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Abstract

Ultracold atoms provide a platform that allows for pristine control of a physical
system, and have found uses in both the fields of quantum measurement and quantum
simulation. Optical lattices, created by the AC Stark shift of a coherent laser beam,
are a versatile tool to control ultracold atoms and implement novel Hamiltonians.
In this thesis, I report on three experiments using the bosonic species Rubidium-87
trapped in optical lattices.

I first discuss our work in simulating the Harper-Hofstadter Hamiltonian, which
describes charged particles in high magnetic fields, and has connections to topological
physics. To simulate the charged particles, we use laser-assisted tunneling to add
a complex phase to tunneling in the optical lattice. For the first time, we have
condensed bosons into the ground state of the Harper-Hofstadter Hamiltonian. In
addition, we have demonstrated that we can add strong on-site interactions to the
effective Hamiltonian, opening the door to studies of interesting states near the Mott
insulator transition.

Next, I present a novel technique to preserve phase coherence between separated
quantum systems, called superfluid shielding. Phase coherence is important for both
quantum measurement and simulation, and is fundamentally limited by projection
noise. When an interacting quantum system is split, frozen-in number fluctuations
lead to fluctuations of the relative phase between separated subsystems. We cancel
the effect of these fluctuations by immersing the separated subsystems in a common
superfluid bath, and demonstrate that we can increase coherence lifetime beyond the
projection noise limit.

Finally, I discuss our efforts in simulating magnetic ordering in the spin-1 Heisen-
berg Hamiltonian. It is hard to adiabatically ramp into magnetically ordered ground
states, because they often have gapless excitations. Instead, we use a spin-dependent
lattice to modify interspin interactions, allowing us to ramp into the spin Mott insu-
lator, which has a gap and can therefore act as a cold starting point for exploration
of the rest of the phase diagram. We have achieved a cold spin temperature in the
spin Mott insulator, and I discuss plans to also achieve a cold charge temperature
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and then ramp to the the xy-ferromagnet, which has spin-charge separation.

Thesis Supervisor: Wolfgang Ketterle
Title: John D. MacArthur Professor of Physics
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Chapter 1

Introduction

Ultracold atoms provide a clean and precisely controllable system for studying a wide

range of physical effects. Through the use of lasers, magnetic fields, and microwave

and radio frequency (RF) waves, one can implement nearly any microscopic Hamilto-

nian to a high accuracy. With the advent of laser cooling and evaporative cooling, it

became possible to create Bose-Einstein condensates (BECs) [1, 2], which were first

predicted by Bose and Einstein in 1924. In a BEC, the low temperatures lead to a

macroscopic occupation of a single quantum state. Initial work with BECs involved

exploring exotic physics, including matter wave interference [3], superfluidity [4], vor-

tex lattices [5], and superradiance [6]. Later work achieved similarly low temperatures

in fermions, leading to the production of degenerate Fermi gases [7].

Once it had been shown that optical dipole forces could be used to create lat-

tice potentials [8, 9], a new realm of quantum simulation was opened. Fermions in

an optical lattice are described by the Fermi-Hubbard model, which is also the sim-

plest model of electrons in a crystal lattice, and is believed to be connected to the

phenomenon of high-temperature superconductivity [10, 11]. Bosonic atoms, on the

other hand, are most naturally described by the Bose-Hubbard Hamiltonian [12], and

inital work studied the superfluid-Mott insulator transition [13, 14]. Since then, much

work has looked at lattices with lower dimensionality [15], novel geometries [16, 17],

or modified tunneling [18, 19, 20, 21, 22, 23, 24].

In addition, because of their cold temperature and precise control, cold atoms
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have become one of the primary systems for precision measurement [25]. One gen-

eral method used is that of atom interferometery, which relies on the wave nature of

quantum mechanics and can be explained in analogy with classical optical interfer-

ometry. In a traditional interferometer, a beam of light is split and sent along two

paths. When the light is re-combined and measured, the light from the two paths

interfere, and the interference pattern contains information about the difference in

path lengths. For an atom interferometer, one takes advantage of the wave nature

of cold atoms, running separate parts of the wavefunction along different paths, and

thereby measuring the energy difference between the paths. This method has proved

useful not only in studying fundamental physics [26, 27, 28], but also as a precise

force sensor [29, 30, 31].

