Clusters of galaxies WG report

Iucaa Nevalainen

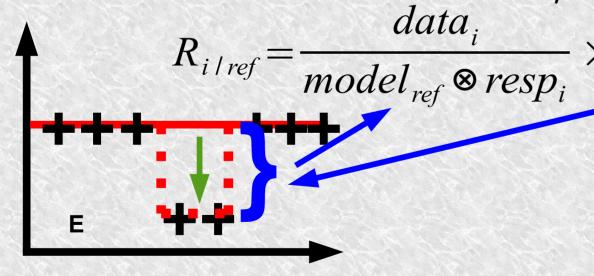
11th IACHEC meeting, 2016, IUCAA, India

IACHEC Clusters of Galaxies WG Action items from April 2015

- 1) HIFLUGCS Fe and S emission line ratio spectroscopy (Gerrit, JN)
- 2) HIFLUGS data to WIKI (Gerrit, JN)
- 3) Multi Mission Study (JN...)
- 4) Residual ratios for simultaneous XMM/Chandra blazar observations (JN, M. Smith, H. Marshall)
- 5) Astro-H AO (JN)
- 6) AstroSat calibration time / AO (JN, K. Mukerjee)
- 7) NuSTAR AO (JN, Karl Forster)
- 8) eROSITA

1) Multi-Mission Study

J. Nevalainen, A. Beardmore, L. David, E. Miller, S. Snowden


11th IACHEC meeting 2016, Pune, India

1.1) Method for evaluating cross-cal uncertainties

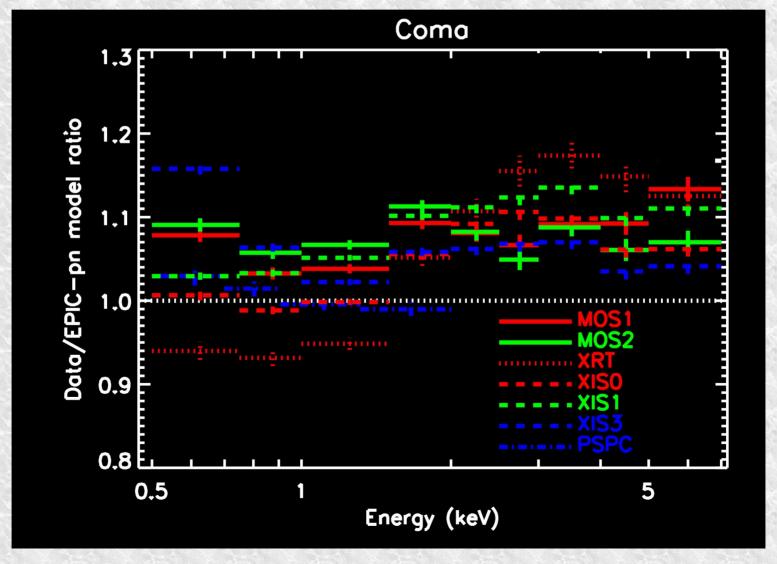
Stack residuals method

- * A phenomenological mathematical model that fits the data is OK for cross-cal
 - Since we know the relative difference between the data ref and model ref, we can use this info to correct the model prediction to match the data (fudge factor kind of thing)

A second term on the R formula does exactly that $R_{i/ref} = \frac{data_i}{model_{ref} \otimes resp_i} \times \frac{model_{ref} \otimes resp_{ref}}{data_{ref}}$

Model ref (wrong)

Data ref

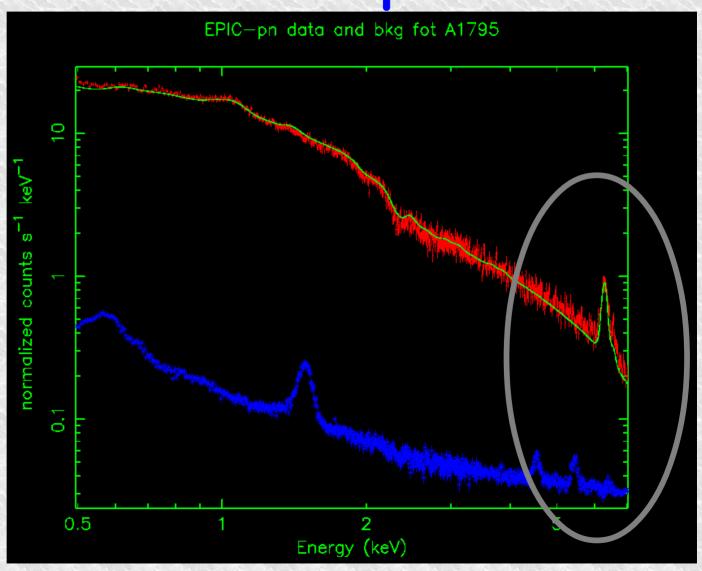

Spectrum in o units (counts/

Define extraction region

- * So it is OK to use mergers and cool cores and fit them with whatever model \rightarrow extract spectra from clustercentric circle with extraction radius r_{ext}
- \star Lower limit of r_{ext} affected by requirements of
 - a few% statistical precision in small enough spectral bins
 - At the moment we use 9 bins → need 100000 counts

