6.002 Spring 2008

Exercise 7.1
(a)

$v(0)=V$

Impulses will give initial states, ignore in KVL.

$$
\begin{aligned}
& \quad \dot{2} R+V(t)=0 \\
& R C \frac{d v}{d t}+V(t)=0 \\
& \frac{d v}{d t}+\frac{v}{R C}=0 \quad \Rightarrow \quad v(t)=A e^{-t / R C}
\end{aligned}
$$

Two conditions:
(1) e $t=0$;

$$
\text { (2) } e t=T \text {; }
$$

$$
v(T)=\frac{N}{R C}
$$

$$
\begin{array}{ll}
\Rightarrow \quad v_{1}(t)=T e^{-t / R C} & t>0 \\
\Rightarrow \quad v_{2}(t)=\frac{d}{D C} e^{-(t-T) / R c} & t>T
\end{array}
$$

Using Superposition:

$$
v(t)= \begin{cases}V e^{-t / R c} & 0 \leqslant t<T \\ V e^{-t / R c}+\frac{\Lambda}{R C} e^{-(t-T) / R c} & t \geqslant T\end{cases}
$$

(b)

IC's

$$
\begin{aligned}
& \frac{L}{R} \frac{d i}{d t}+i=0 \quad \Rightarrow \quad i(t)=A e^{-t \frac{R}{L}}
\end{aligned}
$$

Exercise 7.2

$$
\tau=\frac{L}{R}
$$

At $t<0$; the inductor is a short
At $t=0^{-1}$ the inductor discharges through the resister with time constant $\frac{L}{R}$
At $t=0 \quad V=I V$
At $t=1 \mu s \quad V \approx e^{-1} v$

$$
\begin{aligned}
& \frac{L}{R}=1 \times 10^{-6} \\
& L=1 \times 10^{-6} \cdot R
\end{aligned}
$$

At $t=0^{+}$

$$
\begin{aligned}
& V=I V=1 \times 10^{-3} \times R \\
& R=1 \mathrm{k} \Omega \\
& L=1 \mathrm{mH}
\end{aligned}
$$

Problem 7.1
(A) In DC, the capacitor C will be an open. the inductor L in the transformer will be a short.

No voltage from $V_{\text {IN }}$ will be seen at the gate of the mosfet

$$
V_{G s}=\frac{R_{2}}{R_{1}+R_{2}} \cdot V_{s}
$$

$$
I_{D}=\frac{K}{2}\left(V_{G S}-V_{T}\right)^{2}=\frac{K}{2}\left(\frac{R_{2}}{R_{1}+R_{2}} V_{S}-V_{T}\right)^{2}
$$

Since L is a short; $v_{1}=0$.

$$
\therefore V_{\text {OUT }}=0
$$

(B) No, a bias at $V_{I N}$ will not be useful since the capacitor will block $D C$ voltage. The MOSFET is biased by $R_{1} \& R_{2}$.

Since $V_{\text {out }}=0$, there is no large signal to remove from the output.
(c) In $D C$:

$$
V_{P s}=V_{s} .
$$

for saturation, $v_{D S}>v_{B S}-V_{T}$.
This will always be true. V$V_{G S}$ needs to be greater than V_{T}

$$
\begin{gathered}
V_{G S}>V_{T} \\
\frac{R_{2}}{R_{1}+R_{2}} V_{S}>V_{T} \\
\frac{R_{2}}{R_{1}}>\frac{V_{T / V_{S}}}{1-V_{T} / V_{S}}
\end{gathered}
$$

Assume that in small signal

1) the capacitor is a short
\Rightarrow the ieduener is an opt.

