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Exercise 6.1 (1 Point): Consider the network shown below, which contains a Thevenin equiv-
alent, a nonlinear resistor and a small-signal current source, all in parallel. The current through,
and the voltage across, the nonlinear resistor are related according to vNR = (1 V/mA/mA) · i2NR.
First, assume that the small-signal current amplitude is is zero. Show that VNR, the bias compo-
nent of vNR is 1 V. Second, assume that is = 1 µA and use a small signal model to determine vnr,
the small-signal component of vNR.
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Exercise 6.2 (1 Point): Find the inductance of the all-inductor network, and the capacitance
of the all-capacitor network, shown below.
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Problem 6.1 (2 Points): This problem studies the propagation delay of digital signals through
the inverter shown below. Assume that the MOSFET in the inverter acts as a switch with on-state
resistance RON. The inverter is loaded by a capacitor, having capacitance CG, that models the
combined input capacitance of the logic gates connected to its output. Assume that the inverter
obeys the static discipline defined in part by VOL and VOH.

(A) Assume that the MOSFET has been off for a very long time. At t = 0, vIN turns the MOSFET
on. Determine vG(t) for t ≥ 0.

(B) How long does it take vG(t) to pass by VOL? This delay is the fall time of the inverter.

(C) Assume that the MOSFET has been on for a very long time. At t = 0, vIN turns the MOSFET
off. Determine vG(t) for t ≥ 0.

(D) How long does it take vG(t) to pass by VOH? This delay is the rise time of the inverter.

(E) If more gates are connected to the output of the inverter will the delays found in Parts (B)
and (D) become shorter or longer? Why?

(F) How can the fall and rise times be shortened via the design of RPU? What limits the extent
to which this design path may be followed?
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Problem 6.2 (2 Points): This problem studies the response of a series RC network, both
theoretically and experimentally. The experiments will be performed using the ELVIS iLab. The
circuit to be studied is shown below. It comprises a capacitor, two resistors and a voltage source
all in series. The voltage vOUT(t) across R2 can be measured and used to determine the current
through the series network.
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Consider first a theoretical study of the network. Let the voltage vIN(t) be a periodic square
wave with amplitude V and period T as shown below. The period T is much larger that the RC
time constant of the network. Assume that vIN(t) has been applied long before t = 0, while any
measurements start at t = 0. Thus, the network has reached its periodic steady state before any
measurements are taken.
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(A) Derive an expression for vC(t), the voltage across the capacitor. Your answer should include
separate expressions for the time period over which vIN(t) = V , and the time period over
which vIN(t) = −V . Hint: consider the consequences of T being much longer than the RC
time constant of the network, and use reasonable engineering judgement.

(B) Derive an expression for iC(t), the current flowing through network.

(C) Derive an expression for vOUT(t), the voltage across R2.

Now consider an experimental study of the network. First, log in to the ELVIS iLab as in previous
homeworks. After launching the iLab, you should see a network that is equivalent to the one shown



above.

First, select the voltage source, or FGEN signal generator, and set its parameters to WaveForm =
SQUARE, Frequency = 200 Hz, Amplitude = 1 V, and Offset = 0 V. Second, select the SCOPE
output measurement unit and program it with a suitable sampling rate that will allow you to see
at least one full cycle of vOUT(t) with enough resolution. Note that the system will only allow you
to take a maximum of 201 data samples at the output. Third, run the experiment. Finally, select
vIN(t) for the Y1 axis and vOUT(t) for the Y2 axis, and use linear axes for both. When the figure
resembles what you expect, capture a screen shot for subsequent analysis.

(D) From the experimental data, extract the RC time constant of the network. You can see the
actual numerical values of the data that you have obtained by looking into View Data under
the Results menu. You can also download the data to Excel using the Results menu.

(E) From the experimental data, extract the value of the resistor R1. When you do this, note
that even though you selected 1 V as the amplitude, the signal generator does not impose this
voltage very accurately; the actual amplitude is is measured as vIN.

(F) From the experimental data, extract the value of C.



Problem 6.3 (2 Points): In the circuit shown below, a MOSFET and an external resistor
having resistance RX are used to control the current iR in the winding of a relay. Here, the relay
is modeled as a series inductor and resistor having inductance LR and resistance RR, respectively.
The MOSFET may be modeled as an ideal switch.

(A) At t = 0, vIN turns the MOSFET on so that vDS = 0. Determine iR(t) for t ≥ 0 given that
iR(t = 0) = 0.

(B) Next, at t = T , vIN turns the MOSFET off. Determine both iR(t) and vDS(t) for t ≥ T . Hint:
iR(t) is continuous at t = T .

(C) Sketch and clearly label graphs of both iR(t) and vDS(t) for t ≥ 0 assuming that T ≈ 5LR/RR

and RX = RR.

(D) The relay control circuit would be less expensive without the external resistor, which may
be “removed” from the circuit by considering the limit RX → ∞. Why might such a cost
reduction be unwise?
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Problem 6.4 (2 Points): At t = 0−, the two networks shown below both have zero initial
state. That is, the inductor current i(t) and the capacitor voltage v(t) are both zero at t = 0−.
At t = 0, the current source produces an impulse of area Q, and the voltage source produces an
impulse of area Λ.

(A) Derive the differential equations that relate i(t) to I(t) and v(t) to V (t). Hint: consider using
Thevenin and/or Norton equivalents to simplify the work.

(B) Find the inductor current i(t) and capacitor voltage v(t) at both t = 0+ and t = ∞. One way
to find the state at t = 0+ is to integrate the corresponding differential equation from t = 0−

to t = 0+ under the assumption that the state remains finite during that time; you should
justify this assumption. Then, substitute the initial condition at t = 0− into the result to
determine the state at t = 0+. Try to determine the states at t = ∞ through physical, rather
than mathematical, reasoning.

(C) Next, find the time constant by which each state goes from its initial value at t = 0+ to its
final value at t = ∞.

(D) Using the previous results, and without necessarily solving the differential equations directly,
construct i(t) and v(t) for t ≥ 0.

(E) Verify that the solutions to Part (D) are correct by substituting them into the differential
equation found in Part (A).
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