Geostrophic and Cyclostrophic Flow

George Waithaka

Radial Inflow Experiment

- The phenomenon to be studied here is hurricanes.
- The model to be used in simulating hurricanes is the radial inflow experiment
- Then more theory and other interesting principles will be studied from this. i.e. Rossby number, conservation of angular momentum and balance of forces (namely Coriolis, centrifugal and pressure gradient)

Experiment

- Performed the experiment 3 times with varying the velocities i.e. $5 \mathrm{rpm}, 10 \mathrm{rpm}$ and 15 rpm .
- Particles released at varying radii on the surface of water in the bucket.
- Particle tracking software helps us to know how the particle's distance from the center of rotating frame varies with time.

Apparatus Setup

Data Manipulation

> Converted the (X, Y) pixel coordinates to cartesian by $x=X-x c e n t e r$ and $y=-(Y-y c e n t e r)$
> Calculated radii from center by taking the square root of $x^{\wedge} 2+y^{\wedge} 2$.
> Calculated theta by taking the arctan of (y / x)

- Computed delta thetas and delta times and generate a table on excel and had all these on columns

Rossby Number, Ro

»Ratio of Inertial to Coriolis Force.
Given by, $\mathrm{Ro}=\mathrm{V}_{\theta} /(2 \Omega r)$ from the momentum equation ($\left.\mathrm{g} \partial \mathrm{h} / \partial \mathrm{r}=\mathrm{fV}_{\mathrm{e}}+\left(\mathrm{V}_{\mathrm{e}}\right)^{2} / \mathrm{r}\right)$
$\Omega=2 \pi / \mathrm{T}$, where T is the period for 5 rpm , $\mathrm{T}=12 \mathrm{~s}, 6 \mathrm{~s}$ for 10 rpm and 4 s for 15 rpm .
$V_{\theta}=r \Delta \Theta / \Delta t$ for sufficiently small Δt since we know that $V_{\theta}=r \partial \Theta / \partial t$

Trajectories of particles when bucket rotated at 5 rpm

Rossby Number against r Plot (5 rpm)

Rossby Number against r plot (10 rpm)

Rossby Number against r plot

 (15 rpm)

Hurricane Bertha

ンFormed July 3. 2008 and dissipated July 20, 2008
>Developed as a tropical wave that emerged off the coast of Africa in July 1, 2008
>Speed - 125 mph
„Areas affected - Bermuda, New Jersey,
Delaware, North Carolina and Iceland

Image of Bertha near Bermuda

Path followed by Hurricane Bertha

Wind Speed at Various Latitudes

Data Manipulation 2

- From the wind speed contours above, I got the velocities from the various latitudes. From one latitude to the next, you gain 110KM.
- Rossby Number here is given by $\mathrm{V}_{\theta} /(2 \Omega r \sin \phi)$
- $\mathrm{fr}=2 \Omega \mathrm{rsin} \phi$
- Here since we are on global scale, T = 24 hrs.
- Below is a data and the Rossby Number against radius plot

Data for Bertha's Rossby Plot

Radius (m)	Wind speed (m/s)	fr	Ro
0	20	0	Inf
110000	35	8	4.38
220000	14	16.48	0.85
330000	9	25.43	0.35
440000	6	34.85	0.17
550000	2.5	44.72	0.06

Ro for both southward and northward directions for Bertha

Link between balance of forces and Rossby Number

- If Ro $\ll 1$, then we have geostrophic balance and this happens far away from the center and pressure gradient balances with coriolis force
- If Ro >>1, then we have cyclostrophic balance which happens near the center and pressure gradient is balanced by centripetal force.
- The Rossby Number plots that we have seen today show how Ro grows large as we get near $r=0$.

