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Abstract

Scarce pipeline capacity in regions that rely on natural gas technologies for electricity
generation has created volatile prices and reliability concerns. Gas-fired generation
firms uniquely operate as large consumers in the gas market and large producers in the
electricity market. To explore the effects of this coupling, this dissertation investigates
decisions for firms that own gas-fired power plants by proposing a mixed-integer linear
programming model that explicitly represents multi-year pipeline capacity commit-
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schedules, and daily fuel purchases and electricity generation. This dissertation’s
primary contributions consist of a detailed representation of a gas-fired power-plant
owner’s planning problem; a hierarchical application of a state-based dimensionality
reduction technique to solve the hourly unit commitment problem over different tem-
poral scales; a technique to evaluate a firm’s forward capacity market offer, including
a probabilistic approach to evaluate the risk of forced outages; a case study of New
England’s gas-electricity system; and an exploration of the applicability of forward
capacity markets to reliability problems for other basic goods.
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Chapter 1

Introduction

Natural gas-fired power plants accounted for 18% of New England’s total power plant

capacity in the year 2000. Fifteen years later, due to a confluence of environmental

and economic factors, natural gas has displaced much of the remaining coal and oil

capacity in the region and now accounts for 50% of New England’s total power plant

capacity and over 40% of its total electricity generation. As the electric power sec-

tor increasingly depends on natural gas as a primary fuel, and as the electric power

sector becomes the gas sector’s largest consumer, public agencies such as the Inde-

pendent System Operator of New England (ISO-NE), the New York Independent

System Operator, and the Federal Energy Regulatory Commission (FERC) and pri-

vate consortiums such as the Edison Electric Institute and the Interstate Natural Gas

Association of America have expressed concerns about the increasing regularity of

pipeline capacity scarcities and the long-term implications of reduced fuel diversity

for electric power system reliability. [FERC, 2012][ISO-New England, 2013a]

Although the United States’ northeast region is the first in the country to experi-

ence emerging problems due to the interdependencies between its gas and electricity

systems, its shift toward natural gas technologies is not unique. The United States’

electric power sector in aggregate now burns so much natural gas that it has displaced

both industrial and residential sectors as the country’s top consumer. [EIA, 2013] The

strong adoption of natural gas technologies is not surprising given the niche role that

natural gas-fired power plants fulfill. Compared to their coal counterparts, gas-fired
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power plants emit fewer greenhouse gasses. In many parts of the United States and

other parts of the world with shale gas reserves and sufficient gas transportation

infrastructure, the commodity price of natural gas economically outcompetes coal.

And compared to both coal and nuclear power plants, gas-fired power plants provide

short-term operational flexibility1 that allows power systems to integrate more inter-

mittent and variable technologies such as renewable wind turbines and photovoltaic

solar cells. The environmental and operational advantages of gas-fired power plants

have led power systems not only in the United States, but also around the world, to

adopt increasingly larger fractions of natural gas technologies into their capacity mix.

For example, at the end of 2013, the Spanish power system had 102,395 MW of

total installed capacity for electric power generation consisting of 22.3% wind turbines

and 24.8% combined-cycle gas turbines (CCGTs)2. Despite the similar installed ca-

pacities of both technologies, in 2013, wind turbines covered 21.2% of Spain’s electric-

ity demand, while CCGTs only covered 9.5%. [Eléctrica, 2014] Given Spain’s relative

isolation as a power system from other countries (with exception to its connection to

Portugal, whose power system is about one-fifth the size of Spain’s with a similar ca-

pacity mix), the system operator only considers 5% of its total installed wind capacity

as “firm,”3 and the system operator relies on the ramping and cycling capabilities of

gas-fired power plants and storage from pumped hydro turbines to mitigate short-

term imbalances between electricity supply and demand. Although the load factor4

1Gas-fired power plants can physically start up, shut down, and change their power output levels
faster than any other thermal technology. These “cycling” and “ramping” advantages allow gas-fired
power plants to follow unexpected dips and rises in demand and generation, which in turn helps
power systems maintain the physical supply and demand balance required at all time instances to
prevent power failures such as blackouts and brownouts.

2CCGTs are a specific type of gas-fired power plant that combines an open-cycle combustion
turbine with a steam turbine. The combustion turbine resembles the turbine design of a jet engine
(at least to a first approximation) and can turn on and off quickly. The excess heat given off by
the combustion process then heats water until it turns to steam, and this steam powers a separate
turbine. Modern CCGTs can have energy conversion efficiencies exceeding 60%.

3Firm capacity refers to the amount of capacity that can be considered always available; because
wind turbines can only produce electricity when there is wind, wind turbines (and other renewable
technologies) tend to have lower firm capacities as a fraction of their total installed capacities relative
to thermal plants.

4The load factor of a power plant represents how much energy a plant generated as a fraction
of the total energy that it could have generated were it operating at full load for the entire time
period. Technologies with high capital expenses frequently require high load factors to recover their
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for Spain’s CCGT fleet is low, Spain’s CCGT power plants, in combination with its

pumped hydro resources, are critical to ensuring the reliability of the Spanish power

system due its large share of wind generation and lack of import/export capacity with

other countries. [MITEI, 2011a]

However, Spain’s success with wind and gas is not without its own problems:

Spain, Germany, and other power systems with a large penetration of renewables have

experienced financial difficulties maintaining their gas-fired generation power plants

due to low load factors and marginal pricing pressures from renewables. [Economist, 2013]

These international experiences and emergent reliability concerns in New England

suggest that as power systems around the world increasingly depend on gas-fired

generation for a variety of environmental, economic, and safety reasons, the status

quo of natural gas as a reliably available fuel and gas-fired power plants as a reliably

available technology may no longer hold.

The electric power sector’s current level of demand for natural gas has already led

to greater fuel uncertainty and cost due to physical transportation constraints and

geopolitical concerns around the world. In the United States, natural gas is plentiful

due to advances with hydraulic fracturing, but pipeline capacity is not always avail-

able. The difficulty that generation firms face projecting their gas consumption up to

twenty years into the future compared to other types of large natural gas consumers

has reduced long-term commitments to purchase gas and depressed investment sig-

nals for new pipeline capacity. [MITEI, 2013] New England currently experiences

high electricity prices as a direct result of its extreme reliance on natural gas and

the region’s constrained pipeline capacity; for a detailed case study of the market

dynamics in New England, see Appendix A. In European countries, the geopolitics

surrounding natural gas supply can artificially and unexpectedly limit fuel availabil-

ity. And in countries such as Japan with few natural gas reserves, limited pipeline

infrastructure, and few alternative generation technologies due to safety concerns,

additional reliance on natural gas can be exceptionally expensive. [Economist, 2014]

fixed costs; for example, nuclear power plants generally need to operate at load factors in the high
90th percentile to remain economically viable. [Nuttall, 2011]
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Each of these situations highlights potentially problematic physical, economic, and

social interactions between gas and electricity systems that can materially impact one

or both energy system’s reliability.

This dissertation seeks to contribute new knowledge about the emerging interde-

pendencies between coupled gas and electric power systems by examining the optimal

behavior of a central group of agents in both systems: generation firms that own gas-

fired power plants. Unlike other important agents such as monopolistic local distribu-

tion companies who deliver gas to captive consumers at regulated rates, or industrial

users who consume natural gas as a raw input for manufacturing and have relatively

predictable and inelastic demand, generation firms with gas-fired assets operate with

a unique set of uncertainties as simultaneous consumers in gas markets and producers

in electricity markets. Given the physical and financial coupling between gas and elec-

tricity systems, understanding how firms that own gas-fired generation plants should

operate under uncertainty from electricity demand, renewable generation, and gas

transportation availability over a range of timescales can provide insights about po-

tential changes to operations, regulations, or policies in one or both energy systems

that may improve reliability and economic efficiency.

To explore the optimal behavior of firms that own gas-fired generation plants,

this dissertation develops a mixed-integer linear programming (MILP) model of a

generation firm’s post-investment operations decisions over a timescale ranging from

the next day to the next three years. This dissertation also demonstrates a temporal

framework based on a state-based dimensionality reduction technique to separate the

unified MILP problem, which is currently computationally intractable, into a series of

smaller subproblems that can be individually solved and then reintegrated. The re-

sulting decisions approximate solving the unified MILP problem simultaneously such

that relevant short-timescale effects can be considered in long-timescale decisions, and

long-timescale decisions condition the feasible set of future short timescale decisions.

The remainder of Chapter 1 provides an overview of gas and electric power systems

and outlines the key problems that this dissertation examines. Chapter 2 describes

the mathematical models developed to analyze interconnected gas-and-electricity sys-
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tems; Chapter 3 applies the models to a real-sized case study power system inspired

by New England; Chapter 4 explores the application of forward capacity markets to

other basic goods; and Chapter 5 concludes.

1.1 History and context

The next two sections, 1.1.1 and 1.1.2, provide primers for readers that are new to

gas and electricity systems. Readers that have familiarity with these topics can skip

directly to section 1.2, which describes present day challenges for key decision makers.

1.1.1 A brief introduction to electric power systems

The physical network

The primary function of electric power systems is to reliably deliver electricity from

generators to consumers. Physically, an electric power network consists of a high volt-

age transmission network and several medium and low voltage distribution networks.

High-voltage transmission wires connect generators (such as coal or natural-gas fired

power plants) to each other, to large consumers, and to substations. Substations

transform high voltage electricity to lower voltages and then distribute the electric-

ity to small business and residential consumers. Figure 1-1 illustrates the physical

connections between each of the elements in a power system.

Figure 1-1: Electric power grid diagram5
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At high voltage, the transmission grid ties together the activities of all genera-

tors, forming one monolithic machine that rotates at 60 Hz in the United States (50

Hz in other parts of the world), spans thousands of miles, and constantly converts

mechanical energy into electrical energy. The physical operation of this machinery

resembles an intricate, synchronous dance between giants—because we currently can-

not economically store vast amounts of electricity in the same manner that we can

store other commodities such as oil, electric power systems must balance uncertain

demand and supply at every time instant. If there is too little demand, unconsumed

energy stored in the electromagnetic field of transmission wires causes every turbine

that is connected to the grid to rotate faster. The reverse is also true: if there is too

much demand and not enough electrical energy, the demand acts as a force against

the motion of every connected turbine. This physical coupling is one of the reasons

that electric power systems serve as an excellent example of a complex sociotechnical

system. In developed countries, societies view electricity as a right and continue to

demand (by way of laws and public opinions) not only reliable electricity, but also

environmentally friendly and “safe” electricity despite the additional uncertainties and

operating difficulties that technologies with these attributes can introduce into the

daily operation of power systems.

Wholesale electricity markets

Before the 1990s, most consumers purchased electricity from vertically integrated util-

ities that controlled all aspects of the electricity business. These monolithic utilities

operated as local monopolies over a particular geographic region and made decisions

ranging from long-term, multi-decade generation and transmission investments to

short-term, hourly plant operations. Government regulators monitored the prices

that companies could charge and the total revenues that they could earn, and com-

panies passed along all regulator-approved costs to their customers.

In the 1990s, a few governments in South America, Europe, and the United States
5Media source: http://upload.wikimedia.org/wikipedia/commons/4/41/Electricity_grid_simple-

_North_America.svg
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started to shift their electric power systems away from the vertically integrated busi-

ness model and introduced wholesale electricity markets. In power systems that

underwent market liberalization, governments created new system and market opera-

tors tasked with the responsibility of coordinating the activities of individual firms on

the transmission network and clearing wholesale markets. During this liberalization

process, electricity transmission and distribution networks remained regulated mo-

nopolies due to their inherent economies of scale. Advocates for wholesale electricity

markets hoped that these reforms would enable competition between power genera-

tion firms, allow market forces to pick winners and losers, and promote greater price

transparency. Despite these claimed benefits, planning and operating a reliable power

system via wholesale electricity markets has not always proven successful, and many

power systems continue to operate with a vertically integrated structure. The map

in Figure 1-26 highlights regions in the United States that currently operate power

systems with wholesale electricity markets.

Figure 1-2: Independent system operators in the United States

Each of the independent system operators (ISOs) shown in Figure 1-2 coordinates
6Source: http://www.ferc.gov/industries/electric/indus-act/rto/rto-map.asp
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system and market activities between the generators and large-scale consumers that

reside within its geographic region. Large-scale consumers include businesses that

directly connect to the transmission network, as well as utilities that buy electricity

to sell to end-use residential and small business consumers. Each ISO runs auctions for

the electricity commodities/products that it needs. For example, energy (electricity

provided to the customer and measured in megawatt-hours) is one such product.

Ramp up and ramp down capabilities (measured in megawatts/minute), which allow

a system operator to meet variations in demand on the timescale of a few minutes to

an hour, are another such product. To participate in these auctions, generators must

submit bids consisting of quantity and price pairs that they are willing to sell each

electricity product for, as well as other variable and fixed cost information, such as

the cost of operations and maintenance for operating a plant, the cost of starting a

plant, and the cost of shutting down a plant. After collecting all supply offers and

demand bids for each hour of the next day, the ISO ranks plants based on price and

physical network feasibility and then awards bids starting with the least expensive

plant. The last bid that the ISO accepts sets the marginal system price that all

generators receive for their electricity product, and generators with bids that exceed

the highest price receive no money in this particular round of bidding. Consequently,

the marginal system price for an electricity commodity also serves as an investment

signal about the potential value of investing in new technologies and capacities that

can provide that commodity. This feedback loop between consumers and generators,

ideally, results in an economically efficient (welfare-maximizing) procurement of all

of the electricity commodities that the system operator defines.

As with other markets, electricity markets operate on the economic principle that

perfect competition should produce efficient outcomes. With proper incentives and

information about electricity prices, load trends, generation technologies, and other

pertinent aspects of the power system, power generation firms should be able to com-

pete with each other by making prudent investment and operation decisions that

maximize not only their own individual profits, but also the overall welfare of the

power system. However, in reality, many market failures exist that can skew these
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outcomes. For example, as most power systems only have a few generation com-

panies, the oligopolistic nature of this group may allow price fixing, even if every

company “competes” to sell electricity. Electricity price caps set by system operators

provide another example of a potential market failure. Although price caps pre-

vent consumers from paying high prices, they also prevent investors from receiving

correct marginal pricing information and accurately assessing potential investment

opportunities. Because of these types of market failures, over the last two decades

in power systems, “liberalization” and “deregulation” efforts to shift away from ver-

tically integrated business models have actually led to a need for more and better

regulation—not less.

Regulatory challenges

During the market liberalization process that took place in the late 1990s and early

2000s, governments implicitly delegated the long- and short-term responsibility of

supplying electricity collectively to individual firms (agents) operating in their own

best interests under market rules. Regulators suddenly faced a new set of questions.

For example, in a properly functioning, welfare-maximizing market, what electric-

ity commodities should agents trade? What is the hypothetical market optimum,

and what are the corresponding “correct” individual investment and operation de-

cisions? How should decision makers address market power concerns and market

failures that might create deviations from the hypothetical optimum? When decision

makers introduced wholesale electricity markets in an attempt to improve technology

adoption, innovation, competition, transparency, and efficiency, they made electric

power systems wholly dependent on the rational behavior of individual firms to guar-

antee reliable and secure electricity supplies and introduced an entirely new set of

regulatory questions; for a comprehensive review of regulation for the electric power

sector, see [Pérez-Arriaga, 2013].

Just as liberalization introduced a new set of questions for the electric power

sector, the recent discovery of abundant natural gas supplies and increasing world-

wide dependence on natural gas and renewable technologies, for reasons that are not
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necessarily easy to capture with markets, are creating a new set of challenges for

the operation and regulation of electric power systems. For example, how should

individual firms manage operational uncertainty? Should market operators modify

their rules to allow firms to express uncertainty—and if so, how? How should policy

makers design technology-neutral laws and incentives to promote reliability? How

should regulators measure and mitigate the substantial market power that gas-fired

power plants have in systems that rely heavily on gas-fired generation and have lim-

ited pipeline capacity? These types of questions represent the emerging regulatory,

reliability, and investment concerns that public and private stakeholders in gas and

electric power systems will increasingly have to tackle as coupled gas and electric

power systems continue to evolve.

1.1.2 A brief introduction to the natural gas system

Physical natural gas network

Much like electricity networks, the primary function of gas networks is to transport

natural gas—primarily methane—from production sites to end consumers. Produc-

tion firms use a variety of techniques to extract gas from the ground, but the process

broadly entails drilling into the ground to expose a deposit of gas and then installing

a wellhead to capture and control the newly released gas. Traditional deposits ap-

pear as large “bubbles” of methane surrounded by earth that can be reached by

drilling vertically into the ground. Recently, however, horizontal drilling techniques

and hydraulic fracturing (colloquially, “fracking”) have enabled substantial recovery

of “unconventional” natural gas from shale rock formations that trap many small

pockets of methane in the ground; see Figure 1-37 for an illustration of the different

types of gas deposits. For a detailed review of natural gas supply and production, see

[MITEI, 2011b].
7Source: http://www.eia.gov/todayinenergy/detail.cfm?id=110
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Figure 1-3: Natural gas geology

Natural gas can be stored in pipelines by compression (the amount of gas stored in

a pipeline at any given time is known as “linepack”), and natural gas moves through

pipelines based on pressure differences between two points. Compressor stations

distributed throughout the network can repressurize pipelines as necessary, and the

reliable operation of pipelines requires a minimum threshold pressure throughout

the system. Notably, as a distinction from power systems, natural gas systems can

manage moderate demand and supply imbalances at short timescales on the order of

a few hours because pipelines inherently store natural gas. Figure 1-48 illustrates the

major gas production sites and transportation corridors (composed of one or more

pipelines) for natural gas in the United States.
8Source: http://www.eia.gov/pub/oil_gas/natural_gas/

analysis_publications/ngpipeline/TransportationCorridors.html
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Figure 1-4: Map of natural gas basin and transportation corridors in the United
States, 2008

Like electricity transmission networks, gas pipelines have finite capacity. How-

ever, securing rights to use pipeline capacity differs substantially from allocating

scarce transmission capacity for power systems in the United States. Whereas each

independent system operator in a power system considers physical constraints when

clearing its markets and making scheduling/dispatch decisions, the gas system does

not have an equivalent centralized system operator. Gas “shippers”—a term that de-

scribes any firm that needs to ship or receive gas—must acquire capacity rights along

the entire transport path from the point of injection to the point of withdrawal, and

most gas transactions occur as bilateral arrangements between independent firms.

Large consumers, such as industrial users and power generation companies, can di-

rectly connect to high-pressure pipelines and make their own shipping arrangements.

Small businesses and residential consumers, as in the electric power system, typi-

cally receive their gas through an intermediate utility company that secures supplies

of natural gas on their behalf. Pipeline operators ensure that nominations9 to use

pipeline capacity are physically feasible and make adjustments as necessary based

on who owns and has priority to pipeline capacity, but they do not operate or clear
9This is an industry term of art that refers to the physical flow schedule that a shipper proposes

to a pipeline operator.
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centralized markets in the same manner that ISOs do for electricity.

The differences between the centralized nature of electricity markets and the bi-

lateral nature of gas markets in the United States has its roots in the natural gas

sector’s regulatory evolution.

Regulatory history

The history of the United States’ natural gas sector and its regulation provides a

useful context for understanding how the natural gas system works and the broad

challenges that coupled gas-electricity systems face, as well as for identifying key de-

cision makers. The existing literature on natural gas regulation in the United States

includes comprehensive papers by authors such as [Juris, 1998], who describes the

current state of gas trading in the United States; [Makholm, 2006], who examines

the changing environment for pipeline investments and long-term contracts from the

early 1900s onward, paying special attention to the asset specificities of the busi-

ness that made pipeline investments a unique challenge for the gas industry; and

[Petrash, 2005], who analyzes the decline of long-term capacity contracts and the

growing preference for short term commitments after the start of deregulation and

liberalization in the 1980s.

Regulation of the natural gas industry in the United States has dramatically

changed since the 1930s, when the industry was vertically integrated, to today’s

competitive trading markets and regulated pipeline monopolies. Before the early

1900s, the gas industry operated as a collection of vertically integrated utilities. As

noted by both [Makholm, 2006] and [Petrash, 2005], vertical integration made sense

absent further regulation because this organization structure eliminated the financial

risk that producers and pipeline operators faced due to the asset-specificity of their

gas fields and pipelines. Because of the limited number of consumers at the end of a

pipeline, downstream consumers could “hold up” the upstream agents and put them at

financial risk once these agents constructed a pipeline and started producing gas. To

mitigate the risk of “hold up” in the earliest days of the natural gas industry, companies

vertically integrated the production, transportation, and distribution functions of
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their business.

The discovery of large deposits of gas in the early 1900s led both oil companies and

natural gas utilities to begin building long, interstate pipelines that could transport

gas to local markets across the country. After Congress passed the Natural Gas Act

(NGA) in 1938 to regulate interstate pipelines, long-term bilateral sales contracts

emerged as a viable business structure. These bilateral contracts between pipeline

operators and producers, and between pipeline operators and distributors, specified

“bundled” sales of both gas commodity and transport capacity. Section 7 of the

NGA facilitated the development of these long-term contracts by granting the federal

regulator the authority to approve new pipeline construction projects if operators

could demonstrate long-term demand for new capacity. At the time, the Federal

Power Commission (FPC) required proof of long-term demand for capacity from

both producers and consumers, leading producers and distribution companies to sign

long-term purchase and sales contracts with pipeline operators. The time duration

of these long-term supply contracts—typically twenty years—mitigated the financial

risks of “hold-up” and became the dominant financing model for the gas industry until

liberalization efforts began in the late 1970s. [Petrash, 2005]

Initially, the NGA only regulated the price of bundled sales between pipeline op-

erators and distributors. In the 1950s, however, after concerns about the market

power of producers, the FPC gained additional authority to also regulate the well-

head prices that producers could charge for their gas, and pipeline operators became

merchants with regulated prices at both ends of their pipelines. From the 1950s to the

1970s, perpetually low wellhead prices created a difficult cost recovery environment

for producers, resulting in gas shortages in the early 1970s. [Petrash, 2005] Although

different agents operated the production, transportation, and distribution segments of

the natural gas industry from the 1930s to 1978, the industry was “de facto vertically

integrated” because of the nature and duration of the long-term bilateral contracts,

as well as the regulated prices that agents were allowed to transact at. [Juris, 1998]

In 1978, to address both lagging wellhead prices and gas shortages, Congress

passed the Natural Gas Policy Act and gave the Federal Energy Regulatory Commis-

30



sion (FERC; the successor to the FPC) the authority to regulate both interstate and

intrastate gas prices. FERC began liberalization efforts to introduce more competi-

tion into the natural gas industry. To date, the most important rules include FERC

Orders 436, 500, and 636. FERC Order 436 opened access to interstate pipelines, al-

lowing pipeline companies to unbundle gas commodity from transportation sales and

allowing consumers and producers to directly buy and sell from each other while pay-

ing the pipeline operator a regulated fee for access. FERC Order 500 allowed pipeline

operators that unbundled to collect tariffs that would offset long-term purchase con-

tracts that they had previously signed with producers. FERC Order 636 required

pipeline operators to become a “pipelines-only” company by releasing all companies

that had previously signed long-term agreements with pipeline operators from their

contractual obligations, forcing pipeline operators to divest all of their existing supply

contracts, and setting up pipeline operators as regulated monopolies that would earn

a fixed rate of return based on transportation volumes. The combination of FERC

Orders 436, 500, and 636 created the modern gas system in the United States, which

operates with many functional parallels to the electric power system sans a central

coordinating agent. [Petrash, 2005]

Current natural gas market in the United States

Today, natural gas trading in the United States resembles to a first approximation the

idealized economic description of a commodity: each unit is homogenous, and the cost

of natural gas reflects the commodity cost plus the cost of transportation. Pipeline

operators hold the responsibility of making investments in new pipeline infrastruc-

ture subject to FERC approval, and these operators auction off capacity rights of

varying time durations and guarantees of availability to shippers (a collective term

that encompasses both producers and consumers). The price of natural gas at Henry

Hub, a physical location in the United States where many pipelines meet (see Figure

1-5 for a map of some of the natural gas market centers in the United States10), is
10Source: http://www.eia.gov/pub/oil_gas/natural_gas/analysis_publications/

ngpipeline/MarketCenterHubsMap.html
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generally considered the commodity cost of natural gas because capacity rarely (if

ever) is scarce.

Figure 1-5: Map of natural gas market centers in the United States, 2009

The price differential between Henry Hub and other hubs around the country, such

as New England’s Algonquin, reflects the transportation cost between these two hubs.

The entire country shares a single gas trading day with multiple intraday renomination

periods to balance supply and demand.11 However, pipeline capacity transactions

remain predominantly bilateral; due to the lack of a central system operator that

coordinates both market and network activities, pipeline capacity may be underused

in the United States given the complexity of needing to secure capacity rights at

every physical point between the source and the destination. Third party marketers

have emerged to remove some of the transactional complexity and inefficiency in

matching supply and demand, but they do not occupy a role (nor have any authority)

equivalent to the system operator in electric power systems. [Ruff, 2012] To ensure

physical feasibility of flows, shippers must seek permission to use pipeline capacity
11The typical gas trading day only featured one or two intraday renomination periods prior to

electricity-gas reliability concerns; today, in the United States, the gas and electricity industries are
working together to increase the number of renomination periods.
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that they either already own or acquired in a secondary market by submitting daily

usage requests—capacity nominations—to pipeline operators.

Differences in the European Union market design

The European natural gas system consists of an entry/exit design where the financial

trading of natural gas tends to ignore network and temporal constraints within a

trading zone—typically, a nation—and requires balancing at the boundaries of zones.

Because the entry/exit design creates a “virtual hub” through which all gas produc-

ers ship gas to and all gas consumers receive gas from within a trading zone, the

market design lacks a realistic representation of the underlying gas network’s pipeline

structure. Consequently, costs for network usage within a trading zone tend to be so-

cialized across all users because differences between supply and demand are balanced

at the boundaries of the trading zone, and costs for gas that flows through multiple

zones can result in a “pancake”12 of access fees that do not necessarily reflect physi-

cal pipeline conditions from entry to exit. [Vazquez et al., 2012] Whereas gas costs in

the United States tend to directly reflect underlying temporal and geographic pipeline

scarcities in the same way that nodal prices in electricity markets reflect transmission

constraints, the European design foregoes a physically-true representation in exchange

for greater trading liquidity and socialized network access.

The European system promotes liquidity by removing substantial temporal and

geographic network constraints within a trading zone so that injections and with-

drawals that actually occur at different times and locations appear as if they occurred

simultaneously. For example, if a producer injects gas at the beginning of the day in

one physical location, and a consumer withdraws gas at a different time on the same

day and at another physical location within the same trading zone (e.g., the same

country), the European system financially clears this exchange as one simultaneous

transaction. Abstracting the financial trading in this manner simplifies the transac-
12“Pancaking” of tariffs refers to the effect of stacking multiple access fees as the flow of a commod-

ity crosses multiple geographic regions. In most cases, because the declaration of geographic regions
is arbitrary and not based on physical network constraints, the tariff pancake does not properly
allocate costs based on actual imposed costs on the network and benefits.
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tion for producers and consumers: a unit of gas traded within one trading period in

the same geographic zone has the same cost and value as any other unit of gas, even

if in reality the time and location of the injection and withdrawal differ.

However, to accommodate the physical flows for this design, European network

operators must necessarily withhold pipeline capacity from the market to flexibly

respond to actual daily flows and imbalances that it cannot predict ahead of time.

Europe’s entry/exit design promotes pipeline investment within a virtual hub to sup-

port the financial abstraction of a universal entry/exit point, but does not necessarily

promote cross-border investments. [Vazquez et al., 2012] Investment in European gas

pipelines occurs at the suggestion of transmission system operators (TSOs) in con-

junction with approval from the national regulatory authority (NRA) in each member

state, and all agents in the system pay for the cost of investment via additions to each

system’s regulated asset base. [Barquín, 2012]

Despite the vastly different market designs for the European Union and the United

States gas system, from the perspective of reliability concerns resulting from increas-

ingly coupled gas and electricity systems, both regions share the same broad set of

emerging challenges due to their shared physical reliance on natural gas, their shared

uncertainty about fuel availability, and the similar roles that gas-fired power plants

fulfill for electric power systems in each region.

1.2 Contemporary challenges for decision makers

1.2.1 Key decision makers

In the United States, the evolution of the electricity and natural gas sectors has cre-

ated several key decision makers that wield influence over the combined gas-electricity

system. This group includes electric power system operators, who clear markets and

coordinate individual firm activities to ensure feasible network flows; natural gas

pipeline operators who build and maintain pipeline infrastructure; wholesale ship-

pers (a term that lumps together commodity producers, large consumers such as
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utilities/local distribution companies (LDCs) and electricity generation firms, and

third-party marketers that aggregate demand and supply) who trade natural gas com-

modity and transportation capacity amongst each other; wholesale electricity agents,

such as generation firms and utilities/LDCs who trade electricity amongst each other;

regulators such as FERC and state public utilities commissions (PUCs) who monitor

both sectors, and policymakers at the state and federal level who craft legislation.

These key decision makers, from individual firms to pipeline operators and regu-

lators/policy makers, also exist in similar capacities in the European Union. As of

2009, the European Union and its member states started to implement the “Third

Energy Package,” an energy liberalization policy to create a single, unified market

across member states for electricity and gas. In addition to creating a large trading

region across the European Union, this liberalization policy unbundles gas commod-

ity and pipeline ownership and institutionalizes cooperation amongst member state

regulators via a mandate for each country to have a single NRA and the creation of

the Agency for the Cooperation of Energy Regulators (ACER) to facilitate cooper-

ation between NRAs. Two new institutions, the European Network of Transmission

System Operators for Gas (ENTSOG) and the European Network of Transmission

System Operators for Electricity (ENTSOE), play facilitating roles for each country’s

gas and electricity system operators.

Comparing the European Union to the United States, loosely, the European mem-

ber states map onto individual states in the United States in terms of the gas system

and onto the individual system operators (ISOs) for the electricity system. The NRAs

map to PUCs, and ACER maps to FERC. Although the United States lacks formal

entities similar to ENTSOE and ENTSOG, adjacent electricity system operators co-

operate frequently on an informal basis, and FERC’s Order 1000 gives electric power

system operators the beginnings of regional planning authority across electricity sys-

tems. In the United States and the European Union, the physical similarities between

each region’s gas and electricity systems and the existence of wholesale electricity and

gas markets that economically guide the activities of individual firms—despite reg-

ulatory organization and market design differences—has created a common set of
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reliability and security of supply challenges for all decision makers.

1.2.2 Common concerns

In 2012 and 2013, the New England States Committee on Electricity (NESCOE),

an intrastate organization consisting of governor-appointed representatives from each

New England state, discussed a variety of policy and market changes to New Eng-

land’s gas and electricity system to address the region’s gas-electricity concerns. Their

discussions summarize well the concrete challenges that coupled gas and electricity

systems currently face. From market timing changes to new policies aimed at improv-

ing reliability, NESCOE’s ideas include “moving the [electricity] day ahead market

forward” to minimize uncertainty between gas and electricity needs (see Figure 1-6

for gas and electricity market timing in New England as of 2013); “allowing generators

to reoffer hourly during the intraday period” to accommodate firms have electricity

commitments but could not acquire the necessary fuel to meet them; allowing genera-

tion firms to “price risk into their offers” as an additional cost component in their bids

to reflect the uncertainty of fuel availability; and creating “new ancillary services mar-

kets such as ones for longer term reserve products.” NESCOE also discussed several

capacity payment and regulatory alternatives to encourage fuel diversity and guar-

antee fuel availability, including “paying certain dual fuel capable units to hold/burn

oil and maintain oil-burning capabilities;” “implementing rule changes that encour-

age better unit availability;” “paying supplemental capacity payments for generators

that commit to firm gas supply;” “increasing payments to existing oil fired generators

so that they don’t retire;” “enhancing availability incentives to encourage gas-fired

generators to contract for long-term pipeline capacity and/or storage;” “instituting

rules that all gas fired generators must contract for long-term firm pipeline capacity;”

“changing ISO-NE tariffs so that gas pipeline investment for generation purposes is

socialized to all load;” and “establishing electricity reliability standards that would

force generators to contract for new pipeline capacity.” [Hunt et al., 2014] NESCOE’s

discussions and recommendations reveal that for stakeholders on the electricity side,

the reduction of fuel diversity in the capacity mix combined with greater long- and
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short-term uncertainty about natural gas availability pose the greatest challenges for

coupled gas-electricity systems.
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Figure 1-6: Gas and electricity market timing, New England, 2013

NESCOE’s discussions mirror similar concerns expressed by stakeholders in other

electric power and gas systems. For example, see [Tabors et al., 2012] for an overview

about market timing challenges and [FERC, 2012] for symposium discussions between

public and private stakeholders in other gas-electricity systems in the United States.

Given the similar roles that gas-fired power plants fulfill in power systems around the

United States and the rest of the world, the emerging reliability problems described

in these sources and above by NESCOE likely also affect other coupled gas-electricity

systems that depend on natural gas for electricity generation, cannot easily/quickly

switch away if faced with a scarcity of natural gas, and cannot guarantee fuel avail-

ability.

1.2.3 The need for new decision support models

NESCOE’s discussions about potential market and policy changes to reduce the prob-

ability of gas and electricity supply failures highlight the importance for decision mak-

ers to better understand the optimal decisions of generation firms. Firms that own

gas-fired generation plants today in wholesale electricity markets operate under sub-

stantial uncertainty due to difficulty with forecasting pipeline scarcities and residual
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electricity demands, especially in power systems with large renewable penetrations.

Prior to the large penetration of intermittent renewables and innovations in hy-

draulic fracturing techniques, electric power systems consumed less natural gas be-

cause other generation technologies provided sufficient operational flexibility and be-

cause gas-fired power plants, as a technology, were relatively expensive compared to

other thermal technologies such as coal and nuclear. The level of pipeline investment

in most regions sufficiently met the gas transportation needs of power systems. At the

same time, electricity demand before renewables tended to exhibit predictable daily,

weekly, and seasonal patterns that power plant owners and system operators could

plan for. In this context, decision makers have historically placed less emphasis on the

specifics of gas-fired power plants relative to other thermal power plants13, and the

evolution of power system models and the details that they incorporate, reviewed be-

low, have followed accordingly. The emerging dependence between gas and electricity

systems has created a need for a new set of tools that can represent gas-fired power

plants with greater nuance over longer timescales to support present day operations

decisions and policy analyses.

In existing electricity optimization models ranging from long-term capacity expan-

sion to medium-term hydrothermal coordination and short-term unit commitment/e-

conomic dispatch, a typical representation of a thermal power plant consists of a unit

heat rate (or a piecewise linear heat rate curve) that describes the amount of fuel

required to generate a unit of electricity, an additional unit cost on top of each unit of

energy generated to account for operations and maintenance, fixed costs for starting

and stopping a power plant, maximum rates at which a power plant can modify its

output level per unit time, and minimum lengths of time that a power plant must

stay on for after starting and off for after stopping. For a representative sample of

foundational and current unit commitment papers that use this representation, see

[Padhy, 2004]. This generic representation of thermal plants in optimization models

treats a gas-fired power plant in the exact same manner as a nuclear plant or a coal
13For example, the annual regional system planning reports published by ISO-NE illustrate a

progressive trend, starting in 2013, about the region’s gas and electricity difficulties; prior to 2013,
gas did not appear as a potential reliability problem.
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plant; in particular, this generic representation typically assumes that fuel is avail-

able with complete certainty, and the operations and maintenance of gas-fired power

plants do not take into consideration the influence of long-term service agreements.

Optimization models are not the only types of electricity models that tend to

group gas-fired power plants together with their thermal counterparts. Probabilis-

tic reliability models also group gas-fired power plants together with other thermal

plants, and these probabilistic models tend to treat plant failures from the perspective

of mechanical forced outages. For example, see [Baleriaux et al., 1967], [Booth, 1972],

and [Finger, 1975] for foundational papers in probabilistic production cost analyses

of forced plant outages. In the 1990s, [Conejo, 1992] and [Maceira et al., 1996] con-

tributed important extensions that allowed probabilistic production cost algorithms

to more properly represent limited energy plants and storage technologies. These ex-

tensions could be applied to analyze the reliability characteristics of gas-fired power

plants with limited fuel transportation by representing gas-fired power plant as a

limited energy plant with inflows and outflows, but no storage. However, such an

analysis would require assigning functional probability distributions to fuel availabil-

ities, and unlike their optimization counterparts, probabilistic production models do

not represent the power system with enough detail to make day-to-day operational

decisions.

Of the authors that have studied the specific role of gas-fired power plants in

power systems and the impacts of their strategic decisions on day-to-day operations,

the substantial majority of existing work focuses on representing the constraints and

decisions associated with the physical pipeline that delivers natural gas to generators.

The earliest of these works focused on utilities that must purchase gas for not electric-

ity generation, but for consumer end use. For example, on the problem of selecting

long-term fuel contracts under demand uncertainty,

• [Guldmann, 1983] uses a chance-constrained cost minimization model to ex-

plore tradeoffs of a take-or-pay contract in which the utility must also make

storage and interruptibility decisions, taking into consideration the technologi-

cal constraints of gas storage flows. (In a chance-constrained optimization, the
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right-hand side constraint values represent probabilities.)

• [Fancher et al., 1986] demonstrates the implications of fuel burn uncertainty on

take-and-pay contracts. The author describes coal consumption, but the paper

can also be applied to gas.

• [Avery et al., 1992] discusses optimal purchase, storage, and transmission deci-

sions for a utility that is obligated to serve small residential consumers and that

serves larger consumers on an interruptible basis.

• [Guldmann and Wang, 1999] proposes a MILP to solve the LDC’s problem of

optimally choosing supply contracts, taking into consideration contractual min-

imum take provisions and gas curtailment constraints.

• [Aouam et al., 2010] defines a combination strategy between a dynamic model

that evaluates mean risk under stochastic demand and prices and a naive model

that equally allocates procurement between storage, futures, and options. The

authors create a convex combination of both strategies to minimize the mean

and variance of procurement costs.

• [Koberstein et al., 2011] proposes a stochastic LP model that optimizes gas sup-

ply contracts, taking into consideration demand uncertainty, storage, and trans-

portation.

Generation firms, of course, operate under a different business model than local

distribution companies. LDCs, due to their regulated monopoly structure, are able

to enter into long-term fuel contracts confident that they will earn enough from their

captive consumers to repay their long-term commitments for fuel. Generation firms

in wholesale electricity markets do not operate with the same guarantee, and con-

sequently, face two broad problems related to gas availability and operating in gas

markets. The first problem, frequently referred to as a “fuel-constrained unit com-

mitment,” broadly asks how generation firms should optimally operate their power

plants given a finite amount of available fuel. On this topic, authors have written the

following representative papers:
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• [Meeteren, 1984] presents an iterative LP unit commitment model that explic-

itly allocates limited fuel supplies to generation units in the system. The model

generates fuel allocation solutions and unit commitment solutions separately

and feeds the fuel allocation results as an input for the unit commitment prob-

lem.

• [Cohen and Wan, 1987] presents an iterative Lagrangian decomposition method

for solving the fuel-constrained unit commitment problem where the fuel con-

straints are included in the primary objective function (i.e., the fuel allocation

is not solved separately and then passed in as an input).

• [Vemuri and Lemonidis, 1992] presents an iterative, Lagrangean-relaxation-based

approach for solving the fuel-constrained unit commitment problem. Vemuri’s

model, like Meeteran’s, separates the fuel allocation and unit commitment prob-

lem into two separate optimizations.

• [Thompson, 1995] presents a lattice-based contingent claim model to evaluate

take-or-pay and take-or-pay-with-makeup contracts.

• [Wong and Wong, 1996] presents a combined genetic algorithm/simulated an-

nealing approach to solve the fuel-constrained unit commitment problem.

In addition to operating their generation assets under fuel constraints, generation

firms also face a broad problem of deciding how to optimally participate as a con-

sumer in one commodity market and a producer in another commodity market. The

question of how much long-term gas transportation capacity to commit to is sim-

ply one example of a challenge that these firms must tackle; another example is the

question of how much capacity to commit in a forward capacity market for electricity

under fuel uncertainty. On the topic of making simultaneous decisions in both gas

and electricity systems, authors have written the following representative works:

• [Lee, 1989] proposes a unit commitment model for Oklahoma Gas & Electric

that takes into consideration significant fuel constraints from take-or-pay con-

tracts and physical delivery constraints from the gas network.
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• [Lee, 1991] proposes a model to optimize coordination between multiple con-

strained fuels for an electric utility (the contracts look like take-or-pay con-

tracts, but there is no explicit underlift variable. The optimization requires fuel

consumption between the min and max range).

• [Butler and Dyer, 1999] examines the value of three types of long-term fuel con-

tracts to electricity generators;

• [Grossman et al., 2000] analyzes the value of long-term take-or-pay contracts

for organizations that require fuel to produce another good for sale.

• [Chen and Baldick, 2007] presents a utility-maximization model for electric util-

ities that also own natural gas fired power plants and must make gas supply de-

cisions in addition to electricity generation decisions. Instead of only minimizing

total cost on the generation side, Chen’s mixed integer nonlinear programming

model incorporates risk preferences for the electric utility with respect to how

its total costs can change given its decisions in both gas and electricity markets.

• [Street et al., 2008] propose a stochastic model to price flexible gas supply con-

tracts for power producers, taking into consideration electricity demand uncer-

tainty and fuel unavailability uncertainty.

