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Abstract

Infrastructure systems are large physical networks of interrelated components which produce and
distribute resources to meet societal needs. Meeting future sustainability objectives may require
more complex systems with stronger integration across sectors and improved collaboration among
constituent organizations. This dissertation introduces and demonstrates a method of interopera-
ble simulation gaming to combine elements from concurrent engineering, wargaming, and serious
gaming to support strategic design activities. First, a controlled human subjects experiment quan-
tifies the relative impacts of technical and social sources of complexity using a simple surrogate
design task, finding collaboration with communication barriers greatly increases the time and cost
of design. Next, a modeling framework identifies common graph-theoretic structures and formal
behavior definitions believed to be generalizable to all infrastructure systems. An interoperability
interface defines interactions between system models to enable resource exchanges. Next, the High
Level Architecture (HLA) standard is applied to the modeling framework to enable distributed,
time-synchronized simulation with decentralized authority over constituent system models. A fed-
eration object model and agreement define data structures and processes to participate in a fed-
erated simulation execution. A prototype application case implements the modeling framework
and simulation architecture using the context of Saudi Arabia. Infrastructure system models are
developed for agriculture, water, petroleum, and electricity sectors. A baseline scenario develops
system and element instantiations using historical estimates of resource flows and fictional costs.
A software implementation provides a graphical user interface to modify design scenarios and visu-
alize outcomes. Finally, a game formulation uses the prototype model as the basis of a simulation
game with individual and collective objectives among water, energy, and agriculture ministry roles.
Players collaboratively propose new infrastructure projects over a planning horizon to maximize
objectives within time and budgetary constraints. A second controlled human subjects experiment
studies the effect of three tool variants on outcome design quality, finding the number of data
exchanges is positively correlated with outcome quality and an integrated simulation variant using
the HLA results in more data exchanges compared to an asynchronous file-based variant.

Thesis Supervisor: Olivier L. de Weck
Title: Professor of Aeronautics and Astronautics and Engineering Systems
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Chapter 1

Infrastructure Systems

“Lacking a national vision or strategy for critical infrastructure renewal and concentrating on
single projects, technologies, financing mechanisms, or narrowly defined objectives, ad hoc efforts
run the risk of underutilizing or wasting scarce resources and increasing the probability of serious,
unintended consequences.”

Preface of Sustainable Critical Infrastructure Systems: A Framework for Meeting 21st Century
Imperatives (NRC 2009)

Societies rely on widespread infrastructure to enable day-to-day activities. The U.S. Department
of Homeland Security identifies 18 critical infrastructure sectors (DHS 2009), of which this disser-
tation focuses on a subset relating to physical resource management such as agriculture and food,
energy, water and wastewater, communication, and transportation. These “hard” infrastructure
sectors consist of large physical networks of interrelated components which produce and distribute
resources. Infrastructure also plays an important role in sustainable development—a long-term
perspective on planning commonly described as “[meeting] the needs of the present without com-
promising the ability of future generations to meet their own needs” (UN 1987). There is present
concern of societies consuming natural resources and producing waste products at unsustainable
rates, “run[ning] the risk of wasting increasingly scarce resources and of creating new problems for
future generations” (NRC 2009).

Interest in infrastructure management and planning at the national level has grown over the past
decade. In the U.S., six of the fourteen grand engineering challenges issued by National Academies
relate to hard infrastructure (NAE 2008). These infrastructure-related challenges, listed in Table
1.1, span energy, agriculture, water, and transportation sectors. The energy sector seeks to lessen
its impact on the natural environment by developing renewable sources of energy such as solar
and fusion while reducing emissions of existing carbon-based energy sources through sequestration
methods. The agriculture sector seeks to reduce energy use and emissions arising from disruptions
to the natural nitrogen cycle with fertilizers. The water sector seeks to provide continued access
to water by maintaining natural sources and producing new sources with technology such as de-
salination. Finally, the urban sector comprising transportation, water, and energy sectors seeks to
manage growing populations, protect against natural or targeted disturbances, and accommodate
new technologies to continue providing services far into the future.

Two key points arise through inspection of these six infrastructure-related grand challenges.
First, there are interrelations between several challenges arising from resource interdependencies
between sectors. For example, the agriculture sector is typically the largest consumer of water

21
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Table 1.1: NAE Grand Challenges for Hard Infrastructure

Grand Challenge Infrastructure Sector Focus

Make solar energy economical Energy

Provide energy from fusion Energy

Develop carbon sequestration methods Energy

Manage the nitrogen cycle Agriculture and Food

Provide access to clean water Water

Restore and improve urban infrastructure Transportation, Energy, and Water

resources and innovations in energy production such as solar power have large impacts on urban
infrastructure as a change from large centralized power plants to small distributed generation fa-
cilities. Second, many of the challenges are associated with preventing or reversing unintended
consequences of past human activity on the natural environment. Some of the greatest achieve-
ments of the 20th century include electrification, air conditioning and refrigeration, agricultural
mechanization, petroleum and petrochemicals, automobiles, airplanes, and highways (Constable
and Somerville 2003), all of which have impacts on the natural environment at large scales.1 This
chapter argues a causal link between these factors: interdependencies among infrastructure sectors
may contribute to unexpected, undesired effects.

Study of the unintended consequences of design activities has been discussed in literature for
several decades. Reflecting on the expanded role of professionals between 1963 and 1981, Schön
writes:

A series of announced national crises—the deteriorating cities, poverty, the pollution of the
environment, the shortage of energy—seemed to have roots in the very practices of science,
technology, and public policy that were being called upon to alleviate them.

Government-sponsored “wars” against such crises seemed not to produce the expected results;
indeed, they often seemed to exacerbate the crises. The success of the space program seemed not
to be replicable when the problems to be solved were the tangled socio-techno-politico-economic
predicaments of public life. The concept of the “technological fix” came into bad odor. Indeed,
some of the solutions advocated by professional experts were seen as having created problems
as bad or worse than those they had been designed to solve. (Schön 1983, pp. 9–10)

In part, past actions relied on “fragile and incomplete” theories which were ineffective to capture
the complete nature of social reality. Expanding on these shortfalls, Klabbers (2006) argues the
underlying factors of “complexity, uncertainty, and value adjustments” in the context-dependent
applications “are not resolved by transforming ill-structured social problems into well-articulated
problem-solving tasks.” The observations of Schön and Klabbers imply infrastructure design is not
solely technical in nature and there is a context dependency not presently captured by analytical
methods based on observation and experimentation alone. This perspective aligns with that of
de Weck et al. (2012, p. 46) which describes engineering systems research as “(re)thinking about
systems” in a way which “goes beyond ‘normal’ ways of analyzing problems” and “reflects the
iterative nature of dealing with systems problems.” In particular, this approach may result in a
revision of a previous system boundary as new and important interconnections are discovered.

1The link between NAE’s greatest achievements of the 20th century and grand challenges of the 21st century was
first discussed in a presentation by Dr. Richard Miller, President of Olin College.
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To reduce the likelihood of the “serious and unintended consequences” identified in the National
Research Council workshop committee excerpt opening this chapter, design methods must consider
strategic (long-duration) and integrative (multi-sector) implications of infrastructure systems. This
dissertation argues existing design methods in isolation are insufficient to tackle the socio-technical
sources complexity in infrastructure systems. To frame this discussion, this chapter introduces hard
infrastructure as a system of interdependent components. Section 1.1 discusses Masdar City and the
International Space Station as two examples of infrastructure systems relying on highly-integrated
components to meet sustainability objectives. Section 1.2 expands the discussion to larger-scale
infrastructure systems existing in most urban contexts, highlighting the key design challenges in
these contexts. Finally, Section 1.3 concludes with the approach and structure of this dissertation
to address limitations in infrastructure systems design methods.

1.1 Infrastructure as a System

Infrastructure plays an important role in the transition from labor-intensive societies with large
flows of resources from (raw materials) and to (emissions/waste) the natural environment to so-
cieties leveraging automation and economies of scale with internal resource flows. This section
describes two advanced human societies relying on infrastructure to reduce dependence on exter-
nal resource flows. First, Masdar City is a community under development striving to be the first
large-scale demonstration of technologies supporting a low-waste, low-emission society. Second,
the International Space Station is an operational orbiting habitat and laboratory supporting six
astronauts. These systems are discussed to identify major components and summarize common
design processes.

1.1.1 Masdar City, Abu Dhabi, United Arab Emirates

Masdar City is a new community under development near Abu Dhabi in the United Arab Emirates
illustrated in Figure 1-1. It is designed for 40,000 residents and an additional 50,000 commuting
workers with ambitions to be a waste-free and low- or zero-carbon economy (Nader 2009). Intended
as a testbed for large-scale renewable and sustainable technologies, its initial master plan called for
advanced infrastructure components such as a personal rapid transport (PRT) system to efficiently
shuttle people and goods about the six square kilometer area, renewable energy from wind and
solar photovoltaics (PV), gray water recycling, waste-to-energy conversion, and carbon capture
and sequestration (CCS) methods to offset emissions.2

Considering a system boundary around the city and nearby infrastructure, Masdar City in-
cludes several critical subsystems in Figure 1-2. The centerpiece of the community is the urban
system which provides residential, commercial, and light industrial facilities for residents and com-
muters. Special emphasis is placed on reducing resource consumption through a traditional Arabic
architecture with narrow, shaded streets, rooftop solar PV collectors, and dense wall materials to
reduce cooling demands. The urban system also governs land use which affects other infrastructure
placement. With the exception of rooftop PV panels and water recycling components, all electric-
ity generation, water desalination, and waste transformation components are located outside the
immediate city walls.

2Economic crises starting in 2008 limited investments and ultimately scrapped the costly undercroft required for
the PRT and slipped the scheduled completion date for Masdar City from 2015 to 2025 or later (Cugurullo 2013).



24 CHAPTER 1. INFRASTRUCTURE SYSTEMS

Figure 1-1: Artist’s rendering of Masdar City. Large solar photo-voltaic arrays and other infrastructure are
visible surrounding the proposed walled city near Abu Dhabi. Credit: Nigel Young / Foster and Partners.
All rights reserved by the copyright holder. Used with permission.
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The transport system includes multiple modes to move people, goods, and waste internally and
externally in Masdar City. To meet the objectives of zero/low-emissions, no fossil fuel sources are
allowed within the city boundary, instead using electrical power supplied by the energy system.
The original master plan calls for internal mobility via a PRT system with stations within 150
meters of any origin and destination, although recent revisions substitute standard electric vehicles
at a lower cost. Car parks on the boundary of the city support external mobility of commuters and
residents with traditional automobiles forbidden within the city. In addition to personal transport,
public transit modes include a proposed metro line to central Abu Dhabi and light rail transport
(LRT) connecting to Al Raha Beach and the airport.

The energy system provides a renewable source of electricity, implementing several methods of
generation including rooftop solar PV panels, concentrated solar power (CSP), and a wind farm.
Each mode provides benefits and drawbacks: PV is light and easy to install but only generates power
during the day, CSP creates thermal energy which can be stored for use into the night but requires a
large facility with high land use, and wind operates at night but generates variable power dependent
on the wind speed. The energy system also interfaces with the external distribution network of
the Abu Dhabi Water and Energy Company to mitigate supply and demand fluctuations. Carbon
dioxide offsets such as CCS, planting, and greenhouses are proposed to neutralize the emission
contributions of external power.

The waste system emphasizes reuse and recycling to minimize net waste. Dry recyclable mate-
rials (plastics, glass, metal, paper, etc.) are sorted for material recovery. Non-recyclable waste and
gases produced from anaerobic digestion of wet recyclable waste are converted to energy via py-
rolysis and gasification processes. Compost and non-hazardous byproducts of the waste-to-energy
process including ash are used for other purposes such as fertilizer and building materials.

As rain water is limited in the arid climate, the water system includes desalination infrastructure
as an additional source of water to meet the demands of the residents and landscaping. Two
potential sources of saline water include the sea at Al Raha (approximately two kilometers away)
or ground water pumped via borehole wells. Desalination, however, is an energy-intensive process
and additional efforts to treat gray water reduce total energy consumption with initial plans at
decentralized facilities within each city block. Non-potable water from treatment processes can
also be used for irrigation purposes and black water enters the waste system for disposal.

While Masdar City seeks to minimize waste and emissions as undesirable outputs from human
societies, its porous system boundary reduces its ability to do so. Electricity, in particular, is
interconnected with the existing Abu Dhabi Water and Energy Company network which still relies
on fossil fuels for generation. There is also little consideration for products consumed within the city
which, even without waste from packaging, must be produced elsewhere with specialized facilities.
Finally, when considering full lifecycle as compared to steady-state operation, Abbasi et al. (2012)
note the significance of the “massive carbon debt in the form of greenhouse gas (GHG) emissions
entailed in planning, designing and commissioning of the city.”

1.1.2 International Space Station, Low Earth Orbit

The International Space Station (ISS) is a space laboratory in low Earth orbit developed as a joint
effort between the U.S. National Aeronautical and Space Administration (NASA), the Russian
Federal Space Agency (Roscosmos), the European Space Agency (ESA), the Japanese Space Agency
(JAXA), and the Canadian Space Agency (CSA). Assembly started in 1998 with the launch of the
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Zarya module and was nominally completed in 2011 with the final flight of the Endeavour orbiter.
Its final configuration includes pressurized and unpressurized modules, docking ports, radiators,
and solar panels shown in Figure 1-3. On-orbit operations are scheduled to continue through
2020 with resupply flights from Soyuz and Progress (Roscosmos), HTV (JAXA), ATV (ESA), and
commercial vehicles including Dragon (SpaceX) and Cygnus (Orbital).

The ISS provides a habitat for up to six astronauts from partner agencies. Unlike most terrestrial
infrastructure systems, its inhabitants are completely dependent on the ISS for all resources required
for survival in the vacuum of space. Drawing a system boundary around the orbiting element,
several interrelated subsystems in Figure 1-4 perform critical resource supplying and transforming
functions for electricity, food, water, air, and other supply items. As the U.S. and Russian segments
are partially isolated and redundant, only the U.S. segment subsystems are discussed in detail here.

The human system, comprising the crew and their laboratory, is a critical component of the
ISS. The crew perform operational tasks such as scientific experiments and outreach while main-
taining and supporting other systems with spares and maintenance procedures. The human system
contributes large resource demands by transforming food, water, and gases to waste products.

The power system performs electricity generating and storing functions to supply all onboard
components. It includes four large solar photo-voltaic panel modules totaling 70-90 kilowatts of
power generation (Gietl et al. 2000). The power system also stores energy in rechargeable nickel-
hydrogen batteries for use during regular periods of eclipse lasting about 35 minutes of every
90-minute orbit. The power system works closely with the cooling system which pumps fluid to
large radiators for heat rejection to space.

The environmental control and life support system (ECLSS) performs water and gas storing
and transforming functions. Its detailed processes include atmosphere control and supply, temper-
ature and humidity control, atmosphere revitalization, water recovery and management, and waste
management (Wieland 1998). Many ECLSS subsystems consume power for heating, pumping, or
processing fluids. Several ECLSS components also include internal resource reuse loops. For exam-
ple, air revitalizing and carbon dioxide reducing processes using a Sabatier reactor produce water
products, which, along with other wastewater, can be processed into potable water. Electrolysis
can also transform water to produce oxygen usable for metabolic air content and hydrogen used in
a Sabatier reactor.

Other important ISS components include communications and guidance, navigation and control
(GNC) systems. The communications system uses power to transmit messages via the Tracking and
Data Relay Satellite System (TDRSS) and direct to the White Sands Ground Station. Data links
are used for command and telemetry, crew communication, scientific data, and to guide visiting
spacecraft docking operations. Finally, the GNC system maintains the ISS orbit, burning propellant
when necessary for orbital corrections.

While the ISS system can operate in isolation for up to several months, it relies on regular
interactions with external systems over longer periods. For example, the power system batteries
have an expected lifetime of 6.5 years, requiring several replacements by the crew during the
ISS life-cycle (Gietl et al. 2000). Similarly, the ECLSS relies on periodic resupply of fluids and
other consumable supply items to maintain the necessary physicochemical processes. Finally, crew
members operate on rotations of up to 180 days to limit radiation exposure and skeletal-muscular
atrophy. Reducing these external dependencies is crucial for enabling future space exploration
missions over longer durations and at more distant locations.

Advanced concepts may strengthen dependencies between system components or add new sys-
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Figure 1-3: The International Space Station as viewed on April 6, 2009 by the crew of STS-119. It
provides all resources required to sustain a crew of six astronauts in low Earth orbit for periods of up to
several months. Credit: NASA.
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Table 1.2: Comparison of ISS and Masdar City Design Approaches

System Sustainability Objective Major Interdependencies Design Approach

Masdar City Minimize carbon emis-
sions and waste

Urban-Water-Waste-Energy,
Urban-Transport-Waste-Energy

Master-planned

International
Space Station

Minimize resupply mass
from Earth

Human-ECLSS-Power-Cooling Systems-engineered

tem components. For example, biogenerative technologies interconnect waste and consumable
resources (Drysdale et al. 2003). Similarly, repair and scavenging of components rely on crew time
to use smaller parts and tools rather than large replacement units (Pettegrew et al. 2007; Oefter-
ing 2010). Finally, future surface exploration may rely upon in-situ resource utilization to produce
propellant or life support consumables at remote locations (Sridhar et al. 2000; Sanders et al. 2008).

1.1.3 Design of Infrastructure as a System

Masdar City and the ISS rely on interdependent infrastructure systems to achieve sustainability
objectives, summarized in Table 1.2. Constraining resource out-flows, Masdar City minimizes
waste and carbon emissions with infrastructure to generate renewable energy and recycle water
and waste. Emphasizing resource in-flows, the ISS minimizes resupply mass with infrastructure
to recycle water and atmospheric gases. Both applications purposefully create interdependencies
between infrastructure systems to meet these objectives. The water and waste recycling processes in
Masdar City consume power for transportation and produce power via waste-to-energy conversion.
The ECLSS aboard the ISS requires power, cooling, to enable the crew to supply spare parts to other
systems and advanced concepts may strengthen dependence between existing systems. Both Masdar
City and the ISS adopt a centralized authority in design to account for such interdependencies and
work towards the overall sustainability objective.

The design of Masdar City follows a master-planned eco-city approach using the international
architectural firm Foster and Partners (F+P) as a central designer. F+P produces a master plan
of major infrastructure systems and their integration to achieve the overall objective of low- or
zero-carbon emissions within constraints such as land use or capital investment. Unlike many other
communities, Masdar City has a wide latitude of design freedom as a greenfield project to grow a
society out of existing unused land.

Similar to other space systems, ISS design follows a systems engineering approach to “[develop]
an operable system capable of meeting requirements within often opposed constraints” (NASA
2007). NASA maintains design authority over its segments by specifying requirements for compo-
nent design. Design alternatives may be evaluated using cost metrics such as equivalent system
mass (ESM) which quantifies the trade-off in costs between mass, volume, power, cooling, and
crewtime (Levri et al. 2003). As launch mass is a major driver of program cost, ESM is a less-
contentious system-oriented metric compared to financial cost. Even though various components
are contributed by separate designers, the central systems engineer can use metrics such as ESM
to evaluate trades across sectors.

The ISS and, on paper, Masdar City can achieve sustainability objectives by virtue of their rela-
tively small scale controllable by a single design authority. While the systems-engineered approach
for the ISS has successfully entered operations, the design of Masdar City still boasts significant
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challenges in “scaling up, and systematically integrating, advanced technologies” (Nader 2009). In
a wider frame, however, such centralized control is not possible for infrastructure operating over a
much larger scale. The next section discusses these infrastructure systems as a system-of-systems
having decentralized control over partially-independent components.

1.2 Infrastructure as a System-of-systems

Large-scale infrastructure systems cannot be designed in the same fashion as Masdar City and
the ISS. Rather than a greenfield design managed by a central authority, infrastructure systems
are encumbered by past decisions and present operations and have a design process distributed
among multiple actors and stakeholders. In this framing, Rinaldi et al. (2001) view infrastructure
as a complex adaptive system (CAS), or “complex collections of interacting components in which
change often occurs as a result of learning processes.” Spanning everything from immune systems
to economies, CAS are a class of systems characterized as:

[having] no single governing equation, or rule, that controls the system. Instead, it has many
distributed, interacting parts, with little or nothing in the way of a central control. Each of
the parts is governed by its own rules. Each of these rules may participate in influencing an
outcome, and each may influence the action of other parts. The resulting rule-based structure
becomes grist for the evolutionary procedures that enable the system to adapt. (Holland 1992)

U.S. efforts to study infrastructure systems launched in 1997 with a report by the President’s
Commission on Critical Infrastructure Protection to address the “growing complexity and inter-
dependence, especially in the energy and communications infrastructures” (PCCIP 1997). Subse-
quent research efforts studied the emergent behavior arising in infrastructure systems to improve
resilience, especially where coupled structure and behaviors may cause widespread failures far be-
yond the initial scope of a disruption. Recent examples of this phenomenon in the U.S. include
the 1994 Northridge earthquake, September 2001 World Trade Center disaster, and August 2003
Northeast blackout (Pederson et al. 2006; O’Rourke 2007; McDaniels et al. 2007). Such “cascading”
effects have larger impacts with increasing integration between infrastructure sectors. For exam-
ple, the 2003 Northeast blackout produced major disruptions to a large percentage of the affected
population for nuclear and water utilities, air, roads, and mass transit transportation, hospitals,
government offices, and manufacturing and restaurant commerce (McDaniels et al. 2007).

Interdependencies also contribute to coupled effects over longer time-scales. Coupling between
water and energy sectors, popularized as the “water-energy” nexus, is particularly important in
many regions around the world (Gleick 1994; DOE 2006). Power systems generally require water
for cooling, processing or extracting fuels, or electricity generation (e.g. hydropower) and water
systems require energy for abstraction (e.g. groundwater pumping), processing (e.g. desalination
or recycling), and distribution; however the degree of coupling depends on regional context. For
example in the Middle East and North Africa (MENA) region, power systems require little water
but sourcing water from desalination and deep aquifers consumes significant amounts of electricity
(Siddiqi and Anadon 2011). Other research highlights the coupling of the food and agriculture
system which is typically the largest consumer of water and a major consumer of energy though
mechanization and fertilization (Bazilian et al. 2011).
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Figure 1-5: Complexity as a balance between expected, desired effects and unexpected, undesired effects.

1.2.1 Complexity in Infrastructure Systems

Interdependency and complexity are terms used to describe challenges in working with infrastruc-
ture systems. The abstract property of complexity impedes understanding while interdependency
is a particular type or dimension of complexity. There are many attempts to define complexity
from various perspectives (e.g. see Sussman 2000). Limited to the context of design, however, Suh
(1999) describes complexity as “a measure of uncertainty in achieving the specified [functional re-
quirements].” As complexity increases, so does the uncertainty that particular design will achieve
its objectives, possibly leading to unexpected or unintended outcomes.

This framing of complexity is illustrated in Figure 1-5 as an uncertain balance between achiev-
ing expected, desired effects and suffering unexpected, undesired effects. It uses the distinction
of Schlindwein and Ison (2004) between descriptive (objective) complexity intrinsic to the system
and perceived (subjective) complexity dependent on the observer. Expected, desired effects are
attributed to the descriptive complexity of the system which has been shown to contribute to
improved performance in manufacturing systems provided optimal operation by Deshmukh et al.
(1998) and in the process management–simplification tradeoff in supply chains by Frizelle and
Woodcock (1995). Unexpected, undesired effects are attributed to limited capacity for understand-
ing of the system as perceived by the designer. Perception, however, is a function of context
including methods and tools which may reduce perceived complexity and, correspondingly, the
unexpected, undesired effects while maintaining the expected, desired effects.

There are many sources of descriptive complexity as the underlying factor of both desired and
undesired effects. Sheard and Mostashari (2010) describe structural, dynamic, and socio-political
complexity types in systems engineering. Structural complexity encompasses the size (quantity
and diversity) of components, connectivity (number and type of interactions) between components,
and architecture (centrality or organization) of connected components.3 Dynamic complexity in-
cludes short-term effects such as nonlinearities, feedback, and stochasticity and long-term effects
including context changes and system evolution. Finally, socio-political complexity encompasses

3Sinha and de Weck (2012) further quantify architectural complexity as a function of system dependency graph
energy. This formulation is lowest for centralized (star-like topology) architectures and increases for more distributed
architectures.
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Figure 1-6: A notional infrastructure system with energy, water, agriculture, and urban elements controlled
by associated regulators.

the human entities interacting with a technical system. Dodder et al. (2004) further identify eval-
uative complexity as emerging from differing views and competing objectives of stakeholders and
nested complexity arising from interrelationships between the stakeholders and their respective
institutions.

Infrastructure systems exhibit high levels of all three types of complexity. Consider the notional
example in Figure 1-6 including energy, water, agriculture, and urban infrastructure. Even in an
aggregated representation, there are many infrastructure elements in diverse sectors over large
geographic areas. Individual elements are mutually interconnected to exchange resource flows and
are organized as a distributed architecture without a central hub, even if some sectors are organized
with a central hub or layered hierarchy to benefit from economies of scale (e.g. large power or
desalination plants). Short-term dynamics respond to fluctuating demands (e.g. daily and seasonal
variation) and disturbances from individual element failures. Long-term dynamics accommodate
context shifts including technology innovation, quantities and types of resources demanded from
populations, and a changing natural environment. Finally, public utilities, private companies, and
public-private partnerships control infrastructure elements, which are in turn regulated by agencies
or other institutions.

Whereas major infrastructure sectors may have operated more-or-less in isolation in the past,
new efforts strengthen the coupling between sectors to increase resource efficiency and meet sus-
tainability objectives. Consider, for example, the effects of wastewater recycling, combined cycle
desalination power plants, and electric vehicles. Compared to individual sectors, the total infras-
tructure system has larger size and connectivity, a more distributed architecture, more complex
short- and long-term dynamics, and greater socio-political implications. Returning to the examples
of ISS and Masdar City, the higher levels of integration among systems results in more complexity
through increased connectivity and short-term dynamics. In these cases, however, the net effect is
moderated by centralizing the infrastructure architecture and reducing socio-political impacts (e.g.
empowering a master-planner or aligning objectives with ESM as a cost metric). These approaches,
however, are not directly applicable to larger-scale infrastructure with distributed authority among
interrelated systems. As an alternative, the emerging field of “systems-of-systems” studies the
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process of influencing design among independent component systems.

1.2.2 Design of Infrastructure as a System-of-systems

Distributed systems lacking an absolute central authority are described in literature as a system-
of-systems (SoS). Identifying independence as a key property, Maier defines a SoS as:

an assemblage of components which individually may be regarded as systems, and which pos-
sesses two additional properties:

Operational Independence of the Components: If the system-of-systems is disassembled
into its component systems the component systems must be able to usefully operate inde-
pendently. That is, the components fulfill customer-operator purposes on their own.

Managerial Independence of the Components: The component systems not only can oper-
ate independently, they do operate independently. The component systems are separately
acquired and integrated but maintain a continuing operational existence independent of
the system-of-systems. (Maier 1998)

Furthermore, Maier (1998) describes three types of SoS depending on the degree of partial control
by a central actor. Directed SoS (e.g. integrated air defense networks) are built and managed to
fulfill specific purposes and, while component systems maintain an ability to operate independently,
a central management guides nominal operations. Collaborative SoS (e.g. the Internet) also have
a central management, but without coercive power. Rather, component systems must voluntarily
collaborate to fulfill the common purpose. Virtual SoS (e.g. national economies) lack a central
management authority or purpose and rely on emergent behavior of component systems. Infras-
tructure systems may fall into any one of the three types of SoS depending on the perspective and
context. For example, a strong central government may operate infrastructure as a directed SoS,
while a privatized or market-oriented approach would resemble a collaborative or virtual SoS.

Interest in SoS has grown in recent years in part due to changing acquisition strategies in
military domains. The U.S. Department of Defense describes a SoS as “a set or arrangement of
systems that results when independent and useful systems are integrated into a larger system that
delivers unique capabilities” (DoD 2013). Military actors see SoS as integrated systems relying on
new technologies for intelligence, surveillance, and reconnaissance (ISR), command, control, com-
munications, computer applications, and intelligence processing (C4I), and precision force (Owens
1996). An information-oriented SoS requires greater interoperability between component systems
and presents a challenge for traditional systems engineering processes (Manthorpe 1996).

Whereby systems engineering is the process of designing a single complex system, system-of-
systems engineering (SoSE) is emerging as the process of purposefully shaping a SoS. Keating et al.
define SoSE as:

The design, deployment, operation, and transformation of metasystems that must function as
an integrated complex system to produce desirable results. These metasystems are themselves
comprised of multiple autonomous embedded complex systems that can be diverse in technology,
context, operation, and geography, and conceptual frame. (Keating et al. 2003)

Design activities at the SoS level are quite distinct from those at the system level. For example,
Keating et al. (2003) write “SoSE must focus on methodology as primary and process as secondary”
because “existing processes for systems engineering can be much too restrictive for SoSE ... [which]
must remain flexible to adjust to shifting problem context and conditions.” Sage and Cuppan (2001)
compare SoSE to federalist approaches of “making things big by keeping them small, encouraging
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autonomy but within the appropriate bounds of process and architecture standards, and combining
variety and shared purpose, individually, and partnerships at national and global levels.”

Maier (1998) identifies four architectural principles to support the development of SoS. First,
designing to stable intermediate forms allow a system to operate in a self-supporting manner,
expecting an evolving path to meet stated purposes. Second, policy triage recognizes the inability
to control all component systems, focusing attention on specific elements such as technical standards
and relinquishing control over autonomous components. Third, leverage at the interfaces identifies
the SoS architecture, i.e. the component interfaces, as the primary design task rather than the
components themselves. Finally, ensuring cooperation emphasizes mechanism design to promote
participation in a SoS and encourage desired behaviors contributing to global, rather than local
objectives. To summarize, SoSE activities are somewhat indirect – only the interfaces between
component systems are controllable at a SoS level, relying on other mechanisms to encourage the
constituent system actors to work towards a common objective.

1.2.3 Key Issues in Infrastructure Systems Design

This section introduced some of the challenges to planning infrastructure systems on large scales
beyond the ISS and Masdar City examples presented in the previous section. Infrastructure systems
are viewed as both complex adaptive systems (CAS) having distributed components and emergent
behaviors and as system-of-systems (SoS) with decentralized authority over constituent systems.
This framing leads to two key issues facing design activities for large-scale infrastructure systems.

The first key issue deals with integration. Infrastructure systems exhibit interdependencies
between sectors, either through dependent resource exchanges (e.g. those described in the water-
energy-food nexus) or through internal resource loops required to achieve sustainability objectives.
These interdependencies increase system complexity with higher levels of connectivity and a more
distributed architecture, potentially leading to unexpected and unplanned outcomes from a pro-
posed design if not well understood. Integrative methods are necessary to consider the system-wide
emergent impacts of design decisions and increase the likelihood of achieving desired outcomes.

The second key issue deals with collaboration. The decentralized authority in infrastructure
systems introduces significant socio-political complexity through differing views, objectives, and
interrelationships between various actors and stakeholders. Unlike the processes of systems engi-
neering applied to develop complex systems, no centralized authority exists to coerce constituent
systems to meet a global objective. Rather, a SoS requires collaborative methods to align the
objectives of independent system actors and solicit the participation of constituent systems.

The dual challenges of integration and collaboration span technical and social fields of study
and align with the call from a National Research Council workshop committee for “collaborative,
systems-based approaches to leverage available resources and provide for cost-effective solutions
across institutional and jurisdictional boundaries” (NRC 2009). This dissertation seeks to answer
this call by introducing new SoS-oriented methods to address both integration and collaboration
in support of strategic infrastructure system design with the overall goal of reducing perceived
complexity and avoiding unexpected, undesired effects.
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1.3 Dissertation Approach and Structure

While the larger goal of this work is to promote the efficient and effective use of scarce resources
in the design of infrastructure systems to meet long-term objectives, this dissertation focuses on
smaller contributing topics oriented around developing and evaluating design methods and tools
capable of producing results on shorter time-scales, yet still linked to the overall objective.

1.3.1 Dissertation Structure

This dissertation is structured in eight chapters including this introductory chapter on infrastructure
systems. Chapter 2 reviews literature on the topics of design methods for infrastructure systems
and related areas in concurrent and collaborative engineering. Based on gaps in the literature,
it proposes specific questions to address and outlines a research methodology using both design
and analytical science methods to develop and evaluate new artifacts for integrated and collabora-
tive design of infrastructure systems. The proposed artifacts combine interoperable modeling and
simulation techniques with gaming concepts to span both technical and social dimensions.

As an initial foray into gaming methods, Chapter 3 frames the challenge of collaborative design
by quantifying the added complexity of multi-designer tasks as compared to individual designer
tasks. It formulates and executes a human design experiment using simple, context-free design tasks
with purposeful barriers to collaboration as a proxy to context-rich infrastructure system design.
The results show significant costs for solving tasks as a team as compared to as an individual,
suggesting large improvements could be possible with effective collaboration support tools.

Returning to the domain of infrastructure systems, Chapter 4 presents the infrastructure system-
of-systems (ISoS) modeling framework for interoperable simulation. It defines core constructs using
a graph-theoretic framing of resource flows and identifies structural and behavioral templates for
building simulation models. Generality of the ISoS framework is demonstrated with four descriptive
use cases for diverse infrastructure systems.

Moving from constructs and models to methods and instantiations, Chapter 5 discusses a soft-
ware implementation of the ISoS modeling framework using the IEEE Standard 1516 High Level
Architecture (HLA). Mirroring the structure of infrastructure systems, the HLA provides decentral-
ized authority over simulation models which also constitute a SoS. This chapter describes required
methods to participate in an interoperable simulation using ISoS constructs and models and outlines
a sample implementation using the Java programming language.

Building on the general implementation, Chapter 6 introduces a prototype interoperable simu-
lation instantiation using the context of national infrastructure planning in the Kingdom of Saudi
Arabia. This application defines system models for agriculture, water, oil and gas, and electricity
sectors from a strategic (aggregated) perspective. A graphical user interface (GUI) allows human
players to input decisions and view outputs from a simulation execution. The resulting Sustainable
Infrastructure Planning Simulation Game (SIPS-G) includes roles for three players representing
agriculture, water, and energy ministries seeking to develop sustainable infrastructure system plans.

The SIPS-G application is used in Chapter 7 to study collaborative design in a second set
of human design experiments. Groups of three players develop a 30-year infrastructure plan to
meet individual and team objectives within budgetary constraints. Several individual objectives
conflict with team objectives, requiring collaborative approaches among all players. This study
evaluates hypotheses that quantitative collective objective metrics and integrated simulation tools
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result in more effective designs at meeting those objectives. The results show data exchange count
is positively correlated with outcome design quality and an integrated simulation tool enables more
data exchanges as compared to an asynchronous file-based tool.

Finally, Chapter 8 concludes this dissertation with a summary of research, key contributions
to literature, and a critical review leading to future work. Appendices follow with supplemental
materials including raw and normalized datasets from human design experiments and additional
documentation.

1.3.2 Intended Audiences

This dissertation is intended for audiences in two different communities described by Klabbers
(2006). Communities of practice include design scientists who design and evaluate artifacts to solve
contemporary problems. On the other hand, communities of observers include analytical scientists
who develop and test theories through controlled experiments. Engineering in general acts at the
interface of design and analysis, requiring understanding of natural phenomena through controlled
experiments as well as creation of new tools and approaches to address practical needs. This disser-
tation formalizes the associated research methodologies to bridge the practical and observational
communities in complementary topics.

Chapters 1, 2, 3, 7, and 8 are directed towards academic audiences in engineering or the applied
sciences. These chapters emphasize an integrated discussion of existing literature and develop,
execute, and analyze a series of design experiments to evaluate behavioral hypotheses. Chapters 1,
2, and 8 discuss the broader research agenda contributing to infrastructure system design including
topics in systems engineering, design research methodologies, and socio-technical systems. Chapters
3 and 7 present the framing and results of human design experiments relevant to fields such as
collaborative engineering, management, and social psychology.

Chapters 4, 5, and 6 are directed towards practitioner audiences focusing on the development
and use of simulation model artifacts for infrastructure system design tasks. Chapter 4 is of
general interest for individuals developing quantitative simulation models for one or more infras-
tructure systems. Chapters 5 and 6 are of particular interest for developers of interoperable or
distributed simulation models with an emphasis on the software architecture and implementation.
Finally, Chapter 6 is of interest to individuals studying infrastructure planning in Saudi Arabia as
it demonstrates multi-sector modeling in that context.
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Chapter 2

Methods for Infrastructure Systems
Design

“Today the network of relationships linking the human race to itself and to the rest of the
biosphere is so complex that all aspects affect all others to an extraordinary degree. Someone
should be studying the whole system, however crudely that has to be done, because no gluing
together of partial studies of a complex nonlinear system can give a good idea of the behavior
of the whole.”

Murray Gell-Mann in The Quark and the Jaguar: Adventures in the Simple and the Complex
(1994)

Chapter 1 introduced infrastructure systems as a complex adaptive system (CAS) and a system-
of-systems (SoS). Both descriptive terms highlight complex features of infrastructure such as evo-
lutionary dynamics, large size with a distributed structure, and important socio-political factors
without centralized control. System designers rely on methods and tools to cope with these fea-
tures of complex systems and support design activities. This chapter introduces topics in the
science of design, described by Simon (1996, p. 113) as “a body of intellectually tough, analytic,
partly formalizable, partly empirical, teachable doctrine about the design process.” Whereas “the
natural sciences are concerned with how things are ... design, on the other hand, is concerned
with how things ought to be, with devising artifacts to attain goals” (Simon 1996, p. 114). From
this perspective, infrastructure systems are artificial objects which provide functions not present in
nature.

The following sections discuss relevant design methodologies for complex systems to frame the
contributions of this dissertation. Section 2.1 introduces the role of modeling in systems analysis and
design and identifies a number of methods targeting particular dimensions of complexity. Section 2.2
discusses integrated methods spanning multiple dimensions to support decision-making in complex
systems and identifies limitations in applying existing methods to infrastructure systems. Finally,
Section 2.3 presents the research scope, questions, and methodology pursued in this dissertation to
fill limitations in existing methods.

2.1 Model-based Methods for Analysis and Design

Zeigler et al. (2000) describes the three fundamental systems problems as:

39
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Table 2.1: Summary of Model Characteristics

Dimension Bounding Values

Form Physical Mathematical

Solution Exact Approximate

Behavior Static Dynamic

Uncertainty Deterministic Stochastic

State Changes Continuous Discrete

Analysis: understanding behavioral characteristics of an existing or planned system,

Inference: inferring behavior from observations of an existing system, and

Design: coming up with a good design for a system which does not yet exist.

Whereas system analysis uses higher-level data to generate lower-level insights, system inference
and system design synthesize lower-level data—inference to predict higher-level structure and design
to determine desired functionality. An infrastructure system designer analyzes existing systems to
identify needs and synthesizes the design of new systems to meet those needs. In summary, the
designer “devises courses of action aimed at changing existing situations into preferred ones” (Simon
1996, p. 111).

Both analysis and design activities rely on information. Existent infrastructure systems are
sources of observable data which can be collected over time; however available data is typically
temporally or spatially aggregated and only covers one particular history (i.e. the actual events).
The field of Modeling and Simulation (M&S) uses models to specify relevant system structure
within an experimental frame and a simulator to obey the model instructions and produce new
data. The objective of the modeling process is to establish an isomorphic relationship between the
model and the real-world system using targeted simplifications while maintaining validity.

Law and Kelton (2003, pp. 3–6) characterize models using a number of dimensions summarized
in Table 2.1. Physical models use tangible objects to represent abstractions of real-world system
components while mathematical models use logical and quantitative statements to relate system
components. Some models have an exact analytical solution which can be found for all possible
conditions while others require an approximation using a finite set of inputs to produce outputs.
Static methods represent a system at one point in time and dynamic methods represent a sys-
tem changing over time. Deterministic models do not contain any probabilistic components while
stochastic models do, resulting in estimated outputs. Finally, continuous simulation methods allow
state changes to take place continuously in time while discrete methods only allow state changes
at fixed points.

Designers use the information generated from a model of existing or proposed systems to improve
understanding of complex factors. Summarizing some of the concepts introduced in Chapter 1,
Table 2.2 lists the main types of complexity in socio-technical systems. Various modeling approaches
naturally emphasize certain types of complexity and multiple methods are necessary to address
all sources of complexity. For example, Jackson and Keys (1984) classify systems methodologies
suitable for design problems in mechanical or systemic contexts with unitary or pluralistic decision-
makers. Focusing on engineering systems within the systemic-pluralistic context, the CLIOS process
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Table 2.2: Types of System Complexity

Type Sub-type Infrastructure system example

Structural Component Infrastructure elements may themselves be complex systems

Interactive Infrastructure exchange resources as inputs and outputs

Architectural Multi-sector infrastructure have a decentralized topology

Behavioral Short-term Infrastructure operations respond to regular demand variation and un-
expected disturbances

Long-term Infrastructure respond to changing contexts in evolutionary processes

Socio-political Evaluative Infrastructure stakeholders hold different views leading to potentially
conflicting objectives

Nested Institutional organizations create policies governing interrelationships
between infrastructure stakeholders and the physical system

in Dodder et al. (2004) identifies several tools from technical, economic, and social, political, or
organizational perspectives to represent structure and behavior and design, evaluate, and implement
complex socio-technical systems. This section present a few tools targeting specific dimensions of
complexity.

2.1.1 Static Models

Static models describe the components and interconnections in a system from a time-invariant or
steady-state perspective. Owing to the underlying network structure of infrastructure systems,
several related methods apply graph-theoretic concepts to abstract a physical structure to logical
nodes and edges.

An interdependency network is a deterministic analytical mathematical model describing inter-
connections between components, similar to a design structure matrix (DSM) or N-squared diagram.
For example, Rinaldi et al. (2001) define physical, cyber, logical, and geographic interdependencies
between infrastructure systems. Dudenhoeffer et al. (2006) formalize these interdependencies for
an infrastructure model where a node is “an entity that acts as a source, produces, consumes, or
transforms a resource” and an edge is “a physical or virtual entity that acts as a conduit for a flow
for a physical quantity, information or influence ... [representing] a direct level of dependence.”
This infrastructure model is applied in a software tool to understand the system-wide effects of
changing individual or sets of nodes and edges.

Static network models can also represent a form of dynamics from a static perspective. In these
cases, it is assumed the model state does not change during the solution process. For example, Zhang
and Peeta (2011) develop a multi-layered network to represent transportation, telecommunication,
energy, and power infrastructure systems. They apply a computable general equilibrium (CGE)
method to determine equilibrium market prices and resource flows between systems. More general
network methods applied to infrastructure, often for transportation systems, solve problems such
as the minimum cost flow problem, vehicle routing problem, and facility location problem (e.g.
Magnanti and Wong 1984). Whereas one can find an exact solution using analytical methods for
some network problems, others rely on heuristic methods to find approximate solutions in reasonable
amounts of computation time.
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2.1.2 Dynamic Models

Dynamic models or simulations allow for a changing model state to reflect time-varying behaviors.
There are several interrelated simulation formalisms which capture and process modeled behaviors
with a key distinction between continuous and discrete methods (Vangheluwe and Lara 2002). This
section discusses three particular approaches—one continuous and two discrete—commonly applied
to infrastructure systems.

System dynamics (SD) models define stocks (state variables) and flows (state changes) using
a system of continuous mathematical relationships. A SD simulator calculates flows and updates
stocks at each time step using numerical methods. As a system of equations, deterministic SD
models are relatively fast to execute and are often applied to represent interactions and feedback
effects between aggregated systems (e.g. Min et al. 2007). Spatial disaggregation may be handled
by replicating a model structure for each unit of analysis and linking the models. For example, the
Critical Infrastructure Protection Decision Support System (CIP/DSS) uses a linked SD model to
express interactions between 14 critical infrastructure sectors at national and metropolitan scales
(Bush et al. 2005; Conrad et al. 2006).

Discrete event simulation (DES) models define a model state and possible state changes as
discrete events in time. A DES simulator manages a list of events and processes them in order
assuming no state changes happen between events. A single DES execution is fast to run because
the simulator only processes the set of discrete events rather than small delta-time periods as in
continuous methods. DES are most commonly applied in logistics-oriented applications including
port operations (e.g Legato and Mazza 2001), manufacturing (e.g Detty and Yingling 2000), and
health care (e.g Connelly and Bair 2004).

Agent-based models (ABM) are a type of DES model which define rule-based agents with
internal state and state changes rather than central list of discrete events (as in a traditional DES).
An ABM simulator manages the set of agents which interact with each other using discrete pair-
wise message events. ABM methods are emerging as a preferred method to study complex systems
due to their superior ability to encapsulate information from a bottom-up approach (Borschchev
and Filippov 2004). Applied to infrastructure systems, ABM models define actors as individual
production or distribution elements (Dudenhoeffer et al. 2006) or suppliers and customers in a
resource market (Barton et al. 2000).

The treatment of uncertainty is an important part of dynamic models as results from a single
execution of a stochastic model yields little information on the system of interest. There are two
key types of uncertainty to consider. First, epistemic uncertainty arises from limited measurements
or data and is a practical constraint of model-building. In the absence of additional data-gathering,
methods such as sensitivity analysis seek to bound the impacts of epistemic uncertainty by purposely
sampling from possible input values (Loucks et al. 2005). Second, aleatoric uncertainty arises from
the underlying statistical uncertainty of factors which cannot be resolved with additional data-
gathering or modeling efforts. Two types of approaches address aleatoric uncertainty for short- or
long-term behaviors.

Short-term behaviors can be characterized with random variables having specified probability
distributions based on past knowledge or experiences.1 Monte Carlo methods, for example, provide
outcome distributions through repeated sampling of random variables. While large numbers of

1The field of Operations Research (OR) studies optimal decision-making by quantifying short-term behaviors
through data or observations and mathematical models.
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random samples are required to statistically characterize uncertainties with näıve Monte Carlo
methods, approaches such as stratified sampling and Latin Hypercube methods may be used to
reduce the number of required samples (Loucks et al. 2005).

Assumptions on fixed contextual factors are relaxed in longer-term analysis. Due to the immense
number of variable factors and wide range of possibilities over long time horizons, statistical or
probabilistic views of long-term behaviors are severely limited. Rather, strategic decisions are
often addressed with a reduced set of possible futures called scenarios (Wack 1985; Zegras et al.
2004) or eras (Ross and Rhodes 2008; Roberts et al. 2009) in which to execute models. Scenario
analysis seeks to identify robust decisions which perform well across a range of plausible futures.

2.1.3 Socio-political Models

Models discussed in the previous sections emphasize the technical components of the physical sys-
tem of interest. Socio-political models study the corresponding social system of actors with the
objective of addressing evaluative and nested complexities relating to preferences and interrelation-
ships between stakeholders.

Applications of decision analysis address evaluative complexity by quantifying stakeholder pref-
erences for system properties. Approaches such as multiple criteria analysis (MCA) create a prefer-
ence model using a weighted sum of attributes as a value function (e.g. Hajkowicz and Collins 2007).
MCA may be used either to rationalize decision-making processes in the presence of stakeholders
or as a mathematical model of expected stakeholder decisions in their absence. Such models of
stakeholder preference can be applied to stochastic models using dynamic programming (DP) to
determine optimal decisions at specific points in time.

In another branch of decision analysis, game theory addresses nested complexity by considering
reactive effects of small numbers of non-cooperative players in an analytical mathematical formu-
lation. One application of game theory in infrastructure systems determines resource flows as a
Cournot-Nash equilibrium among self-interested players (Zhang et al. 2005). As a more general
method, stakeholder analysis models interactions between stakeholders to address nested complex-
ity. A stakeholder value network (SVN) is a static network-oriented model describing the structure
and value flows of various stakeholders (Cameron et al. 2011). Important design attributes can be
identified through SVN analysis to meet needs across various interrelated organizations.

2.2 Integrated Socio-technical Modeling

The previous section introduced several modeling approaches used as tools to address specific
complexities in infrastructure systems. Even through methods exist to address both technical and
social factors, they are seldom combined in integrated modeling methods and the “interface between
technical and social considerations is poorly understood” (Hansman et al. 2006). A few exceptions
in emerging literature include dynamic multi-attribute tradespace exploration (Ross 2006) and
epoch-era analysis (Ross and Rhodes 2008). These methods combine static or dynamic technical
models with multi-attribute utility to address evaluative complexity, but (to date) focus on singular
systems design without considering the interrelationships between actors present in SoS.

There are two main limitations to combining social and technical methods. First, the state of so-
cial system science is much less mature than that of physical systems which can be decomposed and
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studied in detail and behave in accordance with governing laws or rules. Second, human decision-
making is known to follow a bounded rationality (March 1978), relying on heuristics to make
decisions with known biases (Tversky and Kahneman 1974). As the decision-makers are seldom
the same people performing analysis and design activities, there is a challenge in communicating
insights from modeling activities to overcome the normal course of decisions.

Rather than focusing solely on mathematical models, another potential approach combines
actors’ experience and knowledge of social systems with a technical model. Not only do the par-
ticipants address evaluative and nested complexities through their innate understanding, but the
process of participating in a modeling exercise may be more effective than analysis alone. Hansman
et al. (2006) write “decision makers and other stakeholders need means for seeing, experiencing,
and experimenting with infrastructure alternatives and their implications” and “a major research
effort should be to develop methodologies to increase effective communication, understanding and
alignment among stakeholders” and provide a “virtual ‘experimentation’ capability.” This view
also agrees with the call in NRC (2009) for “collaborative, systems-based approaches” which “[rec-
ognize] the interdependencies among critical infrastructure systems to enable the achievement of
multiple objectives.”

Simulation games, viewed as a technical model embedded in a social activity, are an approach
which potentially meets these objectives. The physical components of a real-world system are
represented in simulation models with which the social components of the real-world system (i.e.
stakeholders and decision-makers) interact. This section discusses three existing approaches with
similar emphasis currently applied in concurrent engineering, wargames, and other serious games.

2.2.1 Concurrent Engineering

Concurrent Engineering (CE) is “a systematic approach to the integrated, concurrent design of
products and their related processes ... intended to cause the developers from the very outset to
consider all elements of the product life cycle” (Pennell and Winner 1989). CE emphasizes the
couplings between design decisions and outcome performance as an integrated process involving
wide participation by designers and stakeholders. In other words, CE considers both the technical
integration of actors’ design decisions and the social collaboration among participating actors.

Most CE facilities specialize in the design of technically complex systems. For example, both
the Jet Propulsion Laboratory’s Team X and the European Space Agency’s Concurrent Design
Facility design space systems, a domain characterized by strong couplings between design variables
due to physics-based constraints of spaceflight. In these cases, the objective of a design task is
to create a system composed of multiple interdependent subsystems with centralized oversight by
the systems engineer (Kolfschoten et al. 2012). Provided a fully integrated system model, methods
such as multidisciplinary design optimization (MDO) optimize global objectives across subsystem
models and mitigate technical complexity. Past design experiments provide evidence of improved
outcome performance using this approach in parallel with human decision-making (Schuman et al.
2005).

The primary social emphasis of CE is communication between subsystem designers relating to
technical constraints. Some recent extensions also consider evaluative complexity of designers and
decision-makers. For example, MATE-CON applies multi-attribute tradespace exploration (MATE)
to CE processes to build preference models using multi-attribute utility theory (MAUT) (Ross et al.
2004). These preference models are used to propose a reduced set of candidate designs which the
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decision-maker is likely to prefer. Similar approaches are used in Collopy and Hollingsworth (2011)
where value is used as an objective function to evaluate design trades in an integrated model.

While CE methods most commonly address system design problems having a centralized man-
agement or decision-making process and a systems engineering role, some applications study more
distributed decision-making. The Palo Alto Collaborative Testbed (PACT) was an early attempt at
improving interoperation in distributed CE systems. The key concept that “tool data and models
are encapsulated rather than standardized and unified,” allows designers to use the tools and mod-
els most natural for their subsystem design (Cutkosky et al. 1993). PACT, and a later study of the
Federation of Collaborative Design Agents (FCDA), use federated architectures where facilitators
route TCP/IP messages between design agents (Khedro and Teicholz 1997). More recently, the
Global Integrated Architecture for iNnovative Utilisation of space for Security (GIANUS) project
(ESA 2010) involves multiple ESA establishments to integrate space assets for Earth observation,
telecommunications, and navigation. The social dimensions of a SoS CE process includes both the
evaluative complexity of particular system stakeholders and the nested complexity of interrelation-
ships between them for collaboration.

2.2.2 Wargaming

Wargaming2 is an interactive model-based method for planning or training for military conflicts.
Portions of the technical system (e.g. terrain, troops, and weapons platforms) are incorporated
in a model which is used by human players to make decisions and respond to outcomes from a
systems perspective. Differentiating from purely quantitative methods, wargames are an “exercise
in human interaction, and the interplay of human decisions and the simulated outcomes of those
decisions makes it impossible for two games to be the same” (Perla 1990, p. 164). Further:

They are of little use in providing rigorous, quantitative measures to ‘objectively’ prove or
disprove technical or tactical theories. Instead, they can often provide the kernel of new theories
that can be tested with other tools. Wargaming is most productive when used as an organizing
and exploratory tool or as an explanatory device. (Perla 1990, p. 180)

Wargames have a long history applied to systems problems and played a contributing role in
developing contemporary systems theory and methods. Wilson (1968) describes a comprehensive
history of simulations and games applied to military domains up to the Cold War. Some of the
earliest examples of wargames date to the Prussian Empire, with the development of Kriegsspiel
(literally, wargames) by von Reiswitz in 1812. Embraced by King Wilhelm III for planning for
military engagements, Kriegsspiel used table-top maps, tokens for military units, and an extensive
rulebook of quantitative mechanics required to run a wargame. Refinements to these mechanics led
to developments such as Lanchester’s laws for estimating military force strength during the First
World War and scientific management of military operations during the Second World War.

During the 1950s the U.S. military was asked to prepare strategies for potential war scenarios
that had never before been experienced (Ghamari-Tabrizi 2000). Analysis methods derived from
experience in the Second World War required large amounts of operational data and were not able
to plan for an unpredictable future. Organizations including the RAND Corporation developed
systems analysis techniques, Monte Carlo methods, game theory, and wargaming, among other
methods to address this challenge (Kahn and Mann 1957a; Kahn and Mann 1957b; Kahn and Mann
1957c; Kahn and Mann 1957e). Wargaming in particular was applied to “unfactorable” problems:

2The term “wargaming” is also written as “war gaming” in some communities.
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those “whose analysis appears to require appreciable context” (Mood 1954). They involved an
umpire for adjudication and red (opponents) and blue (allies) teams of experts operating within the
context of a scenario to interpret information from a data base and make decisions for which effects
are evaluated by models (Perla 1990, pp. 164–167). Wargames were created to meet operational,
tactical, and strategic planning tasks and also for teaching and training exercises.

The strength of wargames emerged from their experiential nature and from the communication
among experts. Specht (1957) writes “as a teaching device a war game has unparalleled effective-
ness, for the player teaches himself and persuades himself in a manner more convincing than any
lecture can possibly be” and “a war game teaches both intellectually and emotionally—it is an
experience that one lives through.” Mood (1954) observes that a wargame “pools knowledge of
numerous experts” and forces them to “put down in writing a basic structure which must neces-
sarily be a part of any intelligent consideration of any nonfactorable military problem” such that
“people can see it and study it and debate it, and over a period of time arrive at some sort of
general agreement about it.” Perla (1990, p. 257) also reflects on the benefit of “playing Red” or
role-playing one’s enemy where identifying “how and why the opponent employs his force as he
does is often the most critical element of learning, and also one of the most difficult to interpret.”

The amount of detail in wargames expanded with the realization of the early belief that “modern
high-speed computers will enable the number of factors which can be included in a game to be in-
creased tremendously, if necessary, without adding to the complexity of the game from the player’s
standpoint” (Mood 1954). The advent of digital computing greatly increased memory available for
capturing state (description of the model variables) and reduced the time required for update cal-
culations. However, complex models introduced new challenges in models, simulations, and games
(MSG). Brewer (1975) writes “the actual users are not able to determine how the original knowledge
contained in the MSG was generated, for what reasons, and with what limitations” and “the ana-
lysts responsible for the information contained in the MSG have abnegated responsibility for their
products through disinterest, contempt, and ignorance.” Furthermore, extensions of wargames to
societal problems were limited as “data on social issues, e.g. the city, poverty, health, housing, do
not normally exist in sufficient quantity, quality, or under sufficient control to allow much model
building to go on” (Brewer 1975).

Entering the 1980s, efforts at the RAND Corporation attempted to address perceived limita-
tions and “make war gaming more efficient, rigorous, and analytical” using “artificial intelligence
techniques to produce computer models able to replace some or all of the human teams” (Davis
and Winnefeld 1983). These efforts were not entirely successful, as removing people from the games
acted contrary to the role of a game as an exercise in human interaction. Today there are calls for
“reinserting people in M&S and related analysis” where “gaming is often a preferred method for
operational planners and strategic planners” (Davis and Henninger 2007).

While the classic wargame emphasizes tactical-level decisions, other examples demonstrate
strategic-level decisions which tend to border on national policy. Political-military or “pol-mil”
games are a direct extension of wargames to understand nested social complexity. Some of the first
political games grew out of the RAND Social Science Division to study foreign affairs (Goldhamer
and Speier 1959). These policy games were “an attempt to simulate the interaction between states
by having individuals play the role of governments dealing with international problems” (Bloomfield
1959). Use of policy games has continued to date—Mayer (2009) reviews the application of games
to policy-oriented topics building up from their origins in wargames. In particular, he distinguishes
between the “neat and rational” theoretical view of policy-making and the “chaotic messy” reali-
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ties which can be addressed with human interaction in games. Recently games have been used to
address large-scale policy issues such understanding the issues of climate risk management (Suarez
et al. 2012).

2.2.3 Serious Gaming

Building on the successes of policy games, serious games apply many of the same principles of mil-
itary wargaming to meet learning or educational objectives in other domains. Broadly viewed, “a
game is an activity among two or more independent decision-makers seeking to achieve their objec-
tives in some limiting context” (Abt 1970, p. 6). A serious game combines “analytic and questioning
concentration of the scientific view-point with the intuitive freedom and rewards of imaginative,
artistic arts” (Abt 1970, pp. 11-12). The qualities which make serious games powerful educational
tools such as experiential learning, freedom to fail, and challenging existing mental models also
create effective analysis tools. In a sense, the difference is only in learning something known versus
unknown. Sterman (1994) argues simulation is essential to improve the decision-making process
(“organizational learning”) by providing an alternative source of information feedback compared
to the costly, time-intensive, and permanent real world.

Business and management practitioners were some of the first game adopters to understand
dynamics and social complexities in a competitive environment. The first management game dates
to the 1950s when the RAND Corporation created Monopologs, a game about the U.S. Air Force
logistics system (Jackson 1959). Game use in business education has grown in recent decades.
Surveys in Faria (1998) indicate 97.5% of AACSB3 members use simulation games, and 62.2%
of businesses use games in management training programs. Some games are even described as a
“management flight simulator”—a manager’s analog to a pilot’s flight simulator for learning and
practicing decisions (Sterman 1992).

There has been a renewed interest in gaming approaches for science and engineering education
in recent years. First, in recognition of the blurring of boundaries between modeling, simulation,
and gaming, technologies involved in game development can address the “lack of highly-skilled
computational scientists and engineers able to fully leverage the current state of the art in [high
performance computing] for science-based modeling and simulation” (NRC 2010). Second, simula-
tions and games have potential to meet science learning objectives by supporting “inquiry-based
approaches to science instruction, providing virtual laboratories or field learning experiences,” and
allowing “learners to visualize, explore, and formulate scientific explanations for scientific phenom-
ena” (NRC 2011).

Over the past decade, a series of “infra-games” study various dimensions of infrastructure
planning problems. While each game focuses on a different problem, common features emphasize
collaborative decision-making and strategic behaviors between actors. Table 2.3 summarizes five
selected infra-games discussed in detail below.4

The Urban Network Game was created to gain insights to opportunities and threats to develop-
ing urban networks of cities with good transportation connectivity (Mayer et al. 2004). Gameplay
sessions involved about 50 representatives from relevant administrative, private, and social parties
involved in urban network development. Two sessions considered differing scenarios of an existing

3AACSB is the Association to Advance Collegiate Schools of Business
4Notably, all of these examples come from Delft Technical University Centre for Serious Gaming (CPS) and many

under the Next Generation Infrastructures (NGI) Foundation.
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Table 2.3: Summary of Selected Infra-games

Name Reference Purpose Game Structure and Interface

Urban Network
Game

Mayer et al.
(2004)

Generate insights for
urban network develop-
ment

Open negotiation between players with a
common physical map and tokens

Infrastratego Kuit et al.
(2005)

Study strategic behav-
iors in electricity markets

Open negotiation between players with
computer model support

SimPort-MV2 Bekebrede
(2010)

Develop construction
plan for port expansion

Multiplayer computer application with
graphical user interface

SprintCity Nefs et al.
(2010);
Mayer et al.
(2010)

Study interaction be-
tween rail

Computer-based multi-player interactive
simulation

Rail Cargo
Market (RCM)

Meijer et al.
(2011)

Manage cargo capacity
in rail systems

Paper models with computer support for
automated scheduling

urban network (Brabant City) in 2030. Players worked in groups of two to four to develop “in-
novative spatial designs and projects” to be placed on a common map using physical tokens after
negotiation and approval from other players.

Infrastratego is a game developed to study strategic behavior in the Dutch electricity market
which was gradually liberalized starting in 1998 (Kuit et al. 2005). It uses a large number of
participants (40–50) to play a wide range of roles including electricity generators, national and
regional grid managers, suppliers, and other interest groups. The game proceeds in 6-month rounds
between 2001–2006 in an open format where participants decide how to play and with whom to
negotiate. Gameplay is supported by a computer model based on the Netherlands electricity
industry.

SimPort-MV2 is a game developed to experience complexities involved in a large land recla-
mation project at the Port of Rotterdam in the Netherlands (Bekebrede 2010). 4–6 participants
play the board of directors and make construction, negotiation, and financing decisions over 30
simulated years. Each round of 10 years progresses with a timed simulation and performance is
evaluated using financial, spatial, and process indicators after each round. Gameplay is supported
by a multi-player computer application and graphical user interface, however much of the decision-
making takes place outside the computer (Warmerdam et al. 2007).

