
Carinthia University of Applied Sciences

Batched Laboratories Development

1st iLab Europe Workshop

Danilo Garbi Zutin

Villach, Austria – November 17th 2009

2

Online Labs: Implementation Point of View

Different solutions and technologies exist today to implement remote
Laboratories as well as different communication standards and data
exchange protocols.

Therefore, each Institution/University is likely to adopt its own standards and
approaches to perform tasks like handling user‘s accounts and managing
experiment data. Because of that, sharing remote Labs becomes more
difficult.

As the number of online labs increases, a highly scalable architecture is
desirable in order that labs could be managed in a confortable way and
included/disposed easily.

1st iLab Europe Workshop

3

Batched Experiments:

Batched experiments are those in which the entire course of the experiment can be
specified before the experiment begins.

Batched experiments should be queued for execution in order to maximize the efficiency of
the lab server.

Example: MIT’s Microelectronics WebLab for device characterization, CUAS READ System.

4

Interactive and Sensor Experiments:

Interactive experiments are those in which the user monitors and can control one or
more aspects of the experiment during its execution.

Example: CTI’s REL (Remote Electronic Lab). Students can dynamically change the input
to the oscilloscope, function generator, power supply and multimeter and watch live
data being displayed on the oscilloscope screen as parameters are changed.

Sensor experiments are those in which users monitor or analyze real-time data streams
without influencing the the phenomena being measured. MIT’s online photovoltaic
station [11] provides a simple example.

Three-tier Web Application:

First tier: Client Application that either runs as an applet or as a downloaded application
on the student’s workstation.

Middle tier: The Service Broker provides the shared common services. It is backed by a
standard relational database (SQL ServerTM).

Third tier: The Lab Server that executes the experiments and notifies the Service Broker
when the results are ready.

The Topology of the Batched Experiment Architecture1

6

Batched Clients and Lab Servers Structure:

Messages between a lab client and server are very specific and should be transmitted
through the generic channels of the Service Broker.

Batched-lab Development:

Lab Client development

Lab Server development

Lab Client/Server Communication framework (define inputs and outputs)

The communication framework can be expressed in any text format, but XML documents
are an ideal vehicle for that.

Lab Server/Client Design

7

Registering a Batched lab on a Service Broker

Install Domain Credentials:

-Contact the process Agent (Lab
Server’s side) administrator via
email and get the web services URL
and an initial passkey.

The SB Web Services Interface

8

http://ilabs.cti.ac.at/ServiceBroker/Services/ServiceBrokerService.asmx�

Lab Server Web Services Interface

9

iLabs Shared Architecture

Client and Lab Server Design
(Batched Architecture)

10

11

 Service Broker provides generic services, deployment
mechanism for the client.

 Lab Server and Client contain lab-specific code.

 All communications pass through Service Broker.

Service Broker
Lab Server

Client

Campus
network Internet

Batched labs in the iLab Shared Architecture

Lab Server Developer Tasks

Design Lab Server
 Bound by lab instrumentation, desired functionality, iLab API

Design Lab Client
 Bound by Lab-Specific UI requirements, iLab API

Design Server–Client communication framework
 Specification of batched parameters and results (processed only by Lab

server and lab client)

 Definition of messages passed between server and client

12

Lab Client–Server Communication

13

 Messages passed between Client and Lab Server communicate key lab
information.

 Lab Hardware Configuration/Status
 Experiment Parameters & Results

 This information is necessarily lab-specific.

Lab Server
Client

Public Internet

Arbitrary Service Broker

14

 All Lab Client-Server Messages must be passed through Service Broker.
 Generic mechanism.

 XML an ideal technology for this application.

Server–Client communication framework

Service Broker

Arbitrary
Lab Clients

Arbitrary
Lab Servers

?

Lab Server Design

15

 Provide access to lab hardware.

 Implement the iLab Lab Server API

 Define & utilize format for lab-specific
communication with the Client.