• [Vaitheeswaran and Balasubramanian, 2010] develops a risk-constrained expected

fuel cost minimization model for an natural gas combined-cycle power producer,

considering stochastic demand and gas prices.

• [Vaitheeswaran and Balasubramanian, 2012] develops a risk-constrained model

(using the conditional value at risk metric) to solve the fuel allocation problem

(how to allocate supply between various possible contracts) for the owner of a

portfolio of natural gas plants.

• [Dueñas et al., 2012] describes a medium-term gas/electricity optimization model

from the perspective of the generation company in which the generation com-

pany must make gas procurement and electricity generation decisions. The
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model treats all price parameters as exogenous inputs, and gas contracts are

treated as opportunity costs of purchasing gas at the contract price versus the

spot price, as well as the opportunity cost of consuming or selling gas at the

spot price.

Thus far, the substantial body of work on gas-electricity systems has focused on

analyzing fuel constraints in the short term, with a handful of recent works focused

on long-term strategic fuel decisions for generation firms. Regarding non-fuel-related

problems that are specific to gas-fired power plants, [Troy et al., 2012] describes the

impact of dynamic operations and maintenance costs on the unit commitment prob-

lem, and [Rodilla et al., 2014] presents an extension to the classic unit commitment

model that incorporates the impact of long-term service agreements on a power sys-

tem’s short-term optimal dispatch schedule. Despite the material impact that specific

features of gas-fired power plants can make on a power system’s optimal operation,

the survey of the existing literature on gas and electricity models shows that works

such as [Troy et al., 2012] and [Rodilla et al., 2014] tend to be relatively rare. Several

reasonable explanations exist for why this is the case. For example, in the past, gas-

fired power plants did not play the large role in power systems that they do today and

approximating gas-fired power plants as generic thermal plants may have sufficiently

represented reality while simultaneously removing unnecessary computational effort.

Alternatively, some gas-specific features, such as long-term service agreements, were

not the norm a decade or two ago; [Sundheim, 2001] suggests as much. Consequently,

these features did not appear in past model formulations because they, in fact, did

not exist at the time. However, as gas and electricity systems become more interde-

pendent and the firms that own gas-fired power plants exert more influence on both

systems, the specificities of gas-fired power plants will rise in importance. To under-

stand and act on emerging problems, decision makers today need a new set of tools

that can examine the optimal behavior of firms that own gas-fired generation plants

in gas and electricity markets over a range of timescales.
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1.3 Research statement

To better understand how firms should make decisions in coupled gas and electricity

systems, this dissertation develops a MILP model that explores the optimal behavior

of firms that own gas-fired power plants. Based on the existing body of literature

on the operation of gas-fired power plants, as well as current private and public dis-

cussions about notable attributes and decisions that impact today’s power systems

(e.g., [FERC, 2012, MITEI, 2011a, Tabors et al., 2012, Barquín, 2012, MITEI, 2013,

Hunt et al., 2014]), this dissertation focuses on how firms should make their fuel,

maintenance, and generation decisions under uncertainty from fuel availability and

electricity demand under the assumption of a perfectly competitive market. The fol-

lowing section describes each of the firm’s decisions that this dissertation will analyze,

explains the dimensionality challenges that arise with modeling, and concludes with

real-world hypotheses to explore.

1.3.1 Strategic decisions

Long-term fuel contracts

Pipeline operators have a fixed amount of pipeline capacity that they own and can

auction to producers, local distribution companies, generators, and industrial users.

To allocate this scarce capacity, pipeline operators offer different tiers of service that

correspond to different tiers of interruptibility. Large, wholesale gas consumers must

purchase gas contracts to secure transport capacity and commodity. Although gas

contracts come in a variety of options, the most common classification of gas contracts

is by level of transportation service and time duration. Transportation service levels

range from completely firm (guaranteed capacity on the pipeline) to interruptible (no

guarantee of capacity):

“A firm transportation contract allows the shipper to reserve a portion of

the pipeline’s total delivery capacity for his own use. The shipper pays a

monthly demand charge based on the maximum daily delivery quantity
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contracted for, and a transportation charge for each unit of gas delivered.

Additional pipeline transportation service is available on an interruptible

basis. For interruptible transportation services the shipper generally pays

only for the gas transported.” [Avery et al., 1992]

As an example of the different tiers of transportation service that pipeline operators

offer, pipeline operator Transco notes that its interruptible contracts are subject to

curtailment and interruption due to operating conditions and insufficient pipeline

capacity. Interruptible contracts that flow to a downstream pooling point have higher

priority than other interruptible contracts, but a lower priority than gas moving on a

firm transportation contract. Transco’s consumers on interruptible contracts only pay

for the volume of gas that they ship (as compared to shippers with firm contracts, who

must pay for both the firm contract and the volume of gas shipped). [Transco, 2012] In

addition to varying levels of service corresponding to varying guarantees of pipeline

capacity availability, gas contracts can be broadly categorized by time duration as

follows [Guldmann, 1983]:

• “Short-term contracts, where fixed daily volume deliveries, at fixed

price, are arranged for one month or less; they allow for short-term

unbalances in supply and/or demand to be corrected; such contracts

make up what is called the spot market.”

• “Mid-term contracts, for periods of up to 18 months, with variable

prices indexed to some future or spot price, and with fixed reservation

and service fees, irrespective of volumes taken.”

• “Long-term contracts, for periods of 18 months to 15-20 years, with

reservation fees and minimum take provisions; prices are indexed,

and contracts often include renegotiating and market-out clauses.”

The generation firm’s long-term fuel contracting problem requires choosing the levels

of transportation service to commit to, the time durations for each level of service,

and the price for each contract. For a long-term firm-transportation contract, the
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individual firm trades off paying for guaranteed access to a specific amount of pipeline

capacity that it may or may not need in the future with the risk of not being able to

acquire capacity that it does need at some later point in time.

Long-term service agreements

When a generation firm purchases a new gas-fired power plant, typically it also pur-

chases a matching long-term service agreement (LTSA) from the manufacturer. The

LTSA covers maintenance that the power plant needs to continue operating nor-

mally; concretely, services may include semiannual plant inspections of the power

plant’s steam generators and turbines, mechanical repairs and parts replacements,

and guarantees of financial compensation for the owner if the manufacturer is un-

able to restore the power plant to working condition within some prearranged time

window. [Boyce, 2012, Thompson and Yost, 2014] LTSAs originated as a method for

manufacturers and plant owners to share risk. Owners pay manufacturers a pre-

mium to guarantee the operation of their power plant and place a maximum cap

on maintenance costs. Manufacturers, conversely, use their knowledge about their

own equipment to reasonably estimate the total cost of maintenance assuming that

firms operate their plants in an expected fashion and earn the difference between the

owner’s premium and the actual cost of maintenance. [Sundheim, 2001]

To ensure that generation firms operate their power plants “in an expected fash-

ion,” as part of their LTSAs, manufacturers define maintenance interval functions

(MIFs) that dictate when an LTSA ends. A typical MIF contains the maximum

number of firing hours, starts, and a function of the two that a plant can accumulate

over the duration of its LTSA. As an example, Figure 1-7 represents three possible

MIFs corresponding to three hypothetical LTSAs. Curve C represents the most flex-

ible MIF because it allows all combinations of firing hours and starts that curves A

and B represent, whereas curve A represents the most restrictive LTSA.
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Figure 1-7: Stylized representation of different maintenance interval functions for
long-term service agreements

The premium that an owner pays a manufacturer for maintenance under an LTSA

covers the plant until it exceeds its MIF. Therefore, to make an optimal contract

choice during the initial negotiation process, the power plant owner must decide how

he intends to operate the plant over the duration of the LTSA. For example, consider

a service agreement that allows a plant to accumulate a large number of firing hours,

but a small number of starts. Under this service agreement, firms that operate their

plants as peakers (i.e., with many starts and few firing hours) will reach the end of

their LTSA far sooner than if they operated their plants as baseload units (i.e., with

few starts and many firing hours). For more details on the specific attributes that

manufacturers and power plant owners must agree upon when negotiating LTSAs,

see [Sundheim, 2001], [Thompson and Yost, 2014], and [Boyce, 2012]. To make a

reasonable contract choice, the power plant owner must somehow evaluate numerous

future electricity and gas scenarios for the next three to five years (as an order-of-

magnitude estimate, a typical LTSA might allow a gas-fired power plant to accumulate

25,000 firing hours and 200 starts).

LTSAs can present challenging economic issues for firms operating in power sys-

tems with unexpected technological changes. In power systems that suddenly intro-
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duce a large penetration of renewables, firms with one set of gas-fired power plants

and LTSAs may have to operate their plants in a different regime without a corre-

sponding change to their LTSA portfolio. In this situation, the old LTSA portfolio

in combination with the new operating regime will force a firm to accumulate higher

operations and maintenance costs that may eventually impact the economic viability

of the firm’s gas-fired power plants.

Traditional unit commitment formulations tend to treat operations and mainte-

nance costs abstractly by adding fixed costs to a plant’s unit generation cost. How-

ever, the choice of an LTSA clearly can influence a plant owner’s other scheduling,

fuel purchase, and generation decisions. In [Rodilla et al., 2014], the authors explic-

itly model LTSAs in a basic unit commitment problem to compare a system’s cost-

minimizing dispatch schedule under both operations and maintenance representations

and demonstrate that LTSAs can drastically alter a system’s optimal schedule, par-

ticularly in power systems that require their gas fleet to cycle frequently. As electric

power systems increasingly integrate renewables, their need for gas-fired power plants

to operate with lower load factors and cycle more frequently can lead to substantial

and unexpected operations and maintenance costs as a result of existing LTSAs that

current unit commitment formulations do not represent.

Firms may be able to operate their power plants more efficiently if they explicitly

consider the structure of their LTSAs, and they may be able to renegotiate existing

LTSAs given particular expectations about electricity demand and fuel availability in

their power system. As part of the individual firm’s strategic decisions, this disserta-

tion explores the firm’s LTSA selection problem under uncertainty in fuel availability

and residual electricity demand.

Semiannual maintenance scheduling

As a condition of most LTSAs, generation firms must regularly take their gas-fired

power plants offline for maintenance and inspection. These regular inspections allow

a manufacturer to evaluate wear and tear and preemptively address mechanical prob-

lems. Typically, inspections occur after a plant operates for a predefined number of
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firing hours or starts (e.g., every 6000 hours or 50 starts) and last between five and

ten days. Notably, this semiannual maintenance is distinct from the major overhaul

service that plants must receive at the end of their LTSAs. [Boyce, 2012] In many

power systems, firms must declare their plans for scheduled outage and maintenance

ahead of time to the system operator, as the removal of capacity can adversely impact

electric power system reliability.

Scheduled outages can impact a generation firm’s decisions in multiple ways. For

example, given a portfolio of gas-fired power plants, if the firm can reasonably esti-

mate its outage schedule, it may be able to commit to long-term gas transportation

with more certainty if it knows that a specific fraction of its plants throughout the year

will always be offline. Alternatively, if the firm knows that the most advantageous

times to take its plants offline are during seasonally low demand periods in the spring

and fall and expects that marginal prices will be high enough to keep the entire fleet

operational during the summer, then the firm may decide to commit to excess gas

transportation to ensure that its entire fleet will have adequate fuel supplies during the

high demand months. Scheduled maintenance can also impact the amount of capacity

that a firm can commit to a forward capacity market in markets that allow portfo-

lio bids (such as ISO-NE’s forward capacity market [Ausubel and Ashcroft, 2007]).

Depending on its expectations about future fuel, energy, and capacity prices, a firm

may decide to commit more or less capacity and then concentrate or spread out its

maintenance to accommodate its capacity commitment. To investigate how a firm’s

maintenance requirements and scheduled maintenance decisions interact with its other

decisions, this dissertation treats the annual maintenance problem as a medium-term

decision that the firm must make after it decides its long-term fuel purchases and

long-term LTSA decisions.

Annual forward capacity market commitments

In a few power systems with wholesale electricity markets, operators have started to

implement markets for “forward capacity” to provide economic incentives for firms to

commit to providing power plant capacity in the near future. For example, the New
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England forward capacity market operates annually using a reverse-auction mecha-

nism. Firms submit an aggregated price-quantity curve corresponding to how much

forward capacity they would like to commit to be available over the next three

years at a certain price, and ISO-NE independently decides a quantity threshold

that it wants to meet using the forward capacity market. The system operator

starts the auction at a high price and decrements the clearing price until supply

no longer meets demand. All firms with accepted bids are paid the final clearing

price. [Ausubel and Ashcroft, 2007] Although there are many rules governing settle-

ment, broadly, firms with accepted bids must meet their capacity obligation during

shortage events and pay penalties for underperforming relative to their obligation.

[Morrow, 2013] Forward capacity markets allow system operators to address capacity

adequacy concerns in the medium term.

Public agencies and private firms have expressed opposing views about the in-

centives provided by forward capacity markets. Risk-averse private firms have noted

that forward capacity markets tend to not guarantee revenue over a long enough time

period to merit a change in their long-term fuel decisions, while public agencies have

expressed concern that establishing forward capacity markets with long time obli-

gations is equivalent to establishing new regulation, not a new market signal. This

dissertation will explore the relationship between a firm’s forward capacity decisions

and its other decisions by modeling the firm’s forward capacity commitment as a

medium-term decision that the firm must make after it decides its long-term fuel

purchases and long-term LTSA decisions.

1.3.2 Dimensionality challenges

Developing an optimal decision model that encompasses an individual firm’s post-

investment long- and short-term decisions poses dimensionality challenges that arise

from time couplings, integer decisions, and short-term uncertainties. To make “cor-

rect” decisions in the long-term (e.g., decisions that, in expectation/on average given

a set of uncertainty scenarios, are optimal), firms must simultaneously consider all

timescales. However, for the individual firm’s combined gas-electricity problem, long-
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term decisions may take place across years or decades, while short-term decisions

occur hourly. Directly tracking hourly dynamics to make long-term decisions leads to

well-known dimensionality problems due to the sheer size of the optimization prob-

lem’s constraint matrix and the large number of branches to explore due to the vast

number of hourly integer decisions.

To address these dimensionality challenges, this dissertation presents a frame-

work to convert the integrated hourly problem into a series of smaller, hierarchical

optimization problems that, when recombined, yield optimal long-, medium-, and

short-term decisions. The decomposition relies on a state estimation technique, de-

scribed in [Wogrin et al., 2012], that replaces exact temporal intervals as needed in

longer timescale subproblems. In the state estimation technique, instead of consid-

ering all 8760 hours in a year for a medium-term decision that takes effect for that

entire year, the optimization would analyze the traditional unit commitment problem

over a limited set of system states and state transitions. Each state might represent,

for example, one specific level of electricity demand and one specific level of renewable

generation, and allowed transitions represent actual hour to hour transitions. By col-

lapsing the hourly details into a limited set of representative states, hourly uncertain-

ties and decisions can influence long-term decisions. Conversely, long-term decisions,

once made, are reintroduced exogenously into the shorter timeframe subproblems in

their original, hourly formulation. This framework allows the optimization to make

longer term decisions while considering an approximation of the short term dynamics

and allows the optimization’s long-term choices to constrain future decisions in later

time stages.

1.3.3 Next steps

Thus far, this chapter has briefly reviewed the evolution of electricity and gas sys-

tems, presented emerging concerns held by public and private stakeholders, identified

key decision makers, advocated for the need to develop a new set of decision sup-

port tools for operations and policy analyses, and explained the salient decisions that

generation firms must make. The next chapter of this dissertation describes a mod-
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eling framework to explore coupled gas-electricity systems and the key interactions

between a generation firm’s decisions that are important to understanding how gas

and electricity systems interact. To conclude this chapter, this section enumerates a

series of research questions that frame contemporary concerns for further exploration

over the next three chapters.

1. Empirically, current forward capacity markets have not incentivized generation

firms to purchase long-term natural gas transportation, despite the fact that

purchases of long-term natural gas transportation would explicitly eliminate

pipeline scarcity concerns for firms that own gas-fired power plants and forward

capacity obligations. To what extent does the forward capacity market influ-

ence the generation firm’s long-term gas transportation decision? Conversely,

if gas were available with certainty, generation firms should willingly offer more

capacity into forward capacity markets. To what extent does the uncertainty

of fuel supplies influence a firm’s forward capacity decision?

2. Shortages of fuel availability occur more frequently than forced outage events.

In forward capacity markets with sufficiently large penalties, firms should only

offer capacity that they are certain will be available when called upon. If the

price offered for capacity is lowered or the penalty for deviating increases, firms

should offer forward capacity more conservatively. To what extent does uncer-

tainty about fuel availability, future electricity demand, and the need to perform

regular plant maintenance affect a generation firm’s forward capacity offer?

3. LTSAs can substantially alter the optimal dispatch schedule of power systems,

particularly for systems with a large penetration of intermittent renewables or

for systems whose gas-fired power plants experience an operating regime shift

from base load to peaker or vice versa. Alternatively, LTSAs may represent

an insignificant fraction of a firm’s total costs relative to its other costs (for

example, relative to the cost of fuel). To what extent does the LTSA that a

gas-fired power plant operates under condition its operations, and when should

firms attempt to renegotiate their LTSAs?
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4. LTSAs and long-term gas prices may influence LTSA contract selection and

long-term fuel commitments with respect to encouraging firms to operate their

gas-fired power plants as either baseload plants (by committing to long-term

fuel and agreeing to an LTSA with a high limit for firing hours) or peaker

plants (by not committing to long-term fuel and agreeing to an LTSA with a

high limit for starts). As the price of long-term gas decreases, generation firms

should increasingly operate their plants as baseload units. How does the firm’s

long-term gas decision interact with its LTSA decision?

The next chapter explains the mathematical framework developed to explore these

research questions, starting with a description of the underlying economic assumptions

and a full description of an hourly unit commitment model that incorporates the

generation firm’s strategic and tactical decisions.
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Chapter 2

Combined Gas-Electricity

Planning & Operation Model

To investigate the individual generation firm’s optimal gas and electricity decisions,

we start by assuming perfect competition and then propose a mathematical formu-

lation for an equivalent gas-electricity planning problem under a welfare-maximizing

central planner. Section 2.1 reviews key economic assumptions about perfect competi-

tion, welfare maximization, and cost minimization and explain why these assumptions

allow the central planner’s welfare-maximizing decisions to also be interpreted as the

profit-maximizing decisions of individual firms. The agents in this gas-electricity sys-

tem consist of one monolithic gas consumer whose gas demand is completely inelastic

(e.g., this consumer could represent aggregate gas demand for residential heating);

multiple firms that own power plants of varying technologies (e.g., nuclear, coal, and

natural gas); and a single large electricity consumer (e.g., a utility representing indi-

vidual households and small companies). The central planner in this combined gas-

electricity model holds the responsibility of making long- and short-term decisions for

fuel allocation, maintenance and service, forward capacity, commitment scheduling,

and dispatch for all agents.

Analyzing the combined gas-electricity problem from a centrally planned perspec-

tive confers several useful benefits. First, the central planner’s solution implicitly rep-

resents an economically efficient (welfare maximizing) allocation of scarce resources
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such as pipeline capacity. Second, solving the central planner’s problem to learn

about the optimal behavior of individual firms confers the key advantage of having to

solve only one optimization problem—in this case, a mixed integer linear program—

instead of having to solve G simultaneous profit-maximization problems, one for each

firm g ∈ G in the gas-electricity system. Third, centrally planned models that can be

expressed as linear programs and mixed integer linear programs yield dual variables

for every constraint that can be usefully interpreted as marginal prices. However, as

with many electricity models that span multiple timescales, the dimensionality of the

hourly formulation contains practical computational challenges for modern solvers.

To enable this formulation to run on modern solvers and computers, at the end of

this chapter we reformulate the full hourly problem by decomposing it into a se-

ries of smaller problems that can be independently solved and then reintegrated to

approximate the decisions of the full hourly model. In its entirety, this chapter pro-

poses theoretical and practical mathematical formulations to investigate the optimal

behavior of individual generation firms in gas-electricity systems.

2.1 General economic assumptions

In the academic literature for electric power systems, two economic assumptions about

perfect competition and welfare maximization/cost minimization underpin the math-

ematical formulations of almost all central planner models1. In this section, we review

both assumptions for completeness.
1As an interesting tangent, and as mentioned in the introduction to this chapter, centrally

planned models are also useful because they can frequently be described as linear programs or
mixed-integer linear programs whose dual variables contain useful economic information—namely,
marginal prices. In electric power systems, a few foundational papers that prove that marginal prices
are optimal spot prices and result in welfare maximization and economically efficient decisions include
[Mwasinghe, 1981], [Caramanis et al., 1982], [Caramanis, 1982], and [Schweppe, 1987]. However, as
[Mwasinghe, 1981] notes, economists had originally developed the link between marginal prices and
optimal spot pricing as early as the 1930s, and much of the theoretical background for modern elec-
tricity markets finds its roots in advances made in the 1950s (for example, see [Steiner, 1957] and
[Boiteux, 1960]). Because electricity happens to be a nearly “perfect” commodity in its homogene-
ity and physical requirement for constant supply and demand balance, the creation of electricity
markets tends to be the first application of much of this earlier literature.
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2.1.1 Welfare-maximization and cost-minimization

Broadly, the central planner’s welfare-maximization problem is defined as producer

plus consumer surplus:

maxPS + CS (2.1)

=max pq − C(q) + V (q)− pq (2.2)

=max−C(q) + V (q) (2.3)

where producer surplus is the revenue received by generation firms minus their cost,

and consumer surplus is the utility that consumers receive minus what they pay. In

the formulation above, q is the quantity of energy, p is the clearing price, C(q) is

the cost for producers, V (q) is the utility to consumers. Because the revenues that

generation firms receive are exactly the costs paid by consumers, those two terms

cancel. If we value every unit of demand equally (for example, at a unit price equal

to that of nonserved energy), then V (q) is fixed, and the central planner’s welfare

maximization problem (without considering further investment) is analogous to a

cost-minimization problem:

max−C(q) + V (q) → minC(q) (2.4)

2.1.2 Perfect competition

To extract useful information about individual firms from the central planner’s prob-

lem, we also enforce the assumption of perfect competition so that the central plan-

ner’s optimal, welfare-maximizing decisions are identical to each individual firm’s

profit-maximizing decisions. To provide intuition for this result, we briefly review a

stylized example of two firms and their profit maximization problems in an electricity

market versus the central planner’s problem. (For a more formal proof, see Chapter 2

in [Pérez-Arriaga, 2013]). For both scenarios, we will assume that consumers demand

a normalized quantity q of electricity that depends on price p and takes the following
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functional form:

q(p) = 1− p (2.5)

Consumers receive utility from consuming quantity q of electricity equal to the price

that they are willing to pay less their total cost (below, x is placeholder variable for

integration):

max
q

∫ q

0

p(x)dx− (p)(q) (2.6)

=max
q

∫ q

0

(1− x)dx− pq (2.7)

=max
q

q − q2

2
− pq (2.8)

which yields the following first order condition (FOC) for the consumer’s problem

after taking the derivative with respect to decision variable q:

L = q − q2

2
− pq (2.9)

FOC:
∂L
∂q

= 1− q − p = 0 (2.10)

Additionally, in a perfectly competitive market, each generation firm i takes p as an

exogenous electricity price and optimizes the quantity of electricity that it produces

to maximize profits:

max
xi

pxi − Ci(xi) (2.11)

where pxi represents the firm’s revenues, and Ci(xi) represents the firm’s costs. As-

sume that two firms exist in this market, each with the following marginal cost func-

tions:

C1(x1) = x1 (2.12)

C2(x2) = 2x2 (2.13)
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Accordingly, firm 1 faces the following explicit profit problem:

max
x1

px1 −
∫ x1

0

C1(x)dx (2.14)

=max
x1

px1 −
∫ x1

0

xdx (2.15)

=max
x1

px1 −
x2
1

2
(2.16)

and the first order condition for firm 1 is:

L = px1 −
x2
1

2
(2.17)

FOC:
∂L
∂x1

= p− x1 = 0 (2.18)

Similarly, firm 2 faces the following profit maximization problem:

max
x2

px2 −
∫ x2

0

C2(x) dx (2.19)

=max
x2

px2 −
∫ x2

0

2x dx (2.20)

=max
x2

px2 − 2x2
2 (2.21)

FOC:
∂L
∂x2

= p− 2x2 = 0 (2.22)

Solving the consumer utility and firm profit maximization FOCs simultaneously yields

x∗
1 =

2

5
, x∗

2 =
1

5
, p∗ =

2

5
, q∗ =

3

5
(2.23)

A central planner would approach this problem by maximizing the sum of consumer

and producer surplus (q′, x′
1, x

′
2 are dummy variables for integration):

max
q,x1,x2

∫ q

0

(1− q′)dq′ −
∫ x1

0

x′
1dx

′
1 −

∫ x2

0

2x′
2dx

′
2 (2.24)

s.t. q ≤ x1 + x2 (2.25)
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The corresponding Lagrangian and first order conditions are:

L = q − q2

2
− x2

1

2
− 2x2

2 − λ(q − x1 − x2) (2.26)

∂L
∂q

= 1− q − λ = 0 (2.27)

∂L
∂x1

= −x1 + λ = 0 (2.28)

∂L
∂x2

= −2x2 + λ = 0 (2.29)

∂L
∂λ

= q − x1 − x2 = 0 (2.30)

which are the same FOCs as in the individual profit maximization problems when

p = λ. Equating and simplifying the FOCs results in the following identities

λ = 1− q = x1 = 2x2 (2.31)

which yield the same allocation as the individual profit/utility maximizing problems

when supply (x1 + x2) and demand (q) are explicitly set equal:

λ∗ = p∗ =
2

5
, x∗

1 =
2

5
, x∗

2 =
1

5
, q∗ =

3

5
(2.32)

When p = λ, the solutions to the central planner and the individual consumer and

generation firm’s problems are identical, and p∗, λ∗ represent the optimal p and λ that

maximize welfare. Consequently, by applying assumptions about perfect competition

to the central planner’s welfare-maximization problem, we can formulate and solve a

cost-minimization problem from the central planner’s perspective that also yields the

profit-maximizing decisions of individual agents in the system.

2.2 Full hourly model description

Given the previous economic assumptions for analyzing the individual firm’s problem

using a centralized planner formulation, this section builds, piece-by-piece, a mathe-

60



matical model of the central planner’s hourly problem across multiple years. Because

the resulting mathematical formulation is impractical to solve simultaneously, the

next section contains a reformulation of the hourly model separated by timescales

into smaller subproblems. However, for illustrative purposes (many of the decision

variables are easier to understand without the additional complexity needed to re-

duce dimensionality), as well as for completeness, this section first presents the central

planner’s full hourly gas-electricity problem.

For the remainder of this dissertation, unless otherwise noted, the following in-

dices, parameters, and decision variables are defined as follows:

index description

i = 1..I indices of all power plants in the system

nj ∈ I nongas subset of power plants

j ∈ I gas subset

t = 1..T hourly index

d = 1..D daily index

p = 1..P month index

a = 1..A year index

k = 1..K demand scenarios

n = 1..N fuel transportation scenarios

v = 1..V renewable generation scenarios

g = 1..G individual firms in the system

l = 1..L long-term service agreement alternatives

h = 1..Hl number of planes in LTSA l’s MIF

The gas-electricity cost-minimization problem has the following parameters:

parameter description

Xi, Xi minimum and maximum output levels for plant i

Hi heat rate for plant i

FYi fuel required to start plant i

FZi fuel required to stop plant i

Ri maximum up/down ramp rate for plant i
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(continued from previous page)

parameter description

RRi symmetric up/down cycle times for plant i

C1,i start-up cost for plant i

C2,i shut-down cost for plant i

C3,i no-load cost for plant i

C4,i cost of fuel for plant i

C5,nj maintenance cost adder for plant nj

C6,l major overhaul cost for contract l

C7,d commodity price of natural gas for day d

C8,d transportation price of natural gas for day d

EDk,t electricity demand for scenario k, hour t

RGv,t renewable generation for scenario v, hour t

GDn,d all nonelectric demand for gas in day d

PLT,FX unit price of long-term transportation contract

PC pipeline capacity of the gas zonal market

FHAl,h
firing hours limit for LTSA l, plane h

SLAl,h
starts limit for LTSA l, plane h

MFH firing hours limit before scheduled maintenance

MST starts limit before scheduled maintenance

MDj maintenance duration for plant j

FCMa forward capacity target for year a

FORnj statistical forced outage rate for plant nj

SH set of shortage hours

Pn probability of gas demand scenario

Pk probability of demand scenario k

Pv probability of renewable generation scenario v
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(continued from previous page)

parameter description

Amin,g long-term transportation target

βg probability target for meeting transportation target

fest.,n,k,v,d,g estimated required daily fuel

And finally, the gas-electricity system problem has the following decisions vari-

ables:

endogenous variables description

xn,k,v,i,t total generation level for power plant i

wn,k,v,i,t generation level for power plant i above its min

yn,k,v,i,t start-up decision for plant plant i in hour t

zn,k,v,i,t shut-down decision for plant plant i in hour t

un,k,v,i,t commitment state for plant i in hour t

fxLT,g long-term gas transportation commitment

fxST,n,k,v,d,g short-term (daily) gas transportation purchases

fn,k,v,d,g electric power system’s daily natural gas usage

startsn,k,v,j total starts for plant j

fhn,k,v,j total firing hours for plant j

umdn,k,v,t,j product of binary variables (u)(md)

mdn,k,v,t,j maintenance state of plant j in hour t

mSn,k,v,t,j starts offset to reset accumulator

mFn,k,v,t,j firing hours offset to reset accumulator

sAccn,k,v,t,j accumulated starts since last maintenance

hAccn,k,v,t,j accumulated firing hours since last maintenance

mocn,k,v,j maintenance cost for plant j

mcj,l binary LTSA decision for plant j, contract l

mbn,k,v,t,j binary maintenance start decision
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(continued from previous page)

endogenous variable description

fccMAX,GAS,n,k,v,a,g capacity commitment from gas units for year a

fccMAX,NONGAS,n,k,v,a,g capacity commitment from nongas units for year a

fccJ,n,k,v,d,j daily contribution of gas plant j to fwd. capacity

fccNJ,n,k,v,d,nj daily contribution of plant j to fwd. capacity

fccn,k,v,a,g aggregate fwd. capacity commitment from firm g

aST,k,v,n,d,g fraction of daily gas trans. met with spot market

aLT,k,v,n,q,g fraction of gas trans. met with long-term contracts

amin,g actual frac. of trans. met by long-term contracts

aq,g dummy variable to drive amin,g to Amin

2.2.1 Unit commitment with gas transportation

To begin, we build a unit commitment model with fuel constraints for an entire power

system. Taking into consideration technical minimums, maximums, and ramp limits,

the following formulation describes a basic unit commitment for all of the power

plants, regardless of technology, in a single node. Let Ω = [x,w, y, z, u] (subscripts

removed for brevity); then, for a specific electricity/gas/renewable scenario (n, k, v),

the central planner solves:

min
Ω

∑
t,i

[
(xn,k,v,i,t)(C4,i)(Hi) (2.33)

+ (un,k,v,i,t)(Ci,3) + (yn,k,v,i,t)(Ci,1) + (zn,k,v,i,t)(Ci,2) ]

s.t.
∑
i

xn,k,v,i,t = dk,t∀t demand balance (2.34)

xn,k,v,i,t ≤ un,k,v,i,tXi∀i, t technical max (2.35)

xn,k,v,i,t ≥ un,k,v,i,tXi∀i, t technical min (2.36)

un,k,v,i,t = un,k,v,i,t−1 + yn,k,v,i,t − zn,k,v,i,t∀i, t commitment state (2.37)
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xn,k,v,i,t − xn,k,v,i,t−1 ≤ Ri∀i, t up ramp maximum (2.38)

xn,k,v,i,t − xn,k,v,i,t−1 ≥ −Ri∀i, t down ramp maximum (2.39)

yn,k,v,i,t, zn,k,v,i,t ∈ {0, 1} ∀i, t commitment variables (2.40)

un,k,v,i,t ≥
t∑

t−RRi

yn,k,v,t,i∀t, i minimum up time (2.41)

un,k,v,i,t ≥
t∑

t−RRi

zn,k,v,t,i∀t, i minimum down time (2.42)

xn,k,v,i,t, yn,k,v,i,t, zn,k,v,i,t ≥ 0 nonnegative variables (2.43)

un,k,v,i,t ∈ {0, 1} binary variables (2.44)

In the above representation, on each day d, each firm g consumes the following

share of gas based on its plants’ commitment states, dispatch levels, and heat rates:

fn,k,v,d,g =
∑

j∈g,t∈d

[
xn,k,v,j,tHj + yn,k,v,j,tFYj + zn,k,v,j,tFZj + un,k,v,j,tFCj

]
(2.45)

and the power system as a whole requires the following quantity of gas over an entire

day d:

fn,k,v,d =
∑
g

fn,k,v,d,g (2.46)

where j ∈ I represents the system’s gas-fired power plants. In this single-node gas

system, the maximum pipeline capacity constrains the power system’s total gas con-

sumption, and the power system can ship gas using short-term capacity left over after

subtracting the non-electric consumer’s natural gas demand from the total pipeline

capacity.

On each day, the central planner decides the welfare-maximizing allocation of ex-

cess pipeline capacity amongst all gas-fired power plants. As this dissertation seeks

to explore the conditions under which a firm might engage in a long-term transporta-

tion contract, the central planner can also purchase for each group of gas-fired power

plants a daily fixed quantity fxLT,g of long-term transportation for the entire duration

T that all plants j ∈ g can share. This decision is analogous to a firm contracting for
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long-term transportation capacity that it cannot sell in a secondary market and that

has no value if unused on any given day. Combining the available short-term pipeline

capacity and any long-term transportation contracts, the power system’s total gas

consumption on any given day must respect the following constraints:

fxST,n,k,d,g ≥ fn,k,v,d,g − fxLT,g∀d, g per firm gas transportation (2.47)∑
g

fxST,n,k,d,g ≤ PC −GDn,d∀d total pipeline capacity (2.48)

This representation of a single-node gas system reflects the reality of many natural

gas systems in which local distribution companies and industrial users with more

predictable demand than power generation firms tend to own a substantial majority

of long-term transportation contracts, and on a short-term basis, these agents release

any capacity that they do not need into a secondary market. Combining these gas

constraints with the previous unit commitment (Eqs. 2.33-2.44) and modifying Eq.

2.33 to explicitly represent the cost of natural gas yields the following fuel-constrained

unit commitment formulation. Let Ω = [x,w, u, y, z, f, fxLT,g, fxST,g] (previous deci-

sion variable subscripts omitted for brevity); then:

min
Ω

∑
t,nj

[
(xn,k,v,nj,t)(C4,nj)(Hnj) + (un,k,v,nj,t)(C3,nj)

+ (yn,k,v,nj,t)(C1,nj) + (zn,k,v,nj,t)(C2,nj)
]

+
∑
t,j

[
(xn,k,v,j,t)(Hj)(C7,d + C8,d) + (un,k,v,j,t)(C3,j)

+ (yn,k,v,j,t)(FYj) + (zn,k,v,j,t)(FZj) ]

+T
∑
g

(fxLT,g)(PLT,FX)

(2.49)

s.t. Eqs. 2.34-2.44 unit commitment

Eqs. 2.45-2.48 gas constraints
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2.2.2 Long-term service agreement selection

The central planner must decide what type of long-term service agreement (LTSA) to

commit its gas-fired power plants to, and the choice of LTSA will define the mainte-

nance interval function (MIF) relating the number of firing hours (FH) and starts (S)

that a gas-fired power plant can accumulate over the duration of its LTSA. For each

scenario (n, k, v), assuming that the function relating the number of firing hours to

the number of allowed starts—frequently referred to as an LTSA’s maintenance inter-

val function (MIF)—is convex, the following constraint allows for a piecewise-linear

representation of each MIF (for a full explanation about the underlying mathematical

mechanics, see [Rodilla et al., 2014]):

∑
t

un,k,v,j,tC6,l(FHAl,h
− FHAl,h+1

) (2.50)

−
∑
t

yn,k,v,j,tC6,l(SAl,h
− SAl,h+1

)

+mocn,k,v,j(SAl,h
FHAl,h+1

− SAl,h+1
FHAl,h

)

≥ M(mcj,l − 1)∀j, l, h,R(
∑
t

yn,k,v,j,t,
∑
t

un,k,v,j,t) ∈ ∢Al,hOAl,h+1

To limit the central planner to only assigning one LTSA to each gas-fired power plant,

∑
l

mcj,l = 1∀j (2.51)

mcj,l ∈ {0, 1} (2.52)

where mcj,l is a special ordered set type one binary variable (for each j, only one mcj,l

variable can take a value of 1). Eqs. 2.50-2.52 exhaustively define the search space

of possible LTSA portfolios. Over the range of allowed firing-hours-to-starts ratios

for a given LTSA, the set of constraints above will return a specific maintenance cost

mocn,k,v,j for each gas-fired power plant. To select an optimal LTSA portfolio, the
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central planner minimizes its maintenance costs:

min
mcj,l

∑
j

mocn,k,v,j (2.53)

s.t. Eqs. 2.50-2.52

Combining LTSA selection and maintenance cost into the previous unit commitment

with gas transportation yields a mathematical representation of the central planner’s

long-term fuel purchase and service agreement problems. Let Ω = [x,w, u, y, z, f, fxLT,g, fxST,g,mc];

then the central planner’s long-term problem is as follows:

min
Ω

Eq. 2.49 + Eq. 2.53

Eqs. 2.34-2.44 unit commitment

Eqs. 2.45-2.48 pipeline

Eqs. 2.50-2.52 maintenance

2.2.3 Maintenance scheduling

Approximately every 6000 firing hours or 200 starts (whichever comes first), owners

must mechanically inspect a gas-fired power plant and make repairs. This inspec-

tion can take anywhere between two to five days depending on the required work.

[Boyce, 2012] As this maintenance takes a gas-fired power plant completely offline

and removes its capacity from the electricity market, scheduled maintenance can sub-

stantially alter both the gas consumption and the available capacity of a power sys-

tem. To incorporate considerations for maintenance scheduling, we introduce a new

binary variable that indicates when a gas-fired power plant begins maintenance and

a new nonnegative variable that tracks the duration of the maintenance (as before,

the constraints are shown for a single scenario (n, k, v):

mbn,k,v,j,t ∈ {0, 1} (2.54)

68



mdn,k,v,j,t =
t∑

t−MDj

mbn,k,v,j,t∀j, t maint. duration (2.55)

In each hour that a gas-fired power plant generates energy, the plant must not be in

maintenance and the plant must be committed:

mdn,k,v,j,t = 0

un,k,v,j,t = 1

To combine the maintenance variable mdn,k,v,j,t and the commitment variable un,k,v,j,t

while avoiding multiplying the two variables together (making it possible to still

solve this problem as a mixed-integer linear program), we introduce the following

constraints that linearize the multiplication of two binary variables2:

umdn,k,v,j,t ≤ un,k,v,i,t∀n, k, v, j, t linearization (2.56)

umdn,k,v,j,t ≤ 1−mdn,k,v,i,t∀n, k, v, j, t linearization (2.57)

umdn,k,v,j,t ≥ un,k,v,j,t −mdn,k,v,j,t∀n, k, v, j, t linearization (2.58)

where umd represents the product of u and md and modify each gas-fired power

plant’s technical operating limits using the new commitment/maintenance variable:

xn,k,v,j,t ≤ umdn,k,v,j,tXj∀n, k, v, j, t tech+maint. max (2.59)

xn,k,v,j,t ≥ umdn,k,v,j,tXj∀n, k, v, j, t tech+maint. min (2.60)

As maintenance must take place every MFH firing hours, we create an accumulator,

hACC, to track the number of firing hours since the last maintenance:

hAccn,k,v,j,t

2This technique is common in linear and mixed integer linear programs when a logical “and”
operation is needed between two binary variables. In linear programs, two decision variables usually
cannot be multiplied directly because the result is nonlinear (for example, multiplying x by itself
would yield an x2 term). Using these constraints “linearizes” the multiplication problem, making it
possible to multiply binary variables with no loss of generality.
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= hAccn,k,v,j,t−1 + umdn,k,v,j,t −mFn,k,v,j,t∀n, k, v, j, t hours acc. (2.61)

hAccn,k,v,j,t ≤ MFH∀n, k, v, j, t hours limit (2.62)

mFn,k,v,t,j ≤ hAccn,k,v,t−1,j + umdn,k,v,t,j∀n, k, v, j, t hours reset (2.63)

(M)(mbn,k,v,j,t) ≥ mFn,k,v,t,j∀n, k, v, j, t begin maint. (2.64)∑
t

mbn,k,v,j,t ≤
∑
t

umdn,k,v,j,t/MFH + 1∀n, k, v, j, t limit maint. cycles (2.65)

where mFn,k,v,j,t tracks the number of hours that must be subtracted to reset the

accumulator after maintenance begins, Eq. 2.64 forces maintenance to begin when

the accumulator resets, and Eq. 2.65 limits the number of times that a plant enters

maintenance to once every MFH firing hours.

