6.002 – Circuits & Electronics – Fall 2007 Problem Set #7 - SOLUTIONS P7.1 and P7.2

Problem 7.1

(A) Circuit: Inductor is connected to the voltage source. $i(t) = 1/L \int V dt = V/L t + K$ and since i(0) = 0 - K = 0-> i(t) = V/L t and v(t) = 0 for $0 \le t \le T_1$

(B) Circuit: Inductor is connected to the capacitor. $v(t) = L di/dt = L d/dt (-C dv/dt) = -LC d^2v/dt^2$ $--> d^2v/dt^2 + 1/LC v = 0$ $v(t) = A \cos [\omega(t-T_1)] + B \sin [\omega(t-T_1)] \text{ and } \omega = 1/\sqrt{(LC)}$ $i(t) = -C dv/dt = CA\omega \sin [\omega(t-T_1)] - CB\omega \cos [\omega(t-T_1)]$ We know from before at $t=T_1$: $v(T_1) = 0 --> A = 0$ and $i(T_1) = V/L T_1 = -CB\omega --> B = -V/L T_1/(C\omega)$

> Therefore: $v(t) = -T_1/\sqrt{(LC)} \sin [(t-T_1)/\sqrt{(LC)}]$ and $i(t) = V/L T_1 \cos [(t-T_1)/\sqrt{(LC)}]$ for $T_1 \le t \le T_2$ For T_2 it is required that: $i(T_2) = 0$ $--> (T_2-T_1)/\sqrt{(LC)} = \pi/2 --> T_2 = \pi/2 \sqrt{(LC)} + T_1$

- (C) Circuit: All three elements are disconnected. $v(T_2) = -VT_1/\sqrt{(LC)}$ and $i(T_2) = 0$ Therefore: $v(t) = -VT_1/\sqrt{(LC)}$ and i(t) = 0 for $T_2 \le t \le T_3$
- (D) Circuit: Inductor is connected to the voltage source. Using information from part (A): $i(t) = V/L(t-T_3)$ and $v(t) = v(T_3) = v(T_2) = -VT_1/\sqrt{(LC)}$ for $T_3 \le t \le T_4$
- (E) Circuit: Inductor is connected to the capacitor. Using information from part (B): $d^2v/dt^2 + 1/(LC) v = 0$ $v(t) = A \cos [\omega(t-T_4)] + B \sin [\omega(t-T_4)]$ and $\omega = 1/\sqrt{(LC)}$ $i(t) = CA\omega \sin [\omega(t-T_4)] - CB\omega \cos [\omega(t-T_4)]$

We know that at T4: $v(T_4) = -VT_1/\sqrt{(LC)} -> A = -VT_1/\sqrt{(LC)}$ $i(T_4) = V/L (T_4-T_3) -> V/L (T_4-T_3) = -CB\omega --> B = V/L (T_4-T_3)/(C\omega)$

Therefore: $v(t) = -VT_1/\sqrt{(LC)} \cos [(t-T_4)/\sqrt{(LC)}] - V(T_4-T_3)/\sqrt{(LC)} \sin [(t-T_4)/\sqrt{(LC)}] and$ $i(t) = -VT_1/L \sin [(t-T_4)/\sqrt{(LC)}] + V(T_4-T_3)/L \cos [(t-T_4)/\sqrt{(LC)}] \text{ for } T_4 \le t \le T_5$

We know that at T₅: $i(T_5) = 0$ --> VT₁/L sin [(T₅-T₄)/ $\sqrt{(LC)}$] = V(T₄-T₃)/L cos [(T₅-T₄)/ $\sqrt{(LC)}$] tan [1/ $\sqrt{(LC)}$ (T₅-T₄)] = (T₄-T₃)/T₁ --> T₅ = $\sqrt{(LC)}$ tan-1 [(T₄-T₃)/T₁] + T₄ $v(T_5) = -VT_1/\sqrt{(LC)}$ cos [(T₅-T₄)/ $\sqrt{(LC)}$] - V(T₄-T₃)/ $\sqrt{(LC)}$ sin [(T₅-T₄)/ $\sqrt{(LC)}$] ... $v(T_5) = -V\sqrt{[T_1^2 + (T_4-T_3)^2]}/\sqrt{(LC)}$

