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Magnetic-Induction, Vibration 
Energy Harvesting Device

A Zachary Trimble



Outline and Objectives

• Project Motivation
– So we’re all on board

• Planer/annular prototype
– Informative

• Central prototype
– Design group input



Self-Powered Vibration Monitoring 
System

Rx

Rx

self-powered
vibration sensors

receiver unit at the
top of the BHABHAdrill bit

sensors sending signals
about vibrationsBHA in chaotic whirl

optional: information
transmitted to surface



Key Idea: Combine Harvesting and 
Sensing

m1 m2 m3

N

S

N

S

N

S

k1 k2 k3

drill pipe or BHA

f1 f2 f3 frequency

am
pl

itu
de

 a
nd

 p
ow

er
 g

en
er

at
io

n 
ra

te

•Drilling Vibrations contain ENERGY and INFORMATION
•Knowledge of the dynamic characteristics of the vibration harvesting 
device reveals information about the vibrations itself – REDUCE 
COMPLEXITY

•Individual tuned mass-spring systems
•Mechanical frequency spectrum analysis



Functional Requirements

Temp. 500 deg F
Press. 30,000 psi
Shock 250 g
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Electrical Extraction Methods

Jonnalagadda, Aparna S, (2007), ''Magnetic Induction Systems to Harvest Energy from Mechanical Vibrations'', MIT SM Thesis, 
January 2007.

• Electromagnetic Induction
– Power Needs
– Range of Motion



Overview
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First Order Model

• y(t) = Base input
• z(t) = Relative 

displacement
• Dissipative Elements

– bi = internal 
dissipation

– be = power extraction
• Independent of 

extraction method



First Order Model
• Governing Equation:

• Normalized Governing 
Equation:

• Assume harmonic input:
• Resonant Solution:

• Power
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Matched Damping

2

22

)(2 ei

e

bb
bYmP

+
=

&&
2

2

)(2 ei

e

bb
bYmP

+
=

&&

n

i

ini

QYmYm
b
YmP

ωςω 8168

2222 &&&&&&
===

Physical amplitude limits bi

ei
ei

ei

e

bb
bb
bbYm

db
dP

=⇒
+
−

= 3

2

)(2

&&



Electromagnetic Induction 
Geometry



Coil Design: Damping Factor
Theory

u = total number of turns
λ = magnetic flux
N = number of phases
R = Coil resistance
Wm = Magnet Width

NOTE: Only free parameter 
is number of turns



Electromagnetic Voltage/Power
Theory



FEA verification
Theory

Out of plane motion minimal—sets air gap



Existing Prototype

6”

4”

3/4”



Spring Constant
Results

2% error
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Electromagnetic Coil Geometry

North South

Phase A

Phase B

Phase C

Individual 
Phases

A B C

North 
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z(t)

Maximum 
Displacement

Individual 
Coil Loops



Voltage vs Time



Voltage/Power
Results
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Self-Powered Vibration Monitoring 
System

Rx

Rx

self-powered
vibration sensors

receiver unit at the
top of the BHABHAdrill bit

sensors sending signals
about vibrationsBHA in chaotic whirl

optional: information
transmitted to surface



Review

•Design a Vibration Energy 
Harvesting Device that will 
fit in the space and size 
allocation shown, and 
provide as much power as 
possible when subjected to 
accelerations similar to 
those provided by the 
Stonehouse facility.