Every gas-fired power plant has an analogous set of constraints for scheduled

maintenance based on its starts threshold, MST , and its accumulated starts. The

variable sACC tracks the number of starts accumulated since the last maintenance,

and mSn,k,v,j,t tracks the number of starts that must be subtracted to reset the accu-

mulator after maintenance begins:

sAccn,k,v,j,t

= sAccn,k,v,j,t−1 + yn,k,v,j,t −mSn,k,v,j,t∀n, k, v, j, t starts acc. (2.66)

sAccn,k,v,j,t ≤ MST∀n, k, v, j, t starts limit (2.67)

mSn,k,v,j,t ≤ sAccn,k,v,j,t−1 + yn,k,v,j,t∀n, k, v, j, t starts reset (2.68)

(M)(mbn,k,v,j,t) ≥ mSn,k,v,j,t∀n, k, v, j, t begin maint. (2.69)∑
t

mbn,k,v,j,t ≤
∑
t

yn,k,v,j,t/MST + 1∀n, k, v, j, t limit maint. cycles (2.70)

To combine maintenance scheduling into the hourly model developed thus far, we re-

place the technical maximum and minimum operating constraints as described above

and insert the remaining constraints directly into the existing formulation. Let

Ω = [x,w, u, y, z, f, fxLT,g, fxST,g,mc,mb,md, umd, hAcc,mF, sAcc,mS]; then the
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central planner’s problem becomes

min
Ω

Eq. 2.49 + Eq. 2.53

Eqs. 2.37-2.44 unit commitment

Eqs. 2.45-2.48 gas constraints

Eqs. 2.50-2.52 LTSA selection

Eqs. 2.54-2.70 maintenance scheduling

2.2.4 Forward capacity

For each year a and scenario (n, k, v), the system operator operates a forward capacity

market that compensates firms in exchange for a guarantee that some fraction of their

power plant portfolio will remain available throughout the year to generate electricity.

Each firm g must decide how much capacity, fccn,k,v,g,a, to offer into this market

from its power plant portfolio. The system operator sets the demand by choosing

an arbitrary capacity target, FCMa, that may reflect its anticipation of year a’s

peak demand (or year a’s peak demand plus some margin) and clears the market by

equating supply and demand:

∑
g

fccn,k,v,g,a = FCMa∀a (2.71)

To examine the specificities of gas-fired power plants, this formulation separates for-

ward capacity commitments from gas-fired power plants and non-gas-fired power

plants. Statistical forced outage rates, maintenance schedules, and fuel constraints

reduce the maximum forward capacity that individual power plants can contribute

relative to their technical maximum capacities. In this formulation, statistical forced

outage rates act as a proxy for the amount of available non-gas-fired capacity. In

contrast, and as a distinct departure from traditional literature, this formulation at-

tributes maintenance scheduling and fuel availability as the two primary reasons for

reductions in gas-fired power plant capacity instead of using statistical forced outage
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rates (Chapter 1 has reviewed in detail the empirical evidence for this assumption).

Although unexpected mechanical failures can still occur, given the nature of long-

term service agreements and the financial incentives to prevent unexpected mechani-

cal failures, forced outages most likely play a small role in reducing the availability of

gas-fired power plants relative to maintenance and fuel availability. In Chapter 3, we

describe a post-optimization risk analysis technique based on probabilistic production

cost models to evaluate the impact of forced outages.

Given these assumptions, each firm’s aggregate forward capacity offer cannot ex-

ceed the maximum forward capacity limits of its gas portfolio (denoted by fccMAX,GAS,a,g)

and its non-gas portfolio (denoted by fccMAX,NONGAS,a,g):

fccn,k,v,g,a ≤ fccMAX,NONGAS,n,k,v,a,g + fccMAX,GAS,n,k,v,a,g (2.72)

To meet its capacity obligation, each firm must assign individual power plants to

cover fccn,k,v,g,a on a daily basis. Dependent on maintenance schedules, projected

fuel costs, and projected fuel availability, firms may need to use a different set of

power plants from day to day to meet their commitment or may need to reduce the

total amount of forward capacity offered. For a firm’s non-gas-fired power plants, on

any given day d in year a, plant nj can contribute capacity fccNJ,n,k,v,d,nj up to its

derated technical maximum

fccNJ,n,k,v,d,nj ≤ (Xnj)(FORnj)∀d, nj (2.73)

where FORnj represents plant nj’s forced outage rate. From its portfolio of non-gas-

fired power plants, the firm, at most, can only commit the amount of capacity that

is available in its worst (least capacity available) day of the year:

fccMAX,NONGAS,n,k,v,g,a ≤
∑
nj

fccNJ,d,nj∀d ∈ a, a, g (2.74)

For gas-fired power plants, firms assign each plant j a forward capacity commitment

(fccJ,n,k,v,d,j) on a daily basis subject to that plant’s technical maximum capacity
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(Xj) and scheduled maintenance availability (mdn,k,v,d,j):

fccJ,n,k,v,d,j ≤ (Xj)(1−mdn,k,v,d,j)∀d ∈ p, p, j (2.75)

As before, in aggregate, the firm at most can only commit from its portfolio of gas-

fired power plants the amount of capacity that is available in its worst (least capacity

available) day of the year:

fccMAX,GAS,g,a ≤
∑
j

fccJ,d,j∀d ∈ a, a, g (2.76)

Additionally, the firm’s gas-fired capacity offer is subject to fuel availability during

shortage events:

∑
j,t∈SH

(fccJ,n,k,v,d,j)(Hj) ≤ fxLT,g + fxST,n,k,v,g,d∀t ∈ d, d ∈ a, a, g (2.77)

Taking all of these physical constraints into consideration, the system operator makes

forward capacity assignments to each firm based on the costs of calling that capacity

during shortage events. This formulation uses fuel costs as a proxy to evaluate the

future cost of calling on forward capacity:

min
∑

nj,t∈SH

(fccNJ,n,k,v,d,nj)(Hnj)(C4,nj) +
∑

j,t∈SH

(fccJ,n,k,v,t∈d,j)(Hj)(C7,t∈d) (2.78)

Combining all of the previous decisions with this forward capacity market formulation

results in the following problem for the centralized planner. Let

Ω = [x,w, u, y, z, f, fxLT,g, fxST,g,

mc,mb,md, umd, hAcc,mF, sAcc,mS

fccGAS, fccNONGAS, fccJ, fccNJ];
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then, the central planner solves:

min
Ω

Eq. 2.49 + Eq. 2.53 + Eq. 2.78

Eqs. 2.37-2.44 unit commitment

Eqs. 2.45-2.48 gas constraints

Eqs. 2.50-2.52 LTSA selection

Eqs. 2.54-2.70 maintenance scheduling

Eqs. 2.72-2.77 forward capacity

2.2.5 Considerations for uncertainty

Throughout the development of the hourly model, all medium- and short-term de-

cisions have been written with subscripts k, n, and v to indicate different potential

scenarios for electricity demand, fuel transportation availability, and renewable gen-

eration. Assuming independence, each electricity demand scenario occurs with prob-

ability Pk; each fuel transportation scenario occurs with probability Pn; and each re-

newable scenario occurs with probability Pv. To determine the optimal gas-electricity

decisions in expectation over a set of discrete scenarios, we can solve the deterministic

equivalent problem:

min
Ω

∑
k,n,v

(PkPnPv)(Eq. 2.49 + Eq. 2.53 + Eq. 2.78)

s.t. Eqs. 2.37-2.44 unit commitment

Eqs. 2.45-2.48 gas constraints

Eqs. 2.50-2.52 LTSA selection

Eqs. 2.54-2.70 maintenance scheduling

Eqs. 2.72-2.77 forward capacity

(2.79)
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Risk aversion to pipeline capacity shortages

Using this deterministic equivalent problem, we can now incorporate risk aversion on

the part of individual firms to the possibility of not being able to acquire enough gas in

the short-term. To model risk aversion, we introduce the following set of conditional-

value-at-risk constraints that will allow us to specify an arbitrary probability, βg, that

each firm should be able to cover an arbitrary fraction, Amin,g, of its transportation

needs on a daily basis using long-term contracts. [Dueñas et al., 2014] First, we

calculate the daily percentage of gas transportation that each firm meets using short-

term spot markets as follows:

aST,k,v,n,d,g ≥ 1− fxLT,g

fest.,k,v,n,d,g
∀k, v, n, g, d (2.80)

where aST,k,n,v,d,g represents the percentage of gas transportation on day d that firm

g purchases in the spot market. Aggregating aST,k,n,v,d,g, we can calculate the average

percentage of transportation met using firm transportation, aLT,k,n,v,g, as follows:

aLT,k,n,v,g = 1−
∑
d

aST,k,n,v,d,g

D
∀k, n, v, g (2.81)

Finally, we can require with probability βg that each firm cover an arbitrary fraction

Amin of its daily gas transportation using firm transportation by adding the following

constraints:

amin,g −
∑
q

(Pq)(ak,n,v,g)

1− βg

≥ Amin,g∀k, n, v, g (2.82)

ak,n,v,g ≥ amin,g − aLT,k,n,v,g∀k, n, v, g (2.83)

where amin,g represents the actual minimum fraction of a firm’s transportation re-

quirements met using long-term contracts. To satisfy Equations 2.82 and 2.83, the

optimization must find a long-term transportation quantity for each firm that drives

aq,g to zero and forces the actual minimum fraction of gas transportation covered

using long-term contracts to match the average fraction of daily gas transportation

75



met via long-term contracts.

Nonanticipativity

Computational challenges aside, if all possible electricity, gas, and renewable scenarios

are known (or have known distributions), then the space of all possible scenarios

(n, k, v) can be sampled and a set of decisions for the long-term (regarding long-term

fuel transportation and maintenance contracts) can be optimally selected without

any changes (because only one decision can be made for fxLT and mcj,l across all

potential scenarios). Medium-term decisions for forward capacity and maintenance

scheduling that will take effect over the next year a can be optimally selected across all

scenarios by adding the following nonanticipativity constraints to force all decisions

across unknown scenarios to be the same:

fccNA,a,g = fccn,k,v,a,g∀n, k, v, g (2.84)

fccGAS,NA,a,g = fccGAS,n,k,v,a,g∀n, k, v, g (2.85)

fccNONGAS,NA,a,g = fccNONGAS,n,k,v,a,g∀n, k, v, g (2.86)

mbn,k,v,t,j = mbNA,n,k,v,t,j∀n, k, v, t, j (2.87)

mdn,k,v,t,j = mdNA,n,k,v,t,j∀n, k, v, t, j (2.88)

The minimization problem described by the set of Equations in 2.79, along with

Equations 2.80-2.83 to model risk aversion to pipeline capacity shortages and Equa-

tions 2.84-2.88 to enforce nonanticipativity, represent the central planner’s full hourly

stochastic problem.

2.3 Dimensionality reduction

The model presented in (2.79) makes long- and medium-term decisions for fuel acqui-

sition (fxLT,g), forward capacity assignment (fccg,a), maintenance contract selection

(mcj,l), and maintenance scheduling (mbn,k,v,t,j, mdn,k,v,t,j) by explicitly solving a fuel-

constrained hourly unit commitment. However, the hourly combined gas-electricity
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problem described thus far is computationally intractable for a real-sized power sys-

tem over a realistic time horizon of multiple years and a reasonable set of uncertainty

scenarios that describe potential electricity demand, renewable generation, and nat-

ural gas consumption. The need to consider hourly demand, renewable generation

levels, and daily fuel prices for years in conjunction with binary decisions for unit

commitment and plant maintenance leads quickly to a tremendous search space.

As an example of the size of the search space, consider the following. Each hour

of the problem described in (2.79) contains I plants to make binary commitment

decisions for, as well as N total fuel availability scenarios, K total electricity demand

scenarios, V renewable generation scenarios, and T total hours. Ignoring the contract

and scheduling decisions related to maintenance, the number of individual linear

programs to consider for the central planner’s problem grows in the following manner:

(2I)(T )(N)(K)(V ) (2.89)

In a real-sized power system with 200 power plants (for example, in its 2013 winter

seasonal availability report, ISO-NE listed 204 dispatchable plants), considering only

N = 2 fuel transportation scenarios (in any given day, short-term transportation is

either available or not) and K = 10 demand scenarios in a system with no renewables

(V = 1), the search space for the yearly commitment problem grows to

(2I)(T )(N)(K)(V ) (2.90)

= (2200)(8760)(2)(10)(1) (2.91)

≈ 3e65 scenarios (2.92)

Because long- and medium-term decisions take effect across multiple years during

which they will directly impact the hourly decisions that the central planner can

make, and because making optimal long- and medium-term decisions requires taking

hourly details into consideration, the central planner’s problem cannot be decoupled

in time to reduce the size of the search space (i.e., all timescales must be considered
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simultaneously). As the central planner’s problem covers longer time horizons and

more scenarios, T , N , K, and V increase the search space linearly, while additional

power plants and new LTSAs will increase the search space of the long-term problem

exponentially via I and L. In reality, modern solvers will only search a subset of

all possible binary decisions. For example, if the price of long-term transportation

substantially exceeds the short-term price such that all plants will frequently cycle,

the branch-and-bound algorithm may be able to quickly eliminate from consideration

many branches in which plants are assigned to less flexible maintenance contracts.

However, as the number of uncertainty scenarios and binary decisions increase, a

straight-forward hourly formulation of the unit commitment problem across multiple

years still results in an intractably large search space.

To make the combined gas-electricity problem tractable, we decompose the formu-

lation in (2.79) into three subproblems separated by timescales. Subproblem (1) solves

for the optimal set of long-term fuel contracts and long-term maintenance contracts;

subproblem (2) solves for the optimal set of annual forward capacity commitments

and the annual maintenance schedule; and subproblem (3) solves a fuel-constrained

hourly unit commitment. Instead of sequentially solving subproblems (1) and (2) on

an hourly basis, to work around the dimensionality challenges, we reformulate the

larger combined gas-electricity problem using the system states approach explained

in [Wogrin et al., 2013]. While the system states approach reduces data resolution,

solving the combined gas-electricity problem over system states instead of sequential

hours confers key computational advantages: once decisions are solved for every pos-

sible state and state transition, determining key quantities such as fuel generation

and total firing hours requires a simple series of arithmetic operations. To reintegrate

long-, medium-, and short-term decisions after decomposing the hourly combined

problem into three decision stages, we reintroduce the solutions from subproblems

(1) and (2) as exogenous parameters in the following manner:

1. Calculate the optimal long-term decisions for fuel transportation and mainte-

nance contract selection in expectation over the range of forecasted scenarios

and probabilities by solving the system state approximation of the model in
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(2.79) on a monthly basis.

2. Fix the long-term decisions from the previous step and reintroduce them into

(2.79) as exogenous parameters.

3. Re-solve the system state approximation of (2.79) and calculate the medium-

term decisions for maintenance scheduling and forward capacity assignment

over the range of forecasted scenarios on a weekly basis for the next year; re-

quire nonanticipativity for mbn,k,v,t,j, mdn,k,v,t,j, fccn,k,v,a,g, fccNONGAS,n,k,v,a,g

and fccGAS,n,k,v,a,g.

4. Fix all long- and medium-term decisions from the previous steps and introduce

their optimal values as exogenous parameters into (2.79); re-solve to determine

the optimal short-term unit commitment and scheduling decisions for the next

day.

Figure 2-1: Block diagram of feedback between long-, medium- and short-term
decisions

Figure 2-1 illustrates how information moves between timescales based on the enumer-

ated steps above and the mathematical model presented in (2.79). Short timescale dy-

namics are approximated in long- and medium-term decisions, and long- and medium-
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term decisions impact shorter timescale models in one of two ways. First, if the value

of a larger timescale decision cannot be changed by decisions in the short term, then

their contribution to the objective function is constant and ignored by the optimiza-

tion. This occurs automatically once the decision is exogenously fixed. For example,

this is the case with take-or-pay transportation contracts. Regardless of how much

gas the owner of a gas-fired power plant consumes on any given day, the cost of

the transportation contract is sunk, and the firm must pay for the amount of trans-

portation that it had committed to. Second, the longer term decisions condition the

shorter-term actions that the firm can take. For example, in the case of a take-or-

pay transportation contract, although the cost of the contract (the amount that the

firm owes each day) is constant in the objective function, the take-or-pay commit-

ment also increases the firm’s access to gas transportation by a specific amount of

guaranteed pipeline capacity. By decomposing the combined gas-electricity problem

into subproblems, approximating shorter-term dynamics for longer term decisions,

and iteratively reintroducing strategic decisions as exogenous parameters to shorter

timescale problems, we can computationally solve the central planner’s combined gas-

electricity problem over a wide range of timescales and scenarios as a proxy for solving

the full hourly formulation.

2.3.1 System state representation

To solve the combined gas-electricity problem across a range of timescales, we reformu-

late the hourly problem using the system states approach pioneered by [Wogrin et al., 2013].

In this section, we briefly summarize the approach using a highly stylized unit com-

mitment as an example; then, in section 2.3.2, we explain in detail the reformulation

of the central planner’s combined gas-electricity problem.
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Figure 2-2: Stylized unit commitment results

Figure 2-2 depicts a daily demand curve with the least-cost dispatch solution for

a power system that has nuclear, coal, combined-cycle gas turbine, single-cycle gas

turbine, and wind generators. To obtain this solution using an hourly unit com-

mitment, the MILP solver analyzes potential commitment states for each plant and

explicitly considers every transition between hour t and hour t + 1. In the system

state approach, instead of analyzing the problem sequentially from one hour to the

next, groups similar hours together.

System states can consist of many attributes, not just electricity demand and

renewable generation; for example, other useful attributes for the central planner’s

gas-electricity problem might include daily available gas pipeline capacity or the daily

commodity price of gas. In this implementation, a k-means clustering algorithm

creates k states amongst the selected attributes that minimize the aggregate least-

squared error between the system’s attributes in every hour and the nearest (most

similar) state. Figure 2-3 identifies example states based on the system’s electricity

demand and wind generation levels, and Figure 2-4 illustrates a completed mapping

between hours and system states. For the stylized unit commitment example, k = 4,
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Figure 2-3: Identifying system states using k-means clustering

and each state contains one level of electricity demand and one level of renewable

generation (generically described as “low” and “high” in both figures).

To preserve the dynamic hourly trends after mapping each hour to a state, the

system state technique counts the time (number of hours) spent in each state and

the number of transitions between states. This representation, shown in Figure 2-5,

replaces the traditional hourly formulation in two manners. First, a new state-based

decision replaces all decisions that have a time index. For example, if xj,t represents

the dispatch level of plant j in hour t, then in the system state reformulation, xj,t

becomes xj,s where s denotes one of the states created by the k-means clustering.

In the case of the first hour of this example system, the corresponding dispatch

decision for plant j becomes xj,s=S0. Second, a new state-to-state decision replaces

all decisions that link a previous hour to the next hour. For example, the start-up

variable yj,s=S0,s′=S1 represents the start decision for plant j in every hour where the

system exists in state S0 at time t and transitions to state S1 at time t + 1, as

in the first and second hours (see Figure 2-4). Grouping similar hours together and
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Figure 2-4: Each hour is assigned to the most similar cluster

reformulating the hourly problem using these two techniques yields a new optimization

problem with substantially fewer decision variables. For every time period p, such

as a week or a month, the solver determines the least-cost commitment and dispatch

for the transitions that occur between states and the system’s duration in every

state over period p. Then, the solution to the reformulated problem yields estimates

of important quantities such as the number of plant starts, plant stops, and fuel

consumption by arithmetically scaling each state-based decision. As each hour must

be assigned to one of a discrete set of states, and within each state the attributes of

interest have values that are fixed by k-means clustering, solving the unit commitment

over system state durations and transitions instead of sequentially from hour to hour

necessarily trades off accuracy in exchange for computationally tractability; for more

details and a case study of how the system state approximation compares to solving

a traditional hourly unit commitment, see [Wogrin et al., 2013].
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Figure 2-5: Tracking hourly trends and dynamics

2.3.2 System state implementation

To study the central planner’s combined gas-electricity problem, in this implemen-

tation of the system state approximation, each system state s contains an electricity

demand quantity EDs and a renewable generation quantity RGs. System states are

determined using k-means clustering over the set of possible electricity demand and

renewable generation pairs (EDs, RGs) for each scenario. For long-term decisions,

each period p represents one month. For medium-term, annual decisions, each pe-

riod represents one week. Within each period and scenario, the electricity demand

for electricity scenario k in p is described by state s and a corresponding number of

hours SDMk,p,s. Within the same period and electricity scenario, STMk,p,s,s′ captures

the number of transitions that occur from state s to s′.

The following tables contain the new and updated variables required to solve

the combined gas-electricity day-ahead problem using system states. For brevity, let

q = {k, n, v} so that q now represents a scenario index for a specific combination of

electricity (k), gas availability (n), and renewable generation (v) scenarios. First, the

system states representation has the following new indices:

index description

p period index; for example, one week or one month
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(continued from previous page)

index description

s, s′ system states index

Second, the system states representation has the following new parameters:

index description

SDDq,d,s number of hours spent in state s on day d

SDMq,p,s number of hours spent in state s in period p

STMq,p,s,s′ number of transitions from state s to s′ in period p

And third, the system states representation has the following updated decisions:

endogenous variable description

xq,s,p,i generation level for plant i

wq,s,p,i generation level above min for plant i

yq,s,s′,p,i plant i’s start-up decision from state s to s’

zq,s,s′,p,i plant i’s shut-down decision from state s s′

uq,s,p,i plant i’s commitment for state s in period p

fxLT,g long-term gas transportation commitment

fxST,q,d,g short-term (daily) gas transportation purchase

fq,d,g electric power system’s daily natural gas usage

sq,j total starts for plant j

fhq,j total firing hours for plant j

umdq,s,p,j binary product of (u)(md)

mdq,p,j maintenance duration

mSq,p,j starts offset to reset accumulator

mFq,p,j hours offset to reset accumulator

sAccq,p,j accumulated starts since last maintenance

hAccq,p,j accumulated firing hours since last maintenance
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endogenous variable description

mocq,v,j maintenance cost for plant j

mcj maintenance contract selection for plant j

mbq,p,j maintenance start for plant j

fccMAX,GAS,q,a,g max. fwd. cap. contribution from gas

fccMAX,NONGAS,q,a,g max. fwd. cap. contribution from other tech.

fccJ,q,d,j daily contribution of gas plant j to fwd. cap.

fccNJ,q,d,nj daily contribution of nongas plant nj to fwd. cap.

fccq,a,g anticipative fwd. cap. commitment for firm g

fccGAS,NA,a,g nonanticipative fwd. cap. decision

fccJ,NA,d,j nonanticipative fwd. cap. decision

fccNA,a,g nonanticipative fwd. cap. decision

The reformulated combined gas-electricity problem based on system states is as

follows, separated into subsections for clarity.
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Objective function

min
∑
q

Pq

[ ∑
d,g

fq,d,gC7,d

+
∑
s,p,nj

(xq,s,p,nj)((C4,nj)(HRnj) + (C5,nj))(SDMq,p,s)

+
∑
s,p,i

(uq,s,p,i)(C3,i)(SDMq,p,s)

+
∑
s,s′,p,i

(STMq,p,s,s′)(yq,s,s′,p,i)(C1,i)

+
∑
s,s′,p,i

(STMq,p,s,s′)(zq,s,s′,p,i)(C2,i)

+
∑
j

mocq,j

]

+ (PFX,LT )(
∑
g

fxLT,g)(D)

(2.93)

The reformulation changes the objective function more than any other part of the

linear program. In order by line, the objective function sums the cost of (1) natural

gas consumption by gas-fired generators; (2) generation costs for all non-gas fired

power plants including a cost adder for operations and maintenance; (3) commitment

costs for all plants; (4) start up costs for all plants; (5) shut down cost for all plants;

(6) maintenance costs attributed to long-term service agreements for gas-fired power

plants; and (7) long-term transportation commitments.

The summations above illustrate how the system state approach arithmetically

estimates costs without sequentially solving over all hours. As an example, consider

the generation variable, xq,s,p,nj, and the summation in the second line of the objective

function. To determine the cost of generation for non-gas fired power plants, the ob-

jective function calculates a unit cost for generation based on each plant’s heat rate,

HRnj, fuel cost, C4,nj, and maintenance adder, C5,nj. Then, the objective function

scales this unit cost based on plant nj’s actual output, xq,s,p,nj, and the number of

hours, SDMq,p,s, that the system exists in state s for period p and scenario q. After re-
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peating this summation across all states, time periods, and non-gas fired power plants

in the system, the objective function has a single aggregate cost that represents the

cost of generation for all non-gas fired power plants. The objective function tracks

costs for the other state- and state-transition-based variables in a similar manner,

by first establishing a unit cost (typically copied directly from the original objec-

tive function) and then scaling by either the state duration or the number of state

transitions.

Unit commitment constraints

s.t.
∑
i

xq,s,p,i = EDq,s −Rq,s∀q, s, p demand bal. (2.94)

xq,s,p,j = wq,s,p,j + (umdq,s,p,j)(Xnj,min)∀q, s, p, j total output (2.95)

xq,s,p,nj ≥ (uq,s,p,nj)(Xnj,max)∀q, s, p, nj tech. max (2.96)

xq,s,p,nj ≤ (uq,s,p,i)(Xnj,min)∀q, s, p, nj tech. min (2.97)

xq,s,p,j ≥ (umdq,p,j)(Xj,max)∀q, s, p, j maint. max (2.98)

xq,s,p,j ≤ (umdq,p,j)(Xj,min)∀q, s, p, j maint. min (2.99)

uq,s,s′,p,i = uq,s,p,i + yq,s,s′,p,i − zq,s,s′,p,i∀q, p, s, s′, i commitment (2.100)

yq,s,s′,p,i ≤ 1∀q, s, s′, p, i starts (2.101)

zq,s,s′,p,i ≤ 1∀q, s, s′, p, i stops (2.102)

The unit commitment constraints largely resemble their hourly counterparts, with

exception to the demand balance equation (Eq. 2.94) and the calculation of the

commitment state variable (Eq. 2.100). As part of the system state approximation,

state demand and renewable generation “bins” replaced hourly demand and renewable

generation levels. Consequently, the demand balance constraint is only enforced for

all possible states. As in the original hourly formulation, power plants in this system

only need to meet the net demand that remains after subtracting the state renewable

generation level, Rs,q, from the state electricity demand level, EDs,q. Lastly, the

reformulated commitment now calculates plant commitment decisions over all possible
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state transitions from s to s′, and not from hour t−1 to t. These modifications to the

unit commitment constraints substantially reduce the computational effort required

to find a solution to the central planner’s long- and medium-term problems.

Natural gas constraints

fq,d∈p,g =
∑
j∈g,s

(xq,s,p,j)(HRj)(SDDq,d,s)∀q, d, p, g daily gas usage (2.103)

fq,d,g ≤ fxST,q,d,g + fxLT,g∀q, d, g daily transportation (2.104)∑
g

fxST,q,d,g ≤ PC −GDn,d∀q, d pipeline capacity (2.105)

Natural gas constraints for the reformulated problem appear as direct transla-

tions of the original hourly formulation, with state-based variables replacing hourly

variables. As in the objective function, the natural gas constraint scales generation

decisions xq,s,p,j by their daily duration, SDDq,d,s, to estimate the power system’s

daily fuel consumption. Notably, for gas, both the long- and medium-term problems

estimate fuel usage and enforce fuel pipeline constraints on a daily basis because

pipeline capacity can substantially change within the same month or week based on

nonelectric demand for natural gas.

LTSA selection

fhq,j =
∑
p,s

(umdq,s,p,j)(SDMq,p,s) total firing hours (2.106)

sq,j =
∑
p,s,s′

(yq,s,s′,p,j)(STMk,p,s,s′) total starts (2.107)

(sq,j)(C6,l)(FHAl,h
− FHAl,h+1

)

− (fhq,j)(C6,l)(SAl,h
− SAl,h+1

)

+ (mocq,v,j)(SAl,h
FHAl,h+1

− SAl,h+1
FHAl,h

)

≥ M(mcj,l − 1)∀j, l, h,R(sq,j, fhq,j) ∈ ∢Al,hOAl,h+1

MIF cost (2.108)
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∑
l

mcj,l = 1∀j contract selection (2.109)

As with natural gas constraints, maintenance constraints also appear as direct

translations of the original hourly formulations. To count a plant’s firing hours, the

reformulation scales the commitment variable umdq,s,p,j by the duration parameter,

SDMq,p,s, and then sums all periods together. The same operation estimates total

plant starts using start decision yq,s,s′,p,j and transition count STMk,p,s,s′ .

Maintenance scheduling, binary constraints

umdq,s,p,j ≤ uq,s,p,j∀q, s, p, j linearization (2.110)

umdq,s,p,j ≤ 1−mdq,p,j∀q, s, p, j linearization (2.111)

umdq,s,p,j ≥ uq,s,p,j −mdq,p,j linearization (2.112)

The maintenance scheduling binary constraints directly map from their hourly

variables to their state-based variables, and the same linearization technique allows

the multiplication of the binary variables for commitment, uq,s,p,j, and maintenance

availability, mdq,p,j.

Maintenance scheduling, starts limit

sAccq,p,j = sAccq,p−1,j + (
∑
s,s′

yq,s,s′,p,j)(STMq,p,s,s′)−mSq,p,j∀q, p, j (2.113)

sAccq,p,j ≤ MST (2.114)

mSq,p,j ≤ sAccq,p−1,j +
∑
s,s′

(yq,s,s′,p,j)(STMq,p,s,s′) (2.115)

mSq,p,j ≤ (M)(mbq,p,j) (2.116)
p∑

p=0

mbq,p,j ≤
∑p

s,s′,p=0(yq,s,s′,p,j)(STMq,p,s,s′)

MST
+ 1 (2.117)

As in the objective function, to enforce the maintenance inspection start limit for a
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long-term service agreement, calculating the number of starts requires summing the

starts variable yq,s,s′,p,j for each plant j in each period p scaled by the number of

transitions that occur, STMq,p,s,s′ . All other constraints directly reflect their hourly

counterparts.

Maintenance scheduling, firing hours limit

hAccq,p,j = hAccq,p−1,j + (
∑
s

umdq,s,p,j)(SDMq,p,s)−mFq,p,j∀q, p, j (2.118)

hAccq,p,j ≤ MFH (2.119)

mFq,p,j ≤ hAccq,p−1,j +
∑
s

(umdq,s,p,j)(SDMq,p,s) (2.120)

mFq,p,j ≤ (M)(mbq,p,j) (2.121)
p∑

p=0

mbq,p,j ≤
∑p

s,p=0(umdq,s,p,j)(SDMq,p,s)

MFH
+ 1 (2.122)

Enforcing the firing hours threshold for long-term service agreement requires an identi-

cal arithmetic approach to enforcing the starts limit, save for the fact that an estimate

of firing hours sums the combined commitment/maintenance variable umdq,s,p,j and

scales by the duration parameter SDMq,p,s. Note that in the firing hours and starts

limit formulations for maintenance scheduling, the only substantial difference is the

calculation of firing hours and starts estimates.

Forward capacity commitment

∑
g

fccq,a,g = FCMa∀q, a (2.123)

fccq,a,g ≤ fccMAX,NONGAS,q,a,g + fccMAX,GAS,q,a,g (2.124)

fccNJ,q,d,nj ≤ (Xnj)(FORnj) (2.125)

fccMAX,NONGAS,q,a,g ≤
∑
nj∈g

fccNJ,q,d,nj∀q, g (2.126)

fccJ,q,d,j ≤ (Xj)(1−mdq,p,j)∀q, d ∈ p, p, j (2.127)
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fccMAX,GAS,q,a,g ≤
∑
j∈g

fccJ,q,d,j∀q, a, d ∈ a, g (2.128)

∑
j∈g,(q,p,s)∈SH

(fccJ,q,d,j)(Hj)(SDDq,p,s) ≤ fxLT,g + fxST,q,d,g∀q, d ∈ p, p, g (2.129)

fccGAS,q,a,g ≤
∑
j∈g

(Xj)(1−mdq,p,j)∀p ∈ a, a, g (2.130)

The forward capacity constraints map directly from their hourly counterparts.

Risk aversion

The constraints to model risk aversion with respect to not being able to acquire

enough transportation in the short term can be directly copied from the hourly unit

commitment (Equations 2.80-2.83) because the hourly unit commitment balances gas

on a daily basis. The constraints below repeat the constraints in Equations 2.80-2.83,

replacing the discrete scenario variables with q for simplicity:

aST,q,d,g ≥ 1− fxLT,g

fq,d,g
∀q, g, d (2.131)

aLT,q,g = 1−
∑
d

aST,q,d,g

D
∀q, g (2.132)

amin,g −
∑
q

(Pq)(aq,g)

1− βg

≥ Amin,g∀q, g (2.133)

aq,g ≥ amin,g − aLT,q,g∀q, g (2.134)

Positivity and integer constraints

And lastly, the positivity and integer constraints also map directly from their hourly

counterparts.

x,w, y, z, fxST , fxLT , f, s, fh,

umd,md,mS,mF, sACC, hACC,

fcc, fccNONGAS, fccGAS, fccNJ, fccJ ≥ 0 nonnegativity (2.135)

uq,s,s′,p,i,mbq,p,j,mcj,l ∈ {0, 1} ∀q, l, s, s′, p, i, j binary decisions (2.136)
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In summary, the system state approximation reformulation of the central planner’s

combined gas-electricity problem is as follows. Let Ω represent all of the decision

variables enumerated in equations 2.135 and 2.136; then, the central planner solves:

min
Ω

Eq. 2.93

s.t. Eqs. 2.94-2.102 unit commitment

Eqs. 2.103-2.105 fuel constraints

Eqs. 2.106-2.109 LTSA selection

Eqs. 2.110-2.122 maintenance

Eqs. 2.123-2.130 fwd. capacity

Eqs. 2.131-2.83 risk aversion

Eqs. 2.135-2.136 positivity, integers

2.4 Summary and next steps

To study the optimal behavior of firms with gas-fired power plants over the long

and short term, we proposed a mathematical formulation of an equivalent centrally

planned problem that relies on assumptions of perfect competition and equivalence

between welfare maximization and cost minimization. The centrally planned problem,

at its core, relies on a fuel-constrained unit commitment for scheduling and dispatch.

To make the hourly unit commitment tractable over a period of many years, in this

chapter we also described a method to solve different timescale problems indepen-

dently and then reintegrate each solution as an approximation to solving the full

hourly formulation. This approach relies on using system states to replace the hourly

formulation in the long and medium term and holding these decisions constant when

solving for shorter term decisions. The next chapter applies the mathematical models

developed here to a real-size system to explore how decisions interact with one an-

other and to study the reliability and market dynamics of a gas-constrained electric

power system.
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Chapter 3

Case study

New England is the first region in the United States to experience substantial gas

and electricity problems due to both increased consumption of natural gas by the

electricity sector and scarcity of pipeline capacity in the gas sector. Leading up to

2013, a confluence of environmental, technical, and financial issues gradually reduced

the number of coal and nuclear power plants in New England, and in 2013 the In-

dependent System Operator of New England (ISO-NE) started to cite gas-electricity

challenges as one of its most prominent concerns in its annual regional system plan-

ning report [ISO-New England, 2013a]. Today, approximately one-half of all power

plant capacity in New England requires natural gas. The region’s large fraction of

gas-fired power plants limits the power system’s ability to substitute other technolo-

gies during pipeline scarcity events, creating both financial correlations between New

England’s electricity and gas prices (see Figure 3-11) and reliability concerns. Given

New England’s dependence on natural gas and the interesting market and policy

problems that it faces, in this case study, we apply the gas-electricity model created

in Chapter 2 to a representative system inspired by New England to examine how

firms should make key decisions and to gain insight about some of the aggregate

impacts of these individual decisions on the gas-electricity system as a whole.
1Sources: http://www.iso-ne.com/markets/mkt_anlys_rpts/whlse_load/select/WhlseLoad.do;

http://www.eia.gov/dnav/ng/ng_pri_sum_a_epg0_pg1_dmcf_m.htm
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Figure 3-1: New England gas and electricity price correlation

3.1 Input data

The data for this case study is based on public data published by ISO-NE and the

United States Energy Information Administration (EIA). The model’s primary data

inputs and parameters include ISO-NE’s 2010-2013 hourly electricity demand, ISO-

NE’s 2013 winter seasonal availability report2, EIA’s 2013 gas prices for the New

England region, and EIA’s estimate of average heat rates for power plants. Table

3.1 summarizes the set of power plants available for dispatch in this model based on

ISO-NE and EIA’s data; as previously noted, most of New England’s power plant

capacity consists of nuclear and gas technologies.
2http://www.iso-ne.com/genrtion_resrcs/snl_clmd_cap/2013/index.html
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no. of plants capacity range average heat rate total capacity

(MW) (MMBtu/MWh) (MW)

nuclear 5 [556-1247] 10.4 4656

coal 10 [48-622] 10.3 2300

gas 48 [2-858] 7.7 11489

diesel 41 [1-49] 10.9 568

jet fuel 37 [5-68] 11 1140

oil 62 [10-606] 11 9926

Table 3.1: Summary of dispatchable ISO-NE power plants, 2013

New England’s electricity demand exhibits daily and seasonal patterns. Figure

3-2 shows New England’s annual electricity demand in 2013, while Figure 3-3 shows

New England’s electricity demand for a typical week in the spring (April 11 to 18,

2013), and Figure 3-4 shows New England’s weekly electricity demand for a typical

week in the summer (July 15 to 22, 2013). In the spring, electricity demand is

at its lowest compared to the rest of the year, and daily demand tends to feature

two intraday peaks—one in the morning and another in the evening. By contrast,

in the summer, demand is at its highest relative to the rest of the year, and daily

demand features a single mid-afternoon peak. Section 3.2.1 reviews the system state

approximation’s representation of these different demand patterns given that they can

strongly condition the investment and operation decisions that electricity generation

firms make.
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Figure 3-4: New England Electricity Demand, July 15 to July 22, 2013

Lastly for input data, Figure 3-5 shows representative historical gas prices at Al-
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gonquin, the main pipeline by natural gas enters New England, in 2013 separated

by transportation and commodity. The commodity component of the gas price re-

flects daily prices at Henry Hub, while the transportation component represents the

difference between prices at Algonquin and Henry Hub. New England historically ex-

periences its highest gas prices between the late fall and early spring, when demand

for gas for both electricity and heating tends to consume almost all available pipeline

capacity in the region.
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Figure 3-5: 2013 Algonquin Gas Prices (based on EIA data)

3.2 Benchmarks

To study pipeline adequacy issues and other gas-electricity interactions, in this case

study, we will build a power system inspired by New England by combining ISO-

NE’s list of dispatchable power plants, historical electricity demand EIA’s historical

gas prices as described in section 3.1, and the single-node electricity and gas model

presented in Chapter 2. Due to the number of new decisions that we have added to

the basic unit commitment problem, as well as the system state approximation used

to achieve computational tractability, the model presented in Chapter 2 can result in

interactions between decisions that are difficult to understand.

To aid our understanding, in this section we examine decisions individually using

a smaller set of input data. First, we will examine how well the system state ap-
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proximation works by comparing unit commitment results with a basic hourly unit

commitment model. Then, we highlight how the system behaves depending on the

decisions made by conducting a series of “experiments” in which we fix all but one

decision and then explore how that decision responds to different parameters. In

aggregate, these exercises provide common-sense checks for the model formulated in

Chapter 2. For example, if natural gas is free, then we would expect firms to use

as much natural gas as possible on any given day. Conversely, if natural gas is ex-

tremely expensive relative to other fuels, then we would expect firms to use much

less natural gas, unless there are no other suitable substitutes. In addition to serving

as common-sense checks against intuition, these experiments may reveal interesting

relationship for future exploration. All results were obtained from optimizations with

relative tolerances of 0.01 or less.

3.2.1 System state versus hourly unit commitment

As the modeling for this dissertation relies heavily on the system state approximation

technique described in Chapter 2.3.1 to achieve computational tractability, we first

provide benchmarks to compare results between a basic unit commitment based on

system states versus an hourly formulation. For these benchmark runs, each unit

commitment operates over a three-month time period from January 2013 to March

2013, using the full-sized power system input data described in section 3.1. The sys-

tem state model approximates the hourly problem using eight, sixteen, and thirty two

system states. The exact number of states is arbitrary, and more states allow more

precision. However, the transition matrix grows by the square of the number of states,

so increasing the number of states also quickly increases the number of decision vari-

ables. Figure 3-6 shows how each hour maps to a system state in January 2013 for the

eight-state representation. Notably, because eight states is coarse, the approximation

captures hourly dynamics accurately—but not necessarily with precision. Increasing

the number of states would increase the precision of the approximation, but at the

added cost of more computational time (Table 3.2 compares computational details

for each approach).
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Figure 3-6: System state approximation of electricity demand

Figure 3-7 shows the hourly unit commitment and system state approximation’s

dispatch schedule for January 2013 given 203 individual power plants. Three common

unit commitment features are visible in this figure. At the bottom of both schedules,

for demand below approximately 2500 MW, baseload units serve constant demand

throughout the month without cycling on and off. Between approximately 2500 MW

and 10000 MW, power plants remain on most hours of the month, but ramp up

and down to follow load. For the remaining peak demand above 10000 MW in both

schedules, power plants ramp up and down and cycle on and off to balance electricity

demand with supply.
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Figure 3-7: One-month dispatch: (top) system state; (bottom) hourly formulation

Figure 3-7 also qualitatively illustrates the system state approximation’s primary dif-

ferences compared to the hourly unit commitment. Notable differences can occur be-

tween the dispatch schedules of both methods due to the fact that the approximation

neither precisely replicates hourly demand nor the full hourly problem formulation.

