion of the proof of theorem 6.

The statement "If 𝑞 = 0 and 𝑛 ≥ 𝑚, then E[𝑇𝑁𝐺] = E[𝑇𝐿𝐵]" follows directly

from the definition of E[𝑇𝑁𝐺] under imperfect tests. When 𝑞 = 0, we have 𝑞′𝑛 =

𝑠𝑒1,𝑛(1 − (1 − 𝑞𝛼)𝑛) + (1 − 𝑠𝑝1)(1 − 𝑞𝛼)𝑛 = 1 − 𝑠𝑝1 . When 𝑛 ≥ 𝑚 and 𝑞′𝑛 = 1 − 𝑠𝑝1 ,

80



E[𝑇𝑁𝐺] simplifies to

E[𝑇𝑁𝐺] =
𝑁

𝑛
+ 𝑛

[︂
𝑠𝑒1,𝑛 + (1 − 𝑠𝑝1)

(︂
𝑁

𝑛
− 1

)︂]︂
(1.97)

Identical to the proof of corollary 1 in 1.19.5, 𝑛 ≥ 𝑚 and 𝑞 = 0 implies 1 + (𝑁 − 1)𝑣 ≤ 𝑛.

Therefore, the lower bound E[𝑇𝐿𝐵] under imperfect tests becomes

E[𝑇𝐿𝐵] =
𝑁

𝑛
+ 𝑛

[︂
𝑠𝑒1,𝑛 + (1 − 𝑠𝑝1)

(︂
𝑁

𝑛
− 1

)︂]︂
(1.98)

and E[𝑇𝑁𝐺] = E[𝑇𝐿𝐵], completing the proof.

1.19.13 Proof of theorem 3

Under individual testing, E[𝐹𝑃𝐼 ] = (𝑁 −1)(1−𝑣)(1−𝑠𝑝2) and under Dorfman testing,

E[𝐹𝑃𝐷] = (𝑛− 1)(1 − 𝑣)(1 − 𝑠𝑝2)𝑠𝑒1,𝑛 + (𝑁 − 𝑛)(1 − 𝑣)(1 − 𝑠𝑝2)𝑣
′
𝑛−1 where

𝑣′𝑛−1 = 𝑠𝑒1,𝑛(1 − (1 − 𝑣)𝑛−1) + (1 − 𝑠𝑝1)(1 − 𝑣)𝑛−1. Both 𝑠𝑒1,𝑛 and 𝑣′𝑛−1 are probabili-

ties between 0 and 1 as 𝑣 and 𝑠𝑝1 are also probabilities between 0 and 1. Therefore,

E[𝐹𝑃𝐷] ≤ (𝑛− 1)(1 − 𝑣)(1 − 𝑠𝑝2) + (𝑁 − 𝑛)(1 − 𝑣)(1 − 𝑠𝑝2) = E[𝐹𝑃𝐼 ].

To prove E[𝐹𝑃𝑁𝐺] ≤ E[𝐹𝑃𝐷], we prove E[𝐹𝑃𝑁𝐺] is increasing in 𝑞 under assump-

tions 1 and 2 and equals E[𝐹𝑃𝐷] when 𝑞 is set to its maximum value under assumption

1, 𝑞 = 𝑝. To prove E[𝐹𝑃𝑁𝐺] is increasing in 𝑞, we consider the cases where 𝑚 ≤ 𝑛

and 𝑚 > 𝑛 separately.

Case 1: We first consider the case where 𝑚 ≤ 𝑛. When 𝑚 ≤ 𝑛, E[𝐹𝑃𝑁𝐺] is given

by

E[𝐹𝑃𝑁𝐺] = (𝑚− 1)(1 − 𝑝𝛼)(1 − 𝑠𝑝2)𝑠𝑒1,𝑛 +

(𝑛−𝑚)(1 − 𝑞𝛼)(1 − 𝑠𝑝2)𝑠𝑒1,𝑛 +

(𝑁 − 𝑛)(1 − 𝑞𝛼)(1 − 𝑠𝑝2)𝑞
′
𝑛−1 (1.99)

where 𝑞′𝑛−1 = 𝑠𝑒1,𝑛(1 − (1 − 𝑞𝛼)𝑛−1) + (1 − 𝑠𝑝1)(1 − 𝑞𝛼)𝑛−1. Under assumption 1,

𝛼 = (𝑁 − 1)𝑣/[(𝑚− 1)𝑝 + (𝑁 −𝑚)𝑞]. Taking the derivative of equation 1.99 with

81



respect to 𝑞 and simplifying yields

𝜕 E[𝐹𝑃𝑁𝐺]

𝜕𝑞
=

𝑛𝑣𝑝(𝑁 − 1)(𝑁 − 𝑛)(𝑚− 1)(1 − 𝑞𝛼)𝑛(𝑠𝑒1,𝑛 + 𝑠𝑝1 − 1)(1 − 𝑠𝑝2)

[(𝑚− 1)𝑝 + (𝑁 −𝑚)𝑞] [(𝑚− 1)𝑝 + (𝑁 −𝑚)𝑞 + 𝑞(1 −𝑁)𝑣]

(1.100)

Demonstrating equation 1.100 is nonnegative proves equation 1.99 is increasing in 𝑞.

The denominator is equivalent to the denominator in equation 1.40, which we have

already proved to be nonnegative. In the numerator, 𝑛, 𝑣, 𝑝, 𝑁 − 1, 𝑁 − 𝑛, and

𝑚− 1 are nonnegative by assumption 1. The probability (1 − 𝑞𝛼)𝑛 is nonnegative as

𝑞 and 𝛼 are both probabilities between 0 and 1. Finally, 𝑠𝑒1,𝑛 + 𝑠𝑝1 − 1 and 1 − 𝑠𝑝2

are both nonnegative as the specificities and sensitives are probabilities between 0.5

and 1 by assumption 2. As a result, the bracket term is nonnegative and the entirety

of equation 1.100 is nonnegative.

Case 2: We now consider the case where 𝑚 > 𝑛. When 𝑚 > 𝑛, E[𝐹𝑃𝑁𝐺] is given

by

E[𝐹𝑃𝑁𝐺] = (𝑛− 1)(1 − 𝑝𝛼)(1 − 𝑠𝑝2)𝑠𝑒1,𝑛 +

(𝑚− 𝑛)(1 − 𝑝𝛼)(1 − 𝑠𝑝2)𝑝
′
𝑛−1 +

(𝑁 −𝑚)(1 − 𝑞𝛼)(1 − 𝑠𝑝2)𝑞
′
𝑛−1 (1.101)

where 𝑝′𝑛−1 = 𝑠𝑒1,𝑛(1 − (1 − 𝑝𝛼)𝑛−1) + (1 − 𝑠𝑝1)(1 − 𝑝𝛼)𝑛−1 and

𝑞′𝑛−1 = 𝑠𝑒1,𝑛(1 − (1 − 𝑞𝛼)𝑛−1) + (1 − 𝑠𝑝1)(1 − 𝑞𝛼)𝑛−1. Again,

𝛼 = (𝑁 − 1)𝑣/[(𝑚− 1)𝑝 + (𝑁 −𝑚)𝑞]. Taking the derivative of equation 1.101 with

respect to 𝑞 and simplifying yields

𝜕 E[𝐹𝑃𝑁𝐺]

𝜕𝑞
=

𝑝𝑣(𝑁 − 1)(𝑁 −𝑚) (1 − 𝑠𝑝2)

((𝑚− 1)𝑝 + (𝑁 −𝑚)𝑞)3
·

[︁
((𝑚− 1)𝑝 + (𝑁 −𝑚)𝑞)

[︀
(𝑛− 1)𝑠𝑒1,𝑛 + (𝑚− 𝑛)𝑝′𝑛−1 − (𝑚− 1)𝑞′𝑛−1

]︀
+

(𝑛− 1)(𝑠𝑒1,𝑛 + 𝑠𝑝1 − 1)
[︀
(𝑚− 1)(1 − 𝑞𝛼)𝑛−2((𝑚− 1)𝑝 + (𝑁 −𝑚)𝑞 − 𝑞(𝑁 − 1)𝑣)

− (𝑚− 𝑛)(1 − 𝑝𝛼)𝑛−2((𝑚− 1)𝑝 + (𝑁 −𝑚)𝑞 − 𝑝(𝑁 − 1)𝑣)
]︀]︁

(1.102)
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All terms in the leading term before the large bracket are nonnegative by assumptions 1

and 2. Within the large bracket, the second term is nonnegative as 𝑛−1 and 𝑠𝑒1,𝑛+𝑠𝑝1−1

are nonnegative by the same assumptions and 𝑚− 1 ≥ 𝑚− 𝑛, 1 − 𝑞𝛼 ≥ 1 − 𝑝𝛼 as

𝑞 ≤ 𝑝, and 𝑞(𝑁 − 1)𝑣 ≤ 𝑝(𝑁 − 1)𝑣 as 𝑞 ≤ 𝑝. Within the large bracket, the leading

term of the first term, (𝑚− 1)𝑝 + (𝑁 −𝑚)𝑞, is nonnegative by assumption 1.

We now prove the final piece, 𝑓 := (𝑛 − 1)𝑠𝑒1,𝑛 + (𝑚 − 𝑛)𝑝′𝑛−1 − (𝑚 − 1)𝑞′𝑛−1, is

nonnegative. To do so, we prove the term is increasing in 𝑠𝑒1,𝑛 and 𝑠𝑝1 , then set 𝑠𝑒1,𝑛

and 𝑠𝑝1 to their minimum values of 0.5, and finally demonstrate the term remains

nonnegative. Note, 𝑝′𝑛−1 and 𝑞′𝑛−1 are functions of several terms, including 𝑠𝑒1,𝑛 and

𝑠𝑝1 . Taking the derivative of 𝑓 with respect to 𝑠𝑝1 yields

𝜕 𝑓

𝜕𝑠𝑝1
= (𝑚− 1)(1 − 𝑞𝛼)𝑛−1 − (𝑚− 𝑛)(1 − 𝑝𝛼)𝑛−1 (1.103)

Equation 1.103 is nonnegative as 𝑚 − 1 ≥ 𝑚 − 𝑛 and 1 − 𝑞𝛼 ≥ 1 − 𝑝𝛼 as 𝑞 ≤ 𝑝.

Therefore, 𝑓 is increasing in 𝑠𝑝1 . Taking the derivative of 𝑓 with respect to 𝑠𝑒1,𝑛 yields

𝜕 𝑓

𝜕𝑠𝑒1,𝑛
= (𝑛− 1) − (𝑚− 1)(1 − (1 − 𝑞𝛼)𝑛−1) + (𝑚− 𝑛)(1 − (1 − 𝑝𝛼)𝑛−1) (1.104)

We note (1 − (1 − 𝑝𝛼)𝑛−1) is a probability between 0 and 1 and therefore equation

1.104 is greater than or equal to

(𝑛− 1)(1 − (1 − 𝑝𝛼)𝑛−1) − (𝑚− 1)(1 − (1 − 𝑞𝛼)𝑛−1) + (𝑚− 𝑛)(1 − (1 − 𝑝𝛼)𝑛−1)

= (𝑚− 1)(1 − (1 − 𝑝𝛼)𝑛−1) − (𝑚− 1)(1 − (1 − 𝑞𝛼)𝑛−1)

(1.105)

Equation 1.105 is nonnegative as 1−(1−𝑝𝛼)𝑛−1 ≥ 1−(1−𝑞𝛼)𝑛−1 as 𝑝 ≥ 𝑞. Therefore,

1.104 is nonnegative and 𝑓 is increasing in 𝑠𝑒1,𝑛. Setting 𝑠𝑒1,𝑛 and 𝑠𝑝1 to their minimum

values of 0.5 provides a lower bound for 𝑓 . When 𝑠𝑒1,𝑛 and 𝑠𝑝1 equal 0.5, 𝑝′𝑛−1 and

𝑞′𝑛−1 simplify to 0.5, and 𝑓 equals 0. Therefore, 𝑓 in the general case is nonnegative.

As a result, equation 1.102 is nonnegative and equation 1.101 is increasing in 𝑞.

Final step: We have shown E[𝐹𝑃𝑁𝐺] is increasing in 𝑞 for 𝑚 ≤ 𝑛 and 𝑚 > 𝑛.
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Setting 𝑞 to its maximum value under assumption 1, 𝑞 = 𝑝, we have 𝑝′𝑛−1 = 𝑞′𝑛−1. In

addition, 𝛼 simplifies to 𝑣/𝑝 and 𝑝𝛼 = 𝑣. Therefore, 𝑝′𝑛−1 = 𝑞′𝑛−1 = 𝑣′𝑛−1. When 𝑞 = 𝑝,

E[𝐹𝑃𝑁𝐺] in the general case simplifies to

E[𝐹𝑃𝑁𝐺] = (min(𝑛,𝑚) − 1)(1 − 𝑣)(1 − 𝑠𝑝2)𝑠𝑒1,𝑛 +

(𝑛− min(𝑛,𝑚))(1 − 𝑣)(1 − 𝑠𝑝2)𝑠𝑒1,𝑛 +

(𝑚− 𝑛)+(1 − 𝑣)(1 − 𝑠𝑝2)𝑣
′
𝑛−1 +

(𝑁 − max(𝑛,𝑚))(1 − 𝑣)(1 − 𝑠𝑝2)𝑣
′
𝑛−1

= (𝑛− 1)(1 − 𝑣)(1 − 𝑠𝑝2)𝑠𝑒1,𝑛 +

(𝑁 − 𝑛)(1 − 𝑣)(1 − 𝑠𝑝2)𝑣
′
𝑛−1 (1.106)

and we have E[𝐹𝑃𝑁𝐺] = E[𝐹𝑃𝐷], completing the proof.

Proof of false positives increasing with 𝑛

To prove E[𝐹𝑃𝐷] and E[𝐹𝑃𝑁𝐺] are increasing with 𝑛, we show the derivative of each

with respect to 𝑛 is nonnegative. Taking the derivative of E[𝐹𝑃𝐷], shown in equation

1.20 ,with respect to 𝑛 and simplifying yields

𝜕 E[𝐹𝑃𝐷]

𝜕𝑛
= (𝑠𝑒1,𝑛 + 𝑠𝑝1 − 1)(1 − 𝑠𝑝2)(1 − 𝑣)𝑛(1 + (𝑛−𝑁) ln(1 − 𝑣)) (1.107)

By assumptions 1 and 2, (𝑠𝑒1,𝑛 + 𝑠𝑝1 − 1), (1 − 𝑠𝑝2), and (1 − 𝑣)𝑛 are nonnegative.

Both 𝑛 − 𝑁 and ln(1 − 𝑣) are nonpositive as 𝑣 is between 0 and 1. Therefore,

1 + (𝑛−𝑁) ln(1 − 𝑣) is nonnegative, equation 1.107 is nonnegative, and E[𝐹𝑃𝐷] is

increasing in 𝑛.

To prove E[𝐹𝑃𝑁𝐺] is increasing in 𝑛, we consider the cases where 𝑚 ≤ 𝑛 and

𝑚 > 𝑛 separately.

Case 1: We first consider the case where 𝑚 ≤ 𝑛. When 𝑚 ≤ 𝑛, E[𝐹𝑃𝑁𝐺] is given

by

E[𝐹𝑃𝑁𝐺] = (𝑚− 1)(1 − 𝑝𝛼)(1 − 𝑠𝑝2)𝑠𝑒1,𝑛 +
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(𝑛−𝑚)(1 − 𝑞𝛼)(1 − 𝑠𝑝2)𝑠𝑒1,𝑛 +

(𝑁 − 𝑛)(1 − 𝑞𝛼)(1 − 𝑠𝑝2)𝑞
′
𝑛−1 (1.108)

where 𝑞′𝑛−1 = 𝑠𝑒1,𝑛(1 − (1 − 𝑞𝛼)𝑛−1) + (1 − 𝑠𝑝1)(1 − 𝑞𝛼)𝑛−1. Taking the derivative of

equation 1.108 with respect to 𝑛 and simplifying yields

𝜕 E[𝐹𝑃𝑁𝐺]

𝜕𝑛
= (𝑠𝑒1,𝑛 + 𝑠𝑝1 − 1)(1 − 𝑠𝑝2)(1 − 𝑞𝛼)𝑛(1 + (𝑛−𝑁) ln(1 − 𝑞𝛼)) (1.109)

By assumptions 1 and 2, (𝑠𝑒1,𝑛 + 𝑠𝑝1 − 1), (1 − 𝑠𝑝2), and (1 − 𝑞𝛼)𝑛 are nonnegative.

Both 𝑛 − 𝑁 and ln(1 − 𝑞𝛼) are nonpositive as 𝑞𝛼 is between 0 and 1. Therefore,

1 + (𝑛−𝑁) ln(1 − 𝑞𝛼) is nonnegative, equation 1.109 is nonnegative, and equation

1.108 is increasing in 𝑛.

Case 2: We now consider the case where 𝑚 > 𝑛. When 𝑚 > 𝑛, E[𝐹𝑃𝑁𝐺] is given

by

E[𝐹𝑃𝑁𝐺] = (𝑛− 1)(1 − 𝑝𝛼)(1 − 𝑠𝑝2)𝑠𝑒1,𝑛 +

(𝑚− 𝑛)(1 − 𝑝𝛼)(1 − 𝑠𝑝2)𝑝
′
𝑛−1 +

(𝑁 −𝑚)(1 − 𝑞𝛼)(1 − 𝑠𝑝2)𝑞
′
𝑛−1 (1.110)

where 𝑝′𝑛−1 = 𝑠𝑒1,𝑛(1 − (1 − 𝑝𝛼)𝑛−1) + (1 − 𝑠𝑝1)(1 − 𝑝𝛼)𝑛−1 and

𝑞′𝑛−1 = 𝑠𝑒1,𝑛(1 − (1 − 𝑞𝛼)𝑛−1) + (1 − 𝑠𝑝1)(1 − 𝑞𝛼)𝑛−1. Taking the derivative of equa-

tion 1.110 with respect to 𝑛 and simplifying yields

𝜕 E[𝐹𝑃𝑁𝐺]

𝜕𝑛
= (𝑠𝑒1,𝑛 + 𝑠𝑝1 − 1)(1 − 𝑠𝑝2)

[︀
(1 − 𝑞𝛼)𝑛(𝑚−𝑁) ln(1 − 𝑞𝛼)

+ (1 − 𝑝𝛼)𝑛(1 + (𝑛−𝑚) ln(1 − 𝑝𝛼))
]︀

(1.111)

By assumptions 1 and 2, (𝑠𝑒1,𝑛 + 𝑠𝑝1 − 1), (1 − 𝑠𝑝2), (1 − 𝑞𝛼)𝑛, and (1 − 𝑝𝛼)𝑛 are

nonnegative. The terms (𝑚−𝑁) ln(1− 𝑞𝛼) and (𝑛−𝑚) ln(1− 𝑝𝛼) are nonnegative as

each term (𝑚−𝑁), ln(1− 𝑞𝛼), (𝑛−𝑚), ln(1−𝑝𝛼) is nonpositive. Therefore, equation
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1.111 is nonnegative, equation 1.110 is increasing in 𝑛, and E[𝐹𝑃𝑁𝐺] is increasing in

𝑛 in the general case.

1.19.14 Proof of theorem 4

Under individual testing, E[𝐹𝑁𝐼 ] = (1 + (𝑁 − 1)𝑣)(1 − 𝑠𝑒2) and under Dorfman

testing, E[𝐹𝑁𝐷] = (1 + (𝑁 − 1)𝑣)(1 − 𝑠𝑒1,𝑛𝑠𝑒2). As 𝑠𝑒1,𝑛 is a probability between

0.5 and 1, (1 − 𝑠𝑒2) ≤ (1 − 𝑠𝑒1,𝑛𝑠𝑒2) and E[𝐹𝑁𝐼 ] ≤ E[𝐹𝑁𝐷]. Note, if 𝑠𝑒1,𝑛 = 1, then

E[𝐹𝑁𝐼 ] = E[𝐹𝑁𝐷].

By assumption 1, 𝐸[𝐼𝐷] = 𝐸[𝐼𝑁𝐺] and 1 + (𝑁 − 1)𝑣 = 1 + (𝑚− 1)𝑝𝛼+ (𝑁 −𝑚)𝑞𝛼.

Therefore, E[𝐹𝑁𝐷] = E[𝐹𝑁𝑁𝐺] where E[𝐹𝑁𝐷] is defined above and E[𝐹𝑁𝑁𝐺] is

defined in equation 1.23. Therefore, we have E[𝐹𝑁𝐼 ] ≤ E[𝐹𝑁𝑁𝐺] = E[𝐹𝑁𝐷].

1.19.15 Derivation of network grouping under general networks

Under two-stage group testing, a population of size 𝑁 is split into 𝑁/𝑛 groups of size

𝑛 for an initial round of testing. Let 𝐺 denote the number of positive groups after the

initial round. In the second round of testing, all 𝑛 samples from each positive group

are retested individually. In total, 𝑁/𝑛 + 𝑛𝐺 tests are used. 𝐺 is a random variable.

Of the 𝑁/𝑛 groups, one contains the infected seed and tests positive with probability

one. Denote the infected seed as node 𝑖. For the remaining 𝑁/𝑛− 1 groups, each group

tests negative if none of the 𝑛 group members are infected by the infected seed. Of the

𝑛 group members in group 𝑔, let 𝑛𝑔,𝑖 denote the number of nodes in the group that are

connected to node 𝑖. Therefore, the probability group 𝑔 is not infected is (1 − 𝛼)𝑛𝑔,𝑖

where 𝛼 is the infection passing probability. The probability the group is infected

and tests positive is 1 − (1 − 𝛼)𝑛𝑔,𝑖 . The expected number of groups that test positive

given infected seed 𝑖 is 1 +
∑︀

𝑔∈𝒢∖𝑔𝑖(1 − (1 − 𝛼)𝑛𝑔,𝑖) where 𝒢 is the set of groups and

𝑔𝑖 is the group that contains node 𝑖. Lastly, the infected seed is chosen uniformly at

random from the network so we take the average over all possible infected seeds to get

the expected number of positive groups, 1 + 1
𝑁

∑︀
𝑖∈𝒩

∑︀
𝑔∈𝒢∖𝑔𝑖(1 − (1 − 𝛼)𝑛𝑔,𝑖) where

𝒩 is the set of nodes.
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Putting everything together provides the expected number of tests under network

grouping for general networks

E[𝑇 *
𝑁𝐺] =

𝑁

𝑛
+ 𝑛

⎡
⎣1 +

1

𝑁

∑︁

𝑖∈𝒩

∑︁

𝑔∈𝒢∖𝑔𝑖

(1 − (1 − 𝛼)𝑛𝑔,𝑖)

⎤
⎦ (1.112)

where 𝒩 is the set of nodes, 𝒢 is the set of groups, 𝑔𝑖 is the group that contains node

𝑖, and 𝑛𝑔,𝑖 is the number of nodes in group 𝑔 connected to node 𝑖.

1.19.16 Derivation of modularity

Modularity is a core metric in network science that measures the amount of community

structure in a network. The metric was introduced by Newman in [101]. Given a

network and community partition, it is defined as the observed fraction of internal

edges minus the expected fraction of internal edges. The expected fraction of internal

edges depends on a null model for generating the expected network structure. As

discussed in [102], multiple null models have been used. For our work, we use an

Erdös-Rényi (ER) null model as it is the simplest and most transparent choice.

In an ER network, the number of nodes 𝑁 is fixed. Edges are generated iid with

probability 𝑝 between all possible pairs of nodes, where iid stands for independent

and identically distributed. The expected number of internal edges is therefore the

total possible number of internal edges times 𝑝. An undirected network with 𝑁 nodes

has 𝑁(𝑁 − 1)/2 possible edges. If the network is split into 𝑁/𝑚 communities of size

𝑚, the network has (𝑚(𝑚− 1)/2)(𝑁/𝑚) = 𝑁(𝑚− 1)/2 possible internal edges and

𝑁(𝑁 −𝑚)/2 possible external edges.

Given a network, the probability of edge formation is simply the number of edges

present |𝐸| divided by the total possible number of edges, which gives 𝑝 = |𝐸|
𝑁(𝑁−1)/2

.

Therefore, using an ER model, the expected number of internal edges given a network

is 𝑁(𝑚−1)
2

𝑝 = 𝑁(𝑚−1)
2

2|𝐸|
𝑁(𝑁−1)

= (𝑚−1)|𝐸|
𝑁−1

. The expected fraction of internal edges is
(𝑚−1)|𝐸|

𝑁−1
1
|𝐸| = 𝑚−1

𝑁−1
.

Returning to modularity, modularity 𝑄 is the observed fraction of internal edges
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minus the expected fraction of internal edges. The observed fraction of internal edges

is simply |𝑖𝑛𝑡|
|𝐸| where |𝑖𝑛𝑡| is the number of internal edges. Therefore, 𝑄 = |𝑖𝑛𝑡|

|𝐸| − 𝑚−1
𝑁−1

.