Statistical precision

 \star Coma r_{ext} = 6': 17 ks EPIC exposure, 1% statistical precision in 9 bins in 0.5-7.0 keV band



Define extraction region

- \star Upper limit of r_{ext} affected by requirements of
 - Bkg below 10% of signal in the 0.5-7 keV range
- \star At the moment we use $r_{\text{ext}} = 6$ arcmin

Bkg/source signal for A1795 with XMM-Newton pn

- ☆ r_{ext}> 6' makes
 things worse at
 E = 7 keV
- KT < 6 keV makes things worse at E = 7 keV

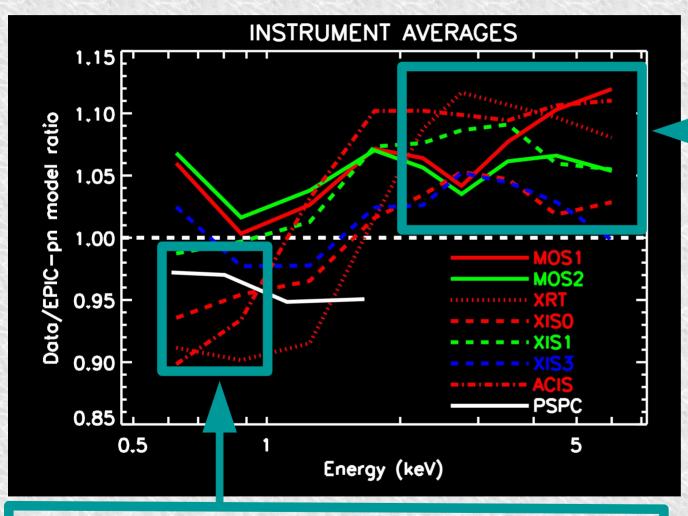
1.3) Cluster selection

Cluster selection criteria

- * Hot enough so that we
 - have enough counts at the highest energies (Perseus is an exception, perhaps a few more TBD)
 - minimise the 1 keV line emission (we are studying the effective area, not RMF nor energy scale calibration), i.e $kT > \approx 6 \text{ keV}$

1.4) Current sample

Sample

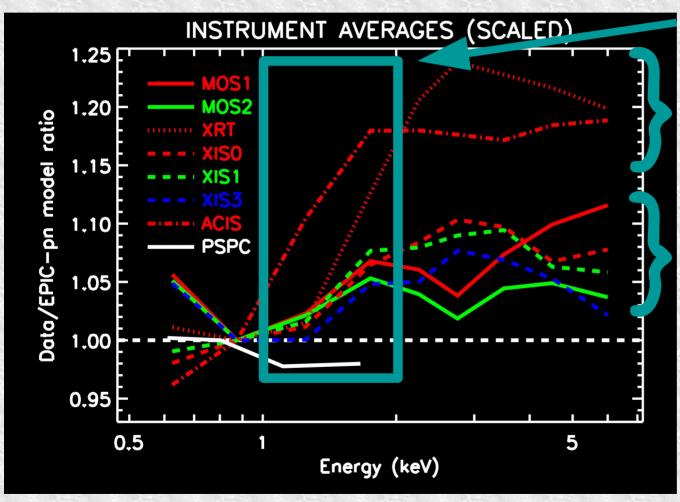

* Currently the sample consists of

A1795, A2029, Coma and PKS 0745-19

1.5) PRELIMINARY results from the 4 clusters sample

Residuals ratios

The average instr/pn residual ratio of each pair

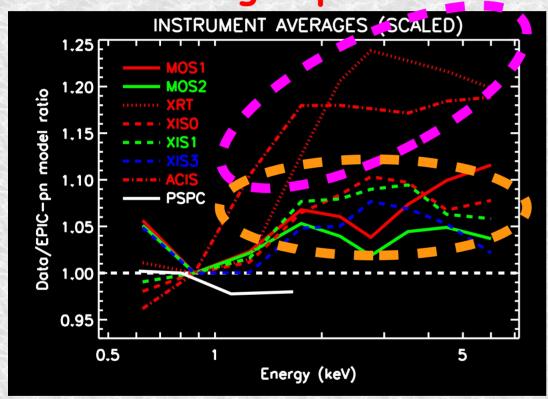

Most instruments show lower flux than pn at < 1 keV, but with a varying degree (0-10%)

All instruments show higher flux than pn at > 2 keV, but with a varying degree (0-15%)

Request 1 to IACHEC community: Are the evidence convincing enough to make conclusions about EPIC-pn calibration?

