
Carinthia University of Applied Sciences

Batched Laboratories Development

1st iLab Europe Workshop

Danilo Garbi Zutin

Villach, Austria – November 17th 2009

2

Online Labs: Implementation Point of View

Different solutions and technologies exist today to implement remote
Laboratories as well as different communication standards and data
exchange protocols.

Therefore, each Institution/University is likely to adopt its own standards and
approaches to perform tasks like handling user‘s accounts and managing
experiment data. Because of that, sharing remote Labs becomes more
difficult.

As the number of online labs increases, a highly scalable architecture is
desirable in order that labs could be managed in a confortable way and
included/disposed easily.

1st iLab Europe Workshop

3

Batched Experiments:

Batched experiments are those in which the entire course of the experiment can be
specified before the experiment begins.

Batched experiments should be queued for execution in order to maximize the efficiency of
the lab server.

Example: MIT’s Microelectronics WebLab for device characterization, CUAS READ System.

4

Interactive and Sensor Experiments:

Interactive experiments are those in which the user monitors and can control one or
more aspects of the experiment during its execution.

Example: CTI’s REL (Remote Electronic Lab). Students can dynamically change the input
to the oscilloscope, function generator, power supply and multimeter and watch live
data being displayed on the oscilloscope screen as parameters are changed.

Sensor experiments are those in which users monitor or analyze real-time data streams
without influencing the the phenomena being measured. MIT’s online photovoltaic
station [11] provides a simple example.

Three-tier Web Application:

First tier: Client Application that either runs as an applet or as a downloaded application
on the student’s workstation.

Middle tier: The Service Broker provides the shared common services. It is backed by a
standard relational database (SQL ServerTM).

Third tier: The Lab Server that executes the experiments and notifies the Service Broker
when the results are ready.

The Topology of the Batched Experiment Architecture1

6

Batched Clients and Lab Servers Structure:

Messages between a lab client and server are very specific and should be transmitted
through the generic channels of the Service Broker.

Batched-lab Development:

Lab Client development

Lab Server development

Lab Client/Server Communication framework (define inputs and outputs)

The communication framework can be expressed in any text format, but XML documents
are an ideal vehicle for that.

Lab Server/Client Design

7

Registering a Batched lab on a Service Broker

Install Domain Credentials:

-Contact the process Agent (Lab
Server’s side) administrator via
email and get the web services URL
and an initial passkey.

The SB Web Services Interface

8

http://ilabs.cti.ac.at/ServiceBroker/Services/ServiceBrokerService.asmx�

Lab Server Web Services Interface

9

iLabs Shared Architecture

Client and Lab Server Design
(Batched Architecture)

10

11

 Service Broker provides generic services, deployment
mechanism for the client.

 Lab Server and Client contain lab-specific code.

 All communications pass through Service Broker.

Service Broker
Lab Server

Client

Campus
network Internet

Batched labs in the iLab Shared Architecture

Lab Server Developer Tasks

Design Lab Server
 Bound by lab instrumentation, desired functionality, iLab API

Design Lab Client
 Bound by Lab-Specific UI requirements, iLab API

Design Server–Client communication framework
 Specification of batched parameters and results (processed only by Lab

server and lab client)

 Definition of messages passed between server and client

12

Lab Client–Server Communication

13

 Messages passed between Client and Lab Server communicate key lab
information.

 Lab Hardware Configuration/Status
 Experiment Parameters & Results

 This information is necessarily lab-specific.

Lab Server
Client

Public Internet

Arbitrary Service Broker

14

 All Lab Client-Server Messages must be passed through Service Broker.
 Generic mechanism.

 XML an ideal technology for this application.

Server–Client communication framework

Service Broker

Arbitrary
Lab Clients

Arbitrary
Lab Servers

?

Lab Server Design

15

 Provide access to lab hardware.

 Implement the iLab Lab Server API

 Define & utilize format for lab-specific
communication with the Client.