1.19.17 Proof of theorem 5

We prove our condition on modularity 𝑄 in equation 1.11 implies E[𝑇 *
𝑁𝐺] ≤ E[𝑇𝐷]. If

𝑄 ≥ 1 − 𝑚− 1

𝑁 − 1
− 𝑁(𝑁 −𝑚)

2|𝐸|
log
(︁

1 − |𝐸|
𝑁(𝑁−1)/2

𝛼
)︁

log(1 − 𝛼)
(1.113)

where 𝑄 = |𝑖𝑛𝑡|
|𝐸| − 𝑚−1

𝑁−1
then

𝑄 +
𝑚− 1

𝑁 − 1
≥ 1 − 𝑁(𝑁 −𝑚)

2|𝐸|
log
(︁

1 − |𝐸|
𝑁(𝑁−1)/2

𝛼
)︁

log(1 − 𝛼)
(1.114)

|𝑖𝑛𝑡|
|𝐸| ≥ 1 − 𝑁(𝑁 −𝑚)

2|𝐸|
log
(︁

1 − |𝐸|
𝑁(𝑁−1)/2

𝛼
)︁

log(1 − 𝛼)
(1.115)

(︂ |𝐸|
|𝐸| −

|𝑖𝑛𝑡|
|𝐸|

)︂
2|𝐸|

𝑁(𝑁 −𝑚)
≤

log
(︁

1 − |𝐸|
𝑁(𝑁−1)/2

𝛼
)︁

log(1 − 𝛼)
(1.116)

|𝑒𝑥𝑡|
𝑁(𝑁 −𝑚)/2

≤
log
(︁

1 − |𝐸|
𝑁(𝑁−1)/2

𝛼
)︁

log(1 − 𝛼)
(1.117)

where we have used |𝐸| − |𝑖𝑛𝑡| = |𝑒𝑥𝑡| in equation 1.117. Note, the left hand side of

equation 1.117 is 𝑞, the empirical probability an external edge exists in the network.

Equation 1.117 enforces an upper bound on the probability of external edges, similar

to the 𝑞 ≤ 𝑝 constraint in the SBM model, and provides another way of writing

theorem 5.

Before proceeding, we show 𝑣 = |𝐸|
𝑁(𝑁−1)/2

𝛼, establishing a connection between

infection prevalence 𝑣 and infection passing probability 𝛼. Recall 𝛼 is set such that the

expected number of infected individuals is equal under the models under consideration.

The expected number of infected individuals under Dorfman testing is 1 + (𝑁 − 1)𝑣.

We now derive the expected number of infected individuals in a general network under

the epidemic model specified in section 1.3. One node is chosen uniformly at random
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from the network to serve as the infected seed. The seed infects each of its immediate

neighbors with probability 𝛼. Therefore, given node 𝑖 is the infected seed, the expected

number of infected individuals is 1 + 𝑘𝑖𝛼 where 𝑘𝑖 is the number of neighbors of node

𝑖. To determine the expected number of infected individuals, we average over all

possible infected seeds, yielding 1 + 1
𝑁

∑︀
𝑖∈𝒩 𝑘𝑖𝛼 where 𝒩 is the set of nodes. We

can simplify the equation because summing over all the degrees in a network yields

two times the number of edges,
∑︀

𝑖∈𝒩 𝑘𝑖 = 2|𝐸|. Therefore, the expected number

of infected individuals under our epidemic model for a general network is 1 + 2|𝐸|
𝑁

𝛼.

Setting 1 + (𝑁 − 1)𝑣 = 1 + 2|𝐸|
𝑁

𝛼 and solving for 𝑣 yields 𝑣 = |𝐸|
𝑁(𝑁−1)/2

𝛼.

Returning to our condition on 𝑞, we set group size 𝑛 equal to community size 𝑚,

yielding

|𝑒𝑥𝑡|
𝑁(𝑁 − 𝑛)/2

≤ log (1 − 𝑣)

log(1 − 𝛼)
(1.118)

We now show
∑︀

𝑖∈𝒩
∑︀

𝑔∈𝒢∖𝑔𝑖 𝑛𝑔,𝑖 = 2|𝑒𝑥𝑡| where 𝒢 is the set of groups, 𝑔𝑖 is the group

that contains node 𝑖, and 𝑛𝑔,𝑖 is the number of nodes in group 𝑔 connected to node

𝑖. Given a node 𝑖, summing over the number of nodes in group 𝑔 connected to node

𝑖, 𝑛𝑔,𝑖, for all groups 𝑔 except the group containing 𝑖 provides the external degree of

node 𝑖. The external degree of node 𝑖 is the number of edges incident to node 𝑖 that

connect to nodes in groups other than node 𝑖’s group. Formally,
∑︀

𝑔∈𝒢∖𝑔𝑖 𝑛𝑔,𝑖 = 𝑘𝑒𝑥𝑡
𝑖

where 𝑘𝑒𝑥𝑡
𝑖 is the external degree of node 𝑖. Summing over 𝑘𝑒𝑥𝑡

𝑖 for all nodes 𝑖 yields

2|𝑒𝑥𝑡| because we record all external edges in the network twice,
∑︀

𝑖∈𝒩 𝑘𝑒𝑥𝑡
𝑖 = 2|𝑒𝑥𝑡|.

Therefore, our condition becomes

∑︀
𝑖∈𝒩

∑︀
𝑔∈𝒢∖𝑔𝑖 𝑛𝑔,𝑖

𝑁(𝑁 − 𝑛)
≤ log (1 − 𝑣)

log(1 − 𝛼)

(1.119)
⎛
⎝ 1

𝑁

1
𝑁/𝑛 − 1

∑︁

𝑖∈𝒩

∑︁

𝑔∈𝒢∖𝑔𝑖

𝑛𝑔,𝑖

⎞
⎠ log(1 − 𝛼) ≥ 𝑛 log (1 − 𝑣)

(1.120)
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(1 − 𝛼)

(︁
1
𝑁

1
𝑁/𝑛−1

∑︀
𝑖∈𝒩

∑︀
𝑔∈𝒢∖𝑔𝑖

𝑛𝑔,𝑖

)︁
≥ (1 − 𝑣)𝑛 (1.121)

1

𝑁

1
𝑁/𝑛 − 1

∑︁

𝑖∈𝒩

∑︁

𝑔∈𝒢∖𝑔𝑖

(1 − 𝛼)𝑛𝑔,𝑖 ≥ (1 − 𝛼)

(︁
1
𝑁

1
𝑁/𝑛−1

∑︀
𝑖∈𝒩

∑︀
𝑔∈𝒢∖𝑔𝑖

𝑛𝑔,𝑖

)︁
≥ (1 − 𝑣)𝑛 (1.122)

1

𝑁

1
𝑁/𝑛 − 1

∑︁

𝑖∈𝒩

∑︁

𝑔∈𝒢∖𝑔𝑖

(1 − 𝛼)𝑛𝑔,𝑖 ≥ (1 − 𝑣)𝑛 (1.123)

where equation 1.122 uses Jensen’s inequality to remove the empirical expectations

from the exponent. Finally, we have

1

𝑁

1
𝑁/𝑛 − 1

∑︁

𝑖∈𝒩

∑︁

𝑔∈𝒢∖𝑔𝑖

(1 − 𝛼)𝑛𝑔,𝑖 ≥ (1 − 𝑣)𝑛 (1.124)

1

𝑁

1
𝑁/𝑛 − 1

∑︁

𝑖∈𝒩

∑︁

𝑔∈𝒢∖𝑔𝑖

(1 − (1 − 𝛼)𝑛𝑔,𝑖) ≤ 1 − (1 − 𝑣)𝑛 (1.125)

𝑁

𝑛
+ 𝑛

⎡
⎣1 +

1

𝑁

∑︁

𝑖∈𝒩

∑︁

𝑔∈𝒢∖𝑔𝑖

(1 − (1 − 𝛼)𝑛𝑔,𝑖)

⎤
⎦ ≤ 𝑁

𝑛
+ 𝑛

[︂
1 +

(︂
𝑁

𝑛
− 1

)︂
(1 − (1 − 𝑣)𝑛)

]︂

(1.126)

E[𝑇 *
𝑁𝐺] ≤ E[𝑇𝐷] (1.127)

To end the proof, we show the right hand side of the condition in equation 1.11

goes to 0 as 𝛼 → 0. To do so, we first show

log
(︁

1 − |𝐸|
𝑁(𝑁−1)/2

𝛼
)︁

log(1 − 𝛼)
→ |𝐸|

𝑁(𝑁 − 1)/2
(1.128)

as 𝛼 → 0. We use the following bound on logarithmic functions

𝑥− 1

𝑥
< log(𝑥) < 𝑥− 1 (1.129)

for all 𝑥 > 0 with 𝑥 ̸= 1. Let 𝑝 = |𝐸|
𝑁(𝑁−1)/2

. Applying the bound to the top and

bottom logarithms in equation 1.128 yields

−𝑝𝛼

1 − 𝑝𝛼
< log (1 − 𝑝𝛼) < −𝑝𝛼 (1.130)
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−𝛼

1 − 𝛼
< log (1 − 𝛼) < −𝛼 (1.131)

Taking the reciprocal of inequality 1.131 and multiplying both inequalities by −1

provides

𝑝𝛼 < − log (1 − 𝑝𝛼) <
𝑝𝛼

1 − 𝑝𝛼
(1.132)

1 − 𝛼

𝛼
<

1

− log (1 − 𝛼)
<

1

𝛼
(1.133)

Both inequalities are comprised of positive terms. Combining the inequalities yields

𝑝(1 − 𝛼) <
log (1 − 𝑝𝛼)

log(1 − 𝛼)
<

𝑝

1 − 𝑝𝛼
(1.134)

The upper and lower bounds both go to 𝑝 as 𝛼 → 0, confirming the limit in equation

1.128.

Returning to the condition in equation 1.11, the limit of the equation is

𝑄 ≥ 1 − 𝑚− 1

𝑁 − 1
− 𝑁(𝑁 −𝑚)

2|𝐸|
|𝐸|

𝑁(𝑁 − 1)/2
(1.135)

as 𝛼 → 0. Simplifying yields

𝑄 ≥ 1 − 𝑚− 1

𝑁 − 1
− 𝑁 −𝑚

𝑁 − 1
= 0 (1.136)

1.19.18 Remainder correction

In 1.19.3, we derive the expected number of tests used under network grouping.

Recall, 𝑁 denotes the population size, 𝑛 denotes the group size, and 𝑚 denotes the

community size. 1.19.3 considers the case where 𝑛 divisible by 𝑚 or 𝑚 divisible by 𝑛.

This assumption ensures communities are kept intact or are split evenly when placed

in groups. For example, when 𝑛 ≥ 𝑚, each group contains several intact communities

and, when 𝑛 < 𝑚, each community is split into an integer number of groups. The
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assumption guarantees each group contains either individuals from the infected seed

community or individuals from different communities than the infected seed, but not

both.

The divisibility assumption results in a clean equation for the number or tests used

under network grouping, as shown in equation 1.3. The equation is transparent, easy

to work with, and provides insight into the behavior of network grouping. As a result,

we use equation 1.3 in the main text and as the foundation for the main results in our

work.

However, when 𝑛 not divisible by 𝑚 and 𝑚 not divisible by 𝑛, equation 1.3 is only

an approximation, albeit a strong one. Therefore, in this subsection, we derive the

expected number of tests used under network grouping when 𝑛 not divisible by 𝑚 and

𝑚 not divisible by 𝑛. The expected number of tests used is shown below, followed by

its derivation and a discussion.

When 𝑛 < 𝑚:

E[𝑇𝑁𝐺] =
𝑁

𝑛
+ 𝑛

[︂
1 +

⌊︁𝑚
𝑛

− 1
⌋︁
𝑝′ +

(︁⌈︁𝑚
𝑛

− 1
⌉︁
−
⌊︁𝑚
𝑛

− 1
⌋︁)︁

𝑝′′ +

(︂
𝑁

𝑛
− 1 −

⌈︁𝑚
𝑛

− 1
⌉︁)︂

𝑞′
]︂

(1.137)

𝑝′′ = 1 −
[︂
𝑚%𝑛

𝑚
(1 − 𝑝𝛼)𝑛 +

(︂
1 − 𝑚%𝑛

𝑚

)︂
(1 − 𝑝𝛼)𝑚%𝑛(1 − 𝑞𝛼)𝑛−(𝑚%𝑛)

]︂

where 𝑝′ = 1 − (1 − 𝑝𝛼)𝑛, 𝑞′ = 1 − (1 − 𝑞𝛼)𝑛, and % is the modulo operator.

When 𝑛 ≥ 𝑚:

E[𝑇𝑁𝐺] =
𝑁

𝑛
+ 𝑛

[︂
1 +

⌈︁ 𝑚

𝑛%𝑚
− 1
⌉︁
𝑞′′ +

(︂
𝑁

𝑛
− 1 −

⌈︁ 𝑚

𝑛%𝑚
− 1
⌉︁)︂

𝑞′
]︂

(1.138)

𝑞′′ = 1 −
[︂(︂

1 − 𝑛%𝑚

𝑛

)︂
(1 − 𝑞𝛼)𝑛 +

𝑛%𝑚

𝑛
(1 − 𝑝𝛼)𝑛%𝑚(1 − 𝑞𝛼)𝑛−(𝑛%𝑚)

]︂

where 𝑞′ = 1 − (1 − 𝑞𝛼)𝑛, % is the modulo operator, and 𝑚/(𝑛%𝑚) = 0 if 𝑛%𝑚 = 0.

Derivation of the 𝑛 < 𝑚 case To derive equation 1.137, we note two-stage testing

procedures use 𝑁/𝑛 + 𝑛𝐺 tests where 𝐺 is the number of positive groups from the

first stage of testing. To understand the expected value of 𝐺, we first focus on the
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groups that contain individuals from the infected seed’s community. The infected

seed’s community contains 𝑚 individuals. As 𝑚 > 𝑛, the community is split into ⌈𝑚/𝑛⌉
groups. We keep communities intact as much as possible, meaning there will be ⌊𝑚/𝑛⌋
intact groups that contain only individuals from the infected seed’s community and

there will be one split group that contains the remainder individuals from the infected

seed’s community as well as individuals from other communities. As an example,

if 𝑛 = 5 and 𝑚 = 12, there will be two intact groups that contain only individuals

from the infected seed’s community and there will be one split group that contains

2 individuals from the infected seed’s community and 3 individuals from different

communities.

To determine the probability each group tests positive, we must first consider

which group the infected seed is located in. If the infected seed is placed in the

split group, that group tests positive with probability one, and the intact groups test

positive with probability (1− 𝑝𝛼)𝑛. If the seed individual is placed in one of the intact

groups, that group tests positive with probability one, the other intact groups tests

positive with probability (1 − 𝑝𝛼)𝑛, and the split group tests positive with probability

1 − (1 − 𝑝𝛼)𝑚%𝑛(1 − 𝑞𝛼)𝑛−(𝑚%𝑛), since the split group contains 𝑚%𝑛 individuals from

the same community as the infected seed and 𝑛− (𝑚%𝑛) individuals from different

communities. Here, % denotes the modulo operator. For example, 𝑚%𝑛 = 12%5 = 2

means the split community contains 2 individuals from the infected seed’s community

and 3 individuals from different communities.

The infected seed is placed into the split group with probability 𝑚%𝑛/𝑚, as there

are 𝑚%𝑛 remainder individuals out of the 𝑚 community members in the infected

seed’s community. As a result, one group contains the infected seed and tests positive

with probability one, ⌊𝑚/𝑛 − 1⌋ groups only contain individuals from the infected

seed’s community and test positive with probability 𝑝′ = (1− 𝑝𝛼)𝑛, and the remaining

⌈𝑚/𝑛 − 1⌉ − ⌊𝑚/𝑛 − 1⌋ groups test positive with probability

𝑝′′ =
𝑚%𝑛

𝑚
(1 − (1 − 𝑝𝛼)𝑛) +

(︂
1 − 𝑚%𝑛

𝑚

)︂
(1 − (1 − 𝑝𝛼)𝑚%𝑛(1 − 𝑞𝛼)𝑛−(𝑚%𝑛))
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= 1 −
[︂
𝑚%𝑛

𝑚
(1 − 𝑝𝛼)𝑛 +

(︂
1 − 𝑚%𝑛

𝑚

)︂
(1 − 𝑝𝛼)𝑚%𝑛(1 − 𝑞𝛼)𝑛−(𝑚%𝑛)

]︂

as they only contains individuals from the same community as the infected seed

with probability 𝑚%𝑛/𝑚 and they contains individuals from multiple communities with

probability 1 − 𝑚%𝑛/𝑚.

The remaining 𝑁/𝑛 − 1 − ⌈𝑚/𝑛 − 1⌉ groups contain only individuals from different

communities than the infected seed and therefore test positive with probability 𝑞′ =

1 − (1 − 𝑞𝛼)𝑛. Putting everything together yields the expected number of tests as

shown in equation 1.137.

Derivation of the 𝑛 ≥ 𝑚 case To derive equation 1.138, we note two-stage testing

procedures use 𝑁/𝑛 + 𝑛𝐺 tests where 𝐺 is the number of positive groups from the

first stage of testing. To understand the expected value of 𝐺, we first focus on the

groups that contain individuals from the infected seed’s community. The infected

seed’s community contains 𝑚 individuals. As 𝑛 ≥ 𝑚 and 𝑛 not necessarily divisible

by 𝑚, the community will either be pooled in its entirety into one group or split into

several groups. Similar to the 𝑛 < 𝑚 case, we keep communities intact as much as

possible when pooling. For example, if 𝑁 = 80, 𝑛 = 10 and 𝑚 = 8, each of the

𝑁/𝑛 = 8 groups will contain one full community of 8 as well as 2 individuals from the

remaining communities.

If the infected seed’s community is split, multiple groups will contain individuals

from the seed’s community. Each group of size 𝑛 contains 𝑛%𝑚 individuals from split

communities and 𝑛 − (𝑛%𝑚) individuals from intact communities, where % is the

modulo (remainder) operator. In the example above, 𝑛%𝑚 = 2 individuals came from

split communities while 𝑛− (𝑛%𝑚) = 8 individuals came from an intact community.

Therefore, if the infected seed’s community of size 𝑚 is split, individuals from the

community will be placed into ⌈𝑚/(𝑛%𝑚)⌉ groups. One of the groups will contain the

infected seed and will test positive with probability one. The remaining ⌈𝑚/(𝑛%𝑚) − 1⌉
groups contain 𝑛%𝑚 individuals from the seed’s community, each not infected with

probability 1 − 𝑝𝛼, and 𝑛− (𝑛%𝑚) individuals from different communities, each not
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infected with probability 1 − 𝑞𝛼.

As a last step, we derive the probability the infected seed’s community is split. In

each of the 𝑁/𝑛 groups, 𝑛%𝑚 individuals come from split communities. Therefore, a

total of (𝑁/𝑛)(𝑛%𝑚)/𝑚 communities are split, out of a total 𝑁/𝑚 communities. As a

result, the probability the infected seed’s community is split is

(𝑁/𝑛)(𝑛%𝑚)/𝑚
𝑁/𝑚

=
𝑛%𝑚

𝑛
(1.139)

We now summarize our results. One group contains the infected seed and tests

positive with probability one. With probability 𝑛%𝑚
𝑛

, the infected seed’s community is

split into ⌈𝑚/(𝑛%𝑚) − 1⌉ groups, each of which tests positive with probability

(1 − (1 − 𝑝𝛼)𝑛%𝑚(1 − 𝑞𝛼)𝑛−(𝑛%𝑚)). With probability 1 − 𝑛%𝑚
𝑛

, the infected seed’s

community remains intact and the ⌈𝑚/(𝑛%𝑚) − 1⌉ groups contain only individuals

from different communities than the infected seed and test positive with probability

1 − (1 − 𝑞𝛼)𝑛. Therefore, the probability the ⌈𝑚/(𝑛%𝑚) − 1⌉ groups test positive is

𝑞′′ =

(︂
1 − 𝑛%𝑚

𝑛

)︂
(1 − (1 − 𝑞𝛼)𝑛) +

𝑛%𝑚

𝑛
(1 − (1 − 𝑝𝛼)𝑛%𝑚(1 − 𝑞𝛼)𝑛−(𝑛%𝑚))

= 1 −
[︂(︂

1 − 𝑛%𝑚

𝑛

)︂
(1 − 𝑞𝛼)𝑛 +

𝑛%𝑚

𝑛
(1 − 𝑝𝛼)𝑛%𝑚(1 − 𝑞𝛼)𝑛−(𝑛%𝑚)

]︂

The remaining 𝑁/𝑛 − 1 − ⌈𝑚/(𝑛%𝑚) − 1⌉ groups contain only individuals from different

communities than the infected seed and test positive with probability 𝑞′ = 1−(1−𝑞𝛼)𝑛.

Therefore, the expected number of tests used under network grouping after correcting

for split communities and remainder individuals when 𝑛 ≥ 𝑚 is as shown in equation

1.138.

Discussion As mentioned above, the expected number of tests shown in equation 1.3,

which is the equation used in the main text, holds exactly when 𝑚 is divisible by 𝑛 or

𝑛 is divisible by 𝑚. When 𝑚 is not divisible by 𝑛 and 𝑛 is not divisible by 𝑚, equations

1.137 and 1.138 provide more accurate forms for the expected number of tests used

under network grouping. Note, equations 1.137 and 1.138 depend on how remainder
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individuals are handled. In the above derivations, we keep communities intact as much

as possible when pooling. To visualize an example of the remainder correction, we

simulate a network and epidemic, apply network grouping, and determine the number

of tests used. Specifically, we simulate a stochastic block model where 𝑁 = 100,

𝑚 = 10, 𝑝 = 0.90, and 𝑞 = 0.02. We simulate an epidemic process on the network

following the description in section 1.3 where 𝑣 = 0.05. We pool individuals into

groups following the network grouping procedure outlined in section 1.4. We run the

simulation 5000 times and average to understand the expected number of tests used

under network grouping. The results are shown in figure 1-5. The network grouping

line, given by equation 1.3, lines up exactly with the simulated results when 𝑚 is

divisible by 𝑛 or 𝑛 is divisible by 𝑚. When 𝑚 is not divisible by 𝑛 and 𝑛 is not

divisible by 𝑚, the remainder correction line, given by equations 1.137 and 1.138,

is closer to the simulated results. Note, for large networks, where 𝑁 is large, the

remainder correction has a negligible impact.

The expected number of tests after correcting for split communities and remainder

individuals collapses to the expected number of tests used in the main text and shown

in equation 1.3 when 𝑚 is divisible by 𝑛 or 𝑛 is divisible by 𝑚. When 𝑛 < 𝑚 and 𝑚

is divisible by 𝑛, 𝑚/𝑛 is an integer. Therefore, equation 1.137 becomes

E[𝑇𝑁𝐺] =
𝑁

𝑛
+ 𝑛

[︂
1 +

(︁𝑚
𝑛

− 1
)︁
𝑝′ +

(︂
𝑁

𝑛
− 1 −

(︁𝑚
𝑛

− 1
)︁)︂

𝑞′
]︂

(1.140)

which equals equation 1.3 in the 𝑛 < 𝑚 case. When 𝑛 ≥ 𝑚 and 𝑛 is divisible by 𝑚,

𝑛%𝑚 = 0 and 𝑚/(𝑛%𝑚) = 0 by definition. Therefore, equation 1.138 becomes

E[𝑇𝑁𝐺] =
𝑁

𝑛
+ 𝑛

[︂
1 +

(︂
𝑁

𝑛
− 1

)︂
𝑞′
]︂

(1.141)

which equals equation 1.3 in the 𝑛 ≥ 𝑚 case.

In addition, when 𝑝 = 𝑞, the remainder corrected expected number of tests collapses

to the expected number of tests under Dorfman testing. When 𝑝 = 𝑞, 𝑝𝛼 = 𝑞𝛼 = 𝑣

as shown in 1.19.4. Therefore, 𝑝′ = 𝑝′′ = 𝑞′ = 𝑞′′ = 𝑣′ where 𝑣′ = 1 − (1 − 𝑣)𝑛. As a
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Figure 1-5: Number of tests used to screen a population of 𝑁 = 100 when 𝑣 = 0.05,
𝑚 = 10, 𝑝 = 0.90, and 𝑞 = 0.02. The network grouping line demonstrates the
expected number of tests used under network grouping as given in equation 1.3. The
Dorfman testing and lower bound lines correspond to the number of tests used under
Dorfman testing and the two-stage lower bound respectively, as given in equations 1.1
and 1.2. The simulation line corresponds to the average number of tests used under
network grouping when the stochastic block model and epidemic model are simulated
and network grouping is applied to the simulated data. The remainder correction
line corresponds to the expected number of tests used under network grouping after
accounting for split communities and remainder nodes, as given in equations 1.137
and 1.138.
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result, both the 𝑛 < 𝑚 and 𝑛 ≥ 𝑚 cases simplify to

E[𝑇𝑁𝐺] =
𝑁

𝑛
+ 𝑛

[︂
1 +

(︂
𝑁

𝑛
− 1

)︂
𝑣′
]︂

(1.142)

which equals the expected number of tests used under Dorfman, as shown in equation

1.1.
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Chapter 2

Performance of Group Testing under

Imperfect Tests

Abstract

We consider the problem of identifying infected individuals in a population of size 𝑁 .
Group testing provides an approach that uses significantly fewer than 𝑁 tests when
infection prevalence is low. In this chapter, we derive the performance of the most
common form of group testing, Dorfman testing, under imperfect tests. We derive
the distribution of the number of tests needed, the number of false negatives, and the
number of false positives. The full distributions allow for the construction of confidence
intervals and provide better guidance for medical practitioners. Acknowledging the
flexibility available to practitioners, we allow for different test sensitivity and specificity
in the first and second stage of testing. We explicitly model first-stage sensitivity
as dependent on the number of samples in each group, which accounts for viral-load
dilution.

We have built a dashboard that allows practitioners to analyze the performance
of group testing under various parameters. The dashboard can be found at group-
testing.herokuapp.com. Documentation for the dashboard is provided in section
2.5.

2.1 Introduction

Group testing improves testing capabilities for infectious diseases when resources are

limited. Given a population of size 𝑁 , the standard approach to identify infected

individuals is to test all population members individually, which requires 𝑁 tests. In
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the most common form of group testing, called Dorfman testing, individual samples

are pooled together into groups of size 𝑛 for an initial stage of testing. If a group tests

negative, all individuals within the group are classified as negative for the disease. If

a group tests positive, all individual samples from the group are retested individually

to identify the infected members. To illustrate the power of group testing, consider

the scenario where 𝑁 = 50 and one individual is infected. If individuals are pooled

into groups of size 𝑛 = 10 for an initial stage of testing, one group will test positive

and all 10 samples from the group will be retested. The group testing approach uses

15 tests compared to the 50 used under individual testing.

