Magnetic-Induction, Vibration Energy Harvesting Device

A Zachary Trimble

Outline and Objectives

- Project Motivation
- So we're all on board
- Planer/annular prototype
- Informative
- Central prototype
- Design group input

Self-Powered Vibration Monitoring System

Key Idea: Combine Harvesting and Sensing
 -Drilling Vibrations contain ENERGY and INFORMATION
 -Knowledge of the dynamic characteristics of the vibration harvesting device reveals information about the vibrations itself - REDUCE COMPLEXITY

-Individual tuned mass-spring systems

- Mechanical frequency spectrum analysis

Functional Requirements

Temp.	500	deg F
Press.	30,000	psi
Shock	250	g

Electrical Extraction Methods

- Electromagnetic Induction
- Power Needs
- Range of Motion

	Variable Capacitance	Piezo Material	Magnetic Induction
Power generation	$\mu \mathrm{W}$	$\mu \mathrm{W}-\mathrm{W}$	$\mathrm{mW}-\mathrm{kW}$
Vibration amplitude	$\mu \mathrm{m}$	$\mu \mathrm{m}$	mm-cm
Driving frequency	Any range	Tens of Hz	Any range
Ease of system design	Difficult	Easy	Easy
Cost	High	High	Modest
Lifetime	Low	High	High

Table 2.3: Comparison of energy harvesting strategies.
Jonnalagadda, Aparna S, (2007), "Magnetic Induction Systems to Harvest Energy from Mechanical Vibrations", MIT SM Thesis, January 2007.

Overview

$$
P=\frac{m Q_{i} A_{n}^{2}}{4 \omega_{n}}
$$

Prototype Device;
$\mathrm{P}_{\text {estimate }}=0.67 \mathrm{~W}$
$\mathrm{P}_{\text {actual }}=0.6 \mathrm{~W}$
Estimated Device;
$\mathrm{P}=1 \mathrm{~W}$

First Order Model

Details

First Order Model

- Governing Equation:

$$
\begin{gathered}
m \ddot{z}(t)+\left(b_{i}+b_{e}\right) \dot{z}(t)+k z(t)=-m \ddot{y}(t) \\
\hline \ddot{z}(t)+2 \omega_{n}\left(\varsigma_{i}+\varsigma_{e}\right) \dot{z}(t)+\omega_{n}^{2} z(t)=-\ddot{y}(t) \\
y(t)=Y e^{j(\omega t)} \\
\dot{z}(t)=\frac{\ddot{Y}}{2 \omega_{n}\left(\varsigma_{i}+\varsigma_{e}\right)} e^{j\left(\omega_{n} t-\pi\right)}
\end{gathered}
$$

- Normalized Governing

Equation:

- Assume harmonic input:
- Resonant Solution:

$$
P=F v=b v^{2}=b_{e} \ddot{z}^{2}
$$

$$
P=\frac{m^{2} \ddot{Y}^{2} b_{e}}{2\left(b_{i}+b_{e}\right)^{2}}=\frac{m \ddot{Y}^{2}}{32 \omega_{n} \varsigma_{e}}
$$

Matched Damping

$$
\begin{aligned}
& P=\frac{m^{2} \ddot{Y}^{2} b_{e}}{2\left(b_{\dot{i}}+b_{e}\right)^{2}} \\
& \frac{d P}{d b_{e}}=\frac{m \ddot{Y}^{2}}{2} \frac{b_{i}-b_{e}}{\left(b_{i}+b_{e}\right)^{3}} \Rightarrow b_{i}=b_{e} \\
& P=\frac{m^{2} \ddot{Y}^{2}}{8 b_{i}}=\frac{m \ddot{Y}^{2}}{16 \omega_{n} \varsigma_{i}}=\frac{m \ddot{Y}^{2} Q_{i}}{8 \omega_{n}}
\end{aligned}
$$