Problem 7.2

- (A) $E_L = 1/2 L i^2(t) = 1/2 L i^2(T_1) = 1/2 L (V/L T_1)^2 = 1/2 V^2 T_1^2 / L$
- (B) $E_L = E_C = 1/2 C v^2(t) = 1/2 C v^2(T_2) -> 1/2 V^2 T_1^2 / L = 1/2 C v^2(T_2) -> v(T_2) = -VT_2/\sqrt{(LC)}$ Negative solution is selected because of the direction of current i.

(C)
$$E_L = 1/2 L i^2(T_4) = 1/2 L V^2/L^2 (T_4 - T_3)^2 = 1/2 V^2 (T_4 - T_3)^2 / L$$

- (D) $\begin{array}{l} E_{L} + 1/2 \ C \ v^{2}(T_{2}) = E_{C} \implies 1/2 \ V^{2} \ (T_{4} T_{3})^{2} \ / \ L + 1/2 \ C \ v^{2}(T_{2}) = 1/2 \ C \ v^{2}(T_{5}) \\ v(T_{5}) = -V/\sqrt{(LC)} \ \sqrt{[(T_{4} T_{3})^{2} + T_{1}^{2}]} \end{array}$
- (E) From part (D), we see that if $(T_4-T_3) = T1$ then: $v(T_5) = -V/\sqrt{(LC)}\sqrt{(T_1^2 + T_1^2)} = -VT_1/\sqrt{(LC)}\sqrt{(2)}$ Hence, after n switching cycles: $v(nT_1) = -VT_1/\sqrt{(LC)} s\sqrt{(n)} = -VT_1\sqrt{(n/(LC))}$

P58, Solution of 16.002 Fall 2007 Vio - Capacitor & S.C. Exercise 8.1 IK R, RitR2 UI $V_{2}(t=0^{+})=$ VET at time $t=0^+$ 75 ÉR, 2K 2 3 - Capacitor 20.C. =4 (V m R. ξ Rz $V_2(t \rightarrow b \rightarrow) = 0$ ý. at time t= 00 $T = (R_1 + R_2) \cdot C = 3 \times 51 \cdot 3\mu F = 9ms$ time constant $\frac{1}{\sqrt{U_2(t)}} = 4 \cdot e^{-t/\epsilon}$ 15(E)A (¥) 4 3 2 > Time (ms) 7=9 -42

2/10 Excercise 8.2. t=0+ R2=152 ť2 L=H Vi4 \$13 + + C=057 IOV V4 R23 $R_1 = 2 \mathcal{N}_{\mathbb{R}}$ From inductor L $\dot{l}_1(0^{\dagger}) = \dot{l}_1(0^{-}) = 2A$ From capacitor C $\mathcal{V}_4(o^{\dagger}) = \mathcal{V}_4(o^{\dagger}) = 4V \implies \dot{z}_{3}(o^{\dagger}) = \frac{\mathcal{V}_4(o^{\dagger})}{R_2} = 4A$ From K(L $t_2(0^{\dagger}) = t_1(0^{\dagger})$ From kVL $V_1(0^+) = 10 - V_4(0^+) = 6V \implies i_2(0^+) = \frac{V_1(0^+)}{R_1} = 34$ From $k CL \vec{i} \neq (0^{+}) = \hat{i}_{1}(0^{+}) + \hat{i}_{2}(0^{+}) - \hat{i}_{3}(0^{+})$ = 2+3-4 =1A $V_{1}(0^{\dagger}) = 6V$ $\dot{l}_{1}(0^{\dagger}) = 2A$ $\dot{l}_{2}(0^{\dagger}) = 3A$ 1 $\hat{l}_{310}^{\dagger}) = 4A \quad \hat{l}_{4}(0^{\dagger}) = 1A$ $V_{44}(0^{+}) = 4V$ tions Inductor L = S.C. Capacitor C = O.C. $t_1(\infty) = i_3(\infty) = \frac{10V}{R_2} = (0A)$ $\frac{1}{\sqrt{12}} \frac{1}{\sqrt{12}} \frac{1}$ R, V_{4} $V_{1}(0) = 0V$ 101 $\mathcal{V}_{4}(\infty) = 10V$ $i_1 V_1(\infty) = 0 V \quad i_1(\infty) = i_3(\infty) = 10A$ $\overline{\mathcal{V}_{4}(\infty)} = 10V$ $\overline{\mathcal{V}_{2}(\infty)} = \hat{\mathcal{V}_{4}(\infty)} = 0A$