The capacitor C will cause the $v_{g s}$ to decay

The inductor will cause the curred i to decay as well

$$
\text { to a step in current } \left.\operatorname{tgm}_{m} v_{s}\right)
$$

t

Therefore, to a step the output will contain two time constants

To a cheep input

$$
\begin{aligned}
& v_{g s}=V e^{-t / \tau} \quad \tau_{1}=\left(R_{1} / / R_{2}\right) c \\
& i_{d}=\underbrace{K\left(V_{G S}-V_{T}\right) \cdot v_{g s}}_{g_{m}} \\
& i_{d}=V g_{m} e^{-t / \tau_{1}} \\
& v_{1}=\frac{V_{\text {out }}}{N} \quad i_{2}=\frac{-v_{\text {out }}}{R_{L}} \quad i_{1}=-\frac{v_{\text {out }} \cdot N}{R_{L}}
\end{aligned}
$$

Using KCL above the MOSfeT:

$$
\begin{aligned}
& -i_{1}+i_{L}-i_{d}=0 \\
& \frac{+v_{\text {out }} N}{R_{2}}+i_{b}-v_{g m} e^{-t / \tau_{1}}=0 \\
& \frac{d v_{\text {out }}}{d t}+\frac{R_{L}}{L N} v_{\text {out }}+\frac{V \cdot g_{m}}{\tau_{1}} e^{-t / \tau,}=0 \\
& v_{\text {out, hmm }}=A e^{-t / \tau_{2}} \\
& A=\frac{V g_{m}}{N} \cdot R_{L} \quad \text { initial jump in } V_{\text {out }} \\
& I_{2}=\frac{L N}{R_{L}} \\
& v_{\text {out, pat }}=\frac{-V \cdot g_{m} / \tau_{1}}{\frac{R_{1}}{L N}-1 / \tau_{1}} e^{-t / \tau_{1}}=\frac{-V g_{m} L N}{R_{L} \cdot \tau_{1}-L N} e^{-t / \tau_{1}} \\
& V_{\text {out }}=\frac{V \cdot g_{m} R_{L}}{N} e^{-t / \tau_{2}}-\frac{V g_{m} L N}{R_{L} \tau_{1}-L N} e^{+t / \tau_{1}} \quad \begin{array}{l}
\tau_{1}=\left(R_{1} / / R_{2}\right) C \\
\tau_{2}=\frac{L N}{R_{L}}
\end{array}
\end{aligned}
$$

(F) Notice that the two solutions have different time constants that will both be large.
N is the number of turns around the transformer. Typically thin is very Large.

$$
\bar{L}_{2}>\tau_{1}
$$

The decay will be dominated of. τ_{1}.

Problem 7.2
(a) For the time constant, τ, the initial slope of the rise \& fall curves are $\frac{1}{\pi}$.
See attached graphs
Pull-up
Pull-down

$$
\begin{array}{ll}
\frac{1}{\tau_{p u}}=\frac{-1.394-2.298}{51 \mathrm{~ms}-50 \mathrm{~ms}} & \frac{1}{\tau_{P D}}=\frac{2.138-2.460}{1 \mathrm{~ms}} \\
\tau_{p u}=1.1 \mathrm{~ms}
\end{array}
$$

(b) Offset of -75 m wa given to achieve output offset of -180 mv

Pullup
Pull -down

$$
\begin{aligned}
& \frac{1}{\tau_{p u}}=\frac{-1.133-1.806}{1 \mathrm{~ms}} \\
& \tau_{p u}=1.5 \mathrm{~ms}
\end{aligned}
$$

$$
\frac{1}{\tau_{P D}}=\frac{1.636-0.8698}{1 \mathrm{~ms}}
$$

$$
\bar{L}_{P D}=1.3 \mathrm{~ms}
$$

(c) For Pull-up: Mosses is off

$$
\begin{aligned}
& \tau=R C=(500 \Omega)(10 \mu \mathrm{~F}) \\
& \tau_{p_{4}}=5 \mathrm{~ms}
\end{aligned}
$$

For Pull-down: MOSFET is ON

$$
\begin{aligned}
& \tau=R C=\frac{(500 \Omega)(10 \Omega)}{(510 \Omega)}=10 \mu \mathrm{~F} \\
& \tau_{p_{D}}=0.1 \mathrm{~ms}
\end{aligned}
$$

Discrepancies can arise from the estimation of the initial slope. Device tolarances and the estimation Row also have an effect on the measured value.
(D) Small signal model:

The resistance looking from $v_{\text {ont }}$ is just 500Ω

$$
\begin{aligned}
& \tau=(500 \Omega)(10 \mu \mathrm{~F}) \\
& \bar{\tau}=5 \mathrm{~ms}
\end{aligned}
$$

Note: for the small signal there is no difference between pull up and. pull-doun Therefore the time constants should be the same.

