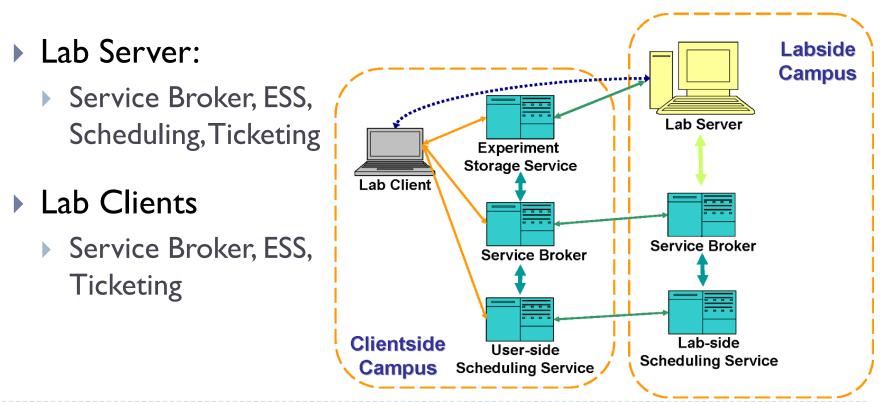
Developing Interactive iLabs

1st iLab Europe Workshop


Developing Interactive Labs for the ISA

- By design, few technical constraints are placed on lab development
- Labs can have drastically different requirements
 - Communication protocols
 - Could be based on proprietary technologies (between client and lab server)
- One size does not fit all
- Regardless, a few rules apply to building Interactive iLabs

Supporting ISA Services

As with Batched iLabs, Interactive iLabs must implement iLab control API's

Control API's based on Web Services

Direct Connections to iLab Services

Some services are required, others are optional

- Core Service Broker and Ticketing interfaces Required
 - Support for Ticketing necessary for ISA authentication
 - Support for Service Broker needed for ticket redemption
- Support for Storage, Scheduling Services optional, can be done in different ways
 - Must only be implemented if required by lab.
 - For Storage, responsible party depends on specific lab
 - Lab Server for high-bandwidth or large file storage
 - Client for situations where user analysis is part of lab record
 - Hybrid models

Technology Decisions

- Lab Server, Client platforms driven primarily by instrumentation, pedagogical requirements
- What are the requirements of our lab hardware?
 - Driver availability
 - Supported platforms
- How do we want the lab to be used?
 - Instrument control
 - Data formats, modes of analysis,

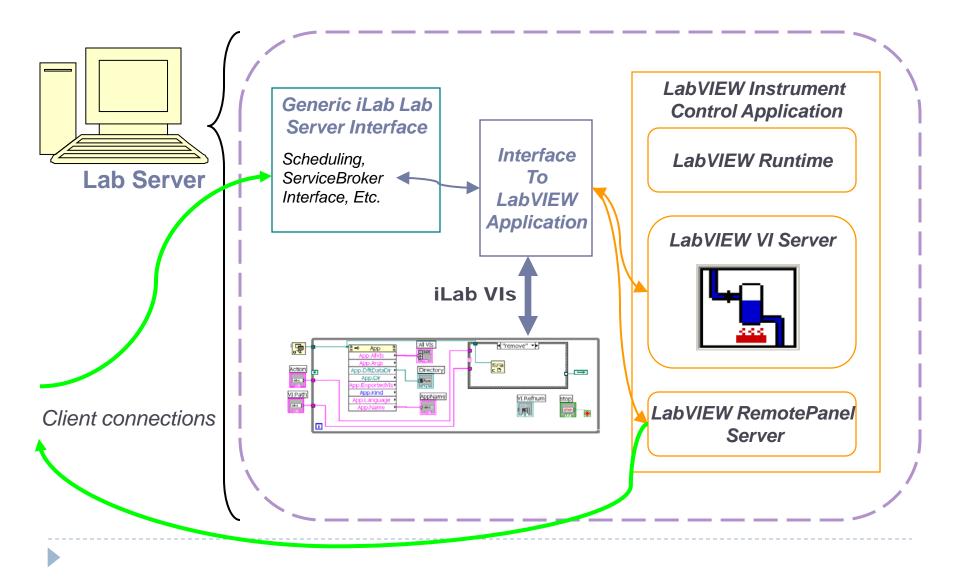
Supported Lab Client types

- Wide variety of client interfaces/technologies available, but only a limited set supported currently
- Java Applet/Web Start programs
 - Similar to MIT batched iLab clients
 - Run as distinct processes on user's computer, must support web services for ticketing, experiment storage
 - Can use any protocol to communicate with Lab Server

HTTP Redirects

- Supports wide range of clients hosted as web-based UI's backed by software on Lab Server
- Technically, Client and Lab Server are connected
- HTML Forms, Flash-based clients, LabVIEWVI's
- Other mechanisms possible, support depends on existing use cases