The experiments described in this thesis were done in Wolfgang Ketterle’s Rubid-

ium lab at MIT. This lab studies ultracold bosonic 87Rb atoms in optical lattices, and

in the past has been used to explore many topics, including superradiance [6], the

quantum Zeno effect [32], and demagnetization cooling [33], and in recent years has

focused on lattice physics. I begin in Chapter 2 by describing the theory of optical

lattices and some background theory necessary to understand our system.

In Chapter 3, I discuss our work in simulating strong magnetic fields, where a

charged particle in a uniform magnetic field undergoes cyclotron motion with a cy-

clotron orbit size of the same order as the lattice spacing. Then, the motion is

described by the Harper-Hofstadter Hamiltonian, whose spectrum is given by the

fractal Hofstadter’s butterfly. The spectrum is interesting not only for its fractal

nature, but also for its connection to toplogical physics. Where the vacuum has a

Chern number, of exactly zero, many of the subbands of Hofstadter’s butterfly have

a non-zero Chern number. Since Chern numbers are topological invariants and must

be integers, it cannot go smoothly from its non-zero value in the bulk of a system

to zero outside it — the bandgap must close at the edge, allowing for gapless edge

modes. Topological invariants are robust to local variations in system parameters, so

these edge modes are “topologically protected” from lattice impurities or distortions.

This inherent robustness makes topological materials interesting in themselves and
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as a potential candidate for use in quantum computing.

In order to see these effects in a traditional material, one would need magnetic

fields ∼10,000 T, which is clearly not feasible. Instead, we simulate the effect of

this field by directly controlling the phase of tunneling elements in our lattice. By

doing so, we can emulate the Aharanov-Bohm phases associated with such a high

field. I present the first realization of a BEC in the Harper-Hofstadter Hamiltonian

and demonstrate some of the properties of this Harper superfluid, including gauge-

dependent observables.

In Chapter 4, I discuss superfluid shielding, which is a novel method to increase

the coherence lifetime in separated quantum systems, like those in atom interferom-

eters. One fundamental mechanism for the decay of phase coherence is quantum

projection noise. When a coherent quantum system is split, there are unavoidable

density fluctuations. If the systems are self-interacting, these density fluctuations

get written into the relative phase between the subsystems, and therefore reduce the

phase coherence and signal-to-noise in measurements. Because of this, most groups

using atom interferometry work with atoms above the BEC transition point, where

densities are low enough that interactions are negligible. However, this is the equiv-

alent of using a white light interferometer, rather than a laser interferometer, which

will in general have a much higher brightness.

Superfluid shielding gets around this issue, and allows for long coherence lifetimes,

by using good interactions to zero out the effect of bad interactions. We immerse the

separated quantum systems in a superfluid bath of a different spin state, which be-

cause it is superfluid, moves its density to exactly cancel the density fluctuations in

the separated subsystems. Then, since for 87Rb, all inter- and intra-spin interaction

strengths are equal to the percent level, this cancels the effect of the density fluctua-

tions on the relative phase between the separated subsystems. I present a theoretical

analysis of this effect and demonstrate its ability to lengthen coherence times beyond

the projection noise limit by using Bloch oscillations in a two-component 87Rb BEC.

In Chapter 5, I present our work on the Heisenberg Hamiltonian, a paradigmatic

description of systems with magnetic ordering. A system with two spin components
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deep in the n = 2 Mott insulator can be mapped onto a spin-1 Heisenberg model,

which has an additional phase that the spin-1/2 model does not have — the spin

Mott insulator. This state is an insulator in both spin and charge space, and has

gapped excitations, which should allow us to keep a lower entropy when we ramp to

this phase from a BEC. Once there, we will be able to use a spin-dpenedent lattice

to vary the inter-spin interaction strength and adiabatically enter other states that

have magnetic ordering and gapless excitations. The first phase that we wish to ramp

to is the xy-ferromagnet, which is a spin superfluid while still being an insulator in

charge, demonstrating spin-charge separation. So far, we have achieved spin Mott

insulators that are cold in spin space, but were initially unable to ramp into a cold

xy-ferromagnet because of the large number of charge excitations. I discuss upgrades

made to the experiment that have greatly reduced the charge temperature, along with

future plans for our system.
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Chapter 2