Physical amplitude limits bi

Electromagnetic Induction Geometry

Coil Design: Damping Factor

$P_{\text {max }}=b \dot{z}^{2}(t)=\frac{u^{2} \lambda_{0}^{2} \pi^{2} N}{8 R W_{m}^{2}} \dot{z}^{2}(t)$ for $N>2$
$\mathrm{u}=$ total number of turns
$\lambda=$ magnetic flux
$\mathrm{N}=$ number of phases
$\mathrm{R}=$ Coil resistance
$\mathrm{W}_{\mathrm{m}}=$ Magnet Width
NOTE: Only free parameter is number of turns

Electromagnetic Voltage/Power

$$
\begin{aligned}
& \int V=\frac{d \lambda}{d t}=\frac{d \lambda}{d z} \frac{d z}{d t}=\frac{d \lambda}{d z} \dot{z}(t) \\
& \begin{array}{l}
\text { Voltage } \\
\text { Source }
\end{array} \\
& \text { / } \\
& V_{L}=\frac{R_{L}}{R_{c}+R_{L}} V_{n} \\
& \longrightarrow P=V_{L} \cdot i_{L}=\frac{V_{L}^{2}}{R_{L}}
\end{aligned}
$$

Theory

FEA verification

Out of plane motion minimal-sets air gap

Existing Prototype

Spring Constant

2% error

$$
\mathrm{Q}=150
$$

Electromagnetic Coil Geometry

Voltage vs Time

Voltage/Power

Self-Powered Vibration Monitoring System

Review

Space and Size Allocation
-Design a Vibration Energy Harvesting Device that will fit in the space and size allocation shown, and provide as much power as possible when subjected to accelerations similar to those provided by the Stonehouse facility.

Small Intermission for REALITY

First Order Power Estimate Vibration Input

- Data is not aligned with typical (r, θ, z) coordinates
- To improve estimate rotate coordinate

Cross Section of Surface Sub system 22°

- Rotation angle is determined by protractor

$$
A_{\theta}=A_{y} \cos \left(22^{\circ}\right)-A_{g} \sin \left(22^{\circ}\right)
$$

measurement on the
$A_{r}=A_{y} \sin \left(22^{\circ}\right)+A_{g} \cos \left(22^{\circ}\right)$ shown scale drawing

First Order Power Estimate Vibration Input

Tangential

- 3-axis aceatangedtentirinted on Nissan Altima car door

MIT/NISSAN Research Confidential Sep 8, 2006

Acceleration Data - Side to side

Acceleration Data at 75 mph

MIT/NISSAN Research Confidential Sep 8, 2006

Data

Provided Data Channels
All channels sampled an 1 kHz

- Acceleration [g]
- X_{1} - "tangential"
- X_{2} - "tangential"
- Y - "radial"
- Z-axial
- Downhole Pressure [psi]
- Weight on bit [klbf]
- Torque on bit [ft-lbf]
- Magnetometer

Not to Scale

- Data is taken on two different tools (Labeled BAF and DBSEIS)
- For BAF tool data is taken in 36s intervals
- For DBSEIS tool data is taken in 27 s intervals
- The data is a combination of resting, rotating but no downpressure, and drilling (rotating and downpressure).
- For future simulations, the "active" sections of data were extracted from the complete records
- z-acceleration is measured directly
- Tangential acceleration (α) is calculated as (where $\mathrm{r}=48.35 \mathrm{~mm}$)

$$
\alpha=\frac{x_{1}+x_{2}}{2 r}
$$

Models

शपप|प|प|प|प|प|प|प|प|त

$$
\begin{aligned}
& \ddot{x}+\frac{\left(b_{i}+b_{e}\right)_{x}}{m} \dot{x}+\frac{K_{x}}{m} x=-\ddot{y} \\
& P=\left(b_{e}\right)_{x} \dot{x}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \ddot{\phi}+\frac{\left(b_{i}+b_{e}\right)_{\phi}}{J} \dot{\phi}+\frac{K_{\phi}}{J} \phi=-\ddot{\theta} \\
& P=\left(b_{e}\right)_{\phi} \dot{\phi}^{2}
\end{aligned}
$$

