The Design and Performance of RoboClam: A Biologically Inspired

Burrowing Robot

Amos Winter PhD Candidate in ME

Hosoi Research Group Precision Engineering Research Group

Project overview

Our aim: Generate low-power, compact, light weight, reversible burrowing technology Hypothesis: Nature has devised an efficient solution to subsea burrowing

Nature's bottom dwellers

Ensis and biomimetics

Our aim: Generate low-power, compact, light weight, reversible burrowing technology

Ensis' engineering merits

Fast Burrows at nearly

l cm/s

Efficient

Uses approx 0.22J/cm

Large

Size scale of real engineering devices

Simple

No brain, IDOF shell

Digs deep

Burrows to 70cm (5 body lengths)

E. R. Hinz, The Complete Book of Anchoring and Mooring, 2001

B. Springer, Sail, 2006

R. J. Taylor, "Uplift-Resisting Anchors," Anchoring Systems, 1979 Technical Design Manual, Chance, 2007

Clam visualizer

Burrowing kinematics

E. R. Trueman, Proc Roy Soc Lond B Biol Sci, 1967

Clam visualizer

E. R. Trueman, Proc Roy Soc Lond B Biol Sci, 1967

Clam visualizer

Burrowing kinematics

E. R. Trueman, Proc Roy Soc Lond B Biol Sci, 1967

Clam visualizer

E. R. Trueman, Proc Roy Soc Lond B Biol Sci, 1967

Clam visualizer

E. R. Trueman, Proc Roy Soc Lond B Biol Sci, 1967

Clam visualizer

E. R. Trueman, Proc Roy Soc Lond B Biol Sci, 1967

Clam visualizer

E. R. Trueman, Proc Roy Soc Lond B Biol Sci, 1967

Visualizing soil deformation

Original video frame

Masked and ready for PIV

Schematic of unpacking/porosity vs. volumetric strain

Initial solid volume in small cube : V_s^i Final solid volume in small cube : $V_s^f = V_s^i \frac{V_t^i}{V_t^f}$ Initial porosity : $\phi^i = \frac{V_t^i - V_s^i}{V_t^i}$, final porosity : $\phi^f = \frac{V_t^f - V_s^f}{V_t^f}$ Displacement : $\partial \delta_i = \frac{\partial \delta_i}{\partial t} dt$, Strain : $\varepsilon_{ij} = \frac{1}{2} \left(\frac{\partial \delta_i}{\partial x_i} + \frac{\partial \delta_j}{\partial x_i} \right)$

Volumetric strain: $e = \varepsilon_{11} + \varepsilon_{22} + \varepsilon_{33} = \frac{V_t^f - V_t^i}{V_t^i}$

$$e = \frac{V_s^i - V_s^f}{V_s^f} = \frac{V_t^i (\phi^f - \phi^i)}{V_t^i (1 - \phi^f)} \Longrightarrow \frac{e + \phi^i}{1 + e} = \phi^f$$

Localized fluidization

Original burrow video

PIV of clam contraction

 $\frac{\Phi_f}{\Phi_i}$

C.Y.Wen, Chem. Eng. Prog., 1966

Clam velocity vs. flow velocity required to fluidize

 $v_{clam} = 1.25 cm / s$ (Trueman, 1965) $v_{clam} = 1.05 \pm 0.05 cm / s$ (experiment) $v_{fluidize} = 1.35 cm / s$ ($d = 1 mm, \phi = 0.4$) L.G. Gibilaro, Fluidization-dynamics, 2001

Localized fluidization

1.5

1.4

1.3

1.2

1.1

0.9

0.8

0.7

0.6

0.5

 ϕ_i

-100 -150 -200 -250 -300 -350 -400 100 200 300 400 500 600

PIV of clam contraction

Fluidization: $\phi > 0.4$ (>1.05 on colorbar)

Original burrow video

Clam velocity vs. flow velocity required to fluidize

 $v_{clam} = 1.25 cm / s$ (Trueman, 1965) $v_{clam} = 1.05 \pm 0.05 cm / s$ (experiment) $v_{fluidize} = 1.35 cm / s$ ($d = 1 mm, \phi = 0.4$) L.G. Gibilaro, Fluidization-dynamics, 2001

C.Y.Wen, Chem. Eng. Prog., 1966

Fluidization energy savings

The RoboClam

US patent application number 12455392

The RoboClam

US patent application number 12455392

RoboClam layout

End effector design

Deterministic design

- Exact constraint design jam prevention and predictable loading
- Wedge spans geometric center of shells

End effector performance

Transmission ratio

$$TR = \frac{H}{F} = \frac{1}{2} \left[\frac{\cos \theta - \mu \sin \theta}{\sin \theta + \mu \cos \theta} - \mu \right]$$

Mechanism efficiency

$$\eta = \frac{E_{in}}{E_{out}} = 2\frac{H\delta_x}{F\delta_y} = 2TR\sin\theta$$

μ was measured

Effector made from alloy 932 (SAE 660) bearing bronze and 440C stainless steel

Energy losses in RoboClam

- Piston friction

• Potential energy

Potential energy

Piston friction

Goal:

Determine soil deformation energy

End effector mechanism efficiency

Energy losses in RoboClam

Up/down energy

$$\begin{split} E_{soil} &= E_{in} - E_{friction} - E_{potential} \\ &= \int_{\delta_1}^{\delta_2} \Delta p_u A_u dy - \left| F_{u,friction} (\delta_2 - \delta_1) \right| \\ &- m_u g(\delta_2 - \delta_1) \end{split}$$

