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Exercise 8.1 (1 Point): A network comprising two resistors and one inductor is connected
to a current source as shown below. When the source produces the current step

iIN(t) = 1 mA u(t) ,

the voltage across the network is observed to be

vIN(t) = 1 V (1 + e−t/(1 µs)) u(t) .

Given this information, determine R1, R2 and L. Try to do so without constructing and solving
a differential equation. Rather, use the values of iIN(t > 0), vIN(0+) and vIN(∞), and the time
constant with which vIN evolves from vIN(0+) to vIN(∞), to complete this exercise.
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Exercise 8.2: Determine vIN(t) in the network shown below when iIN(t) is the same 1-mA
step studied in Exercise 8.1. Again, try to complete this exercise without constructing and solving
a differential equation.
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Problem 8.1 (2 Points): The network shown below includes two switches: S1 and S2. Prior
to t = 0, both switches are closed, and the capacitor voltage v(t) and inductor current i(t) are both
zero.

(A) At t = 0, S1 opens, and it remains open until t = T1. Determine v(t) and i(t) for 0 ≤ t ≤ T1.

(B) At t = T1, S1 closes as S2 simultaneously opens; the two switches change states so that v(t)
and i(t) are continuous at t = T1. The switches remain in their states until v(t) goes to zero,
at which time S2 closes. Define the time at which v(t) goes to zero as t = T2. Determine T2,
as well as v(t) and i(t) for T1 ≤ t ≤ T2.

(C) Both switches remain closed until t = T3. Determine v(t) and i(t) for T2 ≤ t ≤ T3.

(D) At t = T3, S1 again opens, and it remains open until t = T4. Determine v(t) and i(t) for
T3 ≤ t ≤ T4.

(E) Finally, at t = T4, S1 closes as S2 again simultaneously opens; the two switches again change
states so that v(t) and i(t) are continuous at t = T4. The two switches remain in their states
until v(t) again goes to zero, at which time S2 closes. Define the time at which v(t) again goes
to zero as T5. Determine T5, as well as v(t) and i(t) for T4 ≤ t ≤ T5.

(F) Sketch and clearly label v(t) and i(t) for 0 ≤ t ≤ T5.
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Problem 8.2 (2 Points): This problem is a continuation of Problem 8.1. It explores the use
of energy conservation to analyze the operation of the network described therein.

(A) Determine the energy stored in the capacitor at t = T1.

(B) The energy stored in the capacitor at t = T1 is fully transferred to the inductor at t = T2. Use
this fact to determine i(T2). This answer should match your answer to Part B of Problem 8.1
when the latter is evaluated at t = T2.

(C) Determine the energy stored in the capacitor at t = T4.

(D) Use energy conservation to determine the energy stored in the inductor at t = T5, and then
determine i(T5). This answer should match the answer to Part E of Problem 8.1 when the
latter is evaluated at t = T5.

(E) Now let the switches move repetitively through the three-step cycle described in Problem 8.1:
S1 initially open with S2 closed, next S1 closed with S2 open, finally both S1 and S2 closed.
Assume that in each cycle S1 remains open for the duration T . Further, assume that S2 always
closes when v(t) reaches zero. Assuming that v(t) and i(t) are initially zero, determine i(t) at
the end of the nth switching cycle in terms of n, C, L, T and I.



Problem 8.3 (2 Points): iLab problem.

Problem 8.3: This problem studies Network A shown below to determine the current i(t)
that results when vIN(t) is first a step, and second an impulse. It also illustrates that there is more
than one method to determine the input-output response; you should think about which method
you find easiest. Throughout this problem assume that both the inductor and capacitor are at rest
prior to t = 0.

(A) Using the node method, derive a pair of coupled differential equations for the two unknown
node voltages e(t) and vC(t). (You must differentiate once the equation that results from
the application of KCL at the node at which e(t) is defined in order to reduce the integral
that comes from the constitutive law for the inductor.) Next, combine the two differential
equations to form a single second-order differential equation for vC(t). Finally, differentiate
once the resulting differential equation, and substitute the constitutive law for the capacitor
to form a second-order differential equation for i(t) driven by dvIN(t)/dt.

(B) Since Network A has a single loop that carries the current i(t), KVL can be conveniently used
to determine a differential equation for i(t). Apply KVL to Network A. Next, substitute the
constitutive laws for the inductor, resistor and capacitor to form an equation that relates i(t) to
vIN(t). Differentiate the equation once to reduce the integral that comes from the constitutive
law for the capacitor. The resulting second-order differential equation should be the same as
that found in Part A.

(C) In Network B, the inductor is replaced by a current source that represents its state variable,
and the capacitor is replaced by a voltage source that represents its state variable. Using
Network B, determine vL(t) and i(t) in terms of the input vIN(t), and the two state variables
vC(t) and iL(t). Next, recognize that
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and combine these equations with those resulting from the analysis of Network B to form two
coupled first-order differential equations for the states iL(t) and vC(t). Finally, combine the
two first-order differential equations to determine a second-order differential equation for i(t)
driven by dvIN(t)/dt. The resulting second-order differential equation should be the same as
those found in Parts A and B.

(D) Assume that vIN(t) is a step input such that vIN(t) = V u
−1(t). For this input, determine vC,

vL, vR, e, i and di/dt just after the step at t = 0+. These initial conditions could be used to
solve the differential equations found above.

(E) Rather than solve the second-order differential equation (or any of the equivalent coupled
differential equations) for i(t) directly, argue that i(∞) = 0 so that i(t) has no constant
component. Further argue that i(t) takes the form i(t) = I sin(ωt+φ)e−αt for t ≥ 0. Determine
I, ω, φ and α. Hint: first find ω and α from the differential equation, and then find I and φ
from the initial conditions. Alternatively, solve for i(t) by any method you wish.

(F) Suppose that the input is a voltage impulse with area Λ where Λ = τV , V is the amplitude of
the voltage step described above, and τ is a given time constant. Find the response of Network



A to the impulse. Hint: before solving this problem directly, consider the relation between
step and impulse responses.

Save a copy of your answers to this problem. They will be useful during the pre-lab exercises for

Lab #3.
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Problem 8.4 (2 Points): This problem begins to develop a state-space analysis of the network
shown below. However, it stops short of actually solving the associated differential equations.
Rather, the focus here is on setting up those differential equations. In particular, the objective of
this problem is to formulate a coupled set of three first-order differential equations that describe
the evolution of the three network states iL, vC1 and vC2.

(A) In order to indicate knowledge of the network states, redraw the network with a current source
of value iL replacing the inductor, and voltage sources of values vC1 and vC2 replacing the two
capacitors. Take care to retain the polarities of the states as shown in the network below. In
addition, define vL, iC1 and iC2 with consistent polarities.

(B) Using the redrawn circuit from Part A, determine vL, iC1 and iC2 in terms of the network
states iL, vC1 and vC2, and the independent sources I and V . Here, one approach is to use the
node method. However, clever use of KCL, KVL and the constituitive laws for the resistors
might be much quicker.

(C) Combine the results from Part B and the constitutive laws for the inductor and the two
capacitors to develop three first-order differential equations that describe the evolution of iL,
vC1 and vC2. Summarize the three differential equations in the form
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by finding the 3 × 3 matrix A and the 3 × 2 matrix B.
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