 $\frac{R_{1}}{2}$ 3/10 $\frac{2}{2} \frac{1}{\sqrt{2}} \frac$ Problem 8.1 Vs(+) (1) a) From KCL, we have $\dot{z}_1 = \dot{z}_2 + \dot{z} \implies \frac{V_s - V}{R_1} = \frac{V}{R_2} + \dot{z}$ From inductor L, we have $\dot{U} = L \frac{d\dot{z}}{dt}$ Therefore we have differential equation for V(t) & i(t): $\frac{V_{s} - V(t)}{R_{1}} = \frac{V(t)}{R_{2}} + \dot{i}(t) - \cdots (i)$ $V(t) = \int \frac{d(\dot{i}(t))}{dt} - \cdots (2)$ We can plug (2) into (1) and colne for ilt) first. Rearrange (1) after plugging (2) into(1), me have, $\frac{L(I+I)}{R_1+R_2} \frac{di(t)}{dt} + i(t) = \frac{V_s}{R_1}$ Hence the particular solution $\dot{t}p(t) = \frac{V_s}{R_t}$ the homogeneous solution $\dot{t}h(t) = Ae^{-t/\tau}$ て=してまた From the initial condition $\dot{i}(o^{-})=\dot{i}(o^{+})=0 \implies A=-\frac{V_{S}}{R}$ $\frac{1}{\sqrt{t}(t) = \frac{V_s}{R_1} \left(1 - e^{-t/\tau}\right) + \frac{1}{20} \qquad \text{AUCE}$ -VSR2/CRITR2 $V(t) = L \frac{di(t)}{dt} = \frac{V_s R_2}{R_1 + R_2} e^{-t/\tau} t \ge 0$ $T = L(\overline{R_1} + \overline{R_2})$

4-110 b) Let's say in part a) Vs(t) = Vsalt) = Vs M-1(t) = { Vs, t>0 in this part, Us(t)=Usb(t)= Mo(t) $V_{sb}(f) = \Lambda Holt) = \frac{\Lambda}{Vs} \frac{d(V_{salt})}{dt}$. The output VCt) satisfy the cimiliar relation shown in inputs above, i.e., $V_{b}(t) = \frac{\Lambda}{V_{s}} \frac{d(V_{a}(t))}{dt}$ V(t) in point b) \leftarrow $V_{a}(t) = V_{s} \frac{R_{z}}{R_{t}+R_{z}} e^{-t/z}$ (V(t) in point $\alpha_{j})$ $= V_{b}(t) = -\Lambda \left(\frac{R_2}{R_1 + R_2}\right)^2 \frac{R_1}{L} e^{-t/z}$ t>o τ C) Similiarly, Vec(t) = MU-2(t) $\therefore V_{sclt} = \frac{M}{V_{c}} (V_{sl-1}(t) dt)$ Valt) = M (Vsalt) dt $: V_{c}(t) = \frac{M}{V_{a}(t)} dt$ $\& V_c(0^+) = V_c(0^-) = 0$ Vet) in part c) Vc(t) $\frac{1}{V_{c}(t)} = \frac{M}{V_{s}} \int V_{s} \frac{R_{z}}{R_{1}+R_{z}} e^{-t/c} dt$ ME $= M \frac{L}{R} (1 - e^{-t/2})$