Parameters

- Density/Inertia of moving mass is combination of steel core and magnets
- $\rho($ steel $) \sim 7.8 \mathrm{~g} / \mathrm{cc}$
- ρ (magnet) $\sim 7.4 \mathrm{~g} / \mathrm{cc}$
- www.kjmagnetics.com

Raw Data

Rotational vs Linear

Comparison over all traces

Ideal Model

$s=$ number of current pole pairs
$p=$ number of magnet pole pairs
$\theta=$ rotational coordinate (measured from the x-axis
$\Phi=$ rotor position

Simplification - Surface Current and Magnetic Charge

$$
K_{0}^{\prime}=\frac{\text { current }}{\text { length }}=\frac{1}{3} \frac{I}{r_{o c} \pi / s}=\frac{I s}{3 \pi r_{o c}}
$$

Surface Current

$$
K_{i}=-\frac{4}{\pi} K_{0}^{\prime} \sum_{k} \frac{(-1)^{(k)} \cos \left[s(2 k-1)\left(\theta-\frac{2 \pi(i-2)}{3}\right)\right]}{2 k-1}
$$

$$
M=\frac{4}{\pi} M_{0} \sum_{k} \frac{\sin [s(2 k-1)(\theta-\phi)]}{2 k-1}
$$

i represents the phase

Governing Equations

$\left.\begin{array}{lc}\text { Ampere's Law } & \nabla \mathrm{X} \vec{H}=\vec{J}=0 \\ \text { Gauss' Law } & \nabla \cdot \vec{B}=\nabla \mu_{0} \vec{H}=0\end{array}\right\} \Rightarrow \begin{gathered}\vec{H}=-\nabla \varphi \\ \nabla^{2} \varphi=0 \quad \text { Laplace's equation }\end{gathered}$

Boundary Conditions:
$\begin{array}{cc}r=r_{o c} & \left.H_{\theta}\right|_{r=r_{o c}}=\left.\frac{1}{r_{o c}} \frac{\partial \varphi}{\partial \theta}\right|_{r=r_{o c}}=-K_{z} \\ r=r_{i c} & \left.H_{\theta}\right|_{r=r_{i c}}=0\end{array}$
Solution:

$$
\varphi=K_{0} r_{o c}\left[\frac{\left(\frac{r}{r_{i c}}\right)^{s}-\left(\frac{r_{i c}}{r}\right)^{s}}{\left(\frac{r_{o c}}{r_{i c}}\right)^{s}-\left(\frac{r_{\text {ic }}}{r_{o c}}\right)^{s}}\right] \sin (s \theta)
$$

Verify Fields with FEA

Surface-W ound PMSM FEA B-Field Lines - One Pole Pair

Torque Laplace Solution $=8.3 \mathrm{mNm}$
Torque FEA $=8.1 \mathrm{mNm}$

Torque

$$
\begin{aligned}
T_{i} & =\left.\left.r_{m} \int_{\theta=0}^{2 \pi} \mu_{0} M\right|_{r=r_{m}} H_{\theta}\right|_{r=r_{m}} z r_{m} d \theta \\
& =4 r_{m} z \mu_{0} M_{0} K_{0} s r_{o c}\left[\frac{\left.\left(\frac{r_{m}}{r_{i c}}\right)^{s}-\left(\frac{r_{i c}}{r_{m}}\right)^{s}\right]}{\left(\frac{r_{o c}}{r_{i c}}\right)^{s}-\left(\frac{r_{i c}}{r_{o c}}\right)^{s}}\right] \sin \left[s\left(\phi+\frac{2 \pi(i-2)}{3}\right)\right]
\end{aligned}
$$

Single phase

-s must equal p for efficient generation

- Φ = should maximize the sin function ($\Phi=90 \mathrm{deg}$ as often as possible)

3 phase

s should be chosen based on the number of phases in a single phase machine it is best to operate near the peak of the torque curve, but in a multi-phase machine s should allow operation over a full pull so as not to leave a weak phase which wastes potential current carrying material

Phases and Poles

Three Phase

-To select the number of phases and the number of poles, use a passive control model (resistor), $\mathrm{T}=\mathrm{b} \omega$, and estimate the response of the system
-From the estimated response determine the appropriate number of poles based on the expected displacement as a function of the number of phases (operating over at least a pole pitch for a multi-phase machine or operating near the peak in a single-phase machine)
-Estimate the resistance in the coil based on the area and number of phases
-Calculate the voltage and subsequently the approximate power output as a function of the number of phases

Number of Phases

- s single phase $=8$
- Magnet width ~ 0.125 "
- s multi-phase $=30$
- Magnet width~0.05"
- This immediately suggests that a single phase system is better for this limited displacement application.