In this particular example, the system state approximation only uses eight load levels

and does not explicitly enforce ramp constraints, leading to observable differences in

the amount of energy generated between the dispatch schedules for intermediate units
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throughout the month and particularly during the third week of January.

To quantitatively measure differences between the hourly formulation and the

system state approach, we normalize and measure commitment plan differences as

follows (this is the same metric used in [Palmintier and Webster, 2012] to study binary

clustering as a dimensionality reduction technique for unit commitment):

∆U =

∑
i,t

(|ustate,i,t−ubinary,i,t|)
ubinary,i,t

T
(3.1)

where ustate,i,t represents the system state commitment decision for plant i at time

t, and ubinary,i,t represents the binary formulation’s commitment decision for plant i

at time t. Smaller values for ∆U indicate commitment results that exhibit greater

similarity. Tables 3.2 and 3.3 compare the two model’s estimates of fuel consump-

tion, commitment decisions, commitment costs, total system costs, and computation

details for a three-month unit commitment from the beginning of January to the end

of March 2013.3 The results shown in these tables are from the same unit commit-

ment problems shown in Figure 3-7; however, to make the dispatch schedule easier to

visualize, Figure 3-7 only shows a subset of the total generation results.

In these numerical benchmarks, the system state approximation results closely

match the hourly formulation’s results for outputs of interest. Using eight system

states resulted in a normalized mean unit commitment difference measure of ∆U =

0.066. For comparison, using 16 states in this example resulted in ∆U = 0.052,

and using 32 states resulted in ∆U = 0.053 when solving each mixed-integer linear

program with a tolerance of 0.001. The slight increase in the normalized error rate

between 16 and 32 states is likely due to the nature of solving problems with binary

variables because the solver stops once it finds a solution within the desired tolerance.

For the purposes of benchmarking the system state approach, we can state that the

normalized error for commitment decisions ranges between 5% to 6%.4

3Computation times are for a computer with an Intel 2.7 GHz i5 processor running GAMS/C-
PLEX 12.5 on three cores and eight gigabytes of memory on OS X (10.9, Mavericks).

4For comparison to other approximation techniques, the error rate cited in
[Palmintier and Webster, 2012], which clusters groups of identical power plants together and
converts the binary unit commitment formulation into an integer problem, exhibits error rates
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hourly model 8 states 16 states 32 states

total cost $2.25 billion $2.27 billion $2.27 billion $2.27 billion

fuel 127 trillion BTU 135 trillion BTU 135 trillion BTU 135 trillion BTU

plant starts 1236 1273 1342 1306

commit. costs $236 million $243 million $245 million $246 million

Table 3.2: System state versus hourly unit commitment results

hourly model 8 states 16 states 32 states

variables 1,762,652 88,220 333,020 1,292,636

equations 2,205,452 127,412 489,740 1,919,420

execution time 715 seconds 1.12 seconds 3.93 seconds 17.3 seconds

∆U - 0.066 0.052 0.053

Table 3.3: System state versus hourly unit commitment computation details

The system state approximation does coarsely replicate hourly dispatch decisions

with the added advantage of making long-term unit commitment problems compu-

tationally tractable. Given this, numerical results reported in this case study for

costs, fuel usage, and other decisions should be treated as first-order estimates for the

purpose of gaining insights about gas-electricity relationships.

3.2.2 Isolated decisions

Using the system state approximation technique to model a power system over a

timeframe of three years, we now conduct a series of “experiments” to gain intu-

ition about the relationships between individual decisions and parameters. In these

“experiments,” we only consider a single, deterministic case consisting of high elec-

tricity demand (ISO-NE’s 2013 electricity demand plus an arbitrary additional base

load demand of 10,000 MW throughout the year), high coal prices (approximately

closer to 0.1%. However, due to the key decisions in this study related to long-term service
agreements and maintenance scheduling, clustering is not an appropriate approximation technique
to apply. For additional benchmarking using system states, see [Wogrin et al., 2012].
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$5/MMBtu), and the presence of a large gas consumer with pipeline capacity priority

(e.g., a local distribution company). For the purpose of exploring decisions in isola-

tion, these inputs should specifically allow interesting market effects to appear due

to substitution between coal and gas technologies.

We will review isolated decisions for long-term gas purchases, maintenance con-

tract selection, maintenance scheduling, and forward capacity obligations. For gas

purchase decisions, all power plants were assigned to the same long-term service

agreement with a cost of $10 million, 250 starts, and 25,000 firing hours. Second,

for service agreement decisions, long-term gas transportation decisions were frozen at

1 BCF. Third, for maintenance scheduling, power plants were split evenly between

contract 0 ($10 million, 250 starts, 25000 firing hours) and contract 1 ($27.5 million,

750 starts, 25000 firing hours). The price for contract 1 reflects the price that evenly

splits plants in the system between both contracts. For all runs in this exploration, the

system operator sets a forward capacity threshold of 20,000 MW. Finally, to further

reduce the computation time required for these exploratory runs, we only consider

the reduced set of scaled power plants and firms shown in Table 3.4, which consists

of one monolithic, coal-fired power plant and ten smaller gas-fired power plants.

technology # of plants capacity per plant (MW) avg. heat rate

firm 1 coal 1 10000 10

firm 2 gas 10 2000 10.3

Table 3.4: Power plant data subset for exploring isolated decisions

Gas transportation and commodity purchases

For long-term gas transportation and short-term commodity decisions, the follow-

ing set of charts explores a large range of price sensitivities for firm transportation.

If we observe that despite high prices (relative to the spot market), firms continue

to purchase long-term pipeline transportation, then we may be able to identify a

key dependency of the electric power system on natural gas that either 1) existing

technologies cannot currently serve as substitutes for, or 2) may signal investment op-
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portunities for new entrants. Therefore, although long-term pipeline transportation

prices are unlikely to reach the upper bound of $1000/MMBtu given that transporta-

tion costs in 2013 added no more than $40/MMBtu to the commodity price in New

England, starting with this wide range of transportation prices may provide useful

insights about gas-electricity interactions.
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Figure 3-8: Isolated long-term pipeline firm transportation decision

Figure 3-8 shows firm 2’s commitment to long-term, firm pipeline capacity. Two

interesting features appear in Figure 3-8 that merit further explanation. First, the

“plateau” observed near the price of $100/MMBtu enables the firm to offer forward

capacity (this is further discussed in section 3.2.2). Second, the small quantity of

transportation purchased when prices exceed $300/MMBtu is due to the lack of other

generation technologies in New England and the pipeline shortages that occur with

certainty in this deterministic scenario.

Figure 3-9, which estimates firm 2’s daily gas purchases over the entire year, illus-

trates this interaction between a lack of generation alternatives and pipeline capacity

shortages more clearly. Each data point in Figure 3-8 and each chart in Figure 3-9

represents a different optimization run. Over the set of six runs shown, the price of
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long-term pipeline capacity varies from low ($0/MMBtu) to high ($1000/MMBtu).

When the price of transportation is zero, the generation firm purchases all of the trans-

portation that it needs ahead of time. As the price of long-term pipeline transporta-

tion increases, the generation firm increasingly relies on the spot market to acquire

pipeline capacity. During times of scarcity (for example, during January and Febru-

ary) if the price of long-term pipeline transportation is too high, the firm substantially

reduces consumption. However, even at extremely high long-term prices that are one

and two orders of magnitude higher than spot prices, the cost-minimizing solution

still involves a small purchase of firm transportation to meet the firm’s minimal gas

requirements in January and February; this purchase highlights both a gas-electricity

dependency and a potential investment opportunity for new entrants.

Comparing the firm’s behavior when long-term pipeline transportation is inex-

pensive (the top two charts in Figure 3-9) with the firm’s behavior when long-term

pipeline transportation is expensive (the bottom two charts in Figure 3-9), when

transportation is inexpensive, the firm’s transportation purchases can exceed its ac-

tual gas consumption. In contrast, when transportation is extremely expensive, the

firm buys just enough to meet its minimum requirements throughout the year. Addi-

tionally, high long-term pipeline transportation prices relative to spot market prices

also suppress total gas consumption. From the central planner problem’s perspective,

these graphs illustrate the trade-off between investing in pipeline capacity to allow

gas-fired power plants to run versus quitting consumption and substituting other tech-

nologies. From the individual firm’s perspective, these graphs illustrate the prices and

quantities at which securing guaranteed pipeline capacity could be profitable (keeping

in mind the deterministic nature of this particular experiment). The firm’s behavior

largely follows economic intuition. As prices rise, the firm’s consumption decreases.

However, in section 3.2.2, we explore the relationship between forward capacity com-

mitments and long-term gas purchases and highlight an interaction between the two

that is not obvious by only examining Figures 3-8 and 3-9.
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Figure 3-9: Estimation of firm 2’s daily short-term gas purchases for 2013

Long-term service agreements

Choosing long-term service agreements (LTSAs) for gas-fired power plants requires a

firm to decide how to trade off between cost and flexibility. In this case, “flexibility”

represents a greater number of starts per maintenance agreement. Depending on the

rest of the power system, however, a firm may not want or need this extra flexibility.
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For example, in a power system in which gas-fired power plants remain constantly on

and serve constant load, paying $10 million more for a service agreement that allows

500 more starts may not make much sense if a power plant cannot use these extra

starts before its service agreement expires. Alternatively, if a firm is uncertain about

the future operating regime of its power plants, it may want the more flexible contract

to hedge against uncertainty (Section 3.2.3 discusses this hedge in greater detail).

To examine the model’s representation of service agreements, we fix firm 2’s long-

term gas purchase decisions at 1 BCF and the contract 0’s premium at $10 million.

Then, we iteratively run optimizations with premiums ranging from $0 to $50 million

for the contract 1, which offers 500 more starts than contract 0 and the same number

of firing hours. Figure 3-8 shows how the firm that owns gas-fired power plants divides

its ten plants among the two available service agreements at different price premiums

for the more flexible service agreement. Matching intuition, the firm exclusively

prefers contract 1 when its price is less than or equal to the fixed price for the less

flexible contract. However, as the price for flexibility increases, the firm trades off

between the two agreements and reaches a break-even split between the two contracts

when the more flexible contract is priced at $27.5 million. Shortly after the break-even

point, the firm exclusively prefers the less flexible and less expensive contract (because

the extra starts are no longer worth the extra cost). Observing how firms trade off

between cost and flexibility in their selection for long-term service agreements can

provide useful insights about how firms might adapt to new operating regimes and

changes in the economic merit order (due to any number of reasons, including the

introduction of renewables or high gas prices due to pipeline scarcities) to remain

economically viable.
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Figure 3-10: Isolated long-term service agreement decision

Maintenance scheduling

Firms must perform regular maintenance on all of their power plants. In power

systems with wholesale markets, firms try to schedule these maintenance events during

times of the year when they otherwise would make little profit. Typically, this leads

to maintenance schedules in which available gas-fired power plant capacity reaches its

minimum in the late winter/early spring and its maximum during the summer. Figure

3-11 shows an approximate solution for maintenance schedules from a long-term run

for firm 2’s gas plants after fixing firm 2’s long-term pipeline transportation decision at

1 BCF and setting the price for service contract 1 to $27.5 million. Figure 3-12 shows

the actual maintenance schedule from a medium-term run for firm 2’s gas plants under

the same set of long-term decisions. Each time period in a long-term run represents

one month, while each time period in a medium-term run represents one week. The

maintenance solution spreads maintenance amongst plants so that at any particular

time, only one of the ten plants is offline for maintenance. The long- and medium-term

maintenance schedules show the same general shape that maximizes gas-fired power

plant capacity between June and August, matching empirical observations from the

power sector.
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Figures 3-11 and 3-12 also show, for the first time in this case study, the time step

differences between the long and the medium term optimizations. In long-term runs,

one period represents a month. In medium-term runs, one period represents a week.

In long-term runs, as shown in Figure 3-11, when a plant is taken offline, the least

amount of time that the plant must stay offline for is one month. By contrast, Figure

3-11 represents a maintenance schedule from a medium-term run that utilizes a time

step of one week (a more realistic timeframe for actual maintenance). Importantly,

the maintenance schedule approximation from the long-term run is just that—an

approximation to help make long-term pipeline transportation and service agreement

decisions. For actual maintenance scheduling, which requires more precision, we need

to switch to the medium-term model. This is the same distinction that exists between

the system state model and the hourly unit commitment with respect to short-term

operations: while the system state model approximates the short-term for the purpose

of informing medium- and long-term decisions and obtaining useful system insights,

for actual short-term, hourly operations, we must switch back to the hourly unit

commitment.
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scheduled outages (medium-term solution)

Forward capacity commitments

In the forward capacity market, we expect to observe two broad trends. First, as

the price of long-term pipeline transportation increases, firms should respond by

purchasing less firm transportation and offering less power plant capacity if they

rely on long-term firm transportation to ensure that they have adequate gas supplies.

Second, if acquiring forward capacity via other technologies costs more than acquiring

that same capacity from natural gas technologies, then firms will continue to purchase

long-term pipeline transportation as needed—even as the price rises—until another

technology becomes economically competitive.

Figure 3-13 shows the medium-term results for the forward capacity market after

fixing the long-term service agreements for all power pants to contract 0 ($10 million,

250 starts, 25000 firing hours) and setting the forward capacity target at 20,000 MW.

The results contain multiple runs, each with different prices for long-term pipeline

transportation ranging from $0/MMBtu to $500/MMBtu. (Figure 3-8 contains the

corresponding long-term pipeline transportation purchases for Figure 3-13.) Given

this particular set of deterministic cases, the two firms’ contributions to forward ca-
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pacity exhibit both of the expected trends that relate long-term pipeline transporta-

tion prices to forward capacity commitments and technology substitutions. When the

price of long-term pipeline transportation is less than $100/MMBtu, the firm with

gas-fired power plants always contributes nearly the maximum capacity of its portfolio

(specifically, it always commits to making nine of its ten plants available to accommo-

date a maintenance schedule similar to the one shown in Figure 3-11). However, as

the price of long-term pipeline transportation increases, acquiring forward capacity

from the coal plant becomes less expensive, and technology substitution reduces the

forward capacity contribution of gas-fired power plants. The interaction between the

forward capacity market and long-term pipeline transportation is visible upon closer

inspection of Figure 3-13. Absent other effects, we would expect long-term purchases

to decline in a convex manner as the price of transportation increases. However, the

long-term pipeline transportation purchases shown in Figure 3-13 do not match this

pattern. In particular, a “plateau” exists in long-term pipeline transportation pur-

chases near $100/MMBtu. However, the plateau is consistent with the firm’s constant

forward capacity offer of 18,000 MW up to a long-term pipeline transportation price

of $100/MMBtu, after which both its long-term pipeline transportation purchases

and forward capacity commitments decline.
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Figure 3-13: Forward capacity commitment for different long-term pipeline
transportation prices

3.2.3 Simultaneous decisions

After having reviewed each of the firm’s individual decisions in detail, now we allow

all decisions to interact simultaneously with one another when (1) there is no other

gas consumer (and hence, the electric power industry may use all of the region’s

available pipeline capacity); (2) a large gas consumer with pipeline capacity priority

reduces the amount of short-term pipeline capacity available; and (3) pipeline capacity

uncertainty exists, and both of the former pipeline scenarios can occur with equal

probability. The uniform probabilities assigned to these two scenarios were selected

arbitrarily for demonstration, and in reality scenario probabilities would reflect either

a firm or a regulator’s best estimates based on expertise.

Long-term pipeline transportation purchases

Figure 3-14 shows the impact of pipeline shortages and uncertainty on the firm’s long-

term pipeline transportation decisions. When there is no chance of a shortage, the

firm buys the least amount of pipeline capacity relative to the other two scenarios and
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completely quits after a specific price threshold (note that the vertical scale for the

top chart is about one-third of the scale of the other two charts). However, as shown

in the middle chart, when the firm’s access to pipeline capacity varies depending on

the demand of another gas consumer, the firm is willing secure a greater amount of

firm transportation. When the firm does not know which gas scenario will occur,

it purchases an intermediate amount of long-term pipeline transportation relative to

the two deterministic cases. Interestingly, the possibility of not experiencing any

gas shortages substantially attenuates the firm’s transportation purchases, reducing

both the previous “plateau” near $100/MMBtu and the firm’s corresponding forward

capacity offer (see Figure 3-17). Although this result may minimize costs/maximize

profits in expectation, depending on which scenario actually occurs, the electric power

system will experience either no gas pipeline shortage or substantial gas pipeline

shortage—not an “in between” mixing of these two possibilities. Section 3.3.2 explores

modeling risk aversion to pipeline shortages and how this risk aversion can affect firm

transportation purchases.
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Figure 3-14: Long-term gas purchase, all decisions enabled: (top) no transportation
cost; (middle) pipeline scarcity; (bottom) gas uncertainty
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LTSA selection

Figure 3-15 shows firm 2’s long-term service agreement decisions under different long-

term pipeline transportation prices and pipeline availability scenarios. For these runs,

the less flexible contract offers 25,000 firing hours and 250 starts for $10 million, while

the more flexible contract offers 25,000 firing hours and 750 starts for $20 million.

When there is no pipeline capacity shortage, the firm overwhelmingly prefers the

less flexible contract—more of the firm’s plants can operate as base load/intermediate

units that cycle relatively infrequently, and the extra starts are less useful for most

plants. In the pipeline capacity shortage scenario, the plants are almost split evenly

between both contracts as the price of long-term pipeline transportation increases,

suggesting that the firm operates more of its plants as peakers compared to the no

pipeline capacity shortage scenario. Interestingly, when gas pipeline capacity uncer-

tainty exists, the firm substantially prefers the more flexible contract as long-term

pipeline transportation prices rise. The extra flexibility allows the firm to operate its

power plants as either baseload or peaker units depending on which future actually

occurs, and the trade-off in cost, given this particular set of input data, is worth the

added flexibility.
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Figure 3-15: LTSA, all decisions enabled: (top) no transportation cost; (middle)
pipeline scarcity; (bottom) gas uncertainty
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Maintenance schedule

Figure 3-16 illustrates available gas-fired power plant capacity throughout the year for

different long-term pipeline transportation prices. Because higher long-term pipeline

transportation prices tend to drive down gas consumption (as previously observed

in Figure 3-9, all else being equal), exploring how maintenance schedules compare

across different long-term pipeline transportation prices may reveal whether substan-

tial maintenance pattern differences exist when a firm operates its power plants as

base loaded units or as peakers.

The firm shown in these charts owns 20,000 MW of gas-fired power plant capacity.

Out of all pipeline scenarios, at most, the firm only simultaneously takes two plants

(4000 MW) of capacity offline. The consistent “empty” maintenance areas around

January and the summer months in all three pipeline scenarios match empirical ob-

servations that firms should schedule maintenance during the spring and fall, when

demand and electricity prices are typically lower than other times of the year. The

consistency between all three maintenance schedules suggests that it is advantageous

for the firm to spread out its maintenance across the early spring and fall months

in this system, keeping as much of its capacity online as possible during the summer

and winter
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Figure 3-16: Maintenance schedule, all decisions enabled: (top) no transportation
cost; (middle) pipeline scarcity; (bottom) gas uncertainty

Forward capacity commitment

Figure 3-17 shows forward capacity commitments over a range of long-term pipeline

transportation prices for each pipeline scenario. Surprisingly, in both deterministic

cases—when there is no possibility of a shortage, and when shortages will occur with
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certainty—firm 2 contributes a consistent amount of capacity. Yet, when the firm is

uncertain about future gas availability, its forward capacity contribution sharply drops

as the price of long-term pipeline transportation rises, and coal makes up the differ-

ence. In the uncertainty scenario, as the price of long-term pipeline transportation

increases, acquiring forward capacity from coal technologies becomes cheaper than ac-

quiring forward capacity from gas technologies because the firm may pay more than

it needs for transportation if the no-shortage scenario occurs, and the firm must pur-

chase long-term pipeline transportation to ensure that it has adequate gas supplies

for its forward capacity offer. Therefore, interestingly, the welfare-maximizing choice

is for the firm with gas-fired power plants to offer less in the forward capacity market

and to allow the coal plant to make up the remainder.
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Forward capacity (no pipeline shortage)

Forward capacity (pipeline shortage)

Forward capacity (pipeline uncertainty)

Figure 3-17: Forward capacity, all decisions enabled: (top) no transportation cost;
(middle) pipeline scarcity; (bottom) gas uncertainty
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3.3 Hypothetical explorations

After having reviewed decisions in isolation as a common-sense check on the model’s

implementation, and after having reviewed decisions made simultaneously under un-

certainty to gain greater insight about how decisions interact with one another, we

now turn to analyze a full-sized power system based on the New England input data

previously described in section 3.1. The pipeline connected to this power system can

transport 2.6 BCF of natural gas per day, which mirrors the available capacity at

Algonquin into New England. As before, this model of New England is a single-node

market that does not represent the transmission or the gas network. Given that New

England’s primary pipeline scarcity problems occur due to lack of adequate capacity

at Algonquin and not the other smaller pipelines that feed into the region, we expect

this single-node representation to be a reasonable abstraction.

In this power system, firms 1 through 5 collectively own 203 power plants as enu-

merated in ISO-NE’s 2013 Winter Seasonality Report5 and summarized in Table 3.1.

Five firms have been arbitrarily assigned to ownership of power plants. Broadly, firm

1 owns nuclear and coal plants; firms 2 and 3 own gas-fired power plants; and firms 4

and 5 own oil and diesel-fired power plants. In the results below, “firm 6” represents an

imaginary power plant that can meet all unmet demand (nonserved energy) at a price

of $3500/MWh. This is equivalent to assigning all consumer demand a utility/price

of $3500/MWh; when the price of electricity rises above this price, the consumer

stops consumption. (The existing academic literature typically assigns nonserved en-

ergy a value between $2000/MWh and $5000/MWh; in [LaFleur et al., 2014a], other

agencies have used values that are an order of magnitude higher.)

3.3.1 Full-sized power system

We start by presenting the decisions that each firm should make given ISO-NE’s elec-

tricity demand (Figure 3-2) and gas prices (Figure 3-5), and then analyze how these

decisions might change after introducing electricity demand and pipeline uncertainty.
5http://www.iso-ne.com/genrtion_resrcs/snl_clmd_cap/2013/index.html
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As before, for many of these explorations, we analyze a decision’s sensitivity to the

price of long-term pipeline transportation because this price and the corresponding

quantity purchased by each firm can reveal useful interactions that may signal a

dependency or an investment opportunity for new entrants.
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Figure 3-18: Long-term gas purchase, full power system

For the deterministic scenario described at the beginning of this section, Figure

3-18 illustrates the long-term pipeline transportation purchases that all firms make

for prices ranging between $1/MMBtu/day to $500/MMBtu/day. As only Firms 2

and 3 own gas-fired power plants in this system, no other firms require nor purchase

long-term pipeline transportation. In contrast to the purchasing patterns observed in

the “toy” power system (see Figure 3-8), in this full-sized power system, an increase

in the cost of long-term gas transportation leads to a sharp decline in the optimal

purchase quantity. Even long-term prices of $10/MMBtu produce little investment

in long-term pipeline transportation, despite high winter prices near $40/MMBtu.

The sharp decline in demand for gas transportation as prices increase in Figure 3-

18 demonstrates one of the strengths of studying a firm’s behavior with mathematical

modeling: although intuition alone yields an inverse relationship between the price

of long-term pipeline transportation and the quantity demanded, intuition does not
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necessarily describe what functional form the relationship between transportation

and prices might take. For this particular power system and input data, taking into

consideration all of the decisions and constraints described in Chapter 2, we can

observe that a small price increase can create a substantial decline in the quantity of

long-term pipeline transportation demanded.

We expect and observe, in Figure 3-19, that firms should make a trade off between

long-term costs and expected short-term costs when purchasing long-term pipeline

transportation. The dark blue in Figure 3-19 shows firm 2’s long-term pipeline trans-

portation purchase, while the light blue indicates the firm’s actual natural gas con-

sumption and the additional pipeline capacity that the firm must acquire in the short

term. In the top chart, when long-term pipeline transportation is inexpensive, the

firm trades off between long-term and spot markets by buying long-term pipeline

transportation in excess of the amount that it needs on days when the firm burns

little natural gas. In the middle chart, when the price of firm transportation rises to

$10/MMBtu/day, demand for long-term pipeline transportation falls substantially as

prices increase, and the firm never buys long-term pipeline transportation in excess

of what it needs on a daily basis within the year. Comparing the top and middle

charts, the firm’s overall consumption of natural gas also decreases as the price of

long-term pipeline transportation increases. This result occurs because as long-term

prices increase, the firm’s overall costs increase relative to other technologies. Rather

than dispatch expensive gas-fired power plants, the power system begins to substitute

generation from less expensive technologies, suppressing total gas consumption.

In addition to the interplay between long- and short-term pipeline capacity de-

cisions, we can also observe the impact of this system’s gas-centric capacity mix on

long-term pipeline transportation in Figure 3-19. As shown in the bottom chart, de-

spite the sharp decline for long-term pipeline transportation as prices increase, firm

2 still acquires a small amount of long-term pipeline transportation even as prices

increase by an order of magnitude. Relative to the value of loss load, it remains

welfare-maximizing for firm 2 to secure a small amount of firm capacity to ensure

that it has adequate pipeline capacity in the winter months. This purchase high-
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lights both how heavily gas-dependent the current power system is and a potential

opportunity for new entrants.
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Fuel usage, Firm 2, P_FX_LT = 50 (approximation from long term)
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Figure 3-19: Estimated annual fuel purchases, full power system
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For long-term service agreement decisions, Figure 3-20 shows the optimal number

of gas-fired power plants assigned to each available contract starting “greenfield,”

with no prior binding commitments. (In reality, firms in most power systems will not

simultaneously make new long-term service agreement decisions for all of their power

plants, and in future sections, we will fix long-term service agreements to the same

contract to better reflect reality.) However, without loss of generality, the model can

make long-term service agreement decisions for any number of power plants, making

this tool useful for renegotiating the long-term service agreement of even a single

power plant. For this case study, contract 0 carries a premium of $10 million and

allows 250 starts and 20,000 firing hours, while contract 1 carries a premium of $20

million and allows 750 starts and 20,000 firing hours. Contract 1 allows firms greater

flexibility to operate their power plants, but the if firms do not use the extra flexibility,

then they may end up paying more than they would under contract 0. For example,

if a firm purchases the more flexible maintenance contract under the assumption that

intermittent renewables investment will force its gas-fired power plants to cycle more

frequently, and the investment in intermittent renewables does not emerge, then the

firm will not use the extra starts that it purchased under the more flexible contract.

In general, firms in this power system tend to always prefer the more flexible

contract for at least half of all of their power plants. However, for this particular

power system and input data, between long-term pipeline transportation prices of

$50/MMBtu and $200/MMBtu, firms substantially choose the less flexible and less

expensive contract due to the following reasons. First, as long-term prices increase,

gas-fired power plants become less economically competitive with non-gas technolo-

gies. Second, as power plants cycle more frequently, the more flexible contract be-

comes less expensive per unit start. Because a gas-fired power plant’s costs comprise

both its fuel and its operations and maintenance costs, for this particular power

system and deterministic input data, the two available contracts are similar enough

that although firms tend to prefer the more flexible contract as long-term pipeline

transportation prices increase, when firm transportation ranges from $50/MMBtu/-

day to $200/MMBtu/day, operational costs for as many as 10 gas-fired power plants
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are quite similar regardless of which service agreement they operate under. Table 3.5

compares relevant details for a representative power plant when the price of long-term

pipeline transportation is $50/MMBtu, $100/MMBtu, and $300/MMBtu to confirm

that other important decisions remain largely unchanged. Given the similarity of cost

trade-offs within these prices, the solver picks the first set of service agreements found

that meets the MILP tolerance (in this case, a relative tolerance of 0.005), resulting in

the local minimum and maximum that appears at $100/MMBtu for both contracts.

Overall, as firm transportation prices rise and gas consumption decreases (see Figure

3-19), firms in this system prefer the more flexible service agreement.

50

Figure 3-20: LTSA selection, full power system

transportation LTSA

price ($/MMBtu) contract starts firing hours maintenance costs ($)

50 1 139 6950 5.6 million

100 0 134 6077 5.4 million

200 1 145 6344 5.8 million

Table 3.5: LTSA/long-term pipeline transportation operations and costs comparison
for a representative power plant
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Figure 3-21 shows the aggregate gas-fired power plant capacity available for Firm

2, and Figure 3-22 shows the the aggregate gas-fired power plant capacity available

for Firm 3 across a range of long-term pipeline transportation prices based on each

firm’s optimal maintenance schedule throughout the year. Consistent with the trends

observed in the isolated decisions experiments, firms should generally take their plants

offline in the late spring and early fall and keep as much capacity available as possible

during the summer months.

Figure 3-21: Maintenance schedule, Firm 2
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Figure 3-22: Maintenance schedule, Firm 3

However, a different maintenance trend emerges when the long-term pipeline

transportation price is low (in Figures 3-21 and 3-22, the dark and light blue lines rep-

resent low long-term pipeline transportation prices of $1/MMBtu and $10/MMBtu),

and firms have access to more natural gas: rather than clump maintenance together in

the late spring and early fall, which leads to periods of relatively low and high gas-fired

power plant capacity, firms should spread out their maintenance evenly throughout

the year and maintain a consistent level of availability. We can observe the genera-

tion differences corresponding to these distinct maintenance patterns in Figures 3-23

and 3-23, which aggregate the amount of energy produced by Firms 2 and 3 on a

weekly basis throughout the year. When the long-term pipeline transportation price

is low and gas transportation is not scarce (Figure 3-23), Firms 2 and 3 consistently

generate more energy throughout the year than when the long-term pipeline trans-

portation price is high and firms have less access to gas transportation (Figure 3-24).

The two distinct maintenance schedules observed in Figures 3-21 and 3-22 support

each firm’s operations dependent on other inputs to the gas and power system, such

as the long-term pipeline transportation price and the amount of long-term pipeline

transportation capacity that each firm purchases.
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Figure 3-23: Weekly energy output, long-term pipeline transportation price:
$1/MMBtu

Figure 3-24: Weekly energy output, long-term pipeline transportation price:
$100/MMBtu

Turning to the remaining annual decision, Figure 3-25 shows the forward capacity

commitments for each firm across a range of long-term pipeline transportation prices,
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and Figure 3-26 shows the corresponding forward capacity profits for each firm. For

this case study, the system operator sets a forward capacity target of 20,000 MW.

We calculate profits by multiplying each firm’s final forward capacity commitment

with the dual variable of the forward capacity constraint in Equation 2.71. As with

long-term pipeline transportation decisions, the broad trends are not surprising—as

the price of long-term pipeline transportation increases, and firms have less guaran-

teed access to pipeline capacity because they must rely more on the spot market,

their forward capacity commitments decrease. However, as with long-term pipeline

transportation, the functional relationship between long-term pipeline transportation

prices and the forward capacity contributions of gas-fired technologies is nonlinear

and drops sharply with the price of long-term pipeline transportation. Given that

gas-fired power plants constitute one-third of all power plant capacity in this system,

the sharp decline suggests that at long-term pipeline transportation prices reflecting

the upper-bound of short-term prices in 2013, other technologies can provide forward

capacity at less cost than natural gas.
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Figure 3-25: Annual forward capacity commitments
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The corresponding forward capacity profits shown in Figure 3-26 tell a similar

story. The baseload plants owned by Firm 1 earn the lion’s share of forward capacity

profits, and other non-gas-fired technologies quickly displace gas-fired power plants

as the price of long-term pipeline transportation increases. Of all of the firms in the

power system, gas-fired power plants earn the least amount from the forward capacity

market as long-term pipeline transportation prices increase.
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Figure 3-26: Annual forward capacity profits

Lastly, for comparison to the forward capacity market profits, Figure 3-27 shows

the corresponding energy market profits for each firm over the same range of long-

term pipeline transportation prices. We calculate energy profits as the revenue that

each firm collects based on their generation level and the dual variable of the demand

constraint (Equation 2.94) less all nonconvex costs (starting, stopping, and no-load),

fuel costs, and operations and maintenance costs. Again, the baseload plants owned

by Firm 1 take in the lion’s share of profits. However, unlike in the forward capacity

market, both firms that own gas-fired power plants continue to make money as the

price of long-term pipeline transportation increases. Interestingly, expensive long-
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term pipeline transportation initially lifts the inframarginal rents of all firms in the

power system until prices reach approximately $100/MMBtu. Afterward, the cost

of operating gas-fired power plants increases enough to allow other technologies to

become economically competitive, leveling off the amount of transportation that firms

commit to.
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Figure 3-27: Annual energy profits

3.3.2 Explorations under uncertainty

For the remaining parts of the case study, we will introduce pipeline availability and

electricity demand uncertainty and explore firm transportation and forward capacity

market decisions. In total, this section will introduce six possible future scenarios

that combine three different electricity demand possibilities with two different gas

transportation possibilities. Benchmark scenarios, as previously noted, are based

on data from ISO-NE and EIA. New scenarios were arbitrarily created to mimic

constant and peak demand growth, as well as to represent normal and below-average

temperature years. The three electricity demand scenarios consist of 1) the benchmark

case shown in Figure 3-2; 2) a demand growth case that adds an additional base load
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demand of 2000MW to every hour; and 3) a “peak” demand growth case that adds

10% additional demand to every hour in the benchmark case. The two gas scenarios

consist of 1) the benchmark scenario shown in Figure 3-5, which represents a “bad

weather” year with large demand for heating; and 2) a congestion-free scenario with

no transportation costs to represent a “good weather” year. For these explorations,

we only consider a single long-term pipeline transportation price of $10/MMBtu/day,

which strikes a balance in between 2013’s historical range of short-term transportation

prices from $0/MMBtu/day to just under $40/MMBtu/day. Table 3.6 summarizes

these six uncertainty scenarios.

elec. index gas index description

1 1 Benchmark electricity and gas demand

2 1 Benchmark demand + 2k constant load; benchmark gas demand

3 1 1.1x benchmark electricity demand; benchmark gas demand

1 2 Benchmark electricity demand; no pipeline congestion

2 2 Benchmark electricity demand + 2k const. load; no pipeline congestion

3 2 1.1x benchmark electricity demand; no pipeline congestion

Table 3.6: Gas and electricity uncertainty scenarios

Using the uncertainty scenarios just described, we will explore how firms may

consider 1) risk aversion to not having enough pipeline transportation to meet gas

consumption; 2) risk premiums for unexpected forced plant outages when bidding in

forward capacity markets; and 3) risk premiums for forward capacity performance

penalties and incentives. In the last two sections, we introduce a method for evaluat-

ing forced outages and unmet capacity obligations based on probabilistic production

cost methods that regulators and researchers have traditionally applied to power sys-

tems for reliability analyses.

Forward capacity bidding

Prior to February 2015, ISO-New England’s forward capacity market empirically did

not lead to improved power plant availability during times of high electricity demand
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and supply scarcity. Many participants in market restructuring discussions noted that

ISO-New England’s old forward capacity market carried penalties that were too weak,

and the defined commodity was based on only capacity, not real-time performance.

To address the short-comings of its old forward capacity market, ISO-New England

updated its market design using a “pay for performance” scheme that FERC approved

in June 2014.

In this new market design, buyers (consumers) initially pay the costs of the for-

ward capacity auction. The forward capacity auction operates with a reverse-auction

mechanism. All firms receive the clearing price multiplied by their forward capacity

obligation, and this payment marks the first of two settlements. For the second set-

tlement, as shortage events occur in real time, firms that are unable to meet their

capacity obligations pay for deviations based on the forward capacity auction starting

price—not the clearing price. Firms that are able to exceed their capacity obligations

and firms that perform but did not initially win an obligation in the forward capacity

market receive the money collected from under-performing firms. As the starting

price is greater than or equal to the clearing price, firms can lose more money than

they earned in the forward capacity market if they are unable to perform during

shortage events. Currently, ISO-NE caps an individual firm’s loss at three times

its annual forward capacity obligation multiplied by the forward capacity auction’s

starting price. As the starting price is known prior to the first bid, firms can measure

with certainty their absolute risk when deciding how to bid in the forward capacity

market. [LaFleur et al., 2014a]

Chapter 4 analyzes in greater detail the various social, economic, and regulatory

challenges that designing forward capacity markets pose. With respect to the model

formulation presented in Chapter 2, no change is required to accommodate ISO-NE’s

two-stage settlement process. The formulation as is currently accounts for the initial

cost that consumers pay (in particular, the costs required for firms to acquire natural

gas transportation and maintain their power plants), and penalties and credits that

exchange hands in the second settlement are transacted solely between firms and

cancel out in the welfare equation.
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However, for any particular firm, penalties and credits related to availability can

change the profit that each firm earns, even when the power system’s overall welfare

remains the same. For risk-neutral firms, we would expect their forward capacity

contributions to mirror the central planner’s solution. For risk-averse firms, we would

expect the central planner’s solution to reflect an upper-bound on each firm’s con-

tribution to the forward capacity market and a lower-bound on each firm’s forward

capacity bid. By using the risk constraints presented in Section 3.3.2, we can esti-

mate how much additional long-term pipeline transportation a risk-averse firm might

purchase (relative to a risk-neutral firm) to guarantee its gas transportation needs.

Using a heuristic technique developed in this dissertation based on probabilistic pro-

duction cost algorithms, we can also estimate the risk premium that firms will likely

include in their forward capacity bids based on the expected forced outage rates for

each power plant and estimates of marginal electricity prices throughout the year.

To determine forward capacity market bids, we compare a firm’s annual costs after

solving the full system state model once with a forward capacity target of 20k MW,

and once with a forward capacity target of 0 MW and forcing all forward capacity

commitment variables to zero. The difference in operation costs for each firm between

these two runs represents the cost of providing forward capacity. Table 3.7 shows the

operations, start-up/shut-down/no-load, fuel, and long-term pipeline transportation

costs for one of the two firms that owns gas-fired power plants with and without the

forward capacity market.
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with forward without forward

capacity market capacity market difference

nonconvex costs ($) 510 million 530 million -20 million

fuel costs ($) 1,300 million 920 million 380 million

operations costs ($) 87 million 97 million -10 million

long-term trans. (BCF) 0.12 0.02 0.10

committed capacity (MW) 700 - -

available capacity (MW) 4768 - -

Table 3.7: Firm 2’s forward capacity market bid information ($10/MMBtu/day firm
transportation)

The fourth column in Table 3.7 calculates the difference between the firm’s costs

with and without a forward capacity market. The net difference represents the impact

of the forward capacity market on the firm’s costs. For some costs, such as the start-

up/shut-down/no-load costs that were aggregated into the “nonconvex costs” column,

the difference can be negative because the presence or absence of the forward capacity

market can change fuel decisions for firms, which in turn impacts the generation deci-

sions for individual power plants. The largest cost component difference between the

two scenarios is the cost of long-term pipeline transportation. In the forward capacity

market scenario, the firm purchases an additional 97,964 MMBtu at $10/MMBtu/-

day, resulting in an additional cost of $320 million. For comparison, the firm’s total

firm transportation in the forward capacity market scenario is approximately 5% of

the entire pipeline capacity at Algonquin.

When a firm purchases long-term pipeline transportation, in this model its op-

portunity cost for that capacity is zero once purchased because there are no other

consumers to sell to. In reality, firms can sell unused portions of their long-term

pipeline transportation. However, generally the only other consumers available are

other generation firms because utilities and industrial consumers historically have

secured enough firm transportation to meet their expected peak demand (and gen-

eration firms have met their own transportation needs by purchasing excess capacity

from utilities and industrial consumers on a short-term basis). In a perfectly competi-
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tive electricity market where all generation firms have access to the same information,

we would expect the most efficient generation firms to acquire their own long-term

pipeline transportation and for only minimal trading to take place between generation

firms (e.g., to release unused capacity during forced outages).

Given this information, we can estimate the firm’s forward capacity market unit

bid by summing the net cost differences and then dividing by the firm’s committed

capacity:

cost difference
committed capacity

=
$320 million
700 MW-year

=
$455, 097

MW-year
=

$38.15

kW-month
(3.2)

For comparison, in ISO-NE’s forward capacity auction for 2017 (under the old market

rules), the reverse auction started at $15.82/kW-month and stopped at $15.00/kW-

month. New entrants earn $15.00/kW-month starting in 2017, but existing facilities

only earn $7.025/kW-month. [ISO-New England, 2014a] The estimated bid in this

case study suggests that forward capacity prices may need to be anywhere between

twice to four times as high as they currently are to incentivize firms with gas-fired

power plants to commit to firm transportation.