5/10 Vs(t) " Var(4) 1 Kills d) V_ + Va = V5-Va Va ÷€ T VEBLY) A Usia (+) AVSzalt 1 NVS26CF/ Vit Ve Vita Therefore this input can be decomposed into two ramps and two steps, $\overline{V_s(t)} = \overline{V_{s1}(t)} + \overline{V_{s2}(t)} = \overline{V_{s1a}(t)} + \overline{V_{s1b}(t)} + \overline{V_{s2a}(t)} + \overline{V_{s2b}(t)}$ $= \frac{V_{0}-V_{a}}{V_{a}(U_{-2}(t)-U_{-2}(t-z)+V_{a}(U_{-1}(t)-U_{-1}(t-z))}$ e) Osing results from a) & c), by superposing response to stepand ramp inputs, we can derive Vect) (VCt) - in part e)) for +>0, $\mathcal{V}_{p}(t) = \frac{R_{2}}{p_{+}+p_{-}} \cdot V_{a} \cdot \left(e^{-t/c} - e^{-c(t-c)/c} \right)$ $-\left(\frac{L}{R_{1}}\right)\cdot\frac{\left(V_{b}-V_{a}\right)}{E}\cdot\left(e^{-t/c}-e^{-t/-9z}\right)$ $= \left(\frac{R_2 V_a}{R_1 + R_2} + \frac{L(V_b - V_a)}{R_1 + R_2}\right) \cdot \left(e^{-t/2} - e^{-(t-\tau)/2}\right)$ $: \overline{z} = L \cdot (\overline{R_1} + \overline{R_2}) \text{ from part a}$ $: we can further comply (\overline{Velt}) = \frac{R_2}{R_1 + R_2} \cdot (2Va - V_6) \cdot (e^{-\sqrt{z}} - e^{-(t-z)/k})$

6/10 Problem 8.2 0 · VOUT a) when UIN=V, from KVL, we have, V=V_c(t)+V_{F2}(t)+V_{F2}(t)) $\nabla v_{R1}(t) = R_1 \cdot i_{c}(t), \quad \nabla v_{R2}(t) = R_2 \cdot i_{c}(t), \quad and \quad i_{c}(t) = C \frac{dV_{c}(t)}{dt}$ => V=VE(+)+T- Of Ve(+) where T=(Rith)(IF define t=0 when source Vin jumps from "-V" to "V", then we have $\mathcal{T} \cdot \frac{d\mathcal{V}_{c}(t)}{dt} + \mathcal{V}_{c}(t) = V \quad \& \quad \mathcal{V}_{c}(t=0^{-}) = -V$ Similiarly, me define t'= o when source Vin jumps from "V" to "-V", then $\mathcal{T} \cdot \frac{d\mathcal{V}_{c}(t)}{dt} + \mathcal{V}_{c}(t) = -V \otimes \mathcal{V}_{c}(t'=0) = V$ we have $\mathcal{V}_{c}(t) = \begin{cases} V - 2Ve^{-t/\tau} & \mathcal{V}_{iN} = V \end{cases}$ Solve equotions above, we have b) ': $i_c(t) = C \frac{d V_c(t)}{dt}$ $\frac{1}{CcH} =$ $\frac{2VR_2C}{C}e^{-t/2} \quad V_{TN} = V\left(vr, \frac{2VR_2}{R_1+R_2}e^{-t/2}\right)$ C) :: Up(+)= R2. 200+) 2. (Ve2(+) = $\frac{-2VR_{2}C}{e} - t'/T \quad U_{IN} = -V(oV, \frac{2VR_{2}}{R_{1}+R_{2}}e^{-t/T}$ 41V R T>>(R,+R2) C Notice that ZVR 1 7 582 t'=t-1/2 እ t 2T where T= + 2VR2 RitR2

