Homework \# 8 Solution

Due: Never

1. [16 Points]: Exercise 13.6

Answer:

(a) [4 Points] Plot (2)

It looks capacitive at low frequency, and resistive at high frequency.
(b) [4 Points] Plot (4)
$H=\left[V_{1}(1 / j \omega C) /(R+1 / j \omega C)-V_{1} R /(R+1 / j \omega C)\right] / V_{1}$
$=(1-j \omega C R) /(1+j \omega C R)$
=> $|H|=1$
(c) [4 Points] Plot (8)

At low (or high) frequency, the capacitor (or inductor) looks like an open circuit. Therefore,
$Z(\omega=0)=Z(\omega=\infty)=R$
At resonance, the LC in series looks like a short circuit. That is,

$$
\mathrm{Z}\left(\omega=\omega_{0}\right)=0
$$

(d) [4 Points] Plot (5)

At low frequency, the inductor looks like a short circuit. Therefore,

$$
\mathrm{Z}(\omega=0)=\mathrm{R}_{1}
$$

At high frequency, the inductor looks like an open circuit. Therefore,

$$
\mathrm{Z}(\omega=\infty)=\mathrm{R}_{1}+\mathrm{R}_{2}
$$

In between, it's a first order system, so the slope of $Z(j \omega)$ is 1 .
2. [20 Points]: Problem 13.4

Answer:

(a) [5 Points]:
$H=\frac{R_{1}+j \varpi L_{1}}{R_{1}+R+j \varpi\left(L_{1}+L\right)}$
(b) [20 Points]:
$H(\omega=0)=R_{1} /\left(R_{1}+R\right)=1 / 10$
$R=9 k \Omega$
(c) [5 Points]:
$H(\omega=\infty)=L_{1} /\left(L_{1}+L\right)=1 / 10$
$\mathrm{L}=90 \mathrm{mH}$
(d) [5 Points]:
$H(j \omega)=1 / 10$

3. [24 Points]: Problem 13.4

Answer:

(a) [5 Points]:

$$
\begin{aligned}
& \begin{array}{l}
\mathrm{i}(\mathrm{t})=\mathrm{I} \operatorname{los}(\omega \mathrm{t}) \\
i=\mathrm{I}^{\mathrm{j} \omega \mathrm{t}}
\end{array} \\
& v=Z i=\frac{i}{\frac{1}{j \varpi L}+j \varpi C+\frac{1}{R}} \\
& =\frac{i}{j\left(\varpi C-\frac{1}{\varpi L}\right)+\frac{1}{R}}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& \mathrm{v}(\mathrm{t})=\mathrm{V} \cos (\omega \mathrm{t}+\Phi) \\
& V=\frac{I}{\sqrt{\frac{1}{R^{2}}+\left(\varpi C-\frac{1}{\varpi L}\right)^{2}}} \\
& \Phi=\tan ^{-1}\left(R\left(\frac{1}{\varpi L}-\varpi C\right)\right)
\end{aligned}
$$

(b) [4 Points]:

$$
\begin{aligned}
& \text { At } \bar{\sigma}=\frac{1}{\sqrt{L C}} \\
& V=V_{M A X}=I R
\end{aligned}
$$

(c) [5 Points]:

$$
\begin{aligned}
& \varpi=\frac{1}{\sqrt{L C}} \\
& C=\frac{1}{L \varpi^{2}} \\
& \begin{aligned}
\mathrm{C}_{1} & =1 / L \omega_{1}^{2} \\
& =1 /\left(365 \mathrm{u}^{*}\left(2^{*} 3.14^{*} 540 \mathrm{k}\right)^{2}\right. \\
& =2.38^{*} 10^{-10} \mathrm{C} \\
& =238 \mathrm{pF} \\
\mathrm{C}_{2} & =1 / \mathrm{L} \omega_{2}^{2} \\
& =1 /\left(365 \mathrm{u}^{*}\left(2^{*} 3.14^{*} 1600 \mathrm{k}\right)^{2}\right. \\
& =2.71^{*} 10^{-11} \mathrm{C} \\
& =27.1 \mathrm{pF}
\end{aligned}
\end{aligned}
$$

Therefore, C must be able to vary from 27.1pF to 238pF.
(d) [5 Points]:

$$
\begin{aligned}
& V=\frac{I R}{\sqrt{1+\left(\varpi C-\frac{1}{\varpi L}\right)^{2} R^{2}}}=0.25 I R \\
& 1+\left(\varpi C-\frac{1}{\varpi L}\right)^{2} R^{2}=16 \\
& R=\sqrt{15}\left(\varpi C-\frac{1}{\varpi L}\right)^{-1} \\
& =\sqrt{15}\left(\left(\varpi_{0}+\Delta \varpi\right) C-\frac{1}{\left(\varpi_{0}+\Delta \varpi\right) L}\right)^{-1} \\
& =\sqrt{15}\left(\Delta \varpi C+\frac{\Delta \varpi}{\varpi_{0}^{2} L}\right)^{-1}
\end{aligned}
$$