Group testing was introduced by the statistician Robert Dorfman in 1943 to screen

for syphilis in the US military [51]. Dorfman’s idea was simple but powerful. As

a result, group testing has been employed numerous times in the medical field for

diseases including influenza, chlamydia, and malaria [52,72,73]. Within the US, group

testing is used in blood banks and infertility prevention programs where large numbers

of individuals are routinely tested [53, 74, 76, 86]. Group testing’s efficient use of

resources has made it a valuable technique in developing areas. Notably, group testing

was used during the early stages of the HIV pandemic in Africa when polymerase chain

reaction (PCR) test costs were high [77]. By reducing testing costs and increasing

access to diagnostic information, group testing plays an important role in increasing

health equity.

Since Dorfman’s work in 1943, numerous group testing approaches with strong

performance have been introduced [53,76,86–90,92–95]. However, Dorfman testing

remains the most common approach to group testing in practice because it is straight-

forward for labs to implement [52–55]. For a formal comparison of Dorfman testing to

individual testing and more advanced approaches, see the previous chapter on network

group testing.

In this chapter, we derive the performance of Dorfman testing under perfect and

imperfect tests, which result in false negatives and positives. We derive the distribution

of the number of tests needed, the number of false negatives, and the number of false

positives. The full distributions allow for the construction of confidence intervals
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and provide better guidance for medical practitioners. Acknowledging the flexibility

available to practitioners, we allow for different test sensitivity and specificity in

the first and second stage of testing. We explicitly model first-stage sensitivity as

dependent on the number of samples in each group, which accounts for viral-load

dilution.

To facilitate the use of group testing, we have built a dashboard that allows

practitioners to analyze the performance of group testing under various parameters.

The dashboard can be found at group-testing.herokuapp.com. The dashboard

takes in various input parameters, including population size, infection prevalence,

and first and second stage sensitivity and specificity, and returns the number of tests

needed, false negatives, and false positives as a function of group size. The outputs can

help practitioners design, understand, and implement various group testing programs.

The remainder of this chapter is organized as follows. Section 2.2 describes the

performance of group testing under perfect tests. Section 2.3 describes the performance

of group testing under imperfect tests, including the number of tests, false negatives,

and false positives. The section also includes a discussion of overall sensitivity

and specificity, confidence intervals, optimal group size, maximizing the number of

individuals tested, and sensitivity as a function of group size. Section 2.4 discusses

the impact of infection prevalence on the performance of group testing. Section 2.5

provides documentation for the dashboard. Section 2.6 provides an example of group

testing using our formulae and dashboard. Section 2.7 concludes. Derivations are

provided in the appendix.

2.2 Perfect tests

To begin, we describe the performance of Dorfman testing under perfect tests, which

result in no false negatives or positives. Dorfman testing is a two-stage group testing

procedure. Under two-stage testing, a population of size 𝑁 is split into 𝑁/𝑛 groups

of size 𝑛 for an initial stage of testing. Let 𝐺 denote the number of positive groups

after the initial stage. In the second stage of testing, all 𝑛 samples from each positive
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group are retested individually. In total, 𝑁/𝑛 + 𝑛𝐺 tests are used.

Under Dorfman testing [51], the 𝑁 individuals are infected independently with

probability 𝑝. The expected number of infected individuals, 𝐼, is simply E[𝐼] = 𝑁𝑝.

The number of tests needed under Dorfman testing, 𝑇 , is a random variable that is

distributed

𝑇 ∼ 𝑁

𝑛
+ 𝑛 · Bin

(︂
𝑁

𝑛
, 𝑞

)︂
(2.1)

where 𝑞 = 1 − (1 − 𝑝)𝑛. Taking the expectation of equation 2.1 provides the expected

number of tests needed under Dorfman testing

E[𝑇 ] =
𝑁

𝑛
+ 𝑁𝑞 (2.2)

where 𝑞 = 1 − (1 − 𝑝)𝑛. The derivation of 𝑇 is provided in appendix 2.8.1. When the

infection prevalence 𝑝 is low, Dorfman testing uses significantly fewer than 𝑁 tests in

expectation. As an example, consider the scenario where 𝑁 = 1000 and 𝑝 = 0.05 (5%).

If we employ Dorfman testing and a group size of 𝑛 = 10, only 507 tests are needed in

expectation to test the entire population, a reduction of nearly 50% compared to the

𝑁 = 1000 tests needed under individual testing.

2.3 Imperfect tests

In this section, we analyze the performance of Dorfman testing under imperfect tests,

which result in false negatives and positives. We derive the distribution of the number

of tests needed, number of false negatives, and number of false positives.

The performance of a diagnostic test is measured by two parameters: sensitivity

and specificity. The sensitivity of a test is the fraction of infected individuals who

correctly test positive. Therefore, sensitivity equals one minus the false negative rate.

The specificity of a test is the fraction of non-infected individuals who correctly test

negative. Therefore, specificity equals one minus the false positive rate. Relating

the medical terms to statistical terminology, sensitivity is the power of the test and
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specificity is one minus the size of the test.

In our analysis, we allow test sensitivity and specificity to differ between the first

stage and second stage of testing. This allows practitioners to use different tests

for the first stage, when groups are tested, and the second stage, when individual

samples are tested. We denote first-stage sensitivity as 𝑠𝑒1,𝑛, second-stage sensitivity

as 𝑠𝑒2 , first-stage specificity as 𝑠𝑝1 , and second-stage specificity as 𝑠𝑝2 . We explicitly

allow first-stage sensitivity, 𝑠𝑒1,𝑛, to depend on the group size 𝑛, since pooling samples

dilutes the viral load of an infected sample and can therefore reduce test sensitivity.

We leave 𝑠𝑒1,𝑛, 𝑠𝑒2 , 𝑠𝑝1 , and 𝑠𝑝2 as exogenous parameters for medical practitioners to

input.

In section 2.6, we provide an example of a university testing its undergraduate

population for COVID-19. The example applies the quantities and concepts discussed

in this section.

2.3.1 Number of tests needed

The number of tests needed under Dorfman testing and imperfect tests differs from

the number under perfect tests because infected groups may incorrectly test negative

and non-infected groups may incorrectly test positive. The number of tests needed

under Dorfman testing and imperfect tests, 𝑇 ′, is distributed

𝑇 ′ ∼ 𝑁

𝑛
+ 𝑛 · Bin

(︂
𝑁

𝑛
, 𝑞′
)︂

(2.3)

where 𝑞′ = 𝑠𝑒1,𝑛(1 − (1 − 𝑝)𝑛) + (1 − 𝑠𝑝1)(1 − 𝑝)𝑛. Taking the expectation of equation

2.3 provides the expected number of tests needed under Dorfman testing and imperfect

tests

E[𝑇 ′] =
𝑁

𝑛
+ 𝑁𝑞′ (2.4)

where 𝑞′ = 𝑠𝑒1,𝑛(1 − (1 − 𝑝)𝑛) + (1 − 𝑠𝑝1)(1 − 𝑝)𝑛. The derivation of 𝑇 ′ is provided in

appendix 2.8.2. The number of tests needed under Dorfman testing and imperfect
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tests can be either less than or greater than the number of tests needed under perfect

tests, depending on test sensitivity and specificity.

2.3.2 Number of false negatives

Under imperfect tests, some infected individuals incorrectly test negative. It is

instructive to compare the number of false negatives under Dorfman testing and

individual testing. Recall, 𝑁𝑝 individuals are infected in expectation. Under individual

testing, each infected individual tests negative incorrectly with probability 1 − 𝑠𝑒2 .

We use second-stage sensitivity when discussing individual testing because individual

samples are tested in the second stage. Therefore, there are 𝑁𝑝(1−𝑠𝑒2) false negatives

in expectation under individual testing.

The number of false negatives under Dorfman testing and imperfect tests, 𝐹𝑁 , is

distributed

𝐹𝑁 ∼ Bin (𝑁, 𝑝(1 − 𝑠𝑒1,𝑛𝑠𝑒2)) (2.5)

Taking the expectation of equation 2.5 provides the expected number of false negatives

under Dorfman testing and imperfect tests

E[𝐹𝑁 ] = 𝑁𝑝(1 − 𝑠𝑒1,𝑛𝑠𝑒2) (2.6)

The derivation of 𝐹𝑁 is provided in appendix 2.8.3.

Comparing the two approaches, Dorfman testing results in more false negatives

than individual testing in expectation (since 1 − 𝑠𝑒1,𝑛𝑠𝑒2 ≥ 1 − 𝑠𝑒2). The reason is

simple: Dorfman testing uses two stages of testing so infected individuals must test

positive correctly twice, compared to just once under individual testing. In addition,

first-stage sensitivity often decreases with group size 𝑛. Although individual testing

results in fewer false negatives, the significant reduction in the number of tests needed

under group testing provides several economical options to reduce false negatives.

Practitioners can use more sensitive tests when conducting group testing than when
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conducting individual testing, or can screen the population more frequently under

group testing than individual testing (e.g., twice a week rather than once a week).

2.3.3 Number of false positives

Under imperfect tests, some non-infected individuals incorrectly test positive. Again,

we can compare Dorfman testing to individual testing. Recall, 𝑁(1 − 𝑝) individuals

are not infected in expectation. Under individual testing, each non-infected individual

tests positive incorrectly with probability 1−𝑠𝑝2 , where we use second-stage sensitivity

for our comparison since individual samples are tested in the second stage. Therefore,

there are 𝑁(1 − 𝑝)(1 − 𝑠𝑝2) false positives in expectation under individual testing.

The number of false positives under Dorfman testing and imperfect tests, 𝐹𝑃 , is

distributed

𝐹𝑃 ∼ Bin
(︀
𝑁, (1 − 𝑝)(1 − 𝑠𝑝2)𝑞

′
𝑛−1

)︀
(2.7)

where 𝑞′𝑛−1 = 𝑠𝑒1,𝑛(1 − (1 − 𝑝)𝑛−1) + (1 − 𝑠𝑝1)(1 − 𝑝)𝑛−1. Taking the expectation of

equation 2.7 provides the expected number of false positives under Dorfman testing

and imperfect tests

E[𝐹𝑃 ] = 𝑁(1 − 𝑝)(1 − 𝑠𝑝2)𝑞
′
𝑛−1 (2.8)

where 𝑞′𝑛−1 = 𝑠𝑒1,𝑛(1 − (1 − 𝑝)𝑛−1) + (1 − 𝑠𝑝1)(1 − 𝑝)𝑛−1. The derivation of 𝐹𝑃 is

provided in appendix 2.8.4.

Dorfman testing results in fewer false positives than individual testing (since

𝑞′𝑛−1 ≤ 1). Again, the reason is simple: for an individual to test positive incorrectly

under Dorfman testing, they must test positive incorrectly during the second stage.

Fewer individuals are tested during the second stage than during individual testing.
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2.3.4 Overall sensitivity and specificity

As we have discussed, diagnostic tests are graded by their sensitivity and specificity.

Testing procedures can also be graded by their overall sensitivity and specificity.

Sensitivity measures the fraction of infected individuals that correctly test positive.

Specificity measures the fraction of non-infected individuals that correctly test negative.

The overall sensitivity of Dorfman testing, 𝑠𝑒𝐷 , is one minus the overall false

negative rate. Likewise, the overall specificity of Dorfman testing, 𝑠𝑝𝐷 , is one minus

the overall false positive rate. Therefore,

𝑠𝑒𝐷 = 1 − E[𝐹𝑁 ]

E[𝐼]
= 𝑠𝑒1,𝑛𝑠𝑒2 (2.9)

𝑠𝑝𝐷 = 1 − E[𝐹𝑃 ]

𝑁 − E[𝐼]
= 1 − (1 − 𝑠𝑝2)𝑞

′
𝑛−1 (2.10)

where E[𝐼] = 𝑁𝑝 and 𝑞′𝑛−1 = 𝑠𝑒1,𝑛(1 − (1 − 𝑝)𝑛−1) + (1 − 𝑠𝑝1)(1 − 𝑝)𝑛−1. Compared to

individual testing, Dorfman testing has lower sensitivity (as 𝑠𝑒1,𝑛𝑠𝑒2 ≤ 𝑠𝑒2) and higher

specificity (as 1− (1− 𝑠𝑝2)𝑞
′
𝑛−1 ≥ 𝑠𝑝2 since 𝑞′𝑛−1 ≤ 1), mirroring our discussion of false

negatives and positives.

The positive predictive value (PPV) of a test or testing approach represents the

fraction of positive results that correspond to true positives. Likewise, the negative

predictive value (NPV) represents the fraction of negative results that correspond to

true negatives. PPV and NPV both depend on the prevalence of the disease as well

as sensitivity and specificity. The PPV and NPV of Dorfman testing are

𝑃𝑃𝑉𝐷 =
𝑝 · 𝑠𝑒𝐷

𝑝 · 𝑠𝑒𝐷 + (1 − 𝑝)(1 − 𝑠𝑝𝐷)
(2.11)

𝑁𝑃𝑉𝐷 =
(1 − 𝑝)𝑠𝑝𝐷

𝑝(1 − 𝑠𝑒𝐷) + (1 − 𝑝)𝑠𝑝𝐷
(2.12)

2.3.5 Confidence intervals

Group testing work often focuses on the expected values of the quantities of interest.

However, relying on expectations can result in serious issues in practice. Expectations

define values that can be expected on average. When implementing group testing,
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observed values will be either larger or smaller than expectation.

Consider the following scenario: a university is implementing group testing to screen

its undergraduate population for COVID-19. The university has an undergraduate

population of 5000 students and infection prevalence of 2%. Under Dorfman testing,

the university needs 1415 tests in expectation to screen its population using groups

of size 10 and assuming perfect tests. However, the university may actually need

more tests to account for the randomness in group testing. In fact, there is a 49%

probability the university will need more than 1415 tests. Better guidance would be

"with 95% confidence, the university needs 𝑥 tests or less to screen its population of

5000." To provide such guidance, confidence intervals are needed.

Because we have defined the full distributions of the quantities of interests, con-

fidence intervals can easily be derived. The number of tests needed is an affine

transformation of a binomial random variable. The number of false negatives and

false positives are binomial random variables.

To provide guidance to the university in our motivating example, we derive the

upper confidence bound for the number of tests needed. The CDF of 𝑇 ′, the number

of tests needed under imperfect tests, is

P(𝑇 ′ ≤ 𝑧) = P

(︂
𝑁

𝑛
+ 𝑛 · Bin

(︂
𝑁

𝑛
, 𝑞′
)︂

≤ 𝑧

)︂
(2.13)

= P

(︂
Bin

(︂
𝑁

𝑛
, 𝑞′
)︂

≤ 𝑧

𝑛
− 𝑁

𝑛2

)︂
(2.14)

= 𝐹Bin(𝑁
𝑛
,𝑞′)

(︂
𝑧

𝑛
− 𝑁

𝑛2

)︂
(2.15)

where 𝐹𝑋(𝑡) is the CDF of random variable 𝑋 evaluated at 𝑡. To build a confidence

interval for 𝑇 ′, we simply evaluate the quantile function (also called the inverse CDF

or percent point function) at our desired probability level. In our scenario, we are

interested in the number of tests 𝑧 such that 𝑇 ′ is less than 𝑧 with (1−𝛼)% probability,

where 𝛼 is our significance level. Therefore, we are looking for 𝑧 such that

𝐹Bin(𝑁
𝑛
,𝑞′)

(︂
𝑧

𝑛
− 𝑁

𝑛2

)︂
= 1 − 𝛼 (2.16)

107



Using the quantile function, we have

𝑄Bin(𝑁
𝑛
,𝑞′)(1 − 𝛼) =

𝑧

𝑛
− 𝑁

𝑛2
(2.17)

where 𝑄𝑋(𝑡) is the quantile function of random variable 𝑋 evaluated at 𝑡. Solving for

𝑧 provides

𝑧 =
𝑁

𝑛
+ 𝑛 ·𝑄Bin(𝑁

𝑛
,𝑞′)(1 − 𝛼) (2.18)

The binomial distribution does not have a closed-form quantile function. However,

equation 2.18 can easily be evaluated computationally. Using Python, this is imple-

mented as

from scipy.stats import binom

qprime = se1[n] * (1-(1-p)**n) + (1-sp1) * (1-p)**n

x = binom.ppf(1 - alpha, N/n, qprime)

z = N/n + n*x

Returning to our motivating example, we can use the above derivation to analyze

the number of tests the university needs to screen its population. Recall, the university

has an undergraduate population of size 𝑁 = 5000, an infection prevalence of 𝑝 = 0.02,

perfect tests, and is using a group size of 𝑛 = 10. Using equation 2.18 and our code

snippet, the university needs 1560 tests or less to screen its population with 95%

confidence.

2.3.6 Optimal group size

In this subsection, we discuss the optimal group size, which minimizes the number of

tests needed to screen a population. In practice, group size is often determined by

medical considerations, such as test sensitivity, or logistical factors. If practitioners

are considering a certain group size or range of sizes, they can use our dashboard to

analyze the performance of group testing for the group sizes under consideration. In

addition, it is easy to visually determine the optimal group size using our dashboard
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for various population and test parameters. For a full example using our dashboard,

see section 2.6.

It is instructive to consider the optimal group size analytically. The optimal group

size that minimizes the expected number of tests needed can be derived in closed form.

Taking the derivative of E[𝑇 ′] in equation 2.4, setting the derivative equal to 0, and

solving for 𝑛 provides the optimal group size 𝑛*

𝑛* =
2

ln(1 − 𝑝)
·𝑊

[︃
−1

2

(︂
ln(1 − 𝑝)

1 − 𝑠𝑒1,𝑛 − 𝑠𝑝1

)︂1/2
]︃

(2.19)

where 𝑊 [𝑥] is the Lambert 𝑊 function (product log). Note, we do not treat 𝑠𝑒1,𝑛

as a function of 𝑛 for this derivation. Interestingly, the optimal group size does not

depend on the population size 𝑁 . As an example, if we are testing a population with

infection prevalence 𝑝 = 0.02 where first-stage sensitivity is a constant 𝑠𝑒1,𝑛 = 0.90 and

first-stage specificity is 𝑠𝑝1 = 0.95, the optimal group size is 𝑛* = 8.3 using equation

2.19. For a population of size 𝑁 = 5000, 1509 tests are needed in expectation to

screen the population using groups of size 8, a 70% reduction in tests.

Equation 2.19 provides the optimal group size that minimizes the number of tests

needed in expectation. The optimal group size that minimizes the number of tests

needed with high probability cannot be derived analytically, because the binomial

distribution does not have a closed-form quantile function. However, the optimal

group size that minimizes the number of tests needed (either in expectation or with

high probability) can easily be determined using our dashboard.

2.3.7 Maximizing the number of people tested

In this subsection, we discuss the maximum number of people that can be tested given

a fixed number of tests. The discussion is useful for resource-constrained institutions

who may not have enough tests to screen their population. The derivation highlights

another benefit of knowing the full distribution of the number of tests needed.

The optimal group size that maximizes the number of screened individuals for

a given number of tests in expectation is equal to 𝑛* in equation 2.19, the optimal
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group size that minimizes the number of tests needed for a given population size. This

is because 𝑛* does not depends on 𝑁 , the population size. The derivation can be

double checked by solving for 𝑁 in equation 2.4, taking the derivative with respect to

𝑛, setting the derivative equal to 0, and solving for 𝑛. Solving for 𝑁 in equation 2.4

yields the population size as a function of the expected number of tests and group size

𝑁 =
𝑛 · E[𝑇 ′]

1 + 𝑛𝑞′
(2.20)

where 𝑞′ = 𝑠𝑒1,𝑛(1 − (1 − 𝑝)𝑛) + (1 − 𝑠𝑝1)(1 − 𝑝)𝑛. Plugging 𝑛* from equation 2.19

into equation 2.20 provides the maximum number of individuals that can be screened

given a fixed number of tests in expectation.

If an institution only has a fixed number of tests, they will likely run out of tests if

they try to screen the maximum number of individuals provided by equation 2.20 and

𝑛*. This is because equation 2.20 and 𝑛* provide the maximum given a fixed number

of tests in expectation. Instead, better guidance would be "an institution with 𝑡 tests

can screen up to 𝑁 individuals using group testing with 95% confidence." To provide

such guidance, we can employ the distribution of the number of tests.

We cannot derive the maximum population size that can be screened with high

probability analytically because the binomial distribution does not have a closed-form

quantile function. However, the maximum population size can easily be found by

searching over a range of population sizes using equation 2.16. In subsection 2.3.5 on

confidence intervals, equation 2.16 provides the CDF of the number of tests needed.

Using equation 2.16, we set 𝑧 equal to our given number of tests, 𝑛 equal to the optimal

group size 𝑛* from equation 2.19, and use infection prevalence and test accuracy to

determine 𝑞′. We then evaluate the left-hand side for a range of population 𝑁 values.

Each evaluation returns the probability that group testing uses fewer than 𝑧 tests.

For small values of 𝑁 , the probability will be 1. For large values of 𝑁 , the probability

will fall below 1 and fall to zero. We can then choose an 𝑁 such that the probability

is equal to our desired confidence level.

For example, consider the scenario of a university testing its student body for
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COVID-19. The university is resource constrained and only has 1000 tests available.

Infection prevalence is 𝑝 = 0.02, first-stage sensitivity is a constant 𝑠𝑒1,𝑛 = 0.90, and

first-stage specificity is 𝑠𝑝1 = 0.95. Using equation 2.19, we determine the optimal

group size is 𝑛* = 8. Using equation 2.16, we find the university can test 𝑁 = 1000

students with 1000 tests with probability 1. However, the probability the university

can test 𝑁 = 5000 students with 1000 tests is 0. Iterating over values of 𝑁 , we find

the university can test 𝑁 = 2999 students with probability 0.95.

2.3.8 Sensitivity as a function of group size

In this subsection, we discuss various ways to model first-stage sensitivity. We denote

first-stage as 𝑠𝑒1,𝑛 and explicitly allow it to depend on the group size 𝑛, since pooling

samples dilutes the viral load of an infected sample and can therefore reduce test

sensitivity.

At the beginning of this section, we mention that we leave 𝑠𝑒1,𝑛 as an exogenous

parameter for medical practitioners to input. Medical practitioners can evaluate the

sensitivity of their tests in a controlled laboratory environment and determine the

sensitivity of their tests for a range of group sizes. They can then explicitly input test

sensitivity 𝑠𝑒1,𝑛 for each value of 𝑛 and compute the performance of group testing using

the formulae we have introduced here. However, evaluating sensitivity for all values of

𝑛 is demanding. In many scenarios, practitioners can interpolate test sensitivity for a

range of group sizes.

In our dashboard, we model test sensitivity as linearly decreasing with group size.

We ask for test sensitivity when evaluating individual samples and test sensitivity

when evaluating pools of size input, where input is entered by the user. We linearly

interpolate between the two sensitivity values and linearly extrapolate to determine

sensitivity for all group sizes. Sensitivity is floored at 0. An example is provided in

section 2.6.

Linearly interpolation is simple to understand and implement, and captures de-

creasing sensitivity with group size. However, many other schemes can be used. For

example, a logistic curve starting at a high value for individual samples and falling
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to 0 for large group sizes provides another approach to model sensitivity. Another

possibility is a step function, which models first-stage sensitivity as constant until

some threshold group size, after which it steps down to a new value (or 0). Step

functions may be appropriate in practice, since many practitioners evaluate the limit

of detection of their tests. The limit of detection is the maximum dilution (minimum

viral load) that can still be detected using a specific test.

By explicitly allowing first-stage sensitivity to depend on the group size 𝑛, we

allow for a variety of methods to model 𝑠𝑒1,𝑛. All of these approaches take viral-load

dilution into account.

2.4 Impact of infection prevalence

In this section, we discuss the impact of infection prevalence on our quantities of

interest. Group testing works best when infection prevalence is low (less than 20%). In

many practical scenarios, infection prevalence is low enough to use group testing. For

example, COVID infection prevalence in the US estimated by the COVID Tracking

Project and Johns Hopkins University has been below 10% for the majority of the

pandemic [96].

Figure 2-1 provides insight into the impact of infection prevalence on the perfor-

mance of group testing. We see the number of tests needed under group testing varies

for different values of 𝑝. Group testing works very well when 𝑝 is low (𝑝 = 0.001,

𝑝 = 0.01) and requires far fewer tests than individual testing. However, when 𝑝 is

large (𝑝 = 0.1), group testing does not provide as dramatic of an improvement. As we

observe in the figure, the number of tests needed to screen a population using group

testing increases with infection prevalence.

Group testing works well when 𝑝 is low because many groups will not contain an

infected individual and will test negative. These groups of individuals will be cleared

with only one test. However, when 𝑝 is large, groups are more likely to contain an

infected individual and test positive. The individuals that make up positive groups

then need to be retested in the second stage, diminishing the advantage of group
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Figure 2-1: Number of tests needed for various values of infection prevalence. The
figure displays the number of tests needed to screen a population of size 5000 as a
function of group size. We set 𝑠𝑒1,𝑛 = 0.90 for all 𝑛 and 𝑠𝑝1 = 0.95. The three curves
represent the number of tests needed for different values of infection prevalence 𝑝.
Solid lines displays the expected number of tests and shaded regions provide 95%
confidence intervals.

testing.

It is also instructive to analyze the impact of infection prevalence on optimal group

size. Figure 2-2 displays the optimal group size as a function of 𝑝. We see optimal

group size decreases with 𝑝. The reason is simple: when 𝑝 is low, large groups can be

used because the probability they contain an infected individual is low. As a result,

large groups of individuals can be cleared with one test each. However, when 𝑝 is large,

large groups will contain infected individuals with high probability, and individuals

will have to be retested. As a result, it is more efficient to use smaller groups when 𝑝

is large.

