BEC3 Lab NaLi molecule experiment

1: MIT-Harvard Center for Ultracold Atoms, Research Laboratory of Electronics, and Department of Physics, MIT 2: Physics Department, Harvard University, 3: Institute for Quantum Computing (IQC), University of Waterloo

0.65

- Debye, $2\mu_{\rm B}$)
- Feshbach resonances, spin-lattice Hamiltonian simulation
- for quantum chemistry
- light; ~5 seconds lifetime at density 5x10¹⁰ cm⁻³

- Magnetically associate Na & Li atoms to Feshbach molecules

Collisional Dynamics of Ground-State ²³Na⁶Li Molecules

Juliana Park¹, Hyungmok Son^{1,2}, Yukun Lu¹, Alan Jamison³, Wolfgang Ketterle¹

[Son, Hyungmok, et al. Nature 580.7802 (2020): 197-200.]

VS.

resonances at lower fields are associated with lower-energy excitations : relative rotation of atom-molecule (i.e. higher moment of inertia)

Prospects

- Pure magnetic trapping of the NaLi molecules
- or a deeper 1550nm cross ODT
- Study Collisional properties between molecules and atoms in different hyperfine states. (i.e. lower" spin-stretched (which is in a quartet potential), with zero doublet character)

• All optical association of molecules

• Quantum degenerate molecules through evaporative cooling in a magnetic trap

