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Why Rewrite ?

• Existing code is written in FORTRAN-77(!)

• Only approximates the XRT onboard and 
ground s/w event recognition schemes

– split event threshold is constrained to be same 
as event threshold

– Grading schemes not identical
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• Code base diverged between PC and WT
– WT uses gaussian approx to line spreading

– PC uses more rigorous “charge cloud 
spreading” model in field-free region

– Hard-coded energy dependent shelf and line 
profile “fixes”

• Ended up with two different WT codes with 
different shelf “fixes” for grade 0-2 and 0

• Most importantly - need to fix WT mode
– Grade 1,2 redistribution clearly  inaccurately

• 10 row binning an afterthought
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CCD22 Simulator MkII

• Written in C++ with the aim to be modular.

• ReadoutMode base class 

– implements the image, store, and serial-
register arrays; pixel charge accumulation

• WTRawFrame, PCRawFrame derived classes 
implement the specific readout modes, CTE and 
readnoise application

– Image → Store transfer for PC

– 10 row binning →  serial register for WT

• WTMode, PCMode are further derived classes 
implement the event recognition and grading
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• Generic source input. Photon obtained from
– Photon/s/bin spectrum at top of CCD 

– Spatial distribution
• Uniform source (circle or rectangle)

• Drawn from the XRT PSF

• Full charge-cloud spreading

• Si-Kα flourescence 

• Outputs an “event list” (bin, rawx, rawy, pha, grade)

• OpenMP parallelisation over the photon loop
– 1 Million photon PC mode door source 

simulation takes 10 minutes using 10 cores.

– Not so effective for WT mode   



Swift-XRT Team Meeting  –  Clemson, October 23rd,  2011 (Page 6)

The difficult stuff – i.e. Physics!

• X-ray detection is determined by a photon's 
ability to pass through the electrode structure, 
while interacting in the active layer of the device

– accurate Si, SiO2, Si3N4 absorption 
coefficients required → using ACIS values. 

• Charge cloud spreading, followed by the pixel-
mapping,  event-recognition and grading  
determine how well the original photon energy 
can be recovered 
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CCD Operation Overview

Electrode
Structure
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Open Electrode Structure
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Charge cloud spreading

• Initial Size (Pavlov & Nousek 1999)

– 3D Gaussian, with 2D cylindrical radius

– Less than 1 micron for energies of interest

• Depletion region (Hopkinson, 1984; PN 1999)

– Expansion radius
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Charge cloud spreading (ii)

• Field-Free region (Hopkinson, 1984; PN 1999)

– Radial charge distribution at depletion/FF boundary

• Substrate  (Hopkinson 1984)

– Radial charge distribution at substrate/FF boundary
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2D Charge Distribution
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Surface Loss Function

• Loss to surface states occur for events detected at 
low z (< buried channel depth of a few microns) 

• Model with a loss function, 
Q

o
= Q

i
 x f(z)         

where  
f(x) = S + B (z/l)c          (z<l)                    
     = 1.0 – A exp(-(z-l)/tau) 

• Allow a different loss function for the closed and 
open parts of the electrode 
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Loss function (cont'd)

• Loss function is energy dependent and 
calibrated using pre-launch lab. data and Fe-55 
door source data (obtained during LEO)

• linear absorption coeff varies greatly around the 
Si edge, as revealed by Al, Si & P Kα lines   
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• Operation controlled by an input file
– Sets input source (spectrum, spatial model), 

pixel geometry, mode, thresholds, CTI, read 
noise, charge spreading params, etc  

• Pixel geometry file
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The Importance of Getting 
Good Grades

• Loop through each 
pixel (x, y)

• Test if PHA > thresh

• Test if pixel is the 
local max in 3x3

• Grade 3x3

• Leave 3x3 in image 
array

• Repeat over all 
pixels

Final algorithm:
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The Importance of Getting 
Good Grades (ii)

• Find next max PHA 
above threshold in 
200 pixel readout 
array

• Extract 7 pixel array 
centred on the max 
PHA pixel

• Grade 7 pixel array, 
taking care with 
“don't care” pixels

• Mask out pixels in 
grade

• Repeat until no 
pixels remain above 
threshold

WT mode test
Algorithm:
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Simulation Results

• Ideally the simulator output should match all 
three of the following :

– QE

– Grade ratios

– Redistribution

• Found this a difficult goal to reach using the pre-
established inputs (i.e. the electrode layer 
thicknesses, depletion layer thickness, field-free 
layer thickness) 
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Results – PC QE

• QE comparison – lab data (Astrosat CCD, 
courtesy G. Hansford) & model
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Results - PC

Si Kα mean free path X 1.7
to produce line flux
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Results - WT
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PC spectra – by grade

Black solid – door data grade 1-4
Black dashed – door data grade 5-12
Blue – grade 1-4 simulation
Green – grade 5-12 simulation
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Test WT RMF

• Redistribution bump and low E turn up is more 
accurately modelled
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WT simulation – power 
spectrum

• Fall-off in power at high
  frequencies, as seen in
 real WT data from hard 

  sources
• Origin is event splitting
  at the 10 row boundary
  of multipixel events.

• Converted PSF Mn-Kα source event file to light 
curve and made a powerspectrum 
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WT simulation – power 
spectrum (cont'd)

• No fall-off in power at high
 frequencies, as seen in real
 WT data from soft sources.

• Powerspectrum of a soft source (O-Kα line) 
simulation – i.e. nearly all single pixel events 
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Pile-up

• Simulator naturally reproduces pile-up
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Pile-up study

• Simulator naturally piles-up events

•WT simulation – default source input rate → CF=1.0
•PC simulation -  default source input rate → CF=0.9
• Need to go to a rate of x0.1=0.03c/s to be free from pile up
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ToDo

• Tweak the inputs to produce the best match of 
QE, grade fractions, redistribution

• Produce RMFs
– Will have to match the temporal evolution of 

the spectral resolution for both modes and WT 
redistribution bump, plus change in in QE 
when the substrate voltage was altered

• Perform a detail study of the pile-up 
characteristics of our data
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