2.5 Dashboard documentation

We have built a dashboard that allows practitioners to analyze the performance of group

testing under various parameters. The dashboard can be found at group-testing.

herokuapp.com. The dashboard applies the most common form of group testing,

Dorfman testing, which is a two-stage group testing procedure where individuals are
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Figure 2-2: Optimal group size as a function of infection prevalence. The figure
displays the optimal group size 𝑛*, which minimizes the number of tests needed to
screen a population, for various values of infection prevalence 𝑝. We set 𝑠𝑒1,𝑛 = 0.90
for all 𝑛 and 𝑠𝑝1 = 0.95.

grouped randomly.

The dashboard takes in various input parameters, including population size, in-

fection prevalence, and first and second stage sensitivity and specificity, and returns

the number of tests needed, number of false negatives, and number of false positives

as a function of group size. Acknowledging the flexibility available to practitioners,

we allow for different test sensitivity and specificity in the first and second stage of

testing. We also provide confidence intervals in the outputs. The outputs, which use

the quantities derived in this chapter, can help practitioners design, understand, and

implement various group testing programs. In the following section, we provide an

example using our dashboard.

We explicitly model first-stage sensitivity as dependent on the number of samples

in each group, which accounts for viral-load dilution. Specifically, the dashboard

models first-stage sensitivity as decreasing linearly with group size. Users input the

sensitivity of the first-stage tests when testing individual samples. They then input

the sensitivity of the first-stage tests when testing a pooled sample containing input

individuals. The dashboard then linearly interpolates between the two points and

linearly extrapolates for all other group sizes. First-stage sensitivity is floored at 0.
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As a result, practitioners can evaluate test sensitivity as a function of group size in a

laboratory setting, and input the correct sensitivities in the dashboard.

The dashboard inputs are

• Population: The size of the population (number of individuals) to be tested

using group testing. This corresponds to the variable 𝑁 in this chapter.

• Prevalence (%): The infection prevalence in percent. For example, set equal

to 2 if 2% of the population is infected with the disease. Often, infection

prevalence is an estimate based on preliminary testing results or nearby areas.

This corresponds to the variable 𝑝 in this chapter.

• Max group size: The maximum group size to be used during group testing.

The output plots will plot results for group sizes ranging from 1 to max group

size.

• Specificity, 1st stage (%): Specificity of the tests used in the first stage of

testing. Specificity is the fraction of non-infected individuals that correctly test

negative. It is equal to one minus the false positive rate. Pooled samples are

tested in the first stage. Enter as a percentage. For example, enter 95 if the

specificity of the test is 95%. This corresponds to the variable 𝑠𝑝1 in this chapter.

• Specificity, 2nd stage (%): Specificity of the tests used in the second stage

of testing. Specificity is the fraction of non-infected individuals that correctly

test negative. It is equal to one minus the false positive rate. Individual samples

are tested in the second stage. Enter as a percentage. For example, enter 95 if

the specificity of the test is 95%. This corresponds to the variable 𝑠𝑝2 in this

chapter.

• Sensitivity, 1st stage, n=1 (%): Sensitivity of the tests used in the first

stage of testing when group size equals 1. In other words, sensitivity of the

tests used in the first stage when testing individual samples. Sensitivity is the
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fraction of infected individuals that correctly test positive. It is equal to one

minus the false negative rate. Pooled samples are tested in the first stage. Enter

as a percentage. For example, enter 95 if the sensitivity of the test is 95%. This

corresponds to the variable 𝑠𝑒1,𝑛=1 in this chapter.

• Sens., 1st stage, input n: The dashboard models first-stage sensitivity as

decreasing linearly with group size (see explanation at the start of this section).

The dashboard linearly interpolates between first-stage sensitivity when 𝑛 = 1,

which is entered in the previous field, and first-stage sensitivity when 𝑛 = 𝑖𝑛𝑝𝑢𝑡,

where 𝑖𝑛𝑝𝑢𝑡 is entered here.

• Sens., 1st stage, n=input (%): Sensitivity of the tests used in the first stage

of testing when group size equals input, the input value from the previous field.

Sensitivity is the fraction of infected individuals that correctly test positive. It

is equal to one minus the false negative rate. Pooled samples are tested in the

first stage. This corresponds to the variable 𝑠𝑒1,𝑛=𝑖𝑛𝑝𝑢𝑡 in this chapter. The

dashboard linearly interpolates between first-stage sensitivity when 𝑛 = 1, which

is entered in a previous field, and first-stage sensitivity when 𝑛 = 𝑖𝑛𝑝𝑢𝑡, where

𝑖𝑛𝑝𝑢𝑡 is entered in the previous field and 𝑠𝑒1,𝑛=𝑖𝑛𝑝𝑢𝑡 is entered here. For example,

if first-stage sensitivity is equal to 0.90 when testing individual samples, but

equals 0.80 when testing groups of size 30, we set 𝑠𝑒1,𝑛=1 = 0.90, input = 30, and

𝑠𝑒1,𝑛=𝑖𝑛𝑝𝑢𝑡 = 0.80.

• Sens., 2nd stage (%): Sensitivity of the tests used in the second stage of

testing. Sensitivity is the fraction of infected individuals that correctly test

positive. It is equal to one minus the false negative rate. Individual samples

are tested in the second stage. Enter as a percentage. For example, enter 95 if

the sensitivity of the test is 95%. This corresponds to the variable 𝑠𝑒2 in this

chapter.

• Confidence interval (%): Size of the confidence interval to display in the

output plots. For example, if 95 is entered, 95% confidence intervals will be
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shown in the output plots. As a specific example, if 95 is entered, the confidence

interval in the "number of tests needed" plot shows the interval of the number

of tests needed to screen the population with 95% confidence. See subsection

2.3.5 for a longer discussion of confidence intervals.

The dashboard outputs are

• Plot of the number of tests needed as a function of group size: The

number of tests needed under Dorfman testing and imperfect tests as a function

of group size. The y-axis records the number of tests needed to screen the

population. The x-axis records the group size (number of samples pooled into

each group in the first stage of testing). The solid line reports the expected

number of tests needed, which corresponds to equation 2.4 in this chapter.

Confidence intervals are displayed as shaded regions and are derived from

equation 2.3 in this chapter. Hovering over the plot with your cursor will provide

the exact values for given group sizes.

• Plot of the number of false negatives as a function of group size: The

number of false negatives under Dorfman testing and imperfect tests as a function

of group size. The y-axis records the number of false negatives. The x-axis

records the group size (number of samples pooled into each group in the first

stage of testing). The solid line reports the expected number of false negatives,

which corresponds to equation 2.6 in this chapter. Confidence intervals are

displayed as shaded regions and are derived from equation 2.5 in this chapter.

Hovering over the plot with your cursor will provide the exact values for given

group sizes.

• Plot of the number of false positives as a function of group size: The

number of false positives under Dorfman testing and imperfect tests as a function

of group size. The y-axis records the number of false positives. The x-axis

records the group size (number of samples pooled into each group in the first

stage of testing). The solid line reports the expected number of false positives,
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which corresponds to equation 2.8 in this chapter. Confidence intervals are

displayed as shaded regions and are derived from equation 2.7 in this chapter.

Hovering over the plot with your cursor will provide the exact values for given

group sizes.

2.6 Example

In this section, we provide an example of the performance of group testing under

specific parameters. For our example, we consider the scenario of a university testing

its undergraduate population of 𝑁 = 5000 students for COVID-19. The university

estimates infection prevalence to be 𝑝 = 0.05, either from prior testing or by observing

the prevalence in the surrounding community. We note 𝑝 = 0.05 is in line with COVID

infection prevalence in the US estimated by the COVID Tracking Project and Johns

Hopkins University [96].

The university contracts a nearby laboratory to conduct PCR tests to screen the

population. The lab uses a highly specific test in the first stage with 𝑠𝑝1 = 0.98. In

the second stage, the lab uses a less specific test with 𝑠𝑝2 = 0.95. The first-stage test is

also highly sensitive with 𝑠𝑒1,𝑛=1 = 0.90. The lab knows the sensitivity of the test on

individual samples from previous experience and from FDA guidance [104]. It analyzes

the sensitivity of the test under sample dilution. After running lab experiments, it

estimates the sensitivity of the test to be 0.75 when 𝑛 = 20. Therefore, 𝑠𝑒1,𝑛=20 = 0.75.

The sensitivity of the second-stage test is 𝑠𝑒2 = 0.88. Note, these specificities and

sensitivities are in line with true COVID test performance [105].

To analyze the performance of group testing under these parameters, we use our

dashboard (group-testing.herokuapp.com). The dashboard visualizes the quantities

derived in this chapter. We input our parameters, which are defined above, into the

dashboard (Figure 2-3). The dashboard models first-stage sensitivity as decreasing

linearly with group size. As a result, it linearly interpolates between 𝑠𝑒1,𝑛=1 = 0.90

and 𝑠𝑒1,𝑛=20 = 0.75 and linearly extrapolates to provide first-stage sensitivities for all

values of 𝑛. First-stage sensitivity is floored at 0.
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Figure 2-3: Dashboard parameter inputs for our university testing example. The
dashboard analyzes the performance of group testing under specific parameters. In the
dashboard input fields, we specify the population size, infection prevalence, and test
specificity and sensitivity. Details regarding specificity and sensitivity are provided in
the main text. We leave max group size as its default value, meaning the dashboard
will provide the performance of group testing for groups of size 1 to 40. We leave
confidence interval as its default value, meaning 95% confidence intervals will be
displayed.

Figure 2-4a provides the number of tests needed under group testing in this

scenario. Under individual testing, the university would need 5000 tests to screen

its population. However, the university would only need 2047 tests in expectation

to screen its entire population using group testing and groups of size 6. With 95%

probability, the university would need between 1,901 and 2,195 tests using groups of

size 6. Requiring less than 2200 tests to screen 5000 students is a reduction of 56%

compared to individual testing.

From the figure, we see groups of size 6 minimize the number of tests needed in

expectation. As mentioned in subsection 2.3.6, it is easy to determine the optimal

group size that minimizes the number of tests needed (either in expectation or with

high probability) using our dashboard. The number of tests needed first decreases

with group size 𝑛, highlighting the power of group testing, because many groups

of individuals are classified as negative for the disease using only one test. After

reach a minimum at 𝑛 = 6, the number of tests starts increasing with group size.

This is because large groups are more likely to include infected individuals and test

positive, which means the individual samples must be retested in the second stage.

Interestingly, we see the number of tests decreases again when 𝑛 becomes very large.

This is because first-stage sensitivity becomes very low for large 𝑛 and large pools

begin testing negative incorrectly, which means the individual samples are not retested

in the second stage.
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(a)

(b)

(c)

Figure 2-4: Performance of group testing for our university testing example. The
subfigures display the (a) number of tests needed, (b) number of false negatives, and
(c) number of false positives, all as a function of group size. The solid line provides
the expected value and the shaded region is a 95% confidence interval.

120



Viewing Figure 2-4b, we see the number of false negatives increases steadily with

group size. False negatives increase with group size because infected samples are

diluted in the first stage. If the university uses groups of size 6, they will have 61

false negatives in expectation. With 95% confidence, they will have between 46 and

76 false negatives. Under individual testing, there would be 𝑁𝑝(1 − 𝑠𝑒2) = 30 false

negatives in expectation. As discussed in section 2.3.2, Dorfman testing results in

more false negatives than individual testing. As mentioned, the significant reduction

in the number of tests needed under group testing provides several economical options

to reduce false negatives. The university may choose to use more sensitive tests when

conducting group testing than when conducting individual testing, or may choose to

screen the population more frequently under group testing than individual testing

(e.g., twice a week rather than once a week).

Figure 2-4c provides the number of false positives under our scenario. If the

university uses groups of size 6, there will be 50 false positives in expectation. With

95% confidence, false positives will be between 37 and 64. Under individual testing,

there would be 𝑁(1 − 𝑝)(1 − 𝑠𝑝2) = 238 false positives in expectation. As discussed in

section 2.3.3, Dorfman testing results in fewer false positives than individual testing.

From the figure, we see the number of false positives first increases with group size.

This is because the number of samples tested in the second stage increases with group

size as large groups are more likely to contain an infected individual and require

retesting in the second stage. However, the number of false positives then begins

decreasing for large group sizes. This is because first-stage sensitivity becomes very

low for large group sizes and many groups test negative incorrectly in the first stage.

As a result, few samples are tested in the second stage.

The quantities we have provided in this chapter, along with the dashboard, provide

guidance to the hypothetical university on the performance of a group testing approach

to screen their undergraduate population. Specifically, we provide information on

the number of tests needed, the number of false negatives, and the number of false

positives for their unique circumstances and test parameters. The quantities derived

in this chapter include several advances that reflect the realities of group testing
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in practice. First, we allow first and second stage test sensitivity and specificity to

differ. Second, we explicitly model first-stage sensitivity as dependent on group size,

which accounts for viral-load dilution. Third, we provide the full distributions of the

quantities of interest. As we have seen, full distributions allow for the construction of

confidence intervals and provide better guidance to practitioners.

2.7 Conclusions

Our work extends our understanding of the most common approach to group testing,

Dorfman testing. We derive the performance of Dorfman testing under conditions

faced by medical practitioners. Specifically, we derive the number of tests needed, the

number of false positives, and the number of false negatives under group testing when

tests are imperfect, tests have varying sensitivities and specificities, and samples are

diluted. We provide the full distributions for these quantities of interest, which allow

for the construction of confidence intervals and provide better guidance for medical

practitioners. In addition, we have built a dashboard that allows practitioners to

analyze the performance of group testing under various parameters.

Our work provides a theoretical foundation for the group testing approaches used

in practice. Our derivations and discussion help practitioners design, understand, and

implement group testing programs in order to efficiently identify infected individuals.

By providing analytical results, we expand the understanding of group testing, its

performance in medical clinics and testing centers, and its potential for large-scale

surveillance testing of infectious diseases.
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2.8 Appendix

2.8.1 Derivation of the number of tests needed under perfect

tests

Under Dorfman testing, a population of size 𝑁 is split into 𝑁/𝑛 groups of size 𝑛

for an initial stage of testing. Let 𝐺 denote the number of positive groups after

the initial stage. In the second stage of testing, all 𝑛 samples from each positive

group are retested individually. In total, 𝑁/𝑛 + 𝑛𝐺 tests are used. 𝐺 is a random

variable. Because individuals are infected independently, the 𝑁/𝑛 groups are positive

independently with some probability 𝑞. As a result, 𝐺 is distributed Bin(𝑁/𝑛, 𝑞).

The probability 𝑞 is derived as follows. All 𝑁 individuals are infected with

probability 𝑝 and not infected with probability 1 − 𝑝. The probability that all 𝑛

individuals in a group are not infected is (1 − 𝑝)𝑛. The probability that at least

one individual in the group is infected, and therefore the group tests positive, is

𝑞 = 1 − (1 − 𝑝)𝑛. Putting everything together, the number of tests needed under

Dorfman testing is distributed

𝑇 ∼ 𝑁

𝑛
+ 𝑛 · Bin

(︂
𝑁

𝑛
, 𝑞

)︂
(2.21)

where 𝑞 = 1 − (1 − 𝑝)𝑛.

2.8.2 Derivation of the number of tests needed under imper-

fect tests

The number of tests used by two-stage testing procedures is 𝑁/𝑛 + 𝑛𝐺 where 𝑁 is the

population size, 𝑛 is the group size, and 𝐺 is the number of groups that test positive

in the first stage of testing. 𝐺 is a random variable. Under perfect tests, the number

of tests needed under Dorfman testing is provided in the previous subsection. Under

imperfect tests, the distribution of 𝐺 changes because truly positive groups may test

negative incorrectly and truly negative groups may test positive incorrectly.
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Individuals are infected independently and test results are independent. Therefore,

the 𝑁/𝑛 groups test positive independently with some probability 𝑞′. As a result, 𝐺 is

distributed Bin(𝑁/𝑛, 𝑞′).

The 𝑁/𝑛 groups are infected (contain at least one infected individual) independently

with probability 1 − (1 − 𝑝)𝑛, as derived in the previous subsection. The groups test

positive if they are infected and test positive correctly, which occurs with probability

𝑠𝑒1,𝑛(1− (1−𝑝)𝑛), or if they are not infected and test positive incorrectly, which occurs

with probability (1−𝑠𝑝1)(1−𝑝)𝑛. Therefore, 𝑞′ = 𝑠𝑒1,𝑛(1− (1−𝑝)𝑛) + (1−𝑠𝑝1)(1−𝑝)𝑛.

Putting everything together,

𝑇 ′ ∼ 𝑁

𝑛
+ 𝑛 · Bin

(︂
𝑁

𝑛
, 𝑞′
)︂

(2.22)

where 𝑞′ = 𝑠𝑒1,𝑛(1 − (1 − 𝑝)𝑛) + (1 − 𝑠𝑝1)(1 − 𝑝)𝑛.

2.8.3 Derivation of the number of false negatives

Each of the 𝑁 individuals is infected and tests falsely negative independently with some

probability 𝑗. Therefore, the number of false negatives, 𝐹𝑁 , is distributed Bin(𝑁, 𝑗).

Each of the 𝑁 individuals tests falsely negative if (1) they are truly positive and their

group tests falsely negative in the first stage, or if (2) they are truly positive, their

group tests positive correctly in the first stage, and then their sample tests negative

incorrectly in the second stage. Scenario (1) occurs with probability 𝑝(1 − 𝑠𝑒1,𝑛).

Scenario (2) occurs with probability 𝑝𝑠𝑒1,𝑛(1 − 𝑠𝑒2). Therefore, each individual is

infected and tests falsely negative with probability 𝑗 = 𝑝(1 − 𝑠𝑒1,𝑛) + 𝑝𝑠𝑒1,𝑛(1 − 𝑠𝑒2).

This simplifies to 𝑗 = 𝑝(1 − 𝑠𝑒1,𝑛𝑠𝑒2).

The number of false negatives under Dorfman testing and imperfect tests is

therefore distributed

𝐹𝑁 ∼ Bin (𝑁, 𝑝(1 − 𝑠𝑒1,𝑛𝑠𝑒2)) (2.23)
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2.8.4 Derivation of the number of false positives

Each of the 𝑁 individuals is not infected and tests falsely positive independently

with some probability 𝑘. Therefore, the number of false positives, 𝐹𝑃 , is distributed

Bin(𝑁, 𝑘). The 𝑁 individuals test falsely positive if they are truly negative, with

probability 1 − 𝑝, their group tests positive in the first stage, with some probability

𝑞′𝑛−1, and they test falsely positive in the second stage, with probability 1 − 𝑠𝑝2 .

Since the individuals in question are truly negative, their group tests positive in

the first stage if at least one of the remaining 𝑛 − 1 individuals in the group is

truly positive and the group tests positive correctly, with probability 𝑠𝑒1,𝑛(1 − (1 −
𝑝)𝑛−1), or if the remaining 𝑛− 1 individuals in the group are truly negative and the

group tests positive incorrectly, with probability (1 − 𝑠𝑝1)(1 − 𝑝)𝑛−1. As a result,

𝑞′𝑛−1 = 𝑠𝑒1,𝑛(1 − (1 − 𝑝)𝑛−1) + (1 − 𝑠𝑝1)(1 − 𝑝)𝑛−1. Therefore, the 𝑁 individuals and

not infected and test positive incorrectly with probability 𝑘 = (1 − 𝑝)(1 − 𝑠𝑝2)𝑞
′
𝑛−1.

The number of false positives under Dorfman testing and imperfect tests is therefore

distributed

𝐹𝑁 ∼ Bin
(︀
𝑁, (1 − 𝑝)(1 − 𝑠𝑝2)𝑞

′
𝑛−1

)︀
(2.24)

where 𝑞′𝑛−1 = 𝑠𝑒1,𝑛(1 − (1 − 𝑝)𝑛−1) + (1 − 𝑠𝑝1)(1 − 𝑝)𝑛−1. Note, under our notation for

𝑞′𝑛−1, the sensitivity 𝑠𝑒1,𝑛 depends on the original group size 𝑛.
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2.9 Transition from epidemic spread to information

diffusion

In the first half of this thesis, we have studied epidemic spread in social networks.

We have considered the scenario of an infectious disease spreading from individual to

individual through a population. In our work, we have designed and analyzed testing

approaches to identify infected individuals.

Testing for infectious diseases is a key component of controlling their spread. Once

identified, infected individuals can receive treatment and can be quarantined from the

rest of the population, improving their health outcomes and hindering the spread of the

disease. Combined with vaccination and other non-pharmaceutical interventions like

masking, testing has played a key role in combatting numerous epidemics, including

the current COVID pandemic.

Normally, infected individuals in a population of size 𝑁 are identified by testing

each person individually, which uses 𝑁 tests. However, group testing provides an

approach to screen the entire population using significantly fewer than 𝑁 tests when

infection prevalence is low. In our work, we apply and extend group testing. We

derive its performance under the conditions faced by medical practitioners and provide

guidance for its implementation in practice.

We also improve group testing by utilizing social network information. We make

the simple observation that communicable diseases spread from person to person

through underlying social networks. As a result, the position of an individual in a

social network affects their infection probability. We use social network structure to

intelligently group individuals and further reduce the number of tests needed under

group testing.

Group testing, including our method of network group testing, allow for the efficient

screening of large populations. Compared to individual testing, group testing saves

time, money, and other scarce resources like chemical reagents. As a result, it provides

a powerful tool for combatting epidemic spread.

In the second half of this thesis, we transition to studying information diffusion in
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social networks. Both epidemic spread and information diffusion are classical examples

of network diffusion processes. In these processes, something spreads from node to

node through a network. During an epidemic, an infectious disease spreads from

person to person while during information diffusion, information, news, rumors, or

gossip spreads through the social network.

From a mathematical standpoint, information spread is often modeled using

the same tools as epidemic spread. One or more individuals has or is "infected"

with information at the start. The individuals then spread the information to their

neighbors.

In the next two chapters, we theoretically and empirically study information

diffusion. We begin by introducing an approach to identify information cascades

in network data. In observational network data, it can be difficult to distinguish

between large, meaningful cascades and the small, common branches that form during

normal periods. We introduce a test statistic that compares observed average branch

size to expected branch size during normal periods, which allows us to quantify the

probability that a cascade has occurred.

We apply our test statistic to call detail records from Yemen. Our approach allows

us to 1) add inference and significance results to observed branches, and 2) detect

anomalous periods based on branch size. We study the calling cascades that form

after violent events during the Yemeni Revolution. Calling cascades are consequential,

as they allow information to spread deeply and quickly through the population.

We then empirically study information diffusion around violent events, focusing on

drone strikes. Using a dataset of over 12 billion CDRs, we study the social network

effects of 74 drone strikes in Yemen between 2010 and 2012. We quantitatively and

systematically analyze the impact of strikes on civilians and their communities. As

societies are intrinsically networked systems, we use a social network approach in our

analysis.

We study the communication response of civilians and look for information diffusion

after strikes. As mentioned, information diffusion is extremely consequential in conflict

areas. Diffusion facilitates the spread of information, opinions, and emotions regarding
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strikes through the population. Strikes, which are unpopular and sometimes result in

civilian casualties, have the potential to shift civilian sentiments and loyalties, which

can affect the trajectories of modern conflicts. In addition, we study physical diffusion

after strikes, analyzing the extent of displacement and fleeing.

This thesis reinforces the importance of network diffusion processes, specifically

epidemic spread and information diffusion. As we have seen, understanding epidemic

spread allows us to design better approaches to control the spread of a disease. In the

coming chapters, we study the role diffusion plays in spreading information and news

through social networks.
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Chapter 3

Tests for Network Cascades via

Branching Processes

Abstract

In the previous two chapters, we study epidemic spread. Epidemic spread in social
networks behaves similarly to information diffusion. In information diffusion, infor-
mation, news, or gossip spreads from individual to individual though a population,
much like an infection. While information exchange in social networks is common,
information cascades, in which a large number of individuals quickly contact each
other, are rare. These cascade often correspond to consequential events such as the
spreading of news following a violent event, the retweeting of viral fake news, or the
spreading of gossip through a social clique. In this chapter, we focus on identifying
information cascades in social networks.

We consider a network setting where branches form under the null of normal periods
and larger branches form under the alternative. Our goal is to distinguish abnormally
large branches, which we term cascades, from the common branches formed under
the null. Call detail records provide the motivating example, as large call branches
form after disruptive events, yet call branches also form during normal periods. We
introduce a formal statistical testing framework to distinguish between branches
formed under the null and alternative based on expected branch size. After defining
the characteristics of edge formation under the null, we derive the expected size and
variance of branches using the machinery of branching processes. We introduce a test
statistic that compares observed average branch size to expected branch size under
the null, which allows us to quantify the probability a cascade has occurred. Our
test statistic is semiparametric, consistent, and asymptotically distributed standard
normal under the null. Using call detail records from Yemen, we find a significant
calling cascade occurred after the Presidential Palace was bombed in 2011. Lastly,
we employ our statistic for event detection and successfully detect key violent events
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during the 2011 Yemeni Revolution.

3.1 Introduction

Diffusion through networked systems corresponds to numerous consequential processes

such as information spread through societies, epidemics in populations, failure propaga-

tion in energy grids, and systemic risk in banking networks. As a result, the emergence

of diffusion has been studied and documented in several domains in empirical network

science [2–5, 19, 34–38]. These processes are often described as cascades since they

involve nodes contacting or "infecting" their neighboring nodes, who in turn infect

their neighbors [56–59]. However, in many network settings, small scale diffusion

regularly emerges during normal periods from normal behavior. Only a small number

of large cascades occur, motivating the need to distinguish large, meaningful branch

formation from the smaller, common branches formed during normal periods. As

a motivating example, call detail records, which record calls between phone users,

have been used to demonstrate the emergence of calling cascades after disruptive

events [60–66]. However, as individuals make calls during normal periods as well, even

when no event has occurred, call branches also form during normal periods. In this

paper, our goal is to distinguish abnormally large branches, which we term cascades,

from the common branches formed by normal activity. To this end, we introduce a

formal statistical testing framework that distinguishes cascades in networked systems

from the common branches formed during normal periods.