SprintCity is a game to study the interrelations between rail infrastructure and urban devel-
opment (Nefs et al. 2010; Mayer et al. 2010). 6–12 players control one of six station areas and
experience the interactions between rail infrastructure investment and spatial urban development.
Players develop their station areas in five rounds of four years between 2010–2030. The game
uses a computer-based simulation to model the interactions of new rail infrastructure and urban
development in a mobility-land use reinforcing feedback loop.

Meijer (2012) applies gaming methods to railways in the Netherlands, where infrastructure
management and train services are tightly interconnected but controlled by multiple organizations,
requiring synchronized processes to increase capacity. Six games were developed to work with
the infrastructure management company ProRail during the project period, of which five dealt
with operational issues. The exception was the Rail Cargo Market (RCM) game which evaluated
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the potential value of tactical market mechanisms to manage cargo capacity (Meijer et al. 2011).
It included 15–25 players representing cargo transport clients, rail cargo transporters, passenger
transporters, rail capacity planners, and rail asset management. Three or four scenarios were used
in each session to explore market mechanisms. The simulation game used paper-based models in
continuous time with computer support to allow automation of train path reservations.

2.2.4 Limitations in Existing Methods

This section introduced several integrated methods to address complex design problems by bridging
technical and social dimensions. For example, CE overlays a social structure on technical models
to improve communication and reduce feedback delays between subsystem designers. Gaming
combines a technical model with an interactive social environment to engage players and promote
learning in a virtual environment. Existing applications of these methods, however, are not sufficient
to tackle the design challenges of infrastructure systems. As introduced in Chapter 1, infrastructure
systems exhibit a decentralized SoS structure. Modeling methods replicating this structure may
result in a stronger isomorphism with the real-world task. Methods must address the dual challenges
of integration of constituent system models and collaboration among independent actors having
decentralized authority.

CE methods are most often applied to designs with a centralized authority embodied in the
systems engineering role. While CE serves as an integrated environment for sharing data among
technical models, it may not be interoperable. Interoperability is defined by Wegner (1996) as “the
ability of two or more software components to cooperate despite difference in language, interface,
and execution platform.” Under a centralized authority designers can be coerced to use a common
integrated system. For example, the software environment at ESA’s concurrent design facility is
based on Excel spreadsheets, imposing specific modeling, software, and operating system require-
ments on designer models (Schumann et al. 2010). Furthermore, a feasible system design in CE
applications is dependent on a compatible set of solutions from all designers. This “consensus”
paradigm differs greatly from the “collaborative” perspective of infrastructure systems where the
higher degree of independence between system designers allows more autonomy in decisions.

Gaming methods, on the other hand, are often applied to systems problems having a more
limited centralized authority. Indeed, the major source of value in wargames and policy games is
in role-playing an adversary to identify weaknesses in one’s own decisions. Similarly, infra-games
use participants to role-play various stakeholders to elicit the nested complexity of a particular
design problem. To date, however, the design aspect of infra-games is constrained to a single
sector (e.g. electricity, rail, sea ports) in contrast to larger infrastructure systems which involve
design activities across constituent systems. Further, the technical models associated with infra-
games are often centrally-designed in a lab or studio to capture the particular problem of interest
without consideration for integration or interoperability. By the time a game development studio
is contracted and completes the work, it is likely to be too late to influence an actual decision, as
was experienced in SimPort-MV2 (Bekebrede 2010, p. 264).

Finally, both model-based approaches have long-understood pitfalls which are the subject of
several cautionary notes and critical reviews (e.g. Kahn and Mann 1957d; Lee 1973; Brewer 1975).
Foremost, a game designer holds great power to shape the perceived reality of players. Specht
(1957) writes “the game may persuade us equally convincingly of things that are not true in the
real world” and designers should ensure “detail and complexity are compatible both with our
knowledge of the real world and with the purposes of the game.” Perla (1990, p. 182) writes “a
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poorly designed game could allow players access to an unrealistic quantity and quality of information
and so give those players a false picture of the worth of a weapon system that relies on just such
unattainable information to be effective” and cautions “there is always a possibility that intentional
or unintentional advocacy or particular ideas or programs may falsely color the events and decisions
made in a game and lead to self-fulfilling prophecies.” To partially address these concerns, Sterman
writes:

In practice, effective learning from models occurs best, and perhaps only, when the decision
makers participate actively in the development of the model. Modeling here includes the elic-
itation of the participants’ existing mental models, including articulating the issues (problem
structuring), selecting the model boundary and time horizon, and mapping the causal structure
of the relevant system. (Sterman 1994)

Thus, effective games for engineering design should be constructed on the behalf of individuals as
participants similar to the nature of CE approaches but with greater interoperability.

To summarize, CE and gaming methods have made significant advances to improving under-
standing of many sources of complexity in socio-technical systems problems. CE methods rely on
integrated modeling techniques but are directed towards systems design problems having a cen-
tralized authority. Interactive games incorporate greater nested complexity of various stakeholder
perspectives; however recent applications to infrastructure projects focus on a single project and
use centrally-developed models.

2.3 Research Outline

To address the limitations in existing methods discussed in the previous section this research seeks to
develop interoperable simulation games for infrastructure systems design. This concept extends the
technical design emphasis of concurrent engineering to interoperable models necessary to represent
the decentralized authority in infrastructure systems and emphasize the social interaction present
in gaming. This section outlines the approach taken in this dissertation including the scope of
research considered, specific questions to answer, and the overall research methodology.

2.3.1 Research Scope

As introduced in Chapter 1, the overall objective of this research is to influence the design of
future infrastructure systems to promote the efficient and effective use of scarce resources. This
objective, however, is not possible to study in a timescale of a few years, nor would one expect
conclusive experimental results in real-world applications. The research scope of this dissertation is
thus limited to developing a design method and evaluating related hypotheses about the behavior
of human designers. Evaluation of the method on its ability to improve infrastructure systems
design in an applied context is left for future work in a different setting.

Klabbers (2003) identifies two complementary levels of design to frame this distinction. Design-
in-the-large (DIL) is “focused on intervention, on devising courses of action aimed at changing
existing situations into preferred ones,” borrowing the science of design terminology from Simon
(1996). On the other hand, design-in-the-small (DIS) deals with creating artifacts used for DIL
activities. Here, design artifacts include constructs, models, methods, or instantiations (March and
Smith 1995). Thus, with the overall objective of contributing to DIL activities of infrastructure
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systems design, this dissertation builds and evaluates DIS artifacts contributing to a prototype
interoperable simulation game.

A DIS-centered research scope requires additional clarification as some may perceive the re-
searcher as “being more interested in the model than in the real world” (Kahn and Mann 1957d).
However:

This is a criticism only if the analyst is trying to influence policy; if he is trying to advance
the state of the art or consciously introducing new tools, then his activities should presum-
ably be judged on a technical basis and it is not necessary for him to introduce substantive
considerations. (Kahn and Mann 1957d)

This chapter argues for the utility of interoperable simulation games as an extension of existing CE
and gaming methods. While real-world problems are used for context and motivation, the primary
contribution is largely methodological.

To further scope the work of artifact design, this dissertation emphasizes three particular sources
of complexity. First, it recognizes architecture as a significant source of structural complexity
in infrastructure systems. Most attention is given to representing a decentralized architecture
with less emphasis on particular infrastructure systems and their interactions. Second, motivated
by strategic decision-making, this dissertation emphasizes long-term dynamics rather than short-
term. Using aggregated time-steps, the main sources of uncertainty arise from context changes
which are difficult to quantify in a probabilistic sense. Rather, the potential sources of contextual
uncertainty become discussion points in the social gaming environment similar to the approach
taken by scenario analysis. Finally, this dissertation emphasizes nested complexity of multiple
actors involved in collaborative design. Integration (via model interoperability) and collaboration
are highlighted as key approaches to address design problems with distributed authority.

2.3.2 Research Questions

This dissertation poses three core questions to sequentially 1) motivate, 2) develop, and 3) apply
the concept of interoperable simulation gaming for infrastructure systems design.

First, collaborative design problems such as those encountered in infrastructure systems involve
complexity from technical sources in the design problem itself and social sources in the structure and
interrelationships between designers. However, it is not known how design activities are affected by
varying degrees of technical versus social complexity. To motivate the development of integrative
and collaborative methods, the first research question asks:

1. What are the relative costs of technical and social complexity in design activities with barriers
to collaboration?

This question quantifies the cost of collaboration by evaluating the impact of technical and social
complexity in design tasks. Purposeful barriers to collaboration represent the decentralized author-
ity present in systems-of-systems. Insights from answering this question motivate the development
of integrated and collaborative methods to reduce the costs of collaboration.

The second research question addresses limitations in existing methods to develop artifacts for
interoperable simulation gaming of infrastructure systems. It asks:

2. How can interoperable simulation gaming addresses the dual challenges of integration and
collaboration in infrastructure systems?
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(a) What generalized modeling framework represents the structure and dynamics of infras-
tructure systems for integrated modeling activities?

(b) What simulation architecture enables collaboration with decentralized authority over
component infrastructure system models?

This question addresses the findings of Rinaldi et al. (2001) that “simply ‘hooking’ several existing
infrastructure models together generally does not work: every model has its own assumptions,
data, and numerical requirements ... that may not be compatible with other models.” Two sub-
questions seek to define a method for integrating and collaborating among infrastructures systems
models. Question 2(a) seeks a modeling framework to represent the structure and dynamics of
infrastructure systems; specifically, a framework which is generalizable across diverse infrastructure
systems capable of producing integrated models. Question 2(b) addresses the independence of
infrastructure systems to seek an interoperable simulation architecture enabling independent control
over constituent models and collaborative modeling activities.

Finally, the third research question identifies factors contributing to effective design outcomes
in a prototype interoperable simulation game. It broadly asks:

3. What design-in-the-small elements of an interoperable simulation game can lead to improved
design activity outcomes?

This question explores design-in-the-small options for an interoperable simulation game to improve
design-in-the-large outcomes. Although only a first step is taken in this dissertation, future research
on this topic can establish design principles for effective interoperable simulation games.

2.3.3 Research Methodology

This dissertation follows a hybrid research methodology combining analytical and design science
approaches to answer the three posed research questions. First, one must clarify the differences
between analytical and design science methods to address potential misunderstandings. Building
on past work including March and Smith (1995) and Hevner et al. (2004), Klabbers (2006) describes
analytical science as the “driving force of scientific discovery in physics, chemistry, and biology”
by which experimental research studies isolated and purified phenomena. Analytical sciences are
performed by communities of observers organized in isolated disciplines, often using a variable ap-
proach (i.e. correlations among variables) of justifying and testing theories. On the other hand,
the science of design “deals with synthesis” and “is both the world of engineering and the world
of social construction of reality as, for example, in education, policy making, and management.”
Design science is performed by communities of practice who create artifacts to serve human pur-
poses. Artifacts are evaluated and assessed within particular context with a process approach (i.e.
linkages between actions and events). Furthermore:

Games take a dual position. They can be used both to develop and test theories, which is an
analytical science objective, and to change existing situations into preferred ones, which is a
design science purpose. Both roads require different and, to some extent, mutually exclusive
methodologies. (Klabbers 2006)

This dissertation embraces the dual position of games to pursue both analytical and design science
methodologies.

Questions 1 and 3 apply simulation games to study human behavior using an analytical sci-
ence methodology. As the focus is on human behavior, this falls within the boundaries of the
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social sciences. Answering both questions involves the formulation of a causal hypothesis linking
conditions to expected outcomes. Hypothesis evaluation uses a variable approach of measuring cor-
relations between various conditions with observational data. Using a simulation game, behaviors
are induced through a controlled human experiment rather than occurring naturally (Babbie 2009,
pp. 231–234).

A key component of analytical science, and especially its application to the social sciences, is in
establishing strong validity. Internal validity deals with the extent to which the causal correlations
observed are correct. The research designs to address Questions 1 and 3, for example, rely on ran-
domized experiments to strengthen internal validity (Campbell and Stanley 1963). Measurement
or construct validity deals with the translation from concepts in a hypothesis to quantitative indi-
cators measured in data, i.e. whether “the observations meaningfully capture the ideas contained
in the concepts” (Adcock and Collier 2001). Finally, external validity deals with the generalization
of findings beyond the experimental frame.

Question 2 develops an interoperable simulation game as an artifact to support design activities
for infrastructure systems. As a software-oriented application, this research falls within the field of
Information Systems (IS) which “deals with systems for delivering information and communications
services in an organization and the activities and management of the information systems function in
planning, designing, developing, implementing, and operating the systems and providing services”
(Davis 2000).5 Question 2(a) develops a modeling framework to define constructs and a meta-model
of the structure and behavior of infrastructure systems. The constructs provide the language in
which problems and solutions are defined and communicated (Schön 1983, pp. 78–79). The meta-
model defines relationships between constructs to describe a generalized infrastructure system as
a representation of a real world situation. Question 2(b) develops a simulation architecture using
these constructs and model to define a method for integrating interoperable models. Finally, the
realization of the constructs, models, and methods are embodied in a prototype simulation game
to answer Question 2.

Following the framework in Hevner et al. (2004), IS research builds artifacts to address unsolved
problems and evaluate them “with respect to the utility provided in solving those problems.” They
describe seven guidelines for effective research summarized in Table 2.4 with the action taken
in this dissertation. In particular, Hevner et al. emphasize that artifacts which interact with
humans (including simulation games) must consider knowledge and theories of human behavior
and “empirical work is necessary to construct and evaluate such artifacts.” Thus, in addition
to answering the behavioral science objectives in Question 3, the design experiments are also an
opportunity to evaluate the usability of the prototype simulation game artifact.
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Table 2.4: Guidelines and actions for IS design research

Guideline Description Action in this Dissertation

1. Design as an
Artifact

The result of design science research
is, by definition, an purposeful arti-
fact created to address a problem.

Artifacts include constructs and models
(Chapters 4), methods (Chapter 5), and
a prototype instantiation (Chapter 6).

2. Problem
Relevance

Research must address problems
faced by practitioners working in the
constituent community.

This chapter introduces motivation for
new design artifacts based on gaps in ex-
isting literature.

3. Design
Evaluation

The utility, quality, and efficacy of
a design artifact must be rigorously
demonstrated via well-executed eval-
uation methods.

Application use cases (Chapter 4), pro-
totype system instantiations (Chapter 6),
and human design experiments (Chapter
7) evaluate design artifacts.

4. Research
Contributions

Design science research must provide
clear contributions in the areas of the
design artifact.

Chapters 4, 5, 6, and 8 discuss research
contributions.

5. Research
Rigor

Design science research requires the
application of rigorous methods in the
construction and evaluation of the de-
sign artifact.

Chapters 4, 5, and 6 document the design
and evaluation of contributed artifacts.

6. Design as a
Search Process

Design science is recognized as being
iterative and problem simplification
represents a starting point.

This dissertation builds on past con-
structs and contributes a prototype sys-
tem as a first iteration.

7. Communication
of Research

Design science research must be pre-
sented to technology-oriented and
management-oriented audiences.

This dissertation publicly disseminates
key research results.
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Chapter 3

Collaborative Design in Coupled
Problems

“Experience has shown that collaborative projects almost invariably lead to increased costs.
When additional participants join a project, the basic costs remain, but the costs of duplicating
management systems and of managing interactions must be added. It is also important to
recognize that even though the overall cost of the program may increase, the cost to each
partner is often decreased, thus making a program more affordable to each partner.”

In summary of NRC report Assessment of Impediments to Interagency Collaboration on Space
and Earth Science Missions (2011)

Design of modern complex systems is a sufficiently challenging task such that multiple actors
working as designers are necessary to overcome limitations of an individual (Arias et al. 2000).
This is most visible in a system-of-systems (SoS) where multiple organizations manage and operate
independent systems rather than relying on a centralized design authority (Maier 1998). While
a decentralized structure allows organizations to each work on isolated design problems, it also
introduces barriers to collaboration when there are dependencies between each system such as the
resource interdependencies observed in infrastructure systems.

The decentralized structure of SoS contributes additional social complexity compared to a cen-
tralized system design process. The impact of groups on task performance is multi-faceted (e.g.
Cohen and Bailey 1997; Kerr and Tindale 2004). On one hand, there may be improvement through
parallel work flows, multiple perspectives on the problem, or specialization. On the other hand,
there may be decreased performance through feedback delays between designers with coupled de-
cisions, misalignment of objectives, or poor group dynamics. At the level of agencies or other
large-scale organizations, collaborative projects are expected to have an increased cost as discussed
in NRC (2011) above in the context of space systems; however it is not known by what extent it
exceeds the cost of a centralized effort.

This chapter quantifies and compares the relative contributions of technical and social factors
in design tasks. Improved understanding of the social costs to collaboration may help motivate
methods to reduce the cost of collaborative design in cases where a centralized authority is not
possible. Section 3.1 reviews related literature in complexity and collaboration topics and proposes
a research objective. Section 3.2 proposes a multi-actor model of a design activity implemented in
a software tool. Section 3.3 outlines the experimental methodology calling for a human subjects
experiment. Section 3.4 presents results which are analyzed and discussed in Section 3.5 with topics
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for future work.

3.1 Related Literature and Objectives

This section reviews related literature in complexity theory and its relation to design activities,
cognitive and social psychology research into the capabilities of individuals and teams, and recent
research in collaborative engineering. Gaps in existing literature motivate the research question to
be studied and an initial hypothesis linking technical and social complexity and design cost.

3.1.1 Related Literature

A large body of literature exists towards describing, and in some cases quantifying, design com-
plexity (Braha and Maimon 1998; Bashir and Thomson 1999; Suh 1999; El-Haik and Yang 1999;
Ameri et al. 2008) and especially for software (Card and Agresti 1988; McCabe and Butler 1989;
Fenton and Neil 1999). As discussed in the previous chapters, complexity can be aggregated under
three types with multiple subtypes: structural (component, interaction, and architecture), dynam-
ics (short- and long-term), and socio-political (Sheard and Mostashari 2010). Even aggregated as
such, there are likely relationships between types; for example, between structural architecture
and social organization under Conway’s Law which recognizes that “products tend to ‘mirror’ the
architectures of the organizations in which they are developed” (MacCormack et al. 2011).

Few studies directly investigate the effect of technical complexity on design performance, al-
though it is generally perceived as contributing to more errors and lower productivity (Card and
Agresti 1988) and to higher schedule and cost overruns (Bashir and Thomson 1999; Arena et al.
2008). Hirschi and Frey (2002) quantify the effect of technical complexity on time to complete a
task using a linear system of equations as a surrogate for a parameter design task. They find
the normalized time to solve the task grows linearly with the number of uncoupled variables but
geometrically with the number of coupled variables (much faster then the polynomial growth in
numerical solvers). The differences are explained from the cognitive psychology perspective of
short-term memory, limited to seven plus or minus two chunks of information (Miller 1956). Sinha
(2014) finds similar results for a super-linear effect of complexity on development effort across a
range of cyber-physical systems. In a related time-constrained human subjects study on building
systems, Flager et al. (2014) shows the resulting design quality exponentially decreases with the
number of variables.

In a multi-actor setting, however, there is no single memory and knowledge is distributed, re-
quiring a shift from theories of cognitive psychology to those of social psychology. Several studies
identify negative effects of group size described as social loafing or the Ringelmann Effect, at-
tributed to coordination and motivation losses (Kravitz and Martin 1986; Ingham et al. 1974).
Other studies investigate various factors impacting group performance such as cohesion composed
predominately of group pride (Mullen and Copper 1994), friendship mediated through coopera-
tion and commitment (Jehn and Pradhan 1997), task and team familiarity (Goodman and Leyden
1991), and trust mediated through motivation (Dirks 1999). While these studies investigate factors
at the individual- and team-level, it is not known if they may be extensible to inter-organizational
relationships as well.

A few studies specifically address the effect of complexity—emphasizing task complexity—on
group performance. Weingart (1992) finds component complexity, defined as the number of unique
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actions required to complete a task, increases both the amount and quality of planning for some
aspects of the task and decreases the group effort, both effects mediating lower group performance.
Argote et al. (1995) finds component complexity has a negative main effect on group performance
which grows as groups gain experience. Turnover of group members also has a larger effect in
simple tasks compared to complex ones, possibly again due to social loafing behaviors.

The application of social science research to support group design tasks is described as col-
laborative or collaboration engineering, a field which “facilitates the communal establishment of
technical agreements among a team of interdisciplinary stakeholders, who work jointly towards a
common goal with limited resources or conflicting interests” (Lu et al. 2007). As a nascent area of
research, there is little empirical literature relating technical and social complexity to collaborative
performance, however several contributing factors are identified. A common goal of collaboration
support systems is to create shared knowledge among designers (Arias et al. 2000). This concept
is expanded by considering collaborative design as a negotiation with four steps: 1) interaction
among designers to 2) construct a common understanding leading to 3) a group preference, and
finally 4) attain agreement on a design (Lu et al. 2007).

To summarize, literature on engineering design emphasizes technical complexity of the design
task with limited consideration of social factors relevant for multi-actor design. On the other hand,
literature from social psychology focuses on social factors contributing to group performance with
only modest consideration of technical complexity. These studies also focus on routine tasks rather
than the more creative process of design. Literature in collaborative design combines both the
technical and social dimensions, but has not yet quantified a relationship between the two factors
and design performance.

3.1.2 Research Objective

This research seeks to address Question 1 previously posed in Chapter 2:

1. What are the relative costs of technical and social complexity in design activities with barriers
to collaboration?

Past research identifies a link between complexity and cost; however the relative contributions
from technical and social factors are not known. The past work of Hirschi and Frey (2002) shows
that task completion time (as a measure of cost) grows linearly for technically-simple tasks and
geometrically for technically-difficult tasks; however only single-designers are considered.

Based on related literature, it is hypothesized that increasing social complexity is positively
correlated with design cost. Furthermore, it is hypothesized that there is a positive interaction
between technical and social complexity on design cost (i.e. higher costs of increasing social com-
plexity for technically-complex problems). To evaluate these hypotheses, this chapter proposes a
human subjects experiment using a simplified multi-actor design model described in the following
section providing experimental control over variables of interest.

3.2 Multi-actor System Design Model

This section describes a surrogate for a parameter design process based on Hirschi and Frey (2002).
This method focuses on technical and social complexity by providing experimental control over:
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1. Number of input and output variables in the design task,

2. Degree of coupling between input and output variables, and

3. Assignment of input and output variables among multiple designers including the degree of
coupling between designers.

The surrogate also removes all real-world context from the design problem to eliminate effects
of domain knowledge or experience. The resulting design tasks can be solved in a short time
period suitable for study. The surrogate design task is described in the following sections including
the underlying multi-actor system model, its limitations, and a distributed software application
implementing model.

3.2.1 Parameter Design Formulation

Suh (1999) describes the design process as a mapping between functional requirements (FRs) in
the functional domain and design parameters (DPs) in the physical domain. The objective of the
design process is to find the set of DPs (input variables) to achieve a specified set of FRs (target
output variables).

In its most general form, the surrogate design task uses the parameter design formulation to
map an input vector x to an output vector y through a system model M in Eq. 3.1.

M(x) = y (3.1)

An error model E in Eq. 3.2 maps the difference between the output vector y and target output
vector y? to an error vector z.

E(y − y?) = z (3.2)

The objective of the design task can be framed in Eq. 3.3 as finding an input vector x such that
the output error is less than a specified bounds z?.

find x s.t. E(M(x)− y?) < z? (3.3)

Hirschi and Frey (2002) constrain the general surrogate design task to a single-actor design
problem using a linear system model shown in Eq. 3.4.

M(x) = Mx (3.4)

Here, M is a transformation matrix mapping input to output variables, effectively a design structure
matrix. The problem space is limited to square, orthonormal M matrices to ensure a consistent
linear system. For a system model with N inputs and outputs, Eq. 3.5 shows the M matrix
structure where element mij quantifies the coupling between input i and output j, i.e. mij =
∂yj/∂xi = dyj/dxi.

M =


m11 m12 . . . m1N

m21 m22
. . .

...
...

...
. . .

...
mN1 mN2 . . . mNN

 (3.5)



3.2. MULTI-ACTOR SYSTEM DESIGN MODEL 65

The corresponding error model takes the absolute value of the difference between each output and
the target value,

E(y − y?) = {|yi − y?i |} ∀ i, (3.6)

and the error bounds are specified by a constant ε such that

z? = {ε} ∀ i. (3.7)

This solution criteria requires all outputs be within ε of the target value. While there is a unique
solution with zero error for a consistent linear system (namely x = M−1y?), there are infinitely-
many solutions within the specified error bounds.

The multi-actor surrogate extends the single-actor formulation by assigning each input and
output to a designer. From this perspective, input assignments represent control over design pa-
rameters and output assignments represent objectives tied to functional requirements. For a design
task with n designers, the assignments are formalized by two binary (0,1) matrices. An n × N
matrix I assigns inputs, where element Iij is defined in Eq. 3.8.

Iij =

{
1 if input j is assigned to designer i
0 otherwise

(3.8)

Similarly, an n×N matrix O assigns outputs, where element Oij is defined in Eq. 3.9.

Oij =

{
1 if output j is assigned to designer i
0 otherwise

(3.9)

The assignment matrices can be composed with the M matrix to compute the social coupling
matrix D shown in Eq. 3.10.

I ×M ×Oᵀ = D =

 D11 . . . D1n
...

. . .
...

Dn1 . . . Dnn

 (3.10)

Element Dij 6= 0 identifies social coupling between designers i and j, specifically that designer j
outputs are dependent on designer i inputs.

An example multi-actor design task with three designers (n = 3) and four variables (N = 4)
is defined in Eq. 3.11. Inputs are assigned to designers {1, 1, 3, 4} and outputs are assigned to
designers {1, 1, 3, 2}.

M =


m11 m12 m13 0
m21 m22 m23 0
m31 m32 m33 0

0 0 0 m44

 , I =

 1 1 0 0
0 0 1 0
0 0 0 1

 , O =

 1 1 0 0
0 0 0 1
0 0 1 0

 (3.11)

The resulting D matrix computed from M , I, and O using Eq. 3.10 is shown in Eq. 3.12 which
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d1

d2

d3

x1

x2

x3

x4

y1

y2

y3

y4

Figure 3-1: The multi-actor formulation can be represented as a hyper graph connecting the inputs (circles,
xi), outputs (diamonds, yi), and designers (squares, di) in technical (right) and social (left) layers. The M
matrix describes technical coupling while the D matrix describes social coupling. Implicit edges connect
designers, inputs, and outputs having the same color (assignment).

identifies dependencies between all three actors.

D =

 m11 +m12 +m21 +m22 0 m13 +m23

m21 +m32 0 m33

0 m44 0

 (3.12)

Figure 3-1 illustrates a two-layer hyper graph of the design task. The technical layer (right) illus-
trates the coupling between inputs and outputs due to the M matrix while the social layer (left)
illustrates the coupling between designers derived from the D matrix (with self-loops omitted).
Input and output assignments derived from the I and O matrices respectively connect the two
layers, illustrated with color-coded assignments for the three designers (black, gray, and white).

3.2.2 Model Assumptions and Limitations

The multi-actor system design model makes several simplifying assumptions which introduce lim-
itations to the generalization of results outside the experimental frame. The two key assumptions
include the existence of a single zero-error solution and a linear form of the system model.

This formulation assumes there is exactly one zero-error solution to the design task. This is one
of three possible cases for a general design task which may be:

1. Over-determined if there are no zero-error solutions,

2. Under-determined if there are more than one zero-error solution, and

3. Uniquely determined if there is exactly one zero-error solution.

In the first case, there are no zero-error solutions to the design task. Arguably, this case covers
some real-world tasks where no design meets all requirements. There are two potential outcomes:
either the task is an exercise in futility or requirements must be relaxed to find a feasible solution.
The process of relaxing requirements, operationalized in changing target outputs, is potentially in-
teresting to study in future work focusing on negotiation in collaborative design. Such an extension,
however, may cause the task to become under-determined from the new framing.
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In the second case, there are more than one solution exactly meeting all functional requirements.
Many real-world design tasks also follow this case, with decisions oriented around meeting desir-
ability objectives such as minimizing cost or maximizing value. Without including such secondary
objectives in the formulation, however, all solutions are equivalent, and one would expect the same
outcome as a reduced-order system (i.e. a similar problem with additional constraints) having a
unique solution. An extension providing an objective function rather than a solution criteria may
potentially confound experimental variables by measuring the designers’ ability to maximize desired
objectives in addition to finding a feasible solution.

The third case of a unique solution is least similar to real-world design tasks, but most applicable
to the experimental framing. A single solution criteria provides a concise measurement of design
task complexity in the number of coupled variables. It aligns all designers’ goals such that secondary
objectives potentially requiring negotiation are not needed. Thus, while not directly representative
of real-world design, it includes many of the same characteristics of interest. Finally, it should be
noted that while there is a single non-zero error solution, the error bounds ε provide a range of
acceptable solutions. This is a practical consideration rather than theoretical, allowing designers
to find a “close-enough” solution using discretized input methods. For example, finding an exact
solution may be impossible if inputs are discretized and the solution is an irrational number. Thus,
ε should be small enough to approximate a single solution while large enough to allow its discovery.

A second limitation arises from the use of a linear system of equations described by the coupling
matrix M . This is partially justified by the intentional lack of context in the surrogate design tasks.
While most real-world systems are not linear, they also have context to understand non-linearities.
Physical laws and mathematical models encapsulated in domain knowledge allow experts to manage
non-linearities. However, in this context-free case, even linear systems are not necessarily perceived
as simple due to limited cognitive abilities without quantitative aids as found in Hirschi and Frey
(2002). Finally, a linear system model provides three practical advantages. First, it is the simplest
model of technical coupling, requiring minimal assumptions. Second, consistent linear systems with
a single zero-error solution can be generated for arbitrarily-complex design tasks using randomized
orthonormal matrices. Finally, outputs can be rapidly computed with matrix multiplication.

3.2.3 Software Implementation

The multi-actor system model is implemented in a distributed software application illustrated in
Figure 3-2 with separate components for each designer and an administrator. The designer compo-
nents include a graphical user interface (GUI) to specify inputs and view outputs. The administrator
component assigns inputs and outputs to each designer using the M , I, and O matrices defined
for a given task. Changes to input values are sent from a designer to the administrator component
which computes and sends the new output values.

The application is designed to simulate barriers to collaboration in three ways. First, the
system model is hidden such that each designer can only observe effects of input value changes
on their assigned outputs. Second, no quantitative information is displayed to prevent designers
from mathematically solving the linear system outright. Finally, designers are limited to verbal
communication to simulate barriers across organizational boundaries.

The designer GUI includes slider components for the assigned inputs and outputs, as shown in
Figure 3-3 for a designer with two inputs and two outputs. When in use, the GUI runs in full-screen
mode to focus attention on the task. A randomly-generated task name is displayed at the top, also
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Administrator
M, I,O

Designer 1

Designer 2

Designer n

...

x

y,y?, ε

Figure 3-2: The multi-actor system model implemented as a distributed software application. The con-
troller receives inputs (xi) from designers and sends outputs (yi) based on the design task specified by the
M , I, and O matrices.

indicating whether it is a team (socially coupled) or individual (socially uncoupled) task. Inputs
have randomly-assigned Greek letters and outputs have randomly-assigned labels. These are not
intended for, nor perceived as physically intuitive, but rather meant to identify specific variables.
A designer’s input can be modified by dragging the slider thumb up or down with a mouse or by
pressing the up or down keys (moves 0.5% or 0.01 units on the expected -1.0, 1.0 range) or the page
up and page down keys (moves 5% or 0.1 units on the expected -1.0, 1.0 range). While dragging
the slider thumb, inputs only update once the thumb is released. In both cases, only one update
request per designer can be active at any time to limit the update rate.

The output sliders display a green region approximating the acceptable output values within
the error bound ε of the target. When the slider thumb enters this region, the signal icon changes
from a red cross to a green check mark and the background changes from light red to green. In
situations where the slider thumb is “out of range,” (i.e. its true value cannot be displayed), the
background turns gray. All three states were designed and verified for use by individuals with color
blindness. A design task is completed when all outputs are within the target range, at which time
all designers are prevented from modifying their input values and the manager application plays a
short success sound effect. Although a minor addition, the audio feature had a strong effect on the
observed satisfaction of designers.

The GUI design differs slightly from that of Hirschi and Frey (2002). First, it does not require
the designer to explicitly press a “Refresh Plot” button to limit feedback rates, however updates are
still rate-limited by network latency. By allowing easier and more rapid updates, but not necessarily
changing the underlying task, one would expect this design to produce a similar scaling law with
smaller time-scales and potentially more noise. For example, a few seconds of delay or distraction
has more impact in a short-duration task as compared to a long-duration task. This limitation is
offset, however, by the shorter total time required to complete tasks, allowing more data points
to be collected. Finally, the output display is modified such that the sliders are horizontal (in
contrast to vertical input sliders) to prevent unintentional aids from visually aligning the input
slider thumbs.
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Figure 3-3: The designer GUI includes slider(s) for assigned inputs and outputs. The input DP slider(s)
respond to user actions and the output FR slider(s) show the target value and an icon signaling when within
an acceptable range.

3.3 Experimental Methodology

The experiment is structured as a within-subjects study with a design task as the unit of analysis.
The number of variables and degree of coupling in a task operationalize technical complexity. The
number of designers operationalizes social complexity. Finally, the time required to complete a task
(i.e. from the time a subject makes the first input change to the time that all output targets are
met) operationalizes design cost.

3.3.1 Experimental Design

The multi-actor system formulation leads to four types of design tasks:

I. Uncoupled decisions within designers (M and D diagonal)

II. Coupled decisions within designers (M unconstrained, D diagonal)

III. Uncoupled decisions across designers (M diagonal, D unconstrained)

IV. Coupled decisions across designers (M and D unconstrained)

where the first two items are the cases studied by Hirschi and Frey (2002). This experimental design
adds the additional dimension of social coupling to the existing results to comparatively evaluate
type III and IV design tasks.
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Table 3.1: Design task type with n coupled designers and N variables

n
N (uncoupled) N (coupled)

2 3 4 5 6 2 3 4 5

1 (Individual) I† I†1 I†2 I† I3 II†4 II†5 II†6 IV†

2 (Pair) III III7 III III III IV8 IV9 IV10 IV

3 (Triad) – III11 III III III12 – IV13 IV14 IV

†: task in Hirschi and Frey (2002)

#: task number in this experimental design

Table 3.1 illustrates the design task type for a range of variables and designers. Only cases
with three designers were considered for experimentation for practical scheduling reasons. The 14
numbered design tasks address the following experimental objectives:

1. Validate results from Hirschi and Frey (2002): five cases (tasks 1, 2, 4, 5, 6)

2. Vary social coupling while holding technical coupling constant: three cases with three levels
each (tasks 1, 7, 11; 5, 9, 13; 6, 10, 14)

3. Vary technical coupling while holding non-zero social coupling constant: one case with three
levels (tasks 8, 9, 10).

For pair tasks, the third designer either has a blank screen and does not participate (tasks 8,
9, and 10) or completes a decoupled problem (task 7). No design tasks involve a partially-coupled
technical system model in this design (i.e. M is either diagonal or complete). If implemented, such
tasks could benefit from an organized task sequence to reduce complexity (Eppinger et al. 1991).
This condition could potentially be a source for future design experiments.

Figure 3-4 illustrates designer assignments in each of the 14 tasks and the number of experimen-
tal replications in each session. Individual tasks are conducted in parallel for the three designers,
with one replication for tasks 1–3 and two replications for tasks 4–6. Three replications with ro-
tating assignments are also used for tasks 7, 8, and 9, and two replications are used for task 11.
Finally, due to time constraints, only one replication is used for tasks 10, 12, 13, and 14. In all, this
experimental design calls for 9 individual and 15 team tasks to be solved for a total of 24 tasks—42
replications considering parallel individual tasks.

Unique design problems for the 42 replications are generated for each session to mitigate po-
tential effects of a particular design problem instance. Each transformation matrix M for coupled
tasks is generated from orthonormal bases of random vectors with elements drawn from a uniform
(0,1) distribution. The resulting orthonormal matrix guarantees well-conditioned and balanced
relationships between inputs and outputs and consistency of a single solution for all tasks. For
uncoupled tasks the diagonal of M contains flips between 1 and −1 with probability 0.5. The error
bounds is set to ε = 0.05 for all tasks such that the target range with width 2ε = 0.1 covers 5% of
the range between the expected output range of −1.0 to 1.0.

The initial value of all inputs is zero (x0 = 0), and therefore the initial output is also zero
(y0 = 0). A target output vector (y?) is generated from an orthonormal basis of a random vector
with elements drawn from a uniform (0,1) distribution subject to the constraint that the solution
x? = M−1y? must be a specified distance δ = 0.05 from the initial conditions, i.e. |x?i −x0,i| > δ ∀ i.
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Figure 3-4: Graph representation of the 14 design tasks and 42 total replications with input/output
assignments identified by color.

The resulting target has a Euclidean norm of 1 (i.e. ||y?|| = 1) to provide a standard distance
between initial and final values for all tasks and requires a minimum change of δ for each input to
achieve the zero-error solution.

3.3.2 Experimental Procedure

Six groups of three subjects participated in this study under an IRB-approved protocol. Volunteers
were recruited from email solicitation and a convenience sample of graduate programs at MIT and
were not paid for their efforts. Subjects were predominately male (72.2%) and 25–29 years of age
(50.0%) with more college education than work experience in technical fields. Most subjects had
never interacted with each other in the past (47.2% of pairs). Table 3.2 summarizes the complete
subject demographics.

Design sessions are scheduled when three volunteers are available to form ad-hoc teams. Thus,
while there is not random assignment of subjects to sessions, there is also no purposeful selection for
sessions. All experiments are conducted in university classrooms using wireless network connections.
At the start of the session subjects are assigned a color (red, green, or blue) and are seated on one
side of a four-seat rectangular designer table with the fourth seat reserved for the administrator.
The table is arranged such that each computer display is only visible to the individual seated at
the corresponding seat.

Each experimental session is conducted using a standard procedure. Participants may exit
the study at any point, however no such events occurred. A scripted presentation introduces the
experimental objectives of studying collaborative design in coupled problems using software-assisted
tools and issues consent forms and a questionnaire to all subjects. Next, a series of five training tasks
introduce subjects to the software and design process. The training tasks are identical in structure
to experimental tasks and include three individual tasks (in parallel) with one uncoupled, two
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Table 3.2: Collaborative design subject demographics in six sessions

Category Value Count (%)

Gender Male 13 72.2

Female 5 27.8

Age 18–24 6 33.3

25–29 9 50.0

30–34 2 11.1

35–39 1 5.6

40–49 0 0.0

50+ 0 0.0

Years of college
education in a
technical field

0 0 0.0

1–2 0 0.0

3–4 1 5.6

5–6 6 33.3

7–8 7 38.9

9+ 4 22.2

Category Value Count (%)

Years of professional
work experience in a
technical field

0 5 27.8

1–2 10 55.6

3–4 1 5.6

5–6 0 0.0

7–8 1 5.6

9+ 1 5.6

Frequency of past
interactions with
other subjects

Never 17 47.2

Once 2 5.6

Rarely 9 25.0

Monthly 4 11.1

Weekly 4 11.1

Daily 0 0.0

uncoupled, and two coupled variables and two team tasks with three uncoupled and three coupled
variables. While completing the training tasks the administrator explains the software interface,
design objectives, and communications limitations of verbal conversation and/or gestures. The five
training tasks take approximately 15 minutes to complete.

After completing the training design tasks, the 24 experimental design tasks are conducted
in randomized order with a constraint that no coupled four-variable design problems (tasks 6,
10, and 14) can occur within the first ten tasks. This constraint acknowledges learning effects
to avoid conditions observed in pilot sessions where some subjects could not solve large design
problems early in the session. There is no time limit on solving each task, though participants
are instructed the expected time to complete all 24 tasks is 60 minutes. During the experimental
tasks, all designer input modifications are automatically logged to file for post-processing and a
screen recording program captures the administrator’s display and records audio. After each task
the subjects are allowed time before the next task begins, which is manually controlled by the
administrator. Finally, following completion of the final task, the participants are issued a second
questionnaire.

3.3.3 Limitations and Threats to Validity

The study design incorporates several limitations which introduce threats to the validity of results.
First, the decision to include unique design tasks for each session potentially introduces additional
variance in the results. By virtue of the random generation of M matrices and y? targets, some
tasks may be easier to solve in some sessions than others. Generally, if coupling factors are close
to zero, the problems are less coupled and easier to solve. While using the same set of tasks across
all sessions would reduce this error, it also would introduce a wider bias to the specific set of tasks
selected for all sessions.
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The restriction preventing the four-variable design tasks within the first ten tasks likely biases
the results due to learning effects. While a practical consideration due to limited time for training,
the impact of only completing the most difficult tasks in the second half of the study almost certainly
causes the time to complete these tasks to be biased low. More broadly, the learning effect is also
expected for other tasks. While the results from a particular session are subject to learning effects,
the results across sessions are mitigated by the randomized task ordering.

The pair tasks (tasks 7–11) are imperfect in a three-subject session. Task 7 studies an un-
coupled pair design task, however a third designer simultaneously completes an independent task.
Tasks 8–10 provide a blank interface for the third designer. In both cases, there are likely bias
effects of having the third subject in the room and/or completing an independent task, if only the
communication required to establish the third designer is not a participant in the task at hand.
One would expect the time to complete these tasks to be biased high.

Finally, there are limitations to the generalizability of results. As previously discussed, the
surrogate design task is simplified to provide experimental control. Real design tasks are likely
non-linear, much larger (more variables), context-rich, and may have no or many solutions. Ad-hoc
team formation is also limited as real design tasks include specialized designers who may have
significant working experience together. The selection frame of graduate students is somewhat
limited as few have significant professional work experience. This effect is somewhat limited,
however, by significant experience with technical problems. There may also be selection bias of the
volunteers responding to email and convenience solicitation.

3.4 Results and Analysis

Table 3.3 summarizes raw results from the experimental sessions. Appendix A provides detailed
raw results from each task. A few data points were removed from the study. In two sessions, one
replication of task 6 was eliminated to meet scheduled time constraints. This may bias results due
to selection effects, but is moderated by the large number of samples retained. In another session,
task 3 was removed due to network latency issues experienced during the task. This is not expected
to have a large impact on the results.

Figure 3-5 illustrates data from a typical coupled individual design problem (task 4). Each
designer controls two inputs and has two output objectives. Times are relative to the first input
change for each designer such that all start at t = 0. Note the red designer uses large input
changes (page-up, page-down key presses) compared to the green and blue designers (arrow key
presses). The “initial input overshoot” behavior observed in the red and green designers is common
for coupled problems. The error plots below are post-processed using the Euclidean norm of the
difference between output and target vectors to illustrate progress towards finding the solution.

Figure 3-6 illustrates data from a typical coupled triad design problem (task 14). Here, the red
designer controls two inputs and outputs while the other designers only control one. The “one factor
at a time” process of changing inputs is common in team tasks, especially while rotating between
each designer’s inputs. Gaps in changes, e.g. around 400 seconds, correspond to team discussion.
The error plot at the bottom is post-processed using the Euclidean norm of the difference between
output and target vector. It illustrates initial progress, followed by regression (often as designers
reset their inputs to initial conditions), followed by a slow iteration to a valid solution.
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Figure 3-5: Typical input and output data for solving a coupled 2 × 2 individual design task (Task 4).
Each designer (red, green, blue) has two inputs to achieve two target outputs. Times are relative to the time
of the first input change for each designer. Computed zero-error solution values are shown in gray lines.
Vertical lines show when a valid solution was achieved.
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Figure 3-6: Typical input and output data for solving a coupled 4 × 4 triad design task (Task 14). Times
are relative to the time of the first input change. Computed zero-error solution values are shown in gray
lines. Error data is post-processed using a standard distance norm.
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Table 3.3: Summary of raw experimental results

Task j n N
Coupled (C) or Samples Raw Percentile Times (s)

Variance (s2)
Uncoupled (U) Retained Removed 25th Median 75th

1 1 3 U 18 0 12.3 15.1 20.1 57.6

2 1 4 U 18 0 11.5 16.2 26.0 103.4

3 1 6 U 15 3 25.3 33.1 46.3 151.3

4 1 2 C 36 0 9.6 14.4 21.0 76.7

5 1 3 C 36 0 32.0 42.9 58.9 1755.8

6 1 4 C 30 6 72.1 125.5 165.7 5713.3

Subtotal Individual 153 9 162.7 247.2 337.9 7858.2

7 2 3 U 18 0 29.4 34.2 45.0 123.0

8 2 2 C 18 0 21.1 30.6 54.5 345.2

9 2 3 C 18 0 91.4 127.8 228.7 12368.1

10 2 4 C 6 0 114.2 270.5 374.7 21084.3

11 3 3 U 12 0 30.2 39.1 64.0 465.5

12 3 6 U 6 0 73.9 99.9 130.8 1277.8

13 3 3 C 6 0 123.6 297.0 530.8 63580.9

14 3 4 C 6 0 167.3 641.8 792.3 114946.3

Subtotal Team 90 0 651.1 1540.9 2220.8 214191.1

3.4.1 Normalization Procedure

Raw results exhibit large variation in individual and team performance to solve similar tasks. A
portion of the variance may arise from differing abilities to solve the surrogate design task which is
not the subject of this study. A normalization procedure is applied in the analysis to moderate this
effect of baseline ability. It assumes each unit (individual or group) has some inherent capability
C which linearly scales the completion time to a normalized time. A value C < 1 indicates inferior
performance compared to others and a value C > 1 indicates superior performance. Two procedures
are discussed with discussion to their relative strengths and weaknesses.

Procedure 1: Single Task Type

The first normalization procedure defines a capability factor Ci based on a unit of analysis i’s
completion time across tasks Ji and replications Kij compared to the median task completion time
t̄j across the same set of tasks and replications for all comparable units. Units of analysis include
individuals (for n = 1 tasks) and teams (for n > 1 tasks). The normalized task completion time
t′ijk for unit i, task j, and replication k is defined by

t′ijk = tijk · Ci (3.13)
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where

Ci =

∑
j∈Ji

∑
k∈Kij t̄j∑

j∈Ji
∑

k∈Kij tijk
(3.14)

and
t̄j = medianik(tijk). (3.15)

This formulation can accommodate missing or removed data points as the j index iterates across
the completed set of design tasks Ji and the k index iterates across the completed set of replications
Kij for unit i and task j.

Although it is possible to define units for individuals, pairs, and triads, this approach is not taken
due to potential bias and over-fitting. As the pair and triad tasks are conducted in a similar setting
with potential confounding factors, the two units are coalesced into the group unit of analysis.
Future studies could study these units with more control to potentially reduce variance in these
tasks. In particular, this approach require additional replications with a pair of individuals.

This normalization procedure is biased towards longer-duration tasks. An alternative metric
definition in Eq. 3.16 has no bias to task duration, however it also conflicts with the with the
assumption that capability linearly scales the magnitude of task completion time. In other words,
the capability effect is most visible during longer tasks and the metric should capture this effect.

C ′i =

∑
j∈Ji

∑
k∈Kij 1∑

j∈Ji
∑

k∈Kij tijk/t̄j
(3.16)

Finally, this procedure differs from Hirschi and Frey (2002) which normalizes task times by the
time to complete one particular N = 2 coupled task solved at a random point during the study.
Their approach has two main limitations. First, it amplifies noise in a single data point from
an individual’s task completion time which may have considerable variance. Second, it produces
a small signal by relying on a relatively simple task with a short task duration. The proposed
procedures use the relatively large contribution of long-duration tasks for a stronger signal and
leverage all available data points to reduce noise.

Figure 3-7 summarizes the normalization factors computed using procedure 1 which are detailed
in Appendix A. Individual capability factors range from 0.61 to 1.57 with a median of 0.81. Team
capability factors range from 0.78 to 1.45 with a median of 0.90. A summary of the normalized
completion times is shown in Table 3.4.

Procedure 2: Multiple Task Types

Recognizing that inherent capability may vary across different task types, procedure 2 adds an
additional constraint on the set of tasks Jim to restrict to a task type m for coupled and uncoupled
tasks. For example, the uncoupled factor may measure the unit’s capability of using the computer
interface while the coupled factor may measure the unit’s capability of solving the more difficult
tasks. Thus, for each unit i there are two normalization factors: one for coupled tasks (Ci,C) and
one for uncoupled tasks (Ci,U ). All equations remain the same except substituting Jim for Ji in
Eq. 3.14.

Figure 3-8 summarizes the normalization factors computed using procedure 2 which are detailed
in Appendix A. Individual coupled factors range from 0.62 to 1.64 with a median of 0.86. Individual
uncoupled factors range from 0.48 to 1.98 with a median of 0.87. Team coupled factors range from
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Figure 3-7: Box plot of individual and team capability factors Ci using normalization procedure 1. Boxes
bound the first and third quartiles and whiskers bound extremes within 1.5 times the interquartile range.

Table 3.4: Summary of normalized experimental results using procedure 1

Task j n N
Coupled / Normalized Percentile Times (s)

Variance (s2)
Relative

Uncoupled 25th Median 75th Variance γj

1 1 3 U 12.1 14.8 20.0 32.5 0.56

2 1 4 U 12.2 15.7 21.0 69.8 0.68

3 1 6 U 19.7 32.6 39.1 179.5 1.19

4 1 2 C 8.8 14.4 21.9 73.6 0.96

5 1 3 C 27.9 42.1 57.3 1235.1 0.70

6 1 4 C 75.1 100.3 140.3 2312.1 0.40

Subtotal Individual 155.8 219.9 299.5 3902.7 0.50†

7 2 3 U 26.2 38.0 42.2 111.4 0.91

8 2 2 C 19.1 29.0 44.3 486.2 1.41

9 2 3 C 82.2 139.0 185.0 12494.6 1.01

10 2 4 C 146.9 229.0 360.2 14656.3 0.70

11 3 3 U 28.6 36.0 60.8 921.9 1.98

12 3 6 U 59.9 97.5 143.1 2836.7 2.22

13 3 3 C 131.5 292.5 565.0 60462.5 0.95

14 3 4 C 232.1 564.4 645.2 56275.5 0.49

Subtotal Team 726.5 1425.5 2045.9 148245.2 0.69†

† Relative to raw subtotal variance



3.4. RESULTS AND ANALYSIS 79

0

0.5

1

1.5

2

Indiv. Coupled Indiv. Uncoupled Team Coupled Team Uncoupled
Unit and Task Type

N
or

m
al

iz
at

io
n 

Fa
ct

or

Figure 3-8: Box plot of individual and team capability factors Cim using normalization procedure 2. Boxes
bound the first and third quartiles and whiskers bound extremes within 1.5 times the interquartile range.
Gray lines connect values of specific individuals and teams.

0.76 to 1.67 with a median of 0.89. Team uncoupled factors range from 0.77 to 1.34 with a median
of 0.92. As illustrated by the gray lines, there is little correlation between a unit’s coupled and
uncoupled factor, suggesting it is a valid approach. A summary of the normalized times is shown
in Table 3.5.

Comparison of Normalized Results

Normalization attempts to reduce unwanted variance, specifically that arising from differences in
inherent capabilities. The relative variance metric γj is defined in Eq. 3.17 to compare the variance
of task j times under a normalization procedure to that of the raw results. A desirable value of
γj < 1 indicates the normalization reduced variance. Relative variance metrics are illustrated in
Tables 3.4 and 3.5.

γj =
varik(t

′
ijk)

varik(tijk)
(3.17)

Normalization procedure 1 reduces the sum of individual design task variances to 50% of the
raw value. All except task 3 experience a reduction in variance, with the largest decrease in task
6 to 40% of the raw value. The procedure also reduces the sum of team design task variances to
69%. Four tasks experience a reduction in variance with the largest decrease in task 14 to 49%.
Four other tasks experience an increase in variance. Two tasks (11 and 12) in particular increase
by 98% and 122% respectively. The results suggest normalization procedure 1 does not adequately
capture effects governing these tasks.

Normalization procedure 2 reduces the sum of individual design task variances to 44% of the
raw value. All tasks experience a reduction in variance, with large decreases in tasks 1, 2, and
3 to 12%, 16%, and 15% respectively. The procedure also reduces the sum of team design task
variances to 66%. Five tasks experience a reduction in variance with the largest decrease in task
12 to 30%. Three other tasks experience an increase in variance. Task 8 in particular experiences
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Table 3.5: Summary of normalized experimental results using procedure 2

Task j n N
Coupled / Normalized Percentile Times (s)

Variance (s2)
Relative

Uncoupled 25th Median 75th Variance γj

1 1 3 U 13.5 15.2 17.3 7.1 0.12

2 1 4 U 14.1 16.4 20.2 16.4 0.16

3 1 6 U 28.0 31.1 36.8 23.0 0.15

4 1 2 C 8.9 14.7 21.7 76.1 0.99

5 1 3 C 27.2 44.2 60.8 1217.6 0.69

6 1 4 C 83.0 99.0 134.3 2130.9 0.37

Subtotal Individual 174.8 220.7 291.1 3471.1 0.44†

7 2 3 U 26.9 31.0 45.9 156.7 1.27

8 2 2 C 19.2 29.7 43.1 603.9 1.75

9 2 3 C 87.9 147.7 184.6 13440.1 1.09

10 2 4 C 149.1 238.8 357.6 14924.5 0.71

11 3 3 U 28.4 39.2 56.3 308.5 0.66

12 3 6 U 74.9 90.9 105.8 383.2 0.30

13 3 3 C 135.9 294.9 614.5 62148.2 0.98

14 3 4 C 263.3 560.4 622.3 48514.8 0.42

Subtotal Team 785.6 1432.6 2030.1 140479.9 0.66†

† Relative to raw subtotal variance
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Table 3.6: Summary of uncoupled individual task regression model results

Variable
Model U-I-1

Coef. SE t stat.

Constant -3.43 2.16 -1.59

N 5.71 0.49 11.66**

d.f. 49

R2 0.74

F stat. 136.03**

* p < 0.05
** p < 0.01

a 75% increase.

In comparing the two procedures, procedure 2 produces lower variances on a whole for both
individual and group tasks. All individual tasks under procedure 2 have lower variances than those
in procedure 1, but only three team tasks have lower variance compared to five with higher variance.
The magnitude of changes, however, are more significant for tasks with lower variance than those
with higher variance to establish preference for procedure 2.

Finally, one must justify the value of using twice as many parameters in procedure 2 to avoid
over-fitting. Coupled and uncoupled tasks require fundamentally different solution modes. Un-
coupled tasks are largely an exercise in computer-human interaction where coupled tasks are a
mentally-challenging activity. The results show benefit of this distinction as all three individual
uncoupled tasks and two of the three group uncoupled tasks experienced large reductions in vari-
ance under procedure 2 as compared to procedure 1. Based on these advantages, the remainder of
the analysis applies procedure 2 to normalize task times.

3.4.2 Uncoupled Task Analysis

This section analyzes uncoupled tasks across individual, pairs, and triads of designers. Hirschi and
Frey (2002) report the time to complete individual uncoupled tasks varies linearly in the problem
size N . This hypothesis is expressed in Model U-I-1 with the equation

t′(N) = b0 + b1 ·N. (3.18)

Table 3.6 summarizes a linear regression analysis of Model U-I-1, finding the b1 parameter to be
highly significant, t(49) = 11.66, p < 0.001. Its value of 5.71 can be interpreted as the additional
normalized time to complete a task with an extra uncoupled variable. The constant factor b0
is small and not significant, t(49) = −1.59, p = 0.118. Graphical inspection of model residuals
indicate they are representative of a normal distribution. The overall model is highly significant,
F (1, 49) = 136.03, p < 0.001, explaining about 74% of the variance in the data. Figure 3-9 overlays
the regression model on a box plot of individual uncoupled task times to illustrate goodness of fit.

Figure 3-10 illustrates box plots of pair and triad tasks. Regression analysis is not performed
for pairs and triads alone due to the limited data points (two and one value of N , respectively).

Uncoupled task completion time is expected to be a function of problem size N and team size
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Figure 3-9: Box plot of normalized task times for uncoupled individual tasks with overlay of results from
Model U-I-1. Boxes bound the first and third quartiles and whiskers bound extremes within 1.5 times the
interquartile range.
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whiskers bound extremes within 1.5 times the interquartile range.
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Figure 3-12: Contour plot of normalized un-
coupled task times in seconds under Models U-1
and U-2. Note log-scale contours.

n. Model U-1 hypothesizes a functional form of

t′(N,n) = b0 + b1N + b2n+ b3N · n (3.19)

where the interaction term coefficient b3 is interpreted as the effect of team size amplifying the
challenge of problem size. Table 3.7 summarizes a linear regression analysis of the hypothesized
model, finding the b3 interaction parameter significant, t(83) = 4.33, p < 0.001. Graphical inspec-
tion of the residuals in Fig. 3-11 suggest they do not follow a normal distribution, thus limiting
the use of Model U-1 despite its fairly good fit.

As an attempt to improve the residual distribution, Model U-2 log-transforms the task comple-
tion times to hypothesize a functional form of

ln
(
t′(N,n)

)
= b0 + b1N + b2n+ b3N · n

⇐⇒ t′(N,n) = exp (b0 + b1N + b2n+ b3N · n) . (3.20)

While several coefficients are again significant in Table 3.7, graphical inspection of the residuals
still suggest a non-normal distribution.

Model U-3 hypothesizes an alternative functional form using inverse team size 1/n:

ln
(
t′(N,n)

)
= b0 + b1N + b2

1

n
+ b3

N

n

⇐⇒ t′(N,n) = exp

(
b0 + b1N + b2

1

n
+ b3

N

n

)
. (3.21)

By virtue of the log transform, the inverse team size factor with a negative coefficient produces an
upper bound on task time with increasing team size. Regression analysis finds coefficients b0, b1,
and b2 to be highly significant, t(83) = 13.96, p < 0.001, t(83) = 3.78, p < 0.001, t(83) = −5.03, p <
0.001 respectively. The interaction coefficient b3 is small and not significant t(83) = 0.10, p = 0.92.
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Table 3.7: Summary of uncoupled task regression model results

Variable
Model U-1 Model U-2

Coef. SE t stat. Coef. SE t stat.

Constant -1.89 8.86 -0.21 1.47 0.25 5.97**

N 0.48 2.03 0.24 0.23 0.06 4.12**

n 1.73 4.56 0.38 0.59 0.13 4.67**

N · n 4.63 1.07 4.33** -0.01 0.03 -0.28

d.f. 83 83

R2 0.76 0.74

F stat. 88.94** 78.35**

* p < 0.05
** p < 0.01

Table 3.8: Summary of uncoupled task regression model results (continued)

Variable
Model U-3 Model U-4

Coef. SE t stat. Coef. SE t stat.

Constant 3.54 0.25 13.96** 3.52 0.11 32.04**

N 0.24 0.06 3.78** 0.25 0.02 10.40**

1/n -1.64 0.33 -5.03** -1.61 0.10 -15.97**

N/n 0.01 0.08 0.10

d.f. 83 84

R2 0.78 0.78

F stat. 99.03** 150.32**

* p < 0.05
** p < 0.01

Graphical inspection of the residuals suggest a normal distribution. The overall model is highly
significant, F (2, 83) = 99.03, p < 0.001, explaining about 78% of the variance in task times.

Model U-4 removes the insignificant interaction parameter to hypothesize a functional form of

ln
(
t′(N,n)

)
= b0 + b1N + b2

1

n
⇐⇒ t′(N,n) = exp

(
b0 + b1N + b2

1

n

)
. (3.22)

Regression analysis finds all three coefficients b0, b1, b2 to be highly significant, t(84) = 32.04, p <
0.001, t(84) = 10.40, p < 0.001, t(84) = −15.97, p < 0.001 respectively. Graphical inspection of
the residuals suggest a normal distribution. The overall model is also highly significant, F (2, 84) =
150.32, p < 0.001, explaining about 78% of task time variance. Figure 3-13 illustrates Models U-3
and U-4 as a contour plot of expected task completion times.
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Figure 3-13: Contour plot of normalized uncoupled task times in seconds under Models U-3 and U-4. Note
log-scale contours.

3.4.3 Coupled Task Analysis

This section analyzes coupled tasks across individual, pairs, and triads of designers. Hirschi and
Frey (2002) report the time to complete individual coupled tasks varies geometrically in the problem
size N . This hypothesis is expressed in Model C-I-1 with the equation

ln
(
t′(N)

)
= b0 + b1 ·N ⇐⇒ t′(N) = exp (b0 + b1 ·N) . (3.23)

Table 3.9 summarizes a linear regression analysis of Model C-I-1, finding both the b0 and b1 pa-
rameters to be highly significant, t(100) = 2.90, p = 0.005 and t(100) = 15.71, p < 0.001. The value
eb1 = 2.81 can be interpreted as the multiplicative factor on normalized time to complete a task with
an additional coupled variable. Graphical inspection of model residuals indicate they are representa-
tive of a normal distribution. The overall model is highly significant, F (1, 100) = 246.89, p < 0.001,
explaining about 71% of the variance in the data. Figure 3-9 overlays the regression model on a
box plot of individual uncoupled task times, illustrating the goodness of fit.

Pair tasks are analyzed using a similar regression analysis as in the validation of coupled in-
dividual tasks. Model C-P-1 uses the functional form in Eq. 3.23. Table 3.9 summarizes the
regression analysis. Both model parameters b0 and b1 are highly significant, t(40) = 3.85, p < 0.001
and t(40) = 8.15, p < 0.001 respectively. Graphical inspection of model residuals are representative
of a normal distribution. The overall model is also highly significant, F (1, 37) = 66.35, p < 0.001,
explaining about 62% of the variance in the data. Figure 3-15 overlays the regression model on a
box plot of the coupled pair task times, illustrating the goodness of fit.

Regression analysis was not performed for the coupled triad tasks due to the limited data points
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Figure 3-14: Box plot of normalized task times for coupled individual tasks with overlay of results from
Model C-I-1. Boxes bound the first and third quartiles and whiskers bound extremes within 1.5 times the
interquartile range.

Table 3.9: Summary of coupled individual and pair task regression model results

Variable
Model C-I-1 Model C-P-1

Coef. SE t stat. Coef. SE t stat.

Constant 0.58 0.20 2.90** 1.43 0.37 3.85**

N 1.03 0.07 15.71** 1.08 0.13 8.15**

d.f. 100 40

R2 0.71 0.62

F stat. 246.89** 66.35**

* p < 0.05
** p < 0.01
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Figure 3-15: Box plot of normalized task times for coupled pair tasks with overlay of results from Model C-
P-1. Boxes bound the first and third quartiles and whiskers bound extremes within 1.5 times the interquartile
range.

(two values of N), however Fig. 3-16 illustrates the data in a box plot.