Optical Lattices

Lattice models are used in much of physics, from condensed matter [34] to high-energy

physics [35, 36]. In the field of ultracold atoms, lattice models have been proposed

and used to study topological physics [37, 38], magnetic phases [39, 40], and even

dynamical gauge fields [38]. Optical lattices, which are created using coherent laser

light, are a versatile tool for creating lattice potentials for ultracold atoms.

In this chapter, I first describe how to create an optical lattice using the AC Stark

shift of a coherent laser beam. I then discuss the basic theory of particles in a lattice

potential, including Bloch’s theorem and bandstructure calculations. In deep lattices,

the system can be described by the Bose-Hubbard Hamiltonian, which has superfluid

and Mott insulating regions, and can easily be extended by adding external (possibly

time-dependent) potentials or novel types of interactions.

2.1 Making an Optical Lattice

Optical lattice potentials can be formed using the AC Stark Shift [8, 9], which is the

potential felt by atoms in an off-resonant oscillating electromagnetic field. Working

in the dipole approximation and ignoring atomic motion, we write the interaction

between the oscillating field and the atom as

H ′ = −~d · ~E(t) (2.1)
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where ~d = −e~r is the dipole operator, and ~E = Ex̂ cos(ωt) is the electric field. For

the scalar AC Stark shift, which is spin-independent and the primary component at

large detunings, we can treat the atom as a two level system with ground state g and

excited state i. We define the dipole matrix element between the two states

Mgi = 〈i| ~d · x̂ |g〉 . (2.2)

Note that we have left the electric field strength out of this definition, so 〈i|H ′ |g〉 =
EMgi. Then with second order perturbation theory, we find that the energy shift is

∆E = 2παa20I |Mgi|2
(

−1

δ
+

1

ωgi + ω

)

, (2.3)

where α is the fine structure constant, a0 is the Bohr radius, ωgi is the atomic reso-

nance frequency, and δ = ω− ωgi. We have included the electric field strength in the

intensity I = cε0E
2/2. Now, if the intensity varies with position, we can treat ∆E as

an external potential. These potentials, which we create with far-detuned lasers, are

the primary tools used in the experiments described in this thesis.

The sign of the potential changes with detuning — a red-detuned laser beam cre-

ates an attractive potential, while a blue-detuned beam creates a repulsive potential.

Our main trapping beams, which provide confinement on the scale of 10-100 µm, are

made by focusing the output of a 1064 nm fiber laser. It is possible to make a lattice

potential out of an array of independent dipole traps [41, 42], but doing so requires a

large numerical aperture and precise control over many degrees of freedom. Instead,

we make our optical lattices by retro-reflecting a laser beam focused on the atoms,

which creates an intensity lattice with a spacing that is half of the laser wavelength.

Unlike in [41, 42], we cannot move individual lattice sites around, but a retro-reflected

lattice is much more stable: the spacing between lattice sites is set only by the laser

wavelength, and the relative depths of lattice sites is determined by the Gaussian en-

velope of the beam, which can be much broader than the atomic cloud. This stability

allows us to reach and maintain the colder temperatures required to study lattice

physics mediated by tunneling and on-site interactions.
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2.2 Theory of Particles in Lattice Potentials

Our neutral atoms in a one-dimensional optical lattice are then described by the

single-particle Hamiltonian

H =
p2

2m
+ VL cos

2 (kLx) (2.4)

where VL is the height of the optical lattice potential and kL is the wavevector 2π/λ

of the lattice laser. This is the same form as a Hamiltonian describing electrons in

a crystal lattice, and is the starting point for much of condensed matter physics.

This connection both allows us to use theory tools first created for condensed matter

systems, as well as use our cold atoms systems as analogues of interesting condensed

matter systems.

