

CCD22 Simulator Mk II

Andy Beardmore

and the Leicester Swift-XRT calibration team

Swift-XRT Team Meeting – Clemson, October 23rd, 2011 (Page 1)

- Existing code is written in FORTRAN-77(!)
- Only approximates the XRT onboard and ground s/w event recognition schemes
 - split event threshold is constrained to be same as event threshold
 - Grading schemes not identical

- Code base diverged between PC and WT
 - WT uses gaussian approx to line spreading
 - PC uses more rigorous "charge cloud spreading" model in field-free region
 - Hard-coded energy dependent shelf and line profile "fixes"
 - Ended up with two different WT codes with different shelf "fixes" for grade 0-2 and 0
- Most importantly need to fix WT mode
 - Grade 1,2 redistribution clearly inaccurately
 - 10 row binning an afterthought

- Written in C++ with the aim to be modular.
- ReadoutMode base class
 - implements the image, store, and serialregister arrays; pixel charge accumulation
- WTRawFrame, PCRawFrame derived classes implement the specific readout modes, CTE and readnoise application
 - Image \rightarrow Store transfer for PC
 - 10 row binning \rightarrow serial register for WT
- WTMode, PCMode are further derived classes implement the event recognition and grading

- Generic source input. Photon obtained from
 - Photon/s/bin spectrum at top of CCD
 - Spatial distribution
 - Uniform source (circle or rectangle)
 - Drawn from the XRT PSF
- Full charge-cloud spreading
- Si-Kα flourescence
- Outputs an "event list" (bin, rawx, rawy, pha, grade)
- OpenMP parallelisation over the photon loop
 - 1 Million photon PC mode door source simulation takes 10 minutes using 10 cores.
 - Not so effective for WT mode

• X-ray detection is determined by a photon's ability to pass through the electrode structure, while interacting in the active layer of the device

- accurate Si, SiO2, Si3N4 absorption coefficients required \rightarrow using ACIS values.

 Charge cloud spreading, followed by the pixelmapping, event-recognition and grading determine how well the original photon energy can be recovered

CCD Operation Overview

Swift-XRT Team Meeting – Clemson, October 23rd, 2011 (Page 7)

Open Electrode Structure

Swift-XRT Team Meeting – Clemson, October 23rd, 2011 (Page 8)

- Initial Size (Pavlov & Nousek 1999)
 - 3D Gaussian, with 2D cylindrical radius

 $r_i = 0.012 E^{1.75}$ (micron)

- Less than 1 micron for energies of interest
- Depletion region (Hopkinson, 1984; PN 1999)
 - Expansion radius

$$r_d = 1.96 \left(\frac{T}{173.15}\right)^{1/2} \left(\frac{N_a}{10^{13}}\right)^{-1/2} \left(S\left(\frac{z_d}{d_d}\right) + \ln\left(\frac{d_d}{d_d - z_d}\right)\right)^{1/2} \text{ (micron)}$$
(2)

where z_d is the depth of interaction in the depletion region (micron), d_d is the depletion region depth (micron), T is the temperature (in 173.15 K), N_a is the acceptor concentration (in 10^{13} cm^{-3}), and S is a dimensionless saturation parameter (typically 1-5). Note, setting S = 0 gives the linear regime result, which assumes the drift velocity is proportional to the local electric field strength.

Note, this equation breaks down for X-rays interacting within a distance

$$d_{br} \sim 0.98 \left(\frac{T}{173.15}\right)^{1/2} \left(\frac{N_a}{10^{13}}\right)^{-1/2}$$
(micron) (3)

Swift-XRT Team Meeting – Clemson, October 23rd, 2011 (Page 9)

- Field-Free region (Hopkinson, 1984; PN 1999)
 - Radial charge distribution at depletion/FF boundary

$$q_{ff}(r) = \frac{Q_0}{\pi d_{ff}^2} \sum_{n=1}^{\infty} \alpha_n \sin\left(\frac{\alpha_n z_{ff}}{d_{ff}}\right) K_0\left(\frac{r}{d_{ff}}\sqrt{\alpha_n^2 + \left(\frac{d_{ff}}{L_{ff}}\right)^2}\right)$$
(4)

where Q_0 is the initial charge, z_{ff} is the depth of interaction in the field-free region (micron), d_{ff} is the field-free region thickness (micron), $L_{ff} \sim \text{few} \times 100 - 1000 \text{ micron}$ is the diffusion length in the field-free region, $\alpha_n = (2n-1)\pi/2$, K_0 is a modified Bessel function of the second kind.

The total charge reaching the depletion/field-free interface is

$$Q_{tot} = Q_0 \cosh\left(\left(d_{ff} - z_{ff}\right)/L_{ff}\right) / \cosh\left(d_{ff}/L_{ff}\right) \tag{5}$$

- Substrate (Hopkinson 1984)
 - Radial charge distribution at substrate/FF boundary

$$q_s(r) = \frac{Q_0 z_s}{2\pi u^3} \left(1 + \frac{u}{L_s} \right) \exp\left(-\frac{u}{L_s} \right) \tag{6}$$

where $u^2 = (r^2 + z_s^2)$, z_s is the interaction depth in the substrate, L_s is the diffusion length in the substrate.