With a formal testing framework in place, we introduce a test statistic that

compares observed branch size to expected branch size under the null of normal

periods. We define a semiparametric model of independent and identically distributed

edge formation under the null. This model allows us to derive the expected size and

variance of branches under the null using the machinery of branching processes [67–69].

The test statistic we introduce is semiparametric, consistent, and asymptotically

distributed standard normal under the null. A formal statistic allows us to quantify

the probability observed branches were formed under the null of normal periods.
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Therefore, a rejection of the null indicates the observed branches are significantly large

and correspond to cascades. As an empirical application, we apply the test statistic

to call detail records from Yemen. Our test statistic allows us to 1) add inference

and significance results to observed branches and 2) detect anomalous periods based

on branch size. We find a significant calling cascade occurred after the Presidential

Palace was bombed in 2011. The emergence of a cascade implies information regarding

the bombing spread quickly and deeply through the underlying social network. In

addition, we identify three periods with significantly large call branches originating

in Sana’a, Yemen’s capital, during March 2011. The detected periods line up with

key violent events during the 2011 Yemeni Revolution. Crucially, by adding inference

to observed branch structures, our test statistic provides significance and confidence

levels to our empirical findings.

The remainder of the chapter is organized as follows. Section 3.2 defines branches,

introduces the model of edge formation under the null, and states the formal hypothesis

testing framework. Section 3.3 reports our results, including the size and variance of

branches under the null, the proposed test statistic, and empirical results using call

detail records. Section 3.4 concludes.

3.2 Model

In this section, we define the model governing branch formation during normal periods.

The normal period dynamics constitute our null model and allow us to derive the

expected size and variance of branches under the null. We conclude the section by

introducing the hypothesis testing framework, which characterizes expected branch

size under the null and alternative.

3.2.1 Branch formation

The branches we consider correspond to classical branching processes and are defined as

follows. A branch begins with a single origin node, constituting the zeroth generation

of the branch. The origin nodes comprise the set 𝐺0. Each origin node forms a
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random number of edges to new nodes over a period of duration 𝑡. Let 𝑋𝑖(𝑡) be the

non-negative integer-valued random variable defining the number of edges formed

by node 𝑖 during a period of duration 𝑡. We refer to the nodes that 𝐺0 connect to

as "contacted by 𝐺0". The nodes contacted by 𝐺0 form the first generation of their

branches and comprise the set 𝐺1. After being contacted, each node in 𝐺1 then forms

a random number of edges to new nodes, again governed by 𝑋𝑖(𝑡). These new nodes

form the second generation of their branches and comprise the set 𝐺2. The branches

continue to grow in this manner until they reach a generation of nodes that fail to

form any edges during the period of duration 𝑡. We define 𝐵𝑖 as the size of the branch

originating at node 𝑖, where size is defined as the total number of nodes in the branch.

Figure 3-1 provides an example of branches and their respective random variable

realizations.

Cascade	analysis
Incorporating	cascade	dynamics	suggests	over	twice	the	number	of	individuals	
may	be	contacted	after	strikes

Statistical	testing	of	social	cascades
A	test	statistic	can	determine	if	the	propagation	we	observe	is	significant	

Let Zi := size of branch originating at node i

H0 : E[Zi] = µ0

H1 : E[Zi] > µ0

For each node, we assume a Poisson process with parameter � governs the number of calls it makes.
For a small time interval t, we assume every call made goes to a new neighbor.
Under the null, we assume independence between the Poisson processes.

W =
µ̂Z � µ0

se(µ̂Z)
=

1
n

Pn
i=1 Zi � µ0
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Figure 3-1: Example of branches. 𝐺0 origin nodes contact first generation 𝐺1 nodes
who proceed to contact second generation 𝐺2 nodes, and so on. 𝐵1, the size of the
branch originating at node 1, is 4. 𝑋2, the number of nodes contacted by node 2, is 1.

Assumptions under the null (A1-4). Under the null of normal periods, we assume

1. 𝑋𝑖(𝑡) is independent and identically distributed (iid) for all 𝑖 and for all non-

overlapping periods of duration 𝑡.
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2. The second moment of 𝑋𝑖(𝑡) is finite for all 𝑖 and for all finite periods of duration

𝑡.

3. The expected value of 𝑋𝑖(𝑡) equals 0 for periods of duration 𝑡 = 0 and is

monotonic increasing in 𝑡.

4. Nodes form edges to new nodes only. Specifically, nodes in the 𝑛th generation

of a branch do not form edges back to nodes in previous generations, to other

nodes in the same generation, or to nodes in other branches.

The first assumption states, under the null, edge formation is independent. During

normal periods, if a node is contacted, it does not prompt the node to contact more

nodes. The second assumption guarantees the variance and expected value of 𝑋𝑖(𝑡) are

finite. We define 𝛾 := E[𝑋𝑖(𝑡)] and 𝜎2 := Var(𝑋𝑖(𝑡)), where we suppress dependence

on the period duration 𝑡. The third assumption reasonably states that nodes cannot

form edges if they have no time to do so and, as nodes have more time to form edges,

they form more edges on average. The final assumption guarantees branch sizes are

independent as it ensures branches originating at different nodes do not merge, which

allows us to use the machinery of branching processes. Alternatively, we can drop

the final assumption if we instead explicitly define 𝑋𝑖(𝑡) to be the number of edges

formed by node 𝑖 to new nodes only.

Our model is semiparametric, as we specify restrictions on the moments of 𝑋𝑖(𝑡)

but do not impose a specific distribution. This provides significant generality and

flexibility to our framework and to the test statistic we introduce in the following

section. Several familiar parametric models fall within the framework introduced

above.

Example 1 (Poisson process model). Consider the setup where, under the null, every

node has its own independent Poisson arrival process, identically governed by rate

parameter 𝜆. Every time a node receives an arrival, it forms an edge to a new node.

Therefore, the number of edges formed by node 𝑖 during a period of duration 𝑡, 𝑋𝑖(𝑡),

is distributed Poisson(𝜆𝑡). The expected value and variance of 𝑋𝑖(𝑡) both equal 𝜆𝑡.

This formulation satisfies Assumptions 1-4.
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Translating the model introduced above to our call detail record (CDR) motivating

example, nodes correspond to individuals and edges correspond to phone calls between

them. When analyzing the call branches formed after an event, individuals proximal

to the event location at the time of the event comprise 𝐺0. The individuals that 𝐺0

contact within a period of duration 𝑡 after the event form 𝐺1. The individuals that 𝐺1

contact within a period of duration 𝑡 after being contacted by 𝐺0 form 𝐺2, and so on.

3.2.2 Hypothesis testing framework

Our goal is to distinguish abnormally large branches, which we term cascades, from

the common branches formed under the null. Under the null dynamics we have just

introduced where edge formation is iid, branches have expected size E[𝐵𝑖] := 𝜇0. In

the following section, we solve for 𝜇0 explicitly.

Under the alternative in our formulation, branches have a larger expected size.

Formally, our testing framework is

H0 : E[𝐵𝑖] = 𝜇0

H1 : E[𝐵𝑖] > 𝜇0

This setup allows us to formally test for the emergence of cascades. Specifically, a

test statistic allows us to compare observed branches to their expected size under

the null and quantify the probability the observed branches were formed under the

null of normal behavior. A rejection of the null indicates the observed branches are

significantly larger than those formed during normal period dynamics. Therefore, we

label branches that lead to a rejection of the null as cascades.

We purposefully do not specify the dynamics of edge formation under the alternative

in order to leave our framework as general as possible. Several possible dynamics would

result in larger branches than those formed under iid edge formation. As an example,

edge formation may be dependent, where a contacted node proceeds to contact more

nodes. This corresponds to an intuitive notion of cascades where nodes respond to

being contacted or infected by passing on information or contagion. Alternatively
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or additionally, the rate of edge formation may be larger under the alternative. For

example, individuals may make more phone calls after disruptive events. Both setups

would result in larger branch sizes.

Translating the framework to CDRs, small call branches form during normal

periods as individuals make calls under normal behavior. In abnormal periods, such

as after disruptive events, larger call branches form as iid call behavior breaks down

and individuals spread information to their contacts, forming calling cascades.

3.3 Results

In this section, we first derive the expected size and variance of branches under the

null dynamics. We then introduce a test statistic that compares observed average

branch size to expected size under the null, which allows us to determine whether a

cascade has occurred. We conclude the section with an empirical application using

call detail records from Yemen. The proofs in this section can be skipped without loss

of continuity.

3.3.1 Size and variance of branches under the null

In the hypothesis testing framework introduced in the previous section, branches have

expected size E[𝐵𝑖] = 𝜇0 under the null dynamics of normal periods. Assumptions

A1-4, which hold under the null, provide enough structure to derive 𝜇0 explicitly. We

derive both the expected size and variance of branches under the null of iid edge

formation using ideas from branching processes. Recall, 𝑋𝑖(𝑡) is the number of edges

formed by node 𝑖 during a period of duration 𝑡, E[𝑋𝑖(𝑡)] = 𝛾, and Var(𝑋𝑖(𝑡)) = 𝜎2.

Lemma 1. Under the null and Assumptions A1-4, there exists a duration length

𝑡 = 𝑇 such that E[𝑋𝑖(𝑇 )] = 𝛾 < 1. Fixing 𝑡 = 𝑇 , we have

E[𝐵𝑖] = 𝜇0 =
1

1 − 𝛾
(3.1)

Var(𝐵𝑖) =
𝜎2

(1 − 𝛾)3
(3.2)
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Proof. We derive both the mean and variance of branch size under the null and

Assumptions A1-4. By Assumption 3, E[𝑋𝑖(𝑡)] = 0 when 𝑡 = 0 and is monotonic

increasing in 𝑡. Therefore, there exists a 𝑡 = 𝑇 such that E[𝑋𝑖(𝑇 )] = 𝛾 < 1. We fix

𝑡 = 𝑇 for the rest of the proof and suppress dependence on 𝑡 moving forward.

Let 𝑍𝑛 be the number of nodes in the 𝑛th generation of a branch and 𝐵 be the

size of the branch, where size is defined as the total number of nodes in the branch.

We focus on a single branch and suppress dependence on the origin node. We begin

with a single origin node and therefore 𝑍0 = 1. By our definitions,

𝐵 =
∞∑︁

𝑛=0

𝑍𝑛 (3.3)

𝑍𝑛 =

𝑍𝑛−1∑︁

𝑖=1

𝑋𝑖 (3.4)

as the size of a branch is equal to the number of nodes across all generations and the

number of nodes in the 𝑛th generation is the total number of nodes contacted by the

previous generation.

Under iid edge formation, our branches are classical branching processes. The

expected size of branches is a common result in the branching process literature [67–69].

The expected number of nodes in the 𝑛th generation of a branch is given by

E[𝑍𝑛] = E[ E[𝑍𝑛|𝑍𝑛−1] ] = E[𝛾𝑍𝑛−1] = ... = 𝛾𝑛 (3.5)

As 𝛾 < 1, the expected size of a branch is then

E[𝐵] = E[
∞∑︁

𝑛=0

𝑍𝑛] =
∞∑︁

𝑛=0

E[𝑍𝑛] =
∞∑︁

𝑛=0

𝛾𝑛 =
1

1 − 𝛾
(3.6)

Fubini’s theorem formally justifies the exchange of an infinite sum and expectation in

(3.6), as 𝑍𝑛 is positive, expectation is a Lebesgue integral with respect to a probability

measure, and infinite summation is a Lebesgue integral with respect to a discrete

measure. 𝛾 < 1 is required for the infinite summation to converge in (3.6).

As an aside, the branches we consider here are called subcritical since they have
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finite size with probability 1 [68]. Note the expected size of branches is strictly finite

by (3.6) as 𝛾 < 1. Therefore, the probability of an infinite size branch is 0.

We now solve for the variance of 𝐵.

Var(𝐵) = E[𝐵2] − (E[𝐵])2

= E[
(︁ ∞∑︁

𝑛=0

𝑍𝑛

)︁2
] −
(︁ 1

1 − 𝛾

)︁2
(3.7)

Expanding the squared summation of 𝑍𝑛 yields

E[
(︁ ∞∑︁

𝑛=0

𝑍𝑛

)︁2
] =

∞∑︁

𝑛=0

E[𝑍2
𝑛] + 2

∞∑︁

𝑘=1

∞∑︁

𝑗=0

E[𝑍𝑗𝑍𝑗+𝑘] (3.8)

where we again use Fubini’s theorem to swap expectations and infinite summations.

The expansion of the infinite summation holds as 𝑍𝑛 is positive and E[
∑︀∞

𝑛=0 𝑍𝑛] is

finite, by (3.6).

We solve for the first term in (3.8) by computing the variance of 𝑍𝑛. The variance

of the number of nodes in the 𝑛th generation of a branch is another common result in

branching processes [68,69]. We extend these results to solve for the variance of the

entire branch size 𝐵.

The variance of a sum with a random number of random terms is given by

Var(

𝑍𝑛−1∑︁

𝑖=1

𝑋𝑖) = 𝜎2E[𝑍𝑛−1] + 𝛾2Var(𝑍𝑛−1) (3.9)

when 𝑋𝑖 are iid with finite second moments and 𝑍𝑛−1 is a non-negative integer-valued

random variable independent of all 𝑋𝑖. Therefore,

Var(𝑍𝑛) = 𝜎2𝛾𝑛−1 + 𝛾2Var(𝑍𝑛−1) (3.10)

Using the initial condition Var(𝑍0) = 0, the solution to this recursion is

Var(𝑍𝑛) =
𝜎2

𝛾(1 − 𝛾)
𝛾𝑛 − 𝜎2

𝛾(1 − 𝛾)
𝛾2𝑛 (3.11)
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which gives the variance of the size of the 𝑛th generation. Therefore, the second

moment of 𝑍𝑛 is

E[𝑍2
𝑛] = Var(𝑍𝑛) + (E[𝑍𝑛])2

=
𝜎2

𝛾(1 − 𝛾)
𝛾𝑛 − 𝜎2

𝛾(1 − 𝛾)
𝛾2𝑛 + 𝛾2𝑛 (3.12)

All that is left is to solve for the last term in (3.8), E[𝑍𝑗𝑍𝑗+𝑘]. Using the law of

iterated expectations several times,

E[𝑍𝑗𝑍𝑗+𝑘] = E[ E[𝑍𝑗𝑍𝑗+𝑘|𝑍𝑗] ]

= E[ 𝑍𝑗 E[𝑍𝑗+𝑘|𝑍𝑗] ]

= E[ 𝑍𝑗 E[ E[𝑍𝑗+𝑘|𝑍𝑗+1] |𝑍𝑗] ]

= ... = E[ 𝑍𝑗 E[ E[ ... E[𝑍𝑗+𝑘|𝑍𝑗+𝑘−1] ... |𝑍𝑗+1] |𝑍𝑗] ]

= E[ 𝑍𝑗 E[ E[ ... 𝛾𝑍𝑗+𝑘−1 ... |𝑍𝑗+1] |𝑍𝑗] ]

= E[ 𝑍𝑗 E[𝛾𝑘−1𝑍𝑗+1|𝑍𝑗] ]

= 𝛾𝑘 E[𝑍2
𝑗 ] (3.13)

Note expressions of the form E[ E[𝑍𝑗+𝑘|𝑍𝑗+1] |𝑍𝑗] collapse to E[𝑍𝑗+𝑘|𝑍𝑗] since the

𝜎-field generated by 𝑍𝑗 is a sub 𝜎-field of the 𝜎-field generated by 𝑍𝑗+1. To see this

simply, note the information available at step 𝑗 + 1 is the 𝜎-field generated by all 𝑋𝑖

random variables in generations 0 to 𝑗 + 1, which is a superset of the information

available at step 𝑗, given by the 𝜎-field generated by all 𝑋𝑖 in generations 0 to 𝑗.

Plugging (3.12) and (3.13) into (3.8) and simplifying yields

E[
(︁ ∞∑︁

𝑛=0

𝑍𝑛

)︁2
] =

∞∑︁

𝑛=0

(︂
𝜎2

𝛾(1 − 𝛾)
𝛾𝑛 − 𝜎2

𝛾(1 − 𝛾)
𝛾2𝑛 + 𝛾2𝑛

)︂

+2
∞∑︁

𝑘=1

∞∑︁

𝑗=0

𝛾𝑘

(︂
𝜎2

𝛾(1 − 𝛾)
𝛾𝑗 − 𝜎2

𝛾(1 − 𝛾)
𝛾2𝑗 + 𝛾2𝑗

)︂

=
𝜎2 − 𝛾 + 1

(𝛾 − 1)2(𝛾 + 1)
+

2 (𝛾2 − 𝛾𝜎2 − 𝛾)

(𝛾 − 1)3(𝛾 + 1)
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=
𝛾 − 𝜎2 − 1

(𝛾 − 1)3
(3.14)

Plugging (3.14) into (3.7) and simplifying yields the variance of branch size.

Var(𝐵) =
𝜎2

(1 − 𝛾)3
(3.15)

With expected branch size and variance under the null derived, we are ready to

introduce the test statistic.

3.3.2 The test statistic

Our goal is to distinguish cascades, abnormally large branches, from the common

branches formed under the null. To this end, we introduce a test statistic that compares

observed average branch size to expected branch size under the null, accounting for

sample variability.

Definition 2. Define the test statistic 𝑊 as

𝑊 =
�̂�− 𝜇0

𝑠𝑒(�̂�)
(3.16)

where 𝜇0 is the expected size of branches under the null, �̂� is an estimator of 𝜇0, and

𝑠𝑒(�̂�) is the standard error of the estimator �̂�. Define �̂� as the average observed branch

size, �̂� = 1
𝑛

∑︀𝑛
𝑖=1 𝐵𝑖, where the sum is taken over all 𝑛 nodes in 𝐺0, the set of zeroth

generation origin nodes.

𝑊 is a Wald test statistic, which measures the linear distance between an estimator

and its null value in standard deviation units. Intuitively, if the observed branch

sizes are much larger than their expected size under the null, accounting for sampling

variability, we reject the null that the branches were formed during normal periods.

Wald tests, along with likelihood ratio and Lagrange multiplier tests, make up the

classical trinity of test statistics in econometrics [106]. Unlike its counterparts, however,
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Wald tests do not require knowledge of the likelihood function underlying the data

generating process. Using the results of Lemma 1, we can fully specify 𝑊 and its

distribution under the null.

Theorem 7. Under the null and Assumptions 1-4, the test statistic W becomes

𝑊 =
�̂�− 𝜇0

𝑠𝑒(�̂�)
=

√
𝑛

(︃
1
𝑛

∑︀𝑛
𝑖=1𝐵𝑖 − 1

1−𝛾
𝜎

(1−𝛾)3/2

)︃
(3.17)

W is consistent and asymptotically distributed standard normal as 𝑛 → ∞.

Proof. �̂� is defined in Definition 1 and 𝜇0 is given in Lemma 1. Under the null, the

estimator �̂� is a sample average of iid random variables. The standard error of �̂� is

then

𝑠𝑒(�̂�) = [ Var(
1

𝑛

𝑛∑︁

𝑖=1

𝐵𝑖) ]1/2 = [
1

𝑛
Var(𝐵𝑖) ]1/2

=
1√
𝑛

𝜎

(1 − 𝛾)3/2
(3.18)

where the variance of 𝐵𝑖 is given in Lemma 1.

Under the null, 𝑊 is a demeaned average of iid random variables with finite

mean and variance, scaled by
√
𝑛. Therefore, the classical Lindeberg-Levy central

limit theorem applies and 𝑊 converges in distribution to a standard normal random

variable, 𝑁(0, 1), as the number of branches, 𝑛, goes to infinity.

𝑊 is a consistent test since it is based on a consistent estimator. By the law of large

numbers, �̂� is a consistent estimator of 𝜇0 under the null and �̂� → 𝜇0 in probability as

𝑛 → ∞. Under the alternative, where E[𝐵𝑖] > 𝜇0, �̂� ̸→ 𝜇0 in probability as 𝑛 → ∞.

Since the linear distance �̂�− 𝜇0 is scaled up by
√
𝑛 in 𝑊 , 𝑊 grows arbitrarily large

under the alternative as 𝑛 → ∞ and the probability of correctly rejecting the null,

given by P(|𝑊 | > 𝑐) for any finite critical value 𝑐, goes to 1.

Determining the distribution of the test statistic under the null is necessary to

control the size of the test, the probability of falsely rejecting the null hypothesis. The

test statistic is consistent, which is a desirable, albeit common, property meaning the
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power of the test, the probability of correctly rejecting the null hypothesis when the

alternative is true, goes to 1 as 𝑛, the number of branches, goes to infinity. In addition,

𝑊 is semiparametric, as we do not impose a specific distribution on 𝑋𝑖, the number

of edges formed by a node, or 𝐵𝑖, the branch size. Instead, we only specify restrictions

on the first two moments of 𝑋𝑖, which adds considerable generality to the statistic.

The downside of this generality is we are only able to derive the distribution of 𝑊

asymptotically. However, asymptotic distributions provided by central limit theorems

work well in practice [107]. By the Berry-Esseen theorem, 𝑊 converges to a standard

normal distribution at rate 𝑛−1/2 [108]. Imposing a few additional assumptions, we

provide rules of thumb regarding the number of samples needed to confidently use the

asymptotic distribution of the test statistic. Specifically, we consider the parametric

model introduced in Example 1, where every node has its own independent Poisson

arrival process identically governed by rate parameter 𝜆 under the null. In this setting,

𝑋𝑖(𝑡) is distributed Poisson(𝜆𝑡) and E[𝑋𝑖(𝑡)] = Var(𝑋𝑖(𝑡)) = 𝜆𝑡. Under these null

dynamics, we simulate branches and compute the test statistic value 𝑊 as a function

of 𝑛, the number of branches. For each value of 𝑛, we compute 𝑊 10,000 times in

order to build the distribution of the test statistic. We repeat the process for values

of 𝜆𝑡 ranging between 0.2 and 0.8. Figure 3-2 displays the Kolmogorov-Smirnov (KS)

distance between the distribution of the test statistic 𝑊 and the standard normal

distribution as a function of 𝑛. Here, KS distance is defined as the max distance

between the CDF of 𝑊 , 𝐹𝑊 , and the CDF of a standard normal random variable, Φ.

Formally, the KS distance is

𝐷𝑛 = sup
𝑥

|𝐹𝑊𝑛(𝑥) − Φ(𝑥)| (3.19)

Figure 3-2 demonstrates the distribution of 𝑊 converges quickly to its asymptotic

distribution under the null, with good agreement with only 𝑛 = 50 branches for all

values of 𝜆𝑡. As a rule of thumb, 50 branches or more provide enough samples to

confidently use the standard normal asymptotic distribution.

Potential alternatives to the test statistic 𝑊 in Theorem 1 are classical difference-
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Figure 3-2: KS distance between the distribution of the test statistic 𝑊 and the
standard normal distribution as a function of 𝑛, the number of branches used to form
𝑊 . KS distance is defined as the max distance between the two CDFs. The different
curves correspond to different values of 𝜆𝑡 = E[𝑋𝑖(𝑡)] = Var(𝑋𝑖(𝑡)), the expected
number and variance of edges formed by each node. By Lemma 1, larger values of 𝜆𝑡
correspond to larger and more variable branch sizes.
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in-means tests, such as Welch’s t-tests or regressions on a binary indicator. However,

as 𝑊 uses analytic expressions for the expected size and variance of branches, it will

be more accurate in smaller samples as long as the null assumptions hold.

3.3.3 Empirical application using call detail records

In this subsection, we apply our test statistic to call detail records from Yemen. Our

call detail record (CDR) dataset includes over 2 billion calls from Yemen during 2011.

The records were obtained from one of the major cellphone service providers in the

country and contain the time of calls, the anonymized callers and call recipients, and

the towers that handled each end of the calls. Coupled with the geographic coordinates

of the towers, the records identify approximate locations for each individual at the

time of their calls. CDRs naturally provide the social network of a population by

highlighting communication between individuals. In addition, they offer high temporal

and spatial resolution for studying reactions to localized events. In 2011, Yemen had

a population of around 24 million [109]. Cellphone usage was around 50% of the

population [110], while internet penetration was only 15% [111], making cellphones

crucial to the spread of news and information. Our dataset covers roughly 6 million

subscribers, accounting for a large fraction of the cellphone-using population.

Adding significance results to a given event.

We first test the call branches formed after a given event. A few minutes after

1pm on June 3rd, 2011, the Presidential Palace in Sana’a, Yemen’s Capital, was

bombed by opposition forces [112]. The president at the time, Ali Abdullah Saleh,

was badly injured in the blast. Call volume in the vicinity of the palace spiked

dramatically immediately after the bombing. Figure 3-3 displays outgoing call volume

from individuals within a 5 km radius of the palace on the day of the bombing

compared to call volume of the same area on the same day of the week for four weeks

prior. The same day of the week from previous weeks forms a reasonable baseline as

call volume exhibits strong weekly periodicity. Call volume reached a peak increase of
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53% over the baseline days after the bombing occurred.
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Figure 3-3: Outgoing call volume from a 5 km radius around the Presidential Palace
in Sana’a. Call volume on June 3rd, 2011, the day the palace was bombed, in shown
in solid orange. Call volume for the same day of the week for four weeks prior is shown
in dashed blue.