 Provide any other functionality
necessary for lab operation

Basic Requirements:

Note: iLab Architecture APIs are platform-neutral. Lab Server technology
driven by lab resources, hardware requirements.

Lab Client Design: Basic requirements

Basic requirements:

16

 Provide an educationally valuable user interface
to the lab, embody pedagogical aspects

 Implement the iLab Client-Service Broker API

 Create & Interpret lab-specific communication
messages with Lab Server

Again… iLab Architecture APIs are platform-neutral. Lab developer can
select the best technology for their Client.

Example: MIT Microelectronics Device
Characterization iLab

17

 Online microelectronic device
characterization lab.

 First lab deployed using the iLab
Architecture.

 Used by students, guests & OCW
users worldwide.

Semiconductor Parameter Analyzer

18

 Three distinct message types
used for lab-specific
communication between Client
and Lab Server.
 Lab Configuration
 Experiment Specifications
 Experiment Results

 XML is used to encode
information.

 Passed through the Service
Broker as generic text.

Lab Server Development Examples

MIT Microelectronics iLab Lab Server

19

Lab Server Requirements:

 Scalable performance and reliability.
 Asynchronous experiment submission and execution

 Built-in lab management utilities.

 Highly modular, extensible.

The Lab Server

20

Built on Windows using .NET Framework and MS SQL
Server.

Picture from MIT/CECI

The Lab Server: Experiment Validation

21

All experiments are validated on the server before they
are queued:

 Jobs are checked for:
 Basic Correctness

 Compliance with Hardware capabilities

 Compliance with Server-imposed rules

 Reduces resources spent on incorrectly specified
jobs.

 Server-based validation ensures uniformity, rapid
application of changes

22

Lab Server Highlights: Lab Management

 Used to view system
status/logs, edit system
configuration

 Interface geared towards
common functions

 Allows rapid response to
events

Most Lab Management functions available online:

The µElectronic WebLab Client

23

Client Requirements:

 Intuitive interface

 Easily deployed on many
platforms

 Minimal user
requirements

 Highly modular design

 Easily extensible

Picture from MIT/CECI

24

Lab Server Highlights:
Lab Management

 Used to view system
status/logs, edit system
configuration

 Interface geared towards
common functions

 Allows rapid response to
events

Most Lab Management functions available online:

Meeting Client Design Goals: Portability

Java used to develop client.

 Often present as client execution environment
 Good cross-platform compatibility

 Places few special requirements on end-user

 Packages/toolkits provide necessary
functionality
 Graphical UI, Web Services, XML all within reach

 Versatility
 Few constraints imposed by technology

Other Client Technology Options

 Stand-alone application (.NET, Java, C/C++, etc.)
 Versatile

 Typically more platform dependent

 User must download/install client

 HTML/Web Script based client (.NET, Java/JSP, PHP, etc.)
 Typically more portable, easy to deploy

 .NET WebForms are an attractive option

 Client development packages (LabView)
 Rapid deployment, flexible interfaces

 Traditionally hard to integrate with Batched-Lab Architecture

 Potential to integrate LabView UI layer with .NET Server Interface

Client Design Goals: Modularity/Extensibility

Client built from three modules:

 User Interface Layer
 Only presentation code

 Main Client Module
 Contains core functionality

 Server Interface
 Translates Core commands to Web

Service Calls

Many changes can be isolated.

Picture from MIT/CECI

Reusability of Lab Code

 Lab Client/Server code is lab-specific
 Exception is Client graphing module

 However, some parts can be reused with
modification
 Client/Server – Broker Interfaces, some management tools,

Execution queuing, Client/Server infrastructure…

 Deployed labs always valuable as working
examples

Reusability of Lab Code: Building new iLabs

New ilabs needed to expand into other electronics
courses.