 Provide any other functionality
necessary for lab operation

Basic Requirements:

Note: iLab Architecture APIs are platform-neutral. Lab Server technology
driven by lab resources, hardware requirements.

Lab Client Design: Basic requirements

Basic requirements:

16

 Provide an educationally valuable user interface
to the lab, embody pedagogical aspects

 Implement the iLab Client-Service Broker API

 Create & Interpret lab-specific communication
messages with Lab Server

Again… iLab Architecture APIs are platform-neutral. Lab developer can
select the best technology for their Client.

Example: MIT Microelectronics Device
Characterization iLab

17

 Online microelectronic device
characterization lab.

 First lab deployed using the iLab
Architecture.

 Used by students, guests & OCW
users worldwide.

Semiconductor Parameter Analyzer

18

 Three distinct message types
used for lab-specific
communication between Client
and Lab Server.
 Lab Configuration
 Experiment Specifications
 Experiment Results

 XML is used to encode
information.

 Passed through the Service
Broker as generic text.

Lab Server Development Examples

MIT Microelectronics iLab Lab Server

19

Lab Server Requirements:

 Scalable performance and reliability.
 Asynchronous experiment submission and execution

 Built-in lab management utilities.

 Highly modular, extensible.

The Lab Server

20

Built on Windows using .NET Framework and MS SQL
Server.

Picture from MIT/CECI

The Lab Server: Experiment Validation

21

All experiments are validated on the server before they
are queued:

 Jobs are checked for:
 Basic Correctness

 Compliance with Hardware capabilities

 Compliance with Server-imposed rules

 Reduces resources spent on incorrectly specified
jobs.

 Server-based validation ensures uniformity, rapid
application of changes

22

Lab Server Highlights: Lab Management

 Used to view system
status/logs, edit system
configuration

 Interface geared towards
common functions

 Allows rapid response to
events

Most Lab Management functions available online:

The µElectronic WebLab Client

23

Client Requirements:

 Intuitive interface

 Easily deployed on many
platforms

 Minimal user
requirements

 Highly modular design

 Easily extensible

Picture from MIT/CECI

24

Lab Server Highlights:
Lab Management

 Used to view system
status/logs, edit system
configuration

 Interface geared towards
common functions

 Allows rapid response to
events

Most Lab Management functions available online:

Meeting Client Design Goals: Portability

Java used to develop client.

 Often present as client execution environment
 Good cross-platform compatibility

 Places few special requirements on end-user

 Packages/toolkits provide necessary
functionality
 Graphical UI, Web Services, XML all within reach

 Versatility
 Few constraints imposed by technology

Other Client Technology Options

 Stand-alone application (.NET, Java, C/C++, etc.)
 Versatile

 Typically more platform dependent

 User must download/install client

 HTML/Web Script based client (.NET, Java/JSP, PHP, etc.)
 Typically more portable, easy to deploy

 .NET WebForms are an attractive option

 Client development packages (LabView)
 Rapid deployment, flexible interfaces

 Traditionally hard to integrate with Batched-Lab Architecture

 Potential to integrate LabView UI layer with .NET Server Interface

Client Design Goals: Modularity/Extensibility

Client built from three modules:

 User Interface Layer
 Only presentation code

 Main Client Module
 Contains core functionality

 Server Interface
 Translates Core commands to Web

Service Calls

Many changes can be isolated.

Picture from MIT/CECI

Reusability of Lab Code

 Lab Client/Server code is lab-specific
 Exception is Client graphing module

 However, some parts can be reused with
modification
 Client/Server – Broker Interfaces, some management tools,

Execution queuing, Client/Server infrastructure…

 Deployed labs always valuable as working
examples

Reusability of Lab Code: Building new iLabs

New ilabs needed to expand into other electronics
courses.