Forward capacity market physical obligation risks

The costs in Table 3.7 represent sums of costs from individual power plants. To deter-

mine the risk premium for this bid due to forced outages, we can use each individual

power plant’s historical forced outage rate to calculate an inverted cumulative proba-

bility distribution (CDF) that describes the fraction of its forward capacity obligation

that a firm is unlikely to be able to supply. This approach is directly analogous to

treating the forward capacity obligation as load and applying the probabilistic pro-

duction algorithm originally pioneered by [Baleriaux et al., 1967] and [Booth, 1972];

a detailed explanation of probabilistic production cost algorithms with implementa-

tion details can be found in [Leung, 2012]. Then, we can use the estimated marginal

electricity prices from the optimization to estimate how much money a firm might

lose when it must make energy purchases to cover its forward capacity obligations.
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Marginal electricity prices are calculated as the dual variable of Equation 2.94 divided

by the duration of state s and aggregated and weighted across all uncertainty sce-

narios by each scenario q’s probability, Pq. For this example, Figure 3-28 shows the

inverted CDF for firm 2’s forward capacity obligation after applying a 5% expected

forced outage rate for each power plant. This inverted CDF describes the number of

hours (f(x)× 8760) that a firm will probabilistically not meet x MW or more of its

forward capacity obligation in a year.
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Figure 3-28: Forward capacity obligation risk

Following the interpretation of the inverted CDF/inverted load duration curve in

traditional probabilistic production cost methods, the average of the forward capacity

obligation values in Figure 3-28 represents the expected amount of capacity at any

given instance that the firm will not be able to meet due to forced outages for one

or more of its power plants. This interpretation arises from the fact that the initial

inverted load duration curve was created by normalizing the time axis of the actual

load duration curve. In this example, firm 2’s expected unmet obligation is 4.2e-17

MW at any instant, and 3.7e-13 MWh over the course of the year. Given how small

this unmet obligation is, we could stop here for practical purposes and add no risk

premium to the firm’s bid.
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However, for the purpose of demonstrating how such a risk premium could be

calculated, we continue with an examination of marginal prices and apply a technique

similar to the method used in [Vázquez et al., 2002]. Figure 3-29 shows a cumulative

distribution function for marginal prices in the benchmark electricity and gas scenario.

If the firm were risk averse and wanted to estimate its risk premium based on the

possibility of forced outages happening only during higher priced electricity hours of

the year, then we can introduce a parameter γ that specifies an arbitrary percentage

of the highest priced electricity hours that forced outages may occur over. For the

risk-neutral firm, γ takes on a value of 0, and the firm evaluates its risk over all 8760

hours of the year. The firm can calculate its risk premium by multiplying its expected

unmet obligation by the average of the hourly electricity prices described by Figure

3-29:

3.7× 10−13 MWh
year

× $51.71

MWh
=

$1.9× 10−11

year
(3.3)

We repeat this process for each scenario and then take a weighted average based on

the probability of each scenario to determine the final risk premium to add to the

bid.

Suppose, however, that the firm in this example is not risk neutral to when forced

outages may occur, and instead is most concerned about the highest-priced quintile of

hours. Then, γ = 0.8, the average hourly electricity price characterized by the CDF in

Figure 3-29 increases to $232/MWh, and the firm’s estimate of its risks due to forced

outages increases to $8.58e-11. As before, we would repeat this calculation across all

scenarios and then take a weighted average to determine the final risk premium to

add to the bid. However, practically speaking, because the expected unmet forward

obligation is so small in this example, the risk premium can simply be rounded down

to zero. Figure 3-30 shows the relationship between the firm’s risk aversion and the

risk premium that it adds to its forward capacity bid due to forced outages for the

benchmark scenario.
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Figure 3-29: CDF of marginal electricity prices
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Figure 3-30: Risk premium and risk aversion in forward capacity bid

Forward capacity market financial penalty risks

Lastly, as part of ISO-NE’s new pay-for-performance market design, firms that do not

deliver their forward capacity obligation during scarcity conditions will have their pay-

ments reduced at a penalty rate that starts at $2,000/MWh in 2018 and eventually
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rises to $5,455/MWh in 2024. [LaFleur et al., 2014a] Firms that outperform their

forward capacity obligations during scarcity conditions will receive performance in-

centives in the same amount. To estimate the revenue loss that a firm might incur

due to these penalties and forced outages, we can use the expected unmet forward ca-

pacity obligation calculation obtained from the probabilistic production cost estimate

and then multiply by the number of hours of shortage events. Arbitrarily assuming

that shortage events occur during 5% of the year (438 hours), the firm’s expected

performance penalty is

438 hours × 4.2× 10−17 MW × $5, 455

MWh
= $1.00× 10−10 (3.4)

and the firm could include this cost in the risk component of its forward capacity

market bid.

Currently, FERC, ISO-New England, and market participants are actively dis-

cussing ISO-New England’s redesign of its forward capacity market. These forward

capacity explorations illustrate how the modeling tool developed in this dissertation

can be used in a regulatory setting to understand, quantitatively on the order-of-

magnitude level, the risk that firms can face and how firms might respond to new

market designs.

Gas shortage and risk modeling

Generation firms face risks from forced outages as well as not being able to secure

enough pipeline capacity to meet their daily fuel requirements. We use a technique

presented in [Dueñas et al., 2011] that adapts traditional conditional value at risk

(CVAR) constraints to explore how firm transportation decisions might change if a

central planner is risk averse to not having enough transportation to meet its gas

consumption. In that formulation and the formulation previously presented in Chap-

ter 2, the central planner requires each firm g to meet with arbitrary probability βg

an arbitrary fraction, Amin,g of its gas transportation using firm contracts. Here, we

apply this technique to the case study to learn broad trends about the gas-electricity
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system. However, it is important to note that for practical business decisions, the

number of scenarios considered likely needs to be at least an order of magnitude larger

to more thoroughly represent the range of possible future scenarios.

To establish a risk-neutral benchmark, we first run the system state optimiza-

tion with no conditional value at risk constraints. Then, the daily fuel consumption

decisions for each firm and scenario serve as estimates of the firm’s daily fuel con-

sumption in the CVAR optimizations. Figure 3-31 shows how firm 2’s long-term

pipeline transportation decisions change with different values for its risk averseness

parameters.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Tr
an

sp
or

ta
tio

n 
pu

rc
ha

se
 (B

C
F)

Beta parameter

Long-term transportation risk aversion

firm 2, alpha = 0.9

firm 2, alpha = 0.5

firm 2, alpha = 0.3

firm 2, risk neutral

Figure 3-31: Long-term pipeline transportation purchases with risk aversion

As a firm’s risk averseness to not having enough transportation to meet its daily

gas consumption increases, so does its long-term pipeline transportation purchase.

Figure 3-31 shows the firm’s purchases at different values for each risk aversion pa-

rameter. For this example, if firm 2 wants to meet 90% of its pipeline capacity

requirements with firm transportation for 90% of all days, then it needs to purchase

six times more capacity than it otherwise would if it were risk neutral. The firm’s

transportation requirements on any given day over the course of three years has a

large dynamic range and is upper bounded at approximately 0.55 BCF, or one-fifth

of the size of the entire pipeline coming into this power system. This range suggests
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that any substantial purchase of capacity in an attempt to guarantee adequate gas

transportation will likely result in excess capacity on other days that the firm then

may or may not be able to use in some other capacity, depending on the electricity

and gas markets that day and the nature of the firm’s long-term purchase. Regulators

and policymakers that have wondered why power generation firms in New England

tend to not purchase firm transportation thus far may find this particular set of re-

lationships between daily gas consumption, short-term interruptible transportation,

long-term firm transportation, and risk aversion useful in designing economic incen-

tives to encourage fuel assurance.

3.4 Conclusions

The experiments and hypothetical explorations conducted for this case study serve as

common-sense checks for the proposed gas-electricity model in Chapter 2 and as a ve-

hicle to gain greater understanding of the interactions between the gas and electricity

decisions of generation firms and the risks that they face. This case study abstracted

key historical data and aspects of New England’s gas-and-electricity system and gen-

erated several lessons, including:

1. Given current demand levels and New England’s capacity mix, New England

can substitute some generation technologies in place of natural gas when trans-

portation prices are high. New England depends heavily on natural gas, but it

can dispatch other power plants—typically oil-fired power plants—during sub-

stantial shortage events. This may lead to a dual-fuel dependency problem if

New England is unable to acquire enough natural gas and oil, as there are no

other power plants to dispatch.

2. During high demand electricity hours, New England’s gas-centric capacity mix

leaves the power system dependent on natural gas and highly inelastic to the

price of gas transportation. In the immediate term, this poses a reliability

problem during pipeline scarcity events, and either ISO-New England or poli-
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cymakers may need to intervene in the short term to prevent pipeline scarcities

from affecting power system reliability. In the intermediate and long term, this

may present an investment opportunity for new entrants.

3. Pipeline availability and long-term pipeline transportation prices play the largest

role in determining a firm’s forward capacity bid relative to other factors such

as plant maintenance and unforced plant outages.

4. New England’s consumption of natural gas for electricity can vary drastically

from day to day. This wide range poses a large risk for generation firms with re-

spect to securing long-term pipeline transportation because on many days, firms

can secure interruptible pipeline capacity from the short-term spot market. The

wide range of available pipeline capacity from day to day may partially explain

why generation firms in New England, thus far, have hesitated to commit to

long-term pipeline transportation despite high short-term congestion prices and

pipeline capacity shortages.

In addition to these broad findings, this case study introduced a method to evalu-

ate how forced outage rates may impact a firm’s ability to meet its forward capacity

obligations based on a probabilistic production cost algorithm. Continuing this chap-

ter’s exploration of forward capacity markets, in the next chapter, we will discuss the

regulatory, policy, and social challenges of using forward capacity markets to procure

capacity for electricity and draw a few generalizable infrastructure ideas that may

also apply to other basic goods.
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Chapter 4

General lessons

Gas and electricity systems provide a rich set of interactions for policy makers and

regulators to study, particularly with respect to the successes and problems associated

with wholesale electricity markets. A decade ago, power systems in New England

and other parts of the United States featured relatively small amounts of gas-fired

generation in an environment with ample short-term, interruptible (unguaranteed)

pipeline capacity from local distribution companies and industrial users, as well as

relatively high natural gas prices. As market and environmental forces played out over

the last decade, natural gas prices fell and investment in gas-fired power plant capacity

increased substantially. In 2013, gas-fired power plants accounted for 41% of ISO-New

England’s capacity mix, and gas failures—mostly the inability to transport gas due

to limited pipeline capacity—emerged as a new and substantial reliability problem

for the electric power system. [ISO-New England, 2013b][ISO-New England, 2013a]

As described in [Pérez-Arriaga, 2013], reliability problems encompass a large set

of concerns that span multiple temporal dimensions. Representative examples of

these temporal dimensions include security of supply (matching demand and supply

in the immediate future), firmness of supply (matching demand and supply looking

out a few hours to the next one or two years), and adequacy of supply (ensuring that

enough capacity exists to meet future demand a few years out). New England’s gas-

and-electricity issues demonstrate the important link between a system’s adequacy

and its firmness—even when enough capacity exists to meet demand, firmness prob-
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lems related to forced outages, pipeline scarcities, maintenance schedules, and other

unforeseen circumstances can still create reliability challenges.

In power systems with wholesale electricity markets, regulators and system op-

erators have known that investment in power plant capacity to meet future de-

mand may be inadequate given the uncertainty and risk that individual firms face.

[Pérez-Arriaga, 2013][Vázquez et al., 2002][Rodilla, 2010] The adequacy problem arises

due to a key difference between theory and practice: although mathematical models

may suggest that a few hours of extremely high electricity prices will allow a firm to

make a positive profit over time if that firm makes a particular investment decision,

firms themselves may be too risk averse to depend on the realization of a handful of

high-priced electricity hours each year to earn a profit. Rather than invest, these firms

may instead opt to do nothing. Power systems with wholesale markets have imple-

mented a variety of solutions to try to address the problem of adequacy ranging from

modifying electricity prices during times of scarcity to implementing forward capacity

markets, which create a new electricity commodity—future power plant capacity—for

firms to offer. [Vázquez et al., 2002]

Forward capacity markets, ideally, should improve future short-term reliability

by providing revenue certainty to firms in exchange for their guarantee of available

capacity. Typically, both new and existing market agents participate, allowing new

entrants and technologies to potentially set the marginal price. In New England,

the system operator determines how much forward capacity it needs by geographic

region, and then generation firms offer into this market until the market clears under

a reverse-auction mechanism. [Ausubel and Ashcroft, 2007] In other power systems,

such as New York and California, the system operator requires load serving entities to

purchase a qualified “capacity product” from generation firms in proportion to their

projected future demand. Generation firms, in exchange, are only qualified to sell a

fixed amount of capacity based on the past performance of their power plants, or an

estimate of future performance for new entrants. Firms implicitly have an incentive

to keep their power plants operational so that they remain eligible to bid into the

capacity market in future years.
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However, in New England, the forward capacity market design to date has not

strongly connected the issue of system adequacy with system firmness, and the New

England power system now experiences more reliability challenges than it did in the

past due to its dependence on natural gas and scarcities of pipeline capacity despite

having an ample supply of gas-fired power plant capacity. In this chapter, we primarily

focus on lessons learned from the application of forward capacity markets to electricity

because (1) forward capacity markets represent a technology-neutral approach to solve

the adequacy problem; (2) participants in current gas-electricity firmness discussions

for New England have heavily focused on the failures of the current forward capacity

market; and (3) the lessons learned from forward capacity markets for electricity may

have broader applications to other basic goods.

To complement the work in previous chapters that modeled coupled gas-electricity

systems, we identify the properties of electricity that can be difficult to fully value

and capture with market approaches and the impact that these difficulties may pose

for the design and implementation of wholesale electricity markets in general, and

forward capacity markets specifically. We focus on electricity’s importance as an

energy source for basic services and its real-time physical operating difficulties to

explore the following questions: what might New England’s reliability concerns teach

about using forward capacity markets to ensure system adequacy and firmness for

other basic goods? What defining traits does electricity share with other basic goods

that might make these lessons transferable?

4.1 A description of electricity

In this section, we review the overarching qualities of electricity to understand why

scarcities of electricity differ from scarcities of other energy commodities. Then, in

the remainder of the chapter, we refer back to this description to try to understand

and explain why certain features of electricity markets and regulations are structured

as they are, and then try to identify other basic goods with similar attributes to

electricity that may benefit from some of the market and regulatory tools in power
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systems.

4.1.1 Defining features

Electricity exhibits several social and physical features that make it a useful, difficult

to substitute, and difficult to physically manage energy commodity. First and fore-

most, most citizens in first-world countries perceive electricity as a necessity good,

and few would argue against the idea that everyone should be entitled to at least a

basic amount of electricity that enables lighting, heating, cooling, and cooking for

shelter and food. Second, electricity has many potential “fuel” inputs (e.g., coal,

natural gas, and wind), but none of these input fuels are viable substitutes for all

of the ways that consumers use electricity. Of the basic ways that most consumers

use electricity, cooking and heating are likely the least labor intensive to substitute

another fuel for. However, given that many of these substitutions also involve durable

goods with high fixed costs (e.g., gas/electric cooking ranges), consumers are unlikely

to switch frequently, if at all. Consequently, the large number of basic needs that

electricity fulfills for consumers and the lack of easy alternatives makes scarcities of

electricity socially and politically unpalatable.

To supply electricity reliably for basic needs and other uses, power systems must

constantly balance supply and demand as a matter of physical law. Two factors

complicate this physical requirement. First, due to network and physical power plant

operation constraints, not all market solutions that balance supply and demand are

feasible. Depending on how much demand changes from hour to hour and where these

changes occur geographically, a power system may not be able to dispatch all of its

available power plants to meet these changes. Second, the lack of economical storage

options for electricity in most power systems (with the exception of geographically-

specific pumped hydro and hydro reservoir technologies) greatly limits opportunities

to store excess generation from one hour for use in a future hour. The inability

to store electricity also limits the power system’s flexibility to dispatch power plants

that cannot quickly change their output levels. The combination of the electric power

system’s physical need to remain in constant supply and demand balance, combined
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with the lack of economic storage for managing short-term excesses and shortages,

substantially increases the real-time difficulties of operating a power system.

Electricity acts as an important energy carrier to enable basic services for shelter

and food, but reliable transmission and consumption of electricity requires that a

power system balance supply and demand in real time. To this description of elec-

tricity’s characteristics we add the fact that social expectations in the form of reg-

ulations and policies can further complicate what the technical and physical power

system must accomplish. For example, environmental concerns have led to laws that

will force some power systems to increasingly remove coal capacity and incorporate

renewables. In other power systems, safety concerns and social pressures have shut

down nuclear power plants. These types of social expectations limit the range of tech-

nologies that power systems can deploy. In aggregate, the decisions makers responsible

for supplying electricity need to do more than just provide reliable electricity—they

must provide reliable electricity that is also affordable, environmentally friendly, and

safe.

Electricity enables basic services for consumers such as cooking, heating, cooling,

and lighting. As a commodity, electricity can be made with different energy inputs

such as oil, coal, gas, and wind, but few viable alternatives exist for electricity itself.

Given electricity’s importance as a basic good, the lack of viable alternative fuels for

its end uses, the physical difficulties inherent to operating a reliable power system,

and the demands that society places on its power systems, how should decision makers

for power systems respond to scarcities of supply?

4.1.2 Commodity versus basic good

One of the interesting aspects regarding how a power system should respond to sup-

ply scarcities stems from the fact economic theory already contains a well-established

framework for how supply and demand should reach an equilibrium. Broadly, eco-

nomic theory states that high prices and supply failures should teach consumers

to either withdraw demand or learn to “express their risk aversion to shortages”

[Rodilla, 2010] via instruments such as hedging contracts. Under this framework,
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price volatility and iterative supply/demand failures are not necessarily undesirable

in and of themselves because they provide consumers and suppliers with information

and investment signals. Microeconomic theory also states that welfare is maximized

when scarce resources are allocated to those who have the highest utility for those

resources. Because the most common method to measure utility is in monetary units,

in a straightforward market response to supply scarcity, prices should increase and the

available limited supply of electricity should be allocated to consumers who demon-

strate the highest willingness to pay. [Varian, 2010]

However, electricity’s status as a basic good complicates such a straightforward

economic allocation of scarce supply. Scarcities of basic goods can drastically impact

a society and tend to produce social and political problems.1 Allocating scarce elec-

tricity supply to those who express the highest willingness to pay contains ethical

implications for the poor, who may not be able to fully express their utility for elec-

tricity in monetary units. The first few kilowatt-hours of electricity that enable basic

services have high utility to all users, but poor consumers are the least able to pay

for those first few necessary units.

Power systems with wholesale electricity markets have already developed several

solutions to handle scarce electricity supplies that do not require consumers to ex-

perience iterative shortages and volatile prices. These solutions include voluntary

demand response programs for consumers that are able to withdraw consumption, as

well as tiered, average tariffs that shield small consumers from real-time prices and

allow them to affordably consume a minimum level of electricity for basic uses. Gen-

erally, larger companies such as electricity retailers and demand response aggregators

represent groups of small consumers and participate in wholesale electricity markets

on their behalf. While these larger companies are exposed to real-time pricing volatil-

ity, the small consumers that they represent typically are not (although this is also

beginning to change with smart meters that can tell consumers how much their elec-
1In 2001, California experienced substantial electricity shortage issues in the summer due to a

series of unrelated events that led to rotating, scheduled blackouts throughout the state for months.
The shortages featured prominently in a recall election that then-presiding governor Gray Davis
eventually lost.
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tricity costs in real time). Most power systems with wholesale electricity markets also

impose price caps to suppress extremely high prices and deploy out-of-market instru-

ments to ensure reliable supplies during times of shortages. However, these market

modifications can dampen real-time prices that simultaneously serve as signals for

large consumers to quit consumption in the short term and for generation firms to

invest in additional capacity in the long term, resulting in more pricing distortions

that require further attention.

Broadly, these commodity-based concerns highlight how strict market implemen-

tations for electricity commodities—not just energy, but also forward capacity—may

ignore important characteristics of the underlying commodity. Consequently, using

markets to address a power system’s adequacy and firmness concerns requires im-

plementations that acknowledge 1) the social value of electricity as a basic good; 2)

the inability of demand to fully withdraw; and 3) that high prices and supply short-

ages serve as important, technology-neutral signals to guide individual short- and

long-term behaviors.

4.2 Lessons from New England

The basic services that electricity enables and the potential inability for demand to

significantly withdraw during times of shortage support the importance of ensuring

system adequacy and firmness by encouraging investment. In particular, in situations

when demand is unable to respond for any reason, the “basic good” aspect of elec-

tricity and the physical need for supply and demand balance throughout the network

depend on power plant capacity to perform during shortages. While firmness prob-

lems can occur in real time for any number of reasons, New England has experienced

a substantial disconnect between the outcome of its forward capacity market—which

should have guaranteed the power system sufficient available power plant capacity

to meet demand throughout the year—with the actual real-time performance of its

gas-fired power plants during cold weather events.

Despite substantial installed gas-fired power plant capacity in New England, a
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lack of fuel assurance on the part of individual generation firms has led to large

declines in the amount of actual gas-fired capacity that was able to perform during

cold weather events in past years. In 2014, generation firms in ISO-New England

committed to forward capacity obligations totaling 29,835 MW out of a total possible

32,445 MW; i.e., in aggregate, generation firms in New England promised that 92% of

their total capacity would be available throughout the year. However, gas-fired power

plants accounted for approximately 11,000 MW of all of New England’s power plant

capacity, which implies that gas-fired power plants must have held forward capacity

obligations between 28% to 37% of the total 29,835 MW that cleared the forward

capacity market, or approximately 10,000 MW. As noted by ISO-New England in

[ISO-New England, 2015], winter storm events such as “Nemo” in January 2013 have

shown that during cold weather events, “pipelines are capable of supporting less than

half this amount.” [ISO-New England, 2015] Empirically, New England’s forward

capacity market thus far has not led participants to take the preemptive actions

necessary to ensure that they can meet their obligations.

Regulators, system operators, market participants, and other vested interests from

the energy sector have debated the relationship between fuel assurance and forward

capacity markets in regulatory proceedings aimed at resolving the disconnect between

system adequacy and firmness. Some generation companies have argued that the for-

ward capacity market’s intent is solely to ensure a minimum level of power plant

capacity in the power system, while regulators and system operators have reiterated

the importance that any firms with forward capacity obligations must actually per-

form during supply shortages. [LaFleur et al., 2014b][LaFleur et al., 2014a] Learning

from the implementation and results of its original forward capacity market design,

in 2014 ISO-New England proposed, and the Federal Energy Regulatory Commis-

sion (FERC) accepted, a new forward capacity market design that more closely links

real-time performance with a firm’s forward capacity obligation. To address the

three-year gap between when its new forward capacity auction takes place (2015) and

when the first set of obligations from this auction begins (2018), ISO-New England

also implemented a winter reliability program based on indicative planning to secure
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demand response and dual-fuel capable capacity. With these changes, ISO-New Eng-

land should be able to fix the disconnect between system adequacy and firmness in

its forward capacity market, as well as mitigate the immediate reliability concerns

over the next three years before the first obligations for the new forward capacity

market design take effect. In this section, we describe the key challenges of New Eng-

land’s past forward capacity market and the key features of its new market design

and indicative planning measures.

4.2.1 New England’s original forward capacity market

In the original design of New England’s forward capacity market, the system operator

set a fixed forward capacity target based on its projection of future electricity demand,

and generation firms could offer “qualified” capacity from each of their power plants

toward this capacity target. Each firm’s capacity offer is how much capacity that firm

essentially promises to be available three years in the future. From each power plant,

firms can offer up to the median of that power plant’s seasonal claimed availability

over the last five years. [ISO-New England, 2014b]

ISO-New England’s original forward capacity market carried shortage/unavailabil-

ity penalties for firms that received payment for a forward capacity obligation, but

then were unable to meet that obligation in real time. The penalty allows ISO-NE

to claw back forward capacity payments as defined in III.13.7.27.1.2 of Market Rule

1 and operates as follows: [ISO-New England, 2014b]

p = (a)(f)(1− s) (4.1)

where p is the total penalty owed by a firm; a is a firm’s total annual forward capacity

payment; f is a penalty factor that starts at 0.05 and increases by 0.01 for each hour

that a shortage event extends beyond 5 hours; and s is a shortage event availability

score that expresses the fraction of time that a plant is unavailable during a shortage

event. Importantly, on any given day, penalties cannot exceed 10% of a firm’s annual

forward capacity payment; for any given month, penalties for the firm were capped
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at 2.5 times the firm’s annual forward capacity payment divided by 12; and for any

given commitment period, the entire penalty could not exceed the firm’s total capacity

payment. If a power plant received three consecutive annual availability scores of 40%

or less, then that power plant could no longer participate in future forward capacity

markets until it demonstrated three consecutive annual availability scores of 60%.

When shortage events occurred during cold weather events, gas-fired power plants

frequently could not contribute their total capacity because they could not acquire

enough pipeline capacity. During these shortage events, generation firms had to pay

the penalty specified above for missing their forward capacity obligation, but they did

not have to pay in real time for energy in an equal amount to their deviation from

their forward capacity obligation. Because firms also could not lose any more than

the revenue that they earned from the forward capacity market, firms took on no

risk to participate in New England’s original forward capacity market. This market

did not lead to more real-time capacity to manage electricity shortages because the

underperformance penalties only weakly connected forward capacity revenues with

real-time performance. [FERC, 2014]

4.2.2 New England’s new forward capacity market

ISO-New England’s new forward capacity market design, which FERC approved in

June 2014, contains two distinct changes to address the disconnect between system

adequacy and firmness. First, to address performance problems, firms acquire a

physical obligation with their forward capacity award and must now settle devia-

tions at real-time prices during shortage events. In addition to acquiring a phys-

ical obligation to supply or purchase energy in real time, firms will also receive a

performance-based penalty or incentive payment relative to their forward capacity

obligation. [LaFleur et al., 2014a] Firms that supply energy during shortage events

in excess of their forward capacity obligations will receive revenue from firms that

underperform relative to their forward capacity obligations. The underperformance

penalties start at $2,000/MWh and increase to $5,455/MWh over six years, to allow

market participants an opportunity to adjust to the new forward capacity market.
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[LaFleur et al., 2014a] These changes to the forward capacity product allow all gen-

erators in the system, regardless of whether they initially were awarded a forward

capacity obligation or not, to receive additional income in recognition of their en-

ergy contributions during shortage events. Additionally, the financial penalties now

allow generators to lose more money than they might earn from the forward capacity

market if they offer capacity from a poorly performing unit.

Second, to limit the risk that firms face if they are unable to meet their forward

capacity obligation, the maximum amount of money that each firm can lose is three

times the starting price of the reverse auction multiplied by the firm’s cleared capacity

obligation. Under this new penalty structure, firms can lose more than the amount of

money that they originally earned when acquiring their forward capacity obligation.

Firms also have a variety of techniques to mitigate their risk throughout the year,

including trading under- and over-performance with other firms. ISO-New England’s

market changes attempt to address both the performance shortcomings of its previous

forward capacity market and the potential participation shortcomings that its new

forward capacity market may experience due to risk aversion on the part of individual

firms.

Interestingly, both of ISO-New England’s forward capacity market designs match

suppliers against a target capacity threshold, with small consumers participating

via demand response aggregators only as another potential supplier.2 The system

operator makes a forward projection of how much capacity the system will need

three years into the future on behalf of consumers, and then suppliers make offers

that include their own estimation of risks and the associated costs of those risks if

they are awarded a forward capacity obligation. The decision to administratively

set the desired level of forward capacity reflects a difference in the sophistication

of electricity consumers with respect to their ability to evaluate and hedge risks
2Given the technology-neutral nature of the forward capacity market, as distribution networks

evolve and small consumers increasingly utilize technologies such as roof-top solar installations,
electric vehicles, and micro combined-heat-and-power units to supply their own energy needs and
sell energy back to the power system, these consumers could potentially participate in forward
capacity markets via aggregator companies much in the same manner that small consumers currently
contribute to demand response via large aggregators.
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compared to electricity suppliers, and FERC itself has acknowledged as much in its

regulatory statements:

“We generally agree with ISO-NE that under this market design suppli-

ers, not consumers, are in the best position to assess and price the per-

formance risk associated with their resources. This includes risks beyond

a resource’s control, including weather-related outages. Because suppli-

ers are expected to price this risk into their offers, it is fair to assume

that those resources with better performance characteristics will include

a lower risk premium than other resources and be more likely to clear,

thereby improving overall fleet performance.” [LaFleur et al., 2014a]

4.2.3 Winter reliability program

The first set of obligations for ISO-New England’s new forward capacity market de-

sign will take place in 2018. However, given the immediate reliability problems for

the winter of 2013/2014 and 2014/2015, ISO-New England also implemented a winter

reliability program to ensure that the power system had enough power plant capacity

and fuel to operate reliably throughout the winter. The three substantial compo-

nents of this reliability program consist of securing additional demand response from

electricity consumers to withdraw consumption during shortages, guaranteeing oil in-

ventory, and dual-fuel testing for power plants that can burn both oil and natural

gas. [ISO-New England, 2015]

In its regulatory filing to FERC, ISO-New England expressed concern that New

England’s gas dependence and subsequent gas failures could cascade into a depen-

dence on oil-fired generators and dual-fuel units capable of burning both types of fuels.

Given the limited generation technologies available in New England and the relatively

simpler supply chain for oil versus natural gas and other fuels, the ISO decided to

specify oil reserves as one of the components of its winter reliability program:

In contrast to the issues presented by a gas or fuel-neutral solution, an oil

solution provides a strategic fuel reserve with far fewer complications for
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this short-term winter solution. Oil has a simple supply chain that results

in the transfer of measurable amounts of fuel to a tank that is within the

generators control. There is no need for the ISO to distribute or otherwise

trigger the transfer of fuel. [ISO-New England, 2013c]

In total, ISO-New England determined based on historical data from its coldest

winter over the last decade that it would need to secure guarantees for approximately

2.4 million MWh of energy from dual-fuel generators and demand response. For

both programs, participants that were awarded obligations would be paid what they

had bid for their capacity. Additionally, participants would also earn compensation

for their energy based on real-time prices (with a price floor for demand response

participants). The ISO explains that paying participants as bid, instead of a uniform

clearing price, appropriately reflects the fact that the selection process for winners

discriminates between bids based on many factors, not just price:

In designing the Winter Reliability Program, stakeholders and the ISO

discussed the appropriate payment mechanism, and whether there should

be a uniform clearing price or bidders should be paid their “as bid” price

for the demand response and oil inventory services. The ISO concluded

that the “as bid” price would be more appropriate for this particular win-

ter solution, as the assessment of the winning bids will not consider price

alone (a uniform clearing price would be the design choice if price were

the only consideration in the selection of winning bids)....Under these

conditions, where winners are being selected based on non-uniform char-

acteristics, applying a uniform price is inappropriate because all of the

selected resources are not the same.

Lastly, in choosing the components of its winter reliability program as an out-of-

market, indicative planning measure, the ISO notes that practical time limits strongly

constrained the measures that it proposed to solve the region’s immediate reliability

problems:
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The ISO stated that its objectives for winter 2013-14 were to develop a

solution that (i) obtained the incremental energy needed if colder than

normal weather occurs; (ii) in time for the winter; (iii) with minimal

market distortions.

These objectives, and, in particular, the “in time for winter” require-

ment, limited the universe of possible solutions. After accounting for

the time for the stakeholder process and Commission approval, the ISO

estimated that stakeholders and the ISO would have about two to three

months to implement the chosen solution. This time frame effectively

precluded solutions that required significant software or market changes.

[ISO-New England, 2013c]

In summary, New England’s old forward capacity market improved system ade-

quacy, but did not improve firmness because of weak penalties between a power plant’s

forward capacity obligation and its real-time performance. To address the disconnect

between its power system’s adequacy and firmness, in New England’s new forward

capacity market, participants now acquire both a physical obligation to deliver en-

ergy (either by generating energy itself or by purchasing energy in real time) during

shortage events and a separate financial obligation to pay penalties for deviations.

Additionally, all generation firms can receive compensation in real-time during short-

age events if they exceed their forward capacity obligation. These market reforms

should address New England’s longer term gas-electricity dependencies. However, for

the next few winters before obligations from the new forward capacity market take

place, ISO-New England (with FERC’s approval) has put into place several additional

indicative planning measures to secure oil inventory, demand response, and dual-fuel

switching capability for use during shortage events.

4.3 The role of indicative and mandatory planning

Establishing a forward capacity market, determining the amount of required firm

capacity, and implementing a winter reliability program to mitigate reliability prob-
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lems represent clear exercises in indicative and mandatory planning in which system

operators and regulators directly indicate or mandate targets and criteria for suppli-

ers to meet. Yet, for commodities with well-established markets such as electricity

and natural gas, indicative and mandatory planning measures may appear to exist

in direct contradiction to relying on competitive markets to efficiently organize the

behavior of consumers and suppliers. In this context, what are the ideal attributes of

a forward capacity market, and when is it appropriate for policymakers to intervene

in wholesale markets on behalf of consumers using indicative and mandatory planning

instruments?

Given electricity’s defining characteristics and New England’s gas-electricity re-

liability problems and forward capacity market experiences, a well-designed forward

capacity market should exhibit the following characteristics. First, the definition of

the commodity that participants will transact should be technology neutral and allow

market participants to “find” the most economically efficient technology through com-

petition. Second, the commodity definition and settlement design should implicitly

link a system’s adequacy with its firmness by sufficiently penalizing nonperformance

for any reason, rather than enumerating a specific set of future nonperformance events

and penalties. Market designs that specify explicit nonperformance events and ex-

emptions run the risk of not placing sufficient responsibility on market participants

to internalize the cost of future uncertainties. Third, to encourage market partici-

pants to act preemptively and take the actions necessary to guarantee their forward

capacity obligations, market participants must face the risk of negative revenues (i.e.,

penalties) in excess of what they can earn from the forward capacity market for un-

derperformance. Fourth, the obligation that a forward capacity market imposes on

individual firms should be short enough to not implicitly represent a mandate, but

long enough to present a stable source of revenue to allow firms to make longer time

horizon decisions in light of uncertainty and risk about the future. And fifth, as con-

sumers tend to be less sophisticated than suppliers about evaluating and hedging risks

in electricity markets, and consumers ultimately pay all of the costs for the forward

capacity market, a forward capacity market should allow participants to declare their
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full costs due to any risks that they believe that they may face, but must also allow

regulators and market operators to monitor bids for market power.

In an ideal forward capacity market, fuel assurance represents only one of many

risks that generation firms face. Viewing fuel assurance in this manner, as opposed to

viewing fuel scarcity as a substantial and known risk that markets should specifically

resolve, highlights a difficult policy and regulatory problem for consideration: what

role should indicative or mandatory planning play for known and substantial problems

that markets have not internalized?

Historically, natural gas is not the only fuel that New England has experienced

problems with. In [LaFleur et al., 2014b], FERC notes that while “comments from

the Capacity Markets Technical Conference and Polar Vortex Technical Conference

brought recent attention to the issue of fuel assurance in RTOs/ISOs, the Commission

has highlighted such concerns in the past. For example, as early as 2006, the Com-

mission met with utility and railroad representatives to discuss railroad coal-delivery

matters and their impact on markets and electric reliability.” [LaFleur et al., 2014b]

Currently, however, in 2015, coal reliability is not a concern for New England given

its gas-centric capacity mix. The non-uniqueness of fuel assurance concerns for nat-

ural gas serves as a reminder that if system operators and regulators are able to

successfully define a technology-neutral forward capacity commodity with strong per-

formance penalties that solve current fuel assurance concerns, then this same market

design may be able to address future fuel assurance problems that arise for other

technologies.

More generally, to what extent (if any) should the system operator try to explic-

itly guarantee that firms will be able to meet their obligations when clearing bids?

For example, should the system operator explicitly require firms to demonstrate fuel

availability, which may implicitly bias the market toward technologies with fewer fuel

uncertainties? Or should the system operator implicitly try to ensure performance

by setting large nonperformance penalties, which would require that the system op-

erator correctly estimate how large the penalty must be to adequately encourage

firms to act with due diligence? On the one hand, the system operator should not
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award capacity obligations to firms that have no hope of acquiring fuel. On the other

hand, even with perfect fuel assurance, firms may still experience other failures that

prevent them from meeting their energy obligations. Requiring fuel assurance only

guards against fuel supply failures, which represents one of many potential electricity

reliability problems.

In light of New England’s current situation and the significance of natural gas

uncertainty over the next three years relative to other reliability threats, ISO-NE

and FERC’s indicative planning measures—administratively setting a forward capac-

ity target and establishing a winter reliability program—should be viewed as com-

plementary policy instruments to improve reliability for commodities that operate

under wholesale markets. The efficiency/welfare losses that may occur will be accom-

panied by greater certainty that a substantial and well-known threat will not emerge.

Given the previous characterization of electricity as a basic good for society in which

scarcities of supply can carry tremendous negative repercussions, rather than view

indicative planning tools as anathema to market-oriented approaches, perhaps an ap-

propriate interpretation of any efficiency or welfare loss is to view these losses as the

cost of certainty to hedge against a known, important problem that markets have

thus far unsuccessfully internalized on their own.

4.4 Forward capacity markets for basic goods

Electricity, as a basic good, exhibits characteristics and constraints that make it a

difficult commodity to manage in times of scarcity. These characteristics and con-

straints include the fact that few, if any, viable alternatives exist for the uses that

society has for electricity; that electricity supply and demand must always remain

in balance; that economical storage technologies for electricity are rare and tend to

be geographically specific; and that consumers tend to be less sophisticated market

participants than suppliers. Consequently, shortages of supply can create social and

political problems, and the lack of utility-scale storage options limits the power sys-

tem’s ability to respond to real-time demand and supply fluctuations compared to
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other energy commodities such as oil. Additionally, because an electric power sys-

tem is essentially one large machine, supply and demand imbalances at any node can

propagate quickly throughout the network. These attributes of electric power system

make ensuring reliability a particularly challenging problem.

To address the adequacy and firmness component of these concerns, ISO-New

England introduced forward capacity markets to give firms an incentive to invest in

additional capacity and to link a firm’s forward capacity revenues with its real-time

performance. The basic concept of forward capacity markets in electricity—to provide

companies with a longer term signal to invest and take preemptive actions to ensure

available capacity—potentially can address similar adequacy and firmness concerns

for other basic goods with wholesale markets.

Of electricity’s many characteristics, perhaps the most relevant and general traits

that help explain the existence and design of current forward capacity markets are

1) electricity’s perception as a basic good and the lack of viable substitutes, 2) the

relative difference in sophistication between electricity’s consumers and suppliers, and

3) the difficulty of storing electricity. Due to electricity’s perception as a basic good,

even in spite of demand response programs, strong social and political incentives

exist to ensure that supply appears rather than have demand respond. Given this

fact, and given the physical reality that electric power systems need to constantly

balance demand and supply because of limited storage options, reliably operating a

power system requires that the power system have power plant capacity in excess

of forecasted peak demand. Due to the combination of electricity’s perception as

a basic good and the relative difference in sophistication between consumers and

suppliers, the structure of the forward capacity market specifically places the burden

of risk on suppliers and the cost on consumers. While few basic goods, if any, share

electricity’s unique physical constraints, almost all basic goods, such as immunizations

or water, share many of the social implications that arise from shortages. Additionally,

almost all basic goods exhibit the same market sophistication difference between

small consumers and large suppliers. For other basic goods, then, forward capacity

markets may represent a useful market-oriented approach to secure future investment
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in capacity and avoid shortages.3

4.4.1 Forward capacity markets for pharmaceuticals

As an example, consider basic pharmaceuticals. Currently, pharmaceutical factories

can manufacture a variety of drugs and immunizations. However, within a given

production cycle (for example, each year), generally a factory will only manufacture

a specific drug for a fixed period of time and then retools to produce a different drug.

Due to the cost and downtime required to modify a factory, pharmaceutical companies

typically will produce a set quantity of a drug for the entire year, and then not produce

any more until the next cycle. Shortages can occur for a variety of reasons. Just like

power plants, pharmaceutical factories can fail; firms may underestimate demand for

the year; certain pharmaceuticals may have a limited shelf life; and quality problems

may occur, reducing yields for a production cycle. The fact that pharmaceutical

companies tend to produce high-margin drugs rather than low-margin drugs further

exacerbates certain shortages, especially when substantial demand exists for the lower

margin pharmaceuticals, such as sterile injectable fluids.4 [Tavernise, 2014]

As in power systems, consumers of pharmaceuticals tend to not be in a posi-

tion to withdraw demand, and they tend to be less sophisticated market participants
3Given this dissertation’s exploration of the relationship between gas and electricity, a natural

question arises regarding whether forward capacity markets could be used to directly secure ad-
ditional investment in natural gas pipelines. The question is somewhat misleading because of the
different business models that govern the production of electricity and natural gas versus the trans-
mission of electricity and natural gas. While wholesale electricity markets allow generation firms to
compete to sell electricity, all generation firms and consumers connect to a singular transmission sys-
tem that facilitates competitive trade between suppliers and consumers. Due to economies of scale,
concerns about market power if transmission operators also owned generation assets, and the eco-
nomic difficulties that merchant transmission investors face with respect to owning firm transmission
rights and collecting congestion revenues (see [Pérez-Arriaga, 2013] for more details), transmission
remains a regulated monopoly under cost-of-service. Natural gas pipelines closely resemble electricity
transmission networks, even though multiple pipeline operators can serve the same large geographic
region. As previously reviewed in Chapter 1, FERC Order 636 required pipeline operators to divest
all gas production assets in order to facilitate competitive trade between gas consumers and produc-
ers. In exchange, pipeline operators earn regulated rates of return based on the volume of gas that
moves through their networks, and new pipeline investment requires regulatory approval. In this
business context, forward capacity markets to competitively secure additional pipeline investment
from pipeline operators do not make much sense because pipelines are not competitively built.

4The original idea for applying forward capacity markets to drugs came from Tal Levy, my
colleague and coauthor of the gas-electricity paper in Appendix A.
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than pharmaceutical companies with respect to hedging against the risk of shortages.