2.2.1 Bloch’s Theorem and Bandstructure

Our Hamiltonian breaks continuous translation symmetry, so momentum is not con-

served, and the eigenstates do not have a definite momentum. However, there is still

a discrete translation symmetry of x → x + a, where a = kL/π. Bloch’s theorem

[34] tells us that eigenstates of the Hamiltonian are also eigenstates of the discrete

translation operator

T =eipa/~

Tψ(x) =ψ(x+ a) .
(2.5)

We can explicitly split out this eigenvalue and write the wavefunction as

ψ(x) = eiqaφq(x) (2.6)

where q is the eigenvalue of T , known as the quasimomentum, and uq(x) is periodic

in x with period a. The quasimomentum is often similar to real momentum, but it

is only defined on (−π/a, π/a] and is only conserved modulo 2π/a. We find that the
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quasimomentum part of the ansatz factors out:

Hψ(x) =Heiqaφq(x)

=eiqaHqφq(x) ,
(2.7)

where

Hq =
(p+ q)2

2m
+ VLcos

2 (kLx) , (2.8)

and q is now a c-number, rather than an operator. Thus, each φq(x) is given by the

eigenfunctions of the appropriateHq, which have the form of Mathieu functions. How-

ever, Mathieu functions can be hard to work with, so for our numerical calculations,

we use a plane wave expansion

φq(x) =
∑

j

c
(q)
j e2πijx/a (2.9)

where we have chosen plane waves that are harmonics of the lattice spacing a, which

enforces the translation symmetry of φq(x) . In this basis, Hq can be written as a

tri-diagonal matrix with the elements

Hq;j,j =(2j + q/kL)
2ER + VL/2

Hq;j,j±1 =− VL/4
(2.10)

and all other elements 0. We have defined the recoil energy scale ER = ~
2k2L/2m.

By numerically diagonalizing Hq for each q, we can determine the bandstructures as

shown in Figure 2-1. We find that using a maximum |j| of 15 provides good results

for the lowest three bands.

An intuitive way to understand the off-diagonal terms is most obvious in an optical

lattice, as opposed to a crystal lattice. In Section 2.1, we described the AC Stark

shift in second-order pertubation theory where we ignored atomic motion. We can

read the term E2 |Mgi|2 /δ as the following proces: A ground state atom accepts a

photon from the laser field with matrix element EMgi, and is virtually excited into

state i with an energy deficit of δ. Then, the atom is de-excited back to the ground

22



� � � �� � � � � � 	 � 
 � � � � 
 � � �� �� �� � ��� ��� �
��� �

� � � � � � �

� � � �� � � � � � 	 � 
 � � � � 
 � � �� �� �� � ��� ��� �
��� �

� � � � � � � �

� � � �� � � � � � 	 � 
 � � � � 
 � � �� �� �� � ��� ��� �
��� �

� � � � � � � �

Figure 2-1: Bandstructure of an atom in an optical lattice. Here we plot the lowest
three bands as a function of quasimomentum at different lattice depths. Note that
at low lattice depths, the bands almost follow the free particle parabolic dispersion,
with small avoided crossings. At higher lattice depths, the bands become flatter and
the bandgaps approach the harmonic oscillator frequency for a single lattice site.

state by emitting a photon into the laser field, this time with matrix element EM∗
gi.

Now in the real system, we need to take momentum conservation into account, and in

an optical lattice composed of two retro-reflected laser beams, there are two options.

First, if the emitted photon is in the same beam as the exciting photon, then the

atom does not pick up any momentum. This is where the VL/2 on the diagonal of Hq

comes from. On the other hand, the atom could accept a photon from the input beam

and emit into the retro-reflected beam, or vice versa, which will give it a momentum

kick of 2~kL. This takes j → j± 1, and gives the off-diagonal terms of Hq. It is these

terms that give rise to the avoided crossings seen in Figure 2-1.

2.2.2 Wannier Functions

Once we have solved for the bandstructure, we can use the Bloch functions to define

another set of orthogonal basis states, which are equivalent to position eigenstates in

the same way that Bloch states are the lattice equivalent of momentum eigenstates.