Small Intermission for 
REALITY



First Order Power Estimate
Vibration Input

• Data is not aligned 
with typical (r,θ,z) 
coordinates

• To improve estimate 
rotate coordinate 
system 22°
– Rotation angle is 

determined by 
protractor 
measurement on the 
shown scale drawing

Accelerometer

Cross Section of Surface Sub
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First Order Power Estimate
Vibration Input
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Data collection• 3-axis accelerometer mounted on Nissan 
Altima car door

• Data collected at 55, 65, 75 mph and for 
city driving conditions 

MIT/NISSAN Research
Confidential  Sep 8, 2006
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Accelerom
eter



Acceleration Data – Up and 
down Vibrations

MIT/NISSAN Research
Confidential  Sep 8, 2006
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Acceleration Data – Side to side 
Vibrations

MIT/NISSAN Research
Confidential  Sep 8, 2006
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Data

r
xx

2
21 +=α

• Data is taken on two different tools 
(Labeled BAF and DBSEIS)

– For BAF tool data is taken in 36s 
intervals

– For DBSEIS tool data is taken in 27s 
intervals

• The data is a combination of 
resting, rotating but no 
downpressure, and drilling 
(rotating and downpressure).

• For future simulations, the “active”
sections of data were extracted 
from the complete records

• z-acceleration is measured 
directly

• Tangential acceleration (α) is 
calculated as (where r=48.35mm)

Not to Scale



Z accel vs time
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Z accel vs freq
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Models
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Parameters
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• Density/Inertia of 
moving mass is 
combination of steel 
core and magnets

• ρ(steel)~7.8g/cc
• ρ(magnet)~7.4g/cc

– www.kjmagnetics.com

Not to scale
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Raw Data
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Rotational vs Linear
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Comparison over all traces
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Ideal Model
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s = number of 
current pole pairs

icr

cr

s
π2

ocr

mr

p
π2

p = number of 
magnet pole pairs

θ

θ = rotational 
coordinate 
(measured from 
the x-axis

φΦ = rotor position
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Simplification – Surface Current
and Magnetic Charge
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Governing Equations
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Verify Fields with FEA

Torque Laplace Solution = 8.3mNm

Torque FEA = 8.1mNm
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Torque
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•s must equal p for efficient 
generation

•Φ = should maximize the 
sin function (Φ=90deg as 
often as possible)
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s should be chosen based on the number of phases in a single phase 
machine it is best to operate near the peak of the torque curve, but in a 
multi-phase machine s should allow operation over a full pull so as not 
to leave a weak phase which wastes potential current carrying material

Vibration 
Range



Phases and Poles

•To select the number of phases and the number of poles, use a passive control 
model (resistor), T = bω, and estimate the response of the system

•From the estimated response determine the appropriate number of poles based 
on the expected displacement as a function of the number of phases (operating 
over at least a pole pitch for a multi-phase machine or operating near the peak 
in a single-phase machine)

•Estimate the resistance in the coil based on the area and number of phases

•Calculate the voltage and subsequently the approximate power output as a 
function of the number of phases
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Number of Phases
• s single phase = 8

– Magnet width ~0.125”
• s multi-phase = 30

– Magnet width~0.05”
• This immediately 

suggests that a single 
phase system is 
better for this limited 
displacement 
application.
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Models
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Parameters
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• Density/Inertia of 
moving mass is 
combination of steel 
core and magnets

• ρ(steel)~7.8g/cc
• ρ(magnet)~7.4g/cc

– www.kjmagnetics.com
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Comparison over all traces
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"2062.0
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"1826.0=s

Need about 30 
turns to get 1 V

Compaction Factor = Copper Area/Total Area

•EDM copper

•Radial Kerf = 0.004”

•Tangential Kerf = 0.0055”

•Tech-Etch

•Radial Kerf = 0.004”

•Tangential Kerf = 0.002”

•Magnet wire

•Insulation Thickness ~0.002”

(Total Area = 0.0117 in^2)

EDM = 0.61 Predicted Coil Resistance = 11 ohm

Tech = 0.78  Predicted Coil Resistance = 6 ohm

Wire = 0.66  Predicted Coil Resistance = 10 ohm (Measured 18 ohm)



Hand wound coil



Prototype Performance
•Predicted voltage is 11% 
different than predicted. 