Single representative acceleration Trace used with the output power ($\mathrm{P}=\mathrm{b} \Phi^{2}$) optimized as a function of K and b

Models

शपप|प|प|प|प|प|प|प|प|त

$$
\begin{aligned}
& \ddot{x}+\frac{\left(b_{i}+b_{e}\right)_{x}}{m} \dot{x}+\frac{K_{x}}{m} x=-\ddot{y} \\
& P=\left(b_{e}\right)_{x} \dot{x}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \ddot{\phi}+\frac{\left(b_{i}+b_{e}\right)_{\phi}}{J} \dot{\phi}+\frac{K_{\phi}}{J} \phi=-\ddot{\theta} \\
& P=\left(b_{e}\right)_{\phi} \dot{\phi}^{2}
\end{aligned}
$$

Parameters

- Density/Inertia of moving mass is combination of steel core and magnets
- $\rho($ steel $) \sim 7.8 \mathrm{~g} / \mathrm{cc}$
- ρ (magnet) $\sim 7.4 \mathrm{~g} / \mathrm{cc}$
- www.kjmagnetics.com

Comparison over all traces

$$
\theta=\frac{\pi}{p}=22.5^{\circ}
$$

> •EDM copper $$
\text { •Radial Kerf }=0.004 "
$$ •Tangential Kerf $=0.0055^{\prime \prime}$ •Tech-Etch •Radial Kerf $=0.004 "$ •Tangential Kerf $=0.002 "$

- Magnet wire
-Insulation Thickness ~0.002"

Compaction Factor $=$ Copper Area/Total Area
EDM $=0.61$ Predicted Coil Resistance $=11$ ohm
Tech $=0.78$ Predicted Coil Resistance $=6 \mathrm{ohm}$
Wire $=0.66$ Predicted Coil Resistance $=10$ ohm (Measured 18 ohm)

Hand wound coil

Prototype Performance

-Predicted voltage is 11% different than predicted.
-Most likely cause is the winding manufacture
-Other possible causes to explore are end effects and eddy current losses.

Water Jet laminations

- Water jet cut laminations as winding pattern
- Outer diameter of slots is 1.020 inner diameter of stator core is 1.050
- Inner diameter of slots 0.965 outer diameter of rotor is 0.913
- Inner hole is 0.22

Ream center holes

- Ream holes to 0.251 for assembly on mandrel

Slot end laminations

- Slot the end laminations to contain the end turns so the end turns are contained and don't get hit in post processing

Laminations Glued together Wires hand wound

- Laminations are glued together on a mandrel to maintain concentricity.
- Unwound mass 48.08g
- Wires are then hand wound on the laminations
- 20 turns
- 14 ohm
- Wound mass 56.59 g
- Compaction factor = 22.4\%

Potting

- Coil is placed into a pvc "mold" and vacuum potted in epoxy.

Coil post potting

- pvc split by hack saw and sperated.

Turn outside to correct diameter

- Turn outside to 1.048 to fit the inside stator.

Drill and bore inner diameter

- Drill and bore inner diameter to 0.950

Existing Prototype

Floating Frequency Peak

- Spectrogram
- Black lines = Device half power band width
- Blue Line = Maximum amplitude
- Non-stable frequency peak

Current Work

- Lyapunov
transformation model
- stochastic, statistical state-space model
- characterize expected response as a function of the band-width of the input, and the relative magnitude of the surrounding noise.
- Current Harvester used to verify numerical results

Relative
Noise
Magnitude

Input
Acceleration
Band Width

Current Work

-Modeling and testing of input signal
-Modeling of input signal to determine the input characteristics, thus identifying which challenge is most restrictive (possibly reword)
-Is the signal inherently wide band?
-Is the signal narrow band with a unsteady phase?
-Is the underlying signal steady with an on/off mechanical noise?