We designate individuals within a 5 km radius of the palace who make calls between

1pm and 2pm on the day of the bombing as our 𝐺0 origin nodes. We then build the

subsequent call branches as follows, setting 𝑡 = 1. For each 𝐺0 individual, we record

the calls they make during the one hour period between 1 and 2pm, labelling the

individuals contacted by 𝐺0 as 𝐺1. We then record the calls made by 𝐺1 within one

hour after being contacted by 𝐺0. We label the contacted individuals 𝐺2. We continue

in this manner, recording the calls made by 𝐺2 within one hour after being contacted,

and so on, until we reach a generation of callers that do not make any calls within

one hour after being contacted. Multiple calls between two individuals are recorded

as a single edge. Branches are built sequentially and each distinct call is only allowed

to appear in a single call branch, ensuring branches do not merge and branch sizes

are not coupled.

After the bombing, 17,302 call branches formed with an average size of 2.99 nodes.
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Table 3.1 provides summary statistics for the observed branches. The majority of

branches were small, with 62% containing only 2 nodes through 2 generations of

callers (including 𝐺0). The largest branch contained 94 nodes though 12 generations of

callers. The branches reached a large number of individuals, with the 17,302 branches

containing 51,674 nodes in total. In addition, the branches had substantial geographic

reach. Figure 3-4 demonstrates the call branches spread across the country and reached

the majority of populated areas in Yemen.

Table 3.1: Summary statistics for the palace bombing call branches

Mean SD Mode Max

Branch size 2.99 2.46 2 94
Generations 2.40 0.93 2 12

Breadth 1.43 0.83 1 15

17,302 call branches formed after the Presidential Palace bombing. Branch size is
defined as the number of nodes in the branch, generations is defined as the number of
𝐺𝑖 levels in the branch (including 𝐺0), and breadth is defined as the max number of
nodes in a single generation in the branch. SD stands for standard deviation.

Before we apply the test statistic 𝑊 , we note a small subtlety when using CDRs.

We only observe 𝐺0 individuals who place a call and, as a result, branches have a

minimum size of 2 nodes. Our branching process framework assumes 𝐺0 nodes may

form no edges, however. The solution is simple. Since edge formation in branching

processes is iid, the expected size of a branch starting at a 𝐺1 node, given we are at

a 𝐺1 node, is identical to the expected size of a branch starting at a 𝐺0 node. For

our test statistic, we therefore record branch sizes for branches starting at 𝐺1 nodes

and average over all 𝐺1 nodes. We estimate 𝛾 and 𝜎2, the mean and variance of the

number of edges formed by nodes, using the sample mean and sample variance of 𝐺1

nodes from the same area on the same day of the week during the same one hour

period for four weeks prior.

Average observed branch size is 1.48, averaged over 20,851 𝐺1 nodes. 𝛾, the mean

number of edges formed by nodes in one hour during normal periods, is 0.24 and

𝜎2, the variance of the number of edges formed, is 0.36. By Lemma 1, the expected
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Figure 3-4: Branches formed after the Presidential Palace bombing superimposed on
a map of Yemen. Darker edges are part of branches that contain more generations of
callers. Governorates are outlined in black and districts are outlined in grey. Populated
districts with a population density of greater than 30 people per square kilometer are
shaded grey. Sparsely populated districts are left white.
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Figure 3-5: (A) Average branch size for call branches originating in Sana’a during
March 2011 at an hourly frequency. (B) Test statistic values for call branches
originating in Sana’a during March 2011. The test statistic compares average branch
size to expected branch size.
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branch size under the null is 1.31. The test statistic we have introduced allows us to

determine whether the observed average size of 1.48 is significantly larger than the

expected size of 1.31. Plugging everything into the statistic from Theorem 1, 𝑊 has a

value of 27.8. The p-value of the test, the probability that a standard normal random

variable is greater than 𝑊 , is 5.1×10−170, effectively zero. We reject the null at a 1%

significance level, indicating the call branches formed after the Presidential Palace

bombing were much larger than those formed during normal periods and, therefore,

correspond to a calling cascade. The emergence of a calling cascade indicates contacted

individuals proceeded to call their contacts after the bombing and implies information

regarding the bombing spread quickly and deeply through the underlying social

network. Crucially, our test statistic adds inference to the observed call branches,

providing significance and confidence to our empirical findings.

Using the test statistic for event detection.

We now employ our testing framework to detect events based on large branch formation.

We build the call branches originating in Sana’a every hour during March 2011, using

a 10 km radius around the city center. Individuals who make a call within the radius

form our 𝐺0 nodes. We build branches as in the previous subsection for every hour

period. Figure 3-5A plots the average call branch size originating in Sana’a during the

month. The figure clearly shows daily periodicity in call branch size, with branch size

peaking around 10am each day. Weekly periodicity is also evident. Fridays (March 4,

11, 18, and 25), the first day of the weekend in Yemen and a day of prayer and rest,

display the smallest daytime call branch sizes. However, it is not immediately clear

from the average branch sizes if any abnormal branches formed during the month.

We apply our test statistic to the time series of average branch sizes, using 𝐺1

branches as in the previous subsection. We estimate expected branch size and variance

for each hour period using the sample mean and sample variance of branch sizes formed

by 𝐺1 nodes from the same area during the same hour period on the same day of the

week for four weeks prior. Figure 3-5B displays the test statistic values for March

2011. The periods with abnormally large call branches now stand out clearly. The
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three largest spikes in test statistic values occur on the 12th, the 18th, and the 21st.

We correct for multiple testing using the Benjamini-Hochberg procedure [113] and

note the three spikes are all significant at a 1% significance (false discovery rate) level,

indicating the observed branches are abnormally large. Checking media reports, we

find the three dates correspond to key events during the 2011 Yemeni Revolution. On

March 12th, police surrounded and fired on thousands of protesters who had gathered

to call for President Saleh’s resignation, killing four and injuring several hundred [114].

The attack was the most violent action against protestors up to that point. On March

18th, snipers fired on anti-government protesters, killing 45 and injuring 270 [115]. The

gunmen were suspected pro-government forces and the attack led to unprecedented

levels of anger among Yemenis. On March 21st, several military leaders defected [116].

Tanks and troops from both pro-government and anti-government forces were deployed

in the city.

As we are able to match the three most significant spikes to noteworthy events,

the test does not have any severe false positives (type I errors) in this sample. In

order to check for false negatives (type II errors), we check Google News and other

media sources for any notable activity in Sana’a during March 2011. The violence on

March 12 and 18 were the only significant violent events reported during the month,

adding confidence the test statistic does not have any severe false negatives in this

sample. However, several large protests occurred during the month [117,118], which

the test statistic seemingly does not capture. There are several plausible explanations

for the lack of significant diffusion during protests. Protests during this period were

common, occurring near-daily since they began in mid-January [118,119]. In addition,

the protests were often planned in advance [118] and lasted for several hours and

days [120]. Their routine, non-spontaneous, and non-instantaneous nature imply there

may not have been any news or information worth spreading during the protests

themselves, resulting in no significant branch formation and cascades. An interesting

open question remains of which types of events cause cascades and how diffusion

differs between different events.

In conclusion, our test statistic is able to successfully detect disruptive events by
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highlighting periods with abnormally large call branches.

3.4 Conclusion

The test statistic we have introduced in this chapter allows us to determine whether a

cascade has occurred in a network setting where branches also form during the null of

normal periods. In addition, we have demonstrated the test works well in practice

using call detail records from Yemen. Going forward, the test should be utilized in

empirical network science research when cascade formation is being studied, as the

statistic adds significance levels to observed branch structures.

The statistic can be applied to additional call detail record datasets to detect

previously unreported disruptive events, such as state-sponsored attacks on civilians.

It can also be applied to other network datasets such as social media networks to

identify abnormally large cascades of information, news, and opinions. Applying the

testing framework to Twitter data would highlight significant retweet chains. It could

additionally identify substantial discussions and topics based on abnormally large

branches of tweets. An application to shared posts on Facebook could be used to

highlight viral posts, with a possible focus on identifying viral fake news.
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Chapter 4

The Social Network Effects of Drone

Strikes

Abstract

In the previous chapter, we observe the emergence of information cascades following
localized events. These cascades are consequential as they quickly spread information
through a population. In this chapter, we utilize call records to study whether calling
cascades and physical diffusion emerge following drone strikes. Drone strikes have
become a fixture of modern warfare, yet their effects on civilians, societies, and their
underlying social networks remain opaque and fiercely debated.

Utilizing a new dataset of over 12 billion call detail records, we study the causal
impact of 74 U.S. drone strikes on communication and mobility in Yemen between
2010 and 2012. Over 95% of strikes are followed by calling cascades, with roughly
one third exhibiting increased call volume through four levels of callers. Compared to
non-strike periods, proximal individuals call their frequent and geographically close
contacts more frequently. Notably, socially central individuals are called twice as
often and proceed to spark large calling cascades. Lastly, physical mobility increases
27% on strike days compared to the pre-strike mean and thousands of individuals
flee their hometowns. These findings demonstrate drone strikes have a disruptive
and widespread impact on civilian life. Furthermore, our results imply information,
opinions, and emotions regarding strikes spread quickly through the population, which
is in contrast to the prevailing political and military position that strikes are surgical.
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4.1 Introduction

In November 2002, the United States (U.S.) conducted its first drone strike outside of

an active battlefield, killing six al-Qaeda members in Yemen believed to be behind

the bombing of an American destroyer [121]. Since then, the U.S. has carried out

over 6000 confirmed strikes, mainly targeting suspected militants in Yemen, Pakistan,

Afghanistan, and Somalia [121]. These strikes have become a mainstay of U.S. military

strategy, allowing officials to target insurgents without deploying troops. Despite

their prevalence, the covert nature and often isolated targets of drone strikes have

made their effects difficult to study. As a result, their impact on civilians and

effectiveness at countering terrorist organizations are subject to significant debate.

While supporters argue they successfully disrupt terrorist networks by surgically

removing key figures [122–126], critics claim they result in extrajudicial killing, civilian

casualties, and increased militant sympathies [127–132]. Crucially, arguments on both

sides suffer from a lack of available data [133–135].

This scarcity of information leaves open a fundamental question: How disruptive

are drone strikes to civilians and their communities, and is the disruption limited to the

immediate strike region? As societies are intrinsically networked systems, we focus on

the dynamics of the underlying social networks around these localized, violent events.

Networks provide a powerful framework to study social interactions and structure as

well as disruptions to the social fabric [2, 7, 25, 70, 71]. Our goal is to identify and

measure the social network effects of drone strikes, providing quantitative evidence of

their impact on civilian life.

We utilize a new dataset of 12 billion call detail records (CDRs) to study the

societal reaction to 74 U.S. drone strikes in Yemen between 2010 and 2012. During

this period, al-Qaeda seized control of key territory across the country and the number

of U.S. strikes increased in response, peaking in 2012 [136]. The CDRs we employ are

uncommonly complete and contain the time of calls and texts, the anonymized callers

and call recipients, and the towers that handled each end of the calls. Combined with

the geographic coordinates of the towers, the records identify approximate locations
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for each individual at the time of their calls. By highlighting communication between

individuals, CDRs naturally provide the social network of a population and offer

the high temporal and spatial resolution necessary to study reactions to localized

events [137–142]. In addition, CDRs allow us to systematically study civilian reactions

to strikes without relying on self-reported data such as surveys and interviews, which

are the norm in the drone strike literature [132, 143, 144]. Data on the strikes was

compiled by the Bureau of Investigative Journalism [121] and the New America think

tank [136] from credible media reports and includes the date, approximate location,

time, and casualty count for each strike.

At the start of our CDR data in 2010, Yemen had a population of around 23

million [109]. Cellphone usage rose steadily from 49% of the population in 2010 to

58% in 2012 [110], while internet penetration was only 12% [111], making cellphones

crucial to the spread of news and information. Our dataset covers roughly 6 million

subscribers, accounting for a large fraction of the cellphone-using population.

In our analysis, we assume drone strikes are exogenous shocks, which gives our

results causal interpretation. To strengthen the argument for exogeneity, we confirm

potentially confounding events, such as militant activity, do not take place at the same

time and location as the drone strikes in our sample. Specifically, we confirm reported

al-Qaeda attacks, public communications, and movements, as well as activity during

the 2011 Battle of Zinjibar and the 2012 Abyan Offensive, do not overlap with the

dates and locations in our strike dataset. The issue of confounding events highlights

the advantage of using data with high temporal and spatial resolution, such as CDR

data, to conduct event studies.

In this chapter, we employ our CDR data and modern inference methodology to

study the impact of drone strikes on civilian communication and mobility. Quantifying

the effects of strikes on civilian life provides a foundation for improved, data-driven

policy and advances our understanding of drone strikes in modern conflict. In addition

to their ethical and legal ramifications [121,129,132], the effects of strikes on civilians

can alter the dynamics and outcomes of ongoing conflicts. Recent research has

highlighted the key role civilians play in modern wars, demonstrating actions that

153



disrupt civilian life degrade support for the responsible party and affect subsequent

levels of violence [145–148]. As a result, understanding the impact of strikes on civilians

is of paramount importance for contemporary strategies for conflict prevention and

resolution.

4.2 Results

4.2.1 Calling cascades

Previous studies employing CDRs have found call volume spikes dramatically in the

vicinity of violent events [60–62,149]. In addition, in the previous chapter, we have

observed the emergence of information cascades around localized events. With these

results as a starting point, we study whether calling calling cascades emerge around

drone strikes, where branches of calls originating in the strike region spread through

the underlying social network.

Specifically, we define proximal individuals as individuals within 15 miles (24.1

km) of the reported strike locations who make a call during the periods of elevated

call volume following each strike. We label proximal individuals G0, as they are the

zeroth generation of potential call branches originating in the strike region. Individuals

contacted by G0 after the strike are labeled G1, individuals contacted by G1 are

labelled G2, and so on. Figure 4-1 displays the call branches formed after a drone

strike on January 20, 2010 and highlights the different generations of callers. All

results presented are robust to strike region radii choices between 5 and 30 miles (8.0

and 48.3 km) (Supplementary materials (SM) section 4.5.3).

After the 74 drone strikes, average G0, G1, G2, and G3 call volumes all increase

sharply (Fig. 4-2), indicating individuals contacted by proximal individuals proceed to

call their contacts, who in turn call their contacts, and so on, forming calling cascades.

G1 individuals, who are directly contacted by proximal individuals, respond most

dramatically with a 168% call volume increase on average 40 minutes after the strikes

occur compared to non-strike periods, with a standard error (SE) of 25.9. Non-strike
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Figure 4-1: Call branches formed after a drone strike. Call branches formed after a
drone strike on January 20, 2010, which targeted the home of an al-Qaeda leader in the
Marib province. G0 individuals are proximal to the strike and contact G1 individuals,
who proceed to contact G2 individuals, and so on. Calls from G4 individuals and
higher generations are not shown. Only a subset of the call branches formed are
displayed for clarity.
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periods used as a baseline consist of the same day of the week as the strike for five

weeks prior and five weeks in the future, exploiting the strong weekly periodicity in

call volume. G0 call volume increases by 104% (SE 29.9) 30 minutes after strikes,

G2 peaks at a 70% (SE 15.6) increase 60 minutes after, and G3 peaks at a 47% (SE

15.0) increase 70 minutes after. Notably, strikes that result in civilian casualties spark

larger cascades. Regressing the increase in G1 call volume one hour after each strike

on the number of civilians killed as well as several controls, we find strikes that kill 10

civilians correspond to a 115% (SE 38.6) greater increase in G1 call volume (Table

4.1A).

Table 4.1: (A) Strikes with civilian casualties are followed by larger cascades. We
regress the increase in G1 call volume one hour after each strike on the reported
number of civilians killed in the strike, the number of militants killed, a binary variable
for whether a high-ranking militant was killed, binary variables for the time of the
strike (morning is defined as 00:00-08:00 and evening is 16:00-23:59), the number of
strikes that hit the same district in the past 30 days, and the population of the district.
Interpreting the civilian coefficient, strikes that kill 10 civilians correspond to a 114.6%
greater increase in G1 call volume. (B) Strikes with civilian casualties are followed
by higher levels of fleeing. We regress the number of proximal individuals who live
within the strike region, leave within 24 hours after strikes, and do not return within
30 days on the same covariates. Interpreting the civilian coefficient, a strike that kills
10 civilians corresponds to 40.8 more proximal individuals who flee their hometowns
and do not return within 30 days. The covariates are provided by [121,136,150]. The
regressions use heteroscedasticity robust standard errors.

To test the statistical significance of the call volume increases for each strike, we

compare the number of calls made by each generation of callers on strike days to
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Figure 4-2: Emergence of calling cascades after drone strikes. Call volume by generation
of caller, averaged across the 74 strikes, relative to call volume on non-strike days. The
solid lines display average call volume for (a) G0 individuals, (b) G1 individuals, (c)
G2 individuals, and (d) G3 individuals. The shaded regions provide 95% confidence
intervals. Confidence intervals are computed by regressing the relative call volume
series from all 74 strikes on a constant, providing sample averages as well as robust
standard errors.
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non-strike days with a regression framework. Specifically, for each strike and each

generation of caller, we regress the number of calls made by each individual after

being contacted on the strike day and during the same time period on the 10 baseline

days on an indicator variable for the strike day. The coefficients of these regressions

therefore report the average number of calls made by individuals on the strike day

minus the average number of calls made by the same individuals on the baseline days.

We test the significance of the regression coefficients at a 5% level via a one-sided t-test

with heteroscedasticity robust standard errors. Out of the 74 strikes, the majority of

strikes display significant cascades through several generations of callers. At a 5% level,

96% of strikes are significant through G1, 62% through G2, and 31% through G3. To

address issues of multiple testing, we apply the Benjamini-Hochberg (BH) procedure

to control the false discovery rate at 5% [113]. Under the BH step-up procedure, 96%

of strikes are significant through G1, 59% through G2, and 24% through G3.

These cascades reveal the impact of drone strikes is not limited to the immediate

strike region, but also propagates through the social network to individuals and

communities several steps removed from the proximal individuals. Crucially, these

cascades allow information, opinions, and emotions regarding the strikes to spread

quickly through the population. The strong reaction to strikes and civilian casualties

indicates civilians are acutely aware of the collateral damage caused by strikes and

respond by informing their contacts.

4.2.2 Call patterns

The increased call volume around strikes raises the immediate question of whom

proximal individuals are choosing to call. To answer this, we first determine each

individual’s baseline contact list by constructing the underlying social network using

30 days of calls before each strike.

The calls form an undirected graph where an edge exists between two individuals

if they have communicated during the baseline period. These networks not only

determine the list of people each proximal individual could potentially call after each

strike but also allow us to rank those contacts along different metrics. For each
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proximal individual, we rank their contacts by their frequency of communication with

the proximal individual during the 30-day baseline period before the strike, by their

home location proximity to the proximal individual’s home location, and by their

diffusion centrality, which measures the importance of each contact in the global social

network. Home locations are defined as each individual’s most common evening tower

location during the 30-day baseline period.

Diffusion centrality was introduced by Banerjee et al. (2013) [3] to identify

individuals ideally situated in a social network to spread information. Formally,

diffusion centrality in vector form is defined as

𝐷 =

[︃
𝑇∑︁

𝑡=1

(𝑝𝐴)𝑡

]︃
· 1 (4.1)

where 𝐴 is the adjacency matrix of the network, 𝑇 is the number of periods in which

information can diffuse through the network, and 𝑝 is the passing probability from

node to node during each period. Intuitively, the diffusion centrality of node 𝑖 measures

the expected number of times all individuals in the network hear about a piece of

information that node 𝑖 is seeded with. Motivated by our empirical results, we set

𝑇 = 3 and 𝑝 = 0.28 as a large number of cascades are significant through three

generations of callers and roughly 28% of G1-G3 individuals pass on a call after being

contacted. Our results are robust to simpler measures of network importance such as

degree centrality (SM section 4.5.5).

Both after strikes and during the baseline period, the majority of calls are made to

important rank 1 contacts across the three different metrics (Fig. 4-3). However, after

strikes, the distribution of calls made shifts and low rank contacts are called more

frequently. 41% of the calls made after all 74 strikes are to rank 1 contacts by home

location proximity, 28% are to rank 1 contacts by frequency of communication, and

5.5% are to rank 1 contacts by diffusion centrality, double the 2.7% of calls they receive

during the baseline period. All three distributional shifts are statistically significant

at a 5% level using a two-sample Kolmogorov-Smirnov test. In line with intuition,

proximal individuals call their strong ties as well as their geographically close contacts
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more frequently after strikes, most likely to inform or check in on family, friends, and

neighbors. More surprisingly, a fraction of calls are made to central individuals who

occupy ideal positions in the social network to diffuse information.

Calls to socially central individuals are consequential, as we find central G0 and G1

individuals spark larger cascades. To determine the relationship between cascade size

and centrality, we first regress the number of individuals in G1, G2, and G3 in each

call branch present after strikes (the branch size) on the diffusion centrality of the

G0 individual (the origin node). To account for the possible endogeneity of diffusion

centrality, we use an instrumental variable (IV) framework estimated via two-stage

least squares (2SLS). We use the number of people that call a node on Eid al-Fitr, a

major Muslim holiday marking the end of Ramadan, in 2011 and 2012 as instruments

for the node’s centrality.

Our instruments pass both the relevance and exclusion criteria for IV. Intuitively,

the number of people who call a node during Eid is related to the node’s social

importance. Quantitatively, the number of people who call each node during 2011 Eid

is 0.51 correlated with diffusion centrality and the number of people who call each

node during 2012 Eid is 0.46 correlated. The two instruments are 0.54 correlated with

each other. The instruments are excluded as, intuitively, the number of individuals

who call a node during Eid is not related to the node’s frequency of call origination

after strikes, except through centrality. To strengthen this argument, we perform a

Sargan over-identification test using the residuals of our 2SLS regression. With a

p-value of 0.55, we fail to reject the null that our instruments are exogenous.

In addition to regressing branch size on the centrality of the G0 origin node, we also

regress the number of individuals in G2 and G3 in each sub-branch on the diffusion

centrality of the G1 individual that originates the sub-branch, again via 2SLS. We

find high centrality G0 individuals originate call branches that reach 32 (SE 1.2)

more people than low centrality G0 individuals (Table 4.2). Similarly, high centrality

G1 individuals originate sub-branches that reach 25 (SE 2.5) more people. Both

regressions indicate socially central individuals play a key role in diffusing information

after drone strikes.
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Figure 4-3: Shifts in calling patterns after strikes. (a), (b), and (c) display the
fraction of calls received by contacts ranked by their home location proximity to the
proximal individual, frequency of communication with the proximal individual during
the baseline period, and diffusion centrality, respectively. Across all three metrics,
important low rank contacts receive a larger fraction of calls after strikes than during
the baseline period.
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Table 4.2: Central individuals originate larger cascades. (A) regresses the number of
individuals in G1, G2, and G3 for each call branch (the branch size) on the diffusion
centrality of the G0 individual (the origin node) via two-stage least squares (2SLS),
using the number of people that call each G0 individual during 2011 and 2012 Eid
al-Fitr as instruments. (B) regresses the number of individuals in G2 and G3 in
each sub-branch on the diffusion centrality of the G1 individual that originates the
sub-branch, again via 2SLS. The regressions use strike fixed effects to account for
strike-specific heterogeneity and heteroscedasticity robust standard errors. A highly
central G0 individual with a centrality of 10,000 originates a call branch with 32 more
individuals than a low centrality G0 individual. A highly central G1 individual with a
centrality of 10,000 originates a sub-branch with 25 more individuals. For context,
branch size ranges from 2 to 73 with a mean value of 3.0 and diffusion centrality
ranges from 0.36 to 10,699.59 with a mean value of 238.78.

4.2.3 Mobility response

The location estimates provided by the CDRs allow us to analyze the physical response

to drone strikes in addition to the communication response. For each proximal

individual, we construct a time series of their locations and compute the distance

between them, building an estimate of daily distance travelled. Plotting average

daily distance travelled around strikes, we find mobility spikes substantially on strike

days (Fig. 4-4). To quantify this increase, we regress the daily distance travelled

by all proximal individuals for 14 days before strikes and during strike days on an

indicator variable for the strike days. We find average mobility increases 7.6 km (SE

0.24) on strike days, an increase of 27% over the pre-strike mean of 28.5 km (Table

4.3). Individuals display a strong physical reaction to drone strikes, indicating strikes

disrupt the course of daily life.

To test the mobility response for each strike separately, we regress the daily distance

travelled by proximal individuals for 14 days before each strike and on the strike

day on an indicator variable for the strike day. We then test the significance of the

regression coefficients via a one-sided t-test with heteroscedasticity robust standard
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Figure 4-4: Spike in mobility around strikes. The solid line displays average daily
distance travelled by proximal individuals around the 74 strikes. 95% confidence
intervals are shown in light blue and are computed by regressing the mobility of
individuals on a constant, providing sample averages as well as robust standard errors.

Table 4.3: Mobility spikes on strike days. We regress the daily distance travelled by
proximal individuals (in km) on a binary indicator for strike days. Specifically, for
each individual, we include their daily distance travelled for 14 days preceding each
strike, associated with a strike indicator variable of 0, and their daily distance travelled
on the day of the strike, associated with a strike indicator variable of 1. Interpreting
the coefficient, average daily distance travelled increases by 7.64 km on strike days
compared to average distance travelled over the preceding two weeks, a 27% increase
over the pre-strike mean of 28.5 km. The regression uses strike fixed effects to account
for strike-specific heterogeneity and standard errors are clustered by individual.
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errors. Out of the 74 strikes, 58% display statistically significant increases in mobility

on strike days at a 5% level. Applying Benjamini-Hochberg with a false discovery rate

of 5% to correct for multiple testing, 54% of strikes display significant increases in

mobility on strike days. Our results are robust to alternative measures of mobility,

such as distance between proximal individuals’ first and last call made each day (SM

section 4.5.6).