Given the similarities between pharmaceuticals and electricity with respect to being

“basic” goods and to the relative sophistication of market participants, forward capac-

ity markets may represent a market-based solution for the pharmaceutical industry’s

adequacy and firmness challenges. As in electricity, a forward capacity market could

be set up by a central agent—in the United States, perhaps the Federal Drug Admin-

istration (FDA). The FDA, on behalf of consumers, could project future demand for

important low-margin drugs, and then establish a forward capacity target and market

for pharmaceutical companies to offer into. As in forward capacity markets for elec-

tricity, pharmaceutical companies would be allowed to bid their opportunity cost and

risk premiums (subject to market monitoring by the FDA), and proportional costs for

forward capacity could be allocated to consumers at the time of consumption. Such

an arrangement would give pharmaceutical companies a new incentive to maintain

their factories to minimize outages and improve yields, and this arrangement would

help ensure adequate supplies for low-margin pharmaceuticals that meet basic needs.

4.4.2 Forward capacity markets for water

Water shares many of the public good characteristics of electricity and basic pharma-

ceuticals. Everyone needs access to a minimum level of clean water to survive, and

access to clean water contributes to the public good in vast and difficult to quantify

manners that range from improving sanitation to enabling farming for an entire so-

ciety. Water also shares many of electricity’s physical characteristics. From year to

year, supplies are subject to tremendous uncertainties due to difficulties such as fore-

casting future snow and rainfall, estimating ground absorption rates, and measuring

underground water resources. Additionally, water can be difficult to store depending

on geography and is not always easy to track. Massive physical structures such as

dams, reservoirs, and aqueducts are needed to transport water through time and over

long distances.

Countries such as Australia and Chile and states such as California have imple-

mented water markets to varying degrees that allow owners of water rights to trade
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with one another with some success in conserving limited water supplies for high

economic value uses. [Hanak, 2014] Yet, as noted by [Howitt and Hansen, 2005],

“because water has both private and public good characteristics, it has often been

developed with some degree of public financing or subsidies. Hence, its reallocation

generates heated controversy—especially when potential profits are involved.” In Cal-

ifornia, the use of water markets to allocate scarce water resources has particularly

large global implications given the state’s recent drought over the last half-decade

and California’s importance to global agriculture. In California’s water market, par-

ticipants can trade “wet” water that they own the rights to. “Wet” water refers to

water that actually is available for consumption, not water that a market participant

simply owns paper rights for. As noted in [Hanak and Stryjewski, 2012], wet water

can come from excess water in surface reservoirs, conserved water that a participant

owns the rights to but does not use, and groundwater. In California, most available

water for trade is either conserved water or groundwater from farmers. During times

of drought, water trading allows farmers that grow less economically valuable crops

to transfer their water to crops with higher economic value. More generally, when

water is scarce, water markets can help efficiently allocate scarce supplies.

Based on lessons from electricity and given water’s numerous similarities to elec-

tricity, can water markets benefit from the use of forward capacity markets to improve

system adequacy and firmness during times of drought? On the one hand, forward

capacity markets could certainly be established to motivate further conservation (de-

mand response) and investment in desalination technologies that are currently too

expensive. On the other hand, unlike electricity and basic pharmaceuticals, wa-

ter “production” is not easily controlled, and regions that rely on forward capacity

markets may run into substantial firmness challenges similar to the fuel assurance

problems discussed in this chapter. Water markets mostly facilitate trading of exist-

ing water rights between agents. As previously noted, in markets such as California,

participants can only trade “wet” water rights. In other water markets such as the

Colorado-Big Thompson water market, a participant’s annual water share depends on

the actual total water supply in a given year, and this share rises and falls depending
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on what actually happens. [Howitt and Hansen, 2005] The underlying commodity

that water market participants trade is fundamentally uncertain, and a substantial

and practical firmness problem would likely exist for any forward capacity market

implementation. That said, this water supply risk is analogous to the risk that mar-

ket participants face with forward capacity obligations in electric power systems; if

water market operators are able to define a forward capacity product and implement

a market that closely links capacity commitments to real-time performance, a for-

ward capacity market for water may competitively incentivize efficient conservation

and technology investment.

4.5 Conclusions

Concerns about system adequacy in electricity markets originally led many system op-

erators to implement forward capacity markets to incentivize investment. However,

the coupling issues between New England’s gas and electricity systems has shown

that in practice, the commodity definition and implementation for forward capacity

markets need to not only address the adequacy dimension of reliability, but also the

firmness dimension. Although forward capacity markets are relatively new, the traits

that electricity exhibits suggest that forward capacity markets may serve as a rea-

sonable market-based approach to adequacy and firmness problems with other basic

goods. Specifically, for other basic goods in which demand cannot easily withdraw

and a substantial difference in market sophistication exists between demand and sup-

ply, a forward capacity market that links adequacy with firmness via performance

incentives and penalties may represent a neutral, market-based approach to resolve

shortages while respecting the underlying commodity’s more difficult to capture social

value.
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Chapter 5

Conclusions

In recent years, power systems around the world have increasingly relied on natural

gas as a fuel for electricity generation due to primarily three economic and environ-

mental reasons. First, hydraulic fracturing (fracking) has led to discoveries of abun-

dant natural gas supplies in many countries. Second, power plants that burn natural

gas emit less carbon and particulate matter than their coal-burning counterparts.

Third, gas-fired power plants can operate with greater flexibility than other thermal

power plants, enabling power systems to adopt larger penetrations of intermittent

renewables.

For power systems that feature large fractions of natural-gas generation technolo-

gies and that experience substantial pipeline constraints, the price and availability

of natural gas can strongly influence the price and reliability of the electric power

system. Stakeholders from public, private, and academic groups have raised con-

cerns about the growing interdependence between natural gas and electricity. These

concerns include scarce pipeline capacities and inadequate supplies resulting in an in-

ability to meet the electric power sector’s natural gas demand, cascading fuel failures

as the electric power sector increasingly substitutes oil for natural gas, and reductions

in fuel diversity as firms retire nuclear and coal capacity due to market dynamics and

age. Taken in aggregate, these concerns highlight the emergence of natural gas as a

common potential cause of multiple failures in natural-gas-constrained power systems.

171



5.1 Contributions

To explore the coupling effects between natural gas and electric power systems, we in-

vestigated the post-investment decisions for individual firms that own gas-fired power

plants because these firms uniquely operate at the intersection of gas and electricity

markets, purchasing one commodity to generate and sell another. To conduct this

investigation, we developed a series of mixed-integer linear programming models that

explicitly represent the following decisions for individual firms over a three-year pe-

riod: (1) long-term, firm pipeline transportation commitments; (2) long-term service

agreements; (3) annual forward capacity offers and maintenance schedules; and (4)

daily fuel purchases and generation levels. To mitigate practical computation chal-

lenges related to solving a three-year stochastic unit commitment model at the hourly

scale, we described an approximation technique to separate the original formulation

into a series of individual and computationally tractable subproblems. Additionally,

we described a technique to evaluate a firm’s forward capacity market bid, as well as

to probabilistically evaluate the impact of forced outages and quantify the firm’s risk

premium due to forced outages.

This dissertation’s primary contributions include a detailed representation of a

gas-fired power-plant owner’s planning problem (Chapter 2); a hierarchical appli-

cation of the system states dimensionality reduction technique to solve the hourly

unit commitment problem over multiple temporal scales (Chapter 2); a technique to

evaluate a firm’s forward capacity market offer, including a probabilistic approach to

evaluate the risk of forced outages (Chapter 3); and an exploration of the applicability

of forward capacity markets to reliability problems for other basic goods (Chapter 4).

The decision models developed in this dissertation can be applied to real-sized electric

power systems with hundreds of power plants to analyze how individual generation

firms may respond in gas and electricity markets to uncertainty about natural gas

supply and electricity demand, as well as specific changes to market rules such as re-

quiring fuel assurance for forward capacity. Lastly, the decision models developed in

this dissertation can also be extended to model how firms may react to new market
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rules over multiple temporal scales for power systems in which a single-node net-

work representation suffices as a first-order approximation of the actual, underlying

physical gas-electricity system.

5.2 Findings

This dissertation’s inspiration to study gas and electricity interactions by exploring

how generation firms coordinate decisions in both markets came from New England,

where the regional electric power system has experienced substantial reliability chal-

lenges due to its heavy reliance on gas-fired power plants. New England’s challenges

raise several important, general questions about gas-constrained power systems. For

example, how do uncertainties about gas supply and electricity demand influence a

generation firm’s decisions across multiple timescales? How do these decisions in turn

affect power system reliability? In gas-constrained power systems with a substantial

fraction of gas-fired power plant capacity, are forward capacity markets effective pol-

icy and market instruments for securing not only investment in power plant capacity,

but also other necessary goods for reliability such as transportation capacity for input

fuels?

Pipeline-constrained and gas-fired-capacity-centric power systems represent one

of the types of power systems that can be modeled with this dissertation’s decision

tools. Applying these tools to a stylized representation of the New England power

system, we learned the following trends:

1. Given that power systems that need to dispatch gas-fired power plants will likely

have already dispatched their available coal and nuclear plants, the most likely

candidates to replace gas-fired power plants are either dual-fuel power plants

that can also burn oil and peaker plants that burn jet fuel. During severe and

prolonged gas supply shortages (for example, during cold weather events), the

electric power system’s inability to acquire natural gas may cause cascading fuel

problems for not only natural gas, but also for oil and jet fuel. As most power

systems do not have substantial storage technologies such as pumped hydro or
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hydro reservoirs, a cascading fuel problem that starts with natural gas and ends

with oil and jet fuel can leave a power system with very few, if any, alternative

supply options.

2. Depending on a power system’s size and peak demand, a generation firm’s natu-

ral gas consumption can vary drastically from day to day. This wide range poses

a large risk for firms with respect to securing long-term pipeline transportation

because on many days, firms may be able to acquire short-term capacity rights

from the spot market. In turn, this allows firms to avoid the risk of owning

long-term pipeline transportation rights that they may not be able to profitably

resell on days that they happen to have excess pipeline capacity. This risk may

partially explain why generation firms, even in gas-constrained power systems,

are hesitant to commit to long-term, firm pipeline transportation despite high

short-term congestion prices and pipeline capacity shortages.

3. Certainty about pipeline availability plays a large role in determining both a

firm’s long-term, uninterruptible pipeline transportation purchase and its for-

ward capacity bid. In a gas-constrained power system, certainty about pipeline

availability can play a dominant role relative to other factors that can influ-

ence a power plant’s availability, such as its maintenance contract decisions,

maintenance schedules, and unforced outages. Firms that have certainty about

their future access to pipeline capacity—regardless of whether the amount of

available pipeline capacity is large or small—can make larger forward capacity

commitments because they do not face the possibility of purchasing capacity

that they cannot use and may not be able to profitably resell.

4. If forced to guarantee fuel availability as a condition of participating in the

forward capacity market, firms that own gas-fired power plants in pipeline-

constrained power systems will substantially commit less forward capacity than

they otherwise would without the fuel assurance requirement if they are un-

able to resell their excess fuel and pipeline capacity. Given this relationship,

forward capacity markets and stronger penalties may simply discourage firms
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from participating in forward capacity markets, rather than encouraging further

investment in pipelines.

To complement the lessons learned by modeling a pipeline-constrained and gas-

fired-capacity-centric power system, this dissertation’s case study of the policy and

regulatory discussions in New England between the Federal Energy Regulatory Com-

mission, the Independent System Operator of New England, and other stakeholders

explored the design and failure of forward capacity markets as a mechanism to im-

prove the region’s natural gas supply and electricity reliability. Evidence from New

England since the inception of its forward capacity market suggests that forward ca-

pacity products based on historical availability alone do not necessarily improve fuel

assurance nor power system reliability, and a well-functioning forward capacity mar-

ket must include some form of real-time performance obligation that penalizes firms

if they are unable to meet their capacity obligation for any reason—including, but

not limited to, the inability to acquire sufficient fuel supplies on any given day.

More generally, forward capacity markets for electricity represent an interesting

mechanism to competitively secure adequate capacity and to ensure system firmness

that may be applicable to other commodities. The key features of electricity that have

resulted in the structure and use of forward capacity markets in some of the power

systems that have adopted them include the fact that few, if any, viable alternatives

exist for the uses that society has for electricity; that electricity supply and demand

must always physically remain in balance, exacerbated by the fact that economical

storage technologies for electricity are rare and tend to be geographically specific; that

electricity is marginally priced, making investment to meet peak demand a financially

risky venture; and that consumers tend to be less sophisticated market participants

than suppliers and are usually unable to directly express their preferences for reliabil-

ity. Consequently, although electricity trades as a market commodity, policymakers,

regulators and system operators have often intervened on behalf of consumers to

avoid supply and demand imbalances. Forward capacity markets and administra-

tively set capacity targets represent one such medium-to-long-term intervention (on

the timescale of multiple years) in which suppliers—including demand response from
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consumers that are willing and able to quit consumption—competitively bid to pro-

vide capacity to the system, up to the administratively set target. For other basic

goods that share electricity’s key physical, social, and market characteristics, for-

ward capacity market designs that successfully link capacity obligations to real-time

performance may represent a technology-neutral mechanism to secure supply.

Lastly, forward capacity markets and administratively set targets are two exam-

ples of indicative planning measures in which market participants are asked to meet

a specific, administratively determined goal. If implemented correctly, these policy

tools can mitigate well-known and well-understood problems. Rather than view in-

dicative planning policy tools as anathema to entirely market-oriented approaches,

perhaps an appropriate interpretation of any efficiency or welfare loss—which can be

estimated using tools such as the decision models in this dissertation—is to view these

losses as the cost of certainty to hedge against problems that markets have not fully

internalized.

5.3 Limitations and future work

This dissertation represents an initial effort to model decisions specific to firms that

own gas-fired power plants across multiple timescales while incorporating important

hourly and daily details to study gas-electricity interactions. While the methods and

models presented in this dissertation have resulted in interesting and potentially use-

ful conclusions for decisionmakers, the speed and precision of the model formulation

only allow a limited study of uncertainty scenarios. For future work, more refine-

ments could be made to simplify the time-coupling requirements for the maintenance

formulation; to endogenously incorporate the gas market (see [Dueñas et al., 2014]

for one such approach); to adapt the system state formulation to incorporate more

hourly constraints, such as ramping and minimum on and off times; to incorporate

network representations for electricity transmission and gas pipelines; and to consider

market power effects between both markets. Briefly, the ideas below describe a few

of these ideas for future work:
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1. Currently, the maintenance formulation endogenously makes maintenance con-

tract and schedule decisions for each gas-fired power plant. Costs for main-

tenance and requirements for scheduling downtime depend on the number of

starts and the number of firing hours that a power plant incurs. Because the

constraints for maintenance temporally couple each power plant’s generation

decisions from week-to-week for one year in the medium-term problem and

month-to-month for three years in the long-term problem, despite the system

state representation’s decoupling of individual hours in the hourly unit commit-

ment problem, the formulation of each firm’s maintenance problem presented

in this dissertation still links decisions from one time interval to the next, trad-

ing a portion of the computational speed gained by using system states for the

ability to model maintenance decisions. To improve the speed of each optimiza-

tion run and to enable a larger exploration of uncertainty scenarios, one might

try to decouple the maintenance constraints that link decisions for power plant

generation levels, starts, and stops together throughout the central planner’s

main optimization problem.

2. The model formulation in this dissertation classifies each hour by state to achieve

computational tractability when analyzing the hourly unit commitment prob-

lem for a real-sized power system over three years. However, the system state

approach does not currently represent features such as ramp constraints and

minimum on and off times. While these features, in reality, tend to not constrain

the dispatch schedule of gas-fired power plants, a more accurate representation

of the hourly unit commitment problem using system states could add support

for these time-coupled constraints. For example, one could try to approximate

the effect of ramping and minimum on/off times by limiting the total energy

that a power plant can produce per start and stop period.

3. The model formulation in this dissertation represents firms that own gas-fired

power plants as price takers in the gas market. Gas prices are exogenously set

based on the daily commodity price plus the pipeline transportation price as
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a function of the inelastic portion of gas demand from utilities and industrial

consumers on a given day. In this market, generation firms that own firm

pipeline transportation capacity have no other gas consumers to sell their excess

capacity to. While this assumption reflects reality given the business models

of other large gas consumers in the United States, there exists no legal reason

that prevents a generation firm from reselling its capacity if it were able to find

a willing buyer. A more detailed representation of the price dynamics between

gas and electricity markets could endogenously incorporate considerations for

reselling capacity. For more information on how to incorporate such details into

the system state model, see [Dueñas et al., 2014].

4. The model formulation in this dissertation represents both the electric power

system and the gas system as single node markets, with no consideration for

the transmission or pipeline network. For gas-constrained power systems such

as New England, this assumption is reasonable because New England receives

most of its gas through the Algonquin pipeline, and Algonquin does, in fact,

represent a single bottleneck for the entire northeast gas system. However, this

single node model does not represent all gas-constrained power systems, and a

more detailed representation of the gas and electricity network in the central

planner’s scheduling problem could reveal other gas-electricity relationships and

dependencies.

5. This dissertation assumes perfect competition to intuit the behavior of individ-

ual firms from the central planner’s scheduling problem. However, in reality,

firms can exercise market power in many ways, and removing the assumption

of perfect competition and simultaneously solving N profit maximization prob-

lems, one for each firm, may reveal unexpected and potentially more realistic

behaviors and patterns in both markets that regulators will need to address.

6. Regarding policies for electricity and natural gas, the reliability mechanisms

that this dissertation has reviewed based on forward capacity markets and in-

dicative planning may be applicable to other goods, and electricity markets may
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offer an interesting case study in market-based adequacy and firmness tools for

other systems that share electricity’s physical and social characteristics, such as

desalination (with electricity as the input commodity and water as the output).

To the reader that has made it through this entire dissertation, this work repre-

sents the culmination of my interests in energy policy and my efforts to learn a set

of diverse computational modeling skills that I could use to generate new ideas and

insights for policy discussions. Having embarked on the daunting task of reading this

document, I hope that you’ve learned much on this journey. Thank you for your time

and attention.
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Gas-electricity price dynamics
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Abstract 

Over the last three years, the New England region of the United States has experienced 

high natural gas prices and frequent pipeline capacity scarcities due to higher demand for 

natural gas as a primary fuel for electricity generation and heat. In this paper, we explore 

the incentives of key participants in the gas and electricity system—ranging from 

generation firms to local distribution companies, third-party arbitrage agents, and 

electricity consumers—to make long-term commitments for pipeline capacity. Based on 

the price dynamics between gas and electricity markets, we conclude that in any gas-

constrained power system that operates under marginal pricing, no private group other 

than electricity consumers has a strong incentive to commit to long-term pipeline 

capacity. Yet, electricity consumers also face a collective action problem. Consequently, 

despite high marginal natural gas and electricity prices due to gas transportation 

scarcities, pipeline investment will generally fail to emerge without public intervention. 

Keywords: gas, electricity, pipeline scarcity, congestion, transportation 
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1 Introduction 

Natural gas plays a unique role as a primary fuel in electric power systems. Gas-fired 

power plants emit fewer greenhouse gasses than their coal-fired counterparts, and power 

systems with substantial fractions of intermittent renewable energy tend to rely on gas-

fired power plants for their operational flexibility. In recent years, the discovery of 

abundant shale formations has also lowered the commodity cost of natural gas enough to 

make it economically competitive with coal. For these reasons, power systems around the 

world have started to transition toward more gas-centric capacity mixes. 

In the northeast United States, the electric power sector’s growing reliance on natural gas 

and increasing share of overall gas consumption has raised discussions about potential 

reliability problems (ISO-New England 2013). In recent policy symposiums, public 

agencies such as the Independent System Operator of New England (ISO-NE), the New 

York Independent System Operator (NYISO), and the Federal Energy Regulatory 

Commission (FERC) and private consortiums such as the Edison Electric Institute have 

expressed concerns about (1) the increasing regularity of pipeline capacity scarcities, (2) 

the ability of the region’s pipeline infrastructure to meet future gas demand, and (3) the 

long-term implications of gas dependence on the electric power system’s fuel diversity 

and reliability (FERC 2012). In particular, public and private stakeholders have wondered 

why despite substantially elevated natural gas transportation costs and high marginal 

electricity prices, and despite the fact that long-term pipeline capacity purchases could 

reduce the uncertainty of available capacity and gas transportation costs, electricity 

market participants thus far notably prefer to not purchase long-term pipeline capacity. 
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The reliability concerns related to pipeline capacity shortages and gas-centric capacity 

mixes in electric power systems are relatively new, but not unique, to New England. A 

few authors have explored related problems. For examples, see (Leahy et al. 2012), who 

wrote about the substantial impacts of natural gas shortages and the resulting electricity 

supply disruptions on consumer surplus in Ireland; and (Woo et al. 2006), who 

investigated the bidirectional effects between electricity and gas systems in California 

and concluded that in regions where the electric power system’s capacity mix is heavily 

gas-dependent, problems in one market can quickly precipitate problems in the other. 

(Woo et al. 2006)’s description of coupled gas-electricity systems aptly applies to New 

England, where natural gas technologies currently accounts for over 50% of all power 

plant installed capacity and over 40% of all generation. (ISO-New England 2013)  

In this paper, we present a stylized, analytical model of a gas-electricity system and an 

empirical case study of actual gas and electricity prices in New England to highlight the 

price dynamics that can occur in gas-electricity systems with wholesale markets and to 

explore why market agents may have insufficient incentive to commit to long-term gas 

transportation. For the remainder of section 1, we review the organization of electricity 

and gas market in New England and the historical role of long-term transportation 

contracts as investment signals for the natural gas industry. In section 2, we analyze the 

incentives for electricity generation firms and other market participants to commit to 

long-term fuel transportation using an analytical model and an empirical case study of 

gas and electricity prices in New England during the winter of 2012. In section 3, we 

discuss the welfare distribution problems that can result from the interaction of gas and 
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electricity markets and highlight policy instruments that some states are considering or 

have already implemented; and in section 4, we conclude. 

1.1 New England’s Gas and Electricity Markets 

New England’s wholesale gas and electricity markets operate independently of each 

other. For electricity, ISO-NE acts as both the system and market operator and has the 

responsibility of matching supply and demand and calculating marginal prices. By 

contrast, the wholesale natural gas market has no central clearing agent and remains 

dominated by bilateral transactions between “shippers” (any agent that wants to send or 

receive gas through a pipeline).  

Because the gas market predominately relies on bilateral transactions, producers that 

want to sell natural gas to consumers in New England must first secure capacity rights 

along the entire pipeline between the point of injection and the point of delivery. In the 

United States, regulation from agencies such as FERC has strongly defined pipeline 

capacity rights, and a robust secondary market exists for trading capacity. In the winter, 

heavy gas demand for heating and electricity generation can lead to pipeline congestion 

and high prices for capacity at Algonquin, the primary natural gas market center for New 

England. By contrast, if a consumer takes delivery of gas at Henry Hub, a market center 

in Louisiana where many pipelines intersect and capacity is rarely scarce, transportation 

costs are usually negligible or zero; for this reason, market participants often interpret the 

price of gas at Henry Hub as the pure commodity price. When prices between Henry Hub 

and Algonquin differ, the price difference indicates the cost of transportation. Because of 

the marginal pricing structure of New England’s electricity market, and because New 
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England relies heavily on gas-fired power plants, high gas transportation costs into 

Algonquin often translate into high marginal prices for electricity.  

A large volume of economic literature exists that describe the relationships between 

marginal electricity prices, optimal spot prices, profits, and investments for electricity 

markets. For example, authors such as (Steiner 1957) and (Boiteux 1960) have explored 

the use of marginal-cost pricing as the optimal policy to incentivize efficient capacity 

investment and utilization for nonstorable commodities such as electricity. The theory on 

optimal spot pricing that many electricity markets operate on today, pioneered by authors 

such as (Mwasinghe 1981), (Caramanis 1982), (Caramanis et al. 1982), and (Schweppe 

1987) and later refined by authors such as (Perez-Arriaga & Meseguer 1997), predicts 

that (1) the optimal spot price for every time instant is the variable cost of the marginal 

generation plant, and (2) that by paying each generator marginal prices, in perfectly 

adapted power systems, all generation technologies should earn just enough money to 

recover their fixed and variable costs. As a consequence of these two predictions, 

generation technologies with positive profits, over time, should incentivize further 

investment until those profits disappear. Given this prediction, and given the similarities 

between electricity and gas systems with respect to the lumpiness of investments and 

economies of scale, why have recent marginal gas and electricity prices—which are high 

by historical standards—thus far not incentivized more long-term commitments for more 

pipeline capacity?  

1.2 United States pipeline regulation 
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Long-term commitments for pipeline capacity have served as an important investment 

signal for pipeline owners since the 1930s, when the regulation of the natural gas industry 

in the United States dramatically changed from vertically integrated entities to today’s 

competitive trading markets and regulated pipeline monopolies. The existing literature on 

transportation contracts and the history of natural gas regulation in the United States 

includes comprehensive papers by authors such as (Juris 1998), who describes the current 

state of gas trading in the United States; (Makholm 2006), who examines the changing 

environment for pipeline investments and long-term contracts from the early 1900s 

onward, paying special attention to the asset specificities1 of the business that made 

pipeline investments a unique challenge for the gas industry; (Petrash 2005), who 

analyzes the decline of long-term capacity contracts and the growing preference for short 

term commitments after the start of deregulation and liberalization in the 1980s; and (Lee 

2004), who provides an extensive overview of the evolution of the country’s natural gas 

regulatory framework and highlights policy problems related to pipeline investment using 

California’s electric power and gas system as a case study.  

After the discovery of large deposits of gas in the early 1900s, utilities began building 

long, interstate pipelines that could transport gas from the middle of the country to local 

markets. After Congress passed the Natural Gas Act (NGA) in 1938 to regulate these 

interstate pipelines, long-term bilateral sales contracts emerged as a viable business 

structure. These bilateral contracts between pipeline operators and producers, and 
                                                

1 The term “asset specificities” in this situation specifically refers to the phenomenon that a pipeline’s 

value, once constructed, depends highly on a producer’s gas commodity supply at one of the pipeline and a 

consumer’s willingness and commitment to purchase on the other end. 

187



between pipeline operators and distributors, specified “bundled” sales of both gas 

commodity and transport capacity. Section 7 of the NGA facilitated the development of 

these long-term contracts by granting the federal regulator the authority to approve new 

pipeline construction projects if operators could demonstrate long-term demand for new 

capacity.  

Currently, the most relevant regulatory acts governing pipeline investment in the United 

States continue to be Section 7 of the Natural Gas Act (1938) and FERC’s 1999 Policy 

Statement [88 FERC ¶ 61,227] regarding the certification and pricing of new pipeline 

projects. In the past, FERC has required the proof of demand component of new pipeline 

applications to include long-term contract commitments for at least 25% of the proposed 

capacity before the Commission would consider the application. In its 1999 policy 

statement, FERC removed the explicit requirement of contractual commitments, noting 

that the policy “no longer reflects the reality of the natural gas industry’s structure;” 

however, the agency continues to regard contractual commitments to new pipeline 

capacity as “significant evidence of demand for a project.” 

Although FERC has removed the explicit requirement of using long-term contracts as the 

single metric for demonstrating public need for new pipelines, clearly the agency still 

considers long-term contracts as useful proxies for public benefit. Additionally, long-term 

transportation contracts, as they have always done, serve as important investment signals 

to pipeline operators by promising stable revenue streams. To try to understand why 

market participants have not committed to long-term transportation contracts despite high 

gas transportation costs and marginal electricity prices, in section 2, we explore the 

commitment incentives for key market participants.  
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2 Case study: Investment incentives for market participants  

The primary market participants in gas and electricity markets include: (1) firms that own 

gas-fired power plants and burn natural gas to generate electricity for sale; (2) electricity 

consumers, ranging from large industrial consumers to individual residential customers, 

who either directly purchase electricity from wholesale markets or via intermediary local 

distribution companies; (3) local distribution companies, who, similar to electricity utility 

companies (and often are the same entities), operate regional monopolies and have the 

responsibility to acquire and distribute gas to captive customers; and (4) private investors 

who seek price arbitrage opportunities. In this section, we explore the impact of rising gas 

transportation costs on each market participant, paying particular attention to power 

generation firms because of their substantial gas consumption relative to other consumers 

and their importance in electric power systems. 

2.1 Generation firms with gas-fired power plants 

To highlight the price dynamics that can occur between gas and electricity markets for 

power generation firms, we present an analytical model of a profit-maximizing firm that 

owns gas-fired power plants and compare the broad analytical results to an empirical case 

study of gas generation firms in New England during the winter of 2012. Both analyses 

reveal that, somewhat contrary to intuition, in systems such as New England where gas is 

the marginal fuel, high fuel transportation costs and pipeline scarcities can potentially 

benefit both gas generation firms and other inframarginal generators. 

2.1.1 A stylized analytical model of a profit-maximizing generation firm 
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In this stylized model of a gas-electricity system, we analyze a profit-maximizing 

generation firm that owns one gas-fired power plant and must decide how much long- 

and short-term transportation capacity to purchase, as well as how much electricity to 

sell, given exogenous prices. The firm’s decisions are subject to the physical constraints 

of its plant’s maximum capacity, transportation constraints for gas, and the firm’s total 

residual demand. The generation firm receives gas from a pipeline that it shares with a 

city whose gas demand is completely inelastic. The firm’s cost for short-term gas 

transportation varies directly in proportion to the city’s consumption, and the city’s 

demand for gas reduces the total short-term pipeline capacity available for the firm.  

For this model, the firm solves a profit maximization problem over two electricity 

“days.” Each day contains a single period of electricity demand. Before the first 

electricity day, the firm must decide how much long-term pipeline capacity to commit to. 

The firm’s long-term gas transportation decision commits the firm to purchase an 

identical quantity of transportation capacity at a fixed price on each day. Then, for each 

electricity day, given the marginal electricity price, the firm must decide how much short-

term gas transportation and gas to purchase, as well as how much energy to sell. Below, 

we present the firm’s profit-maximization problem. The input parameters and decision 

variables for the firm’s gas-electricity profit-maximization problem are as follows: 

 parameters description endogenous 
 Hi heat rate for plant i no 
 GDt city’s demand for gas on day t no 
 PC total shared pipeline capacity 
 PE,t electricity price for day t no 
 PF,t gas commodity price for day t no 
 PST,t short-term capacity price for day t no 
 PLT long-term capacity price  no 
 Dt residual demand for day t no 
 Xmax,i maximum capacity of plant i no 
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 variables description endogenous 
 xi,t generation level for power plant i for day t yes 
 st short-term capacity purchase for day t yes 
 y long-term capacity purchase  yes 
 
The firm’s daily profit function, calculated as its electricity revenues minus its fuel 

transportation and commodity costs, is defined as follows: 

𝜋! 𝑃!,! ,𝑃!,! ,𝑃!",! , 𝑥! , 𝑠! = 𝑃!,! 𝑥!,!
!

− 𝑃!"𝑦 − 𝑃!",!𝑠! − 𝑃!,! 𝑥!,!𝐻!
!

(1) 

The firm maximizes its daily profits taking into consideration residual demand, fuel cost, 

electricity price, and physical constraints on its fuel requirements and maximum power 

generation (Greek letters denote Lagrangean multipliers for each constraint): 

𝑚𝑎𝑥
!

𝜋! + 𝜋! (2)

s.t. 𝑥!,! ≤ 𝑋!"#,!∀𝑖, 𝑡 : 𝜇!,! (3)

𝑥!,!
!

≤ 𝐷!∀𝑡 : 𝜌! (4)

𝑦 + 𝑠! ≥ 𝑥!,!𝐻!
!

∀𝑡 : 𝜃! (5)

𝐺𝐷! + 𝑠! ≤ 𝑃𝐶∀𝑡 : 𝛾! (6)
𝑥!,! ≥ 0, 𝑠! ≥ 0, 𝑦 ≥ 0 : 𝜓!!,! ,𝜓!! ,𝜓! (7)

 

where 𝜔 represents a vector of the endogenous decisions enumerated above; Eq. (3) 

ensures that power plants do not exceed their maximum capacity; Eq. (4) constrains the 

firm to generate no more electricity than the maximum demand; Eq. (5) requires the firm 

to have secured at minimum enough gas transportation to meet its fuel requirements; Eq. 

(6) allows the firm to only purchase spare capacity on the shared pipeline; and Eq. (7) 

enforces nonnegativity on all decisions. Reformulating the firm's profit maximization 

problem using Lagrangean multipliers yields the following first-order conditions at 

optimality: 
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∂ℒ  
∂𝑥!,!

= 𝑃!,! − 𝑃!,!𝐻! − 𝜇!,! − 𝜌! − 𝜃!𝐻! + 𝜓!!,! = 0 (10)

∂ℒ  
∂𝑠!

= −𝑃!",! + 𝜃! − 𝛾! + 𝜓!! = 0 (11)

∂ℒ  
∂𝑦

= −2𝑃!" + 𝜃! + 𝜃! + 𝜓! = 0 (12)

 

Using this description of the firm’s profit-maximization problem, we can now analyze the 

firm’s transportation decisions and profits for various market scenarios where the firm is 

either out-of-margin, marginal, or inframarginal relative to other firms. The firm owns 

one plant with heat rate 𝐻! and must decide generation levels 𝑥!,! for 𝑡 = [1,2]. Starting 

with the intuitive out-of-margin case, when the firm is out-of-margin, the variable cost of 

its plant (the price of fuel multiplied by the heat rate of the firm’s plant) exceeds the 

marginal system price: 

𝑃!,! < 𝑃!,!𝐻! 

When this occurs, the nonnegativity constraint for 𝑥!,! binds tightly  

𝑃!,! − 𝑃!,!𝐻! < 0
𝜇!,! + 𝜌! + 𝜃!𝐻! − 𝜓!!,! < 0

→ 𝜓!!,! > 0, 𝜇!,! = 0, 𝜌! = 0
 

and the firm generates no energy, as expected.  

If, instead, the firm’s plant is marginal and sets the electricity price, then 𝑃!,! = (𝐻!)(𝑃!",! +

𝑃!,!), and the firm’s profit changes in the following manner: 

𝜋 = (𝑃!,!𝑥!,!)
!

− (𝑇)(𝑃!")(𝑦) − (𝑃!",!𝑠! − 𝑃!,!𝑥!,!𝐻!)
!

= (𝑃!",!)(𝑥!,!)(𝐻!)
!

− (𝑇)(𝑃!")(𝑦) − (𝑃!",!)(𝑠!)
!
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The commodity cost term, 𝑃!,!𝑥!,!𝐻!, disappears because the firm pays for and exactly 

recovers its commodity costs when its generation plant is marginal in the electricity 

market. The firm’s short-term transportation requirements,  𝑠!, depend on the firm’s 

previous long-term transportation commitment and will always be less than the total 

amount of capacity that the firm needs on any given day by Eq. (5): 𝑠! ≤    𝐻! 𝑥!,! . As 𝑃!",! 

increases, the firm’s revenue increases to (𝑃!",!) 𝐻! 𝑥!,! , but the firm’s short-term 

transportation costs also increase to 𝑃!",! 𝑠! .   As 𝑃!",! 𝑠!   ≤    𝑃!",! 𝐻! 𝑥!,! , in the 

worst-case scenario, if the marginal firm must entirely rely on short-term transportation, 

high gas prices neither help nor hurt the firm’s profits.  

If the firm’s plant is inframarginal, assuming that a gas-fired power plant with heat rate 

𝐻! sets the marginal electricity price and requires short-term fuel transportation, then the 

firm observes the following electricity price trends: 

𝑃!,! = (𝑃!,! + 𝑃!",!)(𝐻!)
𝐻! ≥ 𝐻!
𝑃!,! ≥ (𝑃!,! + 𝑃!",!)(𝐻!)

 

Unlike in the marginal- and out-of-margin scenarios, as the cost for natural gas increases, 

so do the profits of the inframarginal firm: 

𝜋 = (𝑃!,!)(𝑥!,!)
!

− (𝑇)(𝑃!")(𝑦) − (𝑃!",!𝑠! + (𝑃!,!)(𝑥!,!)(𝐻!))
!

= ((𝑃!,!𝑥!,! 𝐻! − 𝐻! + 𝑃!",! 𝐻!𝑥!,! − 𝑠! )
!

− (𝑇)(𝑃!")(𝑦)
 

Because the firm’s inframarginal plant is more efficient than the marginal plant, revenues 

grow faster than costs: 𝑃!,!𝑥!,!𝐻!   > 𝑃!,!𝑥!,!𝐻!   and 𝑠! ≤    𝐻! 𝑥!,! < 𝐻! 𝑥!,! . Consequently, 

as the short-term transportation price increases, so do the firm’s profits. 
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Given these price dynamics, ideally, a generation firm could attempt to purchase a small 

amount of long-term transportation capacity and capture high inframarginal rents 

resulting from high natural gas transportation costs. However, in a pipeline-constrained 

region, finding a willing counterparty to sell its long-term capacity given high short-term 

prices may prove difficult, given that the most likely candidates are industrial consumers 

and local distribution companies with relatively inelastic demand. Additionally, as the 

inframarginal scenario shows, high short-term transportation prices do not necessarily 

reduce profits in the electricity market. As long as the generation firm believes that a gas-

fired generator will set the marginal electricity price, and that its own plant remains 

inframarginal, then high short-term transportation prices will increase the firm’s profits. 

Given these dynamics, high marginal electricity prices and high short-term transportation 

prices alone do not appear to provide a significant investment signal for existing 

generation firms to purchase long-term transportation capacity in gas-constrained regions.  

2.1.2 Empirical case study of power generation firms in New England 

As observed in the analytical model, higher gas prices can often benefit the profits of gas-

fired power plants due to the marginal pricing structure of electricity markets. To 

examine whether this gas-electricity price dynamic holds for a real power system, using 

the Genscape NatGas Analyst dataset, we examine a period of high gas and electricity 

prices between November 1, 2012 and March 20, 2013, when cold weather drove 

substantial congestion pricing of natural gas in New England.  

The Genscape dataset provides daily scheduled volumes of natural gas, by generator, to 

every large combined-cycle gas generator in New England. By combining these data with 
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each generator’s heat rate (available from the United States Energy Information 

Administration’s (EIA) e-grid data), we can estimate the amount of power that each gas 

generator produces on a daily basis, as well as the inframarginal rents that it earns 

throughout the study period. However, as data about the daily gas consumption patterns 

of individual power plants is not publically available, given that electricity prices can 

change substantially over the course of the day, we need to also estimate each plant’s 

hourly dispatch in order to estimate its inframarginal rents.  

To estimate each plant’s hourly dispatch, we analyzed three scenarios of gas consumption 

that loosely can be interpreted as operating a gas-fired power plant to serve base, 

intermediate, and peak demand. For the base load scenario, we assume that a generator 

burns its daily gas evenly across 24 hours. Given that a gas-fired generator is more likely 

to burn its gas during high electricity prices than low, for the intermediate scenario, the 

generator burns its daily gas evenly across the 16 highest electricity price hours; and in 

the peak scenario, the generator burns its daily gas evenly across the 12 highest electricity 

price hours under the assumption that a combined-cycle plant must remain on for at least 

12 hours due to thermal constraints. Figure 1 plots inframarginal rent estimates versus gas 

prices for these three burn scenarios. Inframarginal rents are calculated as the value of the 

energy produced, based on the hourly ISO-NE energy price, minus the cost of gas, based 

on the Algonquin daily spot price, and each plot point represents one week in the study 

period.  
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Figure 1: Weekly inframarginal rents for gas-fired generation  

(holiday weeks of Thanksgiving, Christmas, and New Years shown in green) 

In the base load scenario, burning gas evenly across 24 hours each day results in a 

negative trend between weekly average gas price and weekly inframarginal rents—if the 

firm operated its power plant in this manner, then high gas prices would have resulted in 

losses for the firm. Restricting gas-fired power plants to operating during the 16 highest 

priced electricity hours in the intermediate scenario and the 12 highest priced electricity 

hours in the peak scenario mitigates these losses, suggesting that either of these scenarios 

are likely more realistic than having firms operate their power plants as base load units. 

Knowing exactly when and how generators burned their gas throughout the day is nearly 

impossible with publicly available data. However, given that generation firms are 

unlikely to operate their plants in a profit-negative manner, the three scenarios suggest 

that during the study period, firms did not burn gas evenly throughout the day; rather, 

firms most likely operated their gas-fired power plants between the 12 and 16 highest 

priced hours of each electricity day. 

The inframarginal rent scenarios in Figure 1 also illustrate two key points related to 

unusually high marginal heat rates and firm losses and profits. First, the outliers at the gas 

price of $20/MMBtu show that regardless of how a firm operates its gas-fired power 
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plants, any week that experiences abnormally high heat rates (for example, because of 

supply constraints that require inefficient oil generators to start) can create large 

inframarginal rents. Second, regardless of how a firm operates its gas-fired power plants, 

the range of possible inframarginal rents that the firm can earn remains relatively small 

compared to changes in the price of gas. During the study period, New England 

experienced approximately seven weeks with average gas prices above $7/MMBtu. Over 

the same time period, the difference in profits for a week with an average gas price below 

$7/MMBtu and for a week with an average gas price above $7/MMBtu was, at most, $10 

million. Based on this upper bound and the fact that New England experienced between 

six to seven weeks with gas prices above $7/MMBtu, firms with gas-fired power plants 

could have lost at worst $60 to $70 million due to pipeline scarcities and high short-term 

transportation prices.  