 …reuse as much lab code as possible

 Build upon success of Microelectronics iLab

 Deploy quick

 …take advantage of platforms like NI ELVIS and lower
level LabVIEW functions (DAQ)

NI ELVIS

 All-in-one electronics workbench

 Performs variety of basic functions

 Readily software controllable (LabView)

 Compact

 Cost-effective

31

ELVIS-based iLabs: Version 1

 ELVIS integrated into batched-lab architecture

Execution Engine

Process Logic (.NET)

ELVIS-based iLabs: Version 1 (cont.)

Lab Client very similar to that of the
Microelectronics iLab

 UI elements are similar
 Graphing engine, layout templates

reused
 Changes in parameter input

controls

 Web Service Interface reused
 Main changes in Client Core
 Interpreting new experiment

parameters
 Using a new Lab Client to Lab

Server Communication format

Example of Lab Batched Lab

A Batched Lab Example at CUAS

33

The READ Hybrid Laboratory

34

READ – Remote ASIC Design and Test
 Allows for the realization of Electronics Experiments with an analogue

programmable device (ispPAC10).

 A hybrid laboratory, allowing the design, simulation and test of real devices.

 Design and Simulations: PAC-Designer 5.0

 Test and Measurements: READ Lab Server via
a Java Applet Client.

 Runs within the iLabs Shared Architecture
(batched experiment)

35

READ Redesign – Batched versus Interactive

The Decision for the Batched Architecture

 Circuit under test is kept in an idle state during great part of the execution cycle.

 Take advantage of the queuing mechanism of previous lab servers
 Low amount of data is exchanged during each experiment execution

36

The READ Lab Client (1)

Client Functionalities:

 Provide the lab Graphical User
Interfaces

 Include pedagogical aspects
 Implement the Web Services interface

to communicate with the Service Broker
 Create experiment specification

protocols
 Parse experiment results received from the

server

37

The READ Lab Client (2)

The Web Services Interface

 Translate internal method calls do Web service calls
 Manages full cycle of an experiment execution

Main Client Module

The User Interface

 Create experiment specification
 Parse experiment results

 Process the data (if necessary)

 Provide the lab Graphical User Interfaces
 Display the results with graphing functions

38

The READ Lab Client (3)

The XML Experiment Specification and Results
<?xml version="1.0" encoding="utf-8" standalone="no" ?><!DOCTYPE experimentSpecification SYSTEM
"http://ilabs.cti.ac.at/xml/experimentSpecification.dtd">

<experimentSpecification lab="CUAS READ Lab" specversion="0.1">"
<PACString>PAC-Designer PAC String</PACString>
<terminal instrumentType="FGEN" instrumentNumber="1">
<vname download="true">Vin</vname>
<function type="WAVEFORM">
<waveformType>SINE</waveformType>
<frequency>1000</frequency>
<amplitude>0.5</amplitude>
<offset>2.5</offset>
<connInput>1</connInput>
</function>
</terminal>
<terminal instrumentType="SCOPE" instrumentNumber="2">
<vname download="true">Vout</vname>
<function type="SAMPLING">
<samplingRate>500000</samplingRate>
<samplingTime>0.02</samplingTime>
<connProbe_CHA>1</connProbe_CHA>
<connProbe_CHB>1</connProbe_CHB>
<coupling>0</coupling>
<triggerSource>1</triggerSource>
</function></terminal>
</experimentSpecification>

<?xml version='1.0' encoding='utf-8' standalone='no' ?>
<!DOCTYPE experimentResult SYSTEM 'http://exp04.cti.ac.at/elvis/xml/experimentResult.dtd'>
<experimentResult lab="CUAS READ Lab" specversion="0.1">
<datavector name="TIME" units="s">0 1E-05 2E-05 3E-05 4E-05</datavector>
<datavector name="VIN" units="V">0.402830402191198 0.569602385435954 0.722355996130949

0.850456447078121</datavector>
<datavector name="VOUT" units="V">2.50433404263296 2.5049785833044 2.50401177229907 2.5049785833044

2.50481744813608</datavector>
</experimentResult>

39

The READ Lab Server (1)

Server Functionalities:

 Implement the Web Services
interface to communicate with the
Service Broker

 Queue experiments for execution
 Parse experiment specification

protocols and perform validation
 Create experiment results received

from the server

 Provide interface to lab hardware
 Assure the correct circuit is measured

40

The READ Lab Server (3)

The Web Server and Services Interface
 Exposes Web methods to be called by the Service Broker.
 Validate experiments

 Queues experiment requests to be executed by writing them into the database

The Experiment Execution Engine (1)

 Communicates with the low level libraries that control the Laboratory Hardware
 Parses the experiment specification

 Dequeues experiments, executes them and writes the results back into the database

Execution Engine

Hardware dll
Wrapper

PAC-
Designer

PAC-Designer
Libraries

Database

41

The READ Lab Server (4)

Lab Hardware Control with LabVIEW

 DAQ NI PCI-6251 (DAQmx Library of Vis)
 Original virtual instruments could be kept with minor changes (function

generator and oscilloscope)
 Virtual instruments run in a straightforward fashion

Receive
parameters

from wrapper
Start signal
generation

Acquire finite
number of
samples

Return
measurement
s to wrapper

Stop signal
generation

 Compiled as a DLL to be called from the experiment engine

42

The READ Lab Server (5)

The ispPAC Uploader Module
 Ensures that the desired circuit is being tested.

 Extra module added to the experiment engine

 Developed with the PAC-Designer Software Development Kit

 .PAC files are XML based describing
simulation parameters and Information
for the JTAG interface.

 The client:
- Reads the .PAC file
- Wraps it inside the Experiment

Specification XML string
- Sends it to the Lab Server

43

An Experiment Execution Scenario

44

Conclusion and Considerations

 With iLabs it was achieved a fully multiple user system

 iLabs facilitate sharing this labs and managing its users

 Works behind proxies servers and firewalls

 ISA-compliant laboratories

 Considerations on the migration of existing labs to ISA

Future work:
 More interactive graph display, supporting zoom functions

 Extract measurements out of the data set
 Include possibility to perform measurements on frequency domain

Thank you

Thank you for your attention!

45

References

46

• MIT, iLab: A Scalable Architecture for Sharing Online Experiments, ICEE2004.
• MIT, The Challenge of Building Internet Accessible Labs.
• MIT, Client to Service Broker API.
• Hardison/MIT, iLab Batched Experiment Architecture: Client and Lab Server
Design, ppt slides.

	Batched Laboratories Development �
	Foliennummer 2
	Foliennummer 3
	Foliennummer 4
	Foliennummer 5
	Lab Server/Client Design
	Foliennummer 7
	The SB Web Services Interface
	Lab Server Web Services Interface
	iLabs Shared Architecture
	Batched labs in the iLab Shared Architecture
	Lab Server Developer Tasks
	Lab Client–Server Communication
	Server–Client communication framework
	Lab Server Design
	Lab Client Design: Basic requirements
	Example: MIT Microelectronics Device Characterization iLab
	Lab Server Development Examples
	MIT Microelectronics iLab Lab Server
	The Lab Server
	The Lab Server: Experiment Validation
	Lab Server Highlights: Lab Management
	The µElectronic WebLab Client
	Lab Server Highlights:�Lab Management
	Meeting Client Design Goals: Portability
	Other Client Technology Options
	Client Design Goals: Modularity/Extensibility
	Reusability of Lab Code
	Reusability of Lab Code: Building new iLabs
	Foliennummer 30
	Foliennummer 31
	Foliennummer 32
	Example of Lab Batched Lab
	The READ Hybrid Laboratory
	READ Redesign – Batched versus Interactive
	The READ Lab Client (1)
	The READ Lab Client (2)
	The READ Lab Client (3)
	The READ Lab Server (1)
	The READ Lab Server (3)
	The READ Lab Server (4)
	The READ Lab Server (5)
	An Experiment Execution Scenario
	Conclusion and Considerations
	Thank you
	References