-Testing
-Comparison of manufactured signal to measured acceleration data

"Surnon

- Eliminate Spring
- Allow mass to move in "free space", but constrain to near elastic collisions at displacement limits

Maintain only
"structural" springs
so mass essential
floats

"Diano key" Eingers

Set of spring-mass-damper resonators in parrallel set up to resonate over a broad band of
frequencies
-Multiple resonators each tuned to a different frequency in the design range so that the entire bandwidth is covered
-Research questions
-How many resonators
-Can each resonator be isolated

Sping-mass-damper resonator

Sping-mass-damper resonator

Higher Order System

Schematically understood as a series arrangement of resonators whose governing differential equation is tunable to a larger band-width

Set of spring-mass-damper resonators in series set up to resonate over a broad band of frequencies

Mechanical Rectifier

- Connect the harvester to the vibrating environment through a mechanical rectifier that passes a periodic signal
- Band pass filter
- Periodic Impulse filter

Mechanical Rectifier

Frequency Tracking

- Change the harvester frequency by changing the effective spring constant to follow a variable frequency input.

$$
\omega_{n}(t)=\sqrt{\frac{K(t)}{m}}
$$

Energy Harvesting Update 5/28/2009

Zac Trimble
MIT Ph.D. candidate
Jahir Pabon
SDR
Alex Slocum MIT Professor - Mechanical Engineering
Jeff Lang
MIT Professor - Electrical Engineering Computer Science

Future Work

- Controls
- Apply optimal control solutions to optimize the performance over a wider bandwidth.
- Mechanical tracking
- Ratchets/Clutches.
- One of the advantages of a rotational system is the potential for greater

Problem Formulation

-General Problem Statement:

-Given a known acceleration input to a vibrating reference frame, determine the maximum amount of power that can be extracted from the given vibration.

Absolute/Inertial Ground
-Problem assumptions/specifics -To extract power, a proof mass is assumed to be attached to the reference frame by a force F -An additional force, Fi_{i}, associated with unavoidable internal losses also connects the proof mass to the reference frame.
-Using an optimal control approach, determine the force that will extract the most power from the relative motion between the reference frame and proof mass.

Optimization Solution

Since the maximum is a limiting case of F, find F^{*} by looking at the boundaries.

$$
\begin{aligned}
H\left(v^{*}, p^{*}, F^{*}, t\right) & \geq H\left(v^{*}, p^{*}, F, t\right) \\
\left(v^{*}-\frac{p^{*}}{m}\right) F^{*}-p^{*}\left(\frac{F_{i}}{m}+a\right) & \geq\left(v^{*}-\frac{p^{*}}{m}\right) F-p^{*}\left(\frac{F_{i}}{m}+a\right) \\
\left(v^{*}-\frac{p^{*}}{m}\right) F^{*} & \geq\left(v^{*}-\frac{p^{*}}{m}\right) F
\end{aligned}
$$

Thus, the optimal control is a "bang-bang" control where the force is always set to the maximum possible in the direction defined by Signum $\left[v^{*}-\frac{p^{*}}{m}\right]$

$$
F^{*}=F_{\max } \text { SIGNUM }\left[v^{*}-\frac{p^{*}}{m}\right]
$$

Controls Summary

- Additional optimization schemes that involve models of the signal.
- For new data check if signal "tracking" can be incorporated

Ratchet/Clutch

- Design is modular and is set up to incorporate a clutch or ratchet to force continuous rotation
- Eliminate reversal points
- Maximize average velocity
- Develop ratchet design and model

Mechanical tracking

- Finish modeling of possible mechanical tracking
- Actively changing stiffness by adjusting spring variables
- Passively change stiffness by incorporating stiffening/relaxing springs

Additional Future Work

- Additional prototype testing
- Rotational shaker
- New "Gyro" data
- Refine power prediction model