Coupled task completion time is generally expected to be a function of problem size N and
team size n. Model C-1 hypothesizes a functional form of

ln t′(N,n) = b0 + b1N + b2n+ b3(N · n)

⇐⇒ t′(N,n) = exp (b0 + b1N + b2n+ b3(N · n)) (3.24)

where the interaction coefficient b3 is interpreted as team size amplifying the effect of problem
size. Table 3.10 summarizes the regression analysis. Coefficients b1 and b2 are highly significant,
t(152) = 7.99, p < 0.001 and t(152) = 4.01, p < 0.001 respectively. The constant and interaction
coefficients are not significant, t(152) = −1.63, p = 0.106, t(152) = −1.30, p = 0.194 respectively.
Graphical inspection of model residuals indicate they are representative of a normal distribution.
The overall model is highly significant, F (3, 152) = 159.18, p < 0.001, explaining about 76% of the
variance in the task times.

Model C-2 removes the insignificant interaction parameter to hypothesize a functional form of

ln t′(N,n) = b0 + b1N + b2n ⇐⇒ t′(N,n) = exp (b0 + b1N + b2n) . (3.25)

Coefficients b1 and b2 are highly significant, t(153) = 18.40, p < 0.001 and t(153) = 13.46, p < 0.001
respectively. Graphical inspection of model residuals indicate they are representative of a normal
distribution. The overall model is highly significant, F (2, 153) = 236.84, p < 0.001, explaining
about 76% of the variance in the task times. Figure 3-17 illustrates a contour plot of expected task
completion times comparing Models C-1 and C-2.
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Figure 3-16: Box plot of normalized task times with the regression model for coupled triad tasks. Boxes
bound the first and third quartiles and whiskers bound extremes within 1.5 times the interquartile range.

Table 3.10: Summary of coupled task regression model results

Variable
Model C-1 Model C-2

Coef. SE t stat. Coef. SE t stat.

Constant -0.77 0.47 -1.63 -0.21 0.20 -1.05

N 1.18 0.15 7.99** 1.00 0.05 18.40**

n 1.29 0.32 4.01** 0.89 0.07 13.46**

N · n -0.13 0.10-1.30

d.f. 152 153

R2 0.76 0.76

F stat. 159.18** 236.84**

* p < 0.05
** p < 0.01
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Figure 3-17: Contour plot of normalized cou-
pled task times under Models C-1 and C-2. Note
log-scale contours.
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Figure 3-18: Contour plot of normalized cou-
pled task times under Models C-3 and C-4. Note
log-scale contours.

As an attempt to adopt the form of Model U-3, Model C-3 hypothesizes a functional form of

ln t′(N,n) = b0 + b1N + b2
1

n
+ b3

N

n

⇐⇒ t′(N,n) = exp

(
b0 + b1N + b2

1

n
+ b3

N

n

)
. (3.26)

Table 3.11 summarizes the regression analysis. Coefficients b0, b1, and b2 are highly significant,
t(152) = 3.95, p < 0.001, t(152) = 5.46, p < 0.001, and t(152) = −2.65, p = 0.009 respectively.
Graphical inspection of model residuals indicate they are representative of a normal distribution.
The overall model is highly significant, F (3, 152) = 156.04, p < 0.001, explaining about 75% of the
variance in the task times.

Model C-4 removes the insignificant interaction parameter to hypothesize a functional form of

ln t′(N,n) = b0 + b1N + b2
1

n
⇐⇒ t′(N,n) = exp

(
b0 + b1N + b2

1

n

)
. (3.27)

All coefficients b0, b1, and b2 are highly significant, t(153) = 11.67, p < 0.001, t(153) = 17.89, p <
0.001, and t(153) = −12.14, p < 0.001 respectively. Graphical inspection of model residuals indicate
they are representative of a normal distribution. The overall model is highly significant, F (2, 153) =
235.38, p < 0.001, explaining about 75% of the variance in the task times. Figure 3-18 shows a
contour plot of task completion times comparing Models C-3 and C-4.

3.5 Discussion

This section discusses the results of the regression analysis in the context of past work and considers
implications of the results in collaborative design. For convenience, Table 3.12 summarizes the
results for each of the regression models analyzed in the previous section.
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Table 3.11: Summary of coupled task regression model results (continued)

Variable
Model C-3 Model C-4

Coef. SE t stat. Coef. SE t stat.

Constant 2.48 0.63 3.95** 2.67 0.23 11.67**

N 1.11 0.20 5.46** 1.05 0.06 17.89**

1/n -1.92 0.72 -2.65** -2.14 0.18 -12.14**

N/n -0.08 0.23 -0.32

d.f. 152 153

R2 0.75 0.75

F stat. 156.04** 235.38**

* p < 0.05
** p < 0.01

Table 3.12: Summary of regression models results

Model Functional Form

U-I-1 t′(N) = −3.42 + 5.71N

U-1† t′(N,n) = −1.89 + 0.48N + 1.73n+ 4.63N · n
U-2† t′(N,n) = exp (1.47 + 0.23N + 0.59n− 0.01N · n)

U-3 t′(N,n) = exp (3.54 + 0.24N − 1.64/n+ 0.01N/n)

U-4 t′(N,n) = exp (3.52 + 0.25N − 1.61/n)

C-I-1 t′(N) = exp (0.58 + 1.03N)

C-P-1 t′(N) = exp (1.43 + 1.08N)

C-1 t′(N,n) = exp (−0.77 + 1.18N + 1.29n− 0.13N · n)

C-2 t′(N,n) = exp (−0.21 + 1.00N + 0.89n)

C-3 t′(N,n) = exp (2.48 + 1.11N − 1.92/n− 0.08N/n)

C-4 t′(N,n) = exp (2.67 + 1.05N − 2.14/n)

† Non-normal distribution of model residuals
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Figure 3-19: Comparison of coupled individual task model scaling factors: 3.4 from Hirschi and Frey (2002)
and 2.8 in this study. Notional constants C1 < C2 illustrate potential differences in short-duration tasks.

3.5.1 Validation

Both the uncoupled and coupled individual task data fit the functional forms of models hypothesized
by Hirschi and Frey (2002) in Models U-I-1 and C-I-1, however there are potentially differences in
coefficient values. The linear factor for uncoupled tasks was not previously published, though the
difference in time normalization would otherwise invalidate any comparison. The geometric factor
for coupled tasks was previously reported as 3.4, but found to be e1.03 = 2.80 in this study. As a
multiplicative factor, this should be robust to normalization procedures, but even a 95% confidence
interval of [2.47, 3.20] excludes the previous value. This suggests two possibilities as illustrated in
Fig. 3-19:

1. the longest-duration tasks take a comparatively shorter time to complete, and/or

2. the shortest-duration tasks take a comparatively longer time to complete.

Given the changes to the user interface to eliminate a “Refresh Plot” button-click to update val-
ues, it is likely the longest-duration tasks are comparatively easier in this study. Learning effects
resulting from the randomized task order restriction previously discussed may also contribute to
lower durations for the most complex tasks. It is also possible, but not well-supported from ob-
servation, that having multiple designers in the same environment may lengthen the time to solve
shorter-duration tasks through distraction. The difference in coefficient value suggests it may be
more difficult than expected to isolate a natural scaling law for solving design problems from the
interface and context used in experimental studies and the previous results are also likely a function
of the selected tool and user interface.

3.5.2 Uncoupled Tasks

Model U-1 hypothesizes the time to complete uncoupled tasks varies linearly with the problem
size N and team size n. A regression model find significant a positive interaction effect between
problem size N and team size n, however the results should be approached cautiously as the model



92 CHAPTER 3. COLLABORATIVE DESIGN IN COUPLED PROBLEMS

residuals do not follow a normal distribution. Combining results from Models U-1 and U-I-1, an
additional uncoupled variable requires about 5 seconds of task duration. Model U-2 log-transforms
task duration to hypothesize a geometric scaling with problem size N and team size n, but again
results in non-normal residuals. At a minimum, Models U-1 and U-2 suggest team size increases
task time which is supported by observation of “one factor at a time” methods to find solutions in
a sequential process with communication overhead.

Models U-3 and U-4 substitute team size n for inverse team size 1/n to produce results with
normal residuals and significant contributions for problem size N and inverse team size 1/n on
(log) task duration. The problem size multiplicative scaling factor in Model U-4 is e0.25 = 1.28, i.e.
each additional variable increases the completion time by 28%. As the team size grows, the task
time changes by a multiplier

t′(N,n+ 1)

t′(N,n)
= exp

(
1.61

n
− 1.61

n+ 1

)
(3.28)

which decreases with increasing team size. For example, from n = 1 to n = 2 is an increase of
124% and from n = 2 to n = 3 is an increase of 31%. The lack of significant interaction term in
Model U-2 suggests independence in contributions from technical complexity (changes in N) and
social complexity (changes in n).

Results of Models U-3 and U-4 are limited. In particular, their form conflicts with Model U-I-1
for individual tasks. One would not expect task time to increase geometrically in uncoupled tasks,
especially if considering only a single designer. Over the range of tasks considered, however, the
problem size growth factor is mostly linear for small values of N as shown in the Taylor series
expansion of Model U-4 at N = 2 for n = 1:

t′(N,n = 1) = e1.91+0.25N ≈ 11.13 + 2.78(N − 2) + 0.34(N − 2)2 + 0.03(N − 2)3 +O(N4) (3.29)

It is possible with additional data points the linear form of Model U-1 may be a better fit. In
reality, there are likely two components to uncoupled tasks. The first component corresponds to
the operational steps of finding a solution and is likely linear in the problem size as found in the
individual task analysis. The second component corresponds to communication overhead in team
tasks and is likely super-linear in the problem size, possibly geometric as found in the team task
analysis. More data is required to evaluate this hypothesis in detail to incorporate a wider range
of problem and team sizes.

3.5.3 Coupled Tasks

Model C-P-1 applies the form of Model C-I-1 to a coupled pair tasks. It produces a similar mul-
tiplicative scaling factor e1.08 = 2.94 (compared to e1.03 = 2.80 for C-I-1). The models differ
substantially in the constant term which is larger for pair tasks, indicating a communication “over-
head” factor of e1.43 = 4.2 compared to e0.58 = 1.8 for individual tasks.

Models C-1 and C-2 extend the model to hypothesize the time to complete coupled tasks varies
geometrically with the problem size N and team size n. They find positive effects for problem size
N and team size n and a small negative interaction from N ·n removed in Model C-2. The problem
size multiplicative scaling factor in Model C-2, e1.00 = 2.72, is similar to that found for individual
and pair tasks. The team size multiplicative scaling factor in Model C-2 is of similar magnitude,
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e0.89 = 2.44. The predicted form for individual and pair tasks under Model C-2

t′(N,n = 1) = exp (0.68 + 1.00N) (3.30)

t′(N,n = 2) = exp (1.57 + 1.00N) (3.31)

are similar to the results from Models C-I-1 and C-P-1.

Models C-3 and C-4 apply the uncoupled task model form to hypothesize the time to complete
coupled tasks varies geometrically with the problem size N and inverse team size 1/n. They find a
positive effect for problem size N , a negative effect for inverse team size 1/n and a small negative
interaction from N/n removed in Model C-4. The problem size multiplicative scaling factor in
Model C-4, e1.05 = 2.86, is similar to that in Model C-2 and much larger than that in Model U-3
(e0.25 = 1.28). The team size multiplicative scaling factor in Model C-4,

t′(N,n+ 1)

t′(N,n)
= exp

(
2.14

n
− 2.14

n+ 1

)
, (3.32)

is also larger than that in Model U-3. For example, from n = 1 to n = 2 is in increase of 192% and
from n = 2 to n = 3 is an increase of 43% (compared to 125% and 31% respectively).

While there are significant theoretical differences between Models C-2 and C-4, they cannot be
distinguished in this study due to limited data points. Future work should study a wider range
of design tasks involving larger problems and team sizes to adequately evaluate the model. In
particular, it is a practical concern whether time scales geometrically with the team size n or with
the inverse team size 1/n. The former increases without bound while the latter converges to an
upper bound.

3.5.4 Implications for Collaborative Design

The effects of problem size and team size can be isolated as independent factors for both types
of tasks due to the lack of significant interaction terms in regression model results. Figure 3-20
shows the effect of problem size on task duration normalized to N = 2. One would expect real-
world design tasks to lie between the upper- and lower-bounds of fully-coupled and fully-uncoupled
problems studied in this experiment. Efforts to reduce technical complexity may also mitigate the
geometric contribution of problem size similar to the observed difference in scaling factor compared
to Hirschi and Frey (2002) possibly attributed to changes in user interface. Extensions may investi-
gate centralized control over coupled problems using numerical optimization methods which could
potentially reduce the time to solve design tasks to a polynomial scale.

Figure 3-21 shows the effect of team size on task duration normalized to n = 1. Team size
factors for uncoupled and coupled tasks are similar under the barriers to collaboration included
in this experiment. The results show greater than 2× completion times for pairs as compared
to individuals. An ideal collaborative process would reduce this factor to maintain or improve
upon the efficiency of an individual designer. For example, if parallel work flows were enabled, the
time required for teams may even be lower than that of an individual. Future efforts to develop
collaborative processes may evaluate effectiveness by measuring changes to this factor.

While interaction terms between problem and team size were not significant in regression models
of completion time for both uncoupled and coupled task, the two isolated factors produce combined
effects on design cost which is a function of task duration and team size. Figure 3-22 illustrates
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Figure 3-20: Effect of problem size on normalized task duration relative to N = 2 (for coupled) or N = 3
(for uncoupled) task.
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Figure 3-21: Effect of team size on normalized task duration relative to n = 1 (individual) task.
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Figure 3-22: Effect of team size on normalized task cost (person-hours) relative to n = 1 (individual) task.

the effect of team size on design cost T ′(n,N) = n · t′(n,N) for uncoupled and coupled tasks.
Whereas Model C-4 predicts pairs take 3× the time as individuals and triads 4×, the total cost is
closer to 6× for pairs and 12× for triads. These large factors may help explain cost and schedule
overruns commonly seen in complex technically-coupled projects where both the technical and
social difficulty may be underestimated.

3.5.5 Future Work

There are several potential extensions of this study left for future work. First, one may improve
the external validity of the experimental results with revised design tasks. While the surrogate
design task in this study used a linear system of equation, any general system model could be
substituted. Non-linear, context-rich, larger, or partially-coupled system models would help im-
prove the generalizability of results to real-world design tasks. In particular, De Jong functions
(De Jong 1975) used in optimization evaluation may maintain a context-free task while introducing
non-linear models. More complex system models will warrant an objective function to avoid a
potentially difficult-to-find single zero-error solution. This will require additional practical consid-
erations such as implementing a time limit and/or local compared to global objectives. In addition
to a revised design task, a future study may also benefit from revised designer teams to include
larger, experienced, or more familiar designers. In solving partially-coupled system models, the
internal team structure becomes important to parallelize work. Also, there are some interesting re-
search opportunities supported by the distributed software tool to evaluate virtual teams compared
to in-person teams.

Next, there may be opportunities to combine the uncoupled and coupled task evaluation under
a common framework using a complexity metric. While treated as two separate classes of problems
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in this study, there are likely common underlying features which may be quantified using technical
and social complexity metrics rather than the problem size N and team size n variables used in
this analysis. One candidate is the comprehensive metric for structural complexity including graph
energy as a measure of entropy (Sinha and de Weck 2012). Its complexity metric C takes the form

C =
∑
i

αi +

∑
i

∑
j

βijAij

 γE(A) (3.33)

where αi, βij , and γ are weighting factors for the component, interactive, and architectural com-
ponents of structural complexity, A is the adjacency matrix (i.e. binary design structure matrix)
of interactions and E(A) is the graph energy of the adjacency matrix defined by E(A) =

∑
i σi

where σi is the singular value decomposition of A. Such a metric may be applied to both technical
interactions (A based on the M matrix) and social interactions (A based on the D matrix) provided
appropriate weighting factors.

Finally, a promising area of future work would study the effect of collaborative methods as
compared to the baseline case in this study having significant barriers to collaboration. For example,
sharing output values on a common display would allow uncoupled tasks to be completed in parallel.
Other numerical outputs may help designers quantitatively evaluate the effect of input changes in
complex design problems. For example, displaying the quantitative error between output and target
values, normalized to a reasonable scale, could support collaborative decision-making by building a
common mental model of “goodness.” This aligns with the “discourse group preference” phase of
the engineering collaboration via negotiation (ECN) model hypothesized by Lu et al. (2007), which
in the present study is limited to qualitative judgments.
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Chapter 4

The Infrastructure System-of-systems
(ISoS) Modeling Framework

“Here [the development of general knowledge—or theory—about how cities work] the problems
are far more difficult that in particularistic problem-solving, but here also the ultimate payoff
is much greater. Only the development of a body of dependable empirical theory about urban
processes and structures can clear the way for a massive assault on the many vexing problems
which can, without that theory, only be approached tentatively and in piecemeal fashion. Sim-
ulation is an analytic technique well adapted to the process of theory-building: stating, testing,
revising, retesting. To fail to develop the technique to its fullest potential is socially as well as
intellectually irresponsible.”

Edward Berger, Harvey Boulay, and Betty Zisk in “Simulation and the City: A Critical Overview”
(1970)

This chapter takes the first step towards designing an interoperable simulation game for infrastruc-
ture systems design by defining the infrastructure system-of-systems (ISoS) modeling framework.
The ISoS framework is designed to reduce the cost of developing decentralized simulation models
by identifying a common generic platform on which to base component models. It builds on ex-
isting literature in infrastructure modeling and simulation described in Section 4.1 to balance the
detailed network flow models used in operational optimization with aggregated system dynamics
models used for high-level systems analysis.

The ISoS framework includes two major components suitable for strategic infrastructure plan-
ning. The spatial-structural template defined in Section 4.2 specifies the simulation state, i.e.
the information required to describe infrastructure at a snapshot in time. It disaggregates in-
frastructure systems to individual elements using graph-theoretic concepts for spatial resolution.
The temporal-behavioral template defined in Section 4.3 specifies the allowable state changes for
time dynamics. Element behaviors are functionally classified and resource flows are aggregated at
locations to enable strategic analysis without exhaustive modeling.

The applicability and generality of the ISoS framework is demonstrated with four descriptive
case studies in Section 4.4. Each case study outlines a potential model instantiation to address
infrastructure planning in diverse domains. The first two cases study space systems: a retrospective
view of International Space Station assembly and resupply and a prospective view of future human
exploration on Mars. The other two cases study terrestrial infrastructure: an introspective view of
resource management in Burkina Faso and a prospective view of national infrastructure planning
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in Saudi Arabia.

4.1 Modeling Infrastructure Systems

While many single-sector models of infrastructure have been developed, the study and analysis of
infrastructure with an emphasis on interdependencies is relatively new. As discussed by Pederson
et al. (2006), events such as the Oklahoma City bombing and the Information Warfare Report by
the Defense Science Board (1996) first brought attention to the increasing reliance on information
and computer systems for managing and controlling infrastructure systems in the mid-1990s.

The President’s Commission on Critical Infrastructure Protection (PCCIP) released in 1997
specifically called for attention to infrastructure interdependencies (PCCIP 1997). Later, executive
orders established the National Infrastructure Advisory Council (NIAC), Department of Homeland
Security (DHS), and National Infrastructure Simulation and Analysis Center (NISAC) as a part-
nership between Sandia National Laboratories and Los Alamos National Laboratory to advance
modeling and simulation techniques as applied to infrastructure systems. Widespread infrastruc-
ture failures following the September 11, 2001 terrorist attack on the World Trade Center further
solidified the role of interdependencies in infrastructure analysis and planning and expanded the
initial scope of the DHS (O’Rourke 2007).

A wide range of integrated modeling approaches emerged over the past decade as a result of
these national initiatives. While most applications emphasize operational resilience and security,
some strategic-level concepts of evolution, design, and planning are also considered. The overview
provided here identifies three categories of such approaches: conceptual models, aggregated system
models, and detailed network models. The following sections describe each approach from examples
in literature and highlight concepts applicable to strategic infrastructure systems design.

4.1.1 Conceptual Models

Conceptual models help create a common understanding of factors relating to infrastructure sys-
tems. While not executable or computable as a simulation, they provide guidance through estab-
lished constructs. Although not by name, Rinaldi et al. (2001) introduces concepts of static and
dynamic dependency networks illustrated in Figure 4-1. A static network connects infrastructure
components with arcs representing one or more types of interdependencies experienced over some
time horizon. For example, a water component may require electricity for pumping from an energy
component which, in turn, may require water for cooling. The dynamic or time-expanded network
illustrates the effect of time on dependencies. Following the same example, if the water compo-
nent increases flow to meet additional demands, the first-order effect requires more electricity. A
second-order effect may further increase water demand for cooling. Such higher-order effects may
quickly encompass many coupled components with complex feedback relationships. In general, any
cycles in the static network (e.g. water to energy to water) produce a sequence of nth order effects
in the dynamic network.

Rinaldi et al. (2001) further classifies infrastructure interdependencies as physical (resource
flows), cyber (information flows), geographic (spatially proximate), and logical (other, such as
effects of control). In the previous example in Figure 4-1 there is a physical interdependency
between the water and energy components. From this perspective, interdependencies are static
attributes of pairs and sets of elements. While physical and geographic interdependencies can
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Figure 4-1: A static network (left) illustrates dependencies between infrastructure components over some
time horizon. A dynamic network (right) illustrates time-varying dependencies including nth order effects.

Table 4.1: System function classified by process and operand

Organisms Matter Energy Information Currency

Transform FO FM FE FI FC

Transport PO PM PE PI PC

Store SO SM SE SI SC

Exchange XO XM XE XI XC

Control CO CM CE CI CC

be linked to elements’ structural connectivity, cyber and logical interdependencies are based on
dynamic behaviors not represented in a spatial form.

As another perspective on interdependencies, de Weck et al. (2012, pp. 38–43) describe engi-
neering system behaviors as a functional classification consisting of a 5× 5 matrix of operands and
operations shown in Table 4.1. This classification extends a 3 × 3 matrix from van Wyk (1988)
to include exchanging and control operations and finance and organism operands representing the
broader scope of engineering systems. Systems are classified by one or more functions—for example,
a power plant is FM , FE as it transforms matter to create energy. This classification agrees with
that of Rinaldi et al. in the existence of physical (matter, energy) and cyber (information) resource
flows and some logical effect of control, however here these functions are presented as individual
element’s behaviors without distinct interdependencies.

4.1.2 Aggregated System Models

Aggregated system models represent large-scale infrastructure with simplified representations as
a top-down approach. They are often used to guide high-level decisions and policy because of
their level of abstraction and relatively few input parameters. System models are unified in a
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Table 4.2: Infrastructures and assets represented in the CIP/DSS

Critical Infrastructure Critical Infrastructure (cont.) Key Asset

Agriculture & Food Information and Telecommunications National Monuments and Icons

Water Energy Nuclear Power Plants

Public Health Transportation Dams

Emergency Services Banking and Finance Government Facilities

Government Chemical Industry & Hazardous Materials Commercial Key Assets

Defense Industrial Base Postal and Shipping

single system-of-systems model with shared state variables to capture system couplings. Two
examples of this approach use the system dynamics formalism with stock and flow variables to
model infrastructure systems (Bush et al. 2005; Min et al. 2007). System dynamics models are
represented by a system of coupled equations for rapid simulation of behaviors usable within an
optimization routine.

Bush et al. (2005) discuss the Critical Infrastructure Protection Decision Support System
(CIP/DSS) as a joint project of Argonne National Laboratory, Los Alamos National Laboratory,
and Sandia National Laboratories. The model incorporates 17 critical infrastructures and key asset
categories in Table 4.2 to provide insights for decision-making at the metropolitan level. Models
are implemented in Vensim, a system dynamics software tool, and integrated using a custom model
“linker” to assemble the unified system-of-systems model from single-sector models. The system-
of-systems model has 4482 variables, with each sector contributing between 10 (agriculture) and
802 (energy) variables.

Min et al. (2007) discuss the application of system dynamics to model national-level critical
infrastructure interdependencies. They use the ICAM Definition for Functional Modeling (IDEFØ)
technique to “help define data requirements and describe the exchange of information between
the individual simulation models.” Nonlinear optimization methods select control parameters to
maximize total economic revenue in the case of disruptions. The model includes energy production,
transmission, and distribution in regional electric power, natural gas, and petroleum infrastructure
sectors in 10 interconnection regions in the US. The economic sector includes regional residential,
commercial, and industrial consumers. The model has over 5000 variables and parameters and
application to broader system-of-systems is left for future work.

There are two key limitations for aggregated system models. First, their structure defines a
static unit of analysis, implying homogeneity of components within its boundary. For example, ca-
pacity expansion in a sector may assume simple scaling of performance from existing infrastructure
rather than discrete capital investments in potentially different technologies. Furthermore, spatial
decomposition—such as the ten interconnection regions in Min et al. (2007) or six regional natu-
ral gas stocks in Ellison (2006)—is fixed and cannot be easily modified or extended. The second
limitation corresponds to the aggregation of system-level behaviors which cannot be disaggregated
to element-level decisions. In other words, aggregated models are more oriented towards systems
analysis rather than the synthesis approach of systems design. As a result of both limitations, an
aggregated system model may address high-level questions for known systems, but cannot easily
evaluate individual element decisions in the context of the larger system.
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4.1.3 Detailed Network Models

Detailed network models represent individual infrastructure elements from a bottom-up approach.
They are often used to analyze short-term behaviors resulting from disturbances. To increase
modeling detail, this class of models use network-based or graph-theoretic representations of infras-
tructure elements. In most applications, nodes are resource production or consumption elements
and edges are infrastructure elements enabling resource flow between nodes. Network models are
particularly useful forms for linear programming (Dantzig 1963) and for algorithms to solve the
shortest path problem (Dijkstra 1959), maximum flow/minimum cost problem (Bellman 1958; Ford
1956; Edwards and Karp 1972), and multi-commodity flow problem (Hu 1963).

In the critical infrastructure modeling system (CIMS) framework, Dudenhoeffer et al. (2006)
define a node as “an entity that acts as a source, produces, consumes, or transforms a resource...”
and an edge as “a physical or virtual entity that acts as a conduit for flow for a physical quantity,
information, or influence ... [representing] a direct level of dependence.” Physical, informational,
geo-spatial, policy/procedural, and societal dependencies each have a combined structure-behavior
representation as an edge. Infrastructure system sectors are each modeled as a network layer with
cross-system interdependencies as inter-layer edges. Existing applications of CIMS are primarily
visual presentation of interdependencies in “what-if” analyses. Future applications seek to optimize
asset priorities for protection or restoration.

Zhang et al. (2005) describe a generalized transportation network (GTN) as a multi-layered
infrastructure network (MIN) consisting of auto, urban freight, and data subnetworks with inter-
dependencies related to limited transport capacity and the option to telecommute. Flow dynamics
are driven by a game-theoretic approach based on a Cournot-Nash equilibrium operationalized by
agent-based simulation methods. The approach is extended by Zhang and Peeta (2011) to consider
transportation, telecommunication, energy, and power systems. Behaviors are determined through
a computable general equilibrium (CGE) problem solved with nonlinear programming methods and
operationalized by agent-based simulation methods.

There are two key limitations for detailed network models. First, their structure defines infras-
tructure elements as the unit of analysis, requiring large amounts of data to build a model. For
example, if two infrastructure elements are distinct objects but have interdependent input/output
resources, an edge must be defined to facilitate the resource transaction. Second, as network models
are generally dedicated to operational analysis, there is little consideration for dynamic topology
corresponding to network evolution. Infrastructure networks are typically static, with variable node
and edge parameters to represent operational details.

4.1.4 ISoS Modeling Framework Objectives

As discussed in the above sections, existing modeling approaches pose several limitations to strategic
infrastructure systems design. On one hand, aggregated system models do not consider the spatial
structure of constituent infrastructure elements and cannot disaggregate system decisions to the
element level for synthesis. On the other hand, detailed network models exhaustively define element-
level structure and behavior requiring significant information and often assume a static network
topology.

In addition to these limitations, existing modeling methods do not address model interoperabil-
ity. Aggregated models rely on shared state variables to represent coupled systems, requiring all
system models to be integrated in a centralized modeling environment. Similarly, network models
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compose constituent systems with inter-system edges. Complete integration of a system-of-systems
model may not be possible under some circumstances where information-sharing barriers or differ-
ences in model implementation prevent distribution of models between organizations with authority
over various infrastructure systems.

There is some discussion of interoperability in related literature. Pederson et al. (2006) identifies
the High Level Architecture (HLA, IEEE 2010) and Distributed Interactive Simulation (DIS, IEEE
1998) frameworks as options for distributed simulation but recognized that “no standards exists
[sic] that directly address infrastructure and specifically cross sector modeling.” Tolone et al. (2008)
presents a simpler service-oriented architecture specific to infrastructure system-of-systems analysis.
Both cases, however, focus on the method rather than the implications of interoperability within
the modeling framework.

To address these limitations, the proposed infrastructure system-of-systems (ISoS) modeling
framework seeks to meet four objectives.

1. Disaggregate infrastructure systems into elements to capture spatial structure.

2. Aggregate element behaviors at a level suitable for strategic analysis.

3. Dynamically change network topology to correspond to infrastructure evolution.

4. Enable interoperability between system models having decentralized authority.

These objectives are addressed in the following sections defining the ISoS modeling framework.

4.2 Spatial-Structural Template

The spatial-structural template defines the instantaneous state of an infrastructure system-of-
systems model. It includes a context template applicable across models in a common domain
and an instantiation template for the unique components in a particular model.

4.2.1 Context Template

The context template defines the allowable infrastructure locations and resource types which can
be reused for all applications having equivalent spatial characteristics.

The context network is based on graph-theoretic concepts. Unlike other network-based frame-
works, nodes do not correspond to infrastructure: they are defined as spatial units of aggregation
where resources are freely transferable between co-located infrastructure. Usually nodes correspond
to physical areas (zones, cities, regions, etc.) however virtual nodes can represent other concepts
such as financial or information repositories.

Network locations are valid infrastructure positions at or between nodes. For a set of nodes N,
the set of allowable locations is a set of node pairs

L = {(no, nd)i} : no, nd ∈ N ∀ i (4.1)

where li is a nodal location if no = nd and an edge location if no 6= nd. Edge locations are directed
such that no is the origin node and nd is the destination node. Figure 4-2 illustrates a set of six
elements at allowable locations on a context network of three nodes. Note L is not a complete graph
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Figure 4-2: A notional spatial-structural network includes three nodes (n1,n2,n3) and seven edges
((n1, n1), (n1, n2), (n2, n1), (n2, n2), (n2, n3), (n3, n2), (n3, n3)). The instantiation model includes six elements
(eI1, eI2, eI3, eJ1, eJ2, eK1) in three systems (I, J , K). Elements with nodal locations (e.g. that of eI1) form
loops at one node while those with edge locations (e.g. that of eI3) link two nodes.

as the edge locations between nodes n1 and n3 are not allowed, indicating constraints preventing
infrastructure between these nodes.

The allowable resource types is a set

T = {τi} ∀ i (4.2)

where each resource type τi corresponds to operands of the 5 × 5 framework: mass-based (e.g.
water), energy-based (e.g. electricity), information-based (e.g. bits), currency-based (e.g. US
dollars), organism-based (e.g. people) or any other resource measured using a ratio scale with a
non-arbitrary zero point. A set of resources r is realized as a set of pairs of a resource type and a
real quantity as shown in Eq. 4.3.

r = {(τ, q)i} : τ ∈ T, q ∈ R ∀ i (4.3)

Resources aggregated by resource type are fungible (i.e. representing commodities) with union
and difference operators defined in Eq. 4.4–4.5. While negative quantities are allowed within the
general framework to represent reverse flows, they may be disallowed for specific applications such
as resource storage.

ri ∪ rj = {(τ, qi + qj)} ∀ τ : (τ, qi) ∈ ri, (τ, qj) ∈ rj (4.4)

ri − rj = {(τ, qi − qj)} ∀ τ : (τ, qi) ∈ ri, (τ, qj) ∈ rj (4.5)

4.2.2 Instantiation Template

The instantiation template defines the infrastructure elements participating in a particular system-
of-systems. The instantiated elements are a set

E = {eij} (4.6)
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Figure 4-3: Infrastructure element state properties include resource contents (C), location (L), parent
element (P), and operational state (S).

where each element eij is component j of system i. Elements are uniquely assigned to one system;
however rather than sector-specific resource functionality, the system assignment designates man-
agement or control. Consider element eK1 is a combined-cycle power/desalination plant in Fig.
4-2. It may operate with both water and electricity resources, but is managed by one organization
(system K) which may differ from other water (system J) or electricity (system I) infrastructure.
Elements have four stateful properties illustrated in Figure 4-3: resource contents, location, parent
element, and operational state.

Elements are the only containers of resources in the modeling framework. Resources contained
within an element are identified by a contents function

C = C(e) : e 7→ r (4.7)

which maps an element e ∈ E to a set of resources r. Consider element eI1 is a water tank in Fig.
4-2 containing q units of water of resource type τ . Its contents are C(eI1) = {(τ, q)}.

Elements exist at only one location at a time. An element’s spatial position is identified by the
location function

L = L(e) : e 7→ l ∈ L (4.8)

which maps an element e ∈ E to an allowable location l. Elements at edge locations may be mobile
elements in transit between nodes (e.g. trucks, ships) or fixed distribution elements transferring
resources between nodes (e.g. pipelines). Shorthand notations Lo(e) = (no, no) and Ld(e) =
(nd, nd) are used to identify the origin and destination locations for elements where L(e) = (no, nd).
For example, the location of element eI3 in Fig. 4-2 is L(eJ1) = (n2, n3) and Lo(eJ1) = (n2, n2)
and Ld(eJ1) = (n3, n3).

In addition to spatial location, elements can also be arranged in a hierarchical structure of
nested relationships. Nested structure is identified by the parent function

P = P(e) : e 7→ eparent ∈ E (4.9)

which maps an element e ∈ E to the element containing it. An element not nested inside another
element is defined to be its own parent, i.e. P(e) = e. The parent function may also be raised
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to multiple powers to map an element to its nth parent, e.g. a “grandparent” relationship is
P2(e) = P(P(e)).

Finally, any other attributes necessary to describe an element’s state are defined in the state
function

S = S(e) : e 7→ s ∈ Se (4.10)

which maps an element e ∈ E to a state s among its set of allowable states Se. Each operational
state is linked with a model to express one or more time-dependent behaviors described in the
following section.

4.3 Temporal-Behavioral Template

The temporal-behavioral template defines state changes which take place during a simulation exe-
cution. Behaviors operate either on resources or elements. The formulations described here assume
any required pre-conditions such as spatial compatibility or capacity constraints are satisfied. Any
violations should generate errors in a model implementation.

4.3.1 Resource Behaviors

Resource behaviors are exhibited by elements to produce, move, or consume resources during a
simulation. Figure 4-4 illustrates the storing, transporting, transforming, and exchanging behaviors
acting on element properties and location resource flows. Storing and transforming behaviors
modify flows at an element’s location while transporting and exchanging modify flows between an
element’s origin and destination.

The resource storing behavior stores or retrieves resources from an element’s internal contents.
It is a function of an element e ∈ E, resources to store rin and resources to retrieve rout with state
changes specified in Eq. 4.11.1

Rstore = Rstore(e, rin, rout)

C(e)← (C(e) ∪ rin)− rout

Fout(L(e))← Fout(L(e)) ∪ rin

Fin(L(e))← Fin(L(e)) ∪ rout

(4.11)

The resource transporting behavior moves resources between locations. It is a function of an
element e ∈ E, input resources rin, and output resources rout with state changes shown in Eq. 4.12.

Rtransport = Rtransport(e, rin, rout)

Fout(Lo(e))← Fout(Lo(e)) ∪ rin

Fin(Ld(e))← Fin(Ld(e)) ∪ rout

(4.12)

Input and output resources may be functionally defined. For example, a model of perfect trans-
portation has rin = rout = r. Other models may assign a transportation efficiency η ⊆ [0, 1] which,

1A word on notation: the expression X ← X ′ used in this section indicates the value of a state expression X has
been changed to X ′ to exhibit a behavior. Additionally, each behavior is indexed by the time t at which it occurs,
although this has been omitted for brevity in this chapter.
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Figure 4-4: Resource storing, transporting, transforming, and exchanging behaviors modify resource flows
by consuming out-flow resources (Fout) and producing in-flow resources (Fin). The total out-flow of resources
from all behaviors must equal the in-flow, i.e. Fout = Fin, at each location during a time period.
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for transport of a resource with a single type r = {(τ1, q1)}, would be represented in Eq. 4.13–4.14.

rin(r) = {(τ1, q1)} (4.13)

rout(r) = {(τ1, q1 · η)} (4.14)

Applications of transport efficiency η include modeling leakage in water pipelines and resistive losses
in electrical power lines.

More detailed functions may also represent other resources required for transportation. Con-
tinuing the previous example, adding a unit transport demand f2|1 of type τ2 at the origin location
is shown in Eq. 4.15–4.16.

rin(r) = {(τ1, q1), (τ2, q1 · f2|1)} (4.15)

rout(r) = {(τ1, q1 · η), (τ2, 0)} (4.16)

Applications of transport demand factor fi|j include modeling pumping energy for fluid distribution
or other variable operations expenses.

The resource transforming behavior changes input to output resource types. It is a function of
an element e ∈ E, input resources rin, and output resources rout with state changes specified in Eq.
4.17.

Rtransform = Rtransform(e, rin, rout)

Fout(L(e))← Fout(L(e)) ∪ rin

Fin(L(e))← Fin(L(e)) ∪ rout

(4.17)

Similar to the transporting behavior, input and output resources may be functionally defined. For
example, a transformation from resources of type τ1 to resource r = {(τ2, q2)} with unit transform
demand factor f1|2 is represented in Eq. 4.18–4.19.

rin(r) = {(τ1, q2 · f1|2), (τ2, 0)} (4.18)

rout(r) = {(τ1, 0), (τ2, q2)} (4.19)

Applications of transform demand factor fi|j include modeling electrical energy required to desali-
nate water, fuel to generate electricity, or general resource production or consumption.

The resource exchanging behavior moves resources across systems boundaries. It is a function
of two elements in different system models with a paired destination-origin eij , ekl ∈ E : i 6=
k,Ld(eij) = Lo(ekl), and resources to exchange rik with state changes shown in Eq. 4.20.

Rexchange = Rexchange(eij , ekl, rik)

Fout(Ld(eij))← Fout(Ld(eij)) ∪ rik
Fin(Lo(ekl))← Fin(Lo(ekl)) ∪ rik

(4.20)

Exchanging is differentiated from transporting and transforming by splitting the state changes
between system models. Following Eq. 4.20, system i processes the Fout state changes and system
k processes the Fin state changes.
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System Model Flow Validity

Resource behaviors affect the flow of resources within and between locations. As the units of spatial
aggregation with no resource storage, there must be zero net flow across each location’s control
boundary at each period of simulation time within a system model. In other words, all resources
flowing into or out of a location control boundary must be accounted for in a resource behavior
and the total resource flow out Fout equals the total resource flow in Fin, as shown in Eq. 4.21.

Fin(l) = Fout(l) ∀ l ∈ L (4.21)

The aggregation of resource flows at locations sets the interface between systems at the location
level which, in the limiting cases, may encompass all elements at one location (similar to a system
dynamics model), or each element at a separate location (similar to a flow-network model).

System-of-Systems Model Flow Validity

While system models are constrained by resource flows at each location, the system-of-systems
model relies on constraining resource exchanging behaviors to consistent values across system mod-
els. Consider a resource exchange of rik between systems i and k. System i processes an exchange
behavior of Rexchange(eij , ekl, rik) and system k processes Rexchange(ekl, eij , rki). Assuming both
system models maintain local validity conditions, the system-of-systems model is valid if and only
if rik = −rki.

4.3.2 Element Behaviors

Element behaviors modify attribute values in correspondence to life-cycle activities. The three
element behaviors are storing, transforming, and transporting. Although not presently implemented
in the ISoS framework, element exchanging behaviors may be an area of future investigation. This
behavior would switch control over element operation between system models, requiring additional
model-sharing or interfaces between systems.

The element storing behavior stores elements inside other elements, interpreted as literal cargo
or functional attachment. It is a function of two co-located elements ei, ej ∈ E : L(ei) = L(ej) with
state changes shown in Eq. 4.22.

Estore = Estore(ei, ej)

P(ei)← ej
(4.22)

The element transforming behavior changes an element’s operational parameters. It is a function
of an element e ∈ E and one of its allowable states s ∈ Se with state changes shown in Eq. 4.23.

Etransform = Etransform(e, s)

S(e)← s
(4.23)

Transformations between two particular states have special meaning. A transformation from the
empty state s0 to an operational state s represents element commissioning and a transformation
from an operational state s to the null state s∅ represents decommissioning.
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The element transporting behavior allows mobile elements to change locations, consequently
also moving any nested (stored) elements. It is a function of an element which is not stored in
another element, i.e. e ∈ E : P(e) = e and an allowable location l ∈ L, with state changes shown
in Eq. 4.24.

Etransport = Etransport(e, l)

L(c)← l ∀ c : Ph(c) = e, h > 0
(4.24)

The recursive definition in Eq. 4.24 updates the location of all elements having a parent (at some
level) equal to the element being transported.

4.3.3 Interoperability Interface

Among the ISoS framework concepts presented, only the resource exchanging behavior interacts
across infrastructure systems. This behavior forms the core of an interoperability interface which
requires coordination of three items:

1. Establish a consistent context model including nodes N, locations L, and resource types T.

2. Send and receive the location L(e) of all elements capable of resource exchanging behaviors.

3. Send and receive coordinated resource exchange behaviors Rexchange(eij , ekl, rik) where ele-
ments eij and ekl are controlled by systems i 6= k.

The resource exchanging behavior may operate either on physical resources or other information.
For example, if one element’s behavior relies on the quantity of physical resources stored in another
element, this data could be expressed as an information exchanging behavior between the two
elements.

Two potential challenges exist for system model interoperability as presented. First, sending
and receiving resource exchanging behaviors requires a non-zero amount of real time, preventing
instantaneous resource exchange which is often assumed in system-of-system models with shared
state. Second, resource exchange between system models having cyclic dependencies can cause
inconsistencies due to limits on the number of data exchange periods allowed. These challenges are
addressed in the software implementation of an ISoS model discussed in Chapter 5.

4.4 Application Use Cases for Evaluation

This section presents four application cases to evaluate the generality and applicability of the
ISoS framework across a range of infrastructure systems. The first case retrospectively studies the
assembly and resupply of the International Space Station. The second case study prospectively
studies partnerships in future exploration of Mars. The third case introspectively studies resource
management in Burkina Faso. Finally, the fourth case prospectively studies national infrastructure
planning in Saudi Arabia.
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4.4.1 International Space Station Assembly and Resupply

The International Space Station (ISS) is a habitable laboratory environment in low Earth orbit.
Although not typically considered an infrastructure system-of-systems due to strong physical de-
pendencies between modules, the encompassing system of assembly and resupply missions managed
by international partners and commercial firms can be considered one.

ISS assembly started in November 1998 with the launch of the Zarya module by the Russian Fed-
eral Space Agency (Roscosmos). Additional components and modules were added by international
partners including the U.S. National Aeronautics and Space Administration (NASA), European
Space Agency (ESA), Japanese Space Agency (JAXA), and Canadian Space Agency (CSA) over
the following 15 years.

Besides component delivery and assembly, missions also rotate crew and resupply critical re-
sources and components. Although environmental control and life-support systems provide some
degree of habitat loop closure, regular resupply is required to sustain crew life and operations.
NASA’s Space Transportation System (“shuttle”) served as the primary resupply vehicle up until
its retirement in 2010. Today, Roscosmos is responsible for all crew transportation (Soyuz space-
craft) and some resupply missions (Progress spacecraft), ESA and JAXA are responsible for some
resupply missions (ATV and HTV spacecraft, respectively), and SpaceX and Orbital Sciences hold
contracts for commercial orbital transportation service (COTS) resupply missions (Dragon and
Cygnus spacecraft, respectively).

This case applies the ISoS modeling framework to describe historical ISS assembly and resupply
missions with the objective of representing the structure and behavior of participating infrastructure
including ISS modules and launch vehicles.

Structural Models

The nodes defined in Eq. 4.25 include Cape Canaveral (CC, NASA and SpaceX launch site), Mid-
Atlantic Regional Spaceport (MARS, Orbital launch site), Baikonur Cosmodrome (BCD, Roscos-
mos launch site), Guiana Space Center (GSC, ESA launch site), and Tanegashima Space Center
(TSC, JAXA launch site), the static Space Station Orbit (SSO), and the Return Landing Zone
(RLZ ) as an aggregated area for reentry and Earth return.

N = {CC,MARS,BCD,GSC,TSC,SSO,RLZ} (4.25)

The edge locations illustrated as dashed lines in Fig. 4-5 include the trajectories between launch
sites and the space station orbit and between the space station orbit and the landing zone.

Resource types considered in this application are drawn from a logistics classification system in
Shull et al. (2006). Resources defined in Eq. 4.26 include classes 101 (cryogenic fuel), 102 (hypergolic
fuel), 201 (water consumables), 202 (food consumables), 203 (gas consumables), 401 (spare parts),
501 (cargo containers), 601 (science equipment), 701 (waste), and 703 (failed parts).

T = {τ101, τ102, τ201, τ202, τ203, τ401, τ501, τ601, τ701, τ703} (4.26)

Table 4.3 describes ISS element models at two snapshots in time. The first set is during the
December 1998 STS-88 mission to deliver and assemble the Unity module. The elements include
a Proton-K launch vehicle (eR1) and the Zarya module (eR2) controlled by Roscosmos (system
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Figure 4-5: ISS network model includes trajectories from each launch site to the station orbit (SSO) and
the general return trajectory to the landing zone (RLZ ). (Earth azimuthal projection source images are from
NASA Visual Earth)

R) and the Endeavour orbiter (eN1), Unity (eN2) module, and STS-88 crew (eN3) controlled by
NASA (system N). Note the Proton-K vehicle is in a null state, identifying it has been staged
during launch. The Solid Rocket Boosters (SRBs) and External Tank (ET) are omitted from the
Endeavour Space Launch System for brevity.

The second set of elements is during the March 2013 SpaceX CRS-2 resupply mission. The new
elements include the Destiny (eN4) and Harmony (eN5) modules controlled by NASA and a Falcon
9 launch vehicle (eS1) and Dragon capsule (eS2) controlled by SpaceX (system S). The other ISS
modules and components including the crew are omitted for brevity.

Behavioral Models

Table 4.4 describes behaviors for delivery and assembly of the Unity module during the STS-88
mission in December 1998. First, the Endeavour orbiter becomes operational (4.27), retrieves the
required quantity of fuel (4.28), and burns it (4.29) for transportation to the launch trajectory
(4.30). Later, the orbiter arrives at the ISS orbital location (4.31) and commences orbital opera-
tions (4.32). While on orbit, the crew perform operations to retrieve (4.33) and consume (4.34)
resources, producing produce waste which is stored (4.35) aboard Endeavour. The crew resource
transformation can be approximated with constant consumption rates for each type (water, gases,
and food) and a constant production rate for waste, multiplied by the duration of the mission to
determine the values of r201, r202, r203, and r701. Finally, the Unity module docks with Zarya to
complete the assembly (4.36).

Table 4.5 describes behaviors for resource resupply during the SpaceX CRS-2 mission in May
2013. First, the Falcon 9 launch vehicle becomes operational (4.37), retrieves the required quantity
of fuel (4.38), and burns it (4.39) to achieve the launch trajectory (4.40). During launch, the
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Table 4.3: ISS element instantiations and properties at two snapshots in time

Element eij Contents C(e) Location L(e) Parent P(e) State S(e)

Proton-K eR1 {r102} (BCD,SSO) eR1 s∅

Zarya eR2 {r102, r401} (SSO,SSO) eR2 soperating

Endeavour eN1 {r101, r201, r202, r203, (CC,CC) eN1 sdefault

r401, r501, r701}
Unity eN2 {} (CC,CC) eN1 sdefault

STS-88 Crew eN3 {} (CC,CC) eN1 sdefault

...
...

...
...

...
...

Destiny eN4 {r201, r202, r203, (CC,CC) eN2 soperating

r501, r701, r703}
Harmony eN5 {} (CC,CC) eN4 soperating

Falcon 9 eS1 {r101} (CC,CC) eS1 sdefault

Dragon eS2 {r201, r202, r401, r601} (CC,CC) eS1 sdefault

Table 4.4: Unity assembly behaviors in December 1998

Behavior Description Item

Etransform(eN1, slaunching) Transform Endeavour to launching state (4.27)

Rstore(eN1, {}, {(τ101, b)}) Retrieves fuel for Endeavour burn (4.28)

Rtransform(eN1, {(τ101, b)}, {}) Transforms fuel for Endeavour burn (4.29)

Etransport(eN1, (CC,SSO)) Move Endeavour to launch trajectory (4.30)

Etransport(eN1, (SSO,SSO)) Move Endeavour to station orbit (4.31)

Etransform(eN2, soperating) Transform Endeavour to operating state (4.32)

Rstore(eN1, {}, {r201, r202, r203}) Retrieve consumables from Endeavour (4.33)

Rtransform(eN3, {r201, r202, r203}, {r701}) Transform consumable resources to

waste with STS-88 Crew (4.34)

Rstore(eN1, {r701}, {}) Store crew waste in Endeavour (4.35)

Estore(eN2, eR2) Dock Unity with Zarya (4.36)
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Table 4.5: Dragon resupply behaviors in May 2013

Behavior Description Item

Etransform(eS1, slaunching) Transform Falcon 9 to launching state (4.37)

Rstore(eS1, {}, {(τ101, b)}) Retrieve fuel for Falcon 9 burn (4.38)

Rtransform(eS1, {(τ101, b)}, {}) Transform fuel for Falcon 9 burn (4.39)

Etransport(eS1, (CC,SSO)) Move Falcon 9 to launch trajectory (4.40)

Estore(eS2, eS2) Separate Dragon from Falcon 9 (4.41)

Etransform(eS1, s∅) Stage (discard) Falcon 9 (4.42)

Etransport(eS2, (SSO,SSO)) Move Dragon to station orbit (4.43)

Estore(eS2, eN5) Dock Dragon with Harmony (4.44)

Etransform(eS2, soperating) Transform Dragon to operating state (4.45)

Rstore(eS2, {}, {r201, r202, r203, r401, r601}) Retrieve resupply resources from Dragon (4.46)

Rexchange(eS2, eN4, {r201, r202, r203, r401, r601}) Exchange resupply resources with Destiny (4.47)

Rexchange(eN4, eS2, {r601, r703}) Exchange return resources to Dragon (4.48)

Rstore(eS2, {r601, r703}, {}) Store return resources in Dragon (4.49)

Dragon capsule separates from the Falcon 9 (4.41), which is then staged (4.42). When the Dragon
arrives on orbit (4.43), it docks with Harmony (4.44) and exchanges resupply resources including
water, food, gases, spare parts, and science equipment with the Destiny module (4.47). As the
CRS-2 mission also includes return mass capability, the Destiny module exchanges resources such
as science equipment and failed parts to Dragon (4.48) to be stored for return (4.49).

4.4.2 Partnerships for Mars Space Exploration

Future space missions seek to explore distant locations such as near-Earth asteroids and Mars.
Underlying the technical challenges of vehicle and mission design there are two key logistics chal-
lenges. First, travel to distant locations requires large amounts of propellant per unit mass carried
due to the physics of rocket propulsion.2 Second, the travel happens over long durations with
limited opportunities for resupply, potentially requiring large quantities of contingency resources
to be carried along at great expense.

One strategy to improve exploration performance is to close the resource loop and achieve higher
self-sufficiency of remote operations. Advanced life support systems, in-situ resource production,
and storage depots reduce reliance on resupply but also introduce additional interdependencies
between elements and missions. Furthermore, there is active interest in enabling multi-national
and commercial enterprises supporting future space exploration (Griffin 2011). A core principle of
the U.S. National Space Policy states that “a robust and competitive commercial space sector is
vital to continued progress in space” (United States 2010). In other words, future space exploration
may involve an infrastructure system-of-systems with interdependencies between elements.

This case applies the ISoS modeling framework to describe structural and behavioral models
for a conceptual mission to Mars including both NASA and commercial participation. A future

2Estimates of the “propellant-to-mass” ratio for Mars exploration using conventional chemical propulsion require
more than 200 kilograms of propellant for every kilogram of mass returned to Earth (Grogan and de Weck 2012).
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GCE
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Figure 4-6: The Mars exploration network model includes Cape Canaveral (CC ), Low Earth Orbit (LEO),
Reference Mars Orbit (RMO), Gale Crater Base (GCB) and Gale Crater Excavation (GCE ; location not
to scale) with edges based on trajectories and surface paths. (Earth and Mars azimuthal projection source
images are from NASA Visual Earth and NASA/JPL-Caltech)

model implementation may help plan long-duration campaigns with high element re-use and identify
opportunities of commercial partnerships for resource exchange.

Structural Models

The nodes of interest defined in Eq. 4.50 include surface areas such as Cape Canaveral (CC ), Gale
Crater Base (GCB), and Gale Crater Excavation (GCE ) and stable locations in space such Low
Earth Orbit (LEO) and Reference Mars Orbit (RMO).

N = {CC,LEO,RMO,GCB,GCE} (4.50)

Figure 4-6 illustrates the set of allowable locations. Edge locations (CC,LEO), (LEO,RMO), and
(RMO,GCB) are propulsive trajectories for space transportation and (GCB,GCE) and (GCE,GCB)
are paths for surface transportation.

The resource types considered in this application are drawn from a logistics classification system
in Shull et al. (2006). Resources defined in Eq. 4.51 include classes 101 (cryogenic fuel), 102
(hypergolic fuel), 201 (water consumables), 202 (food consumables), 203 (gas consumables), 401
(spare parts), 603 (exploration samples), 701 (waste), and 703 (failed parts).

T = {τ101, τ102, τ201, τ202, τ203, τ401, τ603, τ701, τ703} (4.51)

Figure 4-7 illustrates element models at the Gale Crater exploration site. The elements include
a transfer vehicle (eA1), lander (eA2), habitat (eA3), and astronaut (eA4) controlled by a national
space agency (system A) and a resource plant (eC1) and in-situ regolith (eC2) controlled by a
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Figure 4-7: Mars exploration elements include vehicles in orbit and habitats, astronauts, resource plants,
and natural in-situ regolith at surface sites

Table 4.6: Mars exploration element instantiations and properties

Element eij Contents C(e) Location L(e) Parent P(e) State S(e)

Transfer Vehicle eA1 {r101} (RMO,RMO) eA1 sdefault

Lander eA2 {r102, r201, r202} (RMO,RMO) eA1 swaiting

Habitat eA3 {r201, r202, r203, (GCB,GCB) eA3 sdefault

r401, r701, r703}
Astronaut eA4 {} (GCB,GCB) eA3 sdefault

Resource Plant eC1 {r203} (GCE,GCE) eC1 sprocessing

In-situ Regolith eC2 {r603} (GCE,GCE) eC2 sdefault

commercial firm (system C). Table 4.6 illustrates the elements’ properties in detail. Each element
except the astronaut stores at least one type of resource. For example, the lander contains hypergolic
propellant (r102) for landing and water (r201) and food (r202) consumables for resupply. Note the
lander is functionally stored inside the transfer vehicle and the astronaut actually inside the habitat.

Behavioral Models

Table 4.7 describes the landing sequence of the lander vehicle. First, the lander un-docks from
the transfer vehicle (4.52) which provided transportation from Earth and enters a landing state
(4.53). Next, the lander retrieves stored fuel (4.54) and burns it (4.55) for propulsion to move from
a stationary orbit RMO to a descent trajectory (RMO, GCB). The quantity of fuel required, b1,
depends on the total mass of the lander and its propulsion system efficiency. Finally, the lander
retrieves (4.57) and burns (4.58) more fuel to complete the landing maneuver and arrive (4.59) at
the base site GCB. The quantity of fuel required, b2, depends on the remaining mass of the lander.
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Table 4.7: Mars landing sequence behaviors

Behavior Description Item

Estore(eA2, eA2) Un-dock lander from transfer vehicle (4.52)

Etransform(eA2, slanding) Transform lander to landing state (4.53)

Rstore(eA2, {}, {(τ102, b1)}) Retrieve fuel for 1st burn (4.54)

Rtransform(eA2, {(τ102, b1)}, {}) Transform fuel for 1st burn with lander (4.55)

Etransport(eA2, (RMO,GCB)) Move lander to landing trajectory (4.56)

Rstore(eA2, {}, {(τ102, b2)}) Retrieve fuel for 2nd burn (4.57)

Rtransform(eA2, {(τ102, b2)}, {}) Transform fuel for 2nd burn with lander (4.58)

Etransport(eA2, (GCB,GCB)) Move lander to base (4.59)

Etransform(eA2, sdefault) Transform lander to default state (4.60)

Table 4.8: Mars resource production and delivery behaviors

Behavior Description Item

Rstore(eC2, {}, {(τ203, q603)}) Retrieve samples from in-situ regolith (4.61)

Rtransform(eC1, {(τ603, q603)}, {(τ203, q203)}) Transform samples to consumable

gases with resource plant (4.62)

Rstore(eC1, {(τ203, q203)}, {}) Store gases in resource plant (4.63)

Etransform(eC1, smoving) Transform plant to transport state (4.64)

Etransport(eC1, (GCE,GCB)) Move plant to the base path (4.65)

Etransport(eC1, (GCE,GCE)) Move plant to the base (4.66)

Etransform(eC1, sdefault) Transform plant to default state (4.67)

Rexchange(eC1, eA3, {(τ203, q203)}) Exchange gases with habitat (4.68)

Table 4.8 describes the resource production and delivery behaviors of the resource plant. First,
samples are retrieved from the in-situ regolith (4.61) and are transformed to consumable gases
(4.62) by the resource plant. The transformation ratio may be approximated by a factor f603|203

such that q603 = f603|203 · q203. Next, the plant stores the gases (4.63) and moves (4.65) from the
excavation site GCE to the path to the base (GCE, GCB). Finally, the resource plant arrives at
the base GCB (4.66) and exchanges gases with the habitat (4.68).

4.4.3 Resource Management in Burkina Faso

Burkina Faso is a landlocked country in western Africa bordering the Sahara desert to the north
and a fertile region to the south. It was the subject of a past case study by Hermann et al. (2012)
to investigate inker-linkages between climate, land, energy, and water for national policy which
forms the basis of this application. Burkina Faso is an impoverished nation with a population that
doubled between 1985 and 2011 and is currently growing at 3% per year. Without sea access, it
survives on limited natural resources and trade with nearby countries.

Agriculture in Burkina Faso is a large part of the economy with cereals as the staple diet and
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cotton as the primary export crop. While the majority of people work in agriculture, productivity is
low due to lack of mechanization and limited use of irrigation and fertilizer. Securing nourishment
for the populace is a continuing challenge while agricultural land is starting to encroach on forested
land due to low output.

The majority of energy consumption in Burkina Faso is derived from biomass such as wood for
residential use. Electrification of the country is sparse and improvement faces significant capacity
limitations. Most electricity is generated from thermal power plants using imported fossil fuels,
although there are also hydro power plants. Interconnecting Burkina Faso’s grid with the West
African Power Pool (WAPP) has recently enabled direct electricity import.

Water is plentiful at times via the numerous rivers, although there are frequent droughts and
floods which may be exasperated by climate change. The southern regions receive nearly twice as
much rainfall as the northern regions. Most water is drawn from surface reservoirs from rivers.
A large portion of the country under-utilizes groundwater at rates much lower than the natural
recharge rate.

This case applies the ISoS modeling framework to describe present natural and artificial infras-
tructure in Burkina Faso with an emphasis on modeling the structure and behavior of agriculture,
water, and energy elements.

Structural Models

The nodes of interest for Burkina Faso defined in Eq. 4.69 are centered on water resources to include
the five river basins: Comoe Basin (CMB), Mouhoun Basin (MHB), Nakambe Basin (NKB), Niger
Basin (NGB), and Oti Basin (OTB).

N = {CMB,MHB,NKB,NGB,OTB} (4.69)

The river basins are selected as nodes due to their shared water properties, however more detailed
network models may also consider urban areas or climate patterns like rainfall to create additional
nodes. Figure 4-8 illustrates the set of allowable locations including edges between adjacent river
basins.

Resource types defined in Eq. 4.70 include biomass fuel (τb), fossil fuel (τff), electrical energy
(τe), water (τw), food cereals (τfc), and cotton (τc).

T = {τb, τff, τe, τw, τfc, τc} (4.70)

Table 4.9 describes fixed elements at Nakambe Basin as an example of spatial infrastructure
within one river basin. Additional infrastructure elements could describe resource transportation
between basin regions or provide more detailed models of the aggregated systems, for example to
illustrate rainfall variations in different cities within Nakambe Basin.

The agriculture sector (system A) includes natural forests (eA1) as a store of biomass resources
and combined cereals and cotton farms (eA2) to aggregate all farms in the basin. The water sector
(system W ) includes two aggregated elements as water sources: surface water reservoirs (eW1) from
rivers and groundwater aquifers (eW2). The energy sector (system E) includes aggregated elements
for fossil-fuel thermal power plants (eE1) and renewable hydro power plants (eE2). The public
(system P ) includes an aggregated element to represent the societies within the basin. Finally,
an international sector (system I) includes a global market element to facilitate resource import
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Figure 4-8: The Burkina Faso network model includes the five river basins and edge locations based on
physical adjacency. Dotted gray lines indicate notional basin boundaries and solid gray lines represent rivers.
Map credit: d-maps.com accessed at http://d-maps.com/m/africa/burkina/burkina46.pdf

and export. Although omitted in this example, currency flows would be involved in bi-directional
resource exchanges with the global market.

Behavioral Models

Table 4.10 describes typical behaviors for the agriculture system. First, water is exchanged from
surface reservoirs (4.71). The irrigation water is transformed to produce food cereals and cotton
(4.72). The food cereals are exchanged with the societies (4.73) as food while the cotton resources
are exchanged with the global market (4.74) for export. Biomass is also retrieved from natural
forests (4.75) and exchanged with the societies (4.76). The natural forests regrow (4.77) a fraction
β of the harvested biomass which is stored (4.78) as new biomass.