7/10 a) For UR2, we have UR210+ 1=206 mV, UR2(1.1MS)=10.3MV = 0.05 × UR210+ èe Pario (Don't need to be so \Rightarrow $T \approx 0.367 \text{ ms}$ 37 = 1.1 msm accurate actually. 0.37ms grenmental is fine) right down ge e) Before the input switches from positive to negtive, Uc = 1.19V = Vin, after the data used input switches to negtime, Vic keeps the same as 1.19 v while VIN = -1.14 V, So we have, $\frac{-1.19 - 1.14}{R_1 + R_2} = \frac{-1.90 \times 10^{-3}}{R_2} \Longrightarrow R_1 \times 34 K (given R_2 = 3k)$ f) $T = (R_1 + R_2) \cdot C \implies C = \frac{T}{R_1 + R_2} = \frac{0.367 \text{ ms}}{34 \text{ k} + 3/6} \approx 9.9 \text{ RF}$ $= 9.9 \times 10^{-9} F$ problem 8.3. TITE) R & VR(L) Voulf) V2(+) + VECHI=07, because capacitor behaves like short circuit @ t=0 (a)i (01=0), because inductor behaves like open civanit @ +=0 $: (V_R(0) = i(0) \cdot R = 0$ $V_{L(0)} = V_0 u(0) - V_{R(0)} - V_{C(0)} = V_0$ · Vi = L dz $\frac{\partial (\partial t)}{\partial t}\Big|_{t=0} = \frac{\nabla L(0)}{1} =$ 10 6) Because capacitor behaves like open circuit @ +=00, ., i(t=00)=0 6) Velt)= Vo(1- ws(wot)) wo= 1 t>0 $\tilde{\tau}(t) = \sqrt{\frac{2}{5}} V_0 Sim(Wot)$

8/10 d) From KVL, we have, Vo = VL(+) + Vp(+) + Vc(+) = $L \frac{d\dot{z}(t)}{dt} + \dot{z}(t) \cdot R + \frac{1}{C}(\dot{z}(t)) dt$ $=> 0 = \int \frac{d^2 \tilde{i}(t)}{dt^2} + R \frac{d\tilde{i}(t)}{dt} + \frac{1}{C} \tilde{i}(t)$ $\implies \frac{d^2i(t)}{dt^2} + \frac{R}{L} \frac{di(t)}{dt} + \frac{1}{LC} \frac{i(t)}{i(t)} = 0$ $\frac{R}{d^2 i(t)} + \frac{R}{di(t)} + \frac{L}{Lc} i(t) = 0 \implies S^2 + \frac{R}{L} + \frac{L}{Lc} = 0$ $S = -\frac{R}{2L} \pm \sqrt{\frac{R^2}{4L^2} - \frac{1}{L}}$ $z = 2 \pm \sqrt{2^2 - w_0^2}$ $z = \frac{R}{2L}, w_0 = \frac{1}{NLC}$ $= -2 \pm j W_d : W_d = \sqrt{W_0^2 - 2^2} \quad (W_0 > 2)$ $\hat{u}_{t} = e^{-at} (A \log(wat) + B \sin(wat))$ 12 2 (0)=0 2, A=0 silt) = Beat Sin (Wat) dicti Nt = - 213e- tim (Watt + Be- Wd Wor (Watt) $\frac{dict}{dt} = \frac{V_0}{P} \Rightarrow Bwd = \frac{V_0}{P} \Rightarrow B = \frac{V_0}{w_{dL}}$ $\dot{z}(t) = \frac{V_0}{W_{MI}} e^{-\lambda t} \sin(W_0 t) = I e^{-\lambda t} \sin(w t + \phi)$ Where $I = \frac{V_0}{L_{\Lambda} \left[\frac{1}{L_{\Gamma}} - \left(\frac{R}{L_{\Gamma}}\right)^2\right]}, w = w_0 = \sqrt{\frac{1}{L_{\Gamma}} - \left(\frac{R}{2L}\right)^2}, q = 0, q = \frac{R}{2L}$