Scaled residuals ratios

The average instr/pn residual ratio of each pair, scaled to unity at 0.75-1.0 keV

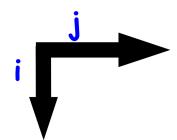


The 1-2 keV gradient:

- 1) Swift/XRT and Chandra/ACIS similar: 20% increase
- 2) XMM/MOS and Suzaku/XIS similar: 5% increase
- → Not a single instrument is guilty

Scaled residuals ratios

Request 2 to IACHEC community: explain why there are the two groups


The average instr/pn residual ratio of each pair, scaled to unity at 0.75-1.0 keV

A) Chandra/ACIS & Swift/XRT

B) EPIC/MOS & Suzaku/XIS

I.e. is (are) there some element(s) of the effective area instrumentation or calibration that is (are) common within a given group, but different btw. the two groups?

1.6) More satellites/instruments

Current data base

	A1795	A2029	Coma	PKS 0745-19
XMM	\odot	\odot	\odot	\odot
Chandra	\odot	\odot		
Suzaku	\odot	\odot		
Swift	\odot	\odot	\odot	\odot
Rosat	\odot	\odot		
NuSTAR	(2)			
eRosita	<u></u>		<u></u>	
AstroSat	\odot			too short
Astro-H				

2) Increase the current cluster sample

More clusters

- Need more clusters to be able to derive statistically robust conclusions (e.g. when applying Prof. Meng's method, Concordance Calibration)
- Following PRELIMINARY! list consists hot nearby clusters from HIFLUGCS sample, following these criteria:
 - kt > 6 keV, except for Perseus
 - Offset btw. the cluster center and pointing FOV center < 3 arcmin</p>
 - Exposure > 10 ks in the available data

													_	
	cluster	X	C	R	SW	SU	AS	cluster	X	C	R	SW	SU	AS
	A85	\odot	\odot	<u></u>	(S)	\odot		A2244	<u></u>	\odot	\odot	\odot	\odot	③
X: XMM/EPIC	A119	<u></u>	<u></u>	<u></u>	③	(3)	(3)	A2255	<u></u>	<u></u>	<u></u>	(:)	(3)	:
C: Chandra/ACIS	A399	<u></u>	<u></u>	<u></u>	(3)	(:)		A2256	\odot	\odot	\odot	(3)	\odot	
R: ROSAT/PSPC	A401	\odot	\odot	<u></u>	\odot	:	(3)	A2319	<u></u>	\odot	(E)			(3)
	A478	\odot	\odot	<u></u>	(3)	:		A3158	<u></u>	\odot	(3)			(3)
SW: Swift/XRT	A754	?	<u></u>	(:)		(:)	(3)	A3266	?	<u></u>	③	(3)	(:)	(3)
SU: Suzaku/XIS	A644	<u></u>	\odot	\odot	(S)	:	(3)	A3391	<u></u>	\odot	<u></u>	(:)		(3)
	A1413	<u></u>	\odot	<u></u>	③	:	©	A3558	<u></u>	\odot	(3)	(;)	(3)	(3)
AS: Astrosat/SXT	A1650	<u></u>	\odot	(3)			8	A3571	<u></u>	\odot	<u></u>	\odot	\odot	
A1835?	A1651	<u></u>	<u></u>	<u></u>	<u></u>	(3)	(3)	A3627	?	?	<u></u>	③	\odot	
	Coma	<u></u>	\odot	\odot	\odot	\odot	8	A3667	?	<u></u>	<u></u>	(3)	\odot	
	A1689	<u></u>	\odot	<u></u>	(3)	(3)	8	A3827	<u></u>	\odot	(3)		(3)	(3)
	A1795	<u></u>	\odot	<u></u>	\odot	\odot	<u></u>	A3888	<u></u>	\odot	<u></u>	(3)		(3)
	A1914	\odot	<u></u>	<u></u>	(3)	(3)	8	Ophiu	<u></u>	<u></u>	<u></u>	4ks	<u></u>	(3)
	A2029	<u></u>	\odot	<u></u>	\odot	\odot		Perse	<u></u>	<u></u>	\odot	\odot	\odot	<u></u>
	A2065	<u></u>	\odot	:			(3)	PKS0745	<u> </u>	<u></u>	<u></u>	\odot	\odot	
	A2142	\odot	\odot	<u></u>	(i)		©	RXCJ1504	?	?	?	(3)	?	
	A2163	?	?	(3)	(3)	(3)		Triang	<u></u>	<u></u>	<u></u>	8	\odot	(3)
	A2204	<u></u>	<u></u>	<u></u>	(3)	(3)	(3)	ZwCl1215	<u></u>	<u></u>	(3)	(3)	(3)	(3)