Table 4.9: Nakambe Basin element instantiations and properties

Element eij Contents C(e) Location L(e) Parent P(e) State S(e)

Natural Forests eA1 {rb} (NKB,NKB) eA1 sdefault

Cereals & Cotton Farms eA2 {} (NKB,NKB) eA2 soperating

Surface Water Reservoirs eW1 {rw} (NKB,NKB) eW1 sdefault

Groundwater Aquifer eW2 {rw} (NKB,NKB) eW2 sdefault

Thermal Power Plants eE1 {} (NKB,NKB) eE1 soperating

Hydro Power Plants eE2 {} (NKB,NKB) eE2 soperating

Nakambe Basin Societies eP1 {} (NKB,NKB) eP1 sdefault

Global Market eI1 {} (NKB,NKB) eI1 sdefault
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Table 4.10: Nakambe Basin agriculture production behaviors

Behavior Description Item

Rexchange(eW1, eA2, {}, {(τw, qw)}) Exchange water withdrawn from reservoirs (4.71)

Rtransform(eA2, {(τw, qw)}, {(τfc, qfc), (τc, qc)}) Transform water to cereals and cotton (4.72)

Rexchange(eA2, eP1, {(τfc, qfc)}) Exchange food cereals to societies (4.73)

Rexchange(eA2, eI1, {(τc, qc)}) Exchange cotton to market (4.74)

Rstore(eA1, {}, {(τb, qb)}, Retrieve biomass from forests (4.75)

Rexchange(eA1, eP1, {(τb, qb)}) Exchange biomass to societies (4.76)

Rtransform(eA1, {}, {(τb, qb · β)}) Transform to regrow biomass (4.77)

Rstore(eA1, {(τb, qb · β)}, {}) Store new biomass in forests (4.78)

Table 4.11: Nakambe Basin energy production and import behaviors

Behavior Description Item

Rexchange(eI1, eE1, {}, {(τs, qs)}) Exchange imported petroleum fuel from market (4.79)

Rtransform(eE1, {(τs, qs)}, {(τe, qe1))}) Transform petroleum to electricity from thermal plants (4.80)

Rtransform(eE2, {}, {(τe, qe2)}) Transform electricity from hydro power plants (4.81)

Rexchange(eI1, eE1, {(τe, qe3)}) Exchange imported electricity from market (4.82)

Rexchange(eE1, eP1, {(τe, qe)}) Exchange net electricity to societies (4.83)

Table 4.11 describes typical behaviors for the energy system. Petroleum fuels are exchanged
from the global market (4.79) as import. The fuels are transformed by thermal power plants (4.80)
to produce electricity. Hydro plants also transform electricity (4.81) as a second source. Any
shortfall in electricity is exchanged from the global market (4.82) as import. Finally, the total
electricity qe = qe1 + qe2 + qe3 is exchanged to the societies (4.83) for use.

4.4.4 National Infrastructure Planning in Saudi Arabia

The Arabian Peninsula has a hot, arid climate which historically limited the expanse of human
societies. Since the 1950s the Kingdom of Saudi Arabia has experienced strong economic growth
driven in part by use of large natural petroleum reserves. Cities such as Riyadh have grown from
around 50,000 inhabitants in the 1950s to over 6.2 million in 2009 and is currently growing at 2.7%
annually (KSA 2010). At the same time, per capita demands for basic resources such as potable
water, electricity for cooling, and food are increasing as individuals reach higher standards of living.

There are strong couplings between infrastructure based on geographical, technical, and social
factors in Saudi Arabia. For example, Riyadh is positioned at 600 meters in elevation in the center
of the peninsula, 400 kilometers from the Persian (Arabian) Gulf and 900 kilometers from the Red
Sea. Facing a shortage of potable water from nonrenewable aquifers, its population relies in part
on desalinated sea water pumped from the coast, an energy-intensive production and distribution
method. With limited electrical generation and distribution capacity and low domestic petroleum
prices, some areas directly burn crude oil for electricity which is both environmentally-damaging
and reduces export capacity.
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Figure 4-9: The Saudi Arabia network model includes nodes for the major cities of Khafji, Dammam,
Riyadh, Makkah, Medina, Yanbu, and Jeddah and edges based on physical adjacency. Gray lines identify
regional provincial boundaries and black dots are large cities. Map credit: d-maps.com, accessed at http:

//d-maps.com/m/arabie/arabie20.pdf.

To meet growing demands for basic resources, the Ninth Development Plan seeks to appropriate
1.4 trillion SAR ($370 billion USD) for development between 2010 and 2014 (KSA 2010). High-level
objectives call for improving the standard of living and quality of life, achieving balanced devel-
opment among regions, and diversifying the economic base beyond petroleum products. Although
Saudi Arabia has a centrally-managed government, national infrastructure planning still involves
multiple government ministries and regional administrative divisions acting as a system-of-systems.

This case applies the ISoS modeling framework to describe national infrastructure in Saudi
Arabia with emphasis on the energy and water systems. A future model implementation could be
used for collaborative development of national infrastructure plans across government ministries.

Structural Models

The nodes of interest for the context of Saudi Arabia include the major geo-spatial areas and
supporting infrastructure regions. The nodes defined in Eq. 4.84 target coastal cities with desali-
nation operations such as Jeddah (JED), Yanbu (YAN ), Dammam (DAM ), and Khafji (KHA)
and interior cities receiving pumped water such as Makkah (MAK ), Medina (MED), and Riyadh
(RIY ).

N = {JED,MAK,MED,YAN,RIY,DAM,KHA} (4.84)

The set of allowable locations shown in Fig. 4-9 includes edges for physically adjacent nodes where
distribution lines may feasibly exist.

Resource types defined in Eq. 4.85 include oil (τo), electrical energy (τe), water (τw), people
(τp), and currency (τc).

T = {τo, τe, τw, τp, τc} (4.85)
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Figure 4-10: Saudi infrastructure elements include natural oil reservoirs, power and water plants with fixed
distribution lines, and public societies.

Table 4.12: Saudi Arabia element instantiations and properties

Element eij Contents C(e) Location L(e) Parent P(e) State S(e)

Oil Reservoir eE1 {ro} (DAM,DAM) eE1 sdefault

Power Plant eE2 {} (DAM,DAM) eE2 soperating

Power Line eE3 {} (DAM,RIY) eE3 soperating

Desalination Plant eW1 {} (DAM,DAM) eW1 soperating

Water Pipeline eW2 {} (DAM,RIY) eW2 s0

Dammam Society eP1 {rp, rc} (DAM,DAM) eS1 sdefault

Riyadh Society eP2 {rp, rc} (RIY,RIY) eS2 sdefault

More detailed framings could consider different types of water (potable, wastewater, seawater, etc.),
agriculture and food, and carbon dioxide and other pollutants.

Figure 4-10 illustrates element model instantiations focusing on the Dammam-Riyadh region.
The elements include an oil reservoir (eE1), power plant (eE2), and power line (eE3) controlled
by an energy ministry (system E), a desalination plant (eW1) and pipeline (eW2) controlled by a
water ministry (system W ), and societies of Dammam (eP1) and Riyadh (eP2) which are organized
under the public (system P ). Here, societies aggregate the residential, commercial, and industrial
activities which consume resources and generate socio-economic activity.

Table 4.12 illustrates the elements’ properties in detail. Due to the large scale of aggregation, no
elements are stored within others and only the oil reservoir and two societies contain resources—all
other resources are transported, transformed, and exchanged. The power line and pipeline elements
are fixed at the (DAM, RIY ) location, allowing transportation of resources between the two nodes.
Note the water pipeline state is empty (s0), meaning it has not yet become operational.
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Table 4.13: Saudi Arabia energy generation and distribution behaviors

Behavior Description Item

Rstore(eE1, {}, {(τo, qo)}) Retrieve oil from reservoir (4.86)

Rexchange(eW2, eE2, {(τw, qw)}) Exchange cooling water to power plant (4.87)

Rtransform(eE2, {(τo, qo), (τw, qw)}, {(τe, qe)}) Transform oil and water to electricity with plant (4.88)

Rexchange(eE2, eP1, {(τe, qe1)}) Exchange electricity with Dammam society (4.89)

Rtransport(eE3, {(τe, qe2)}, {(τe, qe2 · ηe)}) Transport electricity to Riyadh with power line (4.90)

Rexchange(eE3, eP2, {(τe, qe2 · ηe)}) Exchange electricity to Riyadh society (4.91)

Table 4.14: Saudi Arabia water production and distribution behaviors

Behavior Description Item

Rexchange(eE2, eW1, {(τe, qe1)}) Exchange electricity to desal. plant (4.92)

Rtransform(eW1, {(τe, qe1)}, {(τw, qw)}) Transform electricity into water (4.93)

Rexchange(eW1, eP1, {(τw, qw1)}) Exchange water with Dammam society (4.94)

Etransform(eW2, soperating) Transform pipeline to operational (4.95)

Rexchange(eE2, eW2, {(τe, qe2)}) Exchange electricity with pipeline (4.96)

Rtransport(eW2, {(τw, qw2), (τe, qe2)}, {(τw, qw2 · ηw)}) Transport water to Riyadh with pipeline (4.97)

Rexchange(eW2, eP2, {(τw, qw2 · ηw)}) Exchange water to Riyadh society (4.98)

Behavioral Models

Table 4.13 describes the behaviors for electricity generation and distribution. First, oil is retrieved
from the reservoir (4.86) and the desalination plant exchanges cooling water with the power plant
(4.87). The power plant transforms oil as fuel and water for cooling to electricity (4.88). The
quantities of oil and water required can be estimated with constant factors fo|e and fw|e respectively.
Next, the power plant exchanges (4.89) a portion of its generated electricity qe1 with the local society
(Dammam) to satisfy demands and produce socio-economic activity. The remaining electricity
qe2 = qe − qe1 is transported (4.90) to Riyadh with efficiency ηe due to resistive losses. Finally, the
power line exchanges (4.91) electricity to the Riyadh society.

Table 4.14 describes the behaviors for water production and distribution. First, the power
plant exchanges electricity to the desalination plant (4.92). Next, the desalination plant transforms
electricity into water (4.93). The amount of electrical energy required can be approximated with
a constant factor fe1|w1. Next, the desalination plant exchanges water with the local (Dammam)
society (4.94). At this time, the pipeline becomes operational (4.95). The power plant exchanges
electricity with the pipeline (4.96) for pumping energy to transport water (4.97) to Riyadh. The
amount of electricity here can also be estimated with a constant factor fe2|w2, and the efficiency of
water transport after leakage can be estimated at ηw. Finally, the pipeline exchanges water to the
Riyadh society (4.98).
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Chapter 5

Software Implementation of
Distributed ISoS Simulations

“Another type of war game—and one favored by writers of science fiction—is the game played
on a high-speed computer. In such a game, the opposing commanders might, for example, sit
at their control panels and play out a tactical air war, turning knobs to indicate their allocation
of aircraft and weapons to various targets.”

Robert D. Specht in War Games (1957)

The previous chapter presented the ISoS modeling framework as an approach for formulating infras-
tructure simulation models with an emphasis on interoperability. Model instantiations represent
the structure and behavior of infrastructure elements operating on resource flows, although no spe-
cific implementation form is specified. The interoperability interface for interaction between system
models included the following requirements:

1. Establish a consistent context of nodes N, locations L, and resource types T,

2. Send/receive the location L(e) of all elements capable of exchanging resources, and

3. Send/receive resource exchanges Rexchange(eij , ekl, rik) where elements eij and ekl are con-
trolled by systems i 6= k and resources rik are exchanged from system i to k.

This chapter presents an approach to implement interoperable ISoS simulation models as dis-
tributed software applications. First, Section 5.1 discusses the motivations and technical challenges
in distributed simulation. Next, Section 5.2 compares several potential software architectures for
distributed simulation and explains strengths and weaknesses of the High Level Architecture (HLA)
selected for this dissertation. Section 5.3 provides an overview of the HLA for those unfamiliar with
its history, structure, or current applications. Section 5.4 applies the HLA to the ISoS modeling
framework by defining a generic federation object model and operational agreement among feder-
ates. Section 5.5 illustrates a sample federate implementation using for generic ISoS application
using the Java programming language. Finally, Section 5.6 provides practical insights for developing
distributed simulations.
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5.1 Fundamentals of Distributed Simulation

Most software applications run a sequence of instructions on a central processing unit (CPU) as a
single logical process (LP). There is an implicit guarantee that an LP executes program instructions
in a particular order. Even modern computers with multi-core processors rely on operating systems
to run these programs as a single LP. Many modeling activities follow the single-LP approach
whereby all components are integrated in a single, centralized application. The implicit guarantee
of instruction ordering allows even large simulation models to use a shared memory space to reliably
communicate information between model components.

Integration in a single model or tool, however, may not be feasible in systems problems where
information and models are distributed among a team of decision-makers. For example, the applica-
tion in Bush et al. (2005) uses a custom model-linker to compile member models into an integrated
model. Not only are all participants required to use the same software tool (Vensim) and modeling
formalism (system dynamics), but significant coordination is required between every pair of models
to specify endogenous/exogenous variables, their representation (units, etc.), and other assump-
tions (e.g. naming conventions, bounds on validity) to ensure interoperability. Jacobs (2005, p. 6)
describes this approach as the 1-1-1 paradigm where “only one actor can use a simulation model,
designed by one simulation model designer, to carry out one experiment.” Most integrated simu-
lation environments “only support one model formalism, one reporting format and one framework
for animation” and it “supports one operating system, one hardware platform, one processor, and
thus one concurrent physical location.” A new Nn-Nm-No modeling paradigm should “support a
synthetic, interdisciplinary approach to problem solving” with multiple decision-makers, multiple
client side operating systems and hardware platforms, and multiple composite models (Jacobs 2005,
p. 17).

Parallel and distributed simulations (PADS) use multiple LPs to evaluate parts of a model
application simultaneously. Parallel simulations often use LPs within a machine (e.g. running as
separate threads on a multi-core CPU) or within a computing cluster optimized for low communica-
tion latencies. Distributed simulation usually deals with heterogeneous machines over larger spatial
distances using networking technologies for communication. Fujimoto (2000, pp. 4–5) identifies four
main motivations for parallel and distributed simulation:

1. Reduced execution time through parallelization of computation,

2. Fault tolerance through redundancy,

3. Geographical distribution of simulation models and participants, and

4. Interoperability of simulators executing on different machines.

Whereas parallel computing generally emphasizes items 1 and 2, distributed simulation emphasizes
items 3 and 4. Applied to the ISoS modeling problem, distributed simulation allows decentral-
ized development and control over the component models and a method of integration based on
interoperability.

5.1.1 History and Current Applications

Fujimoto (2000, pp. 8–11) describes historical development of PADS from the contributions of three
communities. First, the high-performance computing (HPC) community developed parallel simu-
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Figure 5-1: Parallel and distributed simulation (PADS) methods and theory developed during the 1970s
and 1980s built on contributions from the high-performance computing, defense, and gaming communities.

lation technologies to support analytic studies in the late 1970s and throughout the 1980s. Second,
the defense community used distributed simulation to create virtual environments to reduce train-
ing expenses compared to field exercises starting in the 1980s. Third, the interactive gaming and
Internet communities developed distributed software for multi-player games starting in the early
1980s including the popular MultiUser Dungeon (MUD) game. The three communities, illustrated
in Figure 5-1, emphasized different dimensions of PADS. The high-performance computing com-
munity used parallelism as a method to accelerate execution of large simulations. The defense
community used distributed systems to integrate hardware, software, and humans in a realistic
virtual space. Finally, the gaming community used distributed systems to enable player-player
interaction in fictional virtual space.

Development and innovation of PADS has widened its contemporary applications (Fujimoto
2000, pp. 12–16). The military uses distributed simulation for wargaming simulations to study
attack and defense strategies, training environments for pilots and tank operators, and testing
and evaluation (T&E) to evaluate the effectiveness of new devices. Entertainment applications
include a wide range of multi-player and massively-multiplayer online games (MMOGs). Business
collaborations use distributed simulations as a virtual environment to host social interactions and
they have also been applied to educational and training programs for non-military purposes. Finally,
parallel simulations are used to simulate large networks with many entities such as the Internet,
air, and road transportation systems and to accelerate verification of logic circuits used in digital
electronic devices.

5.1.2 Technical Challenges

The fundamental challenge to distributed simulation is the synchronization problem of how to
maintain consistent shared state across multiple processors over time. Here, the concept of time is
distinguished between that within the model (simulation time) and that in the real world (wallclock
time). Distributed simulation handles time in one of several modes which determines the relation-
ship between simulation and wallclock time (Fujimoto 2000, pp. 27–30). Real-time simulation runs
simulation time in parallel to wallclock time and is most useful for operational analyses such as
studying the actions of human operators or interfacing with hardware. Scaled real-time simulation
runs simulation time at a faster or slower (but constant) rate as compared to wallclock time. Fi-
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nally, as-fast-as-possible simulation runs simulation time at the maximum possible rate which need
not be constant and is most useful for analytic studies.

There are a two main problems regarding synchronization. First, network communications be-
tween LPs may introduce delays between the times when messages are sent and received. Especially
in real-time simulations where simulation and wallclock time are equivalent, the delays may cause
events to arrive late, potentially violating causality. For example, a tank destroyed by a missile
strike may incorrectly take actions until the destruction event is properly received. To further com-
plicate the issue, network communication delays are not predictable, leading to non-deterministic
and non-repeatable simulations if no control is exerted. Second, differences in machine clock, pro-
cessing rate, or model computational complexity may cause scaled real-time and as-fast-as-possible
simulations to drift out-of-sync. For example, a machine requiring more wallclock time to process
a simulation time step than another machine will fall behind in a simulation execution without
synchronization. The main tradeoff in most approaches is between consistency of synchronized
data across components and responsiveness between action and effect (Smed et al. 2002). Whereas
analytic simulations must maintain consistency, entertainment applications such as in games relax
it to improve responsiveness at the cost of allowing minor causality violations.

Algorithms to address the synchronization problem ensure a distributed simulation produces
exactly the same results as a sequential execution running on a single processor (Fujimoto 2000,
p. 52). The first class of conservative algorithms obey the local causality constraint whereby “each
LP processes events in nondecreasing time stamp order” where the time stamp is the simulation
time assigned to each event (Fujimoto 2000, p. 52). The main challenge of conservative algorithms
is to determine when it is safe to advance time, i.e. when no messages will be received such that
they would violate the nondecreasing order required by the local causality constraint.

Conservative algorithms must first prevent a condition called deadlock in which each member
of a distributed simulation is waiting on another, causing the simulation to halt execution (Fuji-
moto 2000, pp. 54–55). The first solution to the deadlock condition was the Chandy/Misra/Bryant
algorithm establishing the concept of null messages to more frequently update time information
(Bryant 1977; Chandy and Misra 1978). This algorithm establishes the lookahead time as the mini-
mum duration during which no new events can be scheduled. Under some conditions, however, the
overhead of additional communication hurts performance. While newer, more efficient algorithms
have been created, conservative algorithms will never be able to fully exploit concurrency due to
their inherent overhead of only proceeding when absolutely safe (Fujimoto 2000, pp. 92–94).

Given the inherent efficiency limitations of conservative algorithms, a second class of optimistic
algorithms have emerged. Rather than obeying the local causality constraint outright, optimistic
algorithms process events assuming no causality errors (Fujimoto 2000, pp. 97–98). The Time
Warp algorithm, for example, has the ability to undo and reprocess events in a revised order when
a late message arrives (Jefferson 1985). There are some interesting implications of the Time Warp
algorithm. For example, a process must reclaim memory from saved states when safe to do so using
a process called “fossil collection.” In addition, there must be sophisticated handling to allow for
transient error conditions while waiting for late events. While optimistic algorithms can be more
efficient than conservative ones and are generally simpler to implement an application, they are
more complex to implement the simulation executive, consume larger amounts of memory to save
state, and may suffer performance problems while rolling back state (Fujimoto 2000, p. 172).

Either conservative or optimistic algorithms are applicable to the ISoS simulation case. As an
analytic simulation of infrastructure behaviors, it has a strong consistency and limited responsive-
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Figure 5-2: Distributed simulation architecture topologies include 1) centralized client-server, 2) distributed
peer-to-peer with complete connectivity, and 3) distributed peer-to-peer with partial connectivity.

ness requirement. Rather than evaluating one or several algorithms, this research identifies existing
implementations usable for synchronizing distributed infrastructure system models. The next sec-
tion discusses several alternative software architectures and implementations for this application.

5.2 Software Architectures for Distributed Simulation

Several distributed simulation approaches exist for different types of applications. This section
reviews two main topologies for distributed simulation illustrated in Figure 5-2: a centralized
client-server (C-S) architecture and a decentralized peer-to-peer (P-P) architecture with partial or
complete connectivity. The objective of this section is to identify an existing approach applicable
to interoperable simulation gaming and outline its architectural implications in developing model
implementations.

5.2.1 Centralized Client-server Architecture

A centralized client-server (C-S) architecture follows a star topology where multiple clients connect
to a single server. Each client application has responsibility to “perform local simulation computa-
tions pertaining to entities ‘owned’ by the client” while the central server “maintains global state
of the simulation ... and is responsible for notifying each client simulator whenever some portion of
the virtual world relevant to the client has changed” (Fujimoto 2000, p. 197). The C-S architecture
avoids a portion of the technical synchronization challenges with centralized model state storage
(i.e. there is only one state and it is, by definition, correct) while still allowing distributed control
of state changes through client-server message transactions.

C-S architectures are prevalent in modern multi-player entertainment games, realized either
with dedicated commercial online servers or with one client “host” acting as a server for other
homogeneous clients (Smed et al. 2002). Many games design custom C-S implementations using low-
level networking libraries in general-purpose programming languages. Some commercial packages
(e.g. Valve Developer Community 2012; RakNet 2012; Photon 2013) are also available to provide
a higher level of abstraction and implement useful features such as “host migration” which selects
and migrates to a new client host if the current one disconnects.
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C-S architectures are common in entertainment games for three reasons. First, it provides
greater simplicity of implementation as compared to P-P architectures. The separation of logic be-
tween server (model state) and client (state change requests) eases testing and debugging, allowing
both components to be developed independently while maintaining a common interface. The server
ultimately operates as a sequential, single-LP simulation and internal synchronization is limited to
managing the concurrency of receiving and responding to client requests. Also, as the role of the
client is limited to send state update requests to the server, automated testing clients can also be
created to rapidly and reliably execute test programs.

Second, C-S architectures exert central control over the model state which allows for relaxed
consistency or synchronization for a more responsive application. In entertainment games, for ex-
ample, while player inputs usually remain active, delayed messages may cause “lag” in the client
display compared to the real server state. Central control over the state also provides a level of secu-
rity for applications which may be subject to exploits. For example, an unauthorized modification
in a competitive game client holding the state of a player could override the true value of a state
parameter such as a player’s health or power to gain an advantage. The client-server architecture
allows all messages requesting state changes to be processed by the trusted server application.

Finally, C-S architectures alleviate some bandwidth concerns by routing all interactions between
clients through the central server node rather than passing all messages to all clients in a fully con-
nected network. Ideally, the server would be equipped with high-bandwidth network infrastructure
and located at a proximate spatial location for minimal latency to clients. In applications with
client hosts (rather than dedicated servers), the host can be dynamically selected among clients on
the basis of maximum bandwidth and minimum latency.

The central control over the model state in a C-S architecture also introduces some limitations.
First, the server contains the extent of all information in an integrated model. No portions can be
contributed by third parties without explicit integration, and no model state is considered private
or inaccessible to other portions of the server application. Second, the central control of the model
state creates a bottleneck for bandwidth and latency if there are a large number of clients. Some
approaches (e.g. Cronin et al. 2001) create server mirrors to partially alleviate this concern.

In addition to entertainment game applications, C-S architectures are also common in web
applications and services. A simple web server maintains the state of its content (e.g. HTML
documents, images, CSS style sheets, etc.) which is be sent on request via HTTP to clients. More
advanced web servers may use server-side programming languages (PHP, ASP.NET C#, Python,
etc.) to execute a program and send its output to clients or use a centralized databases (Postgres,
MySQL, CouchDB, etc.) to store content and state information.

Similar to the bottleneck in the entertainment game application, there is also a limit to the
scale of C-S architectures in web services. As popular web services reach levels of serving hundreds
of millions of clients, active research and development over the past ten years has focused primarily
on scalability. Most approaches emphasize server replication, efficient response-handling, and/or
data caching. Techniques such as the MapReduce programming model, implemented in the Hadoop
software framework, mirror the state of databases across geographic regions to manage the scale of
client requests to central servers (Dean and Ghamawat 2008; Apache Software Foundation 2013).
Server frameworks such as Twisted and Node.js seek to better implement concurrency to handle
client requests more efficiently (Twisted Matrix Labs 2013; Joyent, Inc. 2013). REST (representa-
tional state transfer) is another architectural style for modern web services (Fielding and Taylor
2002). It emphasizes a stateless client-server architecture, i.e. there is no mutable state on the
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server-side. This requires all state to be stored client-side, and allows server requests to be cached
as, without state, the same inputs will always produce the same outputs.

5.2.2 Distributed Peer-to-peer Architecture

A decentralized peer-to-peer (P-P) architecture follows a partially or fully connected topology
where each component connects to one or more other components. Components are responsible for
updating local state and no single component has visibility of the entire global state.

Some entertainment games, namely older first-person shooter (FPS, e.g. Gautier and Diot 1997)
and real-time strategy (RTS, e.g. Bettner and Terrano 2001) use parallel simulation as a form of
a distributed server-less architecture whereby every client simulates the entire game world. These
applications use a fully-connected topology where each peer sends its actions (state changes) within
a time step to others. Extra considerations must be made to manage performance differences
between peers such that the entire game runs in lock-step synchronization. Parallel simulation is
usually only scalable to small numbers of players (fewer than ten) due to quadratic bandwidth
scaling for transactions between every pair of peers.

Extensions of the basic lock-stepped P-P architecture allow wider distribution of game state
across multiple servers. For example, Bharambe et al. (2005) describe an architecture which uses a
single copy consistency model to improve responsiveness at the cost of weaker consistency and a pre-
fetch process to use locality and predictability to improve the performance of logic computations.
While the architecture of Bharambe et al. (2005) is technically a P-P, similar to parallel simulation
it assumes the possible states of each peer are still controlled by a central authority (i.e. the game
studio). Less centralized control of the application makes it vulnerable to cheating. Bharambe
et al. address these security concerns by “carefully selecting the owners of primary objects ... to
limit the damage malicious players or nodes can inflict on others.” P-P architectures are more
common in other domains where there may not be a central developer or simulation application to
control a server and there is a purely collaborative agreement between peer applications (but not
necessarily actions within applications).

Distributed Interactive Simulation (DIS) is an architecture and interface specification (proto-
col) originally developed for real-time military simulations (IEEE 1998). It specifies a networking
protocol to communicate state information across distributed simulation models without central-
ized control. Each member application is responsible for maintaining synchronization of its state.
DIS uses a periodic broadcast communication method represented as a fully-connected network
topology, and as such, has bandwidth limitations for large numbers of members. To limit data
exchanged, “dead-reckoning” is used to interpolate state, for example position changes of an entity.

The High Level Architecture (HLA) is an architecture for military simulations viewed as a
successor to DIS. Whereas DIS specifies the format of line-level messages between simulation ap-
plications, the HLA only specifies an application programming interface (API) to another software
component, the runtime infrastructure (RTI). An RTI implementation includes the synchronization
algorithms required to run as-fast-as-possible and scaled time simulations in addition to real-time
simulations. The RTI also acts as a centralized router for message-passing among federates to re-
duce bandwidth use. Thus, while the HLA logically follows a distributed architecture with partial
connectivity, it sometimes follows a centralized architecture with the central RTI component (CRC)
coordinating messages between local RTI components (LRCs).

While DIS and HLA are common in military and defense domains, distributed simulation ap-
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Table 5.1: Comparison of distributed simulation architectures and approaches
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Monolithic n/a API – + + – +

Custom Game C-S Commercial network library,
other TCP/IP

0 0 0 – +

Web-based C-S HTTP, JSON, XML 0 0 + 0 +

Parallel Simulation P-P Custom TCP/IP 0 + 0 – +

DIS P-P Standard TCP/IP + – 0 + +

HLA P-P Standard API + + – + 0

Homespun P-P Proprietary COM, CORBA,
WinSock, other TCP/IP

+ – 0 – +

plications in industry tend to use other “homespun” protocols such as WinSock, CORBA, and
COM to facilitate communication between peers (Boer 2005, pp. 43–44). While applications of true
distributed simulation are limited, there is often interoperability between modeling tools and other
systems such as databases, spreadsheets, optimization tools, statistical software, and enterprise
resource planning (ERP) systems (Boer 2005, p. 43).

5.2.3 Architectural Comparison

Table 5.1 compares the above approaches in consideration for an architecture for interoperable
simulation gaming. Each approach is qualitatively evaluated on the basis of five categories.

Decentralization evaluates the ability to distribute control over model structure and behavior.
The monolithic architecture provides no decentralized control over the model state or changes as all
models must be integrated into a single application (–). Custom and web-based C-S architectures
and the parallel simulation P-P approach only provide decentralized control over state changes (0).
DIS, HLA, and homespun P-P architectures allow full decentralized control over both model state
and state changes (+).

Synchronization evaluates the ability to maintain consistency across models. As a real-time
simulation architecture, DIS does not include synchronization (–). Homespun P-P architectures
must also implement algorithms to maintain synchronization of the distributed state (–). Custom
and web-based C-S architectures require synchronization of the server state (0). Monolithic archi-
tectures do no need synchronization (+), parallel simulation inherently synchronizes state across
clients (+), and the HLA RTI implements synchronization algorithms (+).

The simulation architecture should provide a high usability for development and testing. The
HLA is a complex standard with dozens of API calls which causes a steep learning curve (–). DIS
and homespun architectures require additional implementation of algorithms or other approaches to
ensure synchronization (0). Parallel simulation simplifies the synchronization issue with duplication
of a single simulation model, however message transactions must still be configured (0). Web-based
architectures are typically simpler and easier to use than those in general programming languages
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(+) and monolithic architectures are the most traditional and easiest to implement (+).

Standardized approaches are preferred over proprietary or custom ones to ensure wider accep-
tance and use. Monolithic, custom C-S, parallel simulation, and homespun architectures all require
non-standardized interfaces through APIs or TCP/IP protocols (–). Due to its wide use, web-
based C-S architectures are more standardized, but still require an API (0). DIS and HLA include
specified protocols and APIs as published IEEE standards (+).

The simulation architecture should also be accessible for widespread use by different organiza-
tions. All architectures except the HLA do not require specific licensed software (+). The HLA
requires an RTI implementation which may be open source (e.g. partial implementations include
Open HLA 2013; The Portico Project 2013) or commercially-licensed (0).

5.2.4 Summary

The HLA is the only existing architecture meeting the requirements of distributed control over
model state and providing strong consistency and non-real-time simulation with a standard inter-
face. It is limited, however, by difficult implementation (due to its complexity) and limited acces-
sibility due to a licensing expense for a commercial RTI implementation. Despite these limitations,
the HLA is selected as the architectural basis of the ISoS framework software implementation.

The ideal architecture, however, is not achieved by any existing approach, suggesting there is
an opportunity for future research and development. In particular, combining the simplicity and
ease of access for modern web-based services and extended to a P-P architecture may provide a
significantly improved approach. Such an architecture could use an API similar to that of the
HLA, but rather than operating in a software application on an OS, it would operate in a browser.
While styles like REST may not be fully applicable due to the inherent state-storing nature of
simulations, its architectural principles of simplicity could be helpful in reducing the complexity
of developing distributed simulation applications. Indeed, the inclusion of web services in the
HLA-Evolved standard takes a few steps in this direction (IEEE 2010c). The web services define a
protocol using simple object access protocol (SOAP) for communication between a federate and the
RTI. A future extension with a browser-based JavaScript RTI implementation may allow federates
to run completely in the browser.

5.3 Overview of the High Level Architecture (HLA)

As introduced in the previous section, the High Level Architecture (HLA) is the culmination of dis-
tributed simulation research and development driven primarily from military cases, but applicable
to generalized simulation. It is logically a distributed peer-to-peer architecture using an application
programming interface (API) to communicate between member models using common RTI. This
section is intended for readers unfamiliar with the HLA to discuss its history and applications,
structure and services, and recommended development processes.

5.3.1 History and Current Applications

The HLA has its roots in the military community. Early efforts to develop distributed simula-
tions for virtual environments were sponsored by the Defense Advanced Research Projects Agency
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(DARPA). SIMNET (SIMulator NETworking) was a prototype wide area network vehicle simu-
lator project from 1983–1989 (Fujimoto 2000, p. 9). A follow-on program to SIMNET developed
Distributed Interactive Simulation (DIS), “an infrastructure for linking simulations of various types
at multiple locations to create realistic, complex, virtual ‘worlds’ for the simulation of highly in-
teractive activities” (DIS Steering Committee 1994). DIS specifies a transport layer protocol for
conducting simulations across multiple computers with improved interoperability, later standard-
ized as IEEE Std. 1278 (1998). Applied mostly in training exercises, the DIS does not include
coordination to advance simulation time and uses dead reckoning algorithms to extrapolate state
information between updates.

The Aggregate Level Simulation Protocol (ALSP) developed by MITRE in the early 1990s
applied interoperability approaches formulated under DIS to aggregate-level combat simulations.
Rather than focusing on operational-level training with individual vehicles and troops as under
DIS, the objective of ALSP was to enable joint military wargames across the Army, Air Force, and
Navy using groups of abstracted force objects (Wilson and Weatherly 1994). The ALSP introduced
an infrastructure software (AIS) as a separate module to manage the distributed simulation and
added several key improvements including time and data management.

The contributions of ALSP and DIS were unified the late-1990s under the High Level Archi-
tecture (HLA), a standard software architecture for federated simulation (Dahmann et al. 1997).
Federated in this context means a distributed set of heterogeneous simulation models, thus em-
phasizing the interoperability focus of the standard. The most recent iteration of the standard is
IEEE Std. 1516-2010 (HLA-Evolved), which “evolved” HLA from the previous release to include
new features including additional XML support, an API for web services (WSDL), modular FOMs,
encoding helpers, and standardized time representations (IEEE 2010c). Similar to ALSP’s AIS, the
HLA specifies a runtime infrastructure (RTI) to support data and time management processes.

Since its initial publication, the HLA has been applied growing number of non-military (civilian)
domains seeking to implement distributed simulation (Straßburger 2001). Some prominent exam-
ples include space exploration (e.g. Reid 2000), aviation and air traffic management (e.g. Sweet
et al. 2002; Simons et al. 2013), grid computing (e.g. Zajac et al. 2004), electrical and communi-
cations systems (e.g. Hopkinson et al. 2006; Sztipanovits et al. 2012), traffic systems (e.g. Schulze
et al. 1999), infrastructure interdependencies (e.g. Eusgeld et al. 2011; Nan and Eusgeld 2011),
manufacturing and supply chains (e.g. Hibino et al. 2002; Bruzzone et al. 2005), health care (e.g.
Brailsford et al. 2006), and emergency response (e.g. Jain and McLean 2003; Fiedrich 2006; Liu
et al. 2007).

While the HLA has been previously identified as a potential architecture to simulate infrastruc-
ture systems, its application in practice thus far have been limited. One particular challenge deals
with differing time-scales and model resolutions of component models (Pederson et al. 2006). For
example:

Many models and computer simulations exist for aspects of individual infrastructure (e.g., load
flow and stability programs for electric power networks, connectivity and hydraulic analyses
for pipeline systems, traffic management models for transportation networks), but simulation
frameworks that allow the coupling of multiple interdependent infrastructures to address infras-
tructure protection, mitigation, response, and recovery issues are only beginning to emerge. This
problem is exacerbated by the variety of classes of models in use: physics-based models, nodal
analysis models, agent-based models, stocks-and-flows models, and more. ... simply ‘hooking’
several existing infrastructure models together generally does not work: every model has its own
unique assumptions, data, and numerical requirements (such as time-step sizes, scaling limita-
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tions, or computational algorithms) that may not be compatible with other models. (Rinaldi
et al. 2001)

Thus, it appears a common modeling framework which aligns the temporal and spatial resolution
of component models (such as that presented in Chapter 4) is necessary to enable application of
the HLA.

The limited use of the HLA is not unique to the infrastructure domain. Though commonplace in
defense and growing in frequency as applied in research, distributed simulation is still in its infancy
in industrial applications. Boer et al. (2009) conducted a questionnaire of commercial off-the-shelf
(COTS) simulation vendors, industrial simulation practitioners, HLA designers and developers,
HLA simulation practitioners in defense, and commercial HLA vendors to study this issue. They
found the main reasons for limited industrial applications to include:

• An emphasis on inexpensive, limited, and disposable industrial models rather than credible,
reusable, and expensive models in defense,

• Industry use of COTS packages compared to general-purpose programming languages in de-
fense, and

• High RTI cost, high complexity, and few experts in industry.

The complexity of the HLA standard has led others to develop simpler service-oriented architectures
for infrastructure modeling with centralized event processing and significantly reduced functionality
(Tolone et al. 2008).

5.3.2 Structure and Services

The HLA includes three main components. First, ten rules in IEEE Std. 1516 (2010) set require-
ments for the federation and each federate. Second, an object model template (OMT) in IEEE Std.
1516.2 (2010) defines the structure of information produced or exchanged in a simulation. Finally,
a runtime infrastructure (RTI) in IEEE Std. 1516.1 (2010) specifies how “simulations to connect
to one another, exchange data, and coordinate activities during a distributed runtime execution”
(IEEE 2010c).

The ten rules include five for the federation as a whole and five for each federate (IEEE 2010c,
pp. 20–22). In summary, all federation simulation objects must be documented in a federation
object model (FOM), exist in the federate application state, and exchange data via the RTI using
standard services. Federates must be able to manage local time and their simulation objects
must be documented in a simulation object model (SOM) which determines the attributes and/or
interactions to be sent, received, or transferred to another owner.

The OMT specifies the data structures of objects and is applied to create the SOM for each
federate and FOM for each federation.1 The FOM is used as an interface control document to
specify a common language between federates during the simulation and is foremost used to encode
and decode data. While the HLA does not specify a network-level protocol, the data is encoded to
a serialized (byte array) form when sent to the RTI, and must be decoded when received from the
RTI. Explicit data formats are required as heterogeneous machines and programming languages
may implement different standards by default.

1The FOM is composed of each federate’s SOM to allow for heterogeneity.
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The FOM is often presented in a tabular format for visibility, but is formatted as an XML
document for a federation. The major elements of a FOM specify the hierarchy of object classes
(persistent objects) and their attributes, interaction classes (transient objects) and their parameters,
and the corresponding data types used for attributes and parameters. All complex data types must
be specified in the FOM as compositions of basic data types (e.g. boolean, short, integer, float,
Unicode string, etc.) using standard or custom structures.

The RTI provides services pertaining to the following seven categories:

1. Federation management: creating, destroying, synchronizing, storing, and restoring federa-
tions and joining and resigning of federates,

2. Declaration management: specifying data sent or received,

3. Object management: registering, discovering, deleting, and removing objects, updating and
reflecting attribute values, and sending and receiving interactions,

4. Ownership management: specifying authority for updating attribute values

5. Time management: enabling and disabling time-related modes and advancing time,

6. Data distribution management: filtering data sent or received, and

7. Support services: other miscellaneous functions.

Some RTI implementations (e.g. Pitch pRTI, MÄK RTI, and Open HLA) include a central RTI
component (CRC) to manage federations and local RTI components (LRCs) to pass communication
between the federate and the CRC. The LRC includes an application programming interface (API)
for integration into the simulation program using a general-purpose programming language.2 While
separate components, the CRC and LRC(s) may actually be running on the same physical machine.
Other RTI implementations (e.g. Portico) use a truly distributed architecture with each federate
accessing a separate RTI component.

5.3.3 Recommended Development Processes

In addition to the HLA, IEEE Std. 1730 (2010) specifies a recommended practice for a distributed
simulation engineering and execution process (DSEEP). The DSEEP is structured as a waterfall-
style development process with specific output products from activities used as inputs to successive
activities. It breaks down development of a distributed simulation into seven steps:

1. Define simulation environment objectives,

2. Perform conceptual analysis,

3. Design simulation environment,

4. Develop simulation environment,

5. Integrate and test simulation environment,

2IEEE Std. 1516-1 provides API code for Java, C++, and Web Services (SOAP HTTP), however the specific
language bindings supported depend on the RTI implementation.
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6. Execute simulation, and

7. Analyze data and evaluate results.

Each step includes a number of activities, each with specified inputs, outputs, and recommended
tasks.

This discussion focuses on step 4 to develop the simulation environment, assuming the simu-
lation objectives, conceptual analysis, and preliminary design of the simulation environment are
completed in advance. As a generalization for other distributed simulation architectures including
DIS and TENA (Test and Training Enabling Architecture), some DSEEP activity products overlap
with HLA requirements. For example, activity 4.1 develops the simulation data exchange model
which corresponds to the HLA FOM. Additional products, however, coordinate other development
activities. In particular, activity 4.2 establishes simulation environment agreements to identify
runtime interactions between models.

The simulation environment agreement (called the federation agreement as applied to HLA)
specifies how runtime interaction will take place between federates. It adds the context of the
particular scenarios under investigation to the abstract nature of the HLA to specify:

1. Time management agreements,

2. Data management and distribution agreements,

3. Synchronization and initialization procedures,

4. Saving and restoring strategies, and

5. Publishing and subscribing responsibilities, among others.

Completing each of these tasks involves creating requirements using the standard HLA services.

5.4 ISoS Federation Implementation

This section discusses the implementation of the infrastructure system-of-systems model discussed
in the previous chapter as a federation using the HLA. A generic federation object model defines the
common data structures and a federation agreement specifies the operational behaviors required of
each federate.

5.4.1 Federation Object Model

The federation object model (FOM) defines data structures to meet the interoperability interface
required in the ISoS modeling framework. Specifically, it:

1. Represents nodes, locations, resource types, resources, and resource sets as data types,

2. Provides a mechanism for sending and receiving elements’ location, and

3. Provides a mechanism for sending and receiving resource exchanges between elements.
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Table 5.2: ISoS simple data types

Name Representation Units Resolution Accuracy Semantics

ISOSnode HLAunicodeString NA NA NA Node name.

ISOSresourceType HLAunicodeString NA NA NA Resource type name.

Table 5.3: ISoS enumerated data types as an alternative to simple data types

Name Representation Enumerator Values Semantics

ISOSnode HLAinteger32BE Node1 1 The first enumerated node.

Node2 2 The second enumerated node.
...

...
...

ISOSresourceType HLAinteger32BE Type1 1 The first enumerated resource type.

Type2 2 The second enumerated resource type.
...

...
...

The simple data types in Table 5.2 represent nodes and resource types as ISOSnode and
ISOSresourceType data types, each using the default Unicode string encoding HLAunicodeString.
This data type requires the list of possible node names and resource type names to be defined in the
federation agreement. Table 5.3 presents an alternative representation for nodes and resources as
enumerated data types using the default HLA 32-bit big-endian integer encoding HLAinteger32BE.
This option requires the list of possible nodes and resource types to be specified in the FOM itself.
While the simple data type option is more flexible to accommodate new nodes and resource types,
the enumerated data type is more tightly controlled to only accept certain pre-specified values.

The simple or enumerated data types are used in composite fixed record and array data types.
The fixed record data type ISOSresource in Table 5.4 represents resources as a combination
of a resource type and a quantitative amount with units defined in the federation agreement.
The ResourceType field uses the existing ISOSresourceType data type (either simple or enu-
merated) while the Amount field uses the default HLA 64-bit big-endian floating-point data type
HLAfloat64BE. The array data types in Table 5.5 represent pairs of nodes as locations and sets of re-
sources. The ISOSlocation data type uses the HLAfixedArray encoding to combine two ISOSnode

data types as a fixed array where the first node is the origin and the second node is the destination.
Similar to the simple data type option for nodes, a list of possible locations must be specified in
the federation agreement. The ISOSresourceSet data type uses the HLAvariableArray encoding
to combine any number of ISOSresource data types.

Table 5.6 defines ISOSelement as the base object class representing elements for an ISoS frame-
work. It has two required attributes. The Name attribute uses the HLAunicodeString data type
to identify its unique name. The Location attribute uses the ISOSlocation data type to identify
its location. While the name is not expected to change (i.e. it is static), the location attribute
will update conditionally during an element transport event. Neither attribute can be divested
(D) or acquired (A), and both can be published (P) and subscribed (S). The attributes do not use
dimensions and are transported using reliable networking protocols. While updates to the name
attribute can be receive-ordered, the location attribute should be time stamp-ordered to preserve
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synchronization during an execution.
While the object class ISOSelement presented is the minimum required to adhere to the ISoS

interoperability interface, future extensions could be proposed to share more data under the ISoS
framework. The three remaining element attributes include the resource contents, parent ele-
ment, and element state. These attributes are included in Table 5.6 as Contents using the
ISOSresourceSet data type to identify the resource contents, Parent using the HLAunicodeString
data type to identify the parent element name, and State using the HLAunicodeString data type
to identify the current operational state name. All three extended attributes are also conditionally
updated when the associated behaviors take place.

Table 5.7 defines ISOSresourceExchange as the interaction class to exchange resources be-
tween elements. It has three required parameters. The SendingElement parameter uses the
HLAunicodeString data type to identify the element sending resources by name. Likewise, the
ReceivingElement parameter uses the HLAunicodeString data type to identify the element re-
ceiving resources by name. Finally, the ResourcesExchanged parameter uses the ISOSresourceSet
to define the set of resources exchanged between the two elements. The ISOSresourceExchange

interaction does not use dimensions, should use reliable transport, and is time stamp-ordered for
synchronization during a simulation.

As an alternative to using resource exchange interactions, two additional attributes can be
added to the ISOSelement object. The ExchangeInputs attribute specifies a list of resources to
be sent to target elements and the ExchangeOutputs attribute specifies a list of resources to be
received from target elements. To meet resource flow consistency conditions, the inputs from a
sending element should equal the outputs from the receiving element. Both attributes use the
ISOSdirectedResourcesSet array data type, which in turn uses the ISOSdirectedResources

fixed record to store pairs of ISOSresourceSet and HLAunicodeString data elements. Using
attributes rather than interactions is more desirable for regular continuous resource exchanges
as the attributes can be conditionally updated using standard processes. Alternatively, resource
exchange interactions are more desirable for discrete resource flows. Both methods can be combined
in a single federation if desired.
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Table 5.7: ISoS interaction parameters

Interaction Parameter Data Types Dim. Transport Order

ISOSresourceExchange SendingElementName HLAunicodeString NA Reliable TimeStamp

ReceivingElementName HLAunicodeString

ResourcesExchanged ISOSresourceSet

5.4.2 Federation Agreement and Required Activities

The federation agreement establishes two key items. First, it specifies any additional constraints,
invariant conditions, or other assumptions about the FOM and its use in federates. Second, it
specifies required processes and behaviors of federates to correctly participate in the federation.

If using the simple data types for nodes and resource types, allowable values must be specified
in the federation agreement. Next, the measurement units of each resource type must be identified
for proper quantification. For example, resource type “water” may be measured in cubic meters
and resource type “electricity” in kilowatt hours. An element naming scheme should be devised
such that each element receives a unique name. Finally, there should be an agreement as to how
and when the resource exchange interaction can be used. For example, the sending and receiving
elements should, at minimum, have matching destination and origin nodes respectively.

In addition to the FOM elements specified in the previous section, the federation agreement also
establishes timing information. Data types for time and duration are selected and entered into the
time representation section of the FOM. For ISoS simulations, federates must agree on a uniform
initial time t0, ending time tend, and time-step ∆t for advancing the simulation. Synchronization
point labels including “initialized” and “reset” used in this application are also defined in the FOM.

During a simulation execution, federates must use specific HLA services to interact with the
federation. The activity diagram in Figure 5-3 includes start-up, advance, reset, and shut-down
activities as components of a federate life-cycle. The federate performs the start-up activity which
initializes the federate to the initial time to. Next, the advance activity increments time by ∆t as
long as the simulation should continue. After the simulation achieves the ending time tend or is
halted, the federate can either reset to initial conditions or shut-down.

The following sections describe each activity in detail. HLA services are identified by section
number in the standard (e.g. Connect is 4.2). Services for communication to the RTI are illustrated
as rounded rectangles (actions) and callback services for communication from the RTI are illustrated
as labels on transitions (conditions).

Start-up Activity

The start-up activity diagrammed in Figure 5-4 connects to a federation and configures the federate.
It uses service 4.2 to connect to the RTI. If the federation does not yet exist, one is created using
service 4.5 and the federate joins the federation using service 4.9. Next, the federate enables
asynchronous messages (i.e. outside of the time-advancing state) using service 8.14 and enables
time constraint and regulation (using ∆t as the look-ahead) using services 8.5 and 8.2. Callback
services 8.6 and 8.3 confirm time constraint and regulation is enabled.

The federate attempts to register the “initialized” synchronization point for all federates par-
ticipating in a simulation using service 4.11. If the callback service 4.12 is successful the federate
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Figure 5-3: A federate life-cycle includes start-up, advance, reset, and shut-down activities.

will initiate a later save. The federate advances time to an initial value of t0 − 2∆t and waits for
the callback service 4.13 to announce the “initialized” synchronization point.3 Next, the federate
publishes and subscribes object class attributes using services 5.2 and 5.6 and registers object in-
stances of the local infrastructure systems using service 6.8. The federate uses service 4.14 to notify
the synchronization point was achieved, and waits for the callback service 4.15 to notify that other
federates are also synchronized.

The federates advance time to t0 − ∆t to update and reflect attribute values. The federate
which successfully registered the synchronization point requests a federation save using service
4.16. Other federates wait for the callback service 4.17 to initiate the federation save. The federate
uses services 4.18 to begin the save and 4.19 to complete the save, waiting for callback service 4.20
to notify other federates have also completed saving. Finally, the federate advances time to t0.

Advance Activity

The advance activity diagrammed in Figure 5-5 advances time by ∆t and allows for timestamped
callback services. To accommodate dependencies among federates, however, the time step is divided
into γ ≥ 1 pseudo-steps, each of duration ξ = ∆t/γ. During each pseudo-step, federates are allowed
to exchange interdependent attributes and interactions without advancing internal simulation time.
For example, if using a time-step of ∆t = 1.0 year and γ = 5, each sub-step would advance time
by ξ = 1/γ = 0.2 years of simulated federation time, however, only the last would advance the
simulated federate time by ∆t = 1.0 year.4 To completely capture all dependencies, ξ must exceed
the longest dependency path ρ, i.e. ξ > ρ. In cases with cyclic dependencies, no value of ξ is
sufficient to result in zero error. In practice, however, gains between systems are typically low
enough such that values such as ξ = 2ρ? may produce negligible error where ρ? is the longest
acyclic dependency path.

To complete the advance activity, a federate first updates any modified attribute values using
service 6.10 and sends interactions using service 6.12. Next, it requests a time advance to t+ξ using
service 8.8 and waits on the grant callback service 8.13. Callback services for reflecting attribute

3Federates first initialize to time t0 − 2∆t to allow for sufficient advance periods to receive state information at
time t0 from other federates. The advance to t0 −∆t discovers objects and reflects attributes before the federation
is saved. Additional updates are processed after the federation restoration and during the advance to t0.

4The method of federation pseudo-steps which adds more frequent federation time steps is in contrast to the
typical approach of using more frequent internal federate updates (e.g. for state variable integration) to improve
model fidelity while limiting federation update rates.
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Figure 5-4: The start-up activity connects to a federation and configures a time-constrained and time-
regulating federate. It uses a synchronization point to ensure all federates are connected before registering
objects and sending attribute updates. Finally, a federation save is requested by the first federate to store
the initial state before ticking to the initial time and executing the simulation.
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Figure 5-5: The advance activity sends attribute updates and interactions, advances time by one step, and
responds to callbacks. These steps are repeated, if necessary, to accommodate interdependent effects.

updates (service 6.11), receiving interactions (service 6.13), and object instance discovery (service
6.9) can be received while waiting for service 8.13. As mentioned, the process repeats γ times to
achieve the entire time step of ∆t.

Reset Activity

The reset activity diagrammed in Figure 5-6 restores a federation to the initial conditions at time
t0. First, the federate registers the “reset” synchronization point for all federates participating in a
simulation using service 4.11. If the callback service 4.12 is successful the federate will initiate the
restore. The federate waits for the callback service 4.13 to announce the “reset” synchronization
point, uses service 4.14 to notify the synchronization point was achieved, and waits for the callback
service 4.15 to notify that other federates are also synchronized. The federate which successfully
registered the synchronization point requests the federation restore using service 4.24 which is
confirmed by callback service 4.28. The federate waits on callback services to notify the restore
has begun 4.26 and should be initiated 4.27. Once restored, the federate is at time t = t0 − ∆t,
uses service 4.28 to notify it is complete, and waits on the callback service 4.29 that the rest of the
federates are also restored. Finally, federate advances to time t0.

Shut-down Activity

The shut-down activity in Figure 5-7 configures and disconnects a federate. It disables time con-
straint and regulation with services 8.7 and 8.4 and resigns the federate using service 4.10. In case
it is the last federate to resign, it attempts to destroy the federation execution using service 4.6
and disconnects from the RTI with service 4.3.

5.4.3 Network and Physical Infrastructure

The simulation environment uses a computer network for communication. For a small number of
federates, a local area network (LAN) with wired connections to a common network switch or hub is
optimal, however a wide area network connection (WAN) will also work provided compatible RTI
communication protocol, adequate bandwidth, and low latency. Figure 5-8 diagrams a notional
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Figure 5-8: The network diagram for five federates (α, β, γ, δ, ε) each at separate (notional) IP addresses
requires a switch with a connection to the CRC (if required) at a specified IP address.

LAN consisting of six computers connected with a switch, each assigned a private IP address.
If required by the RTI implementation, one computer is designated to host the central runtime
component (CRC) and all connecting federates must configure their local runtime components
(LRC) to connect to the IP address of the CRC (192.168.1.100 in this case). While the CRC
need not be a stand-alone server, it may be desirable to do so for configuration and performance
reasons. Following the federated architecture, each federate (α through ε) runs a simulation model
which communicates within the federation using its LRC. Some federations may assign federates
to be passive (e.g. to only display information on a large-format screen) or non-interactive (e.g. to
manage time advancement or provide common federation data services).

All federates must also use a common RTI implementation. In addition to the network, software,
and hardware infrastructure, the simulation environment also requires sufficient power for each
computer and any displays including projectors. Especially when using desktop computers, large
displays, or projectors, it is critical to verify there is sufficient load capacity on the electrical network
to power all computers and displays.

5.5 ISoS Federate Implementation

A federate implementation of the ISoS framework is a software application capable of participating
in a federation. This section introduces a generic federate implemented in the Java programming
language designed to be extensible to future ISoS application cases. As a particular implementation,
the proposed structure is by no means required or optimal. Alternative implementations may use
different programming languages, data structures, or overall organization to interoperate with any
federate implementation adhering to the federation object model and federation agreement.

Figure 5-9 illustrates a simplified object class diagram of the core modules of the generic federate
implementation. Color schemes illustrate three modules including core ISoS model interfaces (blue
boxes), default model implementations (green boxes), and HLA model implementations with related
services (orange boxes). Default model implementations represent locally-controlled simulation
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Figure 5-9: Simplified object class diagram for a generic federate implementation. Blue boxes define core
ISoS interfaces, green boxes implement default models, and orange boxes implement HLA models. Resource
exchanging interactions and attributes are omitted for clarity.

objects while HLA model implementations represent remotely-controlled simulation objects.

5.5.1 Core ISoS Interface

The core ISoS interfaces in Figure 5-10 define a common structure for local model implementations
and HLA model implementations. The classes SimObject and SimInteraction provide basic inter-
faces to any objects requiring time-stepped simulation and time-based message-passing. SimObject
defines three methods to initialize simulation objects, compute (tick), and commit (tock) state
changes. The two-part state change computes all state changes using consistent information to
eliminate update order dependencies for local objects.

The Element interface extends the SimObject interface to include methods to access a name (for
reference) and dependent properties from the ISoS modeling framework including spatial location,
resource contents, operational state, and parent element. The State interface defines a method to
access the operational state name. The Location interface defines methods to access the origin
and destination nodes and the Node interface defines a method to access a text-based name. The
ResourceSet interface defines a method to access component resources as a collection and particular
resources by type, the Resource interface defines methods to access its associated type and floating
point amount, and the ResourceType interface defines a method to access a text-based name.

Both attribute-based and interaction-based resource exchanging behaviors are specified. The
Element interface includes methods to access inputs and outputs from an exchanging behavior with
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initialize(time : long)
tick(duration : long)
tock()
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getExchangeInputs() : DirectedResourcesSet
getExchangeOutputs() : DirectedResourcesSet
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getType() : ResourceType
getAmount() : double
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<<interface>>
Location

getOrigin() : Node
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Figure 5-10: Object class diagram for core ISoS model interfaces. Node and ResourceType classes use
name-based identification associated with string data types. Includes both interaction-based and attribute-
based resource exchanging behaviors.
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associated DirectedResourcesSet and DirectedResources data types. The ResourceExchange

interface implements the SimInteraction interface and includes methods to access the sending
and receiving elements and the sent resources.

5.5.2 Default Model Implementation

The default model implementations in Figure 5-11 identified with a *Impl suffix specify object
classes adhering to the core interfaces with minimal functionality. These object classes could be
used as the basis for application-specific model implementations to reduce development effort.

The embodiment of a federate is the FederateImpl class which contains all local model in-
stantiations and manages a simulation execution. Its data members store allowable locations,
instantiated elements, and the associated federate ambassador implementation to coordinate HLA
services. It also includes methods to add, update, and remove objects, send interactions, and
execute a simulation by specifying the initial and final times, time step, and pseudo time step.
The simulation formalism is best described as an agent-based network as each object (elements in
ISoS) independently updates itself via the associated tick and tock methods. Alternative federate
implementations could use other formalisms such as discrete event simulation (i.e. the federate
contains a list of events to process in a centralized manner) or system dynamics (i.e. the federate
contains a stock-and-flow model specified by a centralized system of equations).

The ElementImpl class includes data members to store its location, state, parent element, con-
tents, exchange inputs and outputs, and a set of allowable states using local model implementations.
Additional data members with a next* prefix temporarily store values computed during the tick

method before overwriting the associated data members during the tock method call.

The ResourceExchangeImpl class includes data members for the sending and receiving elements
and the associated resources. It avoids implementation-specific element data members to allow for
any element (local or remote) to be targeted with a resource exchange interaction.

The DirectedResourcesSetImpl class is backed by an array list of directed resources which are
implemented in class DirectedResourcesSetImpl with data members for the target element and
resources. Unlike the resource exchange interaction, the directed resources set uses default model
implementations to specify the resources.

The ResourceImpl class stores resource amounts using a primitive double data member. While
a simple implementation, it is also limited in certain cases by the inability for default encoding to
exactly express all numbers. More precise applications may consider alternative implementations
such as the BigDecimal Java data type. The ResourceSetImpl class is backed by an array list.
Alternative implementations may use a set or array of resources resource or even a map between
resource types and double quantities. The ResourceSetImpl and ResourceImpl classes introduce
new methods to add, subtract, and multiply resources to serve as convenience methods.

The ResourceTypeImpl, NodeImpl, and StateImpl classes are minimal implementations which
only store the associated name as a String data member. Classes including ResourceSetImpl,
ResourceImpl, ResourceTypeImpl, LocationImpl, NodeImpl, DirectedResourcesSetImpl, and
DirectedResourcesImpl are implemented as immutable, or unchangeable, objects. In other words,
their data members cannot be modified once an object is instantiated. Thus, for resource operations
such as addition, subtraction, and multiplication and for methods returning a collection, a new
object instance is returned rather than modifying an existing one.

Several classes require methods to override default behavior for hashCode and equals Java
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FederateImpl

locations : HashSet<LocationImpl>
elements : HashSet<ElementImpl>
ambassador : AmbassadorImpl

add(object : SimObject)
update(object : SimObject)
remove(object : SimObject)
send(event : SimInteraction)
simulate(initial : long, final : long,
step : long, pseudoStep : long)

ElementImpl

name : String
location : LocationImpl
contents : ResourceSetImpl
state : StateImpl
parent : ElementImpl
exchangeInputs : DirectedResourcesSetImpl
exchangeOutputs : DirectedResourcesSetImpl
nextLocation : LocationImpl
nextContents : ResourceSetImpl
nextState : StateImpl
nextParent : ElementImpl
nextExchangeInputs : DirectedResourcesSetImpl
nextExchangeOutputs : DirectedResourcesSetImpl
states : HashSet<StateImpl>

setLocation(location : LocationImpl)
setParent(parent : ElementImpl)
setState(state : StateImpl)
setExchangeInputs(inputs : ResourcesSetImpl)
setExchangeOutputs(outputs : ResourcesSetImpl)

StateImpl

name : String

LocationImpl

origin : NodeImpl
destination : NodeImpl

isNodal() : boolean
getOrigin() : NodeImpl
getDestination() : NodeImpl

NodeImpl

name : StringResourceSetImpl

resources : ArrayList<ResourceImpl>

getResource(type : ResourceType) : ResourceImpl
getResources() : Collection<ResourceImpl>
add(resource : Resource) : ResourceSetImpl
add(resources : ResourceSet) : ResourceSetImpl
subtract(resource : Resource) : ResourceSetImpl
subtract(resources : ResourceSet) : ResourceSetImpl
multiply(scalar : double) : ResourceSetImpl

ResourceExchangeImpl

sender : Element
receiver : Element
resources : ResourceSetImpl

ResourceImpl

type : ResourceTypeImpl
amount : double

add(amount : double) : ResourceImpl
subtract(amount : double) : ResourceImpl
multiply(scalar : double) : ResourceImpl

ResourceTypeImpl

name : String

DirectedResourcesImpl

target : Element
resources : ResourceSetImpl

DirectedResourcesSetImpl

resources : ArrayList<DirectedResourcesImpl>

getResources(target : Element) : ResourceSetImpl
getDirectedResources() : Collection<DirectedResourcesImpl>

Figure 5-11: Object class diagram for a default model implementation. Resource amounts are implemented
as a primitive double data type.
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methods. For example, two Node objects, two ResourceType objects, or two State objects shall
be equal if they have a common name. Similarly, two Location objects shall be equal if they
have equal origin nodes and destination nodes. Resource objects shall be equal if they have equal
resource types and amounts. Two ResourceSet objects shall be equal if they contain equal sets of
resources with non-zero amounts. Two DirectedResources objects shall be equal if they contain
equal resource sets and target elements. Finally, two DirectedResourcesSet objects shall be equal
if they contain equal sets of directed resources.