These are known as the Wannier functions [43] and for a state localized at lattice site
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Figure 2-2: Maximally-localized Wannier functions in the lowest band. We have
chosen a phase convention so that the wavefunction is purely real, and have plotted
the maximally localized Wannier functions at varying lattice depths. At low lattice
depths, the wavefunction has significant weight outside of the lattice site, but at higher
lattice depths, it rapidly approaches the ground state wavefunction of the harmonic
oscillator.

xi are given by

wn(x− xi) =
√
N

∫ π/a

−π/a

φ(n)
q (x) e−iqxi/~dq, (2.11)

where n is the band index andN is a normalization constant. Note that the φ(n)
q (x) are

only defined up to a phase, and only one phase convention will provide the maximally

localized functions that we want. This can be done by direct minimization [44] or

by using the phase convention in [43]. For the ground band and even excited bands,

maximally localized Wannier functions are produced by choosing all c(q)j to be purely

real. For odd excited bands, we choose all c(q)j to be purely imaginary. In Figure

2-2, I have plotted the normalized ground band Wannier functions at various lattice

depths. Note that at low lattice depths, the Wannier function has some weight outside

the center well, but these parts quickly decay with increasing lattice depth, and the

Wannier functions rapidly approach the eigenstates of the Harmonic oscillator.
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2.3 Bose-Hubbard Hamiltonian

In a deep lattice, i.e. the single band approximation, we can write our Hamiltonian

in terms of the Wannier functions

H = −t
∑

〈i,j〉

a†iaj (2.12)

where aj is the annihilation operator for the lowest band Wannier function on site j,

and 〈i, j〉 denotes pairs of nearest neighbors. We find the tunneling parameter, t, by

looking at the matrix element between neighboring Wannier functions

t =

∫

d~r w(~r − ~r0)
∗

(

p2

2m
+ VLcos

2 (kLx)

)

w(~r − ~r1) . (2.13)

The system becomes more interesting when we add interactions between the atoms

on a given site. Doing so gives us the Bose-Hubbard Hamiltonian [12]

H = −t
∑

〈i,j〉

a†iaj +
U

2

∑

i

ni (ni − 1) (2.14)

with the number operator ni = a†iai as usual. The interaction parameter U is given

by the squared on-site density

U =
4π~2as
m

∫

d~r w(~r − ~r0)
∗2w(~r − ~r0)

2 , (2.15)

where as is the s-wave scattering length.

The Bose-Hubbard Hamiltonian is the starting point for all of the research done in

this thesis, and one of its main advantages is how easy it is to modify to take into ac-

count other potentials, interactions, or tunneling types. The most common extension

is that of an external confining potential and the local density approximation. For an

external potential Vext(~r), we add a term to the Hamilonian of the form
∑

i Vext(~ri)ni,

and to take into account the chemical potential, we add a term −µ∑

i ni. We can
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combine these two terms in the “local density approximation”

H = −t
∑

〈i,j〉

a†iaj +
U

2

∑

i

ni (ni − 1)−
∑

i

µini (2.16)

with µi = µ− Vext(~ri).

2.3.1 Superfluid to Mott Insulator Transition

Now let us look at the phases in a d-dimensional isotropic lattice with one spin

component. There are two clear extremes: the first is known as the superfluid phase,

and the second as the Mott insulator, both of which are accessible in optical lattices

[13, 14].

The superfluid phase occurs when the Hamiltonian is dominated by −t∑〈i,j〉 a
†
iaj

and has all atoms in the same Bloch state, sitting at the bottom of the lowest band.

In the mean-field, the superfluid has an order parameter

ψ = 〈ai〉 =
〈

a†i

〉

=
√
ni. (2.17)

At the other extreme, the Hamiltonian is dominated by the interaction term

H =
U

2

∑

i

ni (ni − 1)−
∑

i

µini (2.18)

and becomes a sum of purely local energy terms. This leads to a ground state known

as the Mott insulator with exactly Ni = b(µ/U)c+ 1 atoms on each site i.