 …reuse as much lab code as possible

 Build upon success of Microelectronics iLab

 Deploy quick

 …take advantage of platforms like NI ELVIS and lower
level LabVIEW functions (DAQ)

NI ELVIS

 All-in-one electronics workbench

 Performs variety of basic functions

 Readily software controllable (LabView)

 Compact

 Cost-effective

31

ELVIS-based iLabs: Version 1

 ELVIS integrated into batched-lab architecture

Execution Engine

Process Logic (.NET)

ELVIS-based iLabs: Version 1 (cont.)

Lab Client very similar to that of the
Microelectronics iLab

 UI elements are similar
 Graphing engine, layout templates

reused
 Changes in parameter input

controls

 Web Service Interface reused
 Main changes in Client Core
 Interpreting new experiment

parameters
 Using a new Lab Client to Lab

Server Communication format

Example of Lab Batched Lab

A Batched Lab Example at CUAS

33

The READ Hybrid Laboratory

34

READ – Remote ASIC Design and Test
 Allows for the realization of Electronics Experiments with an analogue

programmable device (ispPAC10).

 A hybrid laboratory, allowing the design, simulation and test of real devices.

 Design and Simulations: PAC-Designer 5.0

 Test and Measurements: READ Lab Server via
a Java Applet Client.

 Runs within the iLabs Shared Architecture
(batched experiment)

35

READ Redesign – Batched versus Interactive

The Decision for the Batched Architecture

 Circuit under test is kept in an idle state during great part of the execution cycle.

 Take advantage of the queuing mechanism of previous lab servers
 Low amount of data is exchanged during each experiment execution

36

The READ Lab Client (1)

Client Functionalities:

 Provide the lab Graphical User
Interfaces

 Include pedagogical aspects
 Implement the Web Services interface

to communicate with the Service Broker
 Create experiment specification

protocols
 Parse experiment results received from the

server

37

The READ Lab Client (2)

The Web Services Interface

 Translate internal method calls do Web service calls
 Manages full cycle of an experiment execution

Main Client Module

The User Interface

 Create experiment specification
 Parse experiment results

 Process the data (if necessary)

 Provide the lab Graphical User Interfaces
 Display the results with graphing functions

38

The READ Lab Client (3)

The XML Experiment Specification and Results
<?xml version="1.0" encoding="utf-8" standalone="no" ?><!DOCTYPE experimentSpecification SYSTEM
"http://ilabs.cti.ac.at/xml/experimentSpecification.dtd">

<experimentSpecification lab="CUAS READ Lab" specversion="0.1">"
<PACString>PAC-Designer PAC String</PACString>
<terminal instrumentType="FGEN" instrumentNumber="1">
<vname download="true">Vin</vname>
<function type="WAVEFORM">
<waveformType>SINE</waveformType>
<frequency>1000</frequency>
<amplitude>0.5</amplitude>
<offset>2.5</offset>
<connInput>1</connInput>
</function>
</terminal>
<terminal instrumentType="SCOPE" instrumentNumber="2">
<vname download="true">Vout</vname>
<function type="SAMPLING">
<samplingRate>500000</samplingRate>
<samplingTime>0.02</samplingTime>
<connProbe_CHA>1</connProbe_CHA>
<connProbe_CHB>1</connProbe_CHB>
<coupling>0</coupling>
<triggerSource>1</triggerSource>
</function></terminal>
</experimentSpecification>

<?xml version='1.0' encoding='utf-8' standalone='no' ?>
<!DOCTYPE experimentResult SYSTEM 'http://exp04.cti.ac.at/elvis/xml/experimentResult.dtd'>
<experimentResult lab="CUAS READ Lab" specversion="0.1">
<datavector name="TIME" units="s">0 1E-05 2E-05 3E-05 4E-05</datavector>
<datavector name="VIN" units="V">0.402830402191198 0.569602385435954 0.722355996130949

0.850456447078121</datavector>
<datavector name="VOUT" units="V">2.50433404263296 2.5049785833044 2.50401177229907 2.5049785833044

2.50481744813608</datavector>
</experimentResult>

39

The READ Lab Server (1)

Server Functionalities:

 Implement the Web Services
interface to communicate with the
Service Broker

 Queue experiments for execution
 Parse experiment specification

protocols and perform validation
 Create experiment results received

from the server

 Provide interface to lab hardware
 Assure the correct circuit is measured

40

The READ Lab Server (3)

The Web Server and Services Interface
 Exposes Web methods to be called by the Service Broker.
 Validate experiments

 Queues experiment requests to be executed by writing them into the database

The Experiment Execution Engine (1)

 Communicates with the low level libraries that control the Laboratory Hardware
 Parses the experiment specification

 Dequeues experiments, executes them and writes the results back into the database

Execution Engine

Hardware dll
Wrapper

PAC-
Designer

PAC-Designer
Libraries

Database

41

The READ Lab Server (4)

Lab Hardware Control with LabVIEW

 DAQ NI PCI-6251 (DAQmx Library of Vis)
 Original virtual instruments could be kept with minor changes (function

generator and oscilloscope)
 Virtual instruments run in a straightforward fashion

Receive
parameters

from wrapper
Start signal
generation

Acquire finite
number of
samples

Return
measurement
s to wrapper

Stop signal
generation

 Compiled as a DLL to be called from the experiment engine

42

The READ Lab Server (5)

The ispPAC Uploader Module
 Ensures that the desired circuit is being tested.

 Extra module added to the experiment engine

 Developed with the PAC-Designer Software Development Kit

 .PAC files are XML based describing
simulation parameters and Information
for the JTAG interface.

 The client:
- Reads the .PAC file
- Wraps it inside the Experiment

Specification XML string
- Sends it to the Lab Server

43

An Experiment Execution Scenario

44

Conclusion and Considerations

 With iLabs it was achieved a fully multiple user system

 iLabs facilitate sharing this labs and managing its users

 Works behind proxies servers and firewalls

 ISA-compliant laboratories

 Considerations on the migration of existing labs to ISA

Future work:
 More interactive graph display, supporting zoom functions

 Extract measurements out of the data set
 Include possibility to perform measurements on frequency domain

Thank you

Thank you for your attention!

45

References

46

• MIT, iLab: A Scalable Architecture for Sharing Online Experiments, ICEE2004.
• MIT, The Challenge of Building Internet Accessible Labs.
• MIT, Client to Service Broker API.
• Hardison/MIT, iLab Batched Experiment Architecture: Client and Lab Server
Design, ppt slides.

	Batched Laboratories Development �
	Foliennummer 2
	Foliennummer 3
	Foliennummer 4
	Foliennummer 5
	Lab Server/Client Design
	Foliennummer 7
	The SB Web Services Interface
	Lab Server Web Services Interface
	iLabs Shared Architecture
	Batched labs in the iLab Shared Architecture
	Lab Server Developer Tasks
	Lab Client–Server Communication
	Server–Client communication framework
	Lab Server Design
	Lab Client Design: Basic requirements
	Example: MIT Microelectronics Device Characterization iLab
	Lab Server Development Examples
	MIT Microelectronics iLab Lab Server
	The Lab Server
	The Lab Server: Experiment Validation
	Lab Server Highlights: Lab Management
	The µElectronic WebLab Client
	Lab Server Highlights:�Lab Management
	Meeting Client Design Goals: Portability
	Other Client Technology Options
	Client Design Goals: Modularity/Extensibility
	Reusability of Lab Code
	Reusability of Lab Code: Building new iLabs
	Foliennummer 30
	Foliennummer 31
	Foliennummer 32
	Example of Lab Batched Lab
	The READ Hybrid Laboratory
	READ Redesign – Batched versus Interactive
	The READ Lab Client (1)
	The READ Lab Client (2)
	The READ Lab Client (3)
	The READ Lab Server (1)
	The READ Lab Server (3)
	The READ Lab Server (4)
	The READ Lab Server (5)
	An Experiment Execution Scenario
	Conclusion and Considerations
	Thank you
	References