 

Figure 2: New England nuclear and thermal generation offers at different gas price levels 

However, because the baseload scenario likely underestimates actual inframarginal rents, 

and because of the marginal pricing structure of ISO-NE’s electricity market, high 

marginal electricity prices driven by high gas prices may actually have benefitted many 

generation firms. To explore this possibility, Figure 2 and 3 analyze the marginal 

generation technology in New England and compare how marginal prices change relative 
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to gas prices. Figure 2 shows supply curves for various thermal generation technologies 

in New England under different natural gas prices. Each point on a supply curve 

represents a generator listed in ISO-NE’s March 2013 Seasonal Claimed Capability 

report. The bid prices shown in the graphs were calculated by multiplying each plant’s 

heat rate by its fuel price. Heat rates for each plant are based on data from the EIA’s e-

grid dataset, and the supply curves assume a coal price of $3/MMBtu. Nuclear plants bid 

a price of zero in these supply scenarios, given that electricity markets tend to always 

fully dispatch nuclear plants barring unforeseen physical constraints. Given that 

aggregate peak electricity demand in the winter of 2012 ranged between 14 and 17 GWs, 

the intersection of this range of demand with the supply curves in Figure 2 suggest that 

ISO-NE frequently dispatched gas-fired generators to meet the marginal unit of 

electricity demand during the study period. Figure 3 confirms that gas-fired generators 

often set the marginal price in ISO-NE: plotting gas prices versus electricity prices results 

in a clear relationship between the two with an R2 of 0.93. Because gas-fired generators 

frequently set the marginal electricity price that all generators receive, and because gas-

fired generators only account for approximately 45% of New England’s generation at any 

time instant2, high gas transportation prices led consumers to pay substantially higher 

electricity prices in disproportion to the actual cost increases experienced by generation 

firms. In particular, consumers paid non-gas inframarginal firms, which accounted for at 

least 55% of all generation, high electricity prices driven by high gas prices despite the 

fact that these firms experienced zero direct cost increases.  

                                                

2 Converting daily gas deliveries to electricity produced using each generator’s heat rate shows that gas-

fired generation exceeded 45% of load in only three days during the four month study period. 
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Figure 3: Daily Average On-Peak Day-Ahead price at Mass Hub versus Algonquin spot prices; Mass Hub 

prices downloaded from ISO-NE 

2.2 Investment incentives for other market participants 

In power systems where gas technologies frequently set the marginal electricity price, 

high transportation costs for natural gas can create substantial transfers from consumers 

to generation firms. Given this dynamic, gas generation firms appear to have little 

incentive to invest in long-term fuel transportation. Using the same Genscape NatGas 

Analyst dataset, we extend the empirical case study to analyze the investment incentives 

for three other key participants in New England’s gas and electricity system: local 

distribution companies, third-party arbitrage investors, and electricity consumers. To 

explore how congestion rents and electricity prices might change under different pipeline 

scenarios, we also introduce a hypothetical scenario in which the pipeline capacity at 

Algonquin increases by 0.6 BCF per day (representing an addition of approximately 25% 

more capacity than is currently available).  

y = 7.55x + 7.01!
R² = 0.93!

0!

50!

100!

150!

200!

250!

300!

0! 5! 10! 15! 20! 25! 30! 35! 40!M
as

s 
H

ub
 O

np
ea

k 
D

ay
 A

he
ad

 P
ric

e 
($

/M
W

h)
!

Algonquin Price ($/MMBtu)!

Electricity and gas price correlation!

199



2.2.1 Gas Local Distribution Companies 

Local distribution companies (LDCs), because of their regulated monopolistic structure 

and mandate to ensure reliable gas supplies to their captive consumers, own a substantial 

fraction of long-term pipeline firm transmission rights. These firm transmission rights 

allow LDCs to hedge against high congestion prices on behalf of their consumers. Table 

1 shows that while the price of natural gas for gas-fired power plants rose heading into 

the winter during the study period, the average price that residential customers paid for 

gas actually fell slightly. As long as LDCs have adequate firm transmission to serve their 

captive customers, they have little reason to purchase additional transmission capacity.  

  9/1/2012 10/1/2012 11/1/2012 12/1/2012 1/1/2013 2/1/2013 3/1/2013 

MA Residential 15.02 12.84 13.88 13.38 13.18 13.01 13.07 

MA Electric 3.26 3.8 5.5 5.7 9.64 18.52 7.03 

CT Residential 20.45 17.88 14.76 13.09 13.07 12.76 12.1 

CT Electric 3.39 3.89 5.79 5.77 9.83 11.65 5.66 

Table 1: EIA Monthly Average Gas Price By Customer Type ($/MMBtu) 

2.2.2 Private Investors in New Pipeline Capacity 

Thus far, we have examined why firms that own gas-fired power plants and LDCs are 

unlikely to invest in new pipeline capacity despite high congestion prices. Participants in 

academic and regulatory settings such as (MITEI 2013) have often argued that one of the 

advantages of congestion pricing in spot markets is to provide transparent price signals 

for private investment. Given the substantial basis differential between Algonquin and 

Henry Hub, private investors (arbitrage agents) may have incentive to fund new pipeline 

construction into New England.  
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To examine how a private investor might collect congestion rents in New England, we 

start with the hypothetical pipeline expansion scenario in which the private investor funds 

0.6 BCF of new pipeline capacity into the New England region (representing an addition 

of approximately 25% more pipeline capacity than is currently available at Algonquin). 

Assuming that the private investor’s pipeline is fully scheduled during the study period, 

the private investor could receive, at most, approximately $530 million in congestion rent 

by collecting (0.6 BCF/day) • (10^6 MMBtu / BCF) • ($6.44/MMBtu difference between 

Algonquin and Henry) • (138 days in the study period).  

However, because building an additional 0.6 BCF of pipeline capacity would also likely 

suppress congestion prices, $530 million is a generous upper bound estimate of 

congestion rents. We estimate how congestion prices might change by exploiting the fact 

that residential and commercial gas usage highly influences the availability of short-term 

pipeline capacity at Algonquin. Residential and commercial consumers share pipeline 

capacity with gas-fired generators, but are insensitive to spot prices because they pay a 

regulated tariff rate to their local LDC. LDCs, in turn, release any pipeline capacity that 

their customers do not need to other entities such as generation firms in secondary 

markets. Using this fact, we assume that citygate gas consumption is an independent 

variable that exogenously drives Algonquin spot prices and use citygate gas consumption 

data to estimate the Algonquin basis differential during the study period.  
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Figure 4: Relationship between citygate consumption and Algonquin basis pricing; black dots are daily actual 

observations, the blue line represents an imposed $2/MMBtu constant basis differential and an exponentially 

fitted trend after removing three extreme outliers shown in black, and the red line represents the estimated 

differential with a 0.6 BCF per day upgrade.  

The blue fitted line3 in Figure 4 maps residential and commercial demand levels at the 

Massachusetts citygate to a specific Algonquin spot price based on actual observations. 

The fitted line imposes a $2 constant premium for taking delivery of gas at Algonquin 

over taking delivery at Henry Hub, and the red line shows how congestion prices for 

Algonquin might change relative to citygate consumption with the hypothetical pipeline 
                                                

3 Three consecutive days in January were removed from the fit line because they fall well outside of the 

trend; however, if included, the fitted line would result in higher spot prices at Algonquin that would skew 

the estimate of congestion rents higher. Additionally, we only considered daily gas prices between Tuesday 

and Friday because Saturday through Monday trade as a single block contract. Lastly, we fixed the fit lines 

at a price of $2/MMBtu for consumption levels below 1.8 BCF because prices appear to be somewhat 

insensitive to demand below this level. 
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expansion (the red trend line models the 0.6 BCF expansion by shifting every point on 

the blue curve rightward by 0.6 BCF). Under the hypothetical expansion scenario, due to 

lower congestion prices, a private investor that owned long-term transmission rights for 

the additional 0.6 BCF would likely only earn, at most, $210 million in congestion rents 

instead of the original estimate of $530 million. 

Given the imprecise nature of this revenue estimate if an investor were to invest in 0.6 

BCF of additional pipeline capacity at Algonquin, we probe for potential positive and 

negative biases by (1) examining the impact of the hypothetical expansion on spare 

pipeline capacity considering both Algonquin and TGP, the other major pipeline that 

connects the United States interstate pipeline system to New England; and (2) examining 

the frequency of pipeline scarcities at Algonquin that drove gas prices higher. Figure 5 

graphs the total spare capacity for Algonquin and TGP versus the Algonquin basis. The 

plot shows that the combined spare capacity of both pipelines during the study period is 

always less than 0.6 BCF; consequently, the hypothetical situation of adding an 

additional 0.6 BCF of capacity at Algonquin would essentially double the region’s spare 

capacity on low gas demand days and likely increase the number of unconstrained 

pipeline days, even considering the contribution of TGP’s capacity.  
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Figure 5: Algonquin basis versus sum of spare capacity on Algonquin and TGP,  

November 1, 2012 to March 20, 2013 

Figure 6 shows two cumulative distribution functions that describe the percentage of time 

during the study period that the price of gas was less than or equal to a specific value. 

The cumulative distribution functions correspond to gas prices at Algonquin and at 

Transco-Z6, a hub in New York. Although congestion can clearly drive the New York 

basis well above Henry Hub, as shown by the red line, in the absence of congestion 

(about 60% of the days in the study period), the Transco-Z6 basis can fall under 

$0.2/MMBtu. By contrast, Algonquin appears to constantly have congestion during the 

study period. An additional 0.6 BCF of transport capacity could potentially eliminate this 

constant level of congestion. In the context of estimating the Algonquin basis (Figure 4), 

an expansion of 0.6 BCF could potentially collapse the imposed $2/MMBtu floor to 

levels similar to Transco’s uncongested prices ($0.1/MMBtu to $0.4/MMBtu). Given the 

potential for a 0.6 BCF expansion to collapse the $2/MMBtu floor at Algonquin, the 

0!

5!

10!

15!

20!

25!

30!

35!

0.00! 0.10! 0.20! 0.30! 0.40! 0.50! 0.60!

Al
go

nq
ui

n 
Ba

si
s 

($
/M

M
Bt

u)
!

Spare pipeline capacity (BCF/day)!

Algonquin Basis vs. Total New England Pipeline Capacity!

204



revenue estimate of $210 million in congestion rents for a private investor represents a 

high upper bound. 

 

Figure 6: Cumulative distribution function of daily basis prices at Algonquin and Transco-Z6(NY),  

November 1, 2012 to March 20, 2013 

In summary, although private investors may be able to earn money by investing in 

capacity to arbitrage the price difference between Algonquin and Henry Hub, the 

congestion rent that they can collect is inversely proportional to the amount of capacity 

that they (and others) invest in because additional capacity quickly reduces congestion 

rents and the frequency of pipeline scarcities. Consequently, although private investors 

have incentive to buy a small amount of long-term pipeline capacity, they will not buy 

enough to fully eliminate pipeline scarcities that drive electricity prices higher for 

consumers. 
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To estimate the cost impact of high gas prices to electricity consumers, we compared the 

cost of electricity and actual gas prices during the study period to the predicted cost of 

electricity assuming gas prices at nearby market centers in New York, New Jersey, and 

under the hypothetical 0.6 BCF Algonquin capacity investment scenario.  

To estimate electricity prices using daily gas prices, we normalized a set of hourly 

electricity prices for one day based on that same day’s gas price, and then scaled the 

normalized set by every actual daily gas price. Using this approximation, we performed 

two normalizations—one to represent electricity prices during on-peak gas demand days 

and one to represent electricity prices during off-peak gas demand days. Figures Figure 8 

andFigure 8 compare the estimated prices to actual hourly pricing data over the study 

period.  
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Figure 7: Estimated versus actual hourly electricity prices at Masshub during the study period 

 

Figure 8: Estimated versus actual hourly electricity prices at Masshub during the study period  

For both on-peak and off-peak days, the model makes reasonable predictions with R2 = 

0.88 for on peak and R2 = 0.79 for off peak. Aggregating these estimated electricity prices 
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with electricity demand, consumers paid approximately $3.3 billion for electricity4 in 

New England during the case study period. Applying the same mapping functions to 

estimate electricity costs under different gas prices, Table 2 shows the cost savings that 

New England could have achieved over the study period had it received the gas prices at 

New Jersey (Tetco-M3), the gas prices at the New York city area (Transco Z6 (NY)), or 

the hypothetical Algonquin gas prices that would result from the 0.6 BCF expansion. 

Gas Price Dollars Saved (billions of $) 

New Jersey (Tetco-M3) 2.23 

New York (Transco-Z6(NY)) 1.08 

40% Algonquin Basis 1.38 

Table 2: Total New England electricity savings possible under different gas price scenarios based on 

geographically close market hubs and a hypothetical 0.6 BCF expansion at Algonquin 

High gas prices clearly impact the cost of electricity for New England consumers. If New 

England could receive the same gas prices as New Jersey, consumers would have saved 

about $2.2 billion over the study period. Even receiving New York City’s natural gas 

prices, which are higher than New Jersey’s but lower than Algonquin’s, would have 

saved approximately $1.1 billion.5  

                                                

4 This cost is for energy only. It does not include other charges such as reserves and make-whole payments 

to generators dispatched out of merit for reliability. 

5 Gas delivered to citygates is primarily for residential and commercial heating, as well as small businesses 

that do not have direct pipeline connections. The Genscape dataset shows that all large combined-cycle 

power plants in New England have direct pipeline interconnections; thus, there is no double counting. Note 

that these “savings” represent savings to consumers—not deadweight loss. Although higher gas prices will 
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2.3 Case study summary 

Congestion pricing for natural gas in New England imposed a substantial cost on 

consumers through higher electricity prices. Considering the hypothetical scenario of 

adding 0.6 BCF pipeline capacity to Algonquin, consumers in New England would have 

observed lower transportation costs on the order of 60% and electricity savings of 

approximately $1.38 billion over the study period. However, if private investors were to 

fund this additional capacity, they could only collect approximately $210 million in 

congestion rents over the same period.  

The electricity costs imposed on consumers by pipeline scarcities and high gas 

transportation costs are far larger than the congestion rents that owners of physical 

transportation capacity can capture for three reasons. First, pipeline capacity owners only 

receive congestion rents based on the amount of capacity that they own. If a pipeline 

expansion comprises 15% of transmission capability, the owner only captures 15% of any 

congestion rents. Second, substantially improving transportation capacity will likely 

suppress congestion pricing and decrease profits from congestion rents. Third, high 

natural gas prices cost consumers far more than the increased cost of fuel for gas-fired 

generators because gas-fired generators produce less than 50% of the electricity, but 

almost always set the marginal price in New England. Consequently, consumers pay 

                                                                                                                                            

undoubtedly lead to some deadweight loss from the dispatch of less efficient coal and oil generators, higher 

gas prices also lead to rent transfers between electricity consumers, generation firms, and owners of long-

term transportation capacity. 
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more for electricity not just because they are paying for gas transportation, but also 

because they must pay all inframarginal generators—from New Englands legacy oil and 

coal fleet, as well as any imported power—the elevated marginal electricity price. 

Generation firms have little incentive to invest in pipeline capacity because they can 

benefit from high gas prices; LDCs only need to acquire enough pipeline capacity to meet 

the gas demand of their captive customers; and private investors are unable to capture 

much of the inframarginal rents that consumers pay due to pipeline scarcities. Consumers 

clearly would benefit from lower gas transportation costs. However, given the economies 

of scale of pipeline investments, individual consumers face a substantial collective action 

problem committing to long-term gas transportation. In section 3, we discuss this 

collective action problem in greater detail and review potential policy instruments that 

could address it. 

3 Policy Implications  

The structure of the electricity and natural gas markets in New England results in high 

electricity prices to consumers, but limited incentives for private actors to commit to the 

long-term fuel transportation needed to fund new pipeline capacity for the following 

reasons. First, high gas prices can be beneficial to a generation firm’s profits. Second, 

investment in long-term transportation capacity collapses high scarcity prices for gas 

transportation and discourages private investment. Third, consumers pay 

disproportionately more for electricity than the actual increased cost to generators due to 

high fuel costs (this benefits all inframarginal generators). And fourth, given the current 

gas and electricity market rules, there is no obvious business model that would allow a 
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third-party private agent to collect the extra costs paid by consumers in the electricity 

market resulting from high gas prices. Given these dynamics between gas and electricity 

markets, the large electricity costs that consumers pay due to high gas prices appear to 

represent a substantial welfare transfer from consumers to inframarginal generators and 

the original owners of long-term transportation capacity. 

These price dynamics create the potential for a market failure because electricity 

consumers, the single group that would benefit most from increased pipeline capacity, are 

likely too dispersed to collectively purchase long term transportation contracts.6 Pipeline 

investments are large, lumpy, and feature strong economies of scale. Given that pipeline 

investments have these economic features, electricity consumers as a group face a 

collective action problem with making a sufficiently large and long-term commitment for 

fuel transportation that would result in additional investment. Additionally, electricity 

consumers tend to purchase gas indirectly via the LDC that they are connected to. Within 

the deregulated natural gas and electricity framework, neither LDCs nor other 

government agencies traditionally have a mandate to purchase firm transmission for the 

private electric power sector, even if this purchase would provide net savings to their 

captive consumers.  

In response to the lack of new investment in pipeline capacity, increasing reliability and 

affordability concerns, and the collective action problem that individual electricity 

                                                

6 Determining whether a market failure is actually occurring would require comparing the aggregate 

welfare gains to the cost of building a new pipeline, and this is beyond the scope of this paper.  
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consumers face in New England, the state of Maine recently passed LD 1559, “An Act 

To Reduce Energy Costs, Increase Energy Efficiency, Promote Electric System 

Reliability and Protect the Environment,” enabling its public utilities commission (PUC) 

to commit to purchasing long-term gas transportation capacity on behalf of consumers. In 

the bill, the Maine legislature notes that “it is in the public interest to decrease prices of 

electricity and natural gas for consumers in this State,” and that “the expansion of natural 

gas transmission capacity into this State and other states in the ISO-NE region could 

result in lower natural gas prices and, by extension, lower electricity prices for consumers 

in this State.” Maine’s actions support the idea that the substantial welfare transfer from 

consumers to generation firms and current owners of long-term gas transportation 

contracts may represent a welfare distribution and collective action problem in New 

England’s gas and electricity markets, and the state’s decision to grant its PUC the 

authority to invest in long-term pipeline capacity may signal a belief that under current 

market rules, private firms will not invest in pipeline capacity of their own accord. Our 

paper provides theoretical and empirical support for the Maine policy by identifying the 

key pathways by which high natural gas prices impose large costs on consumers, but 

provide little investment incentive to other actors.  

4 Conclusion 

Electric power systems are burning increasingly larger amounts of natural gas for 

environmental and economic reasons. Using an analytic model and an empirical case 

study of gas and electricity prices in New England during the winter of 2012, we showed 

that electric power systems in pipeline-constrained regions with gas-centric capacity 

mixes and wholesale electricity markets that operate under marginal pricing can produce 
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unexpected price dynamics. These price dynamics can improve the profits of generation 

firms while simultaneously limiting the scarcity rents that other private firms can collect, 

resulting in few incentives for any private firm to commit to long-term fuel 

transportation. Additionally, due to the large and lumpy nature of pipeline investments, 

electricity consumers are unlikely to commit to substantial quantities of long-term fuel 

transportation because they face a collective action problem, despite the fact that they 

stand to gain the most from lower gas transportation costs. Maine’s passing of LD 1559, 

which gives the state’s public utilities commission the explicit authority to commit to 

firm pipeline transmission if the purchase will provide a net benefit to consumers, 

represents a novel approach to overcoming the collective action problem and merits 

further consideration by other state legislatures and public utilities commissions as 

electric power and gas systems increasingly grow more coupled to one another. 
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Matlab and GAMS code
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1 * dispatchSystemStates.gms
2 *
3 * This is the GAMS code for the system state unit commitment problem with
4 * long- and medium-term decisions.
5
6 $OFFLISTING
7 $INCLUDE AUTO_GENERATED/OPTIONS.gms
8
9 $INCLUDE STATIC_SETS.gms

10 $INCLUDE SYSTEMSTATES.gms
11
12 $INCLUDE POWERPLANTS.gms
13 $INCLUDE TIME.gms
14
15 $INCLUDE GAS.gms
16 $INCLUDE LTSA.gms
17 $INCLUDE FCM.gms
18 $INCLUDE AUTO_GENERATED/MAINTENANCE.gms
19
20 VARIABLES
21 totalCost objective value;
22
23 POSITIVE VARIABLES
24 x(q, s, pp, i) output of each power plant
25 w(q, s, pp, i) output of each power plant above its minimum
26
27 y(q, s, ss, pp, i) start up decision
28 z(q, s, ss, pp, i) shut down decision
29
30 fx_LT(g) long-term transportation commitment
31 fx_ST(q, dd, g) short-term transportation
32 f(q, dd, g) daily fuel use for electricity
33
34 starts(q, j) total starts
35 fh(q, j) total firing hours
36 umd(q, s, pp, j) product of binary variables u and md
37 mb(q, pp, j) variable to indicate maintenance
38 md(q, pp, j) maintenance duration
39 moc(q, j) maintenance cost
40
41 binaryCost(q) binary cost
42 gasGenCost(q, dd) daily gas generation cost
43 scenarioCost(q) individual scenario aggregate cost
44
45 fcc_gas(q, aa, g) maximum gas contribution to fcc decision
46 fcc_nongas(q, aa, g) maximum nongas contribution of fcc decision
47 fcc_j(q, dd, j) daily contribution of gas plant j to forward capacity
48 fcc_nj(q, dd, nj) daily contribution of non-gas plant nj to forward capacity
49 fcc(q, aa, g) anticipative forward capacity commitment
50
51 a_ST(q, dd, g) percentage of daily gas demand purchased in spot market
52 a_LT(q, g) percentage of daily gas demand covered by long-term contracts
53 a_min(g) actual, average percentage of gas met by long-term contracts
54 a_dummy(q, g) dummy variable
55
56 fcc_gas_NA(aa, g) nonanticipativity
57 fcc_j_NA(dd, j) nonanticipativity
58 fcc_NA(aa, g) nonanticipativity
59
60 mb_NA(pp, j) nonanticipativity;
61
62 SOS1 VARIABLE mc(j, l) maintenance contract selection;
63
64 BINARY VARIABLES
65 u(q, s, pp, i) commitment state;
66
67 INTEGER VARIABLES
68 efhAcc(q, pp, j) track accumulated equivalent firing hours;
69
70 EQUATIONS
71 objective define objective function
72 costD(q) individual scenario costs
73 costA(q, dd) cost of gas generators
74 costB(q) binary costs
75
76 eUMD1(q, s, pp, j) linearization of u * md
77 eUMD2(q, s, pp, j) linearization of u * md
78 eUMD3(q, s, pp, j) linearization of u * md
79
80 demand(q, s, pp) state demand balance
81 eGenerationA(q, s, pp, nj) calculate generation levels for non-gas plants
82 eGenerationB(q, s, pp, j) calculate generation levels for gas plants
83
84 commit(q, pp, s, ss, i) commitment state
85 commitB(q, s, ss, pp, i) startup decision constraint
86 commitC(q, s, ss, pp, i) shutdown decision constraint
87
88 eTechMax(q, s, pp, i) technical maximum output
89 eTechMin(q, s, pp, i) technical minimum output
90
91 eMaintMax(q, s, pp, j) maintenance duration
92 eMaintMin(q, s, pp, j) maintenance duration
93 eMaintPeriod(q, pp, j) maintenance duration
94
95 eDailyGasUsage(q, dd, g) natural gas use for each day and scenario
96 eDailyTransportation(q, dd, g) short-term fuel transporation required
97 ePipeline(q, dd) natural gas transportation limit
98
99 eCvarST(q, dd, g) daily fraction of gas demand met with short-term purchases

100 eCvarLT(q, g) average gas demand met with long-term purchases
101 eCvarTargetA(g) require firms to meet a fraction of gas demand with long-term purchases
102 eCvarTargetB(q, g) require firms to meet a fraction of gas demand with long-term purchases
103
104 eTotalFiringHours(q, j) total firing hours
105 eTotalStarts(q, j) total starts
106
107 eMaintMIF(q, j, l, h) LTSA MIF cost allocation
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108 eMaintSOS(j) LTSA selection
109
110 eMaintEFHLower(q, pp, j) maintenance group assignment based on equivalent firing hours
111 eMaintEFHUpper(q, pp, j) maintenance group assignment based on equivalent firing hours
112 eMaintEFHStart(q, pp, j) maintenance start based on equivalent firing hours
113 eMaintIgnoreA(q, pp, j)
114 eMaintIgnoreB(q, pp, j)
115
116 eFCMTarget(q, aa) forward capacity target
117 eFCMMaxOfferA(q, aa, g) sum gas and nongas fwd. capacity offers
118 eFCMMaxOfferB(q, aa, g) do not allow NSE to make a forward capacity offer
119 eFCMMaxOfferC(q, aa, dd, g) aggregate non-gas forward capacity limit
120 eFCMMaxOfferD(q, dd, nj) individual non-gas maximum
121 eFCMGasA(q, aa, pp, dd, j) aggregate gas plant technical max
122 eFCMGasB(q, aa, dd, g) aggregate plant availability based on maintenance
123 eFCMGasC(q, dd, pp, g) aggregate gas plant availability based on gas supply
124 eFCMGasD(q, pp, dd, j) individual gas plant availability based on maintenance
125
126 eFCMNonanticipativityA(q, aa, g)
127 eFCMNonanticipativityB(q, aa, g)
128
129 eMaintNonanticipativity(q, pp, j);
130
131 objective..
132 totalCost
133 =E= sum((q), P_Q(q) * scenarioCost(q));
134
135 costD(q)..
136 scenarioCost(q)
137 =E= sum(dd, gasGenCost(q, dd))
138 + sum((s, pp, nj), x(q, s, pp, nj) * (C_4(nj) * HR(nj) + C_5(nj))
139 * STATE_DURATION_MONTHLY(q, pp, s))
140 + binaryCost(q)
141 + sum(j, moc(q, j))
142 + sum((nj, dd), fcc_nj(q, dd, nj) * C_4(nj) * HR(nj))
143 + sum((j, dd), fcc_j(q, dd, j) * C_7(dd) * HR(j));
144
145 costA(q, dd)..
146 gasGenCost(q, dd)
147 =E= sum(g, f(q, dd, g) * C_7(dd))
148 + sum(g, P_FX_LT * fx_LT(g))
149 + sum(g, C_8(q, dd) * fx_ST(q, dd, g));
150
151 costB(q)..
152 binaryCost(q)
153 =E= sum((s, pp, nj),
154 u(q, s, pp, nj) * C_3(nj) * STATE_DURATION_MONTHLY(q, pp, s)
155 + sum(ss, STATE_TRANSITIONS_MONTHLY(q, pp, s, ss) *
156 (y(q, s, ss, pp, nj) * C_1(nj)
157 + z(q, s, ss, pp, nj) * C_2(nj))))
158 + sum((s, pp, j),
159 umd(q, s, pp, j) * C_3(j) * STATE_DURATION_MONTHLY(q, pp, s)
160 + sum(ss, STATE_TRANSITIONS_MONTHLY(q, pp, s, ss) *
161 (y(q, s, ss, pp, j) * C_1(j)
162 + z(q, s, ss, pp, j) * C_2(j))));
163
164 eUMD1(q, s, pp, j)..
165 umd(q, s, pp, j) =L= u(q, s, pp, j);
166
167 eUMD2(q, s, pp, j)..
168 umd(q, s, pp, j) =L= 1 - md(q, pp, j);
169
170 eUMD3(q, s, pp, j)..
171 umd(q, s, pp, j) =G= u(q, s, pp, j) - md(q, pp, j);
172
173 demand(q, s, pp)..
174 sum(i, x(q, s, pp, i))
175 =E= ELECTRICITY_DEMAND(q, s) - WIND(q, s);
176
177 eGenerationA(q, s, pp, nj)..
178 x(q, s, pp, nj) =E= w(q, s, pp, nj) + X_MIN(nj) * u(q, s, pp, nj);
179
180 eGenerationB(q, s, pp, j)..
181 x(q, s, pp, j) =E= w(q, s, pp, j) + X_MIN(j) * u(q, s, pp, j);
182
183 eTechMax(q, s, pp, nj)..
184 x(q, s, pp, nj) =L= X_MAX(nj) * u(q, s, pp, nj);
185
186 eTechMin(q, s, pp, nj)..
187 x(q, s, pp, nj) =G= X_MIN(nj) * u(q, s, pp, nj);
188
189 eMaintMax(q, s, pp, j)..
190 x(q, s, pp, j) =L= X_MAX(j) * umd(q, s, pp, j);
191
192 eMaintMin(q, s, pp, j)..
193 x(q, s, pp, j) =G= X_MIN(j) * umd(q, s, pp, j);
194
195 eMaintPeriod(q, pp, j)..
196 md(q, pp, j)
197 =E= sum(ppp$((ORD(ppp) <= ORD(pp)) AND (ORD(ppp) > (ORD(pp) - SMD))),
198 mb(q, ppp, j));
199
200 commit(q, pp, s, ss, i)..
201 u(q, ss, pp, i)
202 =E= u(q, s, pp, i) + y(q, s, ss, pp, i) - z(q, s, ss, pp, i);
203
204 commitB(q, s, ss, pp, i)..
205 y(q, s, ss, pp, i) =L= 1;
206
207 commitC(q, s, ss, pp, i)..
208 z(q, s, ss, pp, i) =L= 1;
209
210 eDailyGasUsage(q, dd, g)..
211 f(q, dd, g)
212 =E= sum((i, s, pp)$[dayToPeriod(dd, pp) AND FIRM(i, g) AND j(i)],
213 x(q, s, pp, i) * HR(i) * STATE_DURATION_DAILY(q, dd, s));
214
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215 eDailyTransportation(q, dd, g)..
216 f(q, dd, g) =L= fx_ST(q, dd, g) + fx_LT(g);
217
218 ePipeline(q, dd)..
219 sum(g, fx_ST(q, dd, g)) =L= (PC - GD(q, dd));
220
221 eCvarST(q, dd, g)$[F_ESTIMATED(q, dd, g) NE 0]..
222 a_ST(q, dd, g) =G= 1 - (fx_LT(g) / F_ESTIMATED(q, dd, g));
223
224 eCvarLT(q, g)..
225 a_LT(q, g) =E= 1 - sum(dd, a_ST(q, dd, g) / CARD(dd));
226
227 eCvarTargetA(g)..
228 a_min(g) - sum(q, (P_Q(q) * a_dummy(q, g)) / (1 - BETA(g)))
229 =G= A_MIN_TARGET(g);
230
231 eCvarTargetB(q, g)..
232 a_dummy(q, g) =G= a_min(g) - a_LT(q, g);
233
234 eTotalFiringHours(q, j)..
235 fh(q, j) =E= sum(pp, sum(s, umd(q, s, pp, j) * STATE_DURATION_MONTHLY(q, pp, s)));
236
237 eTotalStarts(q, j)..
238 starts(q, j) =E= sum(pp, sum((s, ss), y(q, s, ss, pp, j) * STATE_TRANSITIONS_MONTHLY(q, pp, s, ss)));
239
240 eMaintMIF(q, j, l, h)$[ORD(h) < CARD(h)]..
241 starts(q, j) * C_6(l) * (LTSA(l, h, ’FH’) - LTSA(l, h+1, ’FH’))
242 - fh(q, j) * C_6(l) * (LTSA(l, h, ’ST’) - LTSA(l, h+1, ’ST’))
243 + moc(q, j) * (LTSA(l, h, ’ST’) * LTSA(l, h+1, ’FH’) - LTSA(l, h+1, ’ST’) * LTSA(l, h, ’FH’))
244 =G= BIG_M_50000000 * (mc(j, l) - 1);
245
246 eMaintSOS(j)..
247 sum(l, mc(j, l)) =E= 1;
248
249 eMaintEFHLower(q, pp, j)$[maintenance(pp) and majorGasPlants(j)]..
250 efhAcc(q, pp, j) =G=
251 (sum((s, ss, ppp)$[ORD(ppp) < ORD(pp)],
252 y(q, s, ss, ppp, j) * STATE_TRANSITIONS_MONTHLY(q, ppp, s, ss)) * (MFH / MST)
253 + sum((s, ppp)$[ORD(ppp) < ORD(pp)],
254 umd(q, s, ppp, j) * STATE_DURATION_MONTHLY(q, ppp, s))
255 - MFH) / MFH;
256
257 eMaintEFHUpper(q, pp, j)$[maintenance(pp) and majorGasPlants(j)]..
258 efhAcc(q, pp, j) =L=
259 (sum((s, ss, ppp)$[ORD(ppp) < ORD(pp)],
260 y(q, s, ss, ppp, j) * STATE_TRANSITIONS_MONTHLY(q, ppp, s, ss)) * (MFH / MST)
261 + sum((s, ppp)$[ORD(ppp) < ORD(pp)],
262 umd(q, s, ppp, j) * STATE_DURATION_MONTHLY(q, ppp, s))) / MFH;
263
264 eMaintEFHStart(q, pp, j)$[maintenance(pp) and majorGasPlants(j)]..
265 mb(q, pp, j) =E= efhAcc(q, pp, j) - efhAcc(q, pp-1, j);
266
267 eMaintIgnoreA(q, pp, j)$[not majorGasPlants(j)]..
268 mb(q, pp, j) =E= 0;
269
270 eMaintIgnoreB(q, pp, j)$[not majorGasPlants(j)]..
271 efhAcc(q, pp, j) =E= 0;
272
273
274 * forward capacity market equations
275 eFCMTarget(q, aa)..
276 sum(g, fcc(q, aa, g)) =E= FCM(aa);
277
278 eFCMMaxOfferA(q, aa, g)..
279 fcc(q, aa, g) =L= fcc_nongas(q, aa, g) + fcc_gas(q, aa, g);
280
281 eFCMMaxOfferB(q, aa, g)..
282 fcc(q, aa, g) =G= 0;
283
284 eFCMMaxOfferC(q, aa, dd, g)..
285 fcc_nongas(q, aa, g)$[dayToYear(dd, aa)]
286 =L= sum(nj$FIRM(nj, g), fcc_nj(q, dd, nj));
287
288 eFCMMaxOfferD(q, dd, nj)..
289 fcc_nj(q, dd, nj) =L= X_MAX(nj);
290
291 eFCMGasA(q, aa, pp, dd, j)..
292 fcc_j(q, dd, j) =L= X_MAX(j) * (1 - md(q, pp, j)$[dayToPeriod(dd, pp)]);
293
294 eFCMGasB(q, aa, dd, g)..
295 fcc_gas(q, aa, g)$[dayToYear(dd, aa)] =L= sum(j$[FIRM(j, g)], fcc_j(q, dd, j));
296
297 eFCMGasC(q, dd, pp, g)$[dayToPeriod(dd, pp)]..
298 sum(j$[FIRM(j, g)], fcc_j(q, dd, j) * HR(j)) * sum(s$[SHORTAGE(q, pp, s)], STATE_DURATION_DAILY(q, dd, s))
299 =L= fx_LT(g) + fx_ST(q, dd, g);
300
301 eFCMNonanticipativityA(q, aa, g)..
302 fcc(q, aa, g) =E= fcc_NA(aa, g);
303
304 eFCMNonanticipativityB(q, aa, g)..
305 fcc_gas(q, aa, g) =E= fcc_gas_NA(aa, g);
306
307 eMaintNonanticipativity(q, pp, j)..
308 mb(q, pp, j) =E= mb_NA(pp, j);
309
310 $IFTHEN "%LONG_TERM%" == "YES"
311
312 * form long-term model
313 MODEL longTerm / objective, costD, costA, costB,
314 eUMD1, eUMD2, eUMD3,
315 demand, eGenerationA, eGenerationB,
316 commit, commitB, commitC,
317 eTechMax, eTechMin,
318 eMaintMax, eMaintMin, eMaintPeriod,
319 eDailyGasUsage, eDailyTransportation, ePipeline,
320 eTotalFiringHours, eTotalStarts,
321 eMaintMIF, eMaintSOS,
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322 eMaintEFHLower, eMaintEFHUpper, eMaintEFHStart,
323 eMaintIgnoreA, eMaintIgnoreB,
324 eFCMTarget, eFCMMaxOfferA, eFCMMaxOfferB, eFCMMaxOfferC, eFCMMaxOfferD,
325 eFCMGasA, eFCMGasB, eFCMGasC,
326 eCvarST, eCvarLT, eCvarTargetA, eCvarTargetB,
327 eFCMNonanticipativityA, eFCMNonanticipativityB /;
328 eMaintNonanticipativity /;
329
330 longTerm.optfile = 0;
331 longTerm.threads = -1;
332
333 * declare output files
334 FILE results_objective_lt / ’results_objective_lt.csv’ /;
335 put results_objective_lt;
336 put "P_FX_LT, E[totalCost]";
337 put /;
338
339 FILE results_fx_lt / ’results_fx_lt.csv’ /;
340 put results_fx_lt;
341 results_fx_lt.pw = 32767;
342 put "g,P_FX_LT,fx_LT";
343 put /;
344
345 FILE results_mc / ’results_mc.csv’ /;
346 put results_mc;
347 results_mc.pw = 32767;
348 put "j, P_FX_LT, mc(1), mc(2)"
349 put /;
350
351 FILE results_fcm_lt / ’results_fcm_lt.csv’ /;
352 put results_fcm_lt;
353 results_fcm_lt.pw = 32767;
354 put "q, a, g, P_FX_LT, fcc, x_max, marginalPrice";
355 put /;
356
357 FILE results_maintenance_lt / ’results_maintenance_lt.csv’ /;
358 put results_maintenance_lt;
359 results_maintenance_lt.pw = 32767;
360 put "q, P_FX_LT, j, MOC, firing hours, starts";
361 put /;
362
363 FILE results_availableGasCapacity_lt / ’results_availableGasCapacity_lt.csv’ /;
364 put results_availableGasCapacity_lt;
365 results_availableGasCapacity_lt.pw = 32767;
366 put "q, P_FX_LT, p, g, gasFiredCapacity";
367 put /;
368
369 FILE results_fuelUsage_lt / ’results_fuelUsage_lt.csv’ /;
370 put results_fuelUsage_lt;
371 results_fuelUsage_lt.pw = 32767;
372 put "q, PT_FX_LT, day, firm, f, f_LT, f_ST";
373 put /;
374
375 FILE results_generation_lt / ’results_generation_lt.csv’ /;
376 put results_generation_lt;
377 results_generation_lt.pw = 32767;
378 put "q, P_FX_LT, p, g, output";
379 put /;
380
381 FILE results_generation_marginal_prices_lt / ’results_generation_marginal_prices_lt.csv’ /;
382 put results_generation_marginal_prices_lt;
383 results_generation_marginal_prices_lt.pw = 32767;
384 put "q, P_FX_LT, p, s, marginal price, time duration";
385 put /;
386
387 FILE results_profits_lt / ’results_profits_lt.csv’ /;
388 put results_profits_lt;
389 results_profits_lt.pw = 32767;
390 put "P_FX_LT, g, energy revenue, nonconvex costs, gas costs, non-gas costs, forward capacity revenue";
391 put /;
392
393 FILE results_miscellaneous / ’results_miscellaneous.csv’ /;
394 put results_miscellaneous;
395 results_miscellaneous.pw = 32767;
396
397 FILE results_riskAversion / ’results_riskAversion.csv’ /;
398 put results_riskAversion;
399 results_riskAversion.pw = 32767;
400 put "P_FX_LT, alpha, beta, g, fx_lt";
401 put /;
402
403 SET ALPHA_INDEX / 1 /;
404 SET BETA_INDEX / 1, 5, 9 /;
405
406 PARAMETER ALPHA_VALUES(ALPHA_INDEX)
407 /
408 1 0.2
409 *2 0.5
410 *3 0.9
411 /;
412
413 PARAMETER BETA_VALUES(BETA_INDEX)
414 /
415 1 0.1
416 * 2 0.2
417 * 3 0.3
418 * 4 0.4
419 5 0.5
420 * 6 0.6
421 * 7 0.7
422 * 8 0.8
423 9 0.9
424 /;
425
426 loop(P_FX_LT_INDEX,
427
428 * pull out long-term transportation price for this set of runs
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429 P_FX_LT = P_FX_LT_RANGE(P_FX_LT_INDEX);
430
431 loop (ALPHA_INDEX,
432 loop (BETA_INDEX,
433
434 loop(g,
435 A_MIN_TARGET(g) = ALPHA_VALUES(ALPHA_INDEX);
436 A_MIN_TARGET(g) = ALPHA_VALUES(ALPHA_INDEX);
437 BETA(g) = BETA_VALUES(BETA_INDEX);
438 BETA(g) = BETA_VALUES(BETA_INDEX);
439 );
440
441 * model execution
442 SOLVE longTerm USING MIP MINIMIZING totalCost;
443
444 put results_riskAversion;
445 loop(g,
446 put P_FX_LT;
447 put ",";
448 put ALPHA_VALUES(ALPHA_INDEX);
449 put ",";
450 put BETA_VALUES(BETA_INDEX);
451 put ","
452 put g.tl;
453 put ",";
454 put fx_LT.l(g);
455 put /;
456 );
457 );
458 );
459
460 * write out the objective value
461 put results_objective_lt;
462 put P_FX_LT;
463 put ",";
464 put totalCost.l;
465 put /;
466
467 * write out long-term fuel commitments
468 put results_fx_lt;
469 loop(g,
470 put g.tl;
471 put ",";
472 put P_FX_LT;
473 put ",";
474 put fx_LT.l(g);
475 put /;
476 );
477
478 * write out long-term maintenance decisions
479 put results_mc;
480 loop(j,
481 put j.tl;
482 put ",";
483 put P_FX_LT;
484 put ",";
485 loop(l$[ORD(l) EQ 1],
486 put mc.l(j,l);
487 put ",";);
488 loop(l$[ORD(l) EQ 2],
489 put mc.l(j,l));
490 put /;
491 );
492
493 * write out annual forward capacity commitments and marginal prices
494 put results_fcm_lt;
495
496 loop(q,
497 loop(aa,
498 loop(g,
499 put q.tl;
500 put ",";
501 put aa.tl;
502 put ",";
503 put g.tl;
504 put ",";
505 put P_FX_LT_RANGE(P_FX_LT_INDEX);
506 put ",";
507 put fcc.l(q, aa, g);
508 put ",";
509 put sum(i$[FIRM(i, g)], X_MAX(i));
510 put ",";
511 put eFCMTarget.m(q, aa);
512 put /;
513 );
514 );
515 );
516
517 * write out maintenance results
518 put results_maintenance_lt;
519
520 loop(q,
521 loop(j,
522 put q.tl;
523 put ",";
524 put P_FX_LT_RANGE(P_FX_LT_INDEX);
525 put ",";
526 put j.tl;
527 put ",";
528 put moc.l(q, j);
529 put ",";
530 put sum((s, pp), umd.l(q, s, pp, j) * STATE_DURATION_MONTHLY(q, pp, s));
531 put ",";
532 put sum((s, ss, pp), y.l(q, s, ss, pp, j) * STATE_TRANSITIONS_MONTHLY(q, pp, s, ss));
533 put /;
534 );
535 );
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536
537 * write out available gas generation capacity
538 put results_availableGasCapacity_lt;
539
540 loop(q,
541 loop(pp,
542 loop(g,
543 put q.tl;
544 put ",";
545 put P_FX_LT_RANGE(P_FX_LT_INDEX);
546 put ",";
547 put pp.tl;
548 put ",";
549 put g.tl;
550 put ",";
551 put sum(j$[FIRM(j, g)], X_MAX(j) * (1-md.l(q, pp, j)));
552 put /;
553 );
554 );
555 );
556
557 * write out fuel usage
558 put results_fuelUsage_lt;
559
560 loop(q,
561 loop(dd,
562 loop(g,
563 put q.tl;
564 put ",";
565 put P_FX_LT_RANGE(P_FX_LT_INDEX);
566 put ",";
567 put dd.tl;
568 put ",";
569 put g.tl;
570 put ",";
571 put f.l(q, dd, g);
572 put ",";
573 put fx_LT.l(g);
574 put ",";
575 put fx_ST.l(q, dd, g);
576 put /;
577 );
578 );
579 );
580
581 * write out power plant generation levels
582 put results_generation_lt;
583
584 loop(q,
585 loop(pp,
586 loop(g,
587 put q.tl;
588 put ",";
589 put P_FX_LT_RANGE(P_FX_LT_INDEX);
590 put ",";
591 put pp.tl;
592 put ",";
593 put g.tl;
594 put ",";
595 put sum((s, i)$FIRM(i, g), x.l(q, s, pp, i) * u.l(q, s, pp, i) * STATE_DURATION_MONTHLY(q, pp, s));
596 put /;
597 );
598 );
599 );
600
601 * write out marginal prices for energy
602 put results_generation_marginal_prices_lt;
603
604 loop(q,
605 loop(pp,
606 loop(s,
607 put q.tl;
608 put ",";
609 put P_FX_LT_RANGE(P_FX_LT_INDEX);
610 put ",";
611 put pp.tl;
612 put ",";
613 put s.tl;
614 put ",";
615 put demand.m(q, s, pp);
616 put ",";
617 put STATE_DURATION_MONTHLY(q, pp, s);
618 put /;
619 );
620 );
621 );
622
623 put results_profits_lt;
624
625 loop(g,
626 put P_FX_LT_RANGE(P_FX_LT_INDEX);
627 put ",";
628 put g.tl;
629 put ",";
630 put sum((q, pp, s, i)$[FIRM(i, g)],
631 P_Q(q) * x.l(q, s, pp, i) * u.l(q, s, pp, i) * demand.m(q, s, pp));
632 put ",";
633 put sum(q, P_Q(q) * (sum((s, pp, nj)$FIRM(nj, g),
634 u.l(q, s, pp, nj) * C_3(nj) * STATE_DURATION_MONTHLY(q, pp, s)
635 + sum(ss, STATE_TRANSITIONS_MONTHLY(q, pp, s, ss) *
636 (y.l(q, s, ss, pp, nj) * C_1(nj)
637 + z.l(q, s, ss, pp, nj) * C_2(nj))))
638 + sum((s, pp, j)$FIRM(j, g),
639 umd.l(q, s, pp, j) * C_3(j) * STATE_DURATION_MONTHLY(q, pp, s)
640 + sum(ss, STATE_TRANSITIONS_MONTHLY(q, pp, s, ss) *
641 (y.l(q, s, ss, pp, j) * C_1(j)
642 + z.l(q, s, ss, pp, j) * C_2(j))))));
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643 put ",";
644 put sum((q, dd), P_Q(q) * (f.l(q, dd, g) * C_7(dd) + P_FX_LT * fx_LT.l(g)));
645 put ",";
646 put sum(q, P_Q(q) * (sum((s, pp, nj)$FIRM(nj, g),
647 x.l(q, s, pp, nj) * (C_4(nj) * HR(nj) + C_5(nj)) * STATE_DURATION_MONTHLY(q, pp, s))
648 + sum(j$FIRM(j, g), moc.l(q, j))));
649 put ",";
650 put sum((q, aa), P_Q(q) * fcc.l(q, aa, g) * eFCMTarget.m(q, aa));
651 put /;
652 );
653
654 * miscellaneous results
655 put results_miscellaneous;
656
657 put "fuel constraint dual variable";
658 put /;
659 loop(q,
660 loop(dd,
661 put q.tl;
662 put ",";
663 put P_FX_LT;
664 put ",";
665 put dd.tl;
666 put ",";
667 put ePipeline.m(q, dd);
668 put /;
669 );
670 );
671 put //;
672
673 put "maintenance start";
674 put /;
675 loop(q,
676 loop(j,
677 put q.tl;
678 put ",";
679 put j.tl;
680 put ",";
681 put P_FX_LT;
682 put ",";
683 loop(pp,
684 put mb.l(q, pp, j);
685 put ",";
686 );
687 put /;
688 );
689 );
690 put //;
691
692 put "maintenance duration";
693 put /;
694 loop(q,
695 loop(j,
696 put q.tl;
697 put ",";
698 put j.tl;
699 put ",";
700 put P_FX_LT;
701 put ",";
702 loop(pp,
703 put md.l(q, pp, j);
704 put ",";
705 );
706 put /;
707 );
708 );
709 put //;
710 );
711
712 putclose results_objective_lt;
713 putclose results_fx_lt;
714 putclose results_mc;
715 putclose results_fcm_lt;
716 putclose results_maintenance_lt;
717 putclose results_availableGasCapacity_lt;
718 putclose results_fuelUsage_lt;
719 putclose results_generation_lt;
720 putclose results_profits_lt;
721 putclose results_miscellaneous;
722
723 $ELSE
724
725 * form medium-term model
726 MODEL mediumTerm / objective, costD, costA, costB,
727 eUMD1, eUMD2, eUMD3,
728 demand, eGenerationA, eGenerationB,
729 commit, commitB, commitC,
730 eTechMax, eTechMin,
731 eMaintMax, eMaintMin, eMaintPeriod,
732 eDailyGasUsage, eDailyTransportation, ePipeline,
733 eTotalFiringHours, eTotalStarts,
734 eMaintMIF, eMaintSOS,
735 * eMaintEFHLower, eMaintEFHUpper, eMaintEFHStart,
736 * eMaintIgnoreA, eMaintIgnoreB,
737 eFCMTarget, eFCMMaxOfferA, eFCMMaxOfferB, eFCMMaxOfferC, eFCMMaxOfferD,
738 eFCMGasA, eFCMGasB, eFCMGasC,
739 eFCMNonanticipativityA, eFCMNonanticipativityB, eMaintNonanticipativity /;
740
741 mediumTerm.optfile = 0;
742 mediumTerm.threads = -1;
743
744 $onecho > cplex.opt
745 $offecho
746
747 * declare output files
748 FILE results_objective / ’results_objective.csv’ /;
749 put results_objective;
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750 results_objective.pw = 32767;
751 put "P_FX_LT, E[totalCost]";
752 put /;
753
754 FILE results_fcm / ’results_fcm.csv’ /;
755 put results_fcm;
756 results_fcm.pw = 32767;
757 put "q, a, g, P_FX_LT, fcc, x_max, marginal price";
758 put /;
759
760 FILE results_maintenance / ’results_maintenance.csv’ /;
761 put results_maintenance;
762 results_maintenance.pw = 32767;
763 put "q, P_FX_LT, j, MOC, firing hours, starts";
764 put /;
765
766 FILE results_availableGasCapacity / ’results_availableGasCapacity.csv’ /;
767 put results_availableGasCapacity;
768 results_availableGasCapacity.pw = 32767;
769 put "q, P_FX_LT, p, g, gasFiredCapacity";
770 put /;
771
772 FILE results_fuelUsage / ’results_fuelUsage.csv’ /;
773 put results_fuelUsage;
774 results_fuelUsage.pw = 32767;
775 put "q, PT_FX_LT, day, firm, f, f_LT, f_ST";
776 put /;
777
778 FILE results_generation / ’results_generation.csv’ /;
779 put results_generation;
780 results_generation.pw = 32767;
781 put "q, P_FX_LT, p, g, output";
782 put /;
783
784 FILE results_generation_marginal_prices / ’results_generation_marginal_prices.csv’ /;
785 put results_generation_marginal_prices;
786 results_generation_marginal_prices.pw = 32767;
787 put "q, P_FX_LT, p, s, marginal price, time duration";
788 put /;
789
790 FILE results_profits / ’results_profits.csv’ /;
791 put results_profits;
792 results_profits.pw = 32767;
793 put "P_FX_LT, g, energy revenue, nonconvex costs, gas costs, non-gas costs, forward capacity revenue";
794 put /;
795
796 loop(P_FX_LT_INDEX,
797
798 * fix long-term variables
799 fx_LT.fx(g) = SOLVED_FX_LT(P_FX_LT_INDEX, g);
800 mc.fx(j, l) = SOLVED_MC(P_FX_LT_INDEX, j, l);
801
802 * solve the medium-term model
803 SOLVE mediumTerm USING MIP MINIMIZING totalCost;
804
805 * write out the objective value
806 put results_objective;
807 put P_FX_LT;
808 put ",";
809 put totalCost.l;
810 put /;
811
812 * write out annual forward capacity commitments
813 put results_fcm;
814
815 loop(q,
816 loop(aa,
817 loop(g,
818 put q.tl;
819 put ",";
820 put aa.tl;
821 put ",";
822 put g.tl;
823 put ",";
824 put P_FX_LT_RANGE(P_FX_LT_INDEX);
825 put ",";
826 put fcc_NA.l(aa, g);
827 put ",";
828 put sum(i$[FIRM(i, g)], X_MAX(i));
829 put ",";
830 put eFCMTarget.m(q, aa);
831 put /;
832 );
833 );
834 );
835
836 * write out maintenance results
837 put results_maintenance;
838
839 loop(q,
840 loop(j,
841 put q.tl;
842 put ",";
843 put P_FX_LT_RANGE(P_FX_LT_INDEX);
844 put ",";
845 put j.tl;
846 put ",";
847 put moc.l(q, j);
848 put ",";
849 put sum((s, pp), umd.l(q, s, pp, j) * STATE_DURATION_MONTHLY(q, pp, s));
850 put ",";
851 put sum((s, ss, pp), y.l(q, s, ss, pp, j) * STATE_TRANSITIONS_MONTHLY(q, pp, s, ss));
852 put /;
853 );
854 );
855
856 * write out available gas generation capacity
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857 put results_availableGasCapacity;
858
859 loop(q,
860 loop(pp,
861 loop(g,
862 put q.tl;
863 put ",";
864 put P_FX_LT_RANGE(P_FX_LT_INDEX);
865 put ",";
866 put pp.tl;
867 put ",";
868 put g.tl;
869 put ",";
870 put sum(j$[FIRM(j, g)], X_MAX(j) * (1-md.l(q, pp, j)));
871 put /;
872 );
873 );
874 );
875
876 * write out fuel usage
877 put results_fuelUsage;
878
879 loop(q,
880 loop(dd,
881 loop(g,
882 put q.tl;
883 put ",";
884 put P_FX_LT_RANGE(P_FX_LT_INDEX);
885 put ",";
886 put dd.tl;
887 put ",";
888 put g.tl;
889 put ",";
890 put f.l(q, dd, g);
891 put ",";
892 put fx_LT.l(g);
893 put ",";
894 put fx_ST.l(q, dd, g);
895 put /;
896 );
897 );
898 );
899
900
901 * write out power plant generation levels
902 put results_generation;
903
904 loop(q,
905 loop(pp,
906 loop(g,
907 put q.tl;
908 put ",";
909 put P_FX_LT_RANGE(P_FX_LT_INDEX);
910 put ",";
911 put pp.tl;
912 put ",";
913 put g.tl;
914 put ",";
915 put sum((s, i)$FIRM(i, g), x.l(q, s, pp, i) * u.l(q, s, pp, i) * STATE_DURATION_MONTHLY(q, pp, s));
916 put /;
917 );
918 );
919 );
920
921 * write out marginal prices for energy
922 put results_generation_marginal_prices;
923
924 loop(q,
925 loop(pp,
926 loop(s,
927 put q.tl;
928 put ",";
929 put P_FX_LT_RANGE(P_FX_LT_INDEX);
930 put ",";
931 put pp.tl;
932 put ",";
933 put s.tl;
934 put ",";
935 put demand.m(q, s, pp);
936 put ",";
937 put STATE_DURATION_MONTHLY(q, pp, s);
938 put /;
939 );
940 );
941 );
942
943 * write out profits
944 put results_profits;
945
946 loop(g,
947 put P_FX_LT_RANGE(P_FX_LT_INDEX);
948 put ",";
949 put g.tl;
950 put ",";
951 put sum((q, pp, s, i)$[FIRM(i, g)],
952 P_Q(q) * x.l(q, s, pp, i) * u.l(q, s, pp, i) * demand.m(q, s, pp));
953 put ",";
954 put sum(q, P_Q(q) * (sum((s, pp, nj)$FIRM(nj, g),
955 u.l(q, s, pp, nj) * C_3(nj) * STATE_DURATION_MONTHLY(q, pp, s)
956 + sum(ss, STATE_TRANSITIONS_MONTHLY(q, pp, s, ss) *
957 (y.l(q, s, ss, pp, nj) * C_1(nj)
958 + z.l(q, s, ss, pp, nj) * C_2(nj))))
959 + sum((s, pp, j)$FIRM(j, g),
960 umd.l(q, s, pp, j) * C_3(j) * STATE_DURATION_MONTHLY(q, pp, s)
961 + sum(ss, STATE_TRANSITIONS_MONTHLY(q, pp, s, ss) *
962 (y.l(q, s, ss, pp, j) * C_1(j)
963 + z.l(q, s, ss, pp, j) * C_2(j))))));
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964 put ",";
965 put sum((q, dd), P_Q(q) * (f.l(q, dd, g) * C_7(dd) + P_FX_LT * fx_LT.l(g)));
966 put ",";
967 put sum(q, P_Q(q) * (sum((s, pp, nj)$FIRM(nj, g),
968 x.l(q, s, pp, nj) * (C_4(nj) * HR(nj) + C_5(nj)) * STATE_DURATION_MONTHLY(q, pp, s))
969 + sum(j$FIRM(j, g), moc.l(q, j))));
970 put ",";
971 put sum((q, aa), P_Q(q) * fcc.l(q, aa, g) * eFCMTarget.m(q, aa));
972 put /;
973 );
974
975
976 );
977
978 putclose results_objective;
979 putclose results_fcm;
980 putclose results_maintenance;
981 putclose results_availableGasCapacity;
982 putclose results_fuelUsage;
983 putclose results_generation;
984 putclose results_profits;
985
986 $ENDIF
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1 OPTION optcr = 0.001;
2 OPTION RESLIM = 10000000;
3 OPTION ITERLIM = 100000000;
4
5 $OFFLISTING
6 $INCLUDE SETS.gms
7 $INCLUDE POWERPLANTS.gms
8 $INCLUDE GAS.gms
9 $INCLUDE SCENARIOS.gms