•Most likely cause is 
the winding 
manufacture

•Other possible 
causes to explore are 
end effects and eddy 
current losses.
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Water Jet laminations
• Water jet cut laminations 

as winding pattern
• Outer diameter of slots is 

1.020 inner diameter of 
stator core is 1.050

• Inner diameter of slots 
0.965 outer diameter of 
rotor is 0.913

• Inner hole is 0.22



Ream center holes

• Ream holes to 0.251 
for assembly on 
mandrel 



Slot end laminations

• Slot the end laminations to contain the end turns 
so the end turns are contained and don’t get hit 
in post processing



Laminations Glued together
Wires hand wound

• Laminations are glued together on a 
mandrel to maintain concentricity.
– Unwound mass 48.08g

• Wires are then hand wound on the 
laminations
– 20 turns
– 14 ohm
– Wound mass 56.59g
– Compaction factor = 22.4%



Potting

• Coil is placed into a 
pvc “mold” and 
vacuum potted in 
epoxy.



Coil post potting

• pvc split by hack saw 
and sperated.



Turn outside to correct diameter

• Turn outside to 1.048 
to fit the inside stator.



Drill and bore inner diameter

• Drill and bore inner 
diameter to 0.950



Existing Prototype

Existing Prototype

Increase PowerVary Frequency



Floating Frequency Peak
• Spectrogram

– Black lines = Device 
half power band 
width

– Blue Line = Maximum 
amplitude

• Non-stable 
frequency peak

Frequency



Current Work
• Lyapunov

transformation model
– stochastic, statistical 

state-space model
• characterize expected 

response as a function of 
the band-width of the input, 
and the relative magnitude 
of the surrounding noise.

• Current Harvester used 
to verify numerical 
results

Frequency

PS
D

Input 
Acceleration 
Band Width

Relative 
Noise 
Magnitude



Current Work
•Modeling and testing of input signal

•Modeling of input signal to 
determine the input characteristics, 
thus identifying which challenge is 
most restrictive (possibly reword)

•Is the signal inherently wide 
band?

•Is the signal narrow band with 
a unsteady phase?

•Is the underlying signal steady 
with an on/off mechanical 
noise?

•Testing
•Comparison of manufactured 
signal to measured acceleration 
data

?

?



“Slug” Damper

• Eliminate Spring
– Allow mass to move in 

“free space”, but 
constrain to near 
elastic collisions at 
displacement limits

Return Springs

Maintain only 
“structural” springs 
so mass essential 
floats



Sping-mass-damper resonator

Sping-mass-damper resonator

Sping-mass-damper resonator

Set of spring-mass-damper 
resonators in parrallel set up to 
resonate over a broad band of 

frequencies

Vibration is passed to the damper 
without affecting the other 

resonators

“Piano Key” Fingers

•Multiple resonators each tuned to a 
different frequency in the design range 
so that the entire bandwidth is covered

•Research questions

•How many resonators

•Can each resonator be 
isolated



Higher Order System
Schematically understood as a series arrangement 
of resonators whose governing differential equation 
is tunable to a larger band-width



Mechanical Rectifier
• Connect the harvester to the vibrating 

environment through a mechanical rectifier that 
passes a periodic signal
– Band pass filter
– Periodic Impulse filter

Mechanical Rectifier



Frequency Tracking

• Change the harvester 
frequency by 
changing the effective 
spring constant to 
follow a variable 
frequency input.

m
tKtn
)()( =ω



Energy Harvesting Update
5/28/2009

Zac Trimble MIT Ph.D. candidate

Jahir Pabon SDR

Alex Slocum MIT Professor – Mechanical Engineering

Jeff Lang MIT Professor – Electrical Engineering 
Computer Science



Future Work

• Controls
– Apply optimal control solutions to optimize the 

performance over a wider bandwidth.
• Mechanical tracking
• Ratchets/Clutches.

– One of the advantages of a rotational system 
is the potential for greater  



Problem Formulation
•General Problem Statement:

•Given a known acceleration input to a vibrating reference frame, determine the 
maximum amount of power that can be extracted from the given vibration.