Part A: Pull-down

Part A: Pull-up

Problem 7.3
(a) Calculate power for each combination $\quad P=\frac{V^{2}}{R}$

00: $P=\frac{V_{s}{ }^{2}}{R_{\text {Pu }}+R_{\text {ow }}} \triangleq \frac{V_{s}{ }^{2}}{R_{\text {Pu }}}$
01: $P=\frac{V_{s}{ }^{2}}{R_{P_{u}}+R_{N_{2}}} \simeq \frac{V_{s}{ }^{2}}{R_{P_{u}}}$
100: $P=\frac{V_{s}{ }^{2}}{R_{p_{4}}}$
ID: $P=\frac{V_{s}{ }^{2}}{R_{P u}}$

$$
\bar{P}=\frac{V_{s}^{2}}{R_{p u}}
$$

Note for:

$$
R_{P u}+R_{\text {on }} \simeq R_{p u}
$$

for $R_{\text {on }} \ll R_{P u}$
(b) Make the assumption that $v_{g_{3}}$ goes to zero when either M_{1} or M_{2} is on. Thus $V_{g 3}$ is either 0 or V_{S}.
In one cycle $V_{g} 3$ goes from $L \rightarrow H$ and $H \rightarrow L$ once:
From Lecture 12:

$$
\text { Dissipation of }=C_{G S} V_{s}^{2} f=\frac{C_{G S} V_{s}^{2}}{4 T}
$$

Dissipation of Cont $=\frac{N C_{G S} V_{S}{ }^{2}}{4 T}$

$$
\text { Total Dynamic Dissipation }=\frac{C_{\text {cs }} V_{s}^{2}}{4 T}(N+1)
$$

(b)

$$
\begin{aligned}
\frac{\text { Static Loss }}{D_{\text {panic Loss }}} & =\frac{V_{S^{3}} / R_{P u}}{\frac{Q_{0 s} V_{S^{2}}}{4 T}(N+1)} \\
& =\frac{S T}{C_{G \in S P u}(N+1)}>0
\end{aligned}
$$

for $T \gg \operatorname{Cos}$ Row i N not much larger than 1

Problem 7.4

$$
\begin{aligned}
\omega & =10^{7} \mathrm{rad} / \mathrm{s} \\
v_{\text {peak }} & =100 \mathrm{mV} \\
i_{\text {peak }} & =10 \mathrm{~mA}
\end{aligned}
$$

(A)

$$
\left.\begin{array}{l}
\frac{1}{\omega}=\sqrt{L C} \\
i_{\text {peak }}=v_{\text {peak }} \sqrt{\frac{C}{L}}
\end{array}\right\} \quad \begin{aligned}
& L=1 \mu H \\
& C=100 \mu \mathrm{~F}
\end{aligned}
$$

(B) Total energy:

When $i=0$ no energy in inductor.

$$
E=\frac{1}{2} c v_{p k}{ }^{2}
$$

(c)

For Lecture:

$$
v(t)=e^{-\alpha t}\left(\cos \left(\omega_{d} t+\phi\right)\right)
$$

$$
\begin{aligned}
& \alpha=\frac{1}{2 R c} \\
& \omega_{0}=\sqrt{1 / c}
\end{aligned}
$$

Power decays by $e^{-\alpha t}$
Time canst: $1 / \alpha=2 R C$

$$
\begin{aligned}
& 2 R C=\tau=10 \mu \mathrm{~s} \\
& R=5 \mathrm{~m} \Omega
\end{aligned}
$$