All 5 instruments

- * 6 (or 7) clusters observed with all with good enough data
 - Sample too small (is it?) for proper statistics (Prof Meng's method)

Common wisdom not true: "Your clusters will eventually be observed, don't worry"

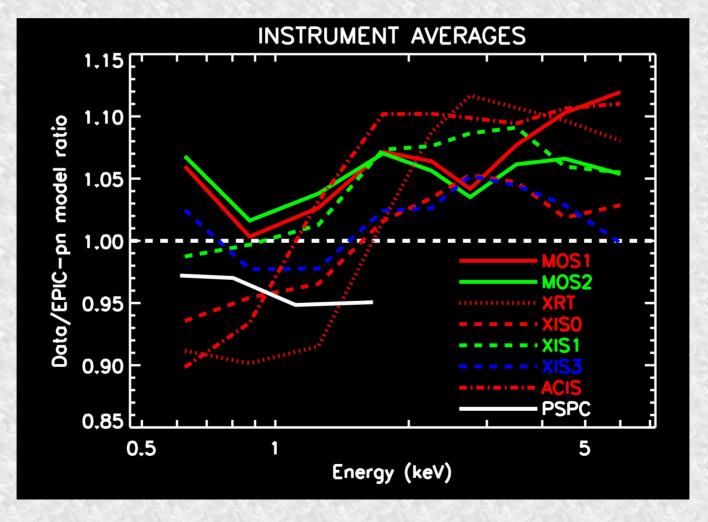
Need to promote the cluster sample to the instrument calibration teams to be able to proceed. This is hard even with the 4 clusters.

- Try pushing the 10-20 keV band of the hottest clusters (TBD)
- Calibration via science AO: contrived. Hard to make a competitive proposal by justifying scientifically the most studied bright nearby clusters

→ Need to pick the data if/when observed, as before

Fortunately ATHENA team has cross-mission calibration early in the mission planning

Subsamples of instruments


- * XMM + Chandra + Swift ≈ 9 clusters
- * XMM + Chandra + Suzaku ≈ 10 clusters
 - → Numbers remain small

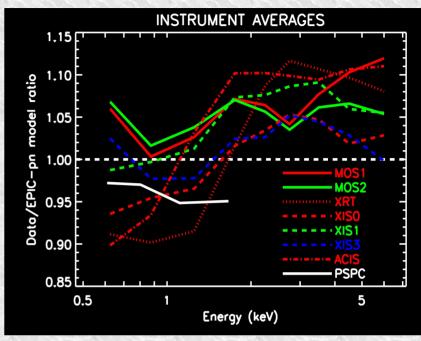
Subsamples of instruments

- XMM + Chandra + ROSAT : 25 clusters
 - This is currently the only statistically useful sample
 - Requires 250 ks of XMM time, i.e.
 - Similar eROSITA time (is this feasible?)
 - Ms ASTROSAT time (not feasible)
 - Ms AstroH time (not feasible)
 - 25 ks of ATHENA time (piece of cake, right?)
- Add cooler very nearby clusters, which might have enough counts up to E=7 keV (like Perseus)

50?

Let's add the available data XMM, Chandra, ROSAT, Swift, Suzaku) into sample, relaxing some of the criteria, and proceed for a publication

Let me be provocative


I know how to get T
values for Concordance
Calibration

- \bigstar Stack residuals ratio R_{i,ref} can be used to rank the instruments by their accuracy of A_{eff}
- If one instrument has problem with $A_{\rm eff}$ calibration and all others are right, the set of $R_{\rm i,wrong}$ curves should be similar, i.e. the deviation between the curves is minimised

calibration and thus to get the τ values

- compute a set of R_{i,ref} curves for each instrument as ref in turn
- ★ For each set of R_{i,ref} calculate the "accuracy parameter" J_{ref}

$$R_{i,ref} = XMM-Newton/pn$$

$$J_{ref} = stdev(R_{(i,ref)}(E))$$

$$\tau = \frac{(J_{ref})}{(max(J_{ref}))}$$

• TBD