•Problem assumptions/specifics
•To extract power,  a proof mass is 
assumed to be attached to the 
reference frame by a force F
•An additional force, Fi, associated 
with unavoidable internal losses 
also connects the proof mass to the 
reference frame.

•Using an optimal control approach, 
determine the force that will extract the 
most power from the relative motion 
between the reference frame and proof 
mass.



Optimization Solution
Since the maximum is a limiting case of F, find F* by looking at the boundaries.

Thus, the optimal control is a “bang-bang” control where the force is always set to 
the maximum possible in the direction defined by 

max



Controls Summary

• Additional optimization schemes that 
involve models of the signal.

• For new data check if signal “tracking” can 
be incorporated



Ratchet/Clutch 

• Design is modular and is set up to 
incorporate a clutch or ratchet to force 
continuous rotation
– Eliminate reversal points
– Maximize average velocity

• Develop ratchet design and model



Mechanical tracking

• Finish modeling of possible mechanical 
tracking
– Actively changing stiffness by adjusting spring 

variables
– Passively change stiffness by incorporating 

stiffening/relaxing springs 



Additional Future Work

• Additional prototype testing
– Rotational shaker

• New “Gyro” data
• Refine power prediction model



Questions



Optimal Control

1/27/2009



Harmonic Reference Input
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Viscous Damping Baseline

)()()()( 2 txbtxtFtP && == b for max power 
output = 1.191 N-s/m

Fmax = 0.04805 N

Pmean= 0.9 mW
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Numerical Force
Numerically determining the optimal force no assumptions other than 

abs(F)≤Fmax where Fmax is the same as before.
Note: due to solution method, only 8 cycles are counted (sampling frequency 

1000Hz)
Pmean = 1.5 mW =167% of viscous damper
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Viscous Damper Plus Spring
Resonant spring system: 
w = 30Hz
wn =29.99Hz
ζ = 0.01
b = 0.57
Fmax damper = 1.47 N
Fmax damper + spring = 73.58 N

Power = 1.92 W
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Numerical Simple plus spring
Fmax = 1.47 N                                    Fmax = 73.58 N

Power = 47.1 mW Power = 2.28 W
= 2.4% of smd = 119% of smd
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Numerical Continuous
Fmax = 5 N; Pavg = 160.8 mW

0 0.05 0.1 0.15 0.2 0.25
-0.06

-0.04

-0.02

0

0.02

0.04

0.06
ref velocity and Force

Time [s]

V
el

oc
ity

 [m
/s

]

0 0.05 0.1 0.15 0.2 0.25

-4

-2

0

2

4

Fo
rc

e 
[N

]

0.01 0.011 0.012 0.013 0.014 0.015 0.016 0.017 0.018 0.019 0.02
-0.06

-0.04

-0.02

0

0.02

0.04

0.06
ref velocity and Force

Time [s]

V
el

oc
ity

 [m
/s

]

0.01 0.011 0.012 0.013 0.014 0.015 0.016 0.017 0.018 0.019 0.02

-4

-2

0

2

4

Fo
rc

e 
[N

]



Numerical Forced Binary
Fmax = 5 N; Pavg = 158.7 mW
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Numerical Forced Phase
Fmax = 5 N; Pavg = 165 mW
Phase = pi;
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Numerical Forced 20,30 Hz sin
Fmax = 5 N; Fmax = 5 N
Pavg = 262 mW; Pavg = 281 W
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Numerical Forced 20,30 Hz sin
b = 0.3 N-s/m; Pavgb = 94 mW;
K = 5329 N/m; Pavgt = 7 W;
Pavg = 3.16 W;
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Viscous Damper Plus Spring
Resonant spring system: 
w = 30Hz
wn =29.99Hz
ζ = 0.01
b = 0.57
Fmax damper = 1.47 N
Fmax damper + spring = 73.58 N

Power = 1.92 W
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Spring + Optimal Force
Fmax = 1.5 N;
K = 5330 N/m;
P = 3.87 W;
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Straight numerical

• P = 797mW
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Optimal Control Estimate

The following documents the process used to produce a best case 
estimate for power output from the provided acceleration inputs 

using an optimal control approach.