Investigating the increase in mobility around strikes, we find many individuals flee

the strike region. A large number of people leave the strike region quickly, dispersing

around the country within 24 hours (Fig. 4-5). In the subset of the population covered

by our CDR data, 4519 proximal individuals who live within the strike region leave

within the first 24 hours after the 74 strikes occur and remain away for at least 24

hours, highlighting the disruptive impact of strikes. In percentage terms, 5.3% of

proximal individuals who live within the strike region flee after each strike on average.

Of those who flee, 51% return quickly and are home within five days. However, 1049

individuals do not return to their hometowns within a 30-day period, demonstrating a

prolonged impact to communities. Notably, strikes that result in civilian casualties are

followed by higher levels of fleeing. Regressing the number of individuals who do not

return to their hometowns within 30 days on the number of civilians killed as well as

several controls, we find strikes that kill 10 civilians correspond to 41 (SE 16.2) more

individuals who flee and do not return compared to strikes with no civilian casualties

(Table 4.1B). As the majority of strikes take place in medium to low population

districts, the number of individuals displaced, even in our sample, is substantial and is

an order of magnitude larger than the roughly 390 militants targeted in the 74 attacks.

Decomposing the movement of proximal individuals who flee, 54% end up near

(within 5 miles / 8.0 km) a major city during their time away, 83% end up near

the home location of one of their contacts, and 36% end up near the person they

called immediately after the strike. Cities, contacts, and people called after strikes

account for the locations of 91% of the proximal individuals who flee (SM section

4.5.6), demonstrating both physical and social networks explain the movement of

individuals.
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(a)

(b)

Figure 4-5: Dispersion of proximal individuals after drone strikes. (a) Locations of
proximal individuals, in blue, at the time of the 74 strikes, which are marked with red
X’s. By definition, proximal individuals are within 15 miles (24.1 km) of the strikes at
the time of their calls during the strike periods. Populated districts with a population
density of greater than 30 people per square kilometer are shaded grey. Sparsely
populated districts are left white. (b) Locations of the same proximal individuals 24
hours after the strikes occur, displaying rapid dispersion from the strike regions. The
trajectories of individuals are shown as light blue edges.
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Comparing the response to drone strikes to other events highlights the uniquely

disruptive nature of strikes. We analyze the communication and mobility response to

a factory explosion in the town of Ja’ar in March 2011, a bombing of the Presidential

Palace in the capital city of Sana’a in June 2011, a bombing of the Presidential Palace

in the coastal city of Al Mukalla in February 2012, a suicide bombing targeting soldiers

in Sana’a during May 2012, and a suicide bombing targeting Sana’a’s police academy

in July 2012 (SM section 4.5.7). The communication response to these five events

mirrors the response to drone strikes, with significant calling cascades forming after

each event. In addition, the events led to shifts in calling patterns and spikes in

mobility. However, the events did not induce substantial fleeing, and only 1.7% of

proximal individuals left the areas within 24 hours. In contrast to drone strikes, no

proximal individual fled and remained away for 30 days or more. Similarities in the

communication response to strikes and these events can be attributed to their shared

violent, instantaneous, and unexpected nature. Differences in fleeing, however, reveal

the specifically damaging effect of strikes. Civilians likely view drone strikes differently

than these focused comparison events, as strikes, especially those resulting in civilian

causalities, may seem indiscriminate to those on the ground.

4.2.4 Event study approach to mobility

In this subsection, we revisit our mobility results using a panel-data event study,

which provides a transparent quasi-experimental design. We regress outcome variables

of interest on a set of lag and lead indicator variables. The resulting parameters

estimate dynamic treatment effects that can be viewed graphically, and the identifying

assumption of "no pre-event trend" can be checked graphically.

We follow a classical event study design [151]. We define 𝑦𝑠𝑡 as our response

variable where 𝑠 indexes the strike and 𝑡 indexes the time. We aim to estimate the

effect of strikes, which occur at times 𝑒𝑠, on 𝑦𝑠𝑡 over a window ranging from 𝑗 periods
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before the strike to 𝑗 periods after. Our regression model is

𝑦𝑠𝑡 =

𝑗∑︁

𝑗=𝑗

𝛽𝑗𝑥
𝑗
𝑠𝑡 + 𝛼𝑠 + 𝜀𝑠𝑡 (4.2)

where 𝑗 indexes the lags and leads, 𝛼𝑠 captures strike-fixed effects, which account for

unobserved heterogeneity across strikes, and 𝜀𝑠𝑡 is the error term. Our lag and lead

indicator variable, 𝑥𝑗
𝑠𝑡, is defined as

𝑥𝑗
𝑠𝑡 =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1[𝑡 ≤ 𝑒𝑠 + 𝑗] if 𝑗 = 𝑗

1[𝑡 = 𝑒𝑠 + 𝑗] if 𝑗 < 𝑗 < 𝑗

1[𝑡 ≥ 𝑒𝑠 + 𝑗] if 𝑗 = 𝑗

(4.3)

The variable 𝑥𝑗
𝑠𝑡 equals 1 if time 𝑡 equals the strike-specific event time 𝑒𝑠 plus the

lead/lag index 𝑗, and equals 0 otherwise. The 𝑥𝑗
𝑠𝑡 variable is binned at the endpoints,

meaning 𝑥𝑗
𝑠𝑡 equals 1 if the strike occurred 𝑗 or more periods in the future or 𝑗 or

more periods in the past.

The coefficients 𝛽𝑗 are our parameters or interest. 𝛽𝑗 for 𝑗 ≥ 0 estimate the

dynamic effects of strikes on the response variable. 𝛽𝑗 for 𝑗 < 0 capture any pre-strike

trend in the response variable. To avoid multicollinearity, one of the 𝑥𝑗
𝑠𝑡 variables

must be dropped. Following convention to drop a lag close to the event time, we drop

𝑥𝑗
𝑠𝑡 for 𝑗 = −2. After dropping 𝑥−2

𝑠𝑡 , the parameter 𝛽𝑗 captures the effect 𝑗 periods

after the strike compared to the level two periods before the event.

As discussed in the previous subsection, the location estimates provided by the

CDRs allow us to analyze the physical response to drone strikes. For each proximal

individual, we construct a time series of their locations and compute the distance

between them, building an estimate of daily distance travelled. Using the event study

design in equation 4.2, we regress daily distance travelled for proximal individuals

around all 74 strikes for 7 days before to 21 days after each strike. The resulting

parameters estimate the dynamic effect of strikes on mobility. The parameter estimates

with corresponding 95% confidence intervals are shown in Figure 4-6a.
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Figure 4-6: Impact of drone strikes on proximal individual mobility. The figures
display parameter estimates from an event study that regresses a dependent variable
on lag and lead indicator variables. The full model is specified in equation 4.2. The
dependent variables are (a) daily distance travelled by proximal individuals, and
(b) distance of each proximal individual from the strike region. The shaded regions
provide 95% confidence intervals. Following [152], standard errors are clustered by
strike because each strike impacts a cluster of observations, rather than individual
observations.
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Viewing the results, we see mobility spikes significantly on strike days. Mobility

increases 6.47 km (SE 1.26) on strike days compared to the period before strikes, an

increase of 24% compared to the pre-strike mean. Mobility remains elevated for 21

days following strikes, with a mobility increase of 2.47 km (SE 0.83) remaining 21

days after strikes. Figure 4-6 also shows no significant trend in mobility before strikes,

reinforcing our identifying assumption.

Investigating the increase in mobility around strikes, we find many individuals

flee the strike region. We regress the distance of each proximal individual from the

strike region around all strikes for 7 days before to 56 days (8 weeks) after each strike,

again using equation 4.2. The results, shown in Figure 4-6b, demonstrate proximal

individuals leave the strike region, with average distance from the region increasing

steadily after strikes. Average distance reaches 5.52 km (SE 0.89) one week after strikes

and 11.31 km (SE 1.33) 21 days after. Average distance continues to increase until

it peaks at 13.48 km (SE 1.86) 43 days after strikes. The steady increase indicates

individuals leave the region after strikes and travel far before stopping. Average

distance does not return to pre-strike levels in our sample, indicating a subset of

individuals do not return to the region.

4.3 Discussion

Our findings shed light on the effects of drone strikes, which have proven difficult to

systematically study in the past. Utilizing new CDR data, we provide quantitative

evidence of their impact on the communication and mobility patterns of civilians.

Specifically, we find strikes induce calling cascades, shifts in calling patterns, and spikes

in mobility. Notably, central individuals in the global social network are contacted and

a significant number of individuals flee their hometowns. These results demonstrate

strikes have a disruptive effect on civilians and their communities. Crucially, by

highlighting the presence of both communication diffusion and physical diffusion after

strikes, we find their impact is not only limited to the immediate strike region. The

reverberations felt throughout the social network are in stark contrast to language
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used by administration officials, who often describe strikes as a surgical military

option [122,123].

Our results provide a foundation for improved, data-driven policy and advance our

understanding of drone strikes in modern conflict. Diffusion facilitates the spread of

information, opinions, and emotions regarding strikes through the population. Strikes

with civilian casualties are followed by larger cascades and greater amounts of fleeing,

implying diffusion carries negative news and emotions. This spread has the potential

to shift civilian loyalties and sentiments. In line with recent research on the strategic

costs of civilian harm [145–148], civilians impacted by strikes will be less likely to aid

counterinsurgents and more likely to harbor and support insurgents and their cause.

As a result, fully characterizing and understanding the effects of strikes on civilians is

crucial for improved policy. Updated strategies for conflict prevention and resolution

are needed to resolve modern conflicts, including the ongoing wars in the Middle East,

that have lasted decades and claimed hundreds of thousands of lives [153,154].

Although we demonstrate a disruptive impact on civilian life and the presence of

diffusion, we lack the content of the communications and are thus unable to analyze

exactly how opinions and loyalties shift around these events. Future research should

employ further data sources, such as media coverage, speeches, and sermons, to

understand which information and emotions spread after strikes. An open question

remains of whether the disruption induced by strikes increases or decreases militant

recruitment. As the rate of U.S. drone strikes continues to steadily increase, their

impact on civilians and communities cannot be ignored.
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4.4 Methods

4.4.1 CDR and drone strike data

The call detail records were obtained from a major cellphone service provider in Yemen

and contain subscriber communications between January 1, 2010 and October 31,

2012. Table 4.4 displays three calls from the dataset as an example. The set of 74 U.S.

drone strikes was compiled by the Bureau of Investigative Journalism (BIJ) [121] and

the New America think tank (NA) [136] from credible media outlets. In our subset of

strikes, 6 occur in 2010, 15 in 2011, and 53 in 2012. As a summary, 18 of the 74 strikes

took place in the morning (00:00-08:00), 30 took place during the day (08:00-16:00),

and 26 took place in the evening (16:00-23:59). The average strike killed 1.1 civilians

(4.2 std) and 9.0 militants (9.5 std), and occurred in a district with a population of

77,051.7 (47,723.6 std). 17 of the strikes killed a high-ranking militant (see SM section

4.5.3 for full definition).

4.4.2 Call branch construction

Proximal individuals are defined as individuals who place calls within 15 miles (24.1

km) of the strike location during the strike period. We label proximal individuals G0

as they form the zeroth generation of potential call branches. The individuals G0

contact during the strike period are labelled G1. We require G1 to be outside the

strike region and to be distinct from the members of G0. This ensures any increase in

G1 call activity is not due to them witnessing the event. The individuals G1 contact

within an 80-minute window after being contacted by G0 are labelled G2. Again, we

require G2 to be outside the strike region and to be distinct from the members of

any previous generation. We continue in this manner, labelling the individuals G2

contact within an 80-minute window after being contacted by G1 as G3, and so on.

The 80-minute response window is imposed as we are interested in calls made by call

recipients directly after being contacted. Our results are robust to choices of response

window length between 20 and 240 minutes (SM section 4.5.4).
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4.5 Supplementary materials

4.5.1 Notes on causality

We assume drone strikes are exogenous shocks, which gives our results causal inter-

pretation. Under exogeneity, the results of an event study analysis can be attributed

to the event itself. We attribute the call volume increase in Figure 4-2, the shift in

calling patterns in Figure 4-3, the spike in mobility in Figure 4-4 and Table 4.3, and

the individuals who leave the strike region immediately (within 24 hours) to drone

strikes.

The two main obstacles to exogeneity in event studies are simultaneity and joint

response [155,156]. Simultaneity occurs if the proposed dependent variable causes the

proposed independent variable, in addition to or in lieu of the independent variable

causing the dependent variable. We do not believe increases in call volume, shifts in

calling patterns, or spikes in mobility cause drone strikes, as there is no evidence or

documented reports that they do.

Joint response is a more realistic issue and arises if both the dependent variable

and independent variable are both caused by some other event / variable. If both

variables jointly respond to this missing influence, we may mistakenly attribute the

change in dependent variable to our proposed independent variable. This is essentially

omitted variable bias in the context of an event study. In our analysis, call volume

increases, spikes in mobility, and drone strikes may all be caused by militant activity

(such as militant attacks or militants entering a town). For joint response to be an

issue, the omitted event must take place at the same time and in the same location

as the drone strike. We confirm key militant activity, including reported al-Qaeda

attacks, public communications, and movements, as well as activity during the 2011

Battle of Zinjibar and the 2012 Abyan Offensive, do not overlap with the dates and

locations in our drone strike dataset. Therefore, we have confidence our event study

results, which utilize daily and intra-day time windows as well as 15-mile (24.1 km)

radii geographic windows, are not confounded by militant activity. The joint response

issue highlights the advantages of using data with high temporal and spatial resolution,
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such as CDR data, when conducting event studies.

4.5.2 Call detail records and coverage

Our dataset of call detail records was obtained from a major cellphone service provider

in Yemen and contains subscriber communications between January 1, 2010 and

October 31, 2012. The subset of the dataset we employ includes over 12 billion

calls and texts for around 6 million unique subscribers. Each call record includes

the anonymized caller and call recipient, the towers that handled the caller and call

recipient’s call, and the time and duration of the call. Combining these records with

the latitudes and longitudes of the towers provides the approximate locations of both

the caller and call recipient at the time of each call. Table 4.4 displays three calls

from the dataset as an example.

Figure 4-7 displays Yemen’s population in 2010 at the district level. Yemen’s

last census was in 2004 and the CSO (Central Statistical Organization) is not cur-

rently active. However, UN OCHA (United Nations Office for the Coordination of

Humanitarian Affairs) has projected district-level populations for 2016, allowing us

to interpolate 2010 populations [150]. Administratively, Yemen is divided into 22

governorates and 333 districts. The population is concentrated on the west side of the

country as the east is mainly desert. The right three governorates, which account for

over half of the country by landmass, account for only 8% of the population.

To understand our dataset’s coverage of Yemen’s population at a granular level,

we compute the fraction of the population covered in each district. We first form

home location estimates for all subscribers, which we define as their most common

tower location. Using a Voronoi tessellation, which splits the country into regions

approximately covered by each cell tower, we allocate individuals to the districts

covered by their home towers. Specifically, we determine the fraction of each district’s

population covered by each tower according to the area of overlap from the tessellation.

We then allocate the individuals in our dataset with specific home towers to districts

in proportion to the district level populations covered by each tower. Note, this

partitioning provides a more accurate estimate of our dataset’s coverage than simply
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attributing all individuals to the district where their home tower is located, as tower

coverage does not obey district boundaries. If a tower sits near the border of a district,

it likely covers individuals in the neighboring district as well. Our dataset’s coverage of

Yemen’s population at the district level is balanced, covering 18.4% of the population

in each district on average with a median value of 12.1%.

4.5.3 Drone strike data and strike period selection

We use a set of 74 U.S. drone strikes taking place in Yemen between January 2010 and

October 2012. The strike dates and approximate locations are provided by the Bureau

of Investigative Journalism (BIJ) [121] and the New America think tank (NA) [136],

which compile strikes reported by various news outlets. The original dataset sourced

from [121] and [136] contains 108 strikes in total. However, 34 strikes have no cell

towers within a 15-mile (24.1 km) radius or fall on a holiday and are dropped from

our analysis. To date, BIJ claims 329 U.S. drone strikes have taken place in Yemen

with the earliest occurring in 2002 and the program beginning in earnest in 2009. In

our subset of strikes, 6 occur in 2010, 15 in 2011, and 53 in 2012.

BIJ and NA provide approximate strike locations for all strikes and approximate

times for a subset of strikes. To determine precise start and end times for each strike,

we systematically look for periods of abnormally high call volume. For each strike

region (defined as a 15-mile (24.1 km) radius around each approximate strike location),

we compare the outgoing call volume on the day of the strike to the average call

volume of the area on the same day of the week for five weeks prior and five weeks in

the future (which we term baseline days), exploiting the strong weekly periodicity in

call patterns. Specifically, we form the z-score series

𝑉𝑧 =
𝑉𝑠 − 𝑉𝑏

𝜎𝑉𝑏

(4.4)

where 𝑉𝑠 is the outgoing call volume of the area on the strike day, 𝑉𝑏 is the average

outgoing call volume of the area over the 10 baseline days, and 𝜎𝑉𝑏
is the standard

deviation of the call volume over the 10 baseline days. When determining baseline
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days, holidays and other drone strike days are skipped due to their atypical call volume.

For strikes that occur during Ramadan, we only include other Ramadan weeks when

constructing the baseline, as more people rest during the day and make calls at night,

inverting normal call volume. Call volume is binned into 10 minute intervals to form

the 𝑉𝑠, 𝑉𝑏, and 𝜎𝑉𝑏
series. We use the periods where 𝑉𝑧 exceeds one to determine the

start and end time for each strike. For a subset of strikes, BIJ and NA provide the

approximate time of day when the strike occurred. For these 25 strikes, we verify

our start times correspond to the reported times. The strike period for each strike is

defined as the period between our computed start and end time.

Our results and conclusions are robust to the choice of strike radius. Figure 4-8

demonstrates similar results to those discussed in the main text using a 5-mile (8.0

km) strike radius. Fig. 4-9 displays call volume and mobility as a function of radius,

demonstrating strikes have an identifiable impact and our conclusions hold for radii

choices up to 30 miles (48.3 km).

We also use strike-specific characteristics provided by BIJ and NA in the regressions

shown in Table 4.1. These characteristics include estimates of the number of civilians

killed in each strike, the number of militants killed, and whether a high-ranking

militant was killed. High-ranking militants are defined as provincial al-Qaeda in

the Arabian Peninsula commanders or higher rank commanders. Non-high-ranking

militants are defined as local commanders as well as unranked/unspecified militants.

Any militant who was known to be involved in the planning of attacks on American

targets was coded as high-rank.

As a summary, 18 of the 74 strikes took place in the morning (00:00-08:00), 30 took

place during the day (08:00-16:00), and 26 took place in the evening (16:00-23:59).

The average strike killed 1.1 civilians (4.2 std) and 9.0 militants (9.5 std), and occurred

in a district with a population of 77,051.7 (47,723.6 std). 17 of the strikes killed a

high-ranking militant.
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4.5.4 Methodology for cascade analysis

Proximal individuals are defined as individuals who place calls within 15 miles (24.1

km) of the strike location during the strike period. We label proximal individuals G0

as they form the zeroth generation of potential call branches. The individuals G0

contact during the strike period are labelled G1. We require G1 to be outside the

strike region and to be distinct from the members of G0. This ensures any increase in

G1 call activity is not due to them witnessing the event. The individuals G1 contact

within an 80-minute window after being contacted by G0 are labelled G2. Again, we

require G2 to be outside the event region and to be distinct from the members of any

previous generation. We continue in this manner, labelling the individuals G2 contact

within an 80-minute window after being contacted by G1 as G3, and so on. Figure 4-1

in the main text provides an example. The 80-minute response window is imposed as

we are interested in calls made by call recipients directly after being contacted. These

calls are more likely to be related to the call they just received, and therefore to the

strike, than calls they make much later. At the end of this section, we demonstrate

our results are robust to the choice of response window length.

For each strike and for each level of caller, we build a series of relative outgoing call

volume, which compares call volume during the strike period to call volume during

the 10 baseline days. As in the previous section, baseline days are the same day of the

week for five weeks prior and five weeks in the future. For proximal individuals (G0),

we construct the following series. The relative change in call activity for proximal

individuals, 𝑅𝐺0, is defined as the number of calls made within the strike region on the

day of the strike, 𝑉𝑠, minus the average number calls made from the strike region over

the baseline days, 𝑉𝑏, and divided by the average number of baseline calls. Formally,

𝑅𝐺0 =
𝑉𝑠 − 𝑉𝑏

𝑉𝑏

(4.5)

We bin calls into 10 minute intervals to create the time series. To build relative

call volume series for G1 and higher generations, we compare the number of calls

individuals make during their 80-minute windows after being contacted on strike
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days to the number of calls the same individuals make during the same 80-minute

windows on the baseline days. For example, if a G1 individual places a call after

being contacted by a G0 individual following a strike, we check to see if the same

G1 individual normally places a call during that 80-minute window on the baseline

days. For 𝑖 ≥ 1, the Gi series, 𝑅𝐺𝑖, are defined as the number of calls made by the Gi

individuals within 80 minutes after being contacted on the strike day, 𝑉𝐺𝑖,𝑠, minus the

average number of calls made by the same individuals during the same time periods

on the 10 baseline days, 𝑉𝐺𝑖,𝑏, and then divided by 𝑉𝐺𝑖,𝑏. Formally,

𝑅𝐺𝑖 =
𝑉𝐺𝑖,𝑠 − 𝑉𝐺𝑖,𝑏

𝑉𝐺𝑖,𝑏

(4.6)

Call volume series allow us to study the difference between strike day call volume

and normal call activity. Dividing this difference by normal call activity converts the

change in call volume to a percent change, which can be directly compared across

strikes that otherwise differ in the magnitude of normal call activity. Figure 4-2 of

the main text plots the relative call volume series for G0, G1, G2, and G3 averaged

across the 74 strikes. The 0 on the x-axis corresponds to the start of the strike period,

as defined in the previous section. Note the G1, G2, and G3 series are 0 before the

strike period begins by definition as we only record calls made by these individuals

after they are contacted by G0 during the strike period. The confidence intervals are

formed by regressing the relative call volume series from all 74 strikes on a constant,

providing sample averages as well as robust standard errors for the estimates.

Construction of the G0 series differs from the G1 and higher series as G0 individuals

make at least one call during the strike period by definition. Therefore, comparing the

number of calls made by G0 individuals on strike days to the number of calls made by

the same individuals on baseline days would result in a mechanical increase in call

volume. For this reason, we compare the number of calls made from the strike region

on strike days to the number of calls made from the strike region on baseline days.

Note, as we use increased strike period call volume to define a subset of the strike

periods (see previous section), part of the increased strike period call volume captured
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in the G0 series is mechanical. However, as multiple studies have already documented

increased call volume in the vicinity of disruptive events [60–62,149], we use the result

as our starting point to study whether G1 and higher levels exhibit increased call

volume. As G1+ individuals are outside of the strike region by definition, increased

strike region call volume does not bias G1, G2, and G3 call volume.

To determine whether the increase in call activity of individuals several steps

removed from the strike region is statistically significant, we again compare the

number of calls made during strike days to the number made during baseline days.

Following the approach introduced above, for each level in the cascade we record the

number of calls each call recipient makes within an 80-minute window after being

contacted. These observations are directly compared to the number of calls made

by the same individuals during the same 80-minute periods on the 10 baseline days.

For each strike and each generation of caller, we regress the number of calls made by

individuals after each strike and during baseline periods on an indicator variable for

strikes. The coefficient on the strike indicator therefore records the average number of

calls made by call recipients on the strike day minus the average number made during

the baseline days. The t-statistic of the coefficient allows us to test whether individuals

make more calls on the strike day after being contacted than they normally would,

via a one-sided test at a 5% level using heteroscedasticity robust standard errors. As

an example, G1 individuals make 0.75 calls each on average after a strike in Lawdar

on January 30th, 2012, compared to 0.21 calls during the same 80-minute windows on

the 10 baseline days. The beta from the regression is therefore 0.54 and the t-statistic

is 9.91, indicating a statistically significant increase in call volume during the strike

period. For each strike, we first test G1 callers, then G2 callers, and so on. Once we

reach a generation of callers with an insignificant increase in call volume, we do not

test further generations and move on to the next strike.

Out of the 74 strikes, 71 are significant through the G1 level of callers, 46 through

G2, 23 through G3, 13 through G4, and 6 through G5, at a 5% level. We restrict

our primary analysis to the G0-G3 levels in the main text as only a small subset of

strikes exhibit deeper cascades. To address issues of multiple testing, we apply the
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Benjamini-Hochberg (BH) procedure to control the false discovery rate at 5% [113].

Under the BH step-up procedure, 71 strikes are significant through G1, 44 through

G2, 18 through G3, 8 through G4, and 3 through G5.

Above, we detail our use of an 80-minute response time. Our results are robust

to response time choices between 20 and 240 minutes (Fig. 4-10). Again, we test

statistical significance via regression and a 5% significance level. With a 20-minute

response time, 71 strikes are significant through G1, 32 through G2, and 7 through

G3. With a 240-minute response time, 67 are significant through G1, 51 through G2,

and 42 through G3.

4.5.5 Methodology for call pattern analysis

In order to determine which of their contacts proximal individuals choose to call, we

build a baseline social network using 30 days of calls preceding each strike. These

calls form an undirected graph where an edge exists between individuals if they

have communicated during the month. Building the underlying network allows us

to determine each proximal individual’s list of contacts as well as the centrality of

individuals. Proximal individuals have a median value of 24 contacts. For each

proximal individual, we rank their contacts by their frequency of communication with

the proximal individual during the baseline month, by their home location proximity to

the proximal individual, and by their global diffusion centrality in underlying network.