9/10

time constant is about 0.367 ms R1 is about 34 Kohm C is about 9.9 μ F = 9.9 × 10⁻⁹ F

10/10

TIME, VIN, VOUT	TIME, VIN, VOUT
0 512 032192234953e-3 206 099181203987e-3	2 95e-3 -1 14805397227293 -38 0029255723793e-3
50e-6, 1, 182187934163, 179,048278663754e-3	3e-3 -1 14837600601138 -32 8503763883594e-3
100e-6, 1.18379811410142, 153.607551136429e-3	3.05e-3, -1.14869803974978, -28.9859644501187e-3
150e-6, 1.18476422207144, 132.353274082149e-3	3.1e-3, -1.14869803974978, -25.4435868021231e-3
200e-6, 1.18605236603962, 113.67527424834e-3	3.15e-3, -1.14902007348815, -21.901209117733e-3
250e-6, 1.18701847402186, 97.8955856072151e-3	3.2e-3, -1.14934210722647, -19.3249344152606e-3
300e-6, 1.18766254601292, 84.6921732706709e-3	3.25e-3, -1.14966414096476, -17.7147627163963e-3
350e-6, 1.18830661800632, 72.7768991940769e-3	3.3e-3, -1.149986174703, -15.4605223252762e-3
400e-6, 1.18862865400389, 62.7938320656817e-3	3.35e-3, -1.14966414096476, -13.8503506082418e-3
450e-6, 1.18895069000205, 54.7429717032384e-3	3.4e-3, -1.14966414096476, -12.2401788836208e-3
500e-6, 1.1895947620001, 47.9802491530912e-3	3.45e-3, -1.14934210722647, -11.2740758452027e-3
550e-6, 1.18927272600078, 41.2175267430959e-3	3.5e-3, -1.14966414096476, -9.66390410842352e-3
600e-6, 1.19023883400048, 36.0649764291233e-3	3.55e-3, -1.149986174703, -9.0198354115813e-3
650e-6, 1.1908829060032, 31.234460583027e-3	3.6e-3, -1.149986174703, -8.37576671352073e-3
700e-6, 1.19023883400048, 27.6920823407948e-3	3.65e-3, -1.15030820844121, -7.08762931374214e-3
750e-6, 1.1908829060032, 24.1497041364478e-3	3.7e-3, -1.149986174703, -6.76559496303509e-3
800e-6, 1.1908829060032, 21.5734291024798e-3	3.75e-3, -1.149986174703, -6.44356061202293e-3
850e-6, 1.19056087000155, 18.9971540884594e-3	3.8e-3, -1.149986174703, -5.79949190908297e-3
900e-6, 1.19120494200543, 16.4208790943484e-3	3.85e-3, -1.15063024217937, -5.79949190908297e-3
950e-6, 1.19120494200543, 14.8107072331223e-3	3.9e-3, -1.149986174703, -5.79949190908297e-3
10-5, 1.1908829000032, 12.556466664042848-3	3.95e-3, -1.1499861/4/03, -5.15542320492167e-3
1.03e-3, 1.19152097800825, 11.5905055539195e-3	4e-3, -1.1499861/4/03, -4.51135449953844e-3
1.16-3, 1.1908829000032, 10.30222006290406-3	4.05e-3, -1.1506502421/93/, -4.51135449953844e-3
1.13e-3, 1.19120494200343, 9.33012290288898e-3	4.16-3, -1.14900414090470, -3.807283792932076-3
1.26-3, 1.1908829000052 , $8.04798550052501e-3$	4.15-5, -1.15005024217957, -5.80728579295207-5
1.25-5, 1.19120494200545, 0.047985500525012-5	4.26-5, -1.149980174703, -5.807285702022676-5