General Optimal Control Problem
• The optimal control problem seeks to maximize a performance functional, J, by controlling a 

trajectory, x, with control input u.

Governing Equation:

Definition of Performance 
Functional:

• To find the value of u which maximizes J subject to the governing equation, define the
Hamiltonian of the system. (Where p is the costate, and <> denotes inner product)

Hamiltonian:

• The optimal control input u* which will maximize J must then satisfy the following conditions.

1.

2.

3.



Problem Formulation•General Problem Statement:

•Given a known acceleration input to a vibrating reference frame, determine the 
maximum amount of power that can be extracted from the given vibration.

•Problem assumptions/specifics
•To extract power,  a proof mass is 
assumed to be attached to the 
reference frame by a force F
•An additional force, Fi, associated 
with unavoidable internal losses 
also connects the proof mass to the 
reference frame.

•Using an optimal control approach, 
determine the force that will extract the 
most power from the relative motion 
between the reference frame and proof 
mass.

i

Vibrating Reference Frame

Absolute/Inertial Ground

This formulation looses generality by assuming a zero impedance source



Formulation of Governing Equation

A
pplied 
Force

Inertial 
Force

Internal 
Force

•Summation of the forces on a free body diagram of the proof mass, provides the 
governing equation of motion for the proof mass.

Where, •Define the state variable of the system 
to be the relative velocity between the 
proof mass and reference frame, v

•Define the control variable as the 
applied force, F



Definition of the Performance 
Functional and subsequent Hamiltonian

•The goal of any energy harvester is to extract the maximum amount of 
power from the environment possible. Thus, the performance functional for 
the system is the total power extracted over a given time span from 0→T 

•Thus,

•and,



Optimization Solution
-Condition 1

Equation 1

Note, dimensionally, the physical interpretation of the 
costate is force.

Equation 2

total power



Optimization Solution
-Condition 2

The chosen performance functional is linear with respect to F, thus, the second 
condition for optimality is independent of the input,

This suggests that the optimal costate
is physically related to the relative 
momentum of the proof mass divided 
by time.

Since the second condition is independent of the control input, the control input that 
will maximize the performance functional must be a limit or boundary of the input. 
This changes the final condition to a straight inequality to determine which limit 
maximizes H.

total power



Optimization Solution
-Condition 3

Since the maximum is a limiting case of F, find F* by looking at the boundaries.

total power

Thus, the optimal control is a “bang-bang” control where the force is always set to 
the maximum possible in the direction defined by 



General Questions

• What would be an appropriate modification 
to the performance functional to ensure 
the prediction of a resonant solution?
– A penalty on small x?



Definition of the Performance 
Functional and subsequent Hamiltonian 

total power

Question: Is the proper performance metric the average power or the 
total power?

•The goal of any energy harvester is to extract the maximum amount of 
power from the environment possible. Thus, the performance functional for 
the system is the total power extracted over a given time span from 0→T 

•Thus,

•and,



Optimization Solution
-Condition 1

Equation 1

Note, dimensionally, the physical interpretation of the 
costate is momentum.

Equation 2

total power



Optimization Solution
-Condition 2

The chosen performance functional is linear with respect to F, thus, the second 
condition for optimality is independent of the input,

This suggests that the optimal costate
is physically related to the relative 
momentum of the proof mass.

Since the second condition is independent of the control input, the control input that 
will maximize the performance functional must be a limit or boundary of the input. 
This changes the final condition to a straight inequality to determine which limit 
maximizes H.

total power



Optimization Solution
-Condition 3

Since the maximum is a limiting case of F, find F* by looking at the boundaries.

total power

Thus, the optimal control is a “bang-bang” control where the force is always set to 
the maximum possible in the direction defined by 

max
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