Questions

Optimal Control

1/27/2009

Harmonic Reference Input

Reference Frame

$$
\ddot{y}(t)=\operatorname{Re}\left[A e^{j o t}\right]
$$

$$
\dot{y}(t)=\operatorname{Re}\left[\frac{A}{j \omega} e^{j \omega t}\right]
$$

$$
y(t)=\operatorname{Re}\left[\frac{A}{(j \omega)^{2}} e^{j \omega t}\right]
$$

$$
A=1 \mathrm{~g}
$$

$$
\omega=30 \mathrm{~Hz}
$$

Viscous Damping Baseline

$$
P(t)=F(t) \dot{x}(t)=b \dot{x}^{2}(t)
$$

b for max power output $=1.191 \mathrm{~N}-\mathrm{s} / \mathrm{m}$

Fmax $=0.04805 \mathrm{~N}$
Pmean $=0.9 \mathrm{~mW}$

Numerical Force

Numerically determining the optimal force no assumptions other than abs $(\mathrm{F}) \leq \mathrm{Fmax}$ where Fmax is the same as before.
Note: due to solution method, only 8 cycles are counted (sampling frequency 1000 Hz)
Pmean $=1.5 \mathrm{~mW}=167 \%$ of viscous damper

Viscous Damper Plus Spring

Resonant spring system:
$\mathrm{w}=30 \mathrm{~Hz}$
wn $=29.99 \mathrm{~Hz}$
$\zeta=0.01$
b $=0.57$
Fmax damper $=1.47 \mathrm{~N}$
Fmax damper + spring $=73.58 \mathrm{~N}$

Power $=1.92 \mathrm{~W}$

Numerical Simple plus spring

Fmax $=1.47 \mathrm{~N}$

$$
\begin{aligned}
\text { Power } & =47.1 \mathrm{~mW} \\
& =2.4 \% \text { of } \mathrm{smd}
\end{aligned}
$$

ref velocity and Force

Fmax $=73.58 \mathrm{~N}$

Power = 2.28 W
$=119 \%$ of smd

Numerical Continuous

Fmax $=5 \mathrm{~N}$;
Pavg $=160.8 \mathrm{~mW}$

Numerical Forced Binary

Fmax $=5 \mathrm{~N}$;
Pavg $=158.7 \mathrm{~mW}$

Numerical Forced Phase

Fmax = 5 N ;
Pavg $=165 \mathrm{~mW}$
Phase = pi;

Numerical Forced 20,30 Hz sin

Fmax $=5 \mathrm{~N}$
Pavg $=281 \mathrm{~W}$

Numerical Forced 20,30 Hz sin

$\mathrm{b}=0.3 \mathrm{~N}-\mathrm{s} / \mathrm{m}$;
$\mathrm{K}=5329 \mathrm{~N} / \mathrm{m}$;
Pavg = 3.16 W;

Pavgb $=94 \mathrm{~mW}$;
Pavgt $=7 \mathrm{~W}$;

Viscous Damper Plus Spring

Resonant spring system:
$\mathrm{w}=30 \mathrm{~Hz}$
wn $=29.99 \mathrm{~Hz}$
$\zeta=0.01$
b $=0.57$
Fmax damper $=1.47 \mathrm{~N}$
Fmax damper + spring $=73.58 \mathrm{~N}$

Power $=1.92 \mathrm{~W}$

Spring + Optimal Force

Fmax $=1.5 \mathrm{~N}$;
$\mathrm{K}=5330 \mathrm{~N} / \mathrm{m}$;
$\mathrm{P}=3.87 \mathrm{~W}$;

Straight numerical

- $P=797 m W$

Optimal Control Estimate

The following documents the process used to produce a best case estimate for power output from the provided acceleration inputs using an optimal control approach.