Frequency of communication is simply defined as the number of calls between the

proximal individual and contact during the 30-day baseline period. Home location

proximity is defined as the distance between the home location of the contact and the

home location of the proximal individual. Home locations are defined as individuals’

most frequent evening (between 6pm and midnight) tower location during the baseline

period. Diffusion centrality measures the influence of a node with regards to spreading

information and is formally defined below. As a global centrality measure, it is

calculated using the entire baseline social network. Respectively, these metrics allow

us to determine whether call recipients are the contacts proximal individuals talk to

most frequently, are the contacts that live close to the individual, or are important
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nodes in the underlying social network.

Diffusion centrality was introduced by Banerjee et al. (2013) [3] to identify

individuals ideally situated in a social network to spread information. Formally,

diffusion centrality in vector form is defined as

𝐷 =

[︃
𝑇∑︁

𝑡=1

(𝑝𝐴)𝑡

]︃
· 1 (4.7)

where 𝐴 is the adjacency matrix of the network, 𝑇 is the number of periods in which

information can diffuse through the network, and 𝑝 is the passing probability from

node to node during each period. Intuitively, the diffusion centrality of node 𝑖 measures

the expected number of times all individuals in the network hear about a piece of

information that node 𝑖 is seeded with. Motivated by our empirical results, we set

𝑇 = 3 and 𝑝 = 0.28 as a large number of cascades are significant through three

generations of callers and roughly 28% of G1-G3 individuals pass on a call after being

contacted.

Figure 4-11 provides a stylized example of ranking a proximal individual’s contacts

by their diffusion centrality. When ranking contacts, we break ties by assigning the

tied contacts the lowest rank in the group. For example, if two contacts have diffusion

centralities of 23 while the third has a diffusion centrality of 10, the two tied contacts

would both be assigned rank 1 and the remaining contact would be assigned rank 3.

Figure 4-3 in the main text demonstrates the shift in calling patterns around

strikes. For each of the three ranking metrics, the figure displays the fraction of

calls received by each contact rank both during the 30-day baseline periods and after

strikes. For example, rank 1 contacts by frequency of communication with the proximal

individuals receive 28.4% of the calls during the strike periods compared to 23.0%

of calls during the 30-day baseline periods. The calls made after the 74 strikes are

aggregated to compute the fraction of calls received. The number of calls received by

contact rank during strike periods can be compared to the number of calls received

by contact rank during baseline periods via a two-sample Kolmogorov-Smirnov test,

which non-parametrically tests whether two empirical distributions are sampled from

180



the same population distribution. We employ the test in the main text to determine

whether the shifts in calling patterns around strikes are statistically significant.

Note, the ranking metrics are correlated as a proximal individual’s rank 1 contact

by distance can also be their rank 1 contact by frequency as well as their rank 1 contact

by centrality. Across all contacts, diffusion rank is 0.26 correlated to home proximity

rank and 0.45 correlated to frequency rank. Home proximity rank is 0.26 correlated to

frequency rank. Reported correlations are Spearman rank-order correlation coefficients.

To disentangle this correlation and determine if all of the metrics are important to

whether a contact is called or not after strikes, we regress calls received after strikes

for each contact on their three ranks (Table 4.5). All three ranks are statistically

significant, indicating frequency of communication, home location proximity, and

centrality help explain which contacts are called after strikes. Using all individuals

in the baseline networks, we compute diffusion centrality percentiles. The rank 1

by centrality contacts who are called after strikes are highly globally central with a

median centrality percentile of 99%.

Our results are robust to the choice of centrality measure. Figure 4-12 displays

the shift in calls received after strikes for contacts ranked by their degree centrality,

which is a simple centrality measure defined as the number of individuals each contact

is connected to in the baseline social network. The distributional shift closely mirrors

the shift discussed in the main text, with rank 1 contacts by degree centrality receiving

5.6% of calls after strikes compared to 2.8% of calls during the baseline periods. As

a note, diffusion centrality with the 𝑇 parameter set to 1 is proportional to degree

centrality.

After the 74 strikes, 84% of calls made by proximal individuals are to one of

their contacts from the baseline period. Therefore, 16% of calls made by proximal

individuals correspond to edges that do not exist in the baseline network. Many

of the new recipients are near the strike location, with 57% within 15 miles (24.1

km). Although the specific proximal individual-call recipient edges do not exist in the

baseline network, all of the call recipient nodes are present in the baseline. For each

proximal individual and new call recipient pair, we determine how close they are in
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the baseline network in terms of shortest path length. 66% of proximal individual-

call recipient pairs are 2 edges away from each other, meaning only one individual

separates them in the baseline network. Only 4% of the new call recipients are outside

of the strike region and more than 3 edges away, indicating the new contacts are

geographically or socially close.

To determine the relationship between cascade size and centrality, we first regress

the number of individuals in G1, G2, and G3 in each call branch present after strikes

(the branch size) on the diffusion centrality of the G0 individual (the origin node). To

account for the possible endogeneity of diffusion centrality, we use an instrumental

variable (IV) framework estimated via two-stage least squares (2SLS). We use the

number of people that call a node on Eid al-Fitr, a major Muslim holiday marking

the end of Ramadan, in 2011 and 2012 as instruments for the node’s centrality. Our

instruments pass both the relevance and exclusion criteria for IV. Intuitively, the

number of people who call a node during Eid is related to the node’s social importance.

Quantitatively, the number of people who call each node during 2011 Eid is 0.51

correlated with diffusion centrality and the number of people who call each node

during 2012 Eid is 0.46 correlated. The two instruments are 0.54 correlated with each

other. The instruments are excluded as, intuitively, the number of individuals who

call a node during Eid is not related to the node’s frequency of call origination after

strikes, except through centrality. To strengthen this argument, we perform a Sargan

over-identification test using the residuals of our 2SLS regression. With a p-value of

0.55, we fail to reject the null that our instruments are exogenous.

For robustness, we also run the reduced form model, where we regress branch size

directly on our Eid instrument. We regress the number of individuals in G1, G2, and

G3 in each call branch present after strikes (the branch size) on the number of people

who call the G0 individual during 2011 Eid (the origin node). Using strike fixed

effects and clustering standard errors by strike, the coefficient on the Eid variable is

positive and significant with a value of 0.0788 and a standard error of 0.016 (T-statistic

of 4.955). The regression has 74,960 observations and an R-squared of 0.075. The

average number of people that call a G0 node during Eid is 6 and the max value is
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111. Interpreting the regression result, if 100 people call a G0 node during Eid, which

signifies that the node is important, the node will form a call branch with 7.88 more

individuals than a node that receives no calls during Eid. The result is in line with

our IV regression that uses diffusion centrality in the main text. However, the result

is less pronounced because the number of people that call on Eid is only a proxy for

centrality. Diffusion centrality is a much more direct metric for the importance of an

individual, especially when it comes to diffusing information.

4.5.6 Methodology for mobility analysis

Each time an individual makes or receives a call, the tower that handles their end of the

call provides their approximate location. For each individual, we can therefore build a

time series of their locations and subsequently estimate their levels of mobility as well

as their key locations. We use the most frequent location per hour to form an hourly

time series of approximate locations for each individual. Hourly locations remove

any small-scale variation that may be caused by different towers picking up calls

from a stationary individual. Computing the distance between subsequent locations

and summing the distances for each day provides an estimate for the daily distance

travelled by each individual.

Figure 4-4 in the main text displays the daily distance travelled by proximal

individuals, where mobility is averaged across all individuals from the 74 strikes.

95% confidence intervals are shown in light blue and are computed by regressing the

mobility of individuals on a constant, providing sample averages as well as robust

standard errors for the estimates. As a complement to Fig. 4-4, Table 4.3 reports

results from a regression of daily distance travelled by all proximal individuals on a

binary indicator for strike days. Specifically, we include the daily distance travelled

by each proximal individual for 14 days preceding the strike, associated with a strike

indicator variable of 0, and the daily distance travelled by proximal individuals on

the day of the strike, associated with a strike indicator variable of 1. Interpreting the

coefficient of the regression, we find daily distance travelled increases by 7.64 km on

strike days (with a standard error of 0.24) compared to average distance travelled over
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the preceding two weeks, a 27% increase over the pre-strike mean of 28.5 km. The full

specification of the regression is provided in the table caption.

To determine whether the increase in mobility is statistically significant for each

strike, we regress the daily distance travelled by proximal individuals on an indicator

variable for strike days. Again, for each strike, we include the daily distance travelled

by each proximal individual for 14 days preceding the strike, associated with a strike

indicator variable of 0, and the daily distance travelled by proximal individuals on the

day of the strike, associated with a strike indicator variable of 1. The coefficients of

the regressions therefore report the average daily distance travelled on the strike day

minus the average daily distance travelled over the preceding 14 days. The t-statistics

of the coefficients allow us to test whether individuals are more mobile on strike

days than normal, via a one-sided test at a 5% level using heteroscedasticity robust

standard errors. Out of the 74 strikes, 43 display statistically significant increases

in mobility on strike days at a 5% level. To address issues of multiple testing, we

apply the Benjamini-Hochberg (BH) procedure to control the false discovery rate at

5% [113]. Under the BH step-up procedure, 40 strikes have significant increases in

mobility on strike days.

A concern when using CDRs to estimate mobility is potential bias caused by

correlation between call frequency and mobility levels. However, we first note we form

location estimates at an hourly level, so our results are not sensitive to increased

call frequency within hour intervals. To counter any further potential bias, we rerun

the daily distance travelled analysis using the subset of individuals who have more

location estimates on non-strike days than strike days. The average daily distance

travelled by this subset spikes 23% on strike days compared to the average distance

travelled over the preceding two weeks, a similar increase to the 27% reported in the

main text. An alternative measure to daily distance travelled is distance between the

first and last call made each day. This first-last measure captures spikes in mobility if

proximal individuals are present in the strike region in the morning of strike days and

leave the strike region after strikes. When restricted to the subset of individuals who

make at least two calls each day, this measure has the added benefit of robustness to
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call frequency. Average daily first-last distance spikes 17% on strike days compared to

the average distance over the preceding two weeks.

Figure 4-5A in the main text shows the locations of all 74 strikes and the locations

of all proximal individuals at the time of their calls during the strike periods. By

definition, all individuals are located within 15 miles (24.1 km) of the strike locations.

Fig. 4-5B then shows the locations of the same proximal individuals 24 hours after

their strike period calls, demonstrating a fraction leave the strike region within 24

hours and disperse around the country.

We study the proximal individuals who live within the strike region, leave the

strike region within 24 hours of strikes, and remain away for at least 24 hours. Again,

home locations are defined as each individual’s most frequent evening tower location

during the 30-day baseline period preceding each strike. For this subset of proximal

individuals, Fig. 4-13 displays the distribution of the duration of time they remain

away from the strike region. While 51% return quickly and are home within five days,

1046 individuals do not return to their hometowns within a 30-day period.

We find physical and social networks explain the movement of individuals after

strikes. 54% end up within 5 miles (8.0 km) of a major city during the time they

are away from home. The cities we consider are Aden, Al Hudaydah, Al Qatn, Ataq,

Azzan, Bayda, Dhamar, Ibb, Ja’ar, Marib, Mudiyah, Mukalla, Rada’a, Sana’a, Ta’izz,

and Zinjibar. The population of each city, which is used in the regression described in

Table 4.6, is provided by [157]. Table 4.6 regresses the fraction of proximal individuals

who flee to each city after each strike on the city’s distance to the strike location

and population. The regression demonstrates individuals who flee move towards

nearby, densely populated cities. Table 4.7 regresses the maximum distance from the

strike region of each proximal individual who flees on the distance between their most

important contacts and the strike region and on the distance between their nearby,

major city and the strike region. The regression demonstrates physical and social

information can be used to predict the mobility of those who flee.

185



4.5.7 Comparison to other disruptive events

We compare the drone strike response patterns to the responses to other disruptive

events. Specifically, we study the CDR response to a factory explosion and four

bombings. On March 28, 2011, a munitions factory exploded in Ja’ar, a town in

southern Yemen, killing 150 people [158]. On June 3, 2011, the Presidential Palace in

Sana’a was bombed by opposition forces and the president at the time, Ali Abdullah

Saleh, was badly injured [159]. On February 25, 2011, a car bomb was set off outside

the Presidential Palace in Al Mukalla, killing 26 people [160]. On May 21, 2012,

al-Qaeda carried out a suicide bombing against Yemeni soldiers practicing for a parade

in Sana’a, killing over 90 [161]. On July 11, 2012, a suicide bomber killed at least 10

people outside of a police academy in Sana’a [162]. Similar to drone strikes, these

events are violent, unexpected, and localized in time and space.

Following the methodology in the main text, we analyze the calling cascades that

emerged after each event. All five events display significant cascades (Fig. 4-14), with

statistically significant increases in call volume through the G2, G4, G5, G5, and G5

level of callers at a 5% level, respectively. Analyzing the shifts in calling patterns

after the events as in the main text, we see geographically close and frequent contacts

receive a greater fraction of calls after the events than during the baseline periods,

for the majority of events (Fig. 4-15). Calls to central contacts increase substantially

after the events. Analyzing mobility as in the main text, we see average mobility

(measured by daily distance travelled) spikes on the majority of events days (Fig.

4-16). Compared to baseline mobility (average mobility over the preceding two weeks),

average mobility increased 7.5 km (SE 0.40), 0.4 km (SE 0.06), 3.9 km (SE 0.37),

1.4 km (SE 0.06), and 3.0 km (SE 0.14) respectively on event days over pre-event

means of 8.9 km, 4.5 km, 7.6 km, 6.4 km, and 7.9 km. These increases correspond to

percent increases of 84%, 8%, 52%, 23%, and 38% over the pre-event means. After

the events, 143, 966, 106, 865, and 1292 individuals who lived within the event region,

left within 24 hours and remained away for at least 24 hours, corresponding to 1.7%

of the proximal individuals on average. Notably, zero individuals remained away for
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30 days or more across all five events.
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4.5.8 Supplementary figures

Figure 4-7: 2010 population of Yemen by district. Administratively, Yemen is split
into 22 governorates and subdivided into 333 districts. The total population of the
country in 2010 was around 23,607,000 [109]. District-level populations are provided
by [150].
.
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.
.
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.
.
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.
.
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.
.
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.
.
.
.
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Figure 4-8: Main results using a 5-mile (8.0 km) strike radius for robustness. (A)
displays call volume by generation of caller, averaged across strikes, relative to call
volume on non-strike baseline days, (B) displays the fraction of calls received by
contacts ranked by their diffusion centrality, and (C) displays average daily distance
travelled by proximal individuals around strikes.
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Figure 4-9: Call volume and mobility as a function of the strike region radius for
robustness. (A) displays the average call volume increase of proximal individuals
during the strike period relative to the call volume from the same area during the same
period on non-strike baseline days. (B) displays the jump in average daily distance
travelled by proximal individuals, defined as distance travelled on strike days minus
average distance travelled over the preceding two weeks. Daily distance travelled
is first averaged within strike and then averaged across strikes. Both (A) and (B)
indicate strikes have an identifiable impact for radii choices between 5 and 30 miles
(8.0 and 48.3 km). The dashed line is placed at 15 miles (24.1 km), the strike region
radius used in our analysis.
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Figure 4-10: Number of strikes with significant cascade generations by response
window length for robustness. In our analysis, the individuals G1 contact within
an 80-minute window after being contacted by G0 are labelled G2. G3 individuals
are defined similarly. Varying this response window length, we note our conclusions
regarding cascades are robust, as many strikes have significant cascades through several
generations of callers using window lengths between 20 and 240 minutes.

Figure 4-11: A stylized example of ranking the contacts (N1-3) of a proximal individual
(G0) by their centrality scores. The proximal individual has three contacts with whom
they have corresponded during the 30-day baseline preceding the strike. Their rank
1 contact by centrality has a diffusion centrality of 23, which is calculated using the
entire baseline social network.

191



Figure 4-12: Fraction of calls received by contacts ranked by their degree centrality
for robustness. Degree centrality of a contact is defined as the number of individuals
they are connected to in the baseline social network. The increase in calls received
by important low rank contacts after strikes mirrors the shift present for contacts
ranked by diffusion centrality, as discussed in the main text. Rank 1 contacts by
degree centrality receive 5.6% of calls after strikes compared to 2.8% of calls during
the baseline periods.

Figure 4-13: Distribution of the duration of time proximal individuals who leave after
strikes remain away from the strike region. The subset of proximal individuals is
restricted to those who live within the strike region, leave within 24 hours after strikes,
and remain away for at least 24 hours.
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Figure 4-14: Call volume by generation of caller highlighting the emergence of calling
cascades after the five comparison events: (A) factory explosion in Ja’ar, (B) Presi-
dential Palace bombing in Sana’a, (C) Presidential Palace bombing in Al Mukalla,
(D) suicide bombing in Sana’a, and (E) police academy bombing in Sana’a. Call
volume on the day of the events is compared to call volume from the same area on
baseline days to provide an increase in call volume, as in the main text. G0 individuals
are proximal to the event and contact G1 individuals who contact G2 individuals, and
so on.
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Figure 4-15: Shifts in calling patterns after the five comparison events: (A) factory
explosion in Ja’ar, (B) Presidential Palace bombing in Sana’a, (C) Presidential Palace
bombing in Al Mukalla, (D) suicide bombing in Sana’a, and (E) police academy
bombing in Sana’a. The left, center, and right columns display the fraction of calls
received by contacts ranked by their home location proximity to the proximal individual,
frequency of communication with the proximal individual during the baseline period,
and diffusion centrality, respectively. Across all three metrics, important low rank
contacts receive a larger fraction of calls after the events than during the baseline
periods.
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Figure 4-16: Spikes in mobility around the five comparison events: (A) factory
explosion in Ja’ar, (B) Presidential Palace bombing in Sana’a, (C) Presidential
Palace bombing in Al Mukalla, (D) suicide bombing in Sana’a, and (E) police
academy bombing in Sana’a. The figures display average daily distance travelled by
proximal individuals around the events. Daily distance travelled is computed for each
proximal individual by constructing a time series of their locations and computing the
distance between them.
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4.5.9 Supplementary tables

Table 4.4: Three calls from the call detail record dataset, provided as an example.

Table 4.5: Disentangling correlation between contact ranks. We regress the number of
calls received by contacts during the strike period minus their expected number of
calls on their frequency, proximity, and centrality ranks. Expected number of calls
is defined as the rate of calls received during the 30-day baseline period (number of
calls received divided by the period length in hours) times the length of the strike
period in hours. For example, if a contact talks to a proximal individual once every
two hours during the baseline period, we expect them to speak once during a two-hour
strike period. All three ranks are statistically significant, indicating frequency of
communication, centrality, and home location proximity help explain which contacts
are contacted after strikes. The regression uses heteroscedasticity robust standard
errors.

Table 4.6: Individuals who flee move towards nearby, densely populated cities. 54%
of proximal individuals who live within the strike region, leave within 24 hours after
strikes, and remain away for at least 24 hours end up within 5 miles (8.0 km) of major
cities. We regress the fraction of proximal individuals who flee to each city after each
strike on the city’s distance to the strike location and population. Interpreting the
coefficients, a city of 100,000 people 30 km away from a strike would receive 13.2%
of the proximal individuals who flee. The regression uses heteroscedasticity robust
standard errors.
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Table 4.7: Physical and social networks can be used to predict the mobility of those
who flee. We regress the maximum distance from the strike region of each proximal
individual who flees (those that live within the strike region, leave within 24 hours of
the strike, and remain away for at least 24 hours) on the distance between their rank
1 contact by frequency of communication and the strike region, the distance between
their rank 1 contact by diffusion centrality and the strike region, the distance between
the individual they call directly after the strike and the strike region, and the distance
between their predicted preferred city and the strike region. The predicted preferred
city is determined for each strike using the regression in Table 4.6. Note these four
locations account for one quarter of the variation in the distance proximal individuals
travel. All distances are in kilometers and the regression uses heteroscedasticity robust
standard errors.
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Chapter 5

Conclusion

This thesis studies inference and diffusion in networks. We focus on epidemic spread

and information diffusion in social networks, and analyze these processes by applying

and extending ideas from statistical inference. We utilize estimation, testing, and

uncertainty quantification to rigorously analyze data. This thesis utilizes both theory

and data in order to address several real-world challenges.

In the first chapter, we study epidemic spread and introduce an approach to

efficiently identify infected individuals. Our approach utilizes network structure to

improve group testing. We demonstrate that grouping individuals by their community

for an initial stage of testing outperforms the most common form of group testing,

Dorfman testing, in terms of the number of tests needed, the number of false positives,

and the number of false negatives. The extent of outperformance is determined by

the strength of community structure in the network. Importantly, network grouping

is simple for practitioners to implement. In practice, individuals can be grouped by

family, social group, or some other community structure.

Our work on network grouping opens several fruitful areas for future research.

Future work can analyze the performance of network grouping under different network

structures, epidemic models, and community detection algorithms. In our work, we

implement network grouping by grouping individuals by community. However, future

work can utilize other network information and group individuals by clique, cluster,

centrality, or some other network characteristic. In addition, covariate information,
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such as an individual’s demographics and clinical results, can supplement and enhance

network grouping. The network grouping approach can also be applied to one-stage

group testing algorithms, which may produce fewer false negatives. Finally, network

grouping can be applied to non-medical settings, such as communication networks,

cybersecurity, and compressed sensing.

In the second chapter, we continue our analysis of group testing. We analyze

the performance of Dorfman testing, the most common approach to group testing in

practice. We derive the distribution of the number of tests needed, the number of

false positives, and the number of false negatives under conditions faced by medical

practitioners. The full distributions provide confidence intervals and better guidance

for practitioners. Recognizing real-world conditions, we allow for different first and

second stage false positive and false negative rates. We also model first-stage false

negative rates as dependent on the number of samples in each group, which accounts for

viral-load dilution. We have built a dashboard that implements our results and allows

practitioners to analyze the performance of group testing under various parameters.

Moving forward, theoreticians should work with medical practitioners to design

and implement group testing. Both sides would benefit from close collaboration.

Researchers can derive and explain the performance of the approaches currently used

in practice and can also derive new, improved approaches. Practitioners can explain

the flexibility and obstacles they face in practice, resulting in more realistic theoretical

testing approaches. A close collaboration would result in better and more prevalent

group testing, which would allow for efficient testing and screening of large populations.

On the theory side, research can explore modeling sensitivity as a function of group

size more deeply. Different functional forms should be considered and evaluated. In

addition, optimal group size should be studied further as modeling sensitivity as a

function of group size affects the optimum. Importantly, research should evaluate

how to design approaches that balance different outcomes. Minimizing the number of

tests needed may not be the right approach if the chosen group size results in a large

number of false positives and negatives. Ideally, all of the performance metrics must

be considered and balanced.
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In the third chapter, we study information diffusion where, similar to the epidemic

spread of previous chapters, something spreads from individual to individual through a

social network. Instead of an infection spreading through a population, we now consider

a piece of news, information, or gossip infecting individuals. We study information

exchange between individuals and introduce a statistical testing framework to identify

cascades in network data. We consider a network setting where branches form both

during normal and abnormal periods. We introduce a test statistic that distinguishes

between the large branches formed during abnormal periods, which we term cascades,

and the small branches formed during normal periods. Call detail records provide

the motivating example, because we would like to identify large call branches that

form after disruptive events. Our test statistic compares observed average branch

size to expected branch size under the null. We introduce a null model and derive

the expected size and variance of branches under the null using ideas from branching

processes. Our test statistic is semiparametric, consistent, and asymptotically normal.

We apply our statistic to call detail records from Yemen to quantify the significance

of a calling cascade formed after the Presidential Palace was bombed. We also use

our statistic to identify several violent events during the Yemeni Revolution.

Going forward, the test statistic should be utilized in empirical network science

research when cascade formation is being studied, as the statistic adds significance

levels to observed branch structures. The statistic can be applied to additional call

detail record datasets to detect previously unreported disruptive events, such as

state-sponsored attacks on civilians. It can also be applied to other network datasets

such as social media networks to identify abnormally large cascades of information,

news, and opinions. Applying the testing framework to Twitter data would highlight

significant retweet chains. It could additionally identify substantial discussions and

topics based on abnormally large branches of tweets. An application to shared posts

on Facebook could be used to highlight viral posts, with a possible focus on identifying

viral fake news.

In the fourth chapter, we study the social network effects of drone strikes, focusing

on information and physical diffusion around strikes. Following the previous chapter,
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we analyze the emergence of information diffusion following localized events. We

focus on the formation of calling cascades around drone strikes. Drone strikes have

become a fixture of modern warfare, yet their effects and effectiveness remain opaque

and fiercely debated. Utilizing a new dataset of over 12 billion call detail records,

we study the causal impact of 74 U.S. drone strikes on communication and mobility

in Yemen between 2010 and 2012. Over 95% of strikes are followed by calling

cascades, with roughly one third exhibiting increased call volume through four levels of

callers. Compared to non-strike periods, proximal individuals call their frequent and

geographically close contacts more frequently. Notably, socially central individuals

are called twice as often and proceed to spark large calling cascades. Lastly, physical

mobility increases 27% on strike days compared to the pre-strike mean and thousands

of individuals flee their hometowns. These findings demonstrate drone strikes have

a disruptive and widespread impact on civilian life. Furthermore, our results imply

information, opinions, and emotions regarding strikes spread quickly through the

population, which is in contrast to the prevailing political and military position that

strikes are surgical.

Although we demonstrate a disruptive impact on civilian life and the presence of

diffusion, we lack the content of the communications and are thus unable to analyze

exactly how opinions and loyalties shift around these events. Future research should

employ further data sources, such as media coverage, speeches, and sermons, to

understand which information and emotions spread after strikes. An open question

remains of whether the disruption induced by strikes increases or decreases militant

recruitment. Moving forward, researchers should coordinate with policy makers to

design improved, data-driven policy. Updated strategies for conflict prevention and

resolution are needed to resolve modern conflicts, including the ongoing wars in the

Middle East, that have lasted decades and claimed hundreds of thousands of lives.
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