The total charge reaching the field-free/substrate boundary is

$$q_s(r) = Q_0 \exp\left(-\frac{z_s}{L_s}\right) \tag{7}$$

Swift-XRT Team Meeting – Clemson, October 23rd, 2011 (Page 10)

2D Charge Distribution

77

Swift-XRT Team Meeting – Clemson, October 23rd, 2011 (Page 11)

 Loss to surface states occur for events detected at low z (< buried channel depth of a few microns)

Model with a loss function,
 Q_a = Q_i x f(z)

where

 $f(x) = S + B (z/l)^c$ (z<l) = 1.0 - A exp(-(z-l)/tau)

 Allow a different loss function for the closed and open parts of the electrode

- Loss function is energy dependent and calibrated using pre-launch lab. data and Fe-55 door source data (obtained during LEO)
- linear absorption coeff varies greatly around the Si edge, as revealed by AI, Si & P Kα lines

- Operation controlled by an input file
 - Sets input source (spectrum, spatial model), pixel geometry, mode, thresholds, CTI, read noise, charge spreading params, etc
- Pixel geometry file

Electro	ode Layers						
Layer	Compound	Depth					
		micron					
1	SiO2	0.10					
2	Si3N4	0.10					
3	SiO2	0.40					
4	Si	0.25					
5	SiO2	0.30					
6	Si	0.25					
7	SiO2	0.40					
Regions	3						
XMIN	YMIN	XMAX	YMAX	Electrode	DD	D FF	D SS
Micron	Micron	Micron	Micron	Layers	Micron	Micron	Micron
2.20	15.00	16.35	40.00	1	25.00	55.00	200.00
23.65	15.00	37.80	40.00	1	25.00	55.00	200.00
0.00	15.00	2.20	40.00	1,2,3	25.00	55.00	200.00
37.80	15.00	40.00	40.00	1,2,3	25.00	55.00	200.00
16.35	15.00	23.65	40.00	1,2,3,4,5	35.00	45.00	200.00
0.00	0.00	40.00	4.00	1,2,3,4,5	35.00	45.00	200.00
0.00	6.00	40.00	9.00	1,2,3,4,5	35.00	45.00	200.00
0.00	11.00	40.00	15.00	1,2,3,4,5	35.00	45.00	200.00
0.00	4.00	40.00	6.00	1,2,3,4,5,6,7	35.00	45.00	200.00
0 00	9.00	40.00	11.00	1-2-3-4-5-6-7	35.00	45.00	200 00

The Importance of Getting Good Grades

Final algorithm:

- Loop through each pixel (x, y)
- Test if PHA > thresh
- Test if pixel is the local max in 3x3
- Grade 3x3
- <u>Leave</u> 3x3 in image array
- Repeat over all pixels

The Importance of Getting Good Grades (ii)

WT mode test

Algorithm:

- Find next max PHA above threshold in 200 pixel readout array
- Extract 7 pixel array centred on the max PHA pixel
- Grade 7 pixel array, taking care with "don't care" pixels
- Mask out pixels in grade
- Repeat until no
 pixels remain above threshold

- Ideally the simulator output should match all three of the following :
 - QE
 - Grade ratios
 - Redistribution
- Found this a difficult goal to reach using the preestablished inputs (i.e. the electrode layer thicknesses, depletion layer thickness, field-free layer thickness)

Results – PC QE

 QE comparison – lab data (Astrosat CCD, courtesy G. Hansford) & model

Swift-XRT Team Meeting – Clemson, October 23rd, 2011 (Page 18)

Results - PC

77

Results - WT

Swift-XRT Team Meeting – Clemson, October 23rd, 2011 (Page 20)

PC spectra – by grade

Swift-XRT Team Meeting – Clemson, October 23rd, 2011 (Page 21)

 Redistribution bump and low E turn up is more accurately modelled

Cyg X-3 WT mode (2005-May-10)

Swift-XRT Team Meeting – Clemson, October 23rd, 2011 (Page 22)

 Converted PSF Mn-Kα source event file to light curve and made a powerspectrum

WT simulation – power spectrum (cont'd)

 Powerspectrum of a soft source (O-Kα line) simulation – i.e. nearly all single pixel events

 No fall-off in power at high frequencies, as seen in real WT data from soft sources.

Pile-up

• Simulator naturally reproduces pile-up

Swift-XRT Team Meeting – Clemson, October 23rd, 2011 (Page 25)

Pile-up study

• Simulator naturally piles-up events

- •WT simulation default source input rate \rightarrow CF=1.0
- •PC simulation default source input rate \rightarrow CF=0.9
- Need to go to a rate of x0.1=0.03 c/s to be free from pile $\frac{1}{4}$

- Tweak the inputs to produce the best match of QE, grade fractions, redistribution
- Produce RMFs
 - Will have to match the temporal evolution of the spectral resolution for both modes and WT redistribution bump, plus change in in QE when the substrate voltage was altered
- Perform a detail study of the pile-up characteristics of our data