Generan Ontinnal aontron pronienn

- The optimal control problem seeks to maximize a performance functional, J, by controlling a trajectory, \mathbf{x}, with control input \mathbf{u}.

| Governing Equation: | $\dot{\mathbf{x}}=\mathbf{f}(\mathbf{x}, \mathbf{u}, t) \quad$ with IC $\quad \mathbf{x}\left(t_{0}\right)=\mathbf{x}_{0}$ |
| :---: | :---: | :---: |
| Definition of Performance
 Functional: | $J(\mathbf{u})=K\left[\mathbf{x}\left(t_{1}\right)\right]+\int_{t_{0}}^{t_{1}} L[\mathbf{x}(t), \mathbf{u}(t), t] d t$ |

- To find the value of \mathbf{u} which maximizes J subject to the governing equation, define the Hamiltonian of the system. (Where \mathbf{p} is the costate, and <> denotes inner product)

$$
\text { Hamiltonian: } \quad H(\mathbf{x}, \mathbf{p}, \mathbf{u}, t)=L(\mathbf{x}, \mathbf{u}, t)+\langle\mathbf{p}, \mathbf{f}(\mathbf{x}, \mathbf{u}, t)\rangle
$$

- The optimal control input \mathbf{u}^{*} which will maximize J must then satisfy the following conditions.

1.	$\dot{\mathbf{x}}^{*}(t)=\frac{\partial H}{\partial \mathbf{p}}, \mathbf{x}^{*}\left(t_{0}\right)=\mathbf{x}_{0}$
$\dot{\mathbf{p}}^{*}(t)=-\frac{\partial H}{\partial \mathbf{x}}, \mathbf{p}^{*}\left(t_{1}\right)=\frac{\partial K}{\partial \mathbf{x}}$	

2.	$\left.\frac{\partial H}{\partial \mathbf{u}}\right\|_{*}=0$
3.	$\left.\frac{\partial^{2} H}{\partial \mathbf{u}^{2}}\right\|_{*}$ is negative definite

. Gonearal Pooberefrobablem Formulation

-Given a known acceleration input to a vibrating reference frame, determine the maximum amount of power that can be extracted from the given vibration.

Absolute/Inertial Ground
-Problem assumptions/specifics
-To extract power, a proof mass is assumed to be attached to the reference frame by a force F -An additional force, Fi, associated with unavoidable internal losses also connects the proof mass to the reference frame.

- Using an optimal control approach, determine the force that will extract the most power from the relative motion between the reference frame and proof mass.

This formulation looses generality by assuming a zero impedance source

Evormulation of Goyeyming Equation

 governing equation of motion for the proof mass.$$
\begin{aligned}
0 & =F_{\text {inertial }}+F_{\text {internal }}+F \\
0 & =m \frac{d^{2}}{d t^{2}}(x+y)+F_{i}+F \\
\frac{d^{2} x}{d t^{2}}= & -\frac{1}{m}\left(F_{i}+F\right)-\frac{d^{2} y}{d t^{2}} \\
(\dot{\dot{x}})= & -\frac{1}{m}\left(F_{i}+F\right)-\ddot{y} \\
\dot{v}= & -\frac{1}{m}\left(F_{i}+F\right)-a \\
& \text { Where, }\left\{\begin{array}{l}
a \equiv \ddot{y} \\
v \equiv \dot{x}
\end{array}\right.
\end{aligned}
$$

FBD

-Define the state variable of the system to be the relative velocity between the proof mass and reference frame, v
-Define the control variable as the applied force, F

Definition of the Performance Functional and subsequent Hamiltonian

-The goal of any energy harvester is to extract the maximum amount of power from the environment possible. Thus, the performance functional for the system is the total power extracted over a given time span from $0 \rightarrow \boldsymbol{T}$

$$
\text { Power }_{\text {avg }}=\frac{1}{T} \int_{0}^{T} F v d t=\int_{0}^{T} \frac{F v}{T} d t
$$

-Thus,

$$
K[v(T)] \equiv 0 \quad \text { and, } \quad L[v(t), F(t), t] \equiv \frac{F v}{T}
$$

-and,

$$
H(v, p, F, t)=\left(\frac{v}{T}-\frac{p}{m}\right) F-p\left(\frac{F_{i}}{m}+a\right)
$$

Optimization Solution
 -Condition 1

Equation 1

Equation 2

Note, dimensionally, the physical interpretation of the costate is force.