5.5.3 HLA Model Implementation

The HLA model implementations in Figure 5-12 identified with a HLA* prefix specify object classes
adhering to the core interfaces and HLA-related interfaces. As a complete description of the feder-
ation interface, these classes need not be modified for any federate implementation using the Java
programming language.

The class AmbassadorImpl implements the HLA standard FederateAmbassador interface to
interact with the RTI. Service requests are issued via an RTIambassador data member and callback
services are received via interface methods. Additionally, the federate ambassador provides methods
for the required processes detailed in the federation agreement including start-up, advance, reset,
and shut-down. Additional methods register, update, and delete objects and send interactions
using local model implementations. Although not discussed here, an observer pattern such as the
EventListener and EventObject can be used to notify the federate of HLA services.

While the entire HLA functionality could be included in a FederateAmbassador implementa-
tion, a modular structure presented leverages abstraction for future extensibility. Abstract object
classes HLAobject and HLAinteraction support the federate ambassador to provide low-level func-
tionality. HLAobject contains data members for the RTI ambassador, HLA class, attribute, and
object handles, the assigned instance name, and a boolean determining if the object is local (i.e.
corresponding to a local model implementation) or remote. Methods provide an interface to delete
local or remote objects, request attribute value updates of remote objects, set attributes from lo-
cal objects or from HLA attribute handle value maps, or to update local attributes. Similarly,
HLAinteraction contains data members for the RTI ambassador and the HLA class handle. Meth-
ods provide an interface to set parameters from local interactions or from HLA parameter handle
value maps, and to send local interactions.

The HLAelement and HLAresourceExchange classes extend the abstract classes to add ISoS
interface-specific data members. The HLAelement class corresponds to the ISOSelement object in
the FOM and includes data elements for the name, location, contents, state, and parent element.
The HLAresourceExchange class corresponds to the ISOSresourceExchange interaction in the
FOM and includes data elements for the names and object references of sending and receiving
elements and the set of exchanged resources. Whereas the element names are assigned via HLA,
the object references are assigned by the federate ambassador when a remote interaction is received.

The data structure classes HLAstate, HLAlocation, HLAnode, HLAresourceSet, HLAresource,
HLAresourceType, HLAdirectedResources, and HLAdirectedResourcesSet correspond to ISOS*

data type entries in the FOM and implement the standard HLA interface DataElement to act as
HLA-compatible data types. At the lowest level, each class uses standard HLA data types such
as HLAvariableArray, HLAfixedArray, and HLAfixedRecord for composite data members and
HLAunicodeString and HLAfloat64BE for primitive data members.
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<<interface>>
FederateAmbassador

AmbassadorImpl

rtiAmbassador : RTIambassador
encoderFactory : EncoderFactory
timeFactory : HLAinteger64TimeFactory
logicalTime : HLAinteger64Time
hlaObjects : Map<ObjectInstanceHandle, HLAobject>
simObjects : Map<SimObject, HLAobject>

startUp(initial : long) : void
advance(step : long, pseudoStep : long) : void
reset() : void
shutDown() : void
register(object : SimObject) : void
update(object : SimObject) : void
delete(object : SimObject) : void
send(interaction : SimInteraction) : void

<<interface>>
RTIambassador

<<abstract>>
HLAobject

rtiAmbassador : RTIambassador
classHandle : ObjectClassHandle
attributeHandles : AttributeHandleSet
objectHandle : ObjectInstanceHandle
instanceName : String
local : boolean

delete() : void
requestAttributeValueUpdate() : void
setAttributes(ahvm : AttributeHandleValueMap) : void
setAttributes(o : SimObject) : void
updateAttributes() : void

HLAelement

name : HLAunicodeString
location : HLAlocation
contents : HLAresourceSet
state : HLAstate
parent : HLAunicodeString
exchangeInputs : HLAdirectedResourcesSet
exchangeOutputs : HLAdirectedResourcesSet

HLAdirectedResources

targetName : HLAunicodeString
target : Element
resources : HLAresourceSet
directedResources : HLAfixedRecord

HLAdirectedResourcesSet

directedResources : HLAvariableArray<HLAdirectedResources>

getResources(target : Element) : HLAresourceSet
getDirectedResources() : Collection<HLAdirectedResources>

HLAstate

name : HLAunicodeString

HLAresourceSet

resources : HLAvariableArray<HLAresource>

getResource(type : ResourceType) : HLAresource
getResources() : Collection<HLAresource>

HLAlocation

origin : HLAnode
destination : HLAnode
location : HLAfixedArray<HLAnode>

HLAnode

name : HLAunicodeString

HLAresource

type : HLAresourceType
amount : HLAfloat64BE
resource : HLAfixedRecord

HLAresourceType

name : HLAunicodeString

<<abstract>>
HLAinteraction

rtiAmbassador : RTIambassador
classHandle : InteractionClassHandle

setParameters(phvm : ParameterHandleValueMap) : void
setParameters(o : SimInteraction) : void
send() : void

HLAresourceExchange

senderName : HLAunicodeString
sender : Element
receiverName : HLAunicodeString
receiver : Element
resources : HLAresourceSet

Figure 5-12: Object class diagram of HLA model implementation.
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5.6 Practical Implications for Distributed Simulation

This chapter closes with a brief discussion of some practical implications for designing and executing
a distributed simulation. These comments are specific to the HLA standard; however similar
challenges would be expected in other software architectures as well. Experiences are drawn both
from the research presented and from participation in the Simulation Smackdown5 outreach event
organized by the Simulation Interoperability Standards Organization (SISO) during the 2010, 2011,
and 2012 academic years. This event allowed student teams from around the world to create
federates for a lunar exploration distributed simulation. For more information on the MIT team
federates and applications, please see Essilfie-Conduah et al. (2011).

5.6.1 On Software Complexity

Distributed simulation using the HLA requires more complex software as compared to a sequential
simulation. While some challenges are due to the parallelism of concurrent model execution, others
are due to the additional layers of software involved and the wide scope of the HLA standard.

While the HLA ensures federation synchronization via algorithms implemented in the RTI, each
federate must also maintain synchronization of its internal state variables. Especially if using the
multi-threaded mode of HLA, the “callback” services (e.g. object discovery and removal, attribute
value reflection, and receiving interaction events) are executed by a separate thread from the
simulation program. In these conditions, mutable state variables must be carefully managed to
prevent unexpected access to non-threadsafe data structures.6 Even if using the single-threaded
callback mode, one must take extra considerations to ensure external model data is robust to
missing or delayed updates from third party federates.

In addition to managing the parallel federation execution, there are extra layers of software
involved in the HLA. Most RTI implementations include CRC and LRC applications which must
be installed and configured separately from the simulation application. There may be a significant
amount of set-up and configuration required to run sample federate programs packaged with the
RTI. Once running, tracking down and debugging errors or problems is made more difficult by the
layers of applications outside the federate program itself. For example, the MIT team’s Simulation
Smackdown simulation federate was developed in MATLAB using a separate middle-ware appli-
cation to connect with the LRC’s C++ bindings. At one point the teams experienced a problem
with data encoding/decoding which could not easily be traced between possible sources in our
federate implementation, the MATLAB middle-ware, the LRC implementation, in other federates’
implementation, or in other federates’ middle-ware.

Finally, the wide scope and generality of the HLA standard makes it difficult to apply to a
particular case. Navigating the dozens of potential services and hundreds of API calls for general
applications and finding the “minimal” set required to implement a federate is a significant challenge
for novice developers. While Section 5.4 identifies the subset of services used in the infrastructure
system-of-systems application, novice developers should start with much simpler applications to
learn about the HLA services and incrementally add functionality to build experience with object
management, data management, and finally time management. In addition to large scope of the

5As of the 2013–2014 academic year this event is called the Simulation Exploration Experience.
6For readers interested in using multi-threaded HLA or GUI-based user interaction, Goetz et al. (2006) is strongly

recommended as an overview of concurrency in Java software.
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HLA, there are also limited tutorial exercises available for self-learning. As an attempt to produce
new educational materials, a short course on modeling and simulation was developed and taught at
MIT during January 2012. Most students familiar with object-oriented programming could develop
a time-managed HLA federate with one intensive week (20 class hours) of guided tutorials.

5.6.2 On Network Infrastructure

Distributed simulation leverages network infrastructure for communication between federates. In
addition to hardware limitations of bandwidth and latency, privacy and security implications in
network infrastructure also contribute practical challenges.

Hardware limitations of bandwidth (data throughput) and latency (response time) are im-
portant constraints in distributed simulation. Even with modern high-speed networks, one must
consider the total federation bandwidth requirements when specifying the quantity and frequency
of data to exchange. The challenge grows if remote federates are hosted on low-capacity (e.g. old,
residential, hotel, or other public access) or high-latency (geographically distant or noisy wireless)
networks. As an example, the Simulation Smackdown used a rate of one update per second for
simple data types including floating-point position/attitude vectors and short text strings. While
testing should identify requirements for federates, runtime congestion may not be predictable in
advance for shared networks.

There are additional network components which may interact negatively with distributed sim-
ulation. Firewalls are network devices or software applications running within an operating system
to prevent malicious or unwanted traffic. Often, default firewall configurations do not recognize
and correspondingly block portions of distributed simulation network traffic. Especially in the case
of the HLA where no wire-level protocol is specified in the standard, i.e. the implementation can
use any method, a recommended practice is to disable software firewalls on the machines running
federates. Unfortunately, disabling firewalls also exposes machines to malicious network traffic,
requiring additional security considerations. In addition, there may be privacy concerns for the
content of the distributed simulation messages which may not be encrypted. One approach to ad-
dress both problems is to only run distributed simulations on a closed, private network to prevent
unauthorized network traffic. Another practical solution is to use a virtual private network (VPN)
which can be tunneled through unsecured network connections to provide a comparable level of
security and privacy with existing network infrastructure.

5.6.3 On Testing and Debugging

Testing and debugging are major elements of any software development, and distributed simula-
tion complicates the process with its decentralization of software components. During federation
development, progressive testing includes standalone, pairwise, and integrated approaches.

Standalone testing involves executing a federate in an isolated manner with the objective of
identifying internal problems. It is the least costly, but most limited testing as it can be performed
independently from other parties. As other federates are not available in standalone testing, any
critical dependencies should be represented with a simple federate providing basic functionality.
For example, in the Simulation Smackdown federation, a third party federate provides environ-
mental ephemerides (relative position of various celestial bodies) and manages time advancement.
For standalone testing of our federates a simple environmental federate was created to provide
placeholder data and advance time.
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Pairwise testing involves executing two federates concurrently with the objective of identifying
interaction problems. This is the first evaluation of the federation agreement which prescribes the
expected behavior of each federate. Particular items to investigate include discovery/removal of
object instances, updating/reflection of attribute values, and sending/receiving of interactions. For
each case, one should verify that data is being encoded and decoded properly and all assumptions
in the federation agreement are upheld. Pairwise testing can also identify some network problems
such as firewall restrictions and connectivity issues.

Finally, integrated testing involves executing all member federates in a full-up session with
the objective of identifying architectural problems. It is the most costly testing as all parties
must participate at the same time. Combinations of interactions between federates may give rise
to unexpected emergent effects when considering the entire federation. Integrated testing also
evaluates architectural network problems such as bandwidth/latency limitations.

5.6.4 On Collaboration

The presence and necessity of collaboration between quasi-independent teams is a major difference
between monolithic and federated simulation. While collaboration is ultimately the intent of inter-
operable simulation gaming, it is not easy to achieve. The first collaborative product should be the
federation definition including the FOM and federation agreement. These items should be as sim-
ple as possible, yet complete in description and requirements, to allow members to fully implement
the required functionality. Fortunately, as applied to the ISoS modeling framework, the required
items are somewhat limited to the nodes, resource types, and general assumptions governing each
infrastructure system federate.

Collaboration is also required to complete the pair-wise and integrated testing sessions described
in the previous section. During the Simulation Smackdown events, this was especially challenging
due to geographic distribution of teams across time zones and limited communication methods.
Our use of a VPN for simulation execution restricted other network traffic, requiring additional
infrastructure of conference calls and, later, secure voice-over-IP solutions from a separate computer
with a regular Internet connection. Even though federated simulation can operate over WANs, face-
to-face contact is strongly encouraged if possible to support collaborative processes.
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Chapter 6

The Sustainable Infrastructure
Planning Simulation Game (SIPS-G)

“Public policy-makers deal with difficult problems in our complex society every day. Unfortu-
nately, and seemingly related to the number of facts that compete for attention, these problems
are becoming increasingly unmanageable. Solutions, even when they can be formulated, reg-
ularly create unimagined new problems. Indeed, complexity challenges the very essence of
effective and legitimate control in society today.”

Garry D. Brewer in Politicians, Bureaucrats, and the Consultant (1973, p. 3)

This chapter uses the Kingdom of Saudi Arabia as a case study in national infrastructure planning
using interoperable simulation gaming methods. Saudi Arabia echoes many common tensions with
other nations in the Middle East and Northern Africa (MENA) region: rapid population growth
and urbanization, limited natural resources, and strong interdependencies between infrastructure
sectors (Siddiqi and Anadon 2011). But a global leader in petroleum export, Saudi Arabia is
fortunate to have the financial means for massive infrastructure improvements. The infrastructure
planning challenge in Saudi Arabia is to efficiently apply its petroleum-based financial wealth to
provide long-lasting resource infrastructure for its human capital.

This chapter is organized as follows. First, Section 6.1 introduces the sustainability and com-
plexity challenges to infrastructure system design in Saudi Arabia as background information and
motivation for study. Next, Section 6.2 formulates the Sustainable Infrastructure Planning Sim-
ulation Game (SIPS-G) using the ISoS modeling framework presented in Chapter 4. Section 6.3
presents quantitative mathematical models to drive behavior of component infrastructure system
models. Finally, Section 6.4 presents a detailed instantiation of the simulation models to create
a baseline scenario corresponding to Saudi Arabian infrastructure between 1950 and 2010. For
further details, Appendix B describes the SIPS-G application implementation using the software
architecture presented in Chapter 5.

6.1 Infrastructure in Saudi Arabia

The Arabian Peninsula is a harsh habitat for human societies. The majority of land area is sub-
sumed by a hot, arid desert climate with few accessible resources. Throughout history societies
gathered around natural sources of water such as oases and wadis (desert valleys) where water
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Figure 6-1: The DPSIR framework formulates sustainability through a causal chain of driving forces,
environmental pressures, environmental state, impact on human activities, and response.

aquifers reach near the surface and along the coast where humid and cooler air prevail. A dramatic
change started to take place in the mid-20th century with the discovery and extraction of large
petroleum reserves. Once a resource-starved land, some nations found immense monetary wealth
in the export of oil and natural gas to the rest of the world.

The scope of human societies expanded greatly over the past sixty years, driven by rapidly-
growing populations and a transition from nomadic tribal to urbanized city life. Large and costly
infrastructure systems financed in part through oil export revenue now supply the majority of
critical resources. Today, major city inhabitants benefit from comparative luxuries of potable
water, paved streets, a wide selection of imported food and goods, and air conditioned buildings.

While prosperity has provided significant benefits, there is concern for the sustainability of
current activities and a need for efficient use of limited natural resources. Planning future infras-
tructure systems requires careful consideration of both technical and social factors over long time
periods. The overarching objective of this work is to establish new methods and tools to assist in
the planning process, emphasizing the use of modeling and simulation to gain early insights.

6.1.1 Sustainability Challenges through the DPSIR Framework

The DPSIR framework, illustrated in Figure 6-1, explains the causal links between driving forces,
pressures, state, impacts, and responses in the context of sustainability (Kristensen 2004). Applied
to Saudi Arabia, it describes the items contributing to the response actions including the new
infrastructure projects studied in this case.

Driving Forces

The driving forces in Saudi Arabia are common to many other countries around the world; namely,
a rapidly growing and urbanizing population. Figure 6-2 illustrates the population in Saudi Arabia
growing from 3.1 million in 1950 to over 27 million in 2010 (UNPD 2013), corresponding to a 3.7%
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Figure 6-2: The population of Saudi Arabia is expected to exceed 40 million by 2050. Data sources:
Estimated, Forecast Population: UNPD 2013; Cities greater than 1 million: World Bank 2012.

annual growth rate (2.6% between 1990 and 2010). Furthermore, median forecasts exceed 40 million
by 2050 (UNPD 2013). While population in aggregate is growing, even more people are moving to
large cities. Between 1960 and 2010, the number of people living in cities of over 1 million increased
at an average of 6.4% per year (World Bank 2012), far out-pacing the population growth rate.

Along with urbanization, consumption of critical resources including water, food, and energy
is increasing. Figure 6-3 highlights per-capita use of resources normalized to 1980 values such
that constant levels correspond to a 2-3% annual growth rate to match population. Per-capita
non-agricultural (municipal and industrial) water use stabilized over the past 20 years at approx-
imately twice that of 1980 (KSA 1990; KSA 1995; KSA 2000; KSA 2005; KSA 2010). Per-capita
agricultural water use has fallen in recent years but remains about three times the levels in 1980
when government-sponsored programs spurred agricultural development (KSA 1990; KSA 1995;
KSA 2000; KSA 2005; KSA 2010). Per-capita food supply increased nearly 50% since 1980 due to
increasing use of feed for animal products (FAO 2013b). By far the most significant increases come
from the energy sector: per-capita energy use doubled between 1980 and 2010 while per-capita elec-
tricity consumption more than quadrupled over the same time period (World Bank 2012). In 2008
53% of electricity was used for residential purposes (KSA 2010) and some estimate air conditioning
consumes 70% of all electricity (Hasnain 1998).

Pressures

Massive infrastructure expansion to meet growing demands impose pressures on the environment.
Figure 6-4 highlights environmental pressures of non-renewable water withdrawals, oil production,
and carbon dioxide emissions normalized to 1980 values. The most apparent pressure is in with-
drawals of non-renewable “fossil” water peaking at nearly 15 billion cubic meters withdrawn in
1994, mostly for agricultural irrigation (KSA 1995). The energy system exerts another main pres-
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Figure 6-3: Driving forces increase per-capita resource use in Saudi Arabia over time. Values for population,
electricity, energy, water, and food use are normalized to their 1980 values for comparison. Data sources:
Population: UNPD 2013; Electricity and Energy Use: World Bank 2012; Water Use: KSA 1990; KSA 1995;
KSA 2000; KSA 2005; KSA 2010; UNPD 2013; Food Supply (includes food, feed, and seed): FAO 2013b.

sure as Saudi Arabia is among the world’s largest oil producers with 547 million metric tons of
oil withdrawn from natural reserves in 2012 (BP 2013). Furthermore, as of 2010, 100% of Saudi
Arabia’s electricity was generated from fossil fuels, contributing to a doubling in carbon dioxide
emissions since 1980 (World Bank 2012).

State

Pressures contribute to changes in the environment state. With no recharging capability, use of
non-renewable aquifers directly and permanently affects groundwater supply. Various estimates
place the non-renewable aquifer volume in Saudi Arabia around the year 2000 at 400-700 billion
cubic meters of varying quality (KSA 2005; World Bank 2005). These estimates indicate it is
impossible to sustain large withdrawals (2-4% of total volume annually) seen in recent years. As
for oil, proven reserves are reported at 265.9 thousand million metric tons (15.9% of world total) at
the end of 2012, such that the nominal production extracts 0.2% of the total volume annually (BP
2013). The heavy reliance on fossil fuels for electricity generation and transportation also affects
the atmospheric environmental state. The carbon dioxide contribution of Saudi Arabia in 2009
was 16 metric tons per person or 0.75 kilograms per dollar of economic output (World Bank 2012),
higher than the global average for developed countries in 2010 of 11 metric tons per person or 0.6
kilograms per dollar of output (UN 2013).
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Figure 6-4: Pressures changes the environmental state. Values for carbon dioxide emissions, non-renewable
water withdrawals, and oil production are normalized to their 1980 values for comparison. Data sources:
CO2 Emissions: World Bank 2012; Water Withdrawals: KSA 1990; KSA 1995; KSA 2000; KSA 2005; KSA
2010; UNPD 2013; Oil Production: BP 2013.

Impact

Potential impacts from changes to the environmental state are wide-reaching and significant. Con-
tinued depletion of non-renewable water aquifers reduces the quantity and quality of available
water, increases the pumping cost as aquifer levels fall, and may contribute to an inability to do-
mestically cultivate food. Continued domestic oil consumption both decreases proven reserves and
export capability, the main source of government revenue. In 2011, oil revenues surpassed SR1 tril-
lion (US$275 billion) which constituted 92.5% of total government revenues (KSA 2013). In 2012,
domestic consumption totaled 23.7% of oil production and if consumption continues to increase at
4% per year (as between 1990-2012), it will exceed the 2012 production level by 2049 (BP 2013).

Response

The government of Saudi Arabia has initiated several major programs in response to sustainabil-
ity challenges. The Ninth Development Plan (KSA 2010) identifies high-level objectives such as
accelerating economic growth, balancing regional development, raising the standard of living, di-
versifying and moving towards a knowledge-based economy, and ensuring rational utilization of
natural resources. To support these objectives, the Ninth Development Plan seeks to appropriate
SR1.4 trillion (US$370 billion) between 2010 and 2014, of which SR230 billion (US$61 billion)
target economic resources development, an increase of 115% over the 8th Development Plan.
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6.1.2 Response Challenges: Socio-technical Complexity

This application case focuses on investing in new supply-side infrastructure as a portion of the total
sustainability response in Saudi Arabia.1 This section discusses sources of complexity including
technical structure and behavior and socio-political factors which challenge the decision-making
process to identify the infrastructure projects in which to invest.

National infrastructure in Saudi Arabia spans sectors including water, electricity, petroleum,
transportation, communications, and agriculture, each containing a network of interdependent el-
ements. The internal structure of each element varies greatly from relatively simple (e.g. borehole
water wells and pipelines) to complex (desalination and power plants). Each element also relies on
input and output resource flows within (e.g. electricity distributed through power lines) and across
sectors (e.g. electricity used for desalination). At the national level, however, structural complex-
ity is dominated by the architectural contribution of distributed interdependencies between large
numbers of infrastructure components leading to indirect and non-intuitive effects. For example,
desalination may be perceived as an effective sustainable response to water demands, however a
reliance on electricity generated from burning fossil fuels not only impacts the environmental state
but also reduces fuel export revenue.

Infrastructure system behaviors take place on multiple timescales. Operational decisions on a
minutes-to-months timescale optimize the cost efficiency of meeting demands. Feedback effects,
non-linearities, and other uncertainties may be accommodated by analyzing observational data to
build a prediction of future operations within a certain range of confidence. Longer-term strate-
gic decisions on a years-to-decades timescale identify the set of infrastructure investments to meet
sustainability objectives. Context changes and system evolution encompassing wide-ranging top-
ics such as socio-economic consumption patterns, climate change, policy actions, and technology
innovation are so numerous that extreme confidence bounds limit the usefulness of probabilistic
predictions. One can assume the short-term effects are addressed in an optimal or nearly-optimal
way to focus on larger impacts of long-term behaviors described in one or more plausible scenarios.

Socio-political complexity arises from the organizational or institutional space within which the
physical systems exist. Rather than focusing on technical feasibility or economic viability, socio-
political complexity deals with the desirability of options given goals, interests, and opinions of
constituent stakeholders. The government in Saudi Arabia is a monarchy headed by the King who
governs with help from the Crown Prince and the Council of Ministers representing 22 ministries,
each specializing in a role of government. Today, the ministries associated with hard infrastructure
planning include the Ministry of Agriculture (MoA), Ministry of Economy and Planning (MoEP),
Ministry of Petroleum and Mineral Resources (MoPMR), and Ministry of Water and Electricity
(MoWE). Furthermore, Saudi Arabia is regionally administered by 13 provinces, each having a
governor and deputy governor. Thus, while a centrally-managed government, there are a large
number of organizational units involved in detailed infrastructure planning, each with potentially-
differing objectives.

Aspects of socio-political complexity are highlighted in several objectives of the Ninth Devel-
opment Plan (KSA 2010). The third and fourth objectives describe national development plans to
“achieve sustainable economic and social development” and “balanced development among regions
of the Kingdom.” The tenth and eleventh objectives discuss resource use and call for actions to “en-

1Demand-side efforts such as policies to reduce resource consumption are a crucial component of a complete
sustainability response not explicitly considered here.
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sure rational utilization of natural resources” and “develop regulations aimed at raising efficiency
and improving performance.” The objectives of (balanced) economic development and efficient
resource use are linked by tensions created in past plans. The 1st Development Plan for 1970–
1975 set a national policy to provide subsidies and grants to increase agricultural output (KSA
1970). The policy was greatly expanded throughout the 2nd Development Plan for 1975–1980 and
maintained in following plans to improve the well-being of rural people and diversify the economy
beyond petroleum products (KSA 1975). These policies directly improved economic development
while contributing to balanced development across regions; however they also had a dramatic ef-
fect on water consumption, primarily non-renewable stocks of water. Influenced by implications
of preliminary water studies, calls to reduce agricultural water consumption and institute “ratio-
nalization” of water consumption patterns first appeared the 5th Development Plan for 1990–1995
(KSA 1990) and gained importance as a key issue under the 7th Development Plan for 2000–2005
(KSA 2000). This plan took the first steps to reduce agricultural subsidy programs, leading to
declines in water consumption in following years.

Only a few main sources of complexity are brought into focus to bound the scope of this
application case. First, the architecture of infrastructure illustrating interdependencies within a
distributed system-of-systems is selected as the dominant structural source of complexity. Second,
long-term behaviors targeting sustainability objectives are emphasized as the basis for selecting
and evolving infrastructure systems. Finally, socio-political factors are captured in the social layer
to illustrate the different and potentially-conflicting objectives of actors involved in the planning
process. While a simplified reflection of the real-world complexities, the emphasis on architec-
ture, long-term behaviors, and socio-political objectives represent the core challenges in strategic
infrastructure planning.

6.2 Simulation Game Formulation

The sustainable infrastructure planning simulation game (SIPS-G) supports strategic responses of
infrastructure investment by expressing the socio-technical sources of complexity in Saudi Ara-
bia. Its formulation relies on constructs of the infrastructure system-of-systems (ISoS) modeling
framework presented in Chapter 4 to represent the national infrastructure planning problem at a
level suitable for simulation and gaming. An instantiation of this framework identifies the con-
text, structure, and behaviors of infrastructure systems in Saudi Arabia comprising the core game
mechanics.

In framing SIPS-G, similar to other serious or purposeful games, one most balance reality,
meaning, and play for effective design (Harteveld 2011). Reality identifies the link between details
presented in the serious game and those of the real world, i.e. external validity. SIPS-G builds re-
ality through contextual similarities in history, geography, and challenges relating to infrastructure
planning in Saudi Arabia and leverages fundamental resource interdependencies between infras-
tructure elements. Meaning is the value-creating aspect of a serious game to achieve something
useful in the real world. SIPS-G supports familiarizing players with complex infrastructure plan-
ning and accomplishing research objectives in studying collaborative design. Finally, play provides
motivation for players through engagement, immersion, and fun. SIPS-G includes simplifications
to improve its playability, allowing non-domain experts to participate and complete an integrated
planning session in a few hours.

The objective of SIPS-G as a prototype lies at a descriptive level, rather than prescriptive
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Figure 6-5: The SIPS-G context model aggregates thirteen provinces into three nodes in a fully-connected
graph. These nodes represent the unique spatial contexts in industrial, urban, and rural regions. Map credit:
d-maps.com, accessed at http://d-maps.com/m/arabie/arabie20.pdf.

or normative. Based on historical data, SIPS-G intends to highlight the architectural structure,
long-term behaviors, and socio-political factors involved in infrastructure planning. Future work
in improving the validation of component models may provide more substantive results capable of
supporting active infrastructure planning activities.

6.2.1 Context Model

As mentioned previously, Saudi Arabia is administratively organized as 13 provinces illustrated in
Figure 6-5. The Eastern Province includes the coastal area on the Persian (Arabian) Gulf with rich
petroleum reserves and the large “Empty Quarter” desert area bordering Oman and the Emirates
to the south. The central area, including most of the Al Riyadh province, is a desert plateau
containing Riyadh, the largest and capital city. The west-coast provinces Makkah and Al Madinah
border the Red Sea and contain the large and historic cities Jeddah, Mecca, and Medina. Finally,
the northern provinces such as Al Jawf, Ha’il, and Al Qasim include more plentiful sources of water
for agriculture.

The SIPS-G context aggregates the diverse geographic and administrative regions to three
distinct nodes defined in Eq. 6.1.

N = {nindustrial, nrural, nurban} (6.1)



6.2. SIMULATION GAME FORMULATION 169

The “industrial” node, modeled after Riyadh and the Eastern Province, includes petroleum reser-
voirs as well as sea access for desalination, a large population with rapid growth, and limited arable
land. The “rural” node, modeled after the northern provinces, includes higher quantities of arable
land and a small population with moderate growth. Finally, the “urban” node, modeled after
Jeddah and the western provinces, includes sea access for desalination, moderate arable land, and
a large population with moderate growth.

Given the small graph size, allowable locations for infrastructure elements includes the complete
set of node pairs defined in Eq. 6.2, resulting in a total of three nodal locations (ni = nj) and six
edge locations (ni 6= nj).

L = {(ni, nj)} ∀ ni, nj ∈ N (6.2)

The set of allowable resource types defined in Eq. 6.3 includes basic resources types for food
energy, water, oil, and electrical energy. The agriculture sector uses labor and land resource types
to enforce constraints on available workforce and arable land. The water and petroleum sectors
use aquifer water and reservoir oil as natural indirectly-accessible resource types which require
infrastructure to transform to usable forms.2 Finally, the social sector uses the people resource
type for population and the currency resource type for financial resources.

T = {τaquifer, τcurrency, τelect, τfood, τlabor,

τland, τoil, τpeople, τreservoir, τwater}
(6.3)

6.2.2 Structural Model

The SIPS-G structural model is an infrastructure system-of-systems consisting of a set of elements

E = {eij} (6.4)

where element eij is component j of system i identified by agricultural, water, petroleum, electrical,
and social sectors. To simplify interfaces between systems, a system element aggregates the set of
elements

Eni = {eij} : n ∈ Lo(eij) (6.5)

for system i at node n where Lo gives the element’s origin location. In other words, Eni is the set
of elements in system i having a common origin node n. The complementary set of elements

En?i = {eij} : n /∈ Lo(eij) ∧ n ∈ Ld(eij) (6.6)

aggregates elements having a common destination, excluding elements at nodal locations. For
example, a distribution element e ∈ Ei between the industrial to urban nodes with location L(e) =
(nindustrial, nurban) has origin Lo(e) = (nindustrial, nindustrial) and destination Ld(e) = (nurban, nurban)
such that e ∈ Eindustrial

i and e ∈ Eurban?
i .

Elements in the agricultural, water, petroleum, and electrical systems produce and distribute
basic resources to the social system to meet demands. Infrastructure interdependencies arise from

2An alternative formulation avoiding aquifer and reservoir resources could define additional “underground” nodes
where inaccessible water and oil stocks exist. Rather than transforming aquifer resources to water, infrastructure
would transport water from “underground” to “surface” nodes.
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Figure 6-6: The SIPS-G system-of-systems model static dependency network illustrates resource flows
between system models of agriculture, water, electricity, and petroleum sectors and the social system.

several basic relationships illustrated in the static dependency network in Figure 6-6. Some agri-
cultural and electrical elements require water for irrigation and cooling respectively. Some water
and petroleum production elements require electricity for pumping and other machinery. Thermal
power plants require oil as fuel and may require water for cooling. Finally, the social system pro-
vides currency for operation of the infrastructure systems and societal demands include water, food,
oil, and electricity. In addition to the system interdependencies at each node, spatial dependencies
between nodes may also arise from inter-regional distribution.

6.3 Simulation Model Formulation

The simulation model builds on the selected context to identify a mathematical model to express
structural and behavioral properties. While tailored to the SIPS-G application, the model is gen-
eralizable to other infrastructure systems as well. This section first introduces the social system
model to capture non-infrastructure properties such as population and socio-economic resource
demand. Next, a generic infrastructure system model represents common functionality between in-
frastructure sectors. Detailed models are then defined for each of the agriculture, water, petroleum,
and electricity systems. Finally, a discussion addresses assumptions and limitations of the selected
modeling approach.
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Figure 6-7: The social system system element illustrated as a causal loop diagram includes population and
financial balance state variables. Dashed boxes indicate external variables and the dotted arrow indicates
an causal loop conditional on demand model used.

Table 6.1: Social system system element behaviors and properties

Behavior Functional Form and Dependent Properties

Update Population Rtransform(Ensocial, {(τpeople, Q
people
last )}, {(τpeople, Q

people
next )}) (6.8)

Rstore(Ensocial, {(τpeople, Q
people
next )}, {(τpeople, Q

people
last )}) (6.9)

Add Revenue Rstore(Ensocial, {(τcurrency, QtotalRevenue)}, {}) (6.10)

Satisfy Demands Rexchange(Enj ,E
n
social, {(τfood, Q

food
input), (τwater, Q

water
input ),

(τoil, Q
oil
input), (τelect, Q

elect
input)}) (6.11)

Rtransform(Ensocial, {(τfood, Q
food
input), (τwater, Q

water
input ),

(τoil, Q
oil
input), (τelect, Q

elect
input)}, {}) (6.12)

6.3.1 Social System Model

The social system model captures all non-infrastructure activity such as population, cumulative
revenue, and resource demands aggregating all residential, commercial, and industrial activity. It
includes system elements at each node illustrated in Figure 6-7 as a causal loop diagram. The
model stores population and currency stocks and receives net revenue from infrastructure systems.
The total net revenue QtotalRevenue sums contributions from each infrastructure system j in Eq. 6.7.

QtotalRevenue =
∑
j

QnetRevenue(Enj ) (6.7)

Table 6.1 describes the system element behaviors. The update population behavior in Eq. 6.8–
6.9 updates the stored population value from Qpeople

last to Qpeople
next . The add revenue behavior in Eq.

6.10 adds the aggregated revenue to the cumulative balance. Finally, the satisfy demands behavior
in Eq. 6.11–6.12 exchanges resources from infrastructure system j to satisfy resource demands.
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SIPS-G Population Model

The SIPS-G population model implements a logistic growth model of the form

Qpeople
next =

Pmax · P0 · erP ·(t−t0)

Pmax + P0 ·
(
erP ·(t−t0) − 1

) (6.13)

where Pmax is the maximum population (i.e. carrying capacity), r is the population growth rate,
and P0 is the population at datum time t0.

SIPS-G Resource Demand Model

The SIPS-G resource demand model implements a per-capita logistic growth model of the form

qτinput = qτmin +
(qτmax − qτmin) · (qτ0 − dτmin) · erτ ·(t−tτ0 )

(qτmax − qτmin) + (qτ0 − dτmin) ·
(
erτ ·(t−t

τ
0 ) − 1

) (6.14)

where qτmax is the maximum per-capita demand, qτmin is the minimum per-capita demand, rτ is
the per-capita demand growth rate, and qτ0 is the demand at datum time tτ0 . This formulation
adds a lower bound on per-capita demand whereas the implicit lower bound on a usual logistic
growth model for population is 0. When combined with the population model, the total demand
for resource type τ is given by

Qτinput = Qpeople
stock · q

τ
input. (6.15)

The resource demand model is limited to non-decreasing time-varying per-capita demands which
are exogenous from other model properties. Future work develop demand models as a function of
GDP or other socio-economic activity, resource price, or other actions such as policies, regulations,
or other demand reduction programs.

6.3.2 Generic Infrastructure Model

The generic infrastructure model provides a common structure for agriculture, water, petroleum,
and electricity systems. It aggregates the behavior of constituent elements to system behaviors
and serves as a simplified interface for resource exchanging behaviors. This section introduces the
generic infrastructure element model, its lifecycle model implementation in SIPS-G, the generic
infrastructure system model, and its resource pricing implementations in SIPS-G.

Generic Infrastructure Element Model

The generic infrastructure element model defines the common structure of resource flows and related
expenses for elements in agriculture, water, petroleum, and electricity sectors. Figure 6-8 illustrates
potential relationships between element parameters. Variable expenses and input resources depend
on resources sent and produced within element behaviors. Resources received are a function of
those sent. Stored resources are added to a stock, from which retrieved resources are removed.
Finally, other parameters such as capital, decommission, and fixed expense and resource import
and export are separate model components.

Element behaviors parameterized in Table 6.2 define dependent variables with implementation-
specific functional forms specified by lifecycle and operations models. The commission behavior
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Figure 6-8: The generic infrastructure element model illustrated as a causal loop diagram is parameterized
by resources produced, sent, stored, retrieved, imported, and exported.

Table 6.2: Generic infrastructure element model behaviors and properties

Behavior Functional Form and Dependent Properties

Commission Etransform(e, sc) (6.16)

Rtransform(e, {τcurrency, pcapital}, {}) (6.17)

Operate Etransform(e, so) (6.18)

Rtransform(e, {τcurrency, pfixed}, {}) (6.19)

Decommission Etransform(e, sd) (6.20)

Rtransform(e, {τcurrency, pdecomm}, {}) (6.21)

Produce Resources Rtransform(e, rinput ∪ {τcurrency, pvariable}, rproduced) (6.22)

Distribute Resources Rtransport(e, rsent ∪ rinput ∪ {τcurrency, pvariable}, rreceived) (6.23)

Store Resources Rstore(e, rstored, {}) (6.24)

Retrieve Resources Rstore(e, {}, rretrieved) (6.25)

Import Resources Rtransform(e, {}, rimported) (6.26)

Export Resources Rtransform(e, rexported, {}) (6.27)

in Eq. 6.16–6.17 transforms to a commissioning state sc and consumes capital expenses pcapital,
the operate behavior in Eq. 6.18–6.19 transforms to an operational state so and consumes fixed
operations expenses pfixed, and the decommission behavior in Eq. 6.20–6.21 transforms to a decom-
missioning state sd and consumes decommission expenses pdecomm. The produce behavior in Eq.
6.22 consumes input resources rinput and variable expenses pvariable to produce resources rproduced.
The distribute behavior in Eq. 6.23 sends resources rsent (received as rreceived) by consuming input
resources and variable expenses. The store behavior in Eq. 6.24 stores resources rstored and the
retrieve behavior in Eq. 6.25 retrieves resources rretrieved. Finally, the import and export behaviors
in Eq. 6.26–6.27 transform imported and exported resources rimported and rexported.



174 CHAPTER 6. SIPS-G APPLICATION CASE

Empty
(s0)

Commissioning
(sc)

Operating
(so)

Decomissioning
(sd)

Commission
Commission

Complete
Decommission

Null
(s∅)

Decommission
Complete

Etransform(e, sc) Etransform(e, so) Etransform(e, sd) Etransform(e, s∅)

Figure 6-9: The state diagram for an element using the SIPS-G lifecycle model progresses between empty,
commissioning, operating, decommissioning, and null states during its life-cycle.

Table 6.3: Element property values under the SIPS-G lifecycle model

State: Commissioning (sc) Operating (so) Decommissioning (sd)

Time-varying Property t0(e) ≤ t < t0(e) + d0(e) t0(e) + d0(e) ≤ t < t∅ t∅(e) ≤ t < t∅(e) + d∅(e)

pcapital(e, t,∆t) pcapital(e)/d0(e) ·∆t 0 0

pfixed(e, t,∆t) 0 pfixed(e) ·∆t 0

pvariable(e, t,∆t) 0 pvariable(e) ·∆t 0

qτ,max
produced(e, t,∆t) 0 qτ,max

produced(e) ·∆t 0

qτ,max
sent (e, t,∆t) 0 qτ,max

sent (e) ·∆t 0

pdecomm(e, t,∆t) 0 0 pdecomm(e)/d∅(e) ·∆t

SIPS-G Element Lifecycle Model

The SIPS-G element lifecycle model consists of five distinct phases which control capital, operations,
and decommission expenses and limits resource production and distribution to operational periods.
The lifecycle model defines a set of five allowable states

S(e) = {s0, sc, so, sd, s∅} (6.28)

for element e. The states, illustrated in Figure 6-9, include commissioning (sc), operating (so), and
decommissioning (sd) in addition to the empty state (s0) before commissioning and the null state
(s∅) after decommissioning.

The lifecycle model assigns commission time t0, commission duration d0, decommission time t∅
and decommission duration d∅ to control element state changes. Time-varying properties such as
capital, fixed, variable, and decommission expenses, maximum production capacity, and maximum
distribution capacity are evaluated at time t with time-step ∆t using Table 6.3 to produce uniformly-
distributed expenses over commissioning and decommissioning periods.

Generic Infrastructure System Model

The generic infrastructure system illustrated in Figure 6-10 aggregates the behavior of constituent
element models and serves as a simplified interface for resource exchanging behaviors at each node.
Upper-case variables (P, V,Q,R) identify aggregated system properties corresponding to element
properties with lower-case variables (p, v, r, q). P is used for scalar expenses, V for scalar revenues,
and R for vector resource sets with scalar component quantities Q having matching subscripts.
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Figure 6-10: The generic infrastructure system model illustrated as a causal loop diagram aggregates
element models to italicized variables and external system models to dashed-box variables. Input and output
resources are computed for exchange with other infrastructure systems.

For example, Rsample = {(τfood, Q
food
sample), (τwater, Q

water
sample)} is the “sample” set of food and water

resources.

Aggregated properties with italicized labels in Figure 6-10 are directly computed from con-
stituent element models and include scalar and vector types defined in Table 6.4. Scalar properties
express quantities related to life-cycle expenses. Those defined in Eq. 6.29–6.32 include capital
expenses (Pcapital) to commission infrastructure, fixed (Pfixed) and variable (Pvariable) expenses of
operating infrastructure, and decommission (Pdecomm) expenses. The general form aggregates el-
ements having a common origin such that the only one location incurs expenses for edge-located
elements such as pipelines. Vector properties defined in Eq. 6.33–6.42 include resources stored
(Rstored) and retrieved (Rretrieved) from a stock (Rstock), input resources to production and distribu-
tion processes (Rinput), resources produced (Rproduced), resources received (Rreceived) and sent (Rsent)
via distribution, and resources imported (Rimported), exported (Rexported), and output (Routput) to
other systems. Most properties aggregate elements having a common origin with two exceptions.
First, resources received in Eq. 6.38 aggregates elements with a common destination for resource
distribution. Second, output resources in Eq. 6.42 aggregates the input resources property of other
systems to determine output requirements.

Other aggregated properties combine existing system properties. For example, the operations
expense (Poperations) in Eq. 6.43 sums fixed, variable, and resource input expenses. The set of wasted
resources (Rwasted) in Eq. 6.44 is the difference between resources supplied and those output. The
set of supplied resources (Rsupplied) in Eq. 6.45 is the set of resources produced, received and
imported less those sent and exported. Finally, the net revenue (QnetRevenue) in Eq. 6.46 is the
difference between revenues and expenses.

Dependent properties defined in Table 6.5 parameterize infrastructure system behaviors and
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Table 6.4: Generic infrastructure system model aggregated properties

Aggregated Property Aggregated Property

Pcapital =
∑
e∈En

i
pcapital(e) (6.29) Pfixed =

∑
e∈En

i
pfixed(e) (6.30)

Pvariable =
∑
e∈En

i
pvariable(e) (6.31) Pdecomm =

∑
e∈En

i
pdecomm(e) (6.32)

Rstored =
⋃
e∈En

i
rstored(e) (6.33) Rstock =

⋃
e∈En

i
rstock(e) (6.34)

Rretrieved =
⋃
e∈En

i
rretrieved(e) (6.35) Rinput =

⋃
e∈En

i
rinput(e) (6.36)

Rproduced =
⋃
e∈En

i
rproduced(e) (6.37) Rreceived =

⋃
e∈En?

i
rreceived(e) (6.38)

Rsent =
⋃
e∈En

i
rsent(e) (6.39) Rimported =

⋃
e∈En

i
rimported(e) (6.40)

Rexported =
⋃
e∈En

i
rexported(e) (6.41) Routput =

⋃
j Rinput(E

n
j ) (6.42)

Poperations = Pfixed + Pvariable + Pinput (6.43) Rwasted = Rsupplied −Routput (6.44)

QnetRevenue = Voutput + Vexport + Vdistribution Rsupplied = Rproduced ∪Rreceived ∪Rimported

−Pcapital − Poperations − Pdecomm −Rsent −Rexported (6.45)

−Pdistribution − Pimport (6.46)

Table 6.5: Generic infrastructure system model behaviors and properties

Behavior Functional Form and Dependent Properties

Exchange Inputs Rexchange(Enj ,E
n
i , Rinput) (6.47)

Rtransform(Eni , {(τcurrency, Pinput)}, {}) (6.48)

Exchange Outputs Rexchange(Eni ,E
n
j , Routput) (6.49)

Rtransform(Eni , {}, {(τcurrency, Voutput)}) (6.50)

Exchange Revenue Rexchange(Eni ,E
n
social, {(τcurrency, QnetRevenue)}) (6.51)

Waste Resources Rtransform(Eni , Rwasted, {}) (6.52)

have an implementation-specific functional form specified by a resource pricing model. The ex-
change inputs behavior defined in Eq. 6.47–6.48 exchanges resources Rinput from system j to i and
consumes expenses Pinput as a function of input resources. The exchange outputs behavior defined
in Eq. 6.49–6.50 exchanges resources from system i to j and produces revenue Voutput as a function
of output resources. Both cases use two behaviors: one to exchange resources and one to trans-
form currency for expenses or revenue. An alternative implementation could combine the two to
exchange both resources and currency in a single behavior. The exchange revenue behavior defined
in Eq. 6.51 exchanges currency QnetRevenue to the social system. The waste resources behavior
defined in Eq. 6.52 consumes unused resources rwasted.

SIPS-G Resource Pricing Model

The SIPS-G resource pricing model calculates revenues and expenses associated with resource flows
with a linear pricing model which uses constant unit resource prices. Local prices for resource type
τ are set with parameter πτlocal, import prices with πτimport, and export prices with πτexport.

Using the linear pricing model, Eq. 6.53 computes input resource expenses and Eq. 6.54
computes distribution expenses. Equation 6.55 computes import expenses using the import price.
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Similarly, Eq. 6.56 computes output revenue and Eq. 6.57 computes distribution revenue using the
local price. Equation 6.58 computes export revenue using the export price.

Pinput =
∑

(τ,Qτinput)∈Rinput

πτlocal ·Qτinput (6.53)

Pdistribution =
∑

(τ,Qτreceived)∈Rreceived

πτlocal ·Qτreceived (6.54)

Pimport =
∑

(τ,Qτimported)∈Rimported

πτimport ·Qτimported (6.55)

Voutput =
∑

(τ,Qτoutput)∈Routput

πτlocal ·Qτoutput (6.56)

Vdistribution =
∑

(τ,Qτsent)∈Rsent

πτlocal ·Qτsent (6.57)

Vexport =
∑

(τ,Qτexported)∈Rexported

πτexport ·Qτexported (6.58)

The pricing model as implemented is limited by its linear (constant unit price) assumption. It
does not accurately reflect economic elasticity of supply versus demand. Furthermore, there is no
effect of currency valuation changes (e.g. inflation, deflation). These limitations may be addressed
in future work with a more complex pricing model considering equilibrium between supply and
demand within each infrastructure system and changes in currency valuation over time.

6.3.3 Agriculture System Model

The agriculture system includes system elements (type AS), production elements (type AP ), and
distribution elements (type AD) with behaviors and properties described in Table 6.6.

The agriculture system element (type AS) defines behaviors for updating labor resources and
interacting with a global food market. The stock of arable land is initialized with a fixed maximum
area qland

stock usable for any agricultural purpose. The update labor behaviors in Eq. 6.59–6.60 modify
the stock of labor usable for agricultural production. The export/import behaviors in Eq. 6.61–6.62
allow transactions with the global food market.

Agriculture production elements (type AP ) include behaviors for producing food. They directly
inherit commission, operate, and decommission behaviors from the generic infrastructure element
in Eq. 6.63–6.68. The produce food behavior in Eq. 6.69 consumes water and variable expenses to
produce food.

Agriculture distribution elements (type AD) include behaviors for distributing food. They
directly inherit commission, operate, and decommission behaviors from the generic infrastructure
element in Eq. 6.70–6.75. The distribute food behavior in Eq. 6.76 consumes variable expenses to
transport food.

This formulation does not include food storage elements which may be a topic of future work
to represent strategic food reserves.
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Table 6.6: Agriculture system elements, behaviors, and properties

Type Behavior Functional Form and Dependent Properties

AS Update Labor Rtransform(Enagricul., {}, {(τlabor, q
labor
produced)}) (6.59)

Rstore(Enagricul., {(τlabor, q
labor
stored)}, {}) (6.60)

Export Food Rtransform(Enagricul., {(τfood, q
food
exported)}, {}) (6.61)

Import Food Rtransform(Enagricul., {}, {(τfood, q
food
imported)}) (6.62)

AP Commission Etransform(e, sc) (6.63)

Rtransform(e, {(τcurrency, pcapital)}, {}) (6.64)

Operate Etransform(e, so) (6.65)

Rtransform(e, {(τcurrency, pfixed)}, {}) (6.66)

Decommission Etransform(e, sd) (6.67)

Rtransform(e, {(τcurrency, pdecomm)}, {}) (6.68)

Produce Food Rtransform(e, {(τwater, q
water
input ), (τcurrency, pvariable)}, {(τfood, q

food
produced)}) (6.69)

AD Commission Etransform(e, sc) (6.70)

Rtransform(e, {(τcurrency, pcapital)}, {}) (6.71)

Operate Etransform(e, so) (6.72)

Rtransform(e, {(τcurrency, pfixed)}, {}) (6.73)

Decommission Etransform(e, sd) (6.74)

Rtransform(e, {(τcurrency, pdecomm)}, {}) (6.75)

Distribute Food Rtransport(e, {(τfood, q
food
sent), (τcurrency, pvariable)}, {(τfood, q

food
received)}) (6.76)
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SIPS-G Agriculture System Element Operations Model

The SIPS-G agriculture system element (type AS) operations model defines labor production as
a fraction of the population growth in Eq. 6.77. The parameter f labor

people ⊆ [0, 1] represents the
agricultural labor participation rate in the agriculture system.

qlabor
produced = f labor

people ·
(
Qpopulation

next (Ensocial)−Q
population
last (Ensocial)

)
(6.77)

The agriculture system element assumes the maximum stock of arable land area qland
stock remains

constant over time and is usable for any agricultural production. Future work may model several
types of land to represent varying climates or irrigation requirements.

SIPS-G Agriculture Production Element Operations Model

The SIPS-G agriculture production element (type AP ) operations model defines the functional form
of commissioning and food production. A production element includes parameters for land and
labor input in Eq. 6.78 where the parameter f labor

land defines the labor required to work a unit of
land.

qlabor
input = f labor

land · qland
input (6.78)

Food production consumes water, generates variable expenses, and produces food as a function
of the input land utilized. Equation 6.79 defines the water input as a linear function of land
area with coefficient fwater

land specifying the water requirements per unit area. Equation 6.80 defines
variable expenses as a linear function of land area with coefficient fcurrency

land specifying the cost per
unit area. Finally, Eq. 6.81 defines food production as a linear function of land area with coefficient
f food

land specifying the yield.

qwater
input = fwater

land · qland
input (6.79)

pvariable = fcurrency
land · qland

input (6.80)

qfood
produced = f food

land · q
land
input (6.81)

The agriculture production element is limited by the linear operations assumption as a function
of land area used. Future work may develop functional forms for labor, water, variable costs, and
production as a function of climate, geography, or level of mechanization.

SIPS-G Agriculture Distribution Element Operations Model

The SIPS-G agriculture distribution element operations model defines the functional form of food
distribution. Equation 6.82 defines variable expenses as a linear function of sent food with coefficient
fcurrency

food as the cost per unit sent. Equation 6.83 defines food received as a fraction of food sent
with efficiency η ⊆ [0, 1].

pvariable = fcurrency
food · qfood

sent (6.82)

qfood
received = η · qfood

sent (6.83)
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The agriculture distribution element is limited by the linear operations assumption as a function
of food sent. Future work may develop functional forms for variable costs and food received—for
example, as a function of distance between nodes.

SIPS-G Agriculture System Flow Optimization

Food production and distribution within the SIPS-G agricultural system implementation can be
optimized to minimize cost using the following linear programming (LP) problem formulation. The
design vector in Eq. 6.84 includes food production and distribution variables for each infrastructure
element as well as import and export variables for each system element. The cost function in Eq.
6.85 sums operational expenses for infrastructure elements, import expenses, and export revenue
(Poperations + Pimport − Vexport). The constraints in Eq. 6.86–6.87 restrict element production and
distribution below maximum values. The constraints in Eq. 6.88–6.89 restrict aggregated element
production to available land and labor at each node. Finally, the constraint in Eq. 6.90 ensures
the net food supplied (Qfood

supplied) meets demands at each node.

find:
qland

input(e), q
food
sent(e) ∀ e ∈ Eagricul.;

qfood
imported(Enagricul.), q

food
exported(Enagricul.) ∀ n ∈ N

(6.84)

to minimize:

∑
e∈Eagricul.

(
fcurrency

land (e) + fwater
land (e) · πwater

local

)
· qland

input(e)

+
∑

e∈Eagricul.

fcurrency
food (e) · qfood

sent(e)

+
∑
n∈N

πfood
import · q

food
imported(Enagricul.)− π

food
export · q

food
exported(Enagricul.)

(6.85)

subject to: qland
input(e) ≤ qland

input,max(e) ∀ e ∈ Eagricul. (6.86)

qfood
sent(e) ≤ q

food
sent,max(e) ∀ e ∈ Eagricul. (6.87)∑

e∈Enagricul.

qland
input(e) ≤ qland

stock(Enagricul.) ∀ n ∈ N (6.88)

∑
e∈Enagricul.

f labor
land (e) · qland

input(e) ≤ qlabor
stock(Enagricul.) ∀ n ∈ N (6.89)

∑
e∈Enagricul.

(
f food

land(e) · qland
input(e)− q

food
sent(e)

)
+

∑
e∈En?agricul.

(
η(e) · qfood

sent(e)
)

+ qfood
imported(Enagricul.)− q

food
exported(Enagricul.) ≥ Q

food
output(E

n
agricul.) ∀ n ∈ N

(6.90)

Assuming fixed prices where πfood
export < πfood

local < πfood
import, food import and export quantities are

given by Eq. 6.91–6.92, however optimization is still required to determine element-level production
and distribution values.

qfood
imported(Enagricul.) = max

(
0, Qfood

output(E
n
agricul.)−Q

food
supplied(Enagricul.)

)
∀ n ∈ N (6.91)
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Table 6.7: Water system elements, behaviors, and properties

Type Behavior Functional Form and Dependent Properties

WS Aquifer Withdraw Rstore(Enwater, {}, {(τaquifer, q
aquifer
retrieved}) (6.93)

Aquifer Recharge Rtransform(Enwater, {}, {(τaquifer, q
aquifer
recharged)}) (6.94)

Rstore(Enwater, {(τaquifer, q
aquifer
recharged)}, {}) (6.95)

Import Water Rtransform(Enwater, {}, {(τwater, q
water
imported)}) (6.96)

Produce Water Rtransform(Enwater, {(τelect, q
elect
input), (τaquifer, q

aquifer
input )},

{(τwater, q
water
produced)}) (6.97)

WP Commission Etransform(e, sc) (6.98)

Rtransform(e, {(τcurrency, pcapital)}, {}) (6.99)

Operate Etransform(e, so) (6.100)

Rtransform(e, {(τcurrency, pfixed)}, {}) (6.101)

Decommission Etransform(e, sd) (6.102)

Rtransform(e, {(τcurrency, pdecomm)}, {}) (6.103)

Produce Water Rtransform(e, {(τelect, q
elect
input), (τaquifer, q

aquifer
input ),

(τcurrency, pvariable)}, {(τwater, q
water
produced)}) (6.104)

WD Commission Etransform(e, sc) (6.105)

Rtransform(e, {(τcurrency, pcapital)}, {}) (6.106)

Operate Etransform(e, so) (6.107)

Rtransform(e, {(τcurrency, pfixed)}, {}) (6.108)

Decommission Etransform(e, sd) (6.109)

Rtransform(e, {(τcurrency, pdecomm)}, {}) (6.110)

Distribute Water Rtransport(e, {(τwater, q
water
sent ), (τelect, q

elect
input),

(τcurrency, pvariable)}, {(τwater, q
water
received)}) (6.111)

qfood
exported(Enagricul.) = max

(
0, Qfood

supplied(Enagricul.)−Q
food
output(E

n
agricul.)

)
∀ n ∈ N (6.92)

6.3.4 Water System Model

The water system includes system elements (type WS), production elements (type WP ), and dis-
tribution elements (type WD) with behaviors and properties described in Table 6.7.

The water system element (type WS) defines behaviors for withdrawing and recharging aquifer
resources, importing water, and producing water from unmanaged infrastructure. The aquifer
withdrawal behavior in Eq. 6.93 retrieves aquifer resources. The aquifer recharge behavior in Eq.
6.94–6.95 restores a portion of aquifer resources. The import water behavior in Eq. 6.96 acquires
water from the global market. Finally, the produce water behavior in Eq. 6.97 produces water
from private infrastructure by consuming electricity and aquifer resources. Private production
differs from other water production by avoiding direct expenses, however it is only used to meet
shortfalls in supply.

Water production elements (type WP ) include behaviors for producing water. They directly
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inherit commission, operate, and decommission behaviors from the generic infrastructure element
in Eq. 6.98–6.103. The produce water behavior in Eq. 6.104 consumes variable expenses and
electricity and aquifer resources to produce water.

Water distribution elements (type WD) include behaviors for distributing water. They directly
inherit commission, operate, and decommission behaviors from the generic infrastructure element
in Eq. 6.105–6.110. The distribute water behavior in Eq. 6.111 consumes variable expenses and
electricity resources to transport water.

This formulation does not include surface-level water storage elements such as reservoirs which
may be a topic of future work to represent strategic water resources.

SIPS-G Water System Element Operations Model

The SIPS-G water system element operations model defines the functional form for aquifer recharg-
ing and private water production. Aquifer recharge takes place at a constant recharge rate rrecharge

as defined in Eq. 6.112 to avoid exceeding aquifer capacity qaquifer
max . Equations 6.113–6.114 define

electricity and aquifer input resources as a linear function of water production with coefficients felect
water

and faquifer
water as specific electricity and aquifer resource consumption per unit produced (nominally

faquifer
water = 1.0 for private production sourced from aquifers).

qaquifer
recharged =


rrecharge if qaquifer

stock < qaquifer
max − rrecharge

qaquifer
max − rrecharge if qaquifer

max − rrecharge ≤ qaquifer
stock < qaquifer

max

0 otherwise

(6.112)

qelect
input = felect

water · qwater
produced (6.113)

qaquifer
input = faquifer

water · qwater
produced (6.114)

The water system element assumes all aquifer resources are accessible through a single stock,
recharge at a constant rate, and are usable for any water production. It is also limited in its linear
assumption of private production electricity consumption as a function of water produced. Future
work may develop electricity consumption as a function of aquifer depth (itself a function of aquifer
volume).

SIPS-G Water Production Element Operations Model

The SIPS-G water production element operations model defines the functional form for water pro-
duction. Equations 6.115–6.117 define electricity and aquifer input resources and variable expenses
as a linear function of water production with coefficients felect

water and faquifer
water as specific electricity

and aquifer resource consumption per unit produced and fcurrency
water as the cost per unit produced.

qelect
input = felect

water · qwater
produced (6.115)

qaquifer
input = faquifer

water · qwater
produced (6.116)

pvariable = fcurrency
water · qwater

produced (6.117)

The water production element is limited by the linear operations assumption as a function of
water produced. Future work may develop functional forms for electricity and variable costs as a
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function of aquifer depth or technological advancement.

SIPS-G Water Distribution Element Operations Model

The SIPS-G water distribution element operations model defines the functional form for water
transport. Equations 6.118–6.119 define electricity input resources and variable expenses as a linear
function of water distribution with coefficient felect

water as specific electricity resource consumption per
unit sent and fcurrency

water as the cost per unit sent. Equation 6.120 defines water received as a fraction
of water sent with efficiency η ⊆ [0, 1].

qelect
input = felect

water · qwater
sent (6.118)

pvariable = fcurrency
water · qwater

sent (6.119)

qwater
received = η · qwater

sent (6.120)

The water distribution element is limited by the linear operations assumption as a function
of water sent. Future work may develop functional forms for electricity and variable costs as a
function of distance or elevation change between nodes and pipe diameter.

SIPS-G Water System Flow Optimization

Water production and distribution within the SIPS-G water system implementation can be opti-
mized to minimize cost using the following linear programming (LP) problem formulation. The
design vector in Eq. 6.121 includes water production and distribution variables for each infrastruc-
ture element as well as private production and import variables for each system element. The cost
function in Eq. 6.122 includes operational expenses for infrastructure elements and import expenses
(Poperations + Pimport). The M factor bounded in Eq. 6.123 sets water production from elements
to be preferred over private production and private production to be preferred over import. The
constraints in Eq. 6.124–6.125 restrict element production and distribution below maximum values
and those in Eq. 6.126 restrict aggregated element production to available aquifer quantities at
each node. Finally, the constraint in Eq. 6.127 ensures the net water supplied (Qwater

supplied) meets
demands at each node.
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find:
qwater

produced(e), qwater
sent (e) ∀ e ∈ Ewater;

qwater
produced(Enwater), q

water
imported(Enwater) ∀ n ∈ N

(6.121)

to minimize:

∑
e∈Ewater

(
fcurrency

water (e) + felect
water(e) · πelect

local

)
· qwater

produced(e)

+
∑

e∈Ewater

(
fcurrency

water (e) + felect
water(e) · πelect

local

)
· qwater

sent (e)

+
∑
n∈N

M · qwater
produced(Enwater) +

∑
n∈N

πwater
import · qwater

imported(Enwater)

(6.122)

where max
e∈Ewater

(
fcurrency

water (e) + felect
water(e) · πelect

local

)
< M < πwater

import (6.123)

subject to: qwater
produced(e) ≤ qwater

produced,max(e) ∀ e ∈ Ewater (6.124)

qwater
sent (e) ≤ qwater

sent,max(e) ∀ e ∈ Ewater (6.125)∑
e∈Enwater

(
faquifer

water (e) · qwater
produced(e)

)
+ faquifer

water (Enwater) · qwater
produced(Enwater)

≤ Qaquifer
stock (Enwater) ∀ n ∈ N

(6.126)

∑
e∈Enwater

(
qwater

produced(e)− qwater
sent (e)

)
+

∑
e∈En?water

(
η(e) · qwater

sent (e)
)

+ qwater
produced(Enwater) + qwater

imported(Enwater) ≥ Qwater
output(E

n
water) ∀ n ∈ N

(6.127)

Assuming fixed prices where πwater
local < πwater

import and preference for element-level production, private
water production and import quantities are given by Eq. 6.128–6.129, however optimization is still
required to determine element-level production and distribution values.

qwater
produced(Enwater) = min

(
Qwater

output(E
n
water)−Qwater

supplied(Enwater),

Qaquifer
stock (Enwater)/f

aquifer
water (Enwater)

)
∀ n ∈ N (6.128)

qwater
imported(Enwater) = Qwater

output(E
n
water)−Qwater

supplied(Enwater)− qwater
produced(Enwater) ∀ n ∈ N (6.129)

6.3.5 Petroleum System Model

The petroleum system includes system elements (type PS), production elements (type PP ), and
distribution elements (type PD) with behaviors and properties described in Table 6.8.