10 $INCLUDE DEMAND.gms
11 $INCLUDE TIME.gms
12
13 VARIABLES
14 x(kk, nn, tt, i) total output of each power plant
15 w(kk, nn, tt, i) output of each power plant above its minimum
16
17 y(kk, nn, tt, i) start decision
18 z(kk, nn, tt, i) shut down decision
19 u(kk, nn, tt, i) commitment state
20
21 f(kk, nn, dd, g) daily gas usage per firm
22 fx_ST(kk, nn, dd, g) short-term transportation per firm
23 fx_LT(g) long-term transportation per firm
24
25 fh_uc(kk, nn, tt, j) total firing hours
26 s_uc(kk, nn, tt, j) total starts
27 moc_uc(kk, nn, j) maintenance cost of plant j
28 mS(kk, nn, tt, j) track accumulated starts since the last maintenance
29 mF(kk, nn, tt, j) track accumulated firing hours since the last maintenance
30 mb(kk, nn, tt, j) binary variable to indicate maintenance
31 mc(j) maintenance contract selection
32 md(kk, nn, tt, j) maintenance duration
33
34 binaryCost(kk, nn) binary cost
35 gasGenCost(kk, nn, dd) daily gas generation cost
36 scenarioCost(kk, nn) individual scenario aggregate cost
37 totalCost total cost;
38
39 POSITIVE VARIABLE x, w, y, z, f, fx_ST, fx_LT, mS, mF, md, fh_uc, s_uc, moc_uc;
40 BINARY VARIABLE u, mb, mc;
41
42
43 EQUATIONS
44 objective define objective function
45 costD(kk,nn) individual scenario costs
46 costA(kk, nn, dd) cost of gas generators
47 costB(kk, nn) binary costs
48 costM(kk, nn) maintenance costs
49
50 demand(kk, nn, tt) hourly demand
51 eGeneration(kk, nn, tt, i) calculate hourly individual plant generation levels
52
53 commit(kk, nn, tt, i) commitment decision
54 commitB(kk, nn, tt, i) constrain start variable between 0 and 1
55 commitC(kk, nn, tt, i) constrain stop variable between 0 and 1
56
57 eTechMin(kk, nn, tt, i) minimum output constraints
58 eTechMax(kk, nn, tt, i) maximum output constraints
59
60 eMaintMax(kk, nn, tt, j) maintenance duration
61 eMaintMin(kk, nn, tt, j) maintenance duration
62 eMaintPeriod(kk, nn, tt, j) maintenance duration
63
64 * eTotalFH(kk, nn, j) total firing hours
65 * eTotalS(kk, nn, j) total starts
66 * eMaintCost(kk, nn, j) maintenance cost
67
68 eMaxDownRamp(kk, nn, tt, i) minimum ramp constraints
69 eMaxUpRamp(kk, nn, tt, i) maximum ramp constraints
70 eMinUpTime(kk, nn, tt, i) minimum down time
71 eMinDownTime(kk, nn, tt, i) minimum up time
72
73 dailyGasUsage(kk, nn, dd, g) daily gas usage
74 dailyTransportation(kk,nn,dd,g) short-term fuel transporation required
75 pipeline(kk, nn, dd) natural gas transportation limit
76
77 startsLimit(kk, nn, tt, j) start limit for power plants
78 startsAcc(kk, nn, tt, j) accumulator positivity constraint
79 hoursLimit(kk, nn, tt, j) hours limit for power plants
80 hoursAcc(kk, nn, tt, j) accumulator positivity constraint
81 maintStart(kk, nn, tt, j) maintenance schedule based on starts
82 maintHours(kk, nn, tt, j) maintenance schedule based on firing hours
83 ;
84
85 objective..
86 totalCost =E= sum((kk, nn), P_K(kk) * P_N(nn) * scenarioCost(kk, nn));
87
88 costD(kk, nn)..
89 scenarioCost(kk, nn)
90 =E= sum((tt, nj), x(kk, nn, tt, nj) * (C_4(nj) * H(nj) + C_5(nj)))
91 + sum(dd, gasGenCost(kk, nn, dd))
92 + sum(g, P_FX_LT * fx_LT(g))
93 + binaryCost(kk, nn);
94
95 costA(kk, nn, dd)..
96 gasGenCost(kk, nn, dd)
97 =E= sum((tt, j)$hourToDay(tt, dd), x(kk, nn, tt, j) * H(j) * C_7(dd))
98 + sum(g, fx_ST(kk, nn, dd, g)) * C_8;
99

100 costB(kk, nn)..
101 binaryCost(kk, nn)
102 =E= sum((i, tt),
103 u(kk, nn, tt, i) * C_3(i)
104 + y(kk, nn, tt, i) * C_1(i)
105 + z(kk, nn, tt, i) * C_2(i))
106 + sum((tt, j), mB(kk, nn, tt, j) * C_6
107 - mS(kk, nn, tt, j) - mF(kk, nn, tt, j));
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108
109 * costM(kk, nn)..
110 * maintenanceCost(kk, nn)
111 * =E= sum(j, moc_uc(kk, nn, j));
112
113 demand(kk, nn, tt)..
114 sum(i, x(kk, nn, tt, i)) =E= ED(tt, ’DEMAND’) - ED(tt, ’WIND’);
115
116 eGeneration(kk, nn, tt, i)..
117 x(kk, nn, tt, i) =E= w(kk, nn, tt, i) + u(kk, nn, tt, i) * X_MIN(i);
118
119 eTechMax(kk, nn, tt, i)..
120 x(kk, nn, tt, i) =L= u(kk, nn, tt, i) * X_MAX(i);
121
122 eTechMin(kk, nn, tt, i)..
123 x(kk, nn, tt, i) =G= u(kk, nn, tt, i) * X_MIN(i);
124
125 eMaintMax(kk, nn, tt, j)..
126 x(kk, nn, tt, j) =L= (1 - md(kk, nn, tt, j)) * X_MAX(j);
127
128 eMaintMin(kk, nn, tt, j)..
129 x(kk, nn, tt, j) =G= (1 - md(kk, nn, tt, j)) * X_MIN(j);
130
131 eMaintPeriod(kk, nn, tt, j)..
132 md(kk, nn, tt, j)
133 =E= sum(ttt$((ORD(ttt) <= ORD(tt)) AND (ORD(ttt) > (ORD(tt) - MDURATION))),
134 mb(kk, nn, ttt, j));
135
136 * eTotalFH(kk, nn, j)..
137 * fh_uc(kk, nn, j) =E= sum(tt, u(kk, nn, tt, j));
138 *
139 * eTotalS(kk, nn, j)..
140 * s_uc(kk, nn, j) =E= sum(tt, y(kk, nn, tt, j));
141 *
142 * eMaintCost(kk, nn, j)..
143 * s_uc(kk, nn, j) * C_6 * (FL_A - FL_B)
144 * - fh_uc(kk, nn, j) * C_6 * (SL_A - SL_B)
145 * + moc_uc(kk, nn, j) * (SL_A * FL_B - SL_B * FL_A)
146 * =G= 0;
147
148 commit(kk, nn, tt, i)..
149 u(kk, nn, tt, i) =E= u(kk, nn, tt--1, i) + y(kk, nn, tt, i) - z(kk, nn, tt, i);
150
151 commitB(kk, nn, tt, i)..
152 y(kk, nn, tt, i) =L= 1;
153
154 commitC(kk, nn, tt, i)..
155 z(kk, nn, tt, i) =L= 1;
156
157 eMaxUpRamp(kk, nn, tt, i)..
158 w(kk, nn, tt, i) - w(kk, nn, tt--1, i) =L= R(i);
159
160 eMaxDownRamp(kk, nn, tt, i)..
161 w(kk, nn, tt--1, i) - w(kk, nn, tt, i) =L= R(i);
162
163 eMinUpTime(kk, nn, tt, i)..
164 u(kk, nn, tt, i)
165 =G= sum((ttt)$(ORD(ttt) > ORD(tt) - RR(i) and
166 ORD(ttt) <= ORD(tt)), y(kk, nn, ttt, i));
167
168 eMinDownTime(kk, nn, tt, i)..
169 1 - u(kk, nn, tt, i)
170 =G= sum((ttt)$(ORD(ttt) > ORD(tt) - RR(i) and
171 ORD(ttt) <= ORD(tt)), z(kk, nn, ttt, i));
172
173 dailyGasUsage(kk, nn, dd, g)..
174 f(kk, nn, dd, g)
175 =E= sum((tt, j), x(kk, nn, tt, j)$(hourToDay(tt, dd) AND FIRM(j, g)) * H(j));
176
177 dailyTransportation(kk, nn, dd, g)..
178 fx_ST(kk, nn, dd, g) =G= f(kk, nn, dd, g) - fx_LT(g);
179
180 pipeline(kk, nn, dd)..
181 sum(g, fx_ST(kk, nn, dd, g)) =L= PC - GD(nn, dd);
182
183 startsLimit(kk, nn, tt, j)..
184 sum(ttt$(ORD(ttt) < ORD(tt)), y(kk, nn, ttt, j) - mS(kk, nn, ttt, j))
185 =L= mc(j) * SL_A + (1 - mc(j)) * SL_B;
186
187 startsAcc(kk, nn, tt, j)..
188 sum(ttt$(ORD(ttt) < ORD(tt)), y(kk, nn, ttt, j) - mS(kk, nn, ttt, j))
189 =G= 0;
190
191 hoursLimit(kk, nn, tt, j)..
192 sum(ttt$(ORD(ttt) < ORD(tt)), u(kk, nn, ttt, j) - mF(kk, nn, ttt, j))
193 =L= mc(j) * FL_A + (1 - mc(j)) * FL_B;
194
195 hoursAcc(kk, nn, tt, j)..
196 sum(ttt$(ORD(ttt) < ORD(tt)), u(kk, nn, ttt, j) - mF(kk, nn, ttt, j))
197 =G= 0;
198
199 maintStart(kk, nn, tt, j)..
200 BIG_M * mb(kk, nn, tt, j) =G= mS(kk, nn, tt, j);
201
202 maintHours(kk, nn, tt, j)..
203 BIG_M * mb(kk, nn, tt, j) =G= mF(kk, nn, tt, j);
204
205
206 * model solve parameters
207 MODEL dispatch / all /;
208 dispatch.optfile = 0;
209 dispatch.threads = -1;
210 $onecho > cplex.opt
211 $offecho
212
213 * model execution
214 SOLVE dispatch USING MIP MINIMIZING totalCost;
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215
216 * display maintenance results
217 DISPLAY mb.l
218
219 * write out results
220 PARAMETER naturalGasUsage(nn);
221 naturalGasUsage(nn) = sum(kk, P_K(kk) * sum((tt, j), x.l(kk, nn, tt, j) * H(j)));
222
223 FILE output / hourlyResults.csv /
224
225 put output;
226 output.pw = 100000;
227
228 put "E[totalCost]";
229 put /;
230 put totalCost.l;
231 put //;
232
233 put "Fuel usage";
234 put /;
235 loop(nn,
236 put nn.tl,
237 put ",";
238 put naturalGasUsage(nn);
239 put /;
240 );
241 put //;
242
243 put "Long-term Fuel Commitment";
244 put /;
245 loop(g,
246 put g.tl,
247 put ",";
248 put fx_LT.l(g);
249 put /;
250 );
251 put //;
252
253
254 put "Commitment";
255 put /;
256 loop(kk,
257 loop(nn,
258 loop(j,
259 put kk.tl;
260 put ",";
261 put nn.tl;
262 put ",";
263 put j.tl;
264 put ",";
265 loop(tt,
266 put u.l(kk, nn, tt, j);
267 put ",";
268 );
269 put /;
270 );
271 );
272 );
273 put //;
274
275
276 put "Maintenance";
277 put /;
278 loop(kk,
279 loop(nn,
280 loop(j,
281 put kk.tl;
282 put ",";
283 put nn.tl;
284 put ",";
285 put j.tl;
286 put ",";
287 loop(tt,
288 put mb.l(kk, nn, tt, j);
289 put ",";
290 );
291 put /;
292 );
293 );
294 );
295 put //;
296
297
298 put "Firing hours offset";
299 put /;
300 loop(kk,
301 loop(nn,
302 loop(j,
303 put kk.tl;
304 put ",";
305 put nn.tl;
306 put ",";
307 put j.tl;
308 put ",";
309 loop(tt,
310 put mF.l(kk, nn, tt, j);
311 put ",";
312 );
313 put /;
314 );
315 );
316 );
317 put //;
318
319
320 put "Starts offset";
321 put /;
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322 loop(kk,
323 loop(nn,
324 loop(j,
325 put kk.tl;
326 put ",";
327 put nn.tl;
328 put ",";
329 put j.tl;
330 put ",";
331 loop(tt,
332 put mS.l(kk, nn, tt, j);
333 put ",";
334 );
335 put /;
336 );
337 );
338 );
339 put //;
340
341 putclose output;
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1 % demandConversion.m
2 %
3 % inputs:
4 % mDemandInput: a [N:2] matrix; column 1 represents electricity demand
5 % column 2 represents wind generation
6 % nNumClusters: desired number of clusters
7 %
8 % outputs:
9 % mDemandStates: a [days x vNumClusters] matrix that describes the number

10 % of hours that the system spends in each state for every day
11 % mState: the mean [demand, wind] pair for each cluster
12
13
14 % test inputs for debugging
15 % X = [(1:48)’ ones(48, 1) ones(48, 1)];
16 % nNumClusters = 4;
17 % vDaysInPeriod = [1 1];
18
19 function [mStateTransitions, mStateDurations, mStateValues] = ...
20 demandConversion(mDemandInput, nNumClusters, nScenario, nDaysPerPeriod, nWindScenario)
21
22 nNumElementsInDay = 24;
23
24 % for a weekly break down
25 if (nDaysPerPeriod == 7)
26 vDaysInPeriod = ones(1, 209) * 7;
27 vDaysInPeriod(end) = 5;
28
29 % for a monthly break down
30 else
31 vDaysInPeriod = [31 28 31 30 31 30 31 31 30 31 30 31 ...
32 31 28 31 30 31 30 31 31 30 31 30 31 ...
33 31 29 31 30 31 30 31 31 30 31 30 31 ...
34 31 28 31 30 31 30 31 31 30 31 30 31];
35 end
36
37 vPeriodIndices = [0 cumsum(vDaysInPeriod)];
38 nNumPeriods = length(vPeriodIndices)-1;
39
40 % The demand + wind scenario input matrix is size n-by-m
41 % there are n hours of demand, and m-1 total wind scenarios.
42 nNumDays = size(mDemandInput, 1) / nNumElementsInDay;
43 nNumScenarios = size(mDemandInput, 2) - 1;
44
45 % reshape demand for clustering function, "kmeans"
46 mDemand = repmat(mDemandInput(:, 1), nNumScenarios, 1);
47 nNumRowsForAllScenarios = nNumDays * nNumElementsInDay * nNumScenarios;
48 mDemand = [mDemand reshape(mDemandInput(:, 2:end), nNumRowsForAllScenarios, 1)];
49
50 % determine kmeans clustering
51 [vDemandStates, mStateValues] = kmeans(mDemand, nNumClusters, ’Options’, statset(’MaxIter’, 1000000));
52
53 % aggregate state durations for each day and scenario
54 % mDemandStates is a 24x(nNumDays * nNumScenarios) matrix
55 % mDemandStates is a 24x(365 * nNumScenarios) matrix
56 % [day_1_scenario_1 ... day_365_scenario_1 day_1_scenario_2 ... day_365_scenario_k]
57 mDemandStates = reshape(vDemandStates, nNumElementsInDay, nNumDays * nNumScenarios);
58
59 nNumHours = sum(vDaysInPeriod) * nNumElementsInDay;
60
61 vScenariosList = ones(nNumHours, 1) * nScenario;
62 vWindList = ones(nNumHours, 1) * nWindScenario;
63 vDaysPerPeriod = ones(nNumHours, 1) * nDaysPerPeriod;
64
65 vHoursList = repmat((1:nNumHours)’, nNumScenarios, 1);
66
67 sFilename = sprintf(’demandStateMapping_%i.csv’, nNumClusters);
68 csvwrite(sFilename, [vDaysPerPeriod vHoursList vDemandStates vScenariosList vWindList]);
69
70 mStateDurations = hist(mDemandStates, 1:nNumClusters);
71
72 mStateTransitions = cell(nNumScenarios, nNumPeriods);
73
74 for nScenarioIndex = 1:nNumScenarios
75 for nPeriodIndex = 1:nNumPeriods
76
77 mStateTransitions{nScenarioIndex, nPeriodIndex} = ...
78 zeros(nNumClusters, nNumClusters);
79
80 mPeriodOfInterest = ...
81 mDemandStates(:, (vPeriodIndices(nPeriodIndex)+1):vPeriodIndices(nPeriodIndex+1));
82
83 % one more reshape to make it easier to find transitions between
84 % the previous day’s hour 24 and the next day’s hour 1
85 vPeriodOfInterest = reshape(mPeriodOfInterest, numel(mPeriodOfInterest), 1);
86
87 for nCurrentState = 1:nNumClusters
88
89 vTransitionIndices = ...
90 (diff(vPeriodOfInterest) ~= 0) ...
91 .* (vPeriodOfInterest(1:end-1) == nCurrentState);
92
93 vTransitions = ...
94 vPeriodOfInterest(find(vTransitionIndices ~= 0) + 1);
95
96 for nNextState = 1:nNumClusters
97
98 mStateTransitions{nScenarioIndex, nPeriodIndex}(nCurrentState, nNextState) = ...
99 sum(vTransitions == nNextState);

100
101 end
102
103 end
104 end
105 end
106
107 % write out the electricity demand and wind generation means for each
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108 % state/cluster
109 vScenariosList = ones(nNumClusters, 1) * nScenario;
110 vWindScenariosList = ones(nNumClusters, 1) * nWindScenario;
111 vDaysPerPeriod = ones(nNumClusters, 1) * nDaysPerPeriod;
112
113 sFilename = sprintf(’stateDemandLevels_%i.csv’, nNumClusters);
114 csvwrite(sFilename, [vDaysPerPeriod (1:nNumClusters)’ mStateValues vScenariosList vWindScenariosList]);
115
116 % write out the amount of time that the system spends in each state
117 % for every day and scenario: [scenario day state | duration]
118 nNumRows = nNumScenarios * nNumDays * nNumClusters;
119 mStateDurationsGAMS = zeros(nNumRows, 6);
120
121 mStateDurationsGAMS(:, 1) = ones(nNumRows, 1) * nDaysPerPeriod;
122
123 vDays = zeros(nNumClusters * nNumDays, 1);
124
125 for nNumDaysIndex = 1:nNumDays
126
127 nStartIndex = (nNumDaysIndex - 1) * nNumClusters + 1;
128 nEndIndex = nStartIndex + nNumClusters - 1;
129 vDays(nStartIndex:nEndIndex) = ones(nNumClusters, 1) * nNumDaysIndex;
130
131 end
132
133 mStateDurationsGAMS(:, 2) = repmat(vDays, nNumScenarios, 1);
134
135 mStateDurationsGAMS(:, 3) = ...
136 repmat((1:nNumClusters)’, nNumScenarios * nNumDays, 1);
137
138 mStateDurationsGAMS(:, 4) = reshape(mStateDurations, numel(mStateDurations), 1);
139
140 mStateDurationsGAMS(:, 5) = ones(nNumRows, 1) * nScenario;
141
142 mStateDurationsGAMS(:, 6) = ones(nNumRows, 1) * nWindScenario;
143
144 sFilename = sprintf(’stateDurationsDaily_%i.csv’, nNumClusters);
145 csvwrite(sFilename, mStateDurationsGAMS);
146
147
148 % write out the amount of time that the system spends in each state
149 % for every day and scenario: [scenario period state | duration]
150 nNumRows = nNumScenarios * nNumPeriods * nNumClusters;
151
152 mStateDurationsMonthlyGAMS = zeros(nNumRows, 6);
153
154 mStateDurationsMonthlyGAMS(:, 1) = ones(nNumRows, 1) * nDaysPerPeriod;
155
156 vPeriods = zeros(nNumClusters * nNumPeriods, 1);
157 for nNumPeriodsIndex = 1:nNumPeriods
158
159 nStartIndex = (nNumPeriodsIndex - 1) * nNumClusters + 1;
160 nEndIndex = nStartIndex + nNumClusters - 1;
161 vPeriods(nStartIndex:nEndIndex) = ones(nNumClusters, 1) * nNumPeriodsIndex;
162
163 end
164
165 mStateDurationsMonthlyGAMS(:, 2) = repmat(vPeriods, nNumScenarios, 1);
166
167 mStateDurationsMonthlyGAMS(:, 3) = ...
168 repmat((1:nNumClusters)’, nNumScenarios * nNumPeriods, 1);
169
170 for nScenarioIndex = 1:nNumScenarios
171
172 for nPeriodIndex = 1:nNumPeriods
173
174 for nCurrentState = 1:nNumClusters
175
176 nRowIndex = nCurrentState ...
177 + (nPeriodIndex-1) * nNumClusters ...
178 + (nScenarioIndex-1) * nNumPeriods * nNumClusters;
179
180 % create a mask to select the right entries
181 vStateDurationIndices = ...
182 (mStateDurationsGAMS(:, 2) > vPeriodIndices(nPeriodIndex)) ...
183 .* (mStateDurationsGAMS(:, 2) <= vPeriodIndices(nPeriodIndex+1)) ...
184 .* (mStateDurationsGAMS(:, 3) == nCurrentState);
185
186 mStateDurationsMonthlyGAMS(nRowIndex, 4) = ...
187 sum(mStateDurationsGAMS(vStateDurationIndices == 1, 4));
188
189 end
190
191 end
192
193 end
194
195 mStateDurationsMonthlyGAMS(:, 5) = ones(nNumRows, 1) * nScenario;
196 mStateDurationsMonthlyGAMS(:, 6) = ones(nNumRows, 1) * nWindScenario;
197
198 sFilename = sprintf(’stateDurationsMonthly_%i.csv’, nNumClusters);
199 csvwrite(sFilename, mStateDurationsMonthlyGAMS);
200
201 % write out the transition tables for every scenario and period
202 % [scenario period previousState nextState | transitions]
203 nNumRows = nNumScenarios * nNumPeriods * nNumClusters * nNumClusters;
204
205 mStateTransitionsGAMS = ...
206 zeros(nNumScenarios * nNumPeriods * nNumClusters * nNumClusters, 7);
207
208 mStateTransitionsGAMS(:, 1) = ones(nNumRows, 1) * nDaysPerPeriod;
209
210 vPeriods = zeros(nNumPeriods * nNumClusters * nNumClusters, 1);
211 for nPeriodIndex = 1:nNumPeriods
212
213 nStartIndex = (nPeriodIndex - 1) * nNumClusters * nNumClusters + 1;
214 nEndIndex = nStartIndex + nNumClusters * nNumClusters - 1;
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215 vPeriods(nStartIndex:nEndIndex) = ...
216 ones(nNumClusters * nNumClusters, 1) * nPeriodIndex;
217
218 end
219
220 mStateTransitionsGAMS(:, 2) = repmat(vPeriods, nNumScenarios, 1);
221
222 vPreviousStates = zeros(nNumClusters * nNumClusters, 1);
223 for nClustersIndex = 1:nNumClusters
224
225 nStartIndex = (nClustersIndex - 1) * nNumClusters + 1;
226 nEndIndex = nStartIndex + nNumClusters - 1;
227 vPreviousStates(nStartIndex:nEndIndex) = nClustersIndex;
228
229 end
230
231 mStateTransitionsGAMS(:, 3) = ...
232 repmat(vPreviousStates, nNumScenarios * nNumPeriods, 1);
233
234 mStateTransitionsGAMS(:, 4) = ...
235 repmat((1:nNumClusters)’, nNumScenarios * nNumPeriods * nNumClusters, 1);
236
237 for nScenarioIndex = 1:nNumScenarios
238
239 for nPeriodIndex = 1:nNumPeriods
240
241 nStartIndex = (nScenarioIndex - 1) ...
242 * (nNumPeriods * nNumClusters * nNumClusters) ...
243 + (nPeriodIndex - 1) * (nNumClusters ^ 2) + 1;
244 nEndIndex = nStartIndex + (nNumClusters * nNumClusters) - 1;
245
246 mStateTransitionsGAMS(nStartIndex:nEndIndex, 5) = reshape(...
247 mStateTransitions{nScenarioIndex, nPeriodIndex}’, ...
248 1, nNumClusters * nNumClusters)’;
249
250 end
251
252 end
253
254 mStateTransitionsGAMS(:, 6) = ones(nNumRows, 1) * nScenario;
255 mStateTransitionsGAMS(:, 7) = ones(nNumRows, 1) * nWindScenario;
256
257 sFilename = sprintf(’stateTransitionsMonthly_%i.csv’, nNumClusters);
258 csvwrite(sFilename, mStateTransitionsGAMS);
259
260 end
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