Optimization Solution -Condition 2

The chosen performance functional is linear with respect to F, thus, the second condition for optimality is independent of the input,

This suggests that the optimal costate is physically related to the relative momentum of the proof mass divided by time.

Since the second condition is independent of the control input, the control input that will maximize the performance functional must be a limit or boundary of the input. This changes the final condition to a straight inequality to determine which limit maximizes H .

Optimization Solution
 -Condition 3

Since the maximum is a limiting case of F, find F^{*} by looking at the boundaries.

Thus, the optimal control is a "bang-bang" control where the force is always set to the maximum possible in the direction defined by

General Questions

- What would be an appropriate modification to the performance functional to ensure the prediction of a resonant solution?
- A penalty on small x ?

Definition of the Performance Functional and subsequent Hamiltonian total power

-The goal of any energy harvester is to extract the maximum amount of power from the environment possible. Thus, the performance functional for the system is the total power extracted over a given time span from $0 \rightarrow \boldsymbol{T}$

$$
\text { Power }_{\text {total }}=\int_{0}^{T} F v d t
$$

-Thus,

$$
K[v(T)] \equiv 0 \quad \text { and }, \quad L[v(t), F(t), t] \equiv F v
$$

-and,

$$
H(v, p, F, t)=\left(v-\frac{p}{m}\right) F-p\left(\frac{F_{i}}{m}+a\right)
$$

Question: Is the proper performance metric the average power or the total power?

Optimization Solution
 -Condition 1

Equation 1

$$
\begin{aligned}
\dot{v}^{*} & =\frac{\partial H}{\partial p}\left(v^{*}, p^{*}, F^{*}, t\right) \\
& =-\frac{1}{m}\left(F_{i}+F^{*}\right)-a
\end{aligned}
$$

Equation 2

$$
\left.\begin{array}{rl}
\dot{p}^{*} & =-\frac{\partial H}{\partial v}\left(v^{*}, p^{*}, F^{*}, t\right) \\
& =-\left[F^{*}-\frac{p^{*}}{m} \frac{\partial F_{i}}{\partial v}\right] \\
& =\frac{p^{*}}{m} \frac{\partial F_{i}}{\partial v}-F^{*}
\end{array}\right\} \quad \dot{p}^{*}-\frac{1}{m} \frac{\partial F_{i}}{\partial v} p^{*}=-F^{*}
$$

Note, dimensionally, the physical interpretation of the costate is momentum.

Optimization Solution -Condition 2

The chosen performance functional is linear with respect to F, thus, the second condition for optimality is independent of the input,

$$
\left.\frac{\partial H}{\partial F}\right|_{*}=v^{*}-\frac{p^{*}}{m}=0
$$

$m v^{*}=p^{*} \quad$ This suggests that the optimal costate is physically related to the relative momentum of the proof mass.

Since the second condition is independent of the control input, the control input that will maximize the performance functional must be a limit or boundary of the input. This changes the final condition to a straight inequality to determine which limit maximizes H .

Optimization Solution -Condition 3

Since the maximum is a limiting case of F, find F^{\star} by looking at the boundaries.

$$
\begin{aligned}
H\left(v^{*}, p^{*}, F^{*}, t\right) & \geq H\left(v^{*}, p^{*}, F, t\right) \\
\left(v^{*}-\frac{p^{*}}{m}\right) F^{*}-p^{*}\left(\frac{F_{i}}{m}+a\right) & \geq\left(v^{*}-\frac{p^{*}}{m}\right) F-p^{*}\left(\frac{F_{i}}{m}+a\right) \\
\left(v^{*}-\frac{p^{*}}{m}\right) F^{*} & \geq\left(v^{*}-\frac{p^{*}}{m}\right) F
\end{aligned}
$$

Thus, the optimal control is a "bang-bang" control where the force is always set to the maximum possible in the direction defined by Signum $\left[v^{*}-\frac{p^{*}}{m}\right]$

$$
F^{*}=F_{\text {max }} \text { SIGNUM }\left[v^{*}-\frac{p^{*}}{m}\right]
$$