The petroleum system element (type PS) defines behaviors for extracting from reservoirs, and
interacting with the global oil market. The extract oil behavior in Eq. 6.130 withdraws reservoir
resources. The export/import behaviors in Eq. 6.131–6.132 allow transactions with the global oil
market.

Petroleum production elements (type PP ) include behaviors for producing oil. They directly
inherit commission, operate, and decommission behaviors from the generic infrastructure element in
Eq. 6.133–6.138. The produce oil behavior in Eq. 6.139 consumes variable expenses and reservoir
resources to produce oil.
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Table 6.8: Petroleum system elements, behaviors, and properties

Type Behavior Functional Form and Dependent Properties

PS Extract Oil Rstore(Enpetrol., {}, {(τreservoir, q
reservoir
retrieved )}) (6.130)

Export Oil Rtransform(Enpetrol., {(τoil, q
oil
exported)}, {}) (6.131)

Import Oil Rtransform(Enpetrol., {}, {(τoil, q
oil
imported)}) (6.132)

PP Commission Etransform(e, sc) (6.133)

Rtransform(e, {(τcurrency, pcapital)}, {}) (6.134)

Operate Etransform(e, so) (6.135)

Rtransform(e, {(τcurrency, pfixed)}, {}) (6.136)

Decommission Etransform(e, sd) (6.137)

Rtransform(e, {(τcurrency, pdecomm)}, {}) (6.138)

Produce Oil Rtransform(e, {(τreservoir, q
reservoir
input ), (τcurrency, pvariable)},

{(τoil, q
oil
produced)}) (6.139)

PD Commission Etransform(e, sc) (6.140)

Rtransform(e, {(τcurrency, pcapital)}, {}) (6.141)

Operate Etransform(e, so) (6.142)

Rtransform(e, {(τcurrency, pfixed)}, {}) (6.143)

Decommission Etransform(e, sd) (6.144)

Rtransform(e, {(τcurrency, pdecomm)}, {}) (6.145)

Distribute Oil Rtransport(e, {(τoil, q
oil
sent), (τelect, q

elect
input), (τcurrency, pvariable)},

{(τoil, q
oil
received)}) (6.146)
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Petroleum distribution elements (type PD) include behaviors for transporting oil. They directly
inherit commission, operate, and decommission behaviors from the generic infrastructure element
in Eq. 6.140–6.145. The distribute oil behavior in Eq. 6.146 consumes electricity and variable
expenses to transport oil.

This formulation does not include surface-level oil storage elements which may be a topic of
future work to represent strategic oil resources.

SIPS-G Petroleum System Element Operations Model

The SIPS-G petroleum system element does not modify any resource stocks or allow private pro-
duction. It assumes all reservoir resources are accessible through a single stock and are usable for
any oil production. Future work may develop reservoir models with uncertainty in proven reserves
and multiple stocks of varying quality or ease of access.

SIPS-G Petroleum Production Element Operations Model

The SIPS-G petroleum production element operations model defines the functional form for oil
production. Equations 6.147–6.148 define reservoir input resources and variable expenses as a
linear function of oil production with coefficients f reservoir

oil as specific reservoir resource consumption
(nominally 1.0 for reservoir extraction) and fcurrency

oil as the cost per unit produced.

qreservoir
input = f reservoir

oil · qoil
produced (6.147)

pvariable = fcurrency
oil · qoil

produced (6.148)

The petroleum production element is limited by the linear operations assumption as a function
of oil produced. Future work may develop functional forms for variable costs as a function of
reservoir depth, quality, or technological advancement.

SIPS-G Petroleum Distribution Element Operations Model

The SIPS-G petroleum distribution element operations model defines the functional form for oil
transport. Equations 6.149–6.150 define electricity input resources and variable expenses as a linear
function of oil distribution with coefficient felect

oil as specific electricity resource consumption per unit
sent and fcurrency

oil as the cost per unit sent. Equation 6.151 defines oil received as a fraction of oil
sent with efficiency η ⊆ [0, 1].

qelect
input = felect

oil · qoil
sent (6.149)

pvariable = fcurrency
oil · qoil

sent (6.150)

qoil
received = η · qoil

sent (6.151)

The petroleum distribution element is limited by the linear operations assumption as a function
of oil sent. Future work may develop functional forms for electricity and variable costs as a function
of distance or elevation change between nodes and pipe diameter.
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SIPS-G Petroleum System Flow Optimization

Oil production and distribution within the SIPS-G petroleum system implementation can be op-
timized to minimize cost using the following linear programming (LP) problem formulation. The
design vector in Eq. 6.152 includes oil production and distribution variables for each infrastructure
element as well as import and export variables for each system element. The cost function in Eq.
6.153 includes operational expenses for infrastructure elements, import expenses, and export rev-
enue (Poperations +Pimport−Vexport). The constraints in Eq. 6.154–6.155 restrict element production
and distribution below maximum values. The constraints in Eq. 6.156 restricts aggregated element
production to available reservoir quantities. Finally, the constraint in Eq. 6.157 ensures the net oil
supplied (Qoil

supplied) meets demands.

find:
qoil

produced(e), qoil
sent(e) ∀ e ∈ Epetrol.;

qoil
exported(Enpetrol.), q

oil
imported(Enpetrol.) ∀ n ∈ N

(6.152)

to minimize:

∑
e∈Epetrol.

fcurrency
oil (e) · qoil

produced(e)

+
∑

e∈Epetrol.

(
fcurrency

oil (e) + felect
oil (e) · πelect

local

)
· qoil

sent(e)

+
∑
n∈N

πoil
import · qoil

imported(Enpetrol.)− πoil
export · qoil

exported(Enpetrol.)

(6.153)

subject to: qoil
produced(e) ≤ qoil

produced,max(e) ∀ e ∈ Epetrol. (6.154)

qoil
sent(e) ≤ qoil

sent,max(e) ∀ e ∈ Epetrol. (6.155)∑
e∈Enpetrol.

(
f reservoir

oil (e) · qoil
produced(e)

)
≤ qreservoir

stock (Enpetrol.) ∀ n ∈ N
(6.156)∑

e∈Enpetrol.

(
qoil

produced(e)− qoil
sent(e)

)
+

∑
e∈En?petrol.

(
η(e) · qoil

sent(e)
)

+ qoil
imported(Enpetrol.)− qoil

exported(Enpetrol.) ≥ Qoil
output(E

n
petrol.) ∀ n ∈ N

(6.157)

Assuming fixed prices where πoil
export < πoil

local < πoil
import, oil import and export quantities are given

by Eq. 6.158–6.159, however optimization is still required to determine element-level production
and distribution values.

qoil
imported(Enpetrol.) = max

(
0, Qoil

output(E
n
petrol.)−Qoil

supplied(Enpetrol.)
)
∀ n ∈ N (6.158)

qoil
exported(Enpetrol.) = max

(
0, Qoil

supplied(Enpetrol.)−Qoil
output(E

n
petrol.)

)
∀ n ∈ N (6.159)

6.3.6 Electricity System Model

The electricity system includes system elements (type ES), production elements (type EP ), and
distribution elements (type ED) with behaviors and properties described in Table 6.9.

The electricity system element (type ES) defines behaviors producing electricity using private
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Table 6.9: Electrical system elements, behaviors, and properties

Type Behavior Functional Form and Dependent Properties

ES Produce Electricity Rtransform(Enelect., {(τoil, q
oil
input)}, {(τelect, q

elect
produced)}) (6.160)

EP Commission Etransform(e, sc) (6.161)

Rtransform(e, {(τcurrency, pcapital)}, {}) (6.162)

Operate Etransform(e, so) (6.163)

Rtransform(e, {(τcurrency, pfixed)}, {}) (6.164)

Decommission Etransform(e, sd) (6.165)

Rtransform(e, {(τcurrency, pdecomm)}, {}) (6.166)

Produce Electricity Rtransform(e, {(τwater, q
water
input ), (τoil, q

oil
input), (τcurrency, pvariable)},

{(τelect, q
elect
produced)}) (6.167)

ED Commission Etransform(e, sc) (6.168)

Rtransform(e, {(τcurrency, pcapital)}, {}) (6.169)

Operate Etransform(e, so) (6.170)

Rtransform(e, {(τcurrency, pfixed)}, {}) (6.171)

Decommission Etransform(e, sd) (6.172)

Rtransform(e, {(τcurrency, pdecomm)}, {}) (6.173)

Distribute Electricity Rtransport(e, {(τelect, q
elect
sent ), (τcurrency, pvariable)},

{(τelect, q
elect
received)}) (6.174)

infrastructure. The produce electricity behavior in Eq. 6.160 consumes oil to generate electricity.
Private production differs from other electricity production by avoiding direct expenses, however
it is only used to meet shortfalls in public supply.

Electricity production elements (type EP ) include behaviors for producing electricity. They
directly inherit commission, operate, and decommission behaviors from the generic infrastructure
element in Eq. 6.161–6.166. The produce electricity behavior in Eq. 6.167 consumes water and oil
input resources and variable expenses to produce electricity.

Electricity distribution elements (type ED) include behaviors for transporting electricity. They
directly inherit commission, operate, and decommission behaviors from the generic infrastructure
element in Eq. 6.168–6.173. The distribute electricity behavior in Eq. 6.174 consumes variable
expenses to transport electricity.

SIPS-G Electricity System Element Operations Model

The SIPS-G electricity system element operations model defines the functional form for private
electricity production. Equation 6.175 defines oil input resources as a linear function of electricity
production with coefficient foil

elect as the specific oil consumption per unit produced.

qoil
input = foil

elect · qelect
produced (6.175)

The electricity system element is limited in its linear assumption of private production oil
consumption as a function of electricity produced. Future work may develop private production
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models as a function of technological advancement.

SIPS-G Electricity Production Element Operations Model

The SIPS-G electricity production element operations model defines the functional form for electric-
ity production. Equations 6.176–6.178 define oil and water input resources and variable expenses
as a linear function of electricity production with coefficients fwater

elect and foil
elect as specific water and

oil resource consumption and fcurrency
elect as the cost per unit produced.

qwater
input = fwater

elect · qelect
produced (6.176)

qoil
input = foil

elect · qelect
produced (6.177)

pvariable = fcurrency
elect · qelect

produced (6.178)

The electricity production element is limited by the linear operations assumption as a function of
electricity produced. Future work may develop functional forms for variable costs and oil and water
resource consumption to incorporate nonlinearities and as a function of technological advancement.

SIPS-G Electricity Distribution Element Operations Model

The SIPS-G electricity distribution element operations model defines the functional form for elec-
tricity transport. Equation 6.179 defines variable expenses as a linear function of electricity distri-
bution with coefficient fcurrency

elect as the cost per unit sent. Equation 6.180 defines electricity received
as a fraction of electricity sent with efficiency η ⊆ [0, 1].

pvariable = fcurrency
elect · qelect

sent (6.179)

qelect
received = η · qelect

sent (6.180)

The electricity distribution element is limited by the linear operations assumption as a function
of electricity sent. Future work may develop functional forms for resistive losses as a function of
distance between nodes and voltage level.

SIPS-G Electricity System Flow Optimization

Electricity production and distribution within the SIPS-G electricity system implementation can
be optimized to minimize cost using the following linear programming (LP) problem formulation.
The design vector in Eq. 6.181 includes electricity production and distribution variables for each
infrastructure element as well as a private production variable for each system element. The cost
function in Eq. 6.182 includes operational expenses (Poperations). The M factor bounded in Eq.
6.183 makes electricity production from elements always preferred over private production. The
constraints in Eq. 6.184–6.185 restrict element production and distribution below maximum values.
Finally, the constraint in Eq. 6.186 ensures the net electricity supplied (Qelect.

supplied) meets demands.
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find:
qelect.

produced(e), qelect.
sent (e) ∀ e ∈ Epetrol.;

qelect.
produced(Enpetrol.) ∀ n ∈ N

(6.181)

to minimize:

∑
e∈Epetrol.

(
fcurrency

elect. (e) + foil
elect.(e) · πoil

local + fwater
elect. (e) · πwater

local

)
· qelect.

produced(e)

+
∑

e∈Eelect.

fcurrency
elect. (e) · qelect.

sent (e) +
∑
n∈N

M · qelect.
produced(Enpetrol.)

(6.182)

where M > max
e∈Eelect.

(
fcurrency

elect (e) + foil
elect.(e) · πoil

local + fwater
elect. (e) · πwater

local

)
(6.183)

subject to: qelect.
produced(e) ≤ qelect.

produced,max(e) ∀ e ∈ Eelect. (6.184)

qelect.
sent (e) ≤ qelect.

sent,max(e) ∀ e ∈ Eelect. (6.185)∑
e∈Enelect.

(
qelect.

produced(e)− qelect.
sent (e)

)
+

∑
e∈En?elect.

(
η(e) · qelect.

sent (e)
)

+ qelect.
produced(Enelect.) ≥ Qelect.

output(E
n
elect.) ∀ n ∈ N

(6.186)

Assuming element-level production is preferred, private electricity production is given by Eq.
6.187, however optimization is still required to determine element-level production and distribution
values.

qelect.
produced(Enelect.) = Qelect.

output(E
n
elect.)−Qelect.

supplied(Enelect.) ∀ n ∈ N (6.187)

6.3.7 Assumptions and Limitations

The simulation model formulation presented in this section is balance of the triadic game design
elements of reality, meaning, and play. While it contains aspects of the real-world infrastructure,
there are a number of assumptions breaking from reality to improve meaning or play. In particular,
as this application emphasizes the architectural structure and long-term behavior of infrastructure
systems, there is minimal representation of internal model details (e.g. of an infrastructure element),
interaction between models (e.g. of resource exchange between systems), and short-term operational
behaviors (e.g. at time-scales smaller than one year).

First, in terms of the overall framing, all infrastructure systems and elements are managed by
players as representatives of the associated government ministries. Although a reasonable assump-
tion for the water and energy sectors, this is not particularly accurate of the agriculture sector
where much of the production and distribution is performed by the private sector. Still, the gov-
ernment role in agriculture has historically been one of policy-making to encourage or discourage
private sector actions which can be seen as managing infrastructure once removed.

This formulation also assumes there is a sole source of each resource type. This assumption
reduces the amount of information required for exchange between systems. For example, if both
water and electricity systems could produce electricity, some combination of the two would satisfy
demands. However, the systems must coordinate to prevent shortfalls or wasted resources. Omitting
this detail is not a limitation of the ISoS framework, but rather is intentional simplification for the
prototype simulation game. Multiple sources of a resource type would require additional operational
logic at each time step and would increase the number of iteration cycles required within each time
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advancement due to information dependencies. Furthermore, the model assumes there is never
a shortfall in resources supplied to meet required outputs. Each infrastructure system contains
a mechanism for unbounded resource supply: the agriculture system can import food, the water
system can import water, the petroleum system can import oil, and the electrical system can use
private generators for electricity.

Although the underlying mechanics cover certain economic activities such as sales and trade,
there are no realistic economic mechanisms in the present formulation. All resource prices, both
domestic and international, are held constant without elasticities to supply or demand. This simpli-
fication is intentional to reduce cognitive load and ease implementation, however future extensions
may introduce local price elasticities and geographical variances and import/export price variance
to improve realism. Variable resource prices would contribute additional interdependencies between
systems to reach economic equilibrium conditions.

Other nested models within the social system such as resource demand models and population
growth models are also highly stylized. Several of the demand models are only a function of
time and are unaffected by the player actions. Similarly, the logistic population growth model in
this formulation is exogenous and is in no way affected by surplus or shortage of key resources
important for quality of life. More complex models could improve realism and also introduce
important feedbacks relating growth and prosperity. However, one must also consider the relative
magnitude of infrastructure as a small portion of the entire national economy.

Finally, the infrastructure element models defined are also simplified to express linear behaviors
as a function or production or distribution level. The numerous life-cycle model attributes includ-
ing capital cost, fixed operations cost, and decommission cost help to create a nonlinear overall
life-cycle cost profile while maintaining linearized components. All other attributes including re-
source consumption intensities of production or distribution (e.g. water, electricity, and variable
operations cost) and other resource use intensities (e.g. water aquifer, petroleum reservoir, arable
land, labor) are linear in the production or distribution value. This is not an inherent limitation
in the modeling framework, but rather a conscious simplification to both reduce cognitive load and
to enable linear programming for automated micro-managing of infrastructure operations. While
future applications of this modeling framework could add more complex models, the effect of linear
behavior models is somewhat mitigated by aggregating multiple models across several systems,
allowing compositions of linear element behaviors to produce non-linear system results.

6.4 Baseline Scenario Model Instantiations

This section introduces a set of model instantiations which specify values for the parameterized
properties of infrastructure systems and elements. The instantiations are selected for triadic design
of play, reality, and meaning in the SIPS-G application. Some parameters are based on historical
estimates of infrastructure operations in Saudi Arabia while others are purposefully selected to
improve game play. In general, parameters dealing with physical resource transformations tend to
reflect reality. Where appropriate, citations to referenced data sources help to identify validated
parameters. Some concepts represented in the SIPS-G application to improve meaning do not
directly coincide with publicly-available data, requiring interpretation and approximation. Param-
eters dealing with finances tend to be more sophistic to support balanced play. In particular, all
currency-based values are reported a fictitious currency of simoleons represented with the § symbol.
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Table 6.10: Population model parameters

Variable Description nindustrial nurban nrural Units

t0 Datum time 1980 1980 1980 year

r Growth rate of population 7 6 5 %

P0 Datum population 3.0 6.0 0.75 million people

Pmax Maximum population 17.5 20.0 4.0 million people
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Figure 6-11: Population model validation. A stacked area chart compares regional model values to popu-
lation estimates between 1950 and 2010. Data sources: UNPD 2013; World Bank 2012.

6.4.1 Social System Model Instantiation

The social system model instantiation provides parameter values for the population model and
food, water, and electricity demand models.

Population Model Parameters

Table 6.10 describes parameters for the SIPS-G logistic growth population model implementation
at each node. Parameter values approximate highest growth rates in the industrial node, highest
initial population in the urban node, and lowest initial population and growth in the rural node.
Figure 6-11 compares aggregate results from the three nodal population models with historical
estimates with good fit. The disaggregation of population among the three nodes, however, is
balanced for game play.

Food Demand Model Parameters

The food demand model assumes a single food resource type aggregating commonly-used classifi-
cations of food, animal feed, and seed. Figure 6-12 illustrates estimates of direct food consumption
compared to total food energy supply (food, feed, and seed). The gap after 1975 is driven by ex-
pansion of animal sources of food which nearly doubles the total food supply required. Table 6.11
describes parameter values for the food demand model using the SIPS-G per-capita logistic growth



6.4. BASELINE SCENARIO MODEL INSTANTIATIONS 193

Table 6.11: Food demand model parameters

Variable Description nindustrial nurban nrural Units

tfood
0 Datum time 1975 1975 1975 year

rfood Growth rate of per-capita demand 20 20 20 %

dfood
min Minimum per-capita demand 1800 1800 1800 kcal/day

dfood
0 Datum per-capita demand 2300 2300 2300 kcal/day

dfood
max Maximum per-capita demand 5800 5800 5800 kcal/day
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Figure 6-12: Food demand model outputs com-
pared to historical estimates of per-capita food
consumption and total food supply (including
feed and seed) between 1950 and 2010. Data
source: FAO 2013b (total food consumption, to-
tal food supply).
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Figure 6-13: A stacked area chart compares
aggregated demand model outputs with histori-
cal estimates of food consumption and total food
supply (including feed and seed) between 1950
and 2010. Data source: FAO 2013b (total food
consumption, total food supply).

model implementation with equal values at each node. It uses a lower bound of 1800 kilo-calories
per day (kcal/day) and a maximum of 5800 kcal/day with a growth rate of 20%. A datum demand
of 2300 kcal/day is fixed in 1975.

Figures 6-12–6-13 compare per-capita and aggregate food consumption estimates with resulting
demand model values between 1950-2010. While the model does not capture the rapid increases
observed between 1975 and 1980, it follows the general trend of per-capita demand increasing by
nearly 4000 kcal/day between 1950 and 2010.

Water Demand Model Parameters

Table 6.12 describes parameter values for the water demand model using the SIPS-G per-capita
logistic growth model with equal values at each node. It uses a lower bound of 25 liters per day
(L/day) and a maximum of 325 L/day with a 8% annual growth rate. A datum demand of 175
L/day is fixed in 1965. Figures 6-14–6-15 compare per-capita and aggregate water consumption
estimates and demand model values between 1950-2010. Despite limited data points, the demand
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Table 6.12: Water demand model parameters

Variable Description nindustrial nurban nrural Units

twater
0 Datum time 1965 1965 1965 year

rwater Growth rate of per-capita demand 8 8 8 %

dwater
min Minimum per-capita demand 25 25 25 L/day

dwater
0 Datum per-capita demand 175 175 175 L/day

dwater
max Maximum per-capita demand 325 325 325 L/day
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Figure 6-14: Water demand model outputs
compared to historical estimates of per-capita
water consumption between 1950 and 2010. Data
sources: KSA 1990; KSA 1995; KSA 2000; KSA
2005; KSA 2010 (municipal plus industrial with-
drawals) FAO 2013a (municipal plus industrial
withdrawals).

1950 1960 1970 1980 1990 2000 2010
0

0.5

1

1.5

2

2.5

3

3.5

Year

W
at

er
 C

on
su

m
pt

io
n 

(k
m

3 /y
r)

 

 

Industrial Model
Rural Model
Urban Model
KSA Estimate
AQUASTAT Estiamte

Figure 6-15: A stacked area chart compares
aggregated demand model outputs with histori-
cal estimates of water consumption between 1950
and 2010. Data sources: KSA 1990; KSA 1995;
KSA 2000; KSA 2005; KSA 2010 (municipal plus
industrial withdrawals) FAO 2013a (municipal
plus industrial withdrawals).

model illustrates a tripling of per-capita water demand between 1950 and 2010.

Oil Demand Model Parameters

Table 6.13 describes parameter values for the oil demand model using the SIPS-G per-capital logistic
growth model with equal values at each node. It uses a lower bound of 0 tonnes of oil equivalent
per year (toe/yr) and a maximum of 7 toe/yr with a 7% annual growth rate. A datum demand
of 1 toe/yr is fixed in 1970. Figures 6-16–6-17 compare per-capita and aggregate oil consumption
estimates and demand model values between 1950-2010.

Electricity Demand Model Parameters

Table 6.14 describes parameter values for the electricity demand model using the SIPS-G per-capita
logistic growth model with equal values at each node. It uses a lower bound of 0 kilowatt hours
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Table 6.13: Oil demand model parameters

Variable Description nindustrial nurban nrural Units

toil
0 Datum time 1970 1970 1970 year

roil Growth rate of per-capita demand 7 7 7 %

doil
min Minimum per-capita demand 0 0 0 toe/yr

delect
0 Datum per-capita demand 1 1 1 toe/yr

doil
max Maximum per-capita demand 9 9 9 toe/yr
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Figure 6-16: Oil demand model outputs com-
pared to historical estimates of per-capita en-
ergy consumption between 1950 and 2010. Data
sources: World Bank 2012 (energy less electric
power consumption), BP 2013 (primary energy
consumption less electricity generation).
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Figure 6-17: A stacked area chart compares ag-
gregated demand model outputs with historical
estimates of energy consumption between 1950
and 2010. Data sources: World Bank 2012 (en-
ergy less electric power consumption), BP 2013
(primary energy consumption less electricity gen-
eration).
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Table 6.14: Electricity demand model parameters

Variable Description nindustrial nurban nrural Units

telect
0 Datum time 1950 1950 1950 year

relect Growth rate of per-capita demand 9 9 9 %

delect
min Minimum per-capita demand 0 0 0 kWh/day

delect
0 Datum per-capita demand 0.25 0.25 0.25 kWh/day

delect
max Maximum per-capita demand 40 40 40 kWh/day
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Figure 6-18: Electricity demand model outputs
compared to historical estimates of per-capita
electricity consumption between 1950 and 2010.
Data sources: World Bank 2012 (electricity con-
sumption), BP 2013 (electricity generation).
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Figure 6-19: A stacked area chart compares
aggregated demand model outputs with histori-
cal estimates of electricity consumption between
1950 and 2010. Data sources: World Bank 2012
(electricity consumption), BP 2013 (electricity
generation).

per day (kWh/day) and a maximum of 40 kWh/day with a 9% annual growth rate. It is fixed to
a datum demand of 0.25 kWh/day in 1950. Figures 6-18–6-19 compare per-capita and aggregate
electricity consumption estimates and demand model values between 1950-2010. The model slightly
under-estimates demands before 1978 and after 2002 and over-estimates demands between the two
dates.

6.4.2 Agriculture System Model Instantiation

The agriculture system model instantiations are based on the agricultural sector of Saudi Arabia
between 1950 and 2010 simplified to a single crop representing all food, feed, and seed sources of
food energy. Cereals compose about half of the food energy production in Saudi Arabia as shown in
Figure 6-20, suggesting a single representative crop can approximate a large portion of agricultural
production. The following system model parameters, element options, and baseline scenario follow
the historical growth of wheat-based agriculture during the 1980s and decline in the 2000s.
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Table 6.15: Agriculture system model parameters

Variable Description nindustrial nurban nrural Units

πfood
local Local food price 60 60 60 §/GJ

πfood
import Import food price 70 70 70 §/GJ

πfood
export Export food price 50 50 50 §/GJ

f labor
people Maximum labor participation rate 0.04 0.04 0.40 –

qland
stock Usable agriculture land area 8 10 15 thousand km2

Agriculture System Model Parameters

The agriculture system model parameters in Table 6.15 set local, import, and export food prices
and the stocks of land and labor usable by infrastructure elements. Each node has identical prices
such that the export price is below the local price and the import price is above the local price to
reflect potential tariffs; however the particular values are balanced for game play.

Labor in the agriculture system is inferred as persons involved with the end-to-end production,
processing, and distribution of domestic agriculture. Labor participation rates are balanced with the
associated labor required for crop production and should not be considered a valid representation
of agricultural workforce. Whereas the industrial and urban nodes have relatively small fractions
of agriculture-related labor at 4%, the rural region has a large fraction at 40%.

Agricultural land models are based on estimates of arable land and permanent crop area il-
lustrated in Figure 6-21. As the rural, urban, and industrial nodes are aggregated regions rather
than distinct geographical entities, the particular distribution of land is balanced for game play. A
national upper bound of 33,000 square kilometers (km2) for agricultural purposes is mostly held
by the rural region (15,000 km2 or 45%), followed by the urban region (10,000 km2 or 30%), and
finally the industrial region (8,000 km2 or 25%); however the disaggregation of land among the
three nodes is not validated. For comparison, the national agricultural land use in Saudi Arabia
between 1990 and 2010 was about 10,000 km2.

Agriculture Element Model Parameters

Agriculture production elements in Tables 6.16–6.17 define small and large instantiations for wheat
production capable of producing up to 2.5 and 5 exajoules per year (EJ/yr). Capital expenses are
balanced to allow a positive return on investment in one to two years at maximum capacity. Fixed
operations expenses are set to 5% of capital expenses and there are no decommissioning expenses.
The specific expense per unit output is balanced to about 40% of total operations expenses with
large-sized elements benefiting slightly from economies of scale. Parameters for labor requirements
are balanced with labor participation rates, population models, and land constraints. Parameters
for water consumption are based on estimates of agricultural aquifer withdrawals and harvested
crop area in Figure 6-22. The model parameter of 1.5 million cubic meters per square kilometer
(MCM/km2) is based on the harvested area of all vegetal products to avoid over-estimation if using
only cereals which has higher water consumption. Finally, parameters for food energy yield are
based on historical data for cereal production in Saudi Arabia in Figure 6-23. Due to agricultural
improvements over time, the model parameter of 5 terajoules per square kilometer (TJ/km2) over-
estimates production before 1985.
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Figure 6-20: Food energy supply by type. Ce-
reals make up about half of food energy supply
in Saudi Arabia. Data source: FAO 2013b (har-
vested area, crop production, and food supply).
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Figure 6-21: Agricultural land model valida-
tion. Arable land in Saudi Arabia totals under 40
thousand km2. Data source: FAO 2013b (arable
land and permanent crops, harvested area).

Table 6.16: Agricultural production (AP ) element parameters

pcapital pfixed/∆t pdecomm fcurrency
land /∆t

Element Type (§M) (§M/yr) (§M) (§/km2/yr)

Small Wheat Field 100 5 0 50,000

Large Wheat Field 180 9 0 45,000

Table 6.17: Agricultural production (AP ) element parameters (continued)

qmax
input f labor

land fwater
land /∆t f food

land/∆t

Element Type (km2) (person/km2) (MCM/km2/yr) (TJ/km2/yr)

Small Wheat Field 500 60 1.5 5

Large Wheat Field 1000 60 1.5 5
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Table 6.18: Agricultural distribution (AD) element parameters

pcapital pfixed/∆t pdecomm fcurrency
food qmax

sent/∆t η

Element Type (§M) (§M/yr) (§M) (§/GJ) (EJ/yr) (–)

Low-volume Transport 50 2.5 0 2 2 0.92

High-volume Transport 300 15 0 2 15 0.94
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Figure 6-22: Food water use validation. Esti-
mates for water use are based on reported agri-
cultural withdrawals and harvest area. Data
sources: FAO 2013b (harvested area), KSA 1990;
KSA 1995; KSA 2000; KSA 2005; KSA 2010
(agricultural withdrawals)
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Figure 6-23: Food energy yield validation. Es-
timates for cereals and other vegetal product
yields are based on reported harvest area and
food supply data. Data source: FAO 2013b (har-
vested area, crop production, and food supply).

Agriculture distribution elements in Table 6.18 identify low- and high-volume transport methods
with maximum capacities of 2 and 15 EJ/yr. Larger capacity trades higher capital costs for lower
operations costs and higher efficiencies (94% compared to 92%). Capital expenses are balanced to
contribute about 30-35% of an unadjusted 30-year lifecycle cost. Fixed operations expenses are set
to 5% of capital expenses and there are no decommission expenses. The specific expense per unit
sent is balanced to 60-65% of the operational expense at maximum capacity. Other parameters are
balanced for game play, including capacity limits to accommodate food energy transport of 2 and
15 exajoules per year (EJ/yr) and.

Baseline Agriculture Scenario

The baseline scenario in Table 6.19 defines element model instantiations at locations with associ-
ated commissioning and decommissioning times (t0, t∅) and durations (d0, d∅). Missing times (–)
reflect dates outside of the 1950-2010 time period. All durations are set to zero (i.e. operations
can immediately start) to reflect the relatively short timescale required to establish agricultural
infrastructure and most elements are not decommissioned over the expected timescale horizon.

Figure 6-24 shows agricultural labor use in the baseline scenario. Figure 6-25 illustrates agricul-
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Table 6.19: Agriculture system baseline scenario

t0 d0 t∅ d∅ Element(s) Location

– 0 – 0 Small Wheat Farm 1 (nindustrial, nindustrial)

– 0 – 0 Small Wheat Farm 2 (nurban, nurban)

– 0 – 0 Small Wheat Farm 3 (nrural, nrural)

– 0 – 0 Low-volume Transport 1 (nrural, nindustrial)

– 0 – 0 Low-volume Transport 2 (nrural, nurban)

1962 0 – 0 Small Wheat Farm 4 (nrural, nrural)

1982 0 – 0 Small Wheat Farm 5 (nindustrial, nindustrial)

1982 0 – 0 Small Wheat Farm 6 (nurban, nurban)

1984 0 – 0 Large Wheat Farm 1 (nrural, nrural)

1984 0 – 0 Large Wheat Farm 2 (nrural, nrural)

1984 0 – 0 Large Wheat Farm 3 (nrural, nrural)

1984 0 – 0 High-volume Transport 1 (nrural, nindustrial)

1984 0 – 0 High-volume Transport 2 (nrural, nurban)

1986 0 2008 0 Large Wheat Farm 4 (nindustrial, nindustrial)

1986 0 – 0 Large Wheat Farm 5 (nurban, nurban)

1986 0 1996 0 Large Wheat Farm 6 (nurban, nurban)

1988 0 – 0 Large Wheat Farm 7 (nrural, nrural)

1988 0 – 0 Large Wheat Farm 8 (nrural, nrural)

1988 0 1996 0 Large Wheat Farm 9 (nurban, nurban)

1990 0 1996 0 Large Wheat Farm 10 (nindustrial, nindustrial)

1990 0 1994 0 Large Wheat Farm 11 (nindustrial, nindustrial)

1990 0 1994 0 Large Wheat Farm 12 (nindustrial, nindustrial)

1990 0 1994 0 Large Wheat Farm 13 (nindustrial, nindustrial)

1992 0 1994 0 Large Wheat Farm 14 (nurban, nurban)

1992 0 1994 0 Large Wheat Farm 15 (nurban, nurban)

2002 0 – 0 Large Wheat Farm 16 (nrural, nrural)

2004 0 2008 0 Large Wheat Farm 17 (nindustrial, nindustrial)

2004 0 2008 0 Large Wheat Farm 18 (nurban, nurban)
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tural land use in the baseline scenario compared to historical estimates. As the model only considers
a single crop and no animal products to supply food energy, more land is used in later years as
compared to historical data. Also, as the food energy yield parameter over-estimates production
before 1985, less land is used as compared to historical data in early years.

Figure 6-26 compares results from the baseline agriculture scenario with historical estimates of
agricultural water withdrawals. The composite models show slight over-estimation before 1996 and
underestimation in years following. Figure 6-27 compares results from the baseline scenario with
historical estimates of food energy production, showing generally good agreement.

6.4.3 Water System Model Instantiation

The water system model instantiations are based on the water sector of Saudi Arabia between 1950
and 2010. As a majority of the water production is based on direct withdrawals from aquifers,
pump-based private production provides the majority of the water resources. Starting in the 1980s,
capital-intensive desalination plants operate in the urban (east coast) and industrial (west coast)
nodes to transform seawater into consumable water. The east and west coast water networks are
largely separate in Saudi Arabia, as illustrated in Figure 6-28, and the baseline scenario does not
include any inter-regional distribution lines.

Water System Model Parameters

The water system model parameters in Table 6.20 set the local and import prices for water, aquifer
volumes and recharge rates, and efficiencies for private production of water. Aquifer models are
based on estimates of aquifer volumes and historical withdrawals and recharge estimates. Sources
agree on an approximate peak in withdrawals between 20-25 cubic kilometers per year (km3/yr)
around 2000 and renewable water sources totaling between 2-8 km3/yr as illustrated in Figure 6-29
(KSA 2010; World Bank 2005; FAO 2013a). Total aquifer volumes are estimated between 428 and
500 km3/yr in 1997 and 1985, respectively (KSA 2005; World Bank 2005). The 1997 estimate of
428 km3/yr from KSA (2005) is used in Figure 6-30 with withdrawal estimates from KSA (2010)
to extrapolate initial steady-state aquifer volumes. A maximum and initial national aquifer volume
of 600 km3 is divided across the three nodes such that the rural node access the most (250 km3 or
42%), followed by the industrial node (200 km3 or 33%) and the urban node (150 km3 or 25%).
Annual recharge totaling 3.5 km3/yr are divided such that the urban node receives the highest
fraction of its steady-state volume (2.2 km3/yr or 0.88%), followed by rural node (1.2 km3/yr or
0.8%), and finally the industrial node (0.1 km3/yr or 0.05%).

Parameters for private production assume a perfect efficiency of transforming aquifer resources
to water. An electrical intensity only considering gravitational potential energy changes and pump
system efficiency is estimated using the equation

felect
water =

ρgh

ηpump
(6.188)

where ρ is the density of water (approximated at 1000 kg/m3), g is the gravitational acceleration
constant (9.8 m/s2), h is the aquifer depth, and ηpump is the pump efficiency. This equation does
not consider friction or viscosity losses and assumes the aquifer depth remains constant over time
and is at zero gage pressure. Using hypothetical values of ηpump=0.3 and h=100 m, the resulting
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Figure 6-24: Stacked area chart of baseline
agriculture scenario labor use.
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Figure 6-25: Stacked area chart of baseline
agriculture scenario land use compared with FAO
estimate of harvested area for vegetal products.
Data source: FAO 2013b.
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Figure 6-26: Stacked area chart of baseline
agriculture scenario water use compared with
KSA estimate of agricultural withdrawals. Data
sources: KSA 1990; KSA 1995; KSA 2000; KSA
2005; KSA 2010.
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Figure 6-27: Stacked area chart of baseline sce-
nario food production compared with FAO esti-
mate of domestic food supply. Data source: FAO
2013b (total domestic food supply).
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Figure 6-28: Desalination projects in Saudi Arabia. White circles mark desalination plants, gray circles
mark supplied cities, solid lines mark pipelines, and dashed lines mark planned plants and pipelines. East
and west coast desalination operations are largely separate. Data source: SWCC 2012.
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Figure 6-29: Aquifer withdrawal and recharge
estimates using KSA, FAO AQUASTAT, and
World Bank sources. Data sources: KSA 2005;
World Bank 2005; FAO 2013a.
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Figure 6-30: Aquifer model volume validation.
Back-estimated aquifer volumes using 1997 da-
tum from KSA (2005), KSA withdrawal esti-
mates, and various recharge estimates. Data
sources: KSA 2005; World Bank 2005; FAO
2013a.
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Table 6.20: Water system model parameters

Variable Description nindustrial nurban nrural Units

πwater
local Local water price 0.05 0.05 0.05 §/m3

πwater
import Import water price 10 10 10 §/m3

qaquifer
stock,max Maximum aquifer volume 200 150 250 km3

qaquifer
stock,0 Initial aquifer volume 200 150 250 km3

rrecharge Aquifer recharge rate 0.1 2.2 1.2 km3/yr

bcoastal Coastal sea access 1 1 0 –

faquifer
water Private production aquifer efficiency 1.0 1.0 1.0 m3/m3

felect
water Private production electrical intensity 0.9 0.9 0.9 kWh/m3

Table 6.21: Water production (WP ) element parameters

pcapital pfixed/∆t pdecomm fcurrency
water qmax

produced/∆t felect
water faquifer

water

Element Type (§M) (§M/yr) (§M) (§/m3) (MCM/yr) (kWh/m3) (m3/m3)

Small RO Plant 200 1.0 5.0 0.014 50 5.5 0.0

Large RO Plant 500 2.5 12.5 0.012 150 4.5 0.0

Huge RO Plant 2000 10.0 50.0 0.012 600 4.5 0.0

electrical intensity is 0.9 kilowatt hours per cubic meter (kWh/m3) to one significant digit. Local
prices are set at nearly 14 times the electricity resource cost of private production and import prices
are set at 200 times the local water price to reflect the large cost of long-distance transportation,
however the specific prices are balanced for game play.

Water Element Model Parameters

The water production elements in Table 6.21 identify small-, large-, and huge-capacity reverse osmo-
sis (RO) desalination plants with capacity limits of 50 million cubic meters per year (MCM/year),
150 MCM/year, and 600 MCM/year respectively. Each RO plant require coastal access to produce
water without using aquifer reserves. Capital expenses are balanced to about twice the maximum
operational expenses over a 30 year lifecycle. Fixed operations expenses are set to 0.5% of capital
expenses and decommission expenses are set to 5% of capital expenses. The specific expense per
unit output is balanced to about 20% of total operations expense at maximum capacity. Small-
capacity RO plants have a relatively high specific energy at 5.5 kWh/m3 which is improved to 4.5
kWh/m3 for large- and huge-capacity plants to reflect economies of scale and technology improve-
ments. These values compare with a theoretical minimum of less than 1.0 kWh/m3 and typical
values of 3.7–5.3 kWh/m3 for seawater RO plants (Avlonitis et al. 2003).

The water distribution elements in Table 6.22 identify low- and high-volume transport methods
with maximum capacities 50 and 150 MCM/yr. Capital expenses are balanced to contribute about
30% of expenses over a 30 year lifecycle. Fixed operations expenses are set to 2% of capital expenses
and there are no decommission expenses. The specific expense per unit sent is balanced to a third of
total operations expense at maximum capacity. Specific energy for distribution is set to 2 kWh/m3
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Table 6.22: Water distribution (WD) element parameters

pcapital pfixed/∆t pdecomm fcurrency
water qmax

sent/∆t felect
water η

Element Type (§M) (§M/yr) (§M) (§/m3) (MCM/yr) (kWh/m3) (–)

Low-volume Pipeline 20 0.4 0 0.008 50 2 0.88

High-volume Pipeline 50 1.0 0 0.008 150 2 0.9

Table 6.23: Water system baseline scenario

t0 d0 t∅ d∅ Element(s) Location

1978 2 – 1 Small RO Plant 1 (nindustrial, nindustrial)

1980 2 – 1 Small RO Plant 2 (nurban, nurban)

1982 2 – 1 Large RO Plant 1 (nindustrial, nindustrial)

1982 2 – 1 Small RO Plant 3 (nurban, nurban)

1988 2 – 1 Large RO Plant 2 (nurban, nurban)

1988 2 – 1 Large RO Plant 3 (nindustrial, nindustrial)

1992 2 – 1 Large RO Plant 4 (nurban, nurban)

1994 2 – 1 Small RO Plant 4 (nindustrial, nindustrial)

2002 2 – 1 Large RO Plant 5 (nindustrial, nindustrial)

2002 2 – 1 Large RO Plant 6 (nurban, nurban)

— higher than local private production and lower than RO production. More detailed distribution
models may parameterize expenses, specific energy, and efficiencies by the distance and elevation
change between nodes.

Baseline Water Scenario

The baseline scenario in Table 6.23 defines element instantiations with associated commissioning
and decommissioning times (t0, t∅) and durations (d0, d∅). Missing times (–) reflect dates outside
of the 1950-2010 time period. A total of two small RO plants and three large RO plants are
commissioned in both industrial and urban nodes between 1978 and 2000. All plants are still
operational as of 2010 with a maximum operational duration of 50 years. The baseline scenario
does not include any regional water distribution to reflect the separation of east and west coast
water networks in Saudi Arabia.

Figure 6-31 shows a stacked area chart of electricity use by water elements during the baseline
scenario, not including electricity required for private production. At maximum capacity, water
infrastructure in the industrial and urban nodes each require about 2.5 terawatt hours per year
(TWh/yr). Validation data is not immediately available for desalination consumption of electricity
in Saudi Arabia due to the common use of combined-cycle desalination power plants which only
report net electricity output.

Figure 6-32 compares the water production in the baseline scenario to historical estimates from
KSA and SWCC documents. The composite models show good agreement with historical trends
which is disaggregated approximately equally between east and west coast desalination.
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Table 6.24: Petroleum system model parameters

Variable Description nindustrial nurban nrural Units

πoil
local Local oil price 8 8 8 §/toe

πoil
import Import oil price 35 35 35 §/toe

πoil
export Export oil price 30 30 30 §/toe

qreservoir
stock,max Maximum oil reservoir volume 65 0 0 Btoe

qreservoir
stock,0 Initial oil reservoir volume 65 0 0 Btoe

Figures 6-29 and 6-30 compare the water withdrawals and aquifer volumes from the baselines
scenario with historical estimates. The withdrawal estimates generally agree with data largely due
to validation of the agricultural system.

6.4.4 Petroleum System Model Instantiation

The petroleum system model instantiations are based on the combined oil and natural gas sector
of Saudi Arabia between 1950 and 2010. During this time period, petroleum production rises
and export to establish Saudi Arabia as a world leader. The petroleum system model captures
the oil and gas resources held in the industrial region and element models capture extraction and
distribution among the three regions.

Petroleum System Model Parameters

The petroleum system model parameters in Table 6.24 set the local, import, and export prices for
oil and reservoir volumes. The import and export prices are set about four times the local price
to represent higher global market prices with import higher than export to reflect potential tariffs,
however the particular values are balanced for game play.

The oil reservoir model is based on estimates of proven oil and gas reserves with back-estimated
historical production. Energy production estimates ranges from around 100 million tonnes of oil
equivalent per year (Mtoe/yr) in 1975 to about 600 Mtoe/yr in 2005 as shown in Figure 6-35.
Proven reserves are estimated at 43.9 billion tonnes of oil equivalent (Btoe) including 36.5 Btoe in
oil and 8.2 billion ft3 in gas at 0.9 toe/ft3 in 2012 (BP 2013), leading to a datum reservoir volume
estimate of 65 Btoe in 1950 as illustrated in Figure 6-36.

Petroleum Element Model Parameters

The petroleum production elements in Table 6.25 include small and large oil wells with maximum
production capacities of 25 and 100 Mtoe/yr respectively. Capital expenses are balanced to provide
a positive return on investment in about half a year at maximum production and export prices.
Fixed operations expenses are set to 5% of capital expenses and decommission expenses are also set
to 5% of capital expenses. The specific expense per unit output is balanced to set unit production
costs near the local price, with larger elements benefit from economies of scale to decrease specific
expenses per unit output. Future extensions may specify specific energy and cost of oil production
as a function of reservoir volume.
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Figure 6-31: Stacked area chart of baseline wa-
ter scenario electricity use. Does not include elec-
tricity for private production of water via pump-
ing from aquifers.
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Figure 6-32: Stacked area chart of baseline wa-
ter scenario production compared with KSA and
SWCC estimates. Data sources: KSA 1990; KSA
1995; KSA 2000; KSA 2005; KSA 2010; SWCC
2004; SWCC 2008; SWCC 2012.
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Figure 6-33: Stacked area chart of baseline
water scenario withdrawals compared with KSA
and FAO AQUASTAT estimates. Data sources:
KSA 1990; KSA 1995; KSA 2000; KSA 2005;
KSA 2010; FAO 2013a.
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Figure 6-34: Stacked area chart of baseline wa-
ter scenario aquifer use compared with KSA es-
timates of recharge and datum aquifer volume.
Data source: KSA 2005.

Table 6.25: Petroleum production (PP ) element parameters

pcapital pfixed/∆t pdecomm fcurrency
oil qmax

produced/∆t felect
oil f reservoir

oil

Element (§M) (§M/yr) (§M) (§/toe) (Mtoe/yr) (kWh/toe) (toe/toe)

Small Oil Well 500 25.0 25.0 6.00 25 0 1.0

Large Oil Well 1750 87.5 87.5 5.75 100 0 1.0
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Figure 6-35: Oil reservoir withdrawal esti-
mates. Data sources: BP 2013 (oil and gas pro-
duction), World Bank 2012 (energy production).
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Figure 6-36: Oil reservoir model volume val-
idation. Back-estimated using 2012 proven re-
serve estimates from BP (2013) and various with-
drawal estimates. Data sources: BP 2013 (oil
and gas production and proven reserves), World
Bank 2012 (energy production).

Table 6.26: Petroleum distribution (PD) element parameters

pcapital pfixed/∆t pdecomm fcurrency
oil qmax

sent/∆t felect
oil η

Element (§M) (§M/yr) (§M) (§/toe) (Mtoe/yr) (kWh/toe) (–)

Low-volume Pipeline 100 2 0 0.1 10 2 0.98

High-volume Pipeline 450 9 0 0.1 50 2 0.99

The petroleum distribution elements in Table 6.26 identify low- and high-volume transport
methods with maximum capacities 10 and 50 Mtoe/yr. Capital expenses are balanced to account
for about half of unit transport costs over a 30 year lifecycle. Fixed operations expenses are set
to 2% of capital expenses are there are no decommission expenses. Specific expenses per unit sent
are balanced to account for about a third of total operations expenses. More detailed distribution
models may parameterize expenses, electrical intensity, and efficiencies by the distance and elevation
change between nodes.

Baseline Petroleum Scenario

The baseline scenario described in Table 6.27 defines element instantiations with associated com-
missioning and decommissioning times (t0, t∅) and durations (d0, d∅). Missing times (–) reflect
dates outside of the 1950-2010 time period.

Figure 6-37 compares baseline oil production with historical estimates. The features of capacity
increases until 1980, followed by production cuts and recovery are clearly apparent. Oil production
reaches a capacity of 600 Mtoe in the mid 2000s. Figure 6-38 compares baseline oil reservoir volume
with historical estimates, exhibiting good fit.
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Table 6.27: Petroleum system baseline scenario

t0 d0 t∅ d∅ Element(s) Location

– 1 – 0 Small Oil Well 1 (nindustrial, nindustrial)

– 1 1978 0 Low-volume Pipeline 1 (nindustrial, nurban)

– 1 1990 0 Low-volume Pipeline 2 (nindustrial, nrural)

1950 1 – 0 Small Oil Well 2 (nindustrial, nindustrial)

1955 1 – 0 Small Oil Well 3 (nindustrial, nindustrial)

1962 1 – 0 Small Oil Well 4 (nindustrial, nindustrial)

1964 1 – 0 Small Oil Well 5 (nindustrial, nindustrial)

1966 1 – 0 Small Oil Well 6 (nindustrial, nindustrial)

1968 1 – 0 Small Oil Well 7 (nindustrial, nindustrial)

1970 1 – 0 Small Oil Well 8 (nindustrial, nindustrial)

1970 2 1981 1 Large Oil Well 1 (nindustrial, nindustrial)

1972 2 1982 1 Large Oil Well 2 (nindustrial, nindustrial)

1976 2 1983 1 Large Oil Well 3 (nindustrial, nindustrial)

1976 2 – 0 High-volume Pipeline 1 (nindustrial, nurban)

1976 1 – 0 Low-volume Pipeline 3 (nindustrial, nrural)

1984 2 – 1 Large Oil Well 4 (nindustrial, nindustrial)

1988 2 – 1 Large Oil Well 5 (nindustrial, nindustrial)

1988 1 – 0 Low-volume Pipeline 4 (nindustrial, nrural)

1990 2 – 1 Large Oil Well 6 (nindustrial, nindustrial)

1992 2 – 0 High-volume Pipeline 2 (nindustrial, nurban)

2002 2 – 1 Large Oil Well 7 (nindustrial, nindustrial)

2004 2 – 0 High-volume Pipeline 3 (nindustrial, nurban)

2008 1 – 0 Low-volume Pipeline 5 (nindustrial, nrural)
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Figure 6-37: Baseline petroleum scenario oil
production with historical estimates. Data
sources: BP 2013 (oil and gas production), World
Bank 2012 (energy production).
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Figure 6-38: Baseline petroleum scenario oil
reservoir use compared with historical estimates.
Data sources: BP 2013 (oil and gas production
and proven reserves), World Bank 2012 (energy
production).

Table 6.28: Electricity system model parameters

Variable Description nindustrial nurban nrural Units

πoil
local Local electricity price 4 4 4 §/MWh

foil
elect Private electrical production efficiency 0.5 0.5 0.5 toe/MWh

6.4.5 Electricity System Model Instantiation

The electricity system model instantiations are based on the electricity sector of Saudi Arabia
between 1950 and 2010. During this time period, fossil fuels are the exclusive source of electricity,
although renewable technologies exist elsewhere. The electricity system model captures the public
electrical generation and distribution among the three regions.

Electricity System Model Parameters

The electricity system model parameters in Table 6.28 set the local price of electricity and the
specific oil consumption for private production. Considered to be an unimproved power generation
method, private electricity production is set to convert oil energy at 17% efficiency.3 The local
price is set to equal the direct cost of oil for private electricity production.

Electricity Element Model Parameters

The electrical production elements in Tables 6.29– 6.30 create small and large instantiations for
two generation methods with maximum capacities 2 and 10 terawatt hours per year (TWh/yr).
Thermal power plants have capital expenses balanced to provide a positive return on investment

3Efficiency calculated with conversion 1 toe = 11.64 MWh as 1/(0.5 toe/MWh)/(11.64 MWh/toe) = 0.17.
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Table 6.29: Electrical production (EP ) element parameters

pcapital pfixed/∆t pdecomm fcurrency
elect

Element (§M) (§M/yr) (§M) (§/MWh)

Small Thermal Power Plant 25 0.25 1.25 0

Large Thermal Power Plant 150 1.50 7.50 0

Small Solar PV Power Plant 200 3.00 2.00 0

Large Solar PV Power Plant 900 13.50 9.00 0

Table 6.30: Electrical production (EP ) element parameters (continued)

qmax
produced/∆t foil

elect fwater
elect

Element (TWh/yr) (toe/MWh) (m3/MWh)

Small Thermal Power Plant 2 0.30 0

Large Thermal Power Plant 10 0.25 0

Small Solar PV Power Plant 2 0 0

Large Solar PV Power Plant 10 0 0

in 8–9 years with fixed operational expenses at 1% of capital expenses and decommission expenses
at 5% of capital expenses. Small and large thermal power plants convert oil energy at 29% and
34% efficiencies respectively. Solar photo-voltaic (PV) plants have capital expenses balanced to
produce lifecycle costs similar to thermal plants with fixed operational expenses set at 1.5% of
capital expenses and decommission expenses at 1% of capital expenses.

The electrical distribution elements in Table 6.31 identify low- and high-capacity transport
methods with maximum capacities 10 and 50 TWh/yr. Capital expenses are balanced to contribute
about half of the total expenses over a 30 year lifecycle. Fixed operational expenses are set to 4%
of the capital expenses and there are no decommission expenses. More detailed distribution models
may parameterize expenses and efficiencies by the distance and elevation change between nodes
and other properties such as line voltage.

Baseline Electricity Scenario

The baseline scenario described in Table 6.32 defines element instantiations with associated com-
missioning and decommissioning times (t0, t∅) and durations (d0, d∅).

Figure 6-39 illustrates oil consumed to produce electricity via both private and infrastructure
production methods. Figure 6-40 compares electricity production from baseline infrastructure with

Table 6.31: Electrical distribution (ED) element parameters

pcapital pfixed/∆t pdecomm fcurrency
elect qmax

sent/∆t η

Element (§M) (§M/yr) (§M) (§/MWh) (TWh/yr) (–)

Low-capacity Power Line 50 2 0 0 10 0.94

High-capacity Power Line 225 9 0 0 50 0.96



212 CHAPTER 6. SIPS-G APPLICATION CASE

Table 6.32: Electricity system baseline scenario

t0 d0 t∅ d∅ Element(s) Location

1950 1 – 0 Small Thermal Power Plant 1 (nurban, nurban)

1960 1 – 0 Small Thermal Power Plant 2 (nindustrial, nindustrial)

1966 1 – 0 Small Thermal Power Plant 3 (nrural, nrural)

1970 1 – 0 Low-capacity Power Line 1 (nindustrial, nrural)

1972 1 – 0 Low-capacity Power Line 2 (nindustrial, nrural)

1972 2 – 0 Large Thermal Power Plant 1 (nurban, nurban)

1974 2 – 0 Large Thermal Power Plant 2 (nindustrial, nindustrial)

1982 2 – 0 Large Thermal Power Plant 3 (nurban, nurban)

1984 2 – 0 Large Thermal Power Plant 4 (nindustrial, nindustrial)

1986 1 – 0 Small Thermal Power Plant 4 (nrural, nrural)

1988 2 – 0 Large Thermal Power Plant 5 (nurban, nurban)

1990 2 – 0 Large Thermal Power Plant 6 (nurban, nurban)

1992 2 – 0 Large Thermal Power Plant 7 (nindustrial, nindustrial)

1994 2 – 0 Large Thermal Power Plant 8 (nurban, nurban)

1996 1 – 0 Small Thermal Power Plant 5 (nrural, nrural)

1996 2 – 0 Large Thermal Power Plant 9 (nurban, nurban)

1998 2 – 0 Large Thermal Power Plant 10 (nindustrial, nindustrial)

2000 2 – 0 Large Thermal Power Plant 11 (nindustrial, nindustrial)

2000 1 – 0 Small Thermal Power Plant 6 (nrural, nrural)

2002 2 – 0 Large Thermal Power Plant 12 (nindustrial, nindustrial)

2002 2 – 0 Large Thermal Power Plant 13 (nurban, nurban)

2004 2 – 0 Large Thermal Power Plant 14 (nindustrial, nindustrial)

2004 2 – 0 Large Thermal Power Plant 15 (nurban, nurban)

2006 2 – 0 Large Thermal Power Plant 16 (nindustrial, nindustrial)

2006 2 – 0 Large Thermal Power Plant 17 (nurban, nurban)

2008 2 – 0 Large Thermal Power Plant 18 (nurban, nurban)
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Figure 6-39: Stacked area chart of baseline
electricity scenario oil consumption. Includes
both private production and infrastructure ele-
ment production.
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Figure 6-40: Stacked area chart of baseline
electricity scenario production compared with
SEC estimates. Does not include private produc-
tion. Data sources: SEC 2003; SEC 2005; SEC
2007; SEC 2009; SEC 2011.

historical estimates since 2000. The magnitude of production and capacity increases between 2000-
2010 show good fit.
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Chapter 7

Supporting Collaborative Design

“Metrics that describe the operating states of interdependent infrastructures and scale of inter-
dependency-related disruptions are sorely lacking. These metrics should include a range of
economic, social, and national security considerations.”

Steven M. Rinaldi, James P. Peerenboom, and Terrence K. Kelly in “Identifying, Understanding,
and Analyzing Critical Infrastructure Interdependencies” (2001)

An integrated modeling tool such as the SIPS-G application considers the system-wide impacts of
design decisions to evaluate trade-offs between alternatives. In infrastructure systems, this captures
the effects of cross-sector resource interdependencies on the overall objective of sustainability. Sim-
ilar to the observation by Rinaldi et al. (2001) above in the context of operational infrastructure
resiliency, a strategic sustainability objective should incorporate a wide range of factors including
economics, social equity, and environmental impact as a basis for decision-making.

While this chapter does not tackle the challenging question of how to formulate a measure of
sustainability for infrastructure systems, it does address the implications of using similar measures
in collaborative design. Section 7.1 reviews literature in related areas of decision-making processes
among multiple actors with potentially-competing objectives. Section 7.2 introduces a role-play
design scenario using the SIPS-G application in the fictional nation of Idas Abara to study in-
frastructure systems planning. A formulation of individual objectives purposefully creates conflict
between roles as well as identifies a consistent joint objective. Section 7.3 outlines a design experi-
ment to study the impact of software tool variations in a time-constrained design activity. Section
7.4 presents experimental results and analysis. Finally, Section 7.5 discusses results and future
work.

7.1 Collaboration in Design

Lu et al. describe coordination, cooperation, and collaboration as the three basic levels of collective
human endeavors. The three terms are distinguished by:

while coordination avoids gaps or overlaps in individuals’ assigned tasks, and cooperation strives
for mutual benefits by sharing or partitioning tasks, collaboration aims at achieving a common
goal and collective results that individuals would be incapable of accomplishing alone. In other
words, collaboration requires a team of individuals to work on tasks that not only have shared
resources (as in coordination) and shared outcomes (as in cooperation), but, most importantly,
a shared goal. (Lu et al. 2007)

215
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Table 7.1: Methods to solve engineering design problems based on Lu et al. (2007)

Design Objectives

Decision Style Natural Phenomena Human Preferences

Isolated and Individual Optimization Classical Decision Analysis

Interactive but Separate Multi-objective Optimization Non-cooperative Game Theory

Joint and Collective Exploration of Objectives Co-construction and Negotiation

Infrastructure systems design, particularly at a national level, is a collaborative activity. It involves
multiple actors each with partial control over constituent systems, shared resources for investment
in new infrastructure, shared outcomes based on resource interdependencies between actors, and
a shared goal of sustainability. Relying on human preferences rather than evaluation of natural
phenomena is a major challenge to achieving shared goals. To elaborate on this point, Table 7.1
illustrates six types of engineering design problems classified by decision style and design objectives
using the collaborative engineering problem roadmap from Lu et al. (2007).

Traditional engineering activities seek design objectives related to natural phenomena, e.g.
stability of buildings, load capacity of bridges, and electrical properties of circuits. Systems of
equations modeling natural phenomena can be used in mathematical optimization to solve isolated
decisions for individual actors. Extensions of multi-objective or multi-criteria optimization methods
may be applied to solve interactive decisions across separate actors. For joint decisions among
collective actors, collaborative methods are required to explore objectives and arrive at a single
decision. Concurrent engineering, for example, focuses less on multi-objective optimization and
more on exploration and information-sharing across actors to identify a joint design solution.

Many contemporary engineering activities take a broader perspective to achieve design objec-
tives related to human preferences. In this framing, a design solution only remains valid while
preferences are fixed. Classical decision analysis methods such as multi-attribute utility theory
can be applied if decisions are isolated to an individual actor. Non-cooperative game theory can
be applied to interactive decisions among separate actors to identify individual solutions based
on expected interactions from others. Joint decisions among collective actors, however, rely on
co-construction of knowledge and negotiation for solutions.

Infrastructure systems design lies between interactive and joint decisions and between separate
and collective actors. Framed as a system-of-systems, each actor has some, but not complete,
independent control over their constituent system. Decisions are at least interactive based on re-
source interdependencies and at most joint under centralized control. Furthermore, while the design
objective of sustainability relies partly on natural phenomena, it is heavily influenced by human
preferences. The following sections present insights from three fields—collaborative engineering,
negotiation, and integrated assessment—for supporting collaborative design activities.

7.1.1 Insights from Collaborative Engineering

Collaborative engineering is a field of study which “facilitates the communal establishment of tech-
nical agreements among a team of interdisciplinary stakeholders, who work jointly toward a common
goal with limited resources or conflicting resources” (Lu et al. 2007). It spans existing disciplines
including organizational science (how individuals and groups behave in an organization), social
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cognition (how individuals perceive, influence, and relate to others), social choice (how individual
preferences can contribute to a consistent group preference), and decision science (how to make
rational and optimal decisions) to apply collaborative sciences to engineering practice.

Lu et al. (2007) propose a research hypothesis of engineering collaboration via negotiation
(ECN). It outlines a four-step process by which collaborative design is achieved:

1. Manage interactions: social interactions change individuals’ perspectives of the design task.

2. Construct understanding : changing perspectives, if properly managed, leads to a common
understanding of the design task.