Notice $C=\frac{1}{L \varpi_{0}^{2}}$,

$$
R=\sqrt{15}\left(\frac{2 \Delta \varpi}{\varpi_{0}^{2} L}\right)^{-1}=\frac{\sqrt{15} \varpi_{0}^{2} L}{2 \Delta \varpi}
$$

$$
=\frac{\sqrt{15} \times(6.28 \times 1 M)^{2} \times 365 \mu}{2 \times 6.28 \times 5 k}
$$

$$
=888 k \Omega
$$

(e) [5 Points]:

$$
\begin{aligned}
& \frac{V}{V_{M A X}}=\frac{1}{\sqrt{1+\left(\varpi C-\frac{1}{\varpi L}\right)^{2} R^{2}}} \\
& \approx \frac{1}{\left(\varpi C-\frac{1}{\varpi L}\right) R} \approx \frac{\omega_{0}^{2} L}{2 \Delta \omega R} \\
& =\frac{(6.28 \times 1 M)^{2} \times 365 \mu}{2 \times 6.28 \times 10 k \times 888 k} \\
& =0.13
\end{aligned}
$$

$$
Q=\frac{R}{\omega_{0} L}=\frac{888 k}{6.28 \times 1 M \times 365 u}=389
$$

4. [40 Points]:

Answer:

(a) [5 Points]:

See the figure on the next page.
(b) $[6$ Points]:
$\mathrm{T}=150 \mathrm{us}$
Frequency:

$$
f=1 / T=6.67 \mathrm{kHz}
$$

Time constant:

$$
\tau=1 / \alpha=300 \text { us }
$$

Amplitude at $\mathrm{t}=0+$:

$$
V=330 \mathrm{mV}
$$

These values are similar at the rising edge and falling edge of the square wave.
(c) [5 Points]:

$$
v_{I N}=v_{R}+v_{C}+v_{L}
$$

Differentiate,

$$
\frac{d v_{I N}}{d t}=R \frac{d i}{d t}+\frac{1}{C} i+L \frac{d^{2} i}{d t^{2}}
$$

(d) [5 Points]:

	V_{C}	v_{L}	V_{R}	V ${ }_{\text {OUT }}$	i	di/dt
t=0-	$\mathrm{V}_{\text {IN1 }}$	0	0	$\mathrm{V}_{\text {IN1 }}$	0	0
T=0+	$\mathrm{V}_{\text {IN1 }}$	$\mathrm{V}_{\text {IN2 }}-\mathrm{V}_{\text {IN } 1}$	0	$\mathrm{V}_{\mathrm{IN} 2}$	0	$\left(\mathrm{V}_{\text {IN2 }}-\mathrm{V}_{\text {IN1 }}\right) / \mathrm{L}$

(e) [8 Points]:

In steady state, $\mathrm{v}_{\mathrm{C}}=$ constant, therefore, $\mathrm{i}(\infty)=0$,
because there is no DC current through the capacitor.

The general solution to a second order differential equation is a linear combination of two exponential functions, and if we know it's oscillating, then it must have the following form,

$$
\begin{aligned}
& \mathrm{i}(\mathrm{t})=\operatorname{Is} \sin (\omega \mathrm{t}+\Phi) \mathrm{e}^{-\mathrm{at}} \\
& \frac{d^{2} i}{d t^{2}}+\frac{R}{L} \frac{d i}{d t}+\frac{1}{L C} i+=\frac{1}{L} \frac{d v_{I N}}{d t}
\end{aligned}
$$

1) $i(t=0+)=0$, therefore,

$$
\Phi=0
$$

2) $\omega=\sqrt{\frac{1}{L C}-\left(\frac{R}{2 L}\right)^{2}}$
3) $\alpha=R / 2 L$
4) $\left.\frac{d i}{d t}\right|_{t=0+}=\omega I=\frac{V_{I N 2}-V_{I N 1}}{L}$

$$
I=\frac{V_{I N 2}-V_{I N 1}}{\sqrt{\frac{L}{C}-\frac{R^{2}}{4}}}
$$

(f) [6 Points]:

$$
\begin{aligned}
V_{\text {OUT }} & =V_{I N}-V_{R} \\
& =\mathbf{V}_{\text {IN } 2}-R I \sin (\omega t+\Phi) e^{-a t}
\end{aligned}
$$

For the rising edge,

For the falling edge,

$$
\mathrm{V}_{\mathbb{I N} 1}=1 \mathrm{~V}, \mathrm{~V}_{\mathbb{I N} 2}=-1 \mathrm{~V} \text { (nominal) }
$$

I, ω, Φ, and α are calculated in part (e).
Remember, I is also a function of $\mathrm{V}_{\mathbb{I N} 1}$ and $\mathrm{V}_{\mathbb{I N} 2}$.
(g) [5 Points]:

From part (b),

$$
R I=\frac{R\left(V_{I N 2}-V_{I N 1}\right)}{\omega L}=0.33 \mathrm{~V}
$$

From the graph above,

$$
\mathrm{V}_{\mathrm{IN} 2}-\mathrm{V}_{\mathrm{IN} 1}=2.3 \mathrm{~V}
$$

Therefore,

$$
\begin{aligned}
& \omega L / R=2.3 / 0.33=6.9 \\
& L / R=1 . \mathbf{6}^{*} 10^{-4} \mathbf{~ s e c}
\end{aligned}
$$

which agrees with the measurement

$$
\begin{aligned}
& 1 / \alpha=2 L / R=300 \text { us } \\
& L / R=1.5^{*} 10^{-4} \mathbf{~ s e c}
\end{aligned}
$$

Substitute this into the equation of ω,

$$
\begin{aligned}
& 1 / \mathrm{LC}=\omega^{2}+(\mathrm{R} / 2 \mathrm{~L})^{2}=2.9^{*} 10^{8} \mathrm{~Hz}^{2} \\
& \mathrm{LC}=\mathbf{2 . 5} \mathbf{5}^{\star} \mathbf{1 0}^{-9} \mathbf{s e c}^{2}
\end{aligned}
$$

However, we are not able to figure out the resistor, capacitor, and inductor values from the measurements of voltage transfer function (VTF). As long as L/R and LC have the values specified above, we will get the same VTF no matter what absolute values of R, L, and C we have chosen.