In/out energy

$$E_{soil} = \eta \left(E_{in} - E_{friction} - E_{potential} \right) - E_{boot}$$
$$= \eta \left[\int_{\delta_1}^{\delta_2} \Delta p_i A_i dy - \left| F_{i, friction} \left(\delta_2 - \delta_1 \right) \right| - m_i g(\delta_2 - \delta_1) \right] - 0$$

Genetic algorithm (GA)

- GA: based on the idea of a competing population of organisms
- Each individual is a set of parameters to be used by the robot

(i.e. pressures, timescales, displacements)

- Assigns a numerical "fitness" to each individual
- "Objective function" used to find the fitness of an individual:
 - Fitness = (energy/depth)*(power law exponent of energy vs. depth)

17

17

RoboClam ocean test results

- Plots shown are lowest fitness test out of I 19 burrowing trials with I/2X end effector
- Parameters of best test:
 Up time = 0.0854s
 Down time = 2.00s
 In/out disp = 0.286cm
 Up press = 43.4psi
 In press = 40.6psi
 Down press = 90psi
 Out press = 90psi

RoboClam ocean test results

- Plots shown are lowest fitness test out of 119 burrowing trials with 1/2X end effector
- Parameters of best test:
 Up time = 0.0854s
 Down time = 2.00s
 In/out disp = 0.286cm
 Up press = 43.4psi
 In press = 40.6psi
 Down press = 90psi
 Out press = 90psi

RoboClam ocean test results

- Plots shown are lowest fitness test out of I 19 burrowing trials with I/2X end effector
- Parameters of best test:
 Up time = 0.0854s
 Down time = 2.00s
 In/out disp = 0.286cm
 Up press = 43.4psi
 In press = 40.6psi
 Down press = 90psi
 Out press = 90psi

Stress field around cylinder

Thick-walled pressure vessel stresses

$$\sigma_{r} = \frac{a^{2}b^{2}(p_{o} - p_{i})}{b^{2} - a^{2}} \frac{1}{r^{2}} + \frac{p_{i}a^{2} - p_{o}b^{2}}{b^{2} - a^{2}}$$
$$\sigma_{\theta} = -\frac{a^{2}b^{2}(p_{o} - p_{i})}{b^{2} - a^{2}} \frac{1}{r^{2}} + \frac{p_{i}a^{2} - p_{o}b^{2}}{b^{2} - a^{2}}$$

Stress field around clam

Top view on clam

Simplifications for stress around clam:

- b goes to infinity for infinite soil bed
- reverse signs for geotech conventions
- Consider infinitely long clam

$$\sigma_{r} = \frac{R_{o}^{2}(p_{i} - p_{o})}{r^{2}} + p_{o}$$

$$\sigma_{\theta} = -\frac{R_{o}^{2}(p_{i} - p_{o})}{r^{2}} + p_{o}$$

$$\sigma_{z} = \rho_{t}gh$$

$$\tau_{r\theta} = \tau_{\theta z} = 0 \text{ because of symmetry}$$

$$\tau_{rz} = 0 \text{ because of infinitly long clam}$$

Soil stresses and failure

Coefficient of active failure, K_a $\overline{\sigma'_{v_o}} = \sigma'_{v_f}$ σ'_{h_o} σ'_{h_f} $1 - \sin \varphi$ $\sigma'_{h_f} = \sigma'_{v_f}$ $=K_a\sigma'_{v_a}$

Correlation between total horizontal stress at infinity and undisturbed soil stresses

$$p_{o} = \sigma'_{h_{o}} + u$$

$$p_{o} = K_{o}\sigma'_{v_{o}} + u$$

$$p_{o} = K_{o}gh(1 - \phi)(\rho_{p} - \rho_{f}) + \rho_{f}gh_{2}$$

Soil failure criterion

Failure when:
$$\sigma'_{h} = \sigma'_{h_{f}}$$

 $\sigma'_{h} = \sigma_{r} - u = \sigma'_{v_{o}}K_{a} = \sigma'_{h_{f}}$
 $\frac{R_{o}^{2}(p_{i} - p_{o})}{r^{2}} + p_{o} - \rho_{f}gh = gh(1 - \phi)(\rho_{p} - \rho_{f})K$
 $\Rightarrow \frac{r_{f}}{R_{o}} = \left(\frac{(p_{i} - p_{o})}{gh(1 - \phi)(\rho_{p} - \rho_{f})[K_{a} - K_{o}]}\right)^{1/2}$

Assumptions

At failure, no soil has moved, pore pressure has not changed, and there are no inertial effects

a

Scaling If $p_i = 0$

$$\frac{r_f}{R_o} \approx \left(K_a - K_o\right)^{-0.5}$$

Location of failure surface

Important points

- Failure surface plateaus at $r_f/R_o \approx 3$ over a large range in pressures, depths, and soil properties
- Model works for both plastic and granular soils
- Failure zone should be largely independent of depth

$$\frac{r_f}{R_o} \approx \left(K_a - K_o\right)^{-0.5}$$

Review of failure hypothesis

Shell exerting equal and opposite pressure on soil Shell relaxes stress on soil and causes failure zone Shell contracts to mix failed soil with surrounding water

Conclusions and ongoing work

- Through Ensis-inspired burrowing, RoboClam offers an exponential decrease in digging energy (n = 2 to n = 1.17) over penetrating a static soil
- RoboClam has achieved energy reduction in significantly different substrates

Ongoing work

- Test IX and 2X end effectors in lab and real soils
- Verify soil failure/fluidization model
- Form design rules from RoboClam testing and fluidization model to predict burrowing device performance
- Construct a self-contained case study burrowing device

Thank you

Research sponsors

Battelle The Business of Innovation