3. Discourse preference: a common understanding of the design task anchors discussion and
allows for comparison of individual preferences to form a group preference.

4. Attain agreement : a consistent group preference allows individual decisions to contribute to
a collaborative group decision.

The ECN hypothesis aligns with findings from an observational study of practitioners at the ESA
Concurrent Design Facility (CDF) (Kolfschoten et al. 2012). It identifies 22 guidelines for collabo-
ration support in 7 categories in Table 7.2, where category 7 manages interactions, 1–4 construct
understanding, 5 discourses preferences, and 6 attains an agreement.

7.1.2 Insights from Negotiation

Negotiation is a structured process to make joint decisions among two or more parties. Klein et al.
(2003) discuss the use of models in mediated single-text negotiation. Under this type of negotiation,
a mediator proposes an initial contract which is critiqued and iterated upon by participants to
generate improved contracts. In most realistic design contexts, a model of a contract includes
too many states to exhaustively evaluate, for example a sample problem with 100 boolean-valued
issues has about 1030 possible states. Without the ability to sample widely in the contract space,
sequential negotiation may get stuck in local extrema.

Klein et al. compare two approaches for decisions: a hill-climbing agent only accepts better
contracts in each round while an annealing agent can accept worse contracts with a certain prob-
ability. A dilemma arises when considering combinations of agents in a multi-actor decision. Two
annealing agents result in better outcomes for both parties as compared to two hill-climbers; how-
ever a mixed team results in better outcomes for the hill-climbing agent compared to its annealing
counterpart. To avoid issues in detecting the behavior of agents (i.e. identifying hill-climbing), the
authors propose an annealing mediator with greater ability to follow acceptability of contracts as
indicated by agents. The mediator serves as collaboration support to avoid dominant individual
strategies in conflict with one which maximizes social welfare.

7.1.3 Insights from Integrated Assessment

Integrated assessment (IA) is “a structured process of dealing with complex issues, using knowledge
from various scientific disciplines and/or stakeholders, such that integrated insights are made avail-
able to decision makers” (Rotmans 1998). IA employs both analytical and participatory methods.
Analytical methods draw from natural sciences to use model, scenario, and risk analyses to rep-
resent and structure scientific knowledge. Participatory methods draw from social sciences to use
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Table 7.2: Guidelines for collaboration support in Kolfschoten et al. (2012)

Guideline Category Detailed Guidelines

1. Share and generate knowledge Incorporate users, stakeholders, and multi-disciplinary teams
Foster reflection and experience sharing among stakeholders
Use brainstorming tools with multiple perspectives
Use a shared file space with version control and access rights

2. Distill the important information Keep feasible alternatives but describe concisely, remove re-
dundancy, and make choices via evaluation

3. Clarify for shared understanding Use rich media and shared workspaces
Separate content from meta-discussion

4. Organize to reduce complexity Use visualizations to create and explain relationships
Use flexible and modular visualization to adapt to new ideas
Use framework and structure to organize information

5. Evaluate and compare alternatives Evaluate in rounds and analyze in between
Document key considerations
Separate preferences from quality assessment
Use multi-criteria decision matrices for group assessment

6. Build consensus and commitment Create clear rules for decision-making
Invite critique on design alternatives
Discuss proposals to move from exploration to choice

7. Coordinate team efforts Facilitate turn-taking and joint editing
Create a clear view of goals, deliverables, agenda, and roles
Share personal information for trust-building
Explore personal motivation for participation
Create a team bond to sustain relations and commitment
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expert panels, Delphi methods, gaming, policy exercises, and focus groups to involve non-scientists
as stakeholders. Rotmans (1998) describes two approaches to combine methods: a supply-driven
IA activity uses analytical methods in anticipation of social relevance which are enriched with
participatory methods, while a demand-driven IA activity uses participatory methods to address
relevant problems and to determine supporting analytical methods.

In part to bridge the two approaches, de Kraker et al. (2011) describes an activity called
participatory integrated assessment (PIA) which emphasizes “social learning of stakeholders, that is,
a process of reframing and convergence of their perspectives on the problem and possible solutions.”
The authors show computer models support social learning by linking choices with consequences
in a feedback loop and providing a platform and structure for negotiation. However, the authors
find in most cases the computer model failed to play a significant role due to limited stakeholder
acceptance, insufficient time to complete the feedback loop, poor user-friendliness, high model
complexity, and model inflexibility to incorporate issues of interest to stakeholders. Alternative
approaches of mediated modeling and companion modeling may improve model salience, legitimacy,
and credibility by stronger stakeholder involvement, but are time-consuming and resource-intensive
to implement.

7.1.4 Research Objective

Collaborative engineering literature identifies processes and guidelines to improve outcomes of col-
laborative design activities. Interoperable simulation gaming provides a mechanism for information
exchange to change designers’ perspectives, constructs a common understanding of causes of prob-
lems, and identifies possible options for response. Additionally, objective metrics as model outputs
may contribute to preference discourse leading to agreements.

Negotiation literature identifies challenges to decision-making in complex design spaces due to
self-interested designers. Hill-climbing approaches provide a dominant strategy for negotiation, but
may get stuck in local extrema, resulting in inferior decisions. A third party mediator may be
needed to encourage participants to make temporary concessions and explore new portions of the
design space.

IA literature recognizes models as a tool for social learning provided sufficient time for feedback
loops and involvement of stakeholders. Interoperable simulation gaming is an activity similar
to participatory IA as players collectively build a model of future infrastructure systems from
individual elements.

Combining these insights, this study poses an exploratory research question previously stated
in Chapter 2 to investigate collaborative design activities using the prototype SIPS-G application:

3. What design-in-the-small elements of an interoperable simulation game can lead to improved
design activity outcomes?

Based on background literature in related areas, the following hypotheses are formulated:

H1. Displaying an objective metric quantifying a consistent group preference leads to improved
design activity outcomes.

H2. Integrated, distributed simulation tools enable more frequent information exchanges and
lead to improved design activity outcomes.
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Figure 7-1: Geographic layout of the fictional country Idas Abara with Industrial, Rural, and Urban
regions. Map credit: Wikimedia user NordNordWest.

This study proposes a controlled human subjects experiment to evaluate these hypotheses using
multiple tool variants as experimental conditions. This study does not directly compare the SIPS-
G application with another design tool to measure effectiveness of a simulation gaming approach.
While potentially interesting, there are no comparable tools which would allow a reasonable com-
parison. Instead, it only seeks to evaluate the effect of factors which are enabled by the approach.

7.2 SIPS-G Design Scenario

The SIPS-G design scenario is based on the context of Saudi Arabia developed in Chapter 6, but
purposefully fictionalized to allow for greater freedom from existing mental models which may not
be represented in the simplified system models. This section introduces the design scenario and
formulates objectives for each role player.

7.2.1 Scenario Overview

The scenario centers on the fictional country of Idas Abara as a desert nation seeking to develop a
sustainable infrastructure plan. Geographic depictions use a transformed (vertically-reflected and
horizontally-stretched) map of Saudi Arabia shown in Figure 7-1. The three regions—industrial,
rural, and urban—correspond to the same regions identified in Chapter 6.
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Table 7.3: Infrastructure player roles and responsibilities

Player Role National Control Similar Ministries Local Control

Ministry of Agriculture (MoA) Eagricul. MoA {Eurban
agricul.,E

rural
agricul.,E

industrial
agricul. }

Ministry of Water (MoW) Ewater MoWE1 {Eurban
water ,E

rural
water,E

industrial
water }

Ministry of Energy (MoE) Epetrol.,Eelect. MoPMR, MoWE2 {Eurban
petrol.,E

rural
petrol.,E

industrial
petrol. ,

Eurban
elect. ,E

rural
elect.,E

industrial
elect. }

1 Water functions only
2 Electricity functions only

Ministry of
Agriculture

and Water

Ministry of
Agriculture

Ministry of
Municipal and

Rural Affairs

Ministry of
Water

Ministry of
Water and

Electricity

Ministry of
Industry and

Electricity

Ministry of
Commerce

and Industry

2001

2003

Ministry of
Commerce

Figure 7-2: The Ministry of Water and Electricity is historically rooted in the Ministry of Agriculture and
Water, Ministry of Municipal and Rural Affairs, and the Ministry of Industry and Commerce.

Participants represent an advisory council of three infrastructure ministries. Each role is as-
signed control over at one or two national infrastructure sectors in Table 7.3. Player roles approxi-
mate functions of government ministries, with activities coordinated by equivalents to the Ministry
of Economy of Planning (MoEP) and the Ministry of Municipal and Rural Affairs (MoMRA). The
agricultural role, similar to the Ministry of Agriculture (MoA), manages arable land allocation for
domestic food production. The water role, similar to the water portion of the Ministry of Water and
Electricity (MoWE), manages infrastructure to produce and distribute water. Finally, the energy
role, similar to the Ministry of Petroleum and Mineral Resources (MoPMR) and the electricity
portion of MoWE, manages infrastructure to produce and distribute oil and electricity.

While both the water and energy players share some functions of the present-day MoWE, this is a
relatively new organizational unit in Saudi Arabia. Figure 7-2 illustrates the recent history of several
Saudi ministries. The former Ministry of Agriculture and Water and the Ministry of Municipal
and Rural Affairs merged water functions to create the Ministry of Water in 2001 (MoWE 2013).
The former Ministry of Industry and Electricity transferred electricity functions to the Ministry of
Water to create the Ministry of Water and Electricity in 2003 (MCI 2013). Therefore, the decision
to group the electricity sector with the energy role more closely follows the historical perspective
on promoting industry and commerce.
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Table 7.4: Summary of available infrastructure element templates

Role Element Capital Expense

Agriculture Large Wheat Farm §180M/yr for 1 year

High-volume Food Transport §300M/yr for 1 year

Water Large RO Desalination Plant §250M/yr for 3 years

Huge RO Desalination Plant §1000M/yr for 3 years

Energy Large Thermal Power Plant §75M/yr for 3 years

Large Solar PV Power Plant §450M/yr for 3 years

Large Oil Well §975M/yr for 3 years

High-volume Oil Pipeline §225M/yr for 3 years

The planning scenario takes place in the year 1980, providing historical context from the prior
30 years (1950–1980) using the baseline scenario developed in Chapter 6. The design session
develops a plan for infrastructure investment for the following 30 years (1980–2010) describing
which elements to create, where they should be placed, and when they are to operate. Each player
seeks to maximize an individual objective describing their role’s preferences and a common national
objective, both detailed in the following sections. As a constraint to meet these objectives, the total
annual national capital expenditures are limited by∑

i

Pcapital(Ei, t) < Blimit ∀ t (7.1)

where Blimit = §4 billion per year. There is no limit on the operational expenses within any sector.

There are a number of targeted simplifications to allow non-experts to participate in design
sessions on the order of 60 minutes. First, each player is limited to two infrastructure templates
within each sector summarized in Table 7.4. The MoA can commission large wheat farms and high-
volume food transport, the MoW can commission large or huge desalination plants, and the MoE
can commission large oil wells, high-volume oil pipelines, and large thermal or solar photo-voltaic
power plants. Second, most element-level parameters are not displayed in the simulation tool and
the detailed formulation of score components is not disclosed.1 Instead, participants may ask the
facilitator for any desired supporting technical information during the design session.

7.2.2 Design Objectives

Explicit objective metrics are formulated for each player based on their ministry’s role and for
the overall national objective. Objective metrics use cumulative stocks or average flows to prevent
manipulation of boundary conditions in a game setting. For example, resource security terms
use an average value over the future scenario simulation (1980–2010) to discount high resource
security in a single final year. Similarly, capital investment and net revenue terms are a function of
cumulative stock values at the end of the simulation. Appendix C provides a detailed description
and mathematical formulation of each objective metric and an analysis of interactions between

1Pilot testing found most players became overwhelmed if model details were provided. When omitted, players
were able to focus on the bigger challenge of planning in a short-duration session.
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components.

The agriculture role’s objective metric (JMoA) includes three components of equal weight:

1. Food Security (Sfood): fraction of food supply from domestic sources.

2. Capital Investment (IMoA): cumulative capital investment in the agriculture sector.

3. Net Revenue (RMoA): cumulative net revenue from the agriculture sector.

The water role’s objective metric (JMoW) includes three components of equal weight:

1. Aquifer Security (Saquifer): expected aquifer lifetime at current withdrawal rates.

2. Capital Investment (IMoW): cumulative capital investment in the water sector.

3. Net Revenue (RMoW): cumulative net revenue from the water sector.

The energy role’s objective metric (JMoE) includes three components of equal weight:

1. Reservoir Security (Sreservoir): expected oil reservoir lifetime at current extraction rates.

2. Capital Investment (IMoE): cumulative capital investment in oil and electricity sectors.

3. Net Revenue (RMoE): cumulative net revenue from the oil and electricity sectors.

Finally, the national objective metric (JIA) includes four components of equal weight:

1. Food Security (Sfood): previously described in the agriculture objective.

2. Aquifer Security (Saquifer): previously described in the water objective.

3. Reservoir Security (Sreservoir): previously described in the energy objective.

4. Net Revenue (RIA): cumulative net revenue of all infrastructure sectors.

Table 7.5 summarizes anticipated couplings between infrastructure decisions and objectives
where more symbols represent greater impact. Investment by each player positively contributes to
their own objectives with the strongest effect for agriculture and weakest for water. The agriculture-
water tension contributes a strong negative effect between agriculture investment and water ob-
jectives. The water-energy budget tension contributes a moderate negative effect between water
investment and energy objectives and between energy investment and water objectives. Agriculture
contributes less budget tension with a slight negative effect with water and energy. Overall, indi-
vidual investments have a mixed effect on the national objective depending on levels of investment
and interactions across roles.
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Table 7.5: Anticipated couplings between investments and objectives

Infrastructure Decision JMoA JMoW JMoE JIA

Wheat Fields +++ −−− − +/−
Desalination Plants − + −− +/−
Power Plants, Oil Wells − −− ++ +/−

7.2.3 Assumptions and Limitations

Limitations in the SIPS-G design scenario arise from the assumption that participants have no
background experience in infrastructure planning within their assigned role. First, this limits the
quantity and detail of model information which can be presented and interpreted. As discussed
in the overview, each sector only has two available infrastructure templates to consider, and few
data are directly displayed. Second, the lack of familiarity and experience requires an external
formulation of objectives rather than relying on internalized preferences for a role.

The individual and national objectives formulated above are a highly simplified set of metrics
selected for this design scenario. They assign equal weight to each component to simplify their
interpretation by participants. A future extension may allow user control over weightings of com-
ponents; however this may limit the direct comparison of results across design sessions. More
realistic applications would likely draw from a larger set of metrics to address important compo-
nents of sustainability including economics, social equity, and environmental impact. While the
SIPS-G objectives capture a portion of these factors from an infrastructure-oriented perspective,
others to be considered include carbon emissions, balance of investment across regions, equity of
resource access, agricultural contributions to local economies, and stability of budget and revenue.

7.3 Experimental Methodology

This section outlines an experimental methodology to evaluate the effect of SIPS-G tool varia-
tions on outcomes in collaborative design between player roles. The following sections discuss the
experimental design, procedure, and limitations.

7.3.1 Experimental Design

This study proposes a controlled human subjects experiment using the SIPS-G scenario as a col-
laborative design task. The experiment is structured as a between-subjects study with a design
session as the unit of analysis. Testing varies three experimental variables—mode of data exchange,
layout of design stations, and form of national objectives—to create three experimental conditions.
Each variable is discussed in detail below.

The data exchange mode determines how technical information is communicated between player
roles. Figure 7-3 illustrates two modes used in this study. The synchronous mode leverages in-
teroperable simulation using the HLA as described in Chapter 5. In this format, each subject
has local control over simulation inputs within their respective role; however all three subjects
must synchronously run a distributed simulation to update outputs. During a simulation execution
the component models exchange data at each time step using the iterative approach to resolve
dependencies across system boundaries to minimize discrepancies.
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Synchronous Data Exchange Asynchronous Data Exchange

Agriculture Water Energy Agriculture Water Energy

Time

Figure 7-3: The synchronous mode (left) uses dynamically exchanges data during integrated simulation
executions. The asynchronous mode (right) uses files to exchange static data between simulation executions.
Dashed lines illustrate data exchanges and circular arrows represent simulation executions.

The asynchronous mode of data exchange uses an augmented design tool relying on static files
as input/output from tools. Rather than performing dynamic data exchanges during a simulation
execution, the resource flows for each time step are saved in a data file which is transferred between
design stations using a shared network folder. In this format, subjects retain local control over
simulation inputs, execution, and outputs; however there may be moderate discrepancies between
players due to data dependencies. For example, to observe the effect of agricultural food production
on national net revenue requires three simulations with intermediate file exchanges: one for the
effect of agricultural production on water demand, a second for the effect of water demand on water
supply, and a third for the effect of water supply on net revenue.

In addition to differences in operational data exchange, the physical layout of design stations
varies for the two modes. Figure 7-4 compares the centralized layout (top) for the synchronous
mode with the distributed layout (bottom) for the asynchronous mode. While both conditions
have a central table for initial briefing, the distributed layout has more isolated design stations to
approximate barriers to collaboration. There are no other limitations on the design process for the
distributed layout aside from the location of design stations.

Finally, national objectives are conveyed in two forms. The descriptive form qualitatively ex-
plains the four components (food security, aquifer security, reservoir security, and national net
revenue) during overview materials. The quantitative form includes the description during intro-
ductory materials and incorporates a national objective metric display within the tool. Figure 7-5
compares available displays in the tool under these two conditions.

Due to the relatively high cost of scheduling volunteers in the sampling frame, this experimental
design calls for sessions in three conditions to measure the effect of alternative tools rather than a
factorial design to measure the effect of each variable. Table 7.6 lists three conditions combining
the factors of data exchange mode, design station layout, and national objective form.
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Figure 7-4: Comparison of centralized (top) and distributed (bottom) design stations.
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Figure 7-5: Comparison of tools for descriptive (top) and quantitative (bottom) national objectives. The
quantitative form displays a “team score” and time series chart alongside the individual score.
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Table 7.6: Comparison of SIPS-G experimental conditions

Condition Exchange Mode Design Station Layout National Objective

Variant 1A Synchronous Centralized Quantitative

Variant 1B Synchronous Centralized Descriptive

Variant 2 Asynchronous Distributed Descriptive

Table 7.7: SIPS-G subject demographics in 15 sessions

Variant

Category Value 1A 1B 2 Tot. (%)

Gender Male 11 8 10 29 64.4

Female 4 7 5 16 35.6

Age 18–24 3 2 1 6 13.3

25–29 9 13 10 32 71.1

30–34 3 0 4 7 15.6

35–39 0 0 0 0 0.0

40–49 0 0 0 0 0.0

50+ 0 0 0 0 0.0

Years of
college
education
in a
technical
field

0 0 0 0 0 0.0

1–2 0 0 0 0 0.0

3–4 2 1 0 3 6.7

5–6 1 3 4 8 17.8

7–8 7 4 5 16 35.6

9+ 5 7 6 18 40.0

Variant

Category Value 1A 1B 2 Tot. (%)

Years of
profes-
sional
work ex-
perience
in a
technical
field

0 3 3 6 12 26.7

1–2 9 9 5 23 51.1

3–4 1 3 2 6 13.3

5–6 1 0 2 3 6.7

7–8 1 0 0 1 2.2

9+ 0 0 0 0 0.0

Frequency
of past
interac-
tions
with
other
subjects

Never 19 16 18 53 58.9

Once 3 1 0 4 4.4

Rarely 0 5 3 8 8.9

Monthly 1 1 0 2 2.2

Weekly 5 5 8 18 20.0

Daily 2 2 1 5 5.6

7.3.2 Experimental Procedure

15 groups of 3 subjects participated in this study under an IRB-approved protocol. Volunteers
were recruited from a convenience sample of peers in graduate programs at MIT and were not paid
for their efforts. Subjects were predominately male (64.4%) and 25–29 years of age (71.1%) with
more college education than work experience in technical fields. Most subjects had never interacted
with each other in the past (58.9% of pairs), although a significant fraction (20.0%) interact on a
weekly basis. Table 7.7 summarizes the complete subject demographics. By inspection, there are
no significant demographic differences among the three experimental conditions.

Design sessions are scheduled when three volunteers are available to form ad-hoc groups. While
there is no random assignment of subjects to sessions, there is also no purposeful selection. Con-
ditions are assigned in partially-randomized order with sessions 1–8 randomly assigned Variant
1A or 1B and sessions 9–16 randomly assigned Variant 2 or (remaining) 1B. All experiments are
conducted in university classrooms using wireless network connections. At the start of the session
subjects are assigned a color (red, green, or blue) and seated on one side of a rectangular design
station with the fourth seat reserved for the facilitator. All sessions were facilitated by the same
researcher. During the design session, subjects remain at the central design station under Variant
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1 (A or B) or move to separate design stations under Variant 2 to assume the roles of agriculture
(green), water (blue), or energy (red).

Each session is conducted using a standard procedure. Participants may exit the study at
any point, however no such events occurred. A 15-minute scripted presentation introduces the
SIPS-G design context including the three regions (industrial, rural, urban), infrastructure within
each sector, resource interdependencies, operational rules built into the simulation model, other
high-level assumptions relating to price and cost, budget and time constraints, and a description
of national objectives. Subjects also receive a confidential material sheet describing individual
objectives and an overview of key issues in their respective sector. Participants may either share
the confidential information or keep it to themselves. Next, a 15-minute tutorial introduces the
subjects to the software tool including simulation inputs (existing elements and available templates),
execution control buttons (initialize and run), and a walk-through of all output screens.

After completing the overview and tutorial and addressing any related questions, subjects imme-
diately enter the 60-minute timed design session period. Software logs store infrastructure decisions
before each simulation run and an audio recorder captures verbal conversation. Subjects are allowed
to move about the room and share their display during the design session but may not move the
design stations themselves. Subjects can also ask the facilitator for any additional information not
displayed in the software tool, clarifications on model assumptions, or other questions excluding
advice on design decisions. The facilitator updates the remaining time at several points during the
session. Following the design task the facilitator leads a de-briefing session to explain the study
objectives and explore experiences and observations from the design session.

7.3.3 Limitations and Threats to Validity

This study has several limitations which pose threats to the validity of results. First, it does
not employ a full-factorial design of the three independent variables (data exchange mode, design
station layout, and national objective form). Rather, it only evaluates the three tool variants (1A,
1B, and 2), limiting the ability to distinguish between the effect of coupled variables. Additionally,
group processes are largely uncontrolled during design sessions. Subjects are not constrained to
follow a particular process for design, nor are there limits on discussion or sharing of information.
Furthermore, there are no imposed preferences for individual versus national objectives. This lack
of control introduces additional variation beyond tool variants which may limit conclusions.

This design does not fully leverage randomization of conditions for practical reasons. Groups are
formed as subjects’ schedules allow rather than random assignment of subjects. Potential biases are
partially mitigated by the non-purposeful assignment of conditions to sessions which are randomly
assigned except for Variant 2 which is limited to the second half of sessions. The ordering effect
may bias results due to facilitator maturation effects and is partially mitigated by adhering to a
common scripted introduction and tutorial across all sessions.

Researcher participation as the facilitator in all design sessions introduces additional potential
biases, especially as subjects are sampled from peer groups of the researcher. Furthermore, the
researcher is the developer of the software tool. Scripted introduction and tutorial materials and
passive facilitator participation only interacting in response to direct questions address a portion
of these concerns, however the possibility of additional biases must be acknowledged.

Several factors limit the generalizability of results beyond the design sessions considered. Pre-
viously discussed limitations in the SIPS-G model and design scenario limit direct extensions of



230 CHAPTER 7. SUPPORTING COLLABORATIVE DESIGN

results to more realistic situations. Similarly, the sample of subjects is not representative of in-
frastructure planners, although their backgrounds in technical areas may be similar. There are
also numerous potential reactive effects of experimental arrangements. First, subjects participate
in ad-hoc teams and are not required to have background experience in the design domain of in-
frastructure systems. Second, design sessions are conducted in general-purpose classrooms using
unfamiliar software tools. A large portion of the design time may be required to simply understand
the task. Finally, subjects participating in a finite, clearly fictional session may not fully consider
the implications of decisions having great socio-economic impact in the real world.

7.4 Results and Analysis

Table 7.8 summarizes results after the final round for 15 experimental sessions sorted by experi-
mental condition and re-labeled session number. All results are post-processed from an aggregated
model incorporating designs from all players to address potential discrepancies introduced in the
asynchronous data exchange mode. Expanded results are available in Appendix D.

Six sessions violate budget constraints in one or more years, however this alone does not affect
numerical results of objective metrics. Most budget violations are small and isolated to a few years
which suggests they could be alleviated by adjusting planning schedules while achieving nearly
identical objective metrics. In one particular outlying case, session 9, inspection shows sufficient
budget capacity in adjacent years. Thus, the over-budget condition is considered indicative of time
pressure limiting the actions of the designers.

Caution must be used when approaching analysis of these results, particularly for objective
metrics which, strictly speaking, are ordinal scale similar to most applications of utility theory.
Nonparametric statistical tests including median measure of central tenancy, Spearman correlation,
the Mann-Whitney-Wilcoxson rank sum test, and the Kruskal-Wallis test are used in these analyses.

7.4.1 Validation of Expected Correlations

Table 7.9 inspects Spearman correlations between infrastructure inputs measured by final produc-
tion capacity and objectives to validate the anticipated effects in Table 7.5. These results are only
simple correlations and do not consider non-linear behaviors and other confounding effects such as
coincident infrastructure decisions. The limited statistical significance for most correlation values
reflect these known limitations.

As expected, infrastructure investment has a positive effect on the individual objective for
all three roles with the weakest effect for water. Also as expected, some negative correlations
exist between several infrastructure-objective pairs corresponding to agriculture–water and water–
energy couplings. Overall, the national objective is negatively correlated with agriculture and water
infrastructure and positively correlated with energy infrastructure.

7.4.2 Analysis of Outcome Variables

Figure 7-6 shows a box plot of final agriculture, water, energy, and national objective metrics under
the three tool variants. The Kruskal-Wallis test assesses a null hypothesis that data in more than
two groups are samples from the same distribution. The null hypothesis cannot be rejected for
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Table 7.8: Summary of SIPS-G outcome results by session

Wheat Desal. Oil Power

Session Variant Budget EJ/yr JMoA MCM/yr JMoW Mtoe/yr TWh/yr JMoE JIA

S–1 2 Under 85.0 711.8 10250 344.0 1200 234 778.6 514.2

S–2 2 Under 130.0 950.4 11900 340.4 500 94 600.2 349.7

S–3 2 Under 75.0 469.5 14300 378.4 500 234 710.0 449.3

S–4 2 Under 102.5 489.6 3200 367.4 800 234 655.0 467.3

S–5 2 Under 210.0 936.0 3650 345.2 700 234 742.7 349.9

S–6 1B Under 90.0 662.8 5300 344.2 1700 204 779.5 509.9

S–7 1B Over7 90.0 613.4 2600 312.1 600 164 688.9 484.4

S–8 1B Over8 95.0 654.1 11600 347.8 500 204 722.4 466.9

S–9 1B Over9 75.0 364.3 11600 400.0 450 294 584.4 438.5

S–10 1B Under 130.0 794.7 7850 353.0 375 150 663.7 505.8

S–11 1A Over11 150.0 624.6 10850 352.2 700 114 602.8 344.8

S–12 1A Over12 140.0 657.7 8400 355.2 1100 244 786.9 497.9

S–13 1A Under 80.0 401.1 7400 384.0 500 74 578.4 445.1

S–14 1A Under 100.0 736.3 6200 342.7 800 184 724.4 517.1

S–15 1A Over15 100.0 570.7 10250 359.5 1000 264 792.3 486.9

Min 75.0 364.3 2600 312.1 375 74 578.4 344.8

Median 100.0 654.1 8400 352.2 700 204 710.0 467.3

Max 210.0 950.4 14300 400.0 1700 294 792.3 517.1

7 §885 million (22%) in 1990
8 §160 million (4%) in 1982, §530 million (13%) in 1986
9 §450 million (11%) in 1990, §2.5 billion (63%) in 1991, §300 million (8%) in 1992, §1.0 billion (25%) in

1995–1996, §230 million (6%) in 2000, §300 million (8%) in 2001–2002
11 §360 million (9%) in 1980, §610 million (15%) in 1990, §250 million (6%) in 1991
12 §360 million (9%) in 1982, §775 million (19%) in 2000
15 §275 million (7%) in 1999, §485 million (12%) in 2000, §250 million (6%) in 2004, §530 million (13%) in

2005

Table 7.9: Spearman correlation between infrastructure decisions and objective metrics

Infrastructure Capacity JMoA JMoW JMoE JIA

Wheat Farms (EJ/yr) 0.615* -0.289 0.172 -0.174

Desalination Plants (MCM/yr) -0.116 0.263 -0.172 -0.367

Oil Wells (Mtoe/yr) 0.182 -0.298 0.735** 0.514*

Power Plants (TWh/yr) -0.289 0.388 0.516* 0.193

* p < 0.05
** p < 0.01
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Figure 7-6: Box plot of SIPS-G results for agriculture (A), water (W), energy (E) and national (N)
objectives by variant. Boxes bound the first and third quartiles and whiskers bound extremes within 1.5
times the interquartile range.

comparing national objective metrics between Variants 1A, 1B, and 2 (χ2(2) = 0.78, p = 0.68).
Similarly, a multiple comparison test yields no significant differences among any variant pairs.

7.4.3 Analysis of Process Variables

Process variables are those observed and measured during the experimental session rather than
outcome variables which are only measured at the end. Figures 7-7–7-8, for example, trace the
evolution of objective metrics during each of the 15 design sessions on a tradespace of objectives.
The actual tradespace is four-dimensional (JMoA × JMoW × JMoE × JIA) but is represented in each
plot with two dimensions where the set of Pareto efficient designs relative to the two objectives lies
along the upper-right.

Figure 7-7 shows a positive correlation between agriculture and national objectives up until
an inflection point around JMoA = 600 where achieving higher individual agriculture objectives
reduces the national objective. This effect can be partially countered through increased investment
in water infrastructure, as illustrated in several upward trajectories after initial drop in JIA.

Figure 7-8 shows a negative correlation between agriculture and water objectives. Most sessions
follow a path of increasing JMoA and decreasing JMoW before transitioning to a path of increasing
JMoW and/or decreasing JMoA as a concession between agriculture and water objectives.

Table 7.10 summarizes key process variables including number of data exchanges (N) in the
session, maximum input change (∆max), and numbers of capacity increases (N+

∆) and decreases
(N−∆) for each of the four infrastructure sectors. The data exchange count is computed as the
number of simulation executions using Variant 1 (A or B) or the number of file exchange periods
using Variant 2. In most cases, all three subjects elected to exchange files around the same time.
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Figure 7-7: Design tradespace between agriculture and national objectives. Data show final objective
metric values in successive rounds of the design session.
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Figure 7-8: Design tradespace between agriculture and water objectives. Data show final objective metric
values in successive rounds of the design session.
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Table 7.10: Summary of SIPS-G process results by session

Wheat (EJ/yr) Desal. (MCM/yr) Oil (Mtoe/yr) Power (TWh/yr) Energy

Session N ∆max N+
∆ N−∆ ∆max N+

∆ N−∆ ∆max N+
∆ N−∆ ∆max N+

∆ N−∆ N∆

S-1 7 35 5 1 3600 6 0 500 3 1 110 5 0 7

S-2 4 145 1 2 5700 3 0 0 0 0 70 1 0 1

S-3 5 25 4 0 9600 4 0 0 0 0 100 4 0 4

S-4 4 38 3 0 2400 2 0 300 1 0 110 3 0 4

S-5 7 150 5 1 3000 3 3 200 1 0 70 6 0 6

S-6 12 45 5 4 3600 6 5 400 6 0 50 6 0 8

S-7 13 25 8 1 750 6 0 100 1 0 50 4 0 5

S-8 5 50 3 2 4200 5 0 0 0 0 50 5 0 5

S-9 7 45 4 1 11250 3 1 50 0 1 170 6 1 7

S-10 9 105 4 3 4800 5 0 325 1 3 106 2 0 6

S-11 5 160 2 2 5400 4 0 100 2 0 40 3 0 4

S-12 6 60 5 1 4800 4 0 400 2 0 100 5 0 5

S-13 10 20 4 0 2550 7 0 0 0 0 20 3 0 3

S-14 11 35 5 1 1950 7 0 100 3 0 40 6 0 9

S-15 9 55 6 2 1800 9 0 200 3 0 60 7 0 9

Min 4 20 1 0 750 2 0 0 0 0 20 1 0 1

Median 7 45 4 1 3600 5 0 100 1 0 70 5 0 5

Max 13 160 8 4 11250 9 5 500 6 3 170 7 1 9
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Figure 7-9: Scatter plot of SIPS-G ranked re-
sults by data exchange count. Better outcomes
are correlated with higher exchange counts.
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Figure 7-10: Box plot of data exchange count
by tool variant. Boxes bound the first and third
quartiles and whiskers bound extremes within 1.5
times the interquartile range.

The number of data exchanges as a measure of preference discourse is hypothesized to influence
collaborative outcomes. The Spearman correlation between exchange count and national objective
outcome is positive (ρ = 0.544) and significant (p = 0.036), illustrated in Figure 7-9 for ranked
objectives. Furthermore, the mode of data exchange (Variant 1 or 2) has a significant impact on
exchange count, t(13) = −2.47, p = 0.028), illustrated in Figure 7-10.

Similar results for the role of change counts on outcome metrics are observed within the energy
role in Figure 7-11. The Spearman correlation between number of energy changes (N∆ in Table
7.10) and the energy objective metric is positive (ρ = 0.611) and significant (p = 0.016). There is
no significant difference in change counts between alternative data exchange modes (Variant 1 or
2) (ranksum 30, p = 0.23).

Maximum wheat expansion between data exchanges is inspected in Figure 7-12 as a possible
predictor of national objective outcomes. While the Spearman correlation between maximum wheat
expansion and national objective outcome is negative (ρ = −0.360), it is not statistically signifi-
cant (p = 0.188). These results suggest a categorical relationship between large maximum wheat
expansion and poor outcomes, rather than an ordinal relationship.

7.5 Discussion

This section discusses the results in terms of the hypothesized effects of design-in-the-small elements
in the SIPS-G tool on collaborative design outcomes. Finally, it summarizes key implications for
supporting collaborative design and outlines future work.

7.5.1 Evaluation of Hypotheses

This study varies the mode of data exchange, design station layout, and national objective form to
create three variants of the SIPS-G tool. Hypothesis H1 proposed:
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Figure 7-11: Scatter plot of SIPS-G ranked en-
ergy results by change count. Better outcomes
are correlated with higher change counts.
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Figure 7-12: Scatter plot of SIPS-G ranked re-
sults by maximum wheat capacity expansion. All
three poor outcomes demonstrate large wheat ca-
pacity expansions.

H1. Displaying an objective metric quantifying a consistent group preference leads to improved
design activity outcomes.

Results do not show a statistical difference in design outcomes between Variant 1A and 1B which
isolate the effects of the quantitative national objective metric, providing evidence against H1.
These results are limited, however, by the capacity of participants to process and interpret task
outcomes and their actual use of quantitative objective metrics. Observation and de-briefing suggest
some subjects experienced data overload due to the task complexity, number of output displays,
and time constraints which may limit their cognitive capacity for evaluation. Additionally, subjects
may not have internalized the objective because it was stated in advance rather than an agreed
upon during the session. Finally, the SIPS-G tool only provides outcomes from a single simulation
execution, potentially limiting a subject’s ability to evaluate a quantitative objective across rounds.
Study extensions to further test H1 may consider simpler tasks or longer task durations, structured
processes to enforce evaluation of objectives, visualizations comparing objectives across rounds,
and group construction of a national objective during the design session.

Hypothesis H2 proposed:

H2. Integrated, distributed simulation tools enable more frequent information exchanges and
lead to improved design activity outcomes.

While results do not show a statistical difference in design outcomes between tool variants, they
do show a statistically-significant correlation between data exchange count and design outcomes,
as well as a statistically higher data exchanges for Variant 1 compared to 2. Similar results for the
effect of data exchange count on individual objective outcome are shown for the energy player as
the most independent role. These results suggest a process-oriented model such as outlined by Kriz
and Hense (2006) including input, process, and outcome variables. Under this approach, a revised
hypothesis illustrated in Figure 7-13 suggests the tool variant providing integrated simulation allows
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Figure 7-13: Logic model of SIPS-G input, process, and outcome variables.

higher data exchange counts which, in turn, results in higher quality of design outcomes. Future
work must determine causation for observed correlations between data exchange count and outcome
quality. It is certainly possible that a mediating factor such as team dynamics or capability results
in higher data exchange counts and outcome quality. Approaches such as limiting the number of
data exchanges may be able to isolate and control this particular process variable.

Results also show the three most poorly-performing design outcomes experienced large jumps
in agricultural capacity with magnitudes about three times that of other sessions. This finding
aligns with the effect of data exchange count as more frequent exchanges may limit the magnitude
of changes by individual players. This also provides evidence for strategies similar to the hill-
climbing behaviors discussed in Klein et al. (2003) which would create path dependencies in the
design process. Although there is also evidence of concessions in the agriculture objective metric
in several sessions in contrast to a pure hill-climbing strategy, there may be limits on maximum
magnitude of concessions or timescales not feasible in the limited design session duration.

7.5.2 Implications for Collaborative Design

The results suggest a few important features for collaborative tools as well as useful approaches to
study the design process. First, a tool providing frequent data exchanges among system models
may lead to improved outcome quality. The integrated simulation tool in this study synchronizes
design processes whereas the asynchronous tool may encourage local objective-optimizing behaviors.
The concept of interoperable simulation gaming emphasizes enabling data exchanges across model
boundaries and leverages the social interaction taking place in a game setting.

Results of this study are limited as a majority of variance between design sessions is not ex-
plained by the experimental conditions. In other words, the uncontrolled factors of group processes
and information exchange outside of simulation may have a large impact on the outcomes of design
sessions. This suggests that future work should either seek to study these factors in more depth or
control them to a sufficient degree to further study the factors of tool design.

7.5.3 Future Work

There are a few directions for future work to extend and strengthen the findings of this study. First,
no analysis has been performed of audio recordings of conversations during the design sessions. This
additional mode of information exchange between participants is likely a source of unexplained
variation across design sessions. Content analysis of recorded conversations may be able to identify
key information or processes used to achieve improved design outcomes. Furthermore, analysis to
determine centrality of conversations may be an additional direction for future work. Similar work
by Broniatowski (2010) investigated transcripts of expert committees to determine information flow
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in social networks.
Second, several items were identified as possible extensions to improve the SIPS-G tool. First,

a hybrid synchronous/asynchronous mode may combine the best features of both data exchange
modes studied in this experiment. The ability to run local simulations at will while using the
distributed simulation when necessary may improve outcomes by improving individual and group
learning. Second, additional support should be provided for cross-round data visualization. Ex-
tensions of the tradespace plots used in this analysis would be a strong addition to the SIPS-G
tool implementation. Extensions of the SIPS-G design scenario may consider alternative budget
constraints, for example tied to net revenue, and objective metric formulations.

Finally, future work should determine causality between correlated variables including the fre-
quency of data exchanges and design outcome quality. Alternative experimental designs may limit
the number of allowed data exchanges or set a target objective metric without time limits. Ad-
ditional process-oriented variables capturing the social layer of communication may also provide
a richer model of collaborative design. For example, the logic model of Kriz and Hense (2006)
includes process variables such as intensity of involvement, degree of challenge, time on-task, and
intensity and quality of communication between participants.
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Chapter 8

Conclusion

“A good organization devoted to Systems Analysis may, at any particular time, have a fairly
large percent of its staff devoted to seemingly crack-pot projects. The only difficulty will be
that the different individuals will put different projects into this category. Moreover, even
demonstrably impractical projects can be justified because they may advance the state of the
art. In any case they give people a chance to unburden themselves and to discover for themselves
what is reasonable and what is not.”

Herman Kahn and Irwin Mann in Ten Common Pitfalls (1957)

This chapter outlines a summary of results to research questions, key contributions, and a critical
review of interoperable simulation gaming. Finally, it concludes with topics for future work to
continue developing and studying collaboration in design.

8.1 Research Summary

Chapter 2 posed three main research questions to guide the work in this dissertation. This section
revisits these questions to summarize the completed research.

1. What are the relative costs of technical and social complexity in design activities with barriers
to collaboration?

Design of socio-technical systems such as infrastructure involve both technical and social sources
of complexity. Most existing literature only focuses on one source, for example, psychology and man-
agement on social factors and engineering on technical factors. Chapter 3 performed a controlled
human subjects experiment to study multi-actor design tasks with interactions limited to verbal
communication. Tasks have variable levels of technical complexity, measured in the number of
variables and degree of coupling, and social complexity, measured in the number of inter-dependent
designers participating in a task, and the task completion time measures design efficiency.

Results show that over the range of variables considered, social and technical contributions are
independent factors. Task completion time in coupled problems increases by a geometric factor 2.9
for each additional variable which agrees with previous results. One model shows task completion
time increases by a geometric factor 2.4 for each additional designer and another model shows it
increases by a decreasing factor, 2.9 for the second designer and 1.4 for the third. While task
completion time grows with team size, costs grow even faster as more person-hours are accrued
during the design task.

239



240 CHAPTER 8. CONCLUSION

2. How can interoperable simulation gaming addresses the dual challenges of integration and
collaboration in infrastructure systems?

Chapter 2 introduced existing methods for systems design. Integrated modeling approaches
such as that used in concurrent engineering address integration challenges in systems design but
often rely on a centralized authority which may not present in infrastructure systems. Other gaming
approaches such as those used for “infra-gaming” incorporate perspectives of multiple roles but rely
on a development studio to develop models.

Interoperable simulation gaming draws from technology used in military wargames to provide
decentralized authority over constituent system models while enabling collaborative work environ-
ments for designers. Chapters 4 and 5 outlined an approach to develop interoperable simulation
models described in detail in sub-questions (a) and (b). Using these approaches, Chapter 6 devel-
oped a prototype simulation model and software implementation in the context of infrastructure in
Saudi Arabia. Finally, Chapter 7 formulated a simulation game based on the prototype application
to demonstrate system model integration in an interactive, collaborative design environment.

2. (a) What generalized modeling framework represents the structure and dynamics of infras-
tructure systems for integrated modeling activities?

Chapter 4 introduced the infrastructure system-of-systems (ISoS) modeling framework. It in-
cludes structural and behavioral templates to model generalized infrastructure systems under a
common format. The structural template represents infrastructure elements as edges between nodes
as units of spatial aggregation. Elements include four state properties including location, resource
contents, parent element, and operational state. The behavioral template defines four resource
behaviors—storing, transforming, transporting, and exchanging—and three element behaviors—
storing, transforming, and transporting—as formal state changes.

The ISoS modeling framework also defines an interoperability interface to enable interactions
across system model boundaries. Interoperable models must use a common set of nodes and resource
types, coordinate element locations, and communicate time-stamped resource exchanging behaviors
during a simulation execution.

2. (b) What simulation architecture enables collaboration with decentralized authority over
component infrastructure system models?

Chapter 5 applied the IEEE 1516 High Level Architecture (HLA) to the ISoS modeling frame-
work interoperability interface to enable decentralized authority over component models. The HLA
runtime infrastructure (RTI) manages data, objects, and time advancement during a federated sim-
ulation execution and allows interoperable system models to be implemented in any language and
platform supported by the RTI. Required components for the HLA application include a federation
object model (FOM) to define data structures and a federation agreement to define operational
procedures for initializing, advancing, and reseting a federated simulation.

3. What design-in-the-small elements of an interoperable simulation game can lead to improved
design activity outcomes?

Chapter 7 uses the prototype developed in Chapter 6 to perform a series of human subjects
experiments to study collaborative design in a context-rich scenario. Players act as agriculture,
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water, and energy ministries to develop a 30-year plan for infrastructure to meet individual and
national objectives under time and budget constraints. Results indicate a positive correlation be-
tween number of data exchanges and effectiveness of national objective outcomes. The prototype
variant supporting distributed simulation using the HLA experienced significantly more data ex-
changes compared to a prototype variant reliant on file-based data exchanges. Additionally, the
worst-performing groups all had large investments in agriculture infrastructure in early rounds of
the design session. These results suggest frequent exchange of information with small intermediate
steps are elements which may produce improved design outcomes.

8.2 Key Contributions

This dissertation makes six key contributions:

1. Derives scaling laws for design tasks considering technical and social sources of complexity.

No studies have previously quantified the combined effects of both technical and social sources
of complexity in design tasks. The results in Chapter 3 establish initial scaling laws for
collaborative tasks demonstrating large cost penalties for multi-actor design under barriers
to collaboration. While limited in the simplicity of the surrogate task and ranges of variables
considered, this contribution provides a benchmark from which to measure future extensions.
In particular, the multi-actor design tool developed for the study can be adapted to new
system models, user interfaces, or design team structures to investigate factors involved in
collaborative design.

2. Develops a generalizable modeling framework for infrastructure as a system-of-systems.

Existing infrastructure system modeling frameworks focus either on aggregated high-level
dynamics or detailed low-level resource flows and do not support interoperability. The ISoS
framework developed in Chapter 4 addresses these limitations for simulating infrastructure as
a system-of-systems. First, it uses abstracted nodes as a unit of spatial aggregation to remove
direct coupling between element models and allow multi-scale modeling. Second, its formal
definition of resource and element behaviors are believed to be a complete in describing
generalized infrastructure systems operations. Third, its interoperability interface defines
requirements for interactions across system model boundaries in a time-managed simulation.
Four descriptive application cases demonstrate the framework’s applicability across multiple
spatial scales and levels of operational detail.

3. Applies the HLA standard for interoperable simulation of infrastructure system models.

The ISoS interoperability interface in Chapter 4 defines requirements for component simula-
tion models but does not impose a particular implementation. Chapter 5 selects the HLA
standard for federated simulation to coordinate information exchange between models. The
standard does not require a particular simulation implementation, supporting models created
and operated by autonomous organizations. A federation implementation adapts the general-
purpose HLA to the ISoS application by defining a federation object model (FOM) and a
federation agreement. The FOM defines data structures for the ISoS framework including el-
ement properties and resource exchange interactions. The federation agreement defines HLA
services required to participate in an federated simulation including an iterative procedure to
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resolve cyclic dependencies between component models. Finally a sample Java-based feder-
ate implementation demonstrates the use of common HLA components to reduce the cost of
developing federated simulation models.

4. Demonstrates a prototype multi-sector simulation model and baseline instantiation.

Chapter 6 evaluates the feasibility of the ISoS modeling framework and HLA implementation
in the prototype sustainable infrastructure planning simulation game (SIPS-G). Infrastruc-
ture are modeled in four sectors—agriculture, water, petroleum, and electricity—to supply
demanded resources to the social system. The SIPS-G model is developed using the context
of Saudi Arabia but is applicable to other applications as well. Extensive documentation
describes the mathematical relationships between model parameters and outlines implemen-
tations of several modular components including resource demands, population, pricing, and
infrastructure lifecycle and operations models. The prototype also establishes a baseline sce-
nario of infrastructure instantiations describing capacity expansion and operations in Saudi
Arabia with parameters based on historical data and fictionalized costs.

5. Formulates and implements a simulation game using interoperable model components.

Chapter 7 uses the SIPS-G model from Chapter 6 as the foundation of an interactive simu-
lation game based in a fictional nation similar to Saudi Arabia. Use of an interoperable and
distributed model differs from existing infrastructure games which rely on customized models
created by a studio or centralized developer. The SIPS-G game scenario defines objective
metrics for three player roles representing agriculture, water, and energy ministries as well as
national objectives. During a design session each player instantiates infrastructure elements
over a planning horizon as a participatory modeling exercise.

6. Draws insights for design-in-the-small elements in collaborative support tools.

The results in Chapter 7 highlight a few key insights to improve the design of collaborative
support tools. First, the number of data exchanges is positively correlated with outcome
quality. Furthermore, distributed simulation such as that provided by the HLA produces sig-
nificantly more data exchanges compared to file-based data exchange variants. Second, large
design changes in sectors with strong dependencies are negatively correlated with outcome
quality. Finally, the results suggest the social layer of interaction and collaborative processes
has a strong influence on outcomes and should be the focus of future study.

8.3 Critical Review of Interoperable Simulation Gaming

This dissertation develops the concept of interoperable simulation gaming for infrastructure sys-
tems design. Although probably not perceived by most as a “crack-pot” project in the words of
Herman Kahn and Irwin Mann to open this chapter, the idea is quite ambitious in its goals of in-
fusing infrastructure planning activities with collaborative modeling activities. The content of this
dissertation motivates the dual challenges of integration and collaboration in infrastructure systems
and demonstrates a prototype design tool for research activities. Much more work is required to
move it from an exploratory research project to practice.

The main barriers to interoperable simulation gaming are the same as those in design-in-the-
large: integration and collaboration among constituent designers. The findings in Chapter 3 of
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the high cost of collaboration apply equally to both infrastructure systems and models thereof.
While the ISoS modeling framework in Chapter 4 identifies common features across a wide range
of infrastructure systems, the operational details of implementing a simulation model are likely
cost- and time-intensive, similar to challenges in related areas of integrated assessment (de Kraker
et al. 2011). The HLA formulation in Chapter 5 provides decentralized authority over models at a
high cost of complexity which has so far limited its adoption outside defense applications. Inno-
vations in web-based applications are promising areas to lower the barrier to sharing information
across infrastructure planning organizations but must be developed further to meet the needs of
interoperable simulation.

As a cautionary note, there are countless examples of monstrous simulation projects failing to
meet objectives due to unbounded scale and scope. This dissertation uses simulation models to
represent resource flows in infrastructure—quantities which can be observed and quantified with
a reasonable degree of confidence from a technical perspective. The proposed models use simple
components and rely on emergence to generate complex system behavior, embracing the famous
words commonly attributed to Einstein of everything should be made as simple as possible, but
not simpler.1 In future work there is significant risk in developing computer models of phenomena
which are not as well-understood, especially those at the interface between people and society.
Contentious models of socio-economic processes may be better-suited as factors to be decided upon
by game players, possibly using a plurality of models when no consensus can be achieved.

Finally, this dissertation embraces the role of “engineering systems” as a multi-disciplinary field
of study. Relevant literature in the preceding chapters crosses diverse domains of engineering,
psychology, management, and computer sciences to synthesize new approaches. Furthermore, the
research audience sits between communities of observers and practitioners. Chapters 3 and 7, for
example, seek a balance between tightly-controlled experiments with strong conclusions but limited
relevance and loosely-controlled experiments with stronger relevance but more reserved conclusions.
Both approaches are necessary to distill and apply knowledge, and both are supported in continued
study of simulation games.

8.4 Future Work

Based on the contributions and critical review of this dissertation, this section explores the following
topics reserved for future work:

1. Expand the study of scaling laws for collaborative design with technical and social complexity.

There are many opportunities to expand the results from the study in Chapter 3 to consider
different aspects of the collaborative design problem. Future work may seek to improve the
realism of the surrogate design task through expanded problem and team sizes, nonlinear or
partially-coupled system models, and design evaluation based on effectiveness. Other factors
may investigate the structure or nature of teams, for example physically distributed teams
or partially automated design exploration. Another dimension that could be explored is the
role of improved user interfaces, for example to study the impact of quantitative objectives.
Another area of future work would combine the results of uncoupled and coupled problems
under a single structural complexity metric.

1While commonly attributed to Albert Einstein, there is evidence this quote may be from an article by Roger
Sessions to paraphrase a comment by Einstein (O’Toole 2011).
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2. Benchmark performance of alternative ISoS model implementations.

The simulation implementations in this dissertation have not been evaluated or optimized
for performance. Execution time for the 60-year baseline scenario with 1-year time steps
and 5 iterations varies by an order of magnitude for a standalone simulation without a user
interface (< 1 second), standalone with user interface updates (≈ 2 seconds), and distributed
simulation with user interface updates (≈ 20 seconds). Performance improvements, especially
optimization of user interface components, are likely to contribute large improvements in
execution time. Furthermore, error analysis should consider the impact of data exchange
mode (integrated simulation vs. file-based), time step size, and number of iterations on the
magnitude of inconsistencies arising from cyclic model dependencies

3. Develop and distribute an ISoS software toolkit and modeling tool.

The ISoS modeling framework provides a common logical template for generalized infras-
tructure systems. Its efficiency or effectiveness for modeling activities cannot be directly
compared to other formalisms for lack of a supporting tool for building models. An ISoS soft-
ware toolkit and modeling tool would allow non-programmers to build and execute models of
infrastructure systems. It must be flexible enough to define custom operational behaviors for
infrastructure elements as well as modular component models to add new functionality.

An ISoS modeling tool could also serve as a centralized platform for distributed simulation.
While the HLA benefits from a federated simulation architecture, the practical issues of model
implementation may prevent wide-scale use. A simpler, centralized platform using a common
structure may provide enough generality for wide use with fewer barriers to adoption.

4. Explore web-based platforms for improved simulation interoperability.

Chapter 5 identified web-based architectures as promising approaches for interoperability
with lower barriers to adoption compared to the HLA. Future work may explore the rapidly-
developing capabilities used in web applications for use in infrastructure modeling and sim-
ulation. System models implemented in JavaScript may enable browser-based simulation,
however future work must establish methods for communication between system models in-
cluding time synchronization.

5. Evaluate practical development of interoperable simulation models.

The prototype SIPS-G model and simulation game in this dissertation was developed by a
single entity and does not evaluate the practical ability of multiple organizations to develop
an interoperable simulation. A first step may invite a second organization to contribute an
interoperable infrastructure model to evaluate the ability of the method to support joint
modeling activities.

6. Implement new component modules for the SIPS-G model.

The prototype SIPS-G model developed in Chapter 6 provides an initial set of component
models for the design scenario which could be expanded in future work. Additions the so-
cial system model may include policy actions to control resource demands or trade tariffs,
economics-based resource pricing such as supply/demand elasticity, inter-regional population
movement, and demands based on socio-economic factors. Additions to all infrastructure
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sectors may include technological innovation effects and a capacity sizing model to generate
elements of varying sizes.

Additions to the agriculture sector include additional food types (e.g. cereals, fruits, and
livestock), strategic reserves, and distribution models based on distance traveled. Additions to
the water sector include reservoirs and other surface sources, more accurate aquifer abstraction
models, and wastewater treatment. Additions to the petroleum sector include more accurate
reservoir models with both oil and natural gas and refining activities. Additions to the
electricity sector include more generation types, distribution losses as a function of distance
traveled, and multiple voltage levels with transformers.

7. Improve design features of the prototype SIPS-G tool.

The human subjects experiment in Chapter 7 identified several potential areas of improvement
for the SIPS-G tool. First, a hybrid tool capable of both synchronous simulation (using the
HLA) and asynchronous using the static data from the last synchronous simulation may result
in improved outcomes. This structure provides each player independent workflows for rapid
iteration and individual learning while maintaining the ease of data exchange with other
players for collaboration and social learning.

Second, improved data display and visualizations across simulation executions would likely
improve outcomes. In particular, the tradespaces used in Chapter 7 analysis may help under-
stand relative values of alternative designs. This future extension aligns with existing work in
multi-attribute tradespace exploration (MATE), through evaluates only a few designs rather
than enumerating a large portion of the design space. Integration of automated search tools
to evaluate portions of the design space may also help avoid simple hill-climbing strategies of
designers.