1.36-3, 1.19030087000133, 7.081082400992046-3	4.25-5, -1.1499801/4/05, -5.80/285/929520/8-5 4.3e-3 -1.14066414006476 -3.86728570202267e 3
1 4e-3 1 1908829060032 6 43781367951178e-3	$4.35e_{-3}$ -1.149004140904703 $-3.20321708510377e_{-3}$
1 45e-3 1 1908829060032 6 11577931623395e-3	4.550-5, -1.149980174703, -5.225217085105776-5 $4.4e_{-3} = 1.15063024217037 = 2.00118273073046e_{-3}$
1.5e-3, 1.19120494200543, 5.14967622824875e-3	445e-3 -1 15030820844121 -2 90118273073046e-3
1.55e-3, 1.1908829060032, 4.82764186620286e-3	4.5e-3, -1.14966414096476, -3.54525143917115e-3
1.6e-3, 1.1908829060032, 4.82764186620286e-3	4.55e-3, -1.15030820844121, -3.22321708510377e-3
1.65e-3, 1.19056087000155, 4.18357314303441e-3	4.6e-3, -1.149986174703, -3.22321708510377e-3
1.7e-3, 1.19120494200543, 4.50560750446477e-3	4.65e-3, -1.149986174703, -2.90118273073046e-3
1.75e-3, 1.19152697800825, 4.18357314303441e-3	4.7e-3, -1.14966414096476, -2.57914837605114e-3
1.8e-3, 1.19120494200543, 4.18357314303441e-3	4.75e-3, 1.1805777542391, 205.777146635314e-3
1.85e-3, 1.19184901401164, 4.18357314303441e-3	4.8e-3, 1.18283200613662, 176.472002360183e-3
1.9e-3, 1.19120494200543, 3.21747006058892e-3	4.85e-3, 1.18412015009085, 151.997378580386e-3
1.95e-3, 1.19184901401164, 3.53950442109656e-3	4.9e-3, 1.18508625806262, 130.743101638189e-3
2e-3, 1.19120494200543, 3.53950442109656e-3	4.95e-3, 1.18605236603962, 112.065101901535e-3
2.05e-3, 1.19152697800825, 3.53950442109656e-3	5e-3, 1.18701847402186, 96.2854133415102e-3
2.1e-3, 1.19184901401164, 3.21747006058892e-3	
2.15e-3, 1.19120494200543, 3.53950442109656e-3	
2.2e-3, 1.19152697800825, 3.21747006058892e-3	
2.25e-3, 1.19184901401164, 3.21747006058892e-3	
2.3e-3, 1.19152697800825, 3.53950442109656e-3	
[2.35e-3, 1.1921/105001562, 2.895435/00388/e-3	
[2.4e-3, -1.13968109505891, -190.32512/69242/e-3]	
2.45e-3, -1.14161329/49541, -163.59628908/623e-3	
2.35-2, -1.1423/3388/1303, -139.703/30/234896-3	
2.JJC-J, -1.14J00/JJJ00942, -120./0J/J0001/0J8-J 2.62 3 -1 14515566863500 - 104 664033975416- 2	
2.00-3, -1.14313300002307, -104.0040238/34100-3 2.65e.3 1.14570073610367 80.85044754282012 2	
2.055-5, -1.145/33/5010207, -83.850444/34582316-3 2.72.3 .1.1461217608414 77.2011104152847~ 2	
2.10-3, -1.140121/090414, -1/.291110013200/0-3 2.75e.3 -1.1461217608414 -67.2080476154008e 3	
2.130-3, -1.1401211020414, -01.30004/01340208-3 2.8e_3_1.14708787105735_58.612121548075e_2	
2.85p-3 -1 14740900479592 -50 240229579252	
2.9e-3, -1.14740990479592, -44.4436119452075e-3	