
Developing Interactive iLabs

1st iLab Europe Workshop
November 16 - 18, 2009

Developing Interactive Labs for the ISA
By design, few technical constraints are placed on lab

development
 Labs can have drastically different requirements
 Communication protocols
 Could be based on proprietary technologies (between client

and lab server)

 One size does not fit all

 Regardless, a few rules apply to building Interactive iLabs

Supporting ISA Services
As with Batched iLabs, Interactive iLabs must implement

iLab control API’s
 Control API’s based on Web Services

 Lab Server:
 Service Broker, ESS,

Scheduling, Ticketing

 Lab Clients
 Service Broker, ESS,

Ticketing

Direct Connections to iLab Services
Some services are required, others are optional
 Core Service Broker and Ticketing interfaces – Required
 Support for Ticketing necessary for ISA authentication
 Support for Service Broker needed for ticket redemption

 Support for Storage, Scheduling Services optional, can be
done in different ways
 Must only be implemented if required by lab.
 For Storage, responsible party depends on specific lab

 Lab Server for high-bandwidth or large file storage
 Client for situations where user analysis is part of lab record
 Hybrid models

Technology Decisions
Lab Server, Client platforms driven primarily by

instrumentation, pedagogical requirements
 What are the requirements of our lab hardware?
 Driver availability
 Supported platforms

 How do we want the lab to be used?
 Instrument control
 Data formats, modes of analysis,

Supported Lab Client types
Wide variety of client interfaces/technologies available, but only a

limited set supported currently
 Java Applet/Web Start programs
 Similar to MIT batched iLab clients
 Run as distinct processes on user’s computer, must support web

services for ticketing, experiment storage
 Can use any protocol to communicate with Lab Server

 HTTP Redirects
 Supports wide range of clients hosted as web-based UI’s backed by

software on Lab Server
 Technically, Client and Lab Server are connected
 HTML Forms, Flash-based clients, LabVIEW VI’s

 Other mechanisms possible, support depends on existing use cases

Supporting LabVIEW-based iLabs
Support for LabVIEW-based iLabs has become a high

priority for the MIT iLab Project
 Many adopters already use LabVIEW for instrument control
 Can easily control instrumentation, develop intuitive user

interfaces
 Low barrier to entry for non-software engineers

In response to this, we have developed a toolkit for
streamlining conversion of a working VI to an Interactive
iLab

 LabVIEW Integrated Interactive Lab Server (LVIILS)

Lab Server

Generic iLab Lab
Server Interface

LabVIEW Instrument
Control Application

LabVIEW Runtime

LabVIEW VI Server

LabVIEW RemotePanel
Server

Interface
To

LabVIEW
Application

Scheduling,
ServiceBroker
Interface, Etc.

Client connections

iLab VIs

LabVIEW Integrated ILS Architecture

Using the LVIILS
The LabVIEW Integrated ILS is packaged with the current

Service Broker software, enables:
 Easy installation of general purpose Lab Server code,

integration with ISA Services

 Existing LabVIEW VIs can take full advantage of ISA
Services
 VI’s must conform to a few requirements

 A working instrument control VI can be converted to a
complete Interactive iLab in a short amount of time
 Easier, quicker deployments of fully-featured iLabs

Support for other Interactive Labs
 No other toolkits exist at this time

However…
 Sample Interactive Lab Server packaged with Service

Broker software can be used as a starting point for
development. Contains:
 Experiment launch and monitoring
 Experiment termination at end of scheduled run.
 Connection management ESS data storage

 Implementation of LVIILS can be used as a development
example

 Support for other platforms driven by user needs

Deployed Interactive iLabs:
Nuclear Reactor
Exposes some functionality of
the MIT Nuclear Research
Reactor
 A variety of experiments are

available in the iLab

 Also built using LabVIEW and
LVIILS

 To be used in MIT Nuclear
Engineering and Physics courses
and, eventually, by select
secondary schools

Deployed Interactive iLabs:
Force on a Dipole
Enables students to observe the
behavior of a magnet suspended
by a spring between a Helmholtz
coil
 Targeted to freshmen Physics

students at MIT

 Also built using LabVIEW

 Successful test deployment
Spring 2008, full scale deployment
(~600 students) this Spring.

iLabs in Virtual Worlds
 Provides an alternate

interface to Force on a
Dipole iLab

 Based on Sun’s Wonderland
platform (v0.4 for demo)

 Enables interaction with
visualization elements,
intuitive collaboration

 Work continuing
 Support for newer version
 Integration of other iLabs Demo Video

Conclusion
 iLab Shared Architecture provides flexible support for

wide range of Interactive lab experiences
 Varying communication paradigms, technologies, interfaces
 Much depends on lab developer requirements

 Flexibility is double-edged
 Good: Wide variety of labs can be supported
 Bad: No single clear path for lab development
 LVIILS is the compromise – and a good start

 Next: Experiences of other developers

	Developing Interactive iLabs � �
	Developing Interactive Labs for the ISA
	Supporting ISA Services
	Direct Connections to iLab Services
	Technology Decisions
	Supported Lab Client types
	Supporting LabVIEW-based iLabs
	LabVIEW Integrated ILS Architecture
	Using the LVIILS
	Support for other Interactive Labs
	Deployed Interactive iLabs:�Nuclear Reactor
	Deployed Interactive iLabs:�Force on a Dipole
	iLabs in Virtual Worlds
	Conclusion