8. Analyze content of audio recordings as sources of unexplained variance in design experiments.

Factors quantified in outcome and process results from the study in Chapter 7 only explain
a portion of the variance across groups. The social layer of collaboration likely offers greater
explanation of differences in outcome design quality. Analysis of the content in audio record-
ings such as the quantity or centrality of verbal exchanges may contribute new explanations
of collaborative outcomes. In particular, development of process-oriented models may be used
to evaluate the ECN hypothesis.
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Appendix A

Collaborative Design Experimental
Data

The following tables present the raw and normalized data (using procedures 1 and 2) for the
collaborative design experiments conducted in Chapter 3. Results are presented in random session
order to preserve confidentiality of the subjects. Abbreviations are as follows:

i: Unit of analysis (individual, group)

j: Task type (characterized by n, N , and C/U)

k: Task replication

n: Team size

N : Problem size

C/U: Coupled/uncoupled

Ci,X : Normalization factor for unit i (and X)
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Table A.1: Task ordering for sessions S-1 through S-6

Task Order in Session

Code Name j k n N C/U S-1 S-2 S-3 S-4 S-5 S-6

Breezy Rain 1 1 1 3 U 19 11 21 1 6 9

Chief Government 2 1 1 4 U 8 14 23 23 8 4

Thinkable Ink 3 1 1 6 U 9 1 9 13 7 20

Hallowed Sign 4 1 1 2 C 10 15 7 7 1 8

Husky Verse 4 2 1 2 C 7 23 19 8 15 7

Flat Sleep 5 1 1 3 C 22 19 2 16 5 18

Statuesque Name 5 2 1 3 C 15 5 5 20 4 1

Brainy Damage 6 1 1 4 C 23 24 13 15 19 12

Silky Waste 6 2 1 4 C 18 16 20 24 21 13

Alert Burst 7 1 2 3 U 4 9 10 19 9 23

Hard Development 7 2 2 3 U 5 10 14 4 14 14

Onerous Effect 7 3 2 3 U 2 2 22 3 16 5

Murky Mass 8 1 2 2 C 6 18 11 14 23 21

Unwritten Experience 8 2 2 2 C 3 13 1 6 24 16

Wistful Act 8 3 2 2 C 16 8 6 2 17 17

Absorbed Copper 9 1 2 3 C 17 21 16 11 22 22

Arrogant Flame 9 2 2 3 C 1 22 18 10 13 19

Befitting Plant 9 3 2 3 C 13 7 15 17 11 15

Better Behavior 10 1 2 4 C 20 12 8 5 3 24

Staking System 11 1 3 3 U 11 6 24 12 12 3

Towering Test 11 2 3 3 U 24 20 4 22 2 6

Wide Growth 12 1 3 6 U 14 4 17 21 20 10

Economic Motion 13 1 3 3 C 21 3 3 9 10 2

Noiseless Stone 14 1 3 4 C 12 17 12 18 18 11
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Table A.2: Raw times (s) for individual design tasks

j 4 4 5 5 6 6 1 2 3

k 1 2 1 2 1 2 1 1 1

n 1 1 1 1 1 1 1 1 1

N 2 2 3 3 4 4 3 4 6

i C/U C C C C C C U U U

1.R 10.44 16.68 35.85 31.88 51.91 n/a 12.20 16.34 45.18

1.G 29.55 39.98 129.50 53.55 175.16 n/a 16.01 26.23 32.44

1.B 13.05 30.15 85.98 46.71 124.89 n/a 15.31 15.99 43.41

2.R 8.00 7.08 33.36 201.94 59.12 154.54 14.20 17.06 46.26

2.G 8.96 17.99 36.12 57.28 137.25 325.76 9.77 14.64 25.34

2.B 14.40 7.05 33.46 22.20 148.08 368.03 10.69 11.60 25.46

3.R 24.23 12.59 51.10 166.30 110.20 86.31 31.99 13.90 n/a

3.G 27.35 8.08 130.62 52.99 46.01 50.13 12.34 10.73 n/a

3.B 13.42 15.66 58.38 30.07 164.52 123.64 14.79 11.03 n/a

4.R 14.67 13.84 27.45 20.41 174.50 62.53 19.96 19.32 52.52

4.G 9.54 15.85 35.28 57.25 182.14 169.07 16.72 19.25 23.20

4.B 18.83 4.14 81.76 38.71 110.93 60.72 13.21 11.03 25.03

5.R 20.78 9.79 108.80 59.05 126.11 n/a 20.54 25.95 43.59

5.G 33.83 16.26 44.27 41.56 64.61 n/a 14.05 15.89 27.62

5.B 21.10 14.36 14.40 36.63 74.54 n/a 7.90 10.04 14.51

6.R 29.02 11.87 29.13 32.17 242.73 138.01 31.19 31.06 53.59

6.G 8.37 30.64 51.41 70.68 139.04 105.92 33.51 51.19 49.14

6.B 8.18 11.85 26.42 29.49 127.71 74.94 16.20 27.50 33.14

Table A.3: Raw times (s) for coupled group design tasks

j 8 8 8 9 9 9 10 13 14

k 1 2 3 1 2 3 1 1 1

n 2 2 2 2 2 2 2 3 3

N 2 2 2 3 3 3 4 3 4

i C/U C C C C C C C C C

1 56.28 32.92 53.88 267.99 95.03 154.42 447.32 104.80 1014.76

2 45.61 28.09 17.85 83.03 164.31 243.35 192.22 446.68 631.11

3 48.03 75.95 16.25 60.56 476.74 127.69 348.75 129.86 129.92

4 28.37 17.59 38.97 127.82 114.20 91.00 82.89 783.30 652.50

5 23.55 58.08 24.23 223.77 189.52 360.17 350.54 238.29 718.08

6 14.05 61.81 22.17 91.50 107.22 54.56 124.62 355.61 179.81
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Table A.4: Raw times (s) for uncoupled group design tasks

j 7 7 7 11 11 12

k 1 2 3 1 2 1

n 2 2 2 3 3 3

N 3 3 3 3 3 6

i C/U U U U U U U

1 54.02 32.51 61.17 24.47 43.89 85.92

2 41.07 29.91 44.38 42.78 60.33 144.63

3 30.91 36.70 32.07 29.40 65.27 113.92

4 23.65 33.60 46.91 32.75 28.01 44.75

5 50.89 20.69 23.47 35.51 79.86 83.59

6 28.05 34.83 36.05 89.44 33.31 126.14

Table A.5: Normalized times (s) for individual tasks using procedure 1

j 4 4 5 5 6 6 1 2 3

k 1 2 1 2 1 2 1 1 1

n 1 1 1 1 1 1 1 1 1

N 2 2 3 3 4 4 3 4 6

i Ci C/U C C C C C C U U U

1.R 1.38 14.42 23.03 49.50 44.02 71.68 n/a 16.85 22.56 62.39

1.G 0.61 17.91 24.23 78.47 32.45 106.14 n/a 9.70 15.89 19.66

1.B 0.81 10.58 24.45 69.71 37.87 101.26 n/a 12.41 12.96 35.20

2.R 0.79 6.35 5.62 26.48 160.32 46.94 122.69 11.27 13.54 36.73

2.G 0.68 6.08 12.22 24.53 38.90 93.21 221.22 6.63 9.94 17.21

2.B 0.67 9.66 4.73 22.44 14.89 99.33 246.86 7.17 7.78 17.08

3.R 0.80 19.36 10.06 40.83 132.88 88.05 68.96 25.56 11.11 n/a

3.G 1.17 32.08 9.48 153.23 62.16 53.97 58.81 14.48 12.59 n/a

3.B 0.92 12.34 14.40 53.68 27.65 151.29 113.70 13.60 10.14 n/a

4.R 1.06 15.57 14.69 29.13 21.66 185.16 66.35 21.18 20.50 55.73

4.G 0.81 7.76 12.90 28.71 46.59 148.23 137.59 13.61 15.67 18.88

4.B 1.18 22.22 4.89 96.48 45.68 130.90 71.65 15.59 13.02 29.54

5.R 0.73 15.26 7.19 79.89 43.36 92.60 n/a 15.08 19.05 32.01

5.G 1.18 39.91 19.18 52.22 49.02 76.21 n/a 16.57 18.74 32.58

5.B 1.57 33.20 22.60 22.66 57.64 117.29 n/a 12.43 15.80 22.83

6.R 0.72 20.84 8.52 20.92 23.10 174.29 99.10 22.40 22.30 38.48

6.G 0.80 6.67 24.40 40.94 56.29 110.72 84.35 26.69 40.76 39.13

6.B 1.21 9.89 14.33 31.96 35.67 154.48 90.65 19.60 33.27 40.09
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Table A.6: Normalized times (s) for coupled group design tasks using procedure 1

j 8 8 8 9 9 9 10 13 14

k 1 2 3 1 2 3 1 1 1

n 2 2 2 2 2 2 2 3 3

N 2 2 2 3 3 3 4 3 4

i Ci C/U C C C C C C C C C

1 0.78 43.73 25.58 41.86 208.22 73.84 119.98 347.56 81.43 788.46

2 0.89 40.46 24.92 15.84 73.66 145.76 215.88 170.52 396.26 559.87

3 1.14 54.82 86.68 18.55 69.12 544.09 145.73 398.02 148.21 148.27

4 0.92 25.98 16.11 35.68 117.04 104.57 83.33 75.90 717.24 597.47

5 0.79 18.66 46.02 19.20 177.31 150.17 285.39 277.76 188.82 568.99

6 1.45 20.32 89.37 32.06 132.30 155.04 78.89 180.19 514.20 260.00

Table A.7: Normalized times (s) for uncoupled group design tasks using procedure 1

j 7 7 7 11 11 12

k 1 2 3 1 2 1

n 2 2 2 3 3 3

N 3 3 3 3 3 6

i Ci C/U U U U U U U

1 0.78 41.97 25.26 47.53 19.01 34.10 66.76

2 0.89 36.43 26.53 39.37 37.95 53.52 128.31

3 1.14 35.28 41.88 36.60 33.55 74.49 130.01

4 0.92 21.66 30.77 42.95 29.99 25.65 40.98

5 0.79 40.32 16.39 18.60 28.14 63.28 66.24

6 1.45 40.56 50.36 52.13 129.33 48.16 182.39
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Table A.8: Normalized times (s) for individual tasks using procedure 2

j 4 4 5 5 6 6 1 2 3

k 1 2 1 2 1 2 1 1 1

n 1 1 1 1 1 1 1 1 1

N 2 2 3 3 4 4 3 4 6

i Ci,C Ci,U C/U C C C C C C U U U

1.R 1.64 0.87 17.08 27.29 58.65 52.15 84.92 n/a 10.65 14.26 39.44

1.G 0.56 0.86 16.59 22.44 72.69 30.06 98.32 n/a 13.80 22.60 27.95

1.B 0.80 0.86 10.42 24.07 68.63 37.29 99.69 n/a 13.19 13.77 37.39

2.R 0.79 0.83 6.30 5.58 26.28 159.10 46.58 121.75 11.79 14.16 38.40

2.G 0.63 1.29 5.62 11.27 22.64 35.90 86.01 204.15 12.64 18.94 32.78

2.B 0.62 1.35 8.87 4.34 20.62 13.68 91.26 226.81 14.41 15.63 34.31

3.R 0.81 0.68 19.65 10.21 41.45 134.89 89.38 70.01 21.76 9.45 n/a

3.G 1.16 1.35 31.72 9.37 151.51 61.47 53.37 58.15 16.70 14.52 n/a

3.B 0.90 1.21 12.09 14.11 52.61 27.10 148.26 111.42 17.88 13.33 n/a

4.R 1.17 0.70 17.11 16.14 32.02 23.81 203.56 72.94 13.99 13.54 36.82

4.G 0.78 1.09 7.43 12.35 27.49 44.61 141.94 131.76 18.19 20.94 25.23

4.B 1.16 1.31 21.85 4.80 94.86 44.91 128.71 70.45 17.25 14.41 32.69

5.R 0.74 0.71 15.37 7.24 80.49 43.69 93.30 n/a 14.67 18.54 31.14

5.G 1.20 1.12 40.50 19.47 53.00 49.76 77.36 n/a 15.71 17.77 30.88

5.B 1.49 1.98 31.46 21.41 21.47 54.61 111.14 n/a 15.67 19.91 28.78

6.R 0.76 0.56 21.97 8.99 22.05 24.35 183.75 104.48 17.33 17.26 29.77

6.G 0.90 0.48 7.54 27.59 46.29 63.64 125.18 95.36 16.11 24.61 23.63

6.B 1.31 0.84 10.73 15.55 34.67 38.70 167.59 98.34 13.57 23.03 27.76

Table A.9: Normalized times (s) for coupled group design tasks using procedure 2

j 8 8 8 9 9 9 10 13 14

k 1 2 3 1 2 3 1 1 1

n 2 2 2 2 2 2 2 3 3

N 2 2 2 3 3 3 4 3 4

i Ci,C C/U C C C C C C C C C

1 0.76 42.56 24.90 40.75 202.66 71.87 116.78 338.28 79.25 767.40

2 0.91 41.48 25.55 16.23 75.51 149.42 221.30 174.81 406.21 573.93

3 1.19 57.23 90.49 19.36 72.16 568.02 152.14 415.52 154.72 154.80

4 0.87 24.68 15.30 33.90 111.17 99.33 79.15 72.10 681.29 567.53

5 0.77 18.14 44.75 18.67 172.41 146.02 277.50 270.08 183.60 553.26

6 1.67 23.40 102.95 36.92 152.40 178.58 90.87 207.56 592.28 299.48
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Table A.10: Normalized times (s) for uncoupled group design tasks using procedure 2

j 7 7 7 11 11 12

k 1 2 3 1 2 1

n 2 2 2 3 3 3

N 3 3 3 3 3 6

i Ci,U C/U U U U U U U

1 0.93 50.24 30.24 56.89 22.76 40.82 79.91

2 0.77 31.77 23.14 34.33 33.09 46.66 111.87

3 0.91 28.16 33.44 29.22 26.79 59.47 103.79

4 1.34 31.68 45.01 62.84 43.87 37.52 59.94

5 0.96 48.61 19.76 22.42 33.92 76.29 79.85

6 0.81 22.65 28.12 29.11 72.22 26.90 101.85
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Appendix B

SIPS-G Software Implementation

This appendix discusses the software implementation of the SIPS-G model formulated in Chapter
6. The federation implementation is based on the generic ISoS federation described in Chapter
5 with a few simplifying assumptions. The federates are implemented in Java using a common
SIPS-G library and include a graphical user interface (GUI) for player interaction with the sim-
ulation model. Section B.1 discusses the federation implementation including object models and
agreements. Section B.2 discusses the federate implementation including each of the infrastructure
system models. Finally, Section B.3 discusses the GUI implementation.

B.1 Federation Implementation

The SIPS-G federation implementation is based on the generic ISoS federation discussed in Chapter
5 using the attribute option for resource exchanging behaviors, text-based node representation, and
omitted state and contents attributes. It implements several simplifying assumptions specific to
the SIPS-G framing.

First, nodal infrastructure systems serve as the only federation elements. As there is only one
of each system at each node region, the node-based attribute can be used in lieu of a location (node
pair). Second, rather than composing all resource exchanges in a single attribute, the SIPS-G
federation uses separate attributes for each resource type. For example, the electricity system has
separate attributes for water and oil input which would be components of the ExchangeOutputs

attribute1 in the more general ISoS federation. Furthermore, there is a single source of each resource
type (e.g. food from the agriculture system) such that there is no need for directed resource flows
specifying resources and the source or target element. Third, as each infrastructure system has a
mechanism for unbounded resource production (i.e. private production or import), there cannot be
a shortfall in resource supply and the equivalent of a ExchangeInputs attribute is included only for
completeness. Finally, the SIPS-G federation includes resource unit prices as infrastructure system
attributes which can be interpreted in the ISoS framework as information exchanging behaviors.

The SIPS-G FOM in Table B.1 defines object classes and attributes using standard HLA data
types. Each quantitative data item is also assigned units of measurement: food energy in gigajoules

1To clarify potentially confusing notation, outputs from the exchanging process (ExchangeOutputs) are inputs to
an infrastructure system (Rinput). Similarly, inputs to the exchanging process (ExchangeInputs) are outputs from an
infrastructure system (Routput).
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(GJ), water in cubic meters (m3), oil in tonnes of oil equivalent (toe), and electricity in megawatt
hours (MWh). The InfrastructureSystem object class inherits from the HLAobjectRoot base
class and defines the common attributes across all the systems including a name, region, and cash
flow attributes. The AgricultureSystem, WaterSystem, PetroleumSystem, ElectricalSystem,
and SocialSystem object classes include attributes for each associated resource input and unit
price. Finally, SocialSystem includes population and net revenue attributes to match the logical
model variables.

The SIPS-G federation agreement extends the generic ISoS federation agreement. It also spec-
ifies the roles and responsibilities of each federate with object instances assigned in Table B.2
following the player roles. All federates must adhere to the start-up, advance, reset, and shut-down
processes and establish common operational timing parameters using the HLAinteger64Time data
type including

1. t0 = 1950000 the initial time in 1/1000 years,

2. ξ = 200, the recommended pseudo-step size in 1/1000 years,

3. ∆t = 1000, the step size in 1/1000 years, and

4. tf = 2010000 the final time in 1/1000 years.

B.2 Federate Implementation

A single SIPS-G federate is instantiated with different local model components for each player role.
The federate is implemented as a Java application using a portion of the common ISoS library
discussed in Chapter 5. Figure B-1 illustrates a simplified object class diagram emphasizing the
common interfaces for the SIPS-G application (blue boxes) extending some of the standard ISoS
classes (gray boxes).

The SIPS-G federate implementation FederateSIPSG composes a Country object which, in
turn, composes a list of Region objects as nodes. Both Country and Region classes implement
a common Society interface which includes methods to access member infrastructure systems
and aggregated resource inputs, net and cumulative revenues for the composed agriculture, water,
petroleum, electricity, and social systems.

Given the simplifying assumptions in SIPS-G, the main interface InfrastructureSystem ex-
tends SimObject (rather than Element) with methods to access the associated name, net revenue,
and society. The associated HLA model implementations (orange boxes) implement the core SIPS-G
interfaces using standard HLA data types. The local model implementation also includes infras-
tructure “super system” (*SSystem) to aggregate behaviors of all component systems. For example,
the InfrastructureSSystem aggregates the total net revenue of all nested InfrastructureSystem

objects. These objects can be considered convenience classes; however the sector-specific classes
also manage flow optimization across component systems.

B.2.1 Social System Model Implementations

Figure B-2 presents a class diagram of the social system model implementations. The SocialSystem
interface specifies methods to access population, revenue, and food, water, oil, and electricity
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Table B.1: SIPS-G federation object model definition

Object Class Attribute Data Updating Model Property Units

InfrastructureSystem Name 1 Static – –

Region 1 Static – –

NetRevenue 2 Periodic QnetRevenue(Eni ) §/yr

AgricultureSystem LocalFoodPrice 2 Static πfood
local §/GJ

FoodOutput 2 Periodic Qfood
output(E

n
agricul.) GJ/yr

WaterInput 2 Periodic Qwater
input (Enagricul.) m3/yr

WaterSystem LocalWaterPrice 2 Static πwater
local §/m3

WaterOutput 2 Periodic Qwater
output(E

n
water) m3/yr

ElectricityInput 2 Periodic Qelect
input(E

n
water) MWh/yr

OilInput 2 Periodic Qoil
input(E

n
water) toe/yr

PetroleumSystem LocalOilPrice 2 Static πoil
local §/toe

OilOutput 2 Periodic Qoil
output(E

n
petrol.) toe/yr

ElectricityInput 2 Periodic Qwater
input (Enpetrol.) MWh/yr

ElectricalSystem LocalElectricityPrice 2 Static πelect
local §/MWh

ElectricityOutput 2 Periodic Qelect
output(E

n
elect.) MWh/yr

WaterInput 2 Periodic Qwater
input (Enelect.) m3/yr

OilInput 2 Periodic Qoil
input(E

n
elect.) toe/yr

SocialSystem Population 3 Periodic Qpopulation
stock (Ensocial) people

CumulativeNetRevenue 2 Periodic Qcash
stock(Ensocial) §

FoodInput 2 Periodic Qfood
input(E

n
social) GJ/yr

OilInput 2 Periodic Qoil
input(E

n
social) toe/yr

WaterInput 2 Periodic Qwater
input (Ensocial) m3/yr

ElectricityInput 2 Periodic Qelect
input(E

n
social) MWh/yr

1 HLAunicodeString encoding
2 HLAfloat64BE encoding
3 HLAinteger64BE encoding

Table B.2: SIPS-G federate object instance assignments

Object Classes Water Federate Energy Federate Agriculture Federate

Social System 1 (Urban node) 1 (Industrial node) 1 (Rural node)

Water System 3 (Each node) 0 0

Electricity System 0 3 (Each node) 0

Petroleum System 0 3 (Each node) 0

Agriculture System 0 0 3 (Each node)
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<<interface>>
SimObject

<<abstract>>
HLAobject

<<interface>>
InfrastructureSystem

getName() : String
getNetRevenue() : double
getSociety() : Society

<<interface>>
InfrastructureSSystem

getNestedSystems() : Collection<?
extends InfrastructureSystem>

<<abstract>>
HLAinfrastructureSystem

name : HLAunicodeString
region : HLAunicodeString
netRevenue : HLAfloat64BE

<<interface>>
Society

getName() : String
getAgricultureSystem() : AgricultureSystem
getWaterSystem() : WaterSystem
getPetroleumSystem() : PetroleumSystem
getElectricitySystem() : ElectricitySystem
getSocialSystem() : SocialSystem
getRegions() : Collection<Region>
getCountry() : Country
getTotalFoodInput() : double
getTotalWaterInput() : double
getTotalOilInput() : double
getTotalElectricityInput() : double
getTotalNetRevenue() : double
getCumulativeRevenue() : double

NodeImpl

Region

agricultureSystem : AgricultureSystem
waterSystem : WaterSystem
petroleumSystem : PetroleumSystem
electricitySystem : ElectricitySystem
socialSystem : SocialSystem
country : Country

LocationImpl

Country

name : String
agricultureSystem : AgricultureSSystem
waterSystem : WaterSSystem
petroleumSystem : PetroleumSSystem
electricitySystem : ElectricitySSystem
socialSystem : SocialSSystem
regions : ArrayList<Region>

<<interface>>
AgricultureSystem

<<interface>>
AgricultureSSystem

HLAagricultureSystem

<<interface>>
WaterSystem

<<interface>>
WaterSSystem

HLAwaterSystem

<<interface>>
PetroleumSystem

<<interface>>
PetroleumSSystem

HLApetroleumSystem

<<interface>>
ElectricitySystem

<<interface>>
ElectricitySSystem

HLAelectricitySystem

<<interface>>
SocialSystem

<<interface>>
SocialSSystem

HLAsocialSystem

FederateImpl

FederateSIPSG

country : Country
ambassador : AmbassadorSIPSG

AmbassadorImpl

AmbassadorSIPSG

Figure B-1: Class diagram of SIPS-G objects. Gray boxes are common ISSystem object classes, blue boxes
are SIPS-G model interfaces, orange boxes are HLA model implementations, and green boxes are local model
implementations.
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<<interface>>
SimObject

<<abstract>>
HLAobject

<<interface>>
InfrastructureSystem

<<interface>>
InfrastructureSSystem

<<abstract>>
HLAinfrastructureSystem

<<interface>>
SocialSystem

getPopulation() : long
getCumulativeRevenue() : double
getFoodInput() : double
getWaterInput() : double
getOilInput() : double
getElectricityInput() : double

<<interface>>
SocialSSystem

getNestedSystems() : Collection<SocialSystem>

HLAsocialSystem

population : HLAinteger64BE
cumulativeRevenue : HLAfloat64BE
foodInput : HLAfloat64BE
oilInput : HLAfloat64BE
waterInput : HLAfloat64BE
electricityInput : HLAfloat64BE

SocialSystemImpl

name : String
region : Region
populationModel : PopulationModel
foodDemandModel : DemandModel
waterDemandModel : DemandModel
oilDemandModel : DemandModel
electricityDemandModel : DemandModel
cumulativeRevenue : double
nextCumulativeRevenue : double

SocialSSystemImpl

name : String
country : Country

<<interface>>
DemandModel

getDemand(s : SocialSystem) : double

<<interface>>
PopulationModel

getPopulation(s : SocialSystem) : long

PopulationModelImpl

time : long
nextTime : long
datumTime : long
datumPopulation : long
growthRate : double
maxPopulation : long

DemandModelImpl

time : long
nextTime : long
minDemand : long
datumTime : long
datumDemand : long
growthRate : double
maxDemand : long

Figure B-2: Class diagram of SIPS-G social system implementation. Gray boxes are common ISSystem
object classes, blue boxes are SIPS-G interfaces, orange boxes are HLA social system model implementations,
and green boxes are local social system model implementations.

resource demands. The HLAsocialSystem model implementation uses standard HLA data types
for each attribute. The SocialSystemImpl local model implementation stores the cumulative
revenue stock as an attribute and composes a PopulationModel object to determine population
and several DemandModel objects to determine inputs for each resource type. The population
and demand models PopulationModelImpl and DemandModelImpl implement the logistic growth
population function in Eq. 6.13 and logistic per-capita demand function in Eq. 6.14.

B.2.2 Generic Infrastructure System Model Implementations

Figure B-3 presents an object class diagram of the generic infrastructure system model implemen-
tations. In addition to the methods implemented from the InfrastructureSystem interface in
Fig. B-1, the InfrastructureSystemImpl local model defines methods for common SIPS-G model
properties including capital, operations, decommission, input, and distribution expense and output,
distribution, and export revenue. Three additional methods access collections of elements: internal
elements having an origin within the system (Eni in Eq. 6.5), external elements having a destination
within the system but an origin elsewhere (En?i in Eq. 6.6), and the union of both sets.

The InfrastructureElement interface defines methods for SIPS-G element properties includ-
ing the name, location, and capital, operations, and decommission expense. It also includes a
method to check if it is operational. The abstract implementation InfrastructureElementImpl

includes data members for the name and location and composes a lifecycle model defined by
the interface LifecycleModel for the remaining properties. The implemented lifecycle model
LifecycleModelImpl follows the distinct states described in Table 6.3.
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<<interface>>
SimObject

<<abstract>>
HLAobject

<<interface>>
InfrastructureSystem

<<interface>>
InfrastructureSSystem

<<abstract>>
HLAinfrastructureSystem

<<abstract>>
InfrastructureSystemImpl

name : String
region : Region

getCapitalExpense() : double
getOperationsExpense() : double
getDecommissionExpense() : double
getNetRevenue() : double
getDistributionExpense() : double
getInputExpense() : double
getImportExpense() : double
getDistributionRevenue() : double
getOutputRevenue() : double
getExportRevenue() : double
getExternalElements() : Collection<? extends
InfrastructureElement>
getInternalElements() : Collection<? extends
InfrastructureElement>
getAllElements() : Collection<? extends
InfrastructureElement>

<<abstract>>
InfrastructureSSystemImpl

name : String
country : Country

getNestedSystems() : Collection<? ex-
tends InfrastructureSystem>

<<interface>>
InfrastructureElement

getName() : String
getLocation() : LocationImpl
getCapitalExpense() : double
getVariableOperationsExpense() : double
getFixedOperationsExpense() : double
getOperationsExpense() : double
getDecommissionExpense() : double
isOperational() : boolean

<<abstract>>
InfrastructureElementImpl

name : String
location : LocationImpl
lifecycleModel : LifecycleModel

getVariableOperationsExpense() : double

LocationImpl

<<interface>>
LifecycleModel

getCapitalExpense() : double
getFixedOperationsExpense() : double
getDecommissionExpense() : double
isOperational() : boolean

LifecycleModelImpl

time : long
nextTime : long
commissionTime : long
commissionDuration : long
decommissionTime : long
decommissionDuration : long
capitalCost : double
fixedOperationsCost : double
decommissionCost : double

setCommissionTime(time : long)
setDecommissionTime(time : long)

Figure B-3: Class diagram of SIPS-G generic infrastructure system implementation. Gray boxes are com-
mon ISSystem object classes, blue boxes are SIPS-G interfaces, orange boxes are HLA model implementations
and yellow boxes are generic infrastructure model implementations.
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B.2.3 Agriculture System Model Implementations

Figure B-4 presents an object class diagram of the agriculture system model implementations. The
AgricultureSystem interface includes methods to access the local food price, food output, and
water input. The HLAagricultureSystem model implementation uses standard HLA data types for
each attribute. The AgricultureSystemImpl implementation extends InfrastructureSystemImpl
to add data members for local, import, and export pricing models extending the PricingModel

interface, arable land area, labor force and participation rate (with updates per Eq. 6.77), and a
list of internal agricultural elements. It also defines methods for SIPS-G model properties including
arable land area (available and used), labor force (available and used), import and export prices,
food resource flows (exported, imported, received, sent, produced, supplied, and wasted), expenses
(distribution, input, and import), and revenues (distribution, output, and export).

The AgricultureSSystem interface defines methods to optimize food production and distribu-
tion. The AgricultureSSystemImpl class implements these methods using Eq. 6.84–6.90 and the
SimplexSolver LP solver from the Apache Commons Math 3.2 library (Apache 2013).

The AgricultureElement interface defines common methods for all agriculture elements in-
cluding accessing food sent, received, and produced, input water resources, land area and labor
used, and the variable operations expense. The AgricultureProductionElement implementation
includes data members for current and maximum land area used and for properties in Eq. 6.78–
6.81. The AgricultureDistributionElement implementation includes data members for current
and maximum food sent and for properties in Eq. 6.82–6.83

B.2.4 Water System Model Implementations

Figure B-5 presents an object class diagram of the water system model implementations. The
WaterSystem interface includes methods to access the local water price, water output, and elec-
tricity input. The HLAwaterSystem model implementation uses standard HLA data types for each
attribute. The WaterSystemImpl implementation extends InfrastructureSystemImpl to add
data members for local and import pricing models extending the PricingModel interface, initial
and current aquifer volume and recharge rate (with updates per Eq. 6.112), a private production
element with properties per Eq. 6.113–6.114, and a list of internal water elements. It also defines
methods for SIPS-G model properties including aquifer volume, water resource flows(imported,
received, sent, produced, supplied, and wasted), expenses (distribution, input, and import), and
revenues (distribution and output).

The WaterSSystem interface defines methods to optimize water production and distribution.
The WaterSSystemImpl class implements these methods using Eq. 6.121–6.127 and the LP solver
SimplexSolver from the Apache Commons Math 3.2 library (Apache 2013).

The WaterElement interface defines common methods for all water elements including accessing
water sent, received, and produced, input electricity and aquifer resources, and variable operations
expense. The WaterProductionElement implementation includes data members for current and
maximum water produced and for properties in Eq. 6.115–6.117. The WaterDistributionElement
implementation includes data members for current and maximum water sent and for properties in
Eq. 6.118–6.120.
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<<interface>>
SimObject

<<abstract>>
HLAobject

<<interface>>
InfrastructureSystem

<<interface>>
InfrastructureSSystem

<<abstract>>
HLAinfrastructureSystem

<<abstract>>
InfrastructureSystemImpl

<<abstract>>
InfrastructureSSystemImpl

<<interface>>
AgricultureSystem

getLocalFoodPrice() : double
getFoodOutput() : double
getWaterInput() : double

<<interface>>
AgricultureSSystem

getNestedSystems() : Collection<AgricultureSystem>
optimizeFoodDistribution() : void
optimizeFoodProductionAndDistribution() : void

HLAagricultureSystem

localFoodPrice : HLAfloat64BE
foodOutput : HLAfloat64BE
waterInput : HLAfloat64BE

AgricultureSystemImpl

localPricingModel : PricingModel
importPricingModel : PricingModel
exportPricingModel : PricingModel
arableLandArea : double
laborForce : long
laborParticipationRate : double
elements : ArrayList<AgricultureElement>

getArableLandArea() : double
getArableLandAreaUsed() : double
getLaborForce() : double
getLaborForceUsed() : double
getFoodExported() : double
getFoodImported() : double
getFoodReceived() : double
getFoodSent() : double
getFoodDistributionLosses() : double
getFoodProduced() : double
getFoodSupplied() : double
getFoodWasted() : double
getDistributionExpense() : double
getInputExpense() : double
getImportExpense() : double
getDistributionRevenue() : double
getOutputRevenue() : double
getExportRevenue() : double
getImportFoodPrice() : double
getExportFoodPrice() : double
getElements() : Collection<AgricultureElement>
getExternalElements() : Collection<AgricultureElement>
getInternalElements() : Collection<AgricultureElement>

<<interface>>
PricingModel

getUnitPrice()

PricingModelImpl

unitPrice : double

AgricultureSSystemImpl

<<interface>>
InfrastructureElement

<<abstract>>
InfrastructureElementImpl

<<interface>>
AgricultureElement

getFoodSent() : double
getFoodReceived() : double
getFoodProduced() : double
getWaterInput() : long
getLandArea() : double
getLaborUsed() : long
getVariableOperationsExpense() : double

AgricultureProductionElement

landArea : double
maxLandArea : double
specificLaborUse : double
specificFoodProduction : double
specificWaterConsumption : double
variableOperationsCost : double

getMaxLandArea() : double
getSpecificLaborUse() : double
getSpecificFoodProduction() : double
getSpecificWaterConsumption() : double
getVariableOperationsCost() : double
setLandAreaUsed(area : double) : void

AgricultureDistributionElement

foodSent : double
maxFoodSent : double
efficiency : double
variableOperationsCost : double

getMaxFoodSent() : double
getEfficiency() : double
getVariableOperationsCost() : double
setFoodSent(amount : double) : void

Figure B-4: Class diagram of SIPS-G agriculture system implementation. Gray boxes are common ISSys-
tem object classes, blue boxes are SIPS-G interfaces, orange boxes are HLA model implementations, yellow
boxes are generic model implementations, and green boxes are local agriculture model implementations.
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<<interface>>
SimObject

<<abstract>>
HLAobject

<<interface>>
InfrastructureSystem

<<interface>>
InfrastructureSSystem

<<abstract>>
HLAinfrastructureSystem

<<abstract>>
InfrastructureSystemImpl

<<abstract>>
InfrastructureSSystemImpl

<<interface>>
WaterSystem

getLocalWaterPrice() : double
getWaterOutput() : double
getElectricityInput() : double

<<interface>>
WaterSSystem

getNestedSystems() : Collection<WaterSystem>
optimizeWaterDistribution() : void
optimizeWaterProductionAndDistribution() : void

HLAwaterSystem

localWaterPrice : HLAfloat64BE
waterOutput : HLAfloat64BE
electricityInput : HLAfloat64BE

WaterSystemImpl

localPricingModel : PricingModel
importPricingModel : PricingModel
initialAquiferVolume : double
aquiferVolume : double
nextAquiferVolume : double
rechargeRate : double
privateProductionElement : WaterProductionElement
elements : ArrayList<WaterElement>

getAquiferVolume() : double
getWaterImported() : double
getWaterReceived() : double
getWaterSent() : double
getWaterDistributionLosses() : double
getWaterProduced() : double
getPrivateWaterProduced() : double
getWaterSupplied() : double
getWaterWasted() : double
getDistributionExpense() : double
getInputExpense() : double
getImportExpense() : double
getDistributionRevenue() : double
getOutputRevenue() : double
getExportRevenue() : double
getImportWaterPrice() : double
getElements() : Collection<WaterElement>
getExternalElements() : Collection<WaterElement>
getInternalElements() : Collection<WaterElement>

<<interface>>
PricingModel

getUnitPrice()

PricingModelImpl

unitPrice : double

WaterSSystemImpl

<<interface>>
InfrastructureElement

<<abstract>>
InfrastructureElementImpl

<<interface>>
WaterElement

getWaterSent() : double
getWaterReceived() : double
getWaterProduced() : double
getAquiferInput() : double
getElectricityInput() : double
getVariableOperationsExpense() : double

WaterProductionElement

maxWaterProduced : double
waterProduced : double
specificAquiferConsumption : double
specificElectricityConsumption : double
variableOperationsCost : double

getMaxWaterProduced() : double
getSpecificAquiferConsumption() : double
getSpecificElectricityConsumption() : double
getVariableOperationsCost() : double
setWaterProduced(amount : double) : void

WaterDistributionElement

maxWaterSent : double
waterSent : double
efficiency : double
specificElectricityConsumption : double
variableOperationsCost : double

getMaxWaterSent() : double
getEfficiency() : double
getSpecificElectricityConsumption() : double
getVariableOperationsCost() : double
setWaterSent(amount : double) : void

Figure B-5: Class diagram of SIPS-G water system implementation. Gray boxes are common ISSystem
object classes, blue boxes are SIPS-G interfaces, orange boxes are HLA water model implementations, yellow
boxes are generic infrastructure model implementations, and green boxes are local water model implemen-
tations.
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B.2.5 Petroleum System Model Implementations

Figure B-6 presents an object class diagram of the petroleum system model implementations. The
PetroleumSystem interface includes methods to access local oil prices, oil output, and electricity
input. The HLApetroleumSystem model implementation uses standard HLA data types for each
attribute. The PetroleumSystemImpl implementation extends InfrastructureSystemImpl to add
data members for local, import, and export pricing models extending the PricingModel interface,
initial and current reservoir volume, and a list of internal petroleum elements. It also defines
methods for SIPS-G model properties including reservoir volume, oil resource flows (imported,
exported, received, sent, produced, supplied, and wasted), input electricity resources, expenses
(distribution, input, and import) and revenues (distribution, output, and export).

The PetroleumSSystem interface defines additional methods to optimize oil production and
distribution. The PetroleumSSystemImpl class implements these methods using Eq. 6.152–6.157
and the SimplexSolver LP solver from the Apache Commons Math 3.2 library (Apache 2013).

The PetroleumElement interface defines common methods for all petroleum elements includ-
ing accessing oil sent, received, and produced, input electricity and reservoir resources, and vari-
able operations expense. The PetroleumProductionElement implementation includes data mem-
bers for current and maximum oil produced and for other properties in Eq. 6.147–6.148. The
PetroleumDistributionElement implementation includes data members for current and maxi-
mum oil sent and for properties in Eq. 6.149–6.151.

B.2.6 Electricity System Model Implementations

Figure B-7 presents an object class diagram of the electricity system model implementations.
The ElectricitySystem interface includes methods to access local electricity prices, output elec-
tricity, and input water and oil. The HLAelectricitySystem model implementation uses stan-
dard HLA data types for each attribute. The ElectricitySystemImpl implementation extends
InfrastructureSystemImpl to add data members for a local pricing model using the PricingModel
interface, a private production element with properties per Eq. 6.175, and a list of internal elec-
tricity elements. It also defines methods for SIPS-G model properties including electricity resource
flows (received, sent, produced, supplied, and wasted), expenses (distribution and input) and rev-
enues (distribution and output).

The ElectricitySSystem interface defines additional methods to optimize electricity produc-
tion and distribution. The ElectricitySSystemImpl class implements these methods using Eq.
6.181–6.186 and the SimplexSolver LP solver from the Apache Commons Math 3.2 library (Apache
2013).

The ElectricityElement interface defines common methods for all electricity elements includ-
ing accessing electricity sent, received, and produced, input water and oil resources, and variable
operations expense. The ElectricityProductionElement implementation includes data mem-
bers for current and maximum electricity produced and for properties in Eq. 6.176–6.178. The
ElectricityDistributionElement implementation includes data members for current and maxi-
mum electricity sent and for properties in Eq. 6.179–6.180.
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<<interface>>
SimObject

<<abstract>>
HLAobject

<<interface>>
InfrastructureSystem

<<interface>>
InfrastructureSSystem

<<abstract>>
HLAinfrastructureSystem

<<abstract>>
InfrastructureSystemImpl

<<abstract>>
InfrastructureSSystemImpl

<<interface>>
PetroleumSystem

getLocalOilPrice() : double
getOilOutput() : double
getElectricityInput() : double

<<interface>>
PetroleumSSystem

getNestedSystems() : Collection<PetroleumSystem>
optimizeOilDistribution() : void
optimizeOilProductionAndDistribution() : void

HLApetroleumSystem

localOilPrice : HLAfloat64BE
oilOutput : HLAfloat64BE
electricityInput : HLAfloat64BE

PetroleumSystemImpl

localPricingModel : PricingModel
importPricingModel : PricingModel
exportPricingModel : PricingModel
initialReservoirVolume : double
reservoirVolume : double
nextReservoirVolume : double
elements : ArrayList<PetroleumElement>

getReservoirVolume() : double
getOilExported() : double
getOilImported() : double
getOilReceived() : double
getOilSent() : double
getOilDistributionLosses() : double
getOilProduced() : double
getOilSupplied() : double
getOilWasted() : double
getDistributionExpense() : double
getInputExpense() : double
getImportExpense() : double
getDistributionRevenue() : double
getOutputRevenue() : double
getExportRevenue() : double
getImportOilPrice() : double
getExportOilPrice() : double
getElements() : Collection<PetroleumElement>
getExternalElements() : Collection<PetroleumElement>
getInternalElements() : Collection<PetroleumElement>

<<interface>>
PricingModel

getUnitPrice()

PricingModelImpl

unitPrice : double

PetroleumSSystemImpl

<<interface>>
InfrastructureElement

<<abstract>>
InfrastructureElementImpl

<<interface>>
PetroleumElement

getOilSent() : double
getOilReceived() : double
getOilProduced() : double
getReservoirInput() : double
getElectricityInput() : double
getVariableOperationsExpense() : double

PetroleumProductionElement

maxOilProduced : double
oilProduced : double
specificReservoirConsumption : double
variableOperationsCost : double

getMaxOilProduced() : double
getSpecificReservoirConsumption() : double
getVariableOperationsCost() : double
setOilProduced(amount : double) : void

PetroleumDistributionElement

maxOilSent : double
oilSent : double
efficiency : double
specificElectricityConsumption : double
variableOperationsCost : double

getMaxOilSent() : double
getEfficiency() : double
getSpecificElectricityConsumption() : double
getVariableOperationsCost() : double
setOilSent(amount : double) : void

Figure B-6: Class diagram of SIPS-G petroleum system implementation. Gray boxes are common ISSystem
object classes, blue boxes are SIPS-G interfaces, orange boxes are HLA petroleum model implementations,
yellow boxes are generic infrastructure model implementations, and green boxes are local petroleum model
implementations.
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<<interface>>
SimObject

<<abstract>>
HLAobject

<<interface>>
InfrastructureSystem

<<interface>>
InfrastructureSSystem

<<abstract>>
HLAinfrastructureSystem

<<abstract>>
InfrastructureSystemImpl

<<abstract>>
InfrastructureSSystemImpl

<<interface>>
ElectricitySystem

getLocalElectricityPrice() : double
getElectricityOutput() : double
getWaterInput() : double
getOilInput() : double

<<interface>>
ElectricitySSystem

getNestedSystems() : Collection<ElectricitySystem>
optimizeElectricityDistribution() : void
optimizeElectricityProductionAndDistribution() : void

HLAelectricitySystem

localElectricityPrice : HLAfloat64BE
electricityOutput : HLAfloat64BE
waterInput : HLAfloat64BE
oilInput : HLAfloat64BE

ElectricitySystemImpl

localPricingModel : PricingModel
privateProductionElement : ElectricityProductionElement
elements : ArrayList<ElectricityElement>

getElectricityImported() : double
getElectricityReceived() : double
getElectricitySent() : double
getElectricityDistributionLosses() : double
getElectricityProduced() : double
getPrivateElectricityProduced() : double
getElectricityWasted() : double
getDistributionExpense() : double
getInputExpense() : double
getImportExpense() : double
getDistributionRevenue() : double
getOutputRevenue() : double
getExportRevenue() : double
getElements() : Collection<ElectricityElement>
getExternalElements() : Collection<ElectricityElement>
getInternalElements() : Collection<ElectricityElement>

<<interface>>
PricingModel

getUnitPrice()

PricingModelImpl

unitPrice : double

ElectricitySSystemImpl

<<interface>>
InfrastructureElement

<<abstract>>
InfrastructureElementImpl

<<interface>>
ElectricityElement

getElectricitySent() : double
getElectricityReceived() : double
getElectricityProduced() : double
getWaterInput() : double
getOilInput() : double
getVariableOperationsExpense() : double

ElectricityProductionElement

maxElectricityProduced : double
electricityProduced : double
specificWaterConsumption : double
specificOilConsumption : double
variableOperationsCost : double

getMaxElectricityProduced() : double
getSpecificWaterConsumption() : double
getSpecificOilConsumption() : double
getVariableOperationsCost() : double
setElectricityProduced(amount : double) : void

ElectricityDistributionElement

maxElectricitySent : double
electricitySent : double
efficiency : double
variableOperationsCost : double

getMaxElectricitySent() : double
getEfficiency() : double
getVariableOperationsCost() : double
setElectricitySent(amount : double) : void

Figure B-7: Class diagram of SIPS-G electricity system implementation. Gray boxes are common ISSystem
object classes, blue boxes are SIPS-G interfaces, orange boxes are HLA electricity model implementations,
yellow boxes are generic infrastructure model implementations, and green boxes are local electricity model
implementations.
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EventObject

ExecutionEvent

long : time

getTime() : long

SimObjectEvent

object : SimObject

getObject() : SimObject

<<interface>>
EventListener

ExecutionListener

executionInitialized(event : ExecutionEvent)
executionAdvanced(event : ExecutionEvent)
executionTerminated(event : ExecutionEvent)

SimObjectListener

objectDiscovered(event : SimObjectEvent)
objectUpdated(event : SimObjectEvent)
objectRemoved(event : SimObjectEvent)

AmbassadorSIPSG

listeners : EventListenerList

addSimObjectListener(l : SimObjectListener)
removeSimObjectListener(l : SimObjectListener)

FederateSIPSG

listeners : EventListenerList
country : Country
ambassador : AmbassadorSIPSG

addExecutionListener(l : ExecutionListener)
removeExecutionListener(l : ExecutionListener)
addSimObjectListener(l : SimObjectListener)
removeSimObjectListener(l : SimObjectListener)

FederateGUI

federate : FederateSIPSG
executionGUI : ExecutionGUI
inputsGUI : InputsGUI
outputsGUI : OutputsGUI

ExecutionGUI

federate : FederateSIPSG

InputsGUI

elementGUI : ElementGUI
country : Country

<<abstract>>
ElementGUI

element : InfrastructureElement

<<interface>>
InfrastructureElement

OutputsGUI

countryGUI : CountryGUI
systemGUIs : List<InfrastructureSystemGUI>

<<abstract>>
InfrastructureSystemGUI

system : InfrastructureSystem

<<interface>>
InfrastructureSystem

CountryGUI

country : Country

Country

Figure B-8: Class diagram of SIPS-G graphical user interface implementation. Gray boxes are standard
Java classes, blue boxes are SIPS-G model components, green boxes are SIPS-G GUI components, and yellow
boxes are generic SIPS-G GUI components. Specific infrastructure system GUI components are omitted.

B.3 Graphical User Interface

A graphical user interface (GUI) provides a player access to the infrastructure system models during
a game session, both to specify simulation inputs (where and when to build which infrastructure
elements) and to visualize outputs including resource stocks and flows computed in the simulation
results.

Figure B-8 illustrates a simplified object class diagram of the GUI implementation. Many com-
ponents rely on an observer pattern to notify and execute simulation object events. The classes
ExecutionEvent and SimObjectEvent extend the Java EventObject class for use as method ar-
guments in the ExecutionListener and SimObjectListener listener classes. Each GUI compo-
nent implements the required *Listener interface and is registered as a listener with both the
federate (for local events) and the ambassador (for remote events). For example, when the ambas-
sador receives an attribute update service call for a remote infrastructure system, it would call the
objectUpdated method for all associated listeners.

Figure B-9 shows a screen capture of the SIPS-G GUI with several components highlighted. The
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Figure B-9: Screen capture of the main SIPS-G graphical user interface includes the execution component
(upper left), inputs component (left), and outputs component (right) with nested country and infrastructure
system components as tabs.

class FederateGUI acts as the top-level GUI component and contains three main sub-components.
The ExecutionGUI component at the top left provides user controls for the simulation execution.
A slider bounds the initial and final simulation times. Buttons below the slider allow for user
commands to connect to a federation, initialize or reset to initial conditions, and advance by one
year, five years, or to the end of the simulation.

The InputsGUI component receives user input to define an infrastructure plan. A tree list
component organizes infrastructure elements by region. In the example in Fig. B-9, the rural
region node is expanded to show various infrastructure elements. Full-color icons illustrate opera-
tional elements while faded icons illustrate elements in an empty (pre-commission) or null (post-
decommission) state. Buttons along the bottom allow for user commands to add new elements, edit
existing elements, or delete existing elements. Individual elements can be edited in ElementGUI

components. Figure B-10 shows a screen capture for agriculture production and distribution ele-
ments.

The OutputsGUI component displays outputs from the simulation execution. The CountryGUI

component provides national financial data including net revenue and capital expenses by infras-
tructure sector and total cumulative revenue. Each sector-specific InfrastructureSystemGUI com-
ponent shows national or regional data in Table B.3. Most data are displayed using stacked area and
line charts implemented with the JFreeChart open source library (Object Refinery Limited 2013).
Figure B-11 shows an example for a national-level AgricultureSystemGUI component including
the Net Revenue chart (top) and Food Source chart (bottom). Figure B-12 shows an example
Network Flow components for national and regional AgricultureSystemGUI components.
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Figure B-10: Screen capture of the element GUI for an agriculture production element (left) and agriculture
distribution element (right). Components show fixed attributes and editable attributes accepting user inputs.

References for Appendix B

Apache Software Foundation (2013). Commons Math 3.2. url: http://commons.apache.org/

proper/commons-math/ (visited on 11/19/2013).
Object Refinery Limited (2013). JFreeChart. url: http://www.jfree.org/jfreechart/ (visited on

11/19/2013).
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Figure B-11: Screen capture of the main SIPS-G graphical user interface includes the execution GUI
component (upper left), inputs GUI component (left), and outputs GUI component (right) with nested
country GUI and infrastructure system GUI components (tabs).
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Figure B-12: Screen capture of the network flow output display for national (top) and regional (bottom)
food flows. The national display shows resource flows between nodes while the regional display shows
production and distribution by infrastructure elements.



Appendix C

SIPS-G Design Objective Metrics

This appendix details the objective metrics for each of the three roles—agriculture, water, and
energy—and the nation as a whole. The following sections describe the formulation of each objective
metric as a sum of components and illustrate the values under the baseline scenario.

C.1 Agriculture Role Objectives

The agriculture role’s objectives include three components of equal weight:

1. Food Security (Sfood): measures the fraction of food supply from domestic sources.

2. Capital Investment (IMoA): measures the capital investment in the agriculture sector.

3. Net Revenue (RMoA): measures the net revenue from the agriculture sector.

The quantitative objective JMoA(t) for year t is defined as the weighted sum

JMoA(t) =
1

3
Sfood(t) +

1

3
IMoA(t) +

1

3
RMoA(t). (C.1)

C.1.1 Food Security

The food security metric Sfood(t) measures the average fraction of domestic food supply between
1980 and year t > 1980 compared to a desired value of 75%. By averaging over a range of years, it
frames food security as a trajectory rather than a target. It ranges between:

Sfood(t) = 0: no domestic food production in all years, and

Sfood(t) = 1000: at least 75% domestic food production in all years

and is computed for year t as

Sfood(t) = 1000 · 1

t− 1980
·

t∑
τ=1980

F (τ) (C.2)

273
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where domestic food factor F (τ) in year τ is given by a bounded linear interpolation

F (τ) =


1 if D(τ) = 0 or S(τ)/D(τ) > 0.75

0 if S(τ)/D(τ) < 0
S(τ)/D(τ)

0.75 otherwise

(C.3)

where S(τ) is the domestic food supply in year τ

S(τ) = Qfood
produced(Eagricul., τ) (C.4)

and D(τ) is the total food demand in year τ

D(τ) = Qfood
output(Eagricul., τ). (C.5)

C.1.2 Agriculture Capital Investment

The capital investment metric I(t) measures the cumulative capital expenses in an infrastructure
sector by year t compared to a desired value Imax(t). It represents the motivation of a player to
acquire funds from a limited national budget on capital expenditures and ranges between:

I(t) = 0: no cumulative capital investment by year t, and

I(t) = 1000: cumulative capital investments by year t exceeding Imax(t).

It is computed for year t as a bounded linear interpolation

I(t) = 1000 ·

{
1 if I(t) > Imax(t)

I(t)/Imax(t) otherwise
(C.6)

where I(t) is the cumulative capital investment in infrastructure sector i as of year t

I(t) =
∑
τ≤t

Pcapital(Ei, τ) (C.7)

and Imax(t) is an upper bound on desired capital investment. The formulation of Imax(t) uses an
exponential growth computed as

Imax(t) = I2010 · (1 + rI)
t−2010 (C.8)

where I2010 is the desired cumulative capital investment in 2010 and rI is the desired annual growth
rate.

The agriculture capital investment metric IMoA(t) uses the common form in Eq. C.6 in the
agriculture sector with a desired value of I2010 = §10 billion and an annual growth rate of rI = 6%.

C.1.3 Agriculture Net Revenue

The net revenue metric R(t) measures the cumulative net revenue (i.e. cash flow) by year t com-
pared to minimum and maximum desired values Rmin(t) and Rmax(t). It represents the motivation
of a player to operate profitable infrastructure and ranges between:
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R(t) = 0: less than Rmin(t) in cumulative net revenue by year t, and

R(t) = 1000: more than Rmax(t) in cumulative net revenue by year t.

It is computed for year t as a bounded linear interpolation

R(t) = 1000 ·


1 if R(t) > Rmax(t)

0 if R(t) < Rmin(t)
R(t)−Rmin(t)

Rmax(t)−Rmin(t) otherwise

(C.9)

where R(t) is the cumulative net revenue in infrastructure sector i as of year t

R(t) =
∑
τ≤t

QcashFlow(Ei, τ) (C.10)

and Rmin(t) and Rmax(t) are lower and upper bounds on desired net revenue. The formulation of
Rmin(t) and Rmax(t) use an exponential growth computed as

Rmin(t) = Rmin,2010 · (1 + rR)t−2010 (C.11)

Rmax(t) = Rmax,2010 · (1 + rR)t−2010 (C.12)

where Rmin,2010 and Rmax,2010 are the lower and upper bounds on desired cumulative net revenue
in 2010 and rR is the desired annual growth rate.

The agriculture net revenue metric RMoA(t) uses the common form in Eq. C.9 in the agriculture
sector with a lower bound of Rmin,2010 = 0, an upper bound of Rmax,2010 = §50 billion and an annual
growth rate of rR = 5%.

C.1.4 Baseline Agriculture Metrics

Figure C-1 shows the time history of agriculture objective metrics under the baseline scenario. The
final value in 2010 is 43 with component scores of 119 for food security, 10 for investment, and 0
for net revenue.

C.2 Water Role Objectives

The water role’s objectives include three components of equal weight:

1. Aquifer Security (Saquifer): measures the expected aquifer lifetime at current withdrawal rates.

2. Capital Investment (IMoW): measures the cumulative capital investment in the water sector.

3. Net Revenue (RMoW): measures the cumulative net revenue from the water sector.

The quantitative objective JMoW(t) is defined as the weighted sum

JMoW(t) =
1

3
Saquifer(t) +

1

3
IMoW(t) +

1

3
RMoW(t). (C.13)
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Figure C-1: Stacked area diagram for agriculture objective metrics under the baseline scenario.

C.2.1 Aquifer Security

The aquifer security metric Saquifer(t) measures the average expected lifetime of an aquifer between
1980 and year t > 1980 compared to a desired values of 200 years. By averaging over a range of
years, it frames aquifer security as a trajectory rather than a target. It ranges between:

Saquifer(t) = 0: expected lifetime is less than 20 years in each year between 1980 and t, and

Saquifer(t) = 1000: expected lifetime is more than 200 years in each year between 1980 and t

and is computed for year t as

Saquifer(t) = 1000 · 1

t− 1980
·

t∑
τ=1980

La(τ) (C.14)

where the aquifer lifetime factor La(τ) for year τ is given by a bounded linear interpolation

La(τ) =


1 if Wa(τ) = 0 or Va(τ)/Wa(τ) > 200

0 if Va(τ)/Wa(τ) < 20
Va(τ)/Wa(τ)−20

200−20 otherwise

(C.15)

where Va(τ) is the total remaining aquifer volume in year τ

Va(τ) = Qaquifer
stock (Ewater, τ) (C.16)

and Wa(τ) is the volume of water withdrawn from an aquifer in year τ

Wa(τ) = Qaquifer
retrieved(Ewater, τ). (C.17)
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Figure C-2: Stacked area diagram for water objective metrics under the baseline scenario.

C.2.2 Water Capital Investment

The water capital investment metric IMoW(t) uses the common form in Eq. C.6 in the water sector
with a desired value of I2010 = §15 billion and an annual growth rate of rI = 6%.

C.2.3 Water Net Revenue

The water net revenue metric RMoW(t) uses the common form in Eq. C.9 in the water sector with
a lower bound of Rmin,2010 = −§10 billion, an upper bound of Rmax,2010 = 0 and an annual growth
rate of rR = 6%. This formulation recognizes the national water sector as subsidy-based and prefers
smaller losses.

C.2.4 Baseline Water Metrics

Figure C-2 shows the time history of water objective metrics under the baseline scenario. The final
value in 2010 is 503 with component scores of 519 for aquifer security, 20 for investment, and 969
for net revenue.

C.3 Energy Role Objectives

The energy role’s objectives include three components of equal weight:

1. Reservoir Security (Sreservoir): measures the expected oil reservoir lifetime at current extrac-
tion rates.

2. Capital Investment (IMoE): measures the cumulative capital investment in the oil and elec-
tricity sectors.

3. Net Revenue (RMoE): measures the cumulative net revenue from the oil and electricity sectors.
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The quantitative objective JMoE(t) is defined as the weighted sum

JMoE(t) =
1

3
Sreservoir(t) +

1

3
IMoE(t) +

1

3
RMoE(t). (C.18)

C.3.1 Oil Reservoir Security

The oil reservoir security metric Sreservoir(t) measures the average expected lifetime of the oil
reservoir between 1980 and year t > 1980 compared to a desired value of 200 years. By averaging
over a range of years, it frames reservoir security as a trajectory rather than a target. It ranges
between:

Sreservoir(t) = 0: no remaining reservoir in each year between 1980 and t, and

Sreservoir = 1000: expected lifetime is more than 200 years in each year between 1980 and t.

and is computed for year t as

Sreservoir(t) = 1000 · 1

t− 1980
·

t∑
τ=1980

Lr(τ) (C.19)

where the reservoir lifetime factor Lr(τ) for year τ is given by a bounded linear interpolation

Lr(τ) =


1 if Wr(τ) = 0 or Vr(τ)/Wr(τ) > 200

0 if Vr(τ)/Wr(τ) < 0
Vr(τ)/Wr(τ)

200 otherwise

(C.20)

where Vr(τ) is the total remaining reservoir volume in year τ

Vr(τ) = Qreservoir
stock (Epetrol., τ) (C.21)

and Wr(τ) is the volume of oil extracted from a reservoir in year τ

Wr(τ) = Qreservior
retrieved(Epetrol., τ). (C.22)

C.3.2 Energy Capital Investment

The energy capital investment metric IMoE(t) uses the common form in Eq. C.6 in the petroleum
and electricity sectors with a desired value of I2010 = §500 billion and an annual growth rate of
rI = 4%.

C.3.3 Energy Net Revenue

The energy net revenue metric RMoE(t) uses the common form in Eq. C.9 in the petroleum and
electricity sectors with a lower bound of Rmin,2010 = 0, an upper bound of Rmax,2010 = §50 billion
and an annual growth rate of rR = 4%.
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Figure C-3: Stacked area diagram for energy objective metrics under the baseline scenario.

C.3.4 Baseline Energy Metrics

Figure C-3 shows the time history of energy objective metrics under the baseline scenario. The
final value in 2010 is 521 with component scores of 526 for reservoir security, 312 for investment,
and 725 for net revenue.

C.4 National Objectives

The national objectives includes four components of equal weight:

1. Food Security (Sfood): measures the fraction of food supply from domestic sources.

2. Aquifer Security (Saquifer): measures the expected aquifer lifetime at current withdrawal rates.

3. Reservoir Security (Sreservoir): measures the expected oil reservoir lifetime at current extrac-
tion rates.

4. Net Revenue (RIA): measures the total net revenue of all infrastructure sectors.

The quantitative objective JIA(t) is defined as the weighted sum

JIA(t) =
1

4
Sfood(t) +

1

4
Saquifer(t) +

1

4
Sreservoir(t) +

1

4
RIA(t) (C.23)

where the resource security components are drawn from each role (i.e. Sfood(t) in Eq. C.2, Saquifer(t)
in Eq. C.14, and Sreservoir(t) in Eq. C.19) and the net revenue RIA(t) is computed using the common
form in Eq. C.9 for all infrastructure sectors with a lower bound of Rmin,2010 = −§10 billion, an
upper bound of Rmax,2010 = §550 billion and an annual growth rate of rR = 4%.
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Figure C-4: Stacked area diagram for national objective metrics under the baseline scenario.

C.4.1 Baseline National Metrics

Figure C-4 shows the time history of national objective metrics under the baseline scenario. The
final value in 2010 is 447 with component scores of 119 for food security, 519 for aquifer security,
526 for reservoir security, and 622 for net revenue.

C.5 Analysis of Objectives

Table C.1 summarizes causal effects between objective components based on the underlying infras-
tructure system models where “+” indicates a positive causation between row A and column B (i.e.
an increase in A causes an increase in B) and “−” indicates a negative causation between row A
and column B. Only nominal interactions are illustrated which may change at varying levels. For
example, additional agriculture investment would not improve food security if it exceeds available
land or labor capacities. Figure C-5 illustrates the data as a causal loop diagram.
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Figure C-5: Causal loop diagram of nominal interactions between objectives.

Investment in agriculture infrastructure (IMoA) contributes to greater food security (Sfood) from
increased domestic production and higher revenues (RMoA and RIA) by avoiding import expenses.
Allocating budget to the agriculture sector limits investment in other infrastructure (IMoW and
IMoE) and consumes more water to reduce aquifer security (Saquifer). The net effect of agricul-
ture investment on the individual objective (JMoA) is positive; however the effect on the national
objective (JIA) is mixed due to indirect budget and aquifer security effects.

Investment in water infrastructure (IMoW) contributes to greater aquifer security (Saquifer) from
increased desalination capacity and lower revenues (RMoW and RIA) due to water subsidies. Allo-
cating budget for the water sector limits investment in other infrastructure (IMoW and IMoE) and
consumes more electricity which generates less revenue than the alternative of oil export (RMoE).
The net effects of water investment on both individual (JMoW) and national objectives (JIA) are
mixed due to direct aquifer security and revenue effects and indirect budget and energy revenue
effects.

Investment in energy infrastructure (IMoE) has different effects depending on the specific element
selected. Oil wells contribute to lower reservoir security (Sreservoir) from increased oil extraction
and higher revenues (RMoE and RIA) from to oil export. Thermal power plants contribute to higher
oil export and electricity revenues while solar PV plants contribute to higher oil export revenues
but lower electricity revenues. Both thermal and solar PV plants contribute a net positive effect on
energy revenue (RMoE and RIA). Allocating budget for the energy sector limits investment in other
infrastructure (IMoA and IMoW). The net effects of energy investment on the individual (JMoE)
and national objectives (JIA) are mixed but generally positive due to direct reservoir security and
revenue effects and indirect budget effects.

Tensions between achieving individual role versus joint national objectives arise from two key
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sources. The first tension emerges from interactions between the agriculture and water sectors.
Increased domestic food production to improve food security has large impacts on water with-
drawals, leading to lower aquifer security. While investment in desalination capacity can offset a
portion of the water demand, it leads to the second tension between water and energy sectors. As
an energy-intensive process, desalination increases electricity demands which is fueled by domes-
tic oil consumption. Because increasing oil production reduces reservoir security, efficient sources
electricity generation include thermal power plants or solar PV plants which trade higher capital
expenses for reduced domestic oil consumption. As desalination is also a capital-intensive project,
the annual budget limit is quickly reached with moderate investment in solar PV plants.
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Appendix D

SIPS-G Experimental Data

Tables D.1–D.4 summarize results from the final round of each design session for Agriculture, Water,
Energy, and National objectives. Each table shows the final resource production capacity summed
across all regions and forms (e.g. thermal and solar power), its percentage of the maximum value
encountered during the design session, and the resulting objective metric components.

Figures D-1–D-5 plot infrastructure inputs (summarized by normalized capacity in each sector)
and objective metric outcomes after each data exchange. Infrastructure capacities are normalized by
the following median values from Tables D.1–D.3 (Wheat: 100 EJ/yr, Desalination: 8400 MCM/yr,
Oil: 700 Mtoe/yr, and Power: 204 TWh/yr).

285



286 APPENDIX D. SIPS-G EXPERIMENTAL DATA

Table D.1: Final round agriculture results by session

Session Wheat Cap. % of Max Sfood IMoA RMoA JMoA

(EJ/yr)

1 85.0 100% 742.6 400.0 993.0 711.8

2 130.0 84% 851.2 1000.0 1000.0 950.4

3 75.0 100% 556.1 274.0 578.5 469.5

4 102.5 100% 515.4 442.0 511.6 489.6

5 210.0 98% 889.3 1000.0 918.8 936.0

6 90.0 69% 686.8 478.0 823.5 662.8

7 90.0 100% 622.4 448.0 769.7 613.4

8 95.0 90% 675.6 406.0 880.7 654.1

9 75.0 71% 427.5 304.0 361.4 364.3

10 130.0 93% 762.1 622.0 1000.0 794.7

11 150.0 79% 626.0 544.0 703.9 624.6

12 140.0 90% 644.6 568.0 760.6 657.7

13 80.0 100% 471.0 262.0 470.2 401.1

14 100.0 95% 784.9 424.0 1000.0 736.3

15 100.0 95% 595.6 394.0 722.5 570.7

Table D.2: Final round water results by session

Session Desal. Cap. % of Max Saquifer IMoW RMoW JMoW

(MCM/yr)

1 10250 100% 32.0 1000.0 0.0 344.0

2 11900 100% 21.2 1000.0 0.0 340.4

3 14300 100% 135.2 1000.0 0.0 378.4

4 3200 100% 102.1 1000.0 0.0 367.4

5 3650 67% 35.5 1000.0 0.0 345.2

6 5300 49% 32.6 1000.0 0.0 344.2

7 2600 100% 66.3 870.0 0.0 312.1

8 11600 100% 43.5 1000.0 0.0 347.8

9 11600 95% 199.9 1000.0 0.0 400.0

10 7850 100% 59.1 1000.0 0.0 353.0

11 10850 100% 56.5 1000.0 0.0 352.2

12 8400 100% 65.5 1000.0 0.0 355.2

13 7400 100% 152.0 1000.0 0.0 384.0

14 6800 100% 28.2 1000.0 0.0 342.7

15 10250 100% 78.5 1000.0 0.0 359.5
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Table D.3: Final round energy results by session

Session Oil Cap. % Max Elect. Cap. % Max % Renew. Sreservoir IMoE RMoE JMoE

(Mtoe/yr) (TWh/yr)

1 1200 100% 234 100% 30% 415.1 967.0 953.8 778.6

2 500 100% 94 100% 80% 526.3 563.5 710.8 600.2

3 500 100% 234 100% 91% 526.3 878.5 725.2 710.0

4 800 100% 234 100% 4% 433.6 640.0 891.6 655.0

5 700 100% 234 100% 74% 474.6 947.5 805.8 742.7

6 1700 100% 204 100% 50% 338.5 1000.0 1000.0 779.5

7 600 100% 164 100% 88% 474.4 796.0 796.2 688.9

8 500 100% 204 100% 92% 526.3 923.5 717.6 722.4

9 450 90% 294 100% 3% 542.1 491.5 719.6 584.4

10 375 75% 150 100% 89% 621.0 743.5 626.5 663.7

11 700 100% 114 100% 36% 526.3 583.0 699.3 602.8

12 1100 100% 244 100% 40% 393.7 985.0 981.9 786.9

13 500 100% 74 100% 57% 526.3 496.0 712.8 578.4

14 800 100% 194 100% 63% 408.2 869.5 895.5 724.4

15 1000 100% 264 100% 43% 376.9 1000.0 1000.0 792.3

Table D.4: Final round national results by session

Session Sfood Saquifer Sreservoir RIA JIA

1 742.6 32.0 415.1 867.3 514.2

2 851.2 21.2 526.3 0.0 349.7

3 556.1 135.2 526.3 579.7 449.3

4 515.4 102.1 433.6 818.1 467.3

5 889.3 35.5 474.6 0.0 349.9

6 686.8 32.6 338.5 981.8 509.9

7 622.4 66.3 474.4 774.4 484.4

8 675.6 43.5 526.3 622.4 466.9

9 427.5 199.9 542.1 584.5 438.5

10 762.1 59.1 621.0 581.2 505.8

11 626.0 56.5 526.3 170.5 344.8

12 644.6 65.5 393.7 887.9 497.9

13 471.0 152.0 526.3 630.9 445.1

14 784.9 28.2 408.2 847.0 517.1

15 595.6 78.5 376.9 896.6 486.9
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Figure D-1: Normalized input and objective metric time histories for sessions 1–3.
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Figure D-2: Normalized input and objective metric time histories for sessions 4–6.
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Figure D-3: Normalized input and objective metric time histories for sessions 7–9.
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Figure D-4: Normalized input and objective metric time histories for sessions 10–12.
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Figure D-5: Normalized input and objective metric time histories for sessions 13–15.
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