Supporting LabVIEW-based iLabs


Support for LabVIEW-based iLabs has become a high priority for the MIT iLab Project

- Many adopters already use LabVIEW for instrument control
- Can easily control instrumentation, develop intuitive user interfaces
- Low barrier to entry for non-software engineers

In response to this, we have developed a toolkit for streamlining conversion of a working VI to an Interactive iLab

LabVIEW Integrated Interactive Lab Server (LVIILS)

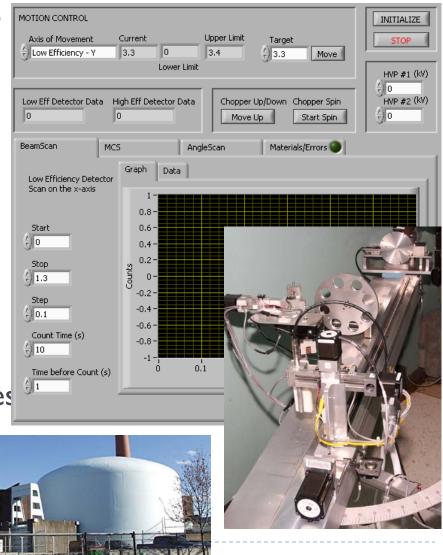
LabVIEW Integrated ILS Architecture

Using the LVIILS

- The LabVIEW Integrated ILS is packaged with the current Service Broker software, enables:
- Easy installation of general purpose Lab Server code, integration with ISA Services
- Existing LabVIEW VIs can take full advantage of ISA Services
 - VI's must conform to a few requirements
- A working instrument control VI can be converted to a complete Interactive iLab in a short amount of time
 - Easier, quicker deployments of fully-featured iLabs

Support for other Interactive Labs

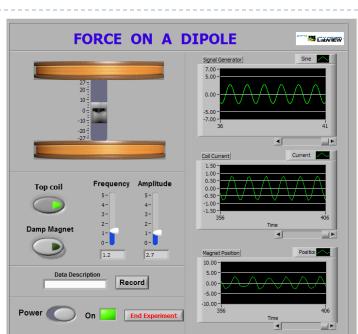
No other toolkits exist at this time

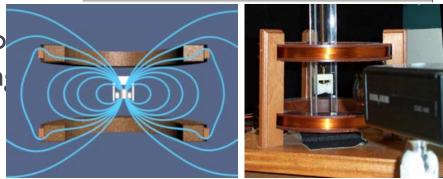

However...

- Sample Interactive Lab Server packaged with Service Broker software can be used as a starting point for development. Contains:
 - Experiment launch and monitoring
 - Experiment termination at end of scheduled run.
 - Connection management ESS data storage
- Implementation of LVIILS can be used as a development example
- Support for other platforms driven by user needs

Deployed Interactive iLabs: Nuclear Reactor

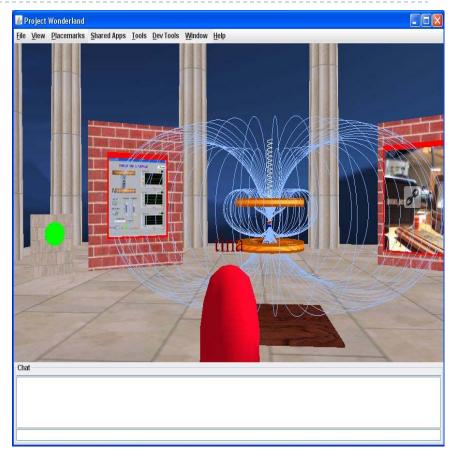
Exposes some functionality of the MIT Nuclear Research Reactor


- A variety of experiments are available in the iLab
- Also built using LabVIEW and LVIILS
- To be used in MIT Nuclear
 Engineering and Physics courses and, eventually, by select
 secondary schools



Deployed Interactive iLabs: Force on a Dipole

Enables students to observe the behavior of a magnet suspended by a spring between a Helmholtz coil


- Targeted to freshmen Physics students at MIT
- Also built using LabVIEW
- Successful test deployment
 Spring 2008, full scale deplo
 (~600 students) this Spring

iLabs in Virtual Worlds

- Provides an alternate interface to Force on a Dipole iLab
- Based on Sun's Wonderland platform (v0.4 for demo)
- Enables interaction with visualization elements, intuitive collaboration
- Work continuing
 - Support for newer version
 - Integration of other iLabs

Demo Video

Conclusion

- iLab Shared Architecture provides flexible support for wide range of Interactive lab experiences
 - Varying communication paradigms, technologies, interfaces
 - Much depends on lab developer requirements
- Flexibility is double-edged
 - Good:Wide variety of labs can be supported
 - Bad: No single clear path for lab development
 - LVIILS is the compromise and a good start
- Next: Experiences of other developers