To find the phase transition from a superfluid to a Mott insulator, we first write

the Hamiltonian for a single lattice site in the mean field approximation [13]

H = zt

(

U

2zt
ni (ni − 1)− µi

zt
ni −

(

ai + a†i

)

ψ + ψ2

)

(2.19)

where z = 2d is the number of nearest neighbors of a given site. According to

Landau’s theory of phase transitions, a second order phase transition from ψ = 0 (a

Mott insulator) to non-zero ψ (a superfluid) will occur when d2E/dψ2 = 0. Therefore,
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we will work in the low t/U limit, splitting the Hamiltonian into the zeroth order and

perturbative parts as

H0 =
U

2
ni (ni − 1)− µini

V =zt
((

ai + a†i

)

ψ + ψ2
)

.
(2.20)

The zeroth-order energy is then just

E(0) =
U

2
Ni (Ni − 1)− µNi (2.21)

with Ni defined as above. The second order energy term is found to be

E(2) = ztψ2

(

Nizt

U (Ni − 1)− µi

+
zt (Ni + 1)

µ− UNi

)

(2.22)

which leads to a phase boundary at

µi

U
=

1

2

(

2Ni − 1− zt

U

)

± 1

2

√

1− 2zt

U
(2Ni + 1) +

(

zt

U

)2

. (2.23)

Figure 2-3 shows the phase diagram for a three-dimensional isotropic system. The

Mott insulating lobes are clearly visible and in order of increasing µi are associated

with Ni = 1, 2, 3, . . . , and as expected, decrease in size as we increase t/U. Since our

atoms are held in an external harmonic trap, µi varies from 0 to µ across the cloud,

and so any given cloud will sample a vertical line in Figure 2-3a. Since we know the

form of µi, though, we can calculate which Mott shells are present in our system and

what their relative weight is. For some work done in this thesis, it is important that

we fill the Ni = 1 or Ni = 2 shell and not have any atoms in Ni = 3 or higher. We

use the above work to calculated our expected maximum filling, and then confirm it

via clock shift spectroscopy [45].

2.3.2 Wannier-Stark Ladder

Another useful extension of the Bose-Hubbard Hamiltonian describes particles in a

tilted lattice, which is used as an integral part of two of the projects in this thesis.
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Figure 2-3: Phase diagram of the SF to MI transition and the LDA. (a) Calculated
mean-field phase diagram of the superfluid to Mott insulator transtion, up to a filling
factor of three. Each lobe is labeled with the corresponding filling factor, and the
area outside the lobes is in the superfluid state. (b) Cartoon of the local density
approximation. The cloud has a constant chemical potential µ and is held in an
external trapping potential Vext. Then for each lattice site, we find µi = µ − Vext.
Once µi is known, we can use Figure 2-3a to determine the filling at each lattice site
Ni.
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Figure 2-4: Wannier-Stark wavefunctions at varying tilts. Here, we plot the wave-
function of Wannier-Stark states in a lattice of 10 ER with varying tilt-to-tunneling
ratios ∆/t. (As in Figure 2-2, the phase convention is chosen so that the wavefunc-
tions are purely real.) The wavefunctions all have some component on neighboring
lattice sites, but this is strongly suppressed when ∆ � t.

If we define the energy tilt per lattice site ∆, the single-particle Hamiltonian is given

by [46]

H = −
∑

l

t
(

a†lal+1 +H.C.
)

+∆
∑

l

la†lal. (2.24)

For simplicity, we define α = t/∆ and ε = E/t. If we write the wavefunction in the

basis of Wannier states |ψ〉 =
∑

l cla
†
l |0〉 ,

E |ψ〉 =H |ψ〉

ε |ψ〉 =
[

−
∑

l

(

a†lal+1 + a†l+1al

)

+
1

α

∑

l

la†lal

]

εα
∑

j

cja
†
j |0〉 =

∑

j

cj

(

−αa†j−1 − αa†j+1 + ja†j

)

|0〉 .

(2.25)

Then by detailed balance,

εαcj =− α (cj+1 + cj−1) + jcj

cj+1 + cj−1 =
j − εα

α
cj.

(2.26)
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This matches the Bessel function recurrence relation:

Zn+1 + Zn−1 =
2n

x
Zn(x) (2.27)

and so the eigenstate coefficients are

cl = AJεα−l(2α) + BYεα−l(2α) (2.28)

where Jl and Yl are Bessel functions of the first and second kind, respectively. In

general, A and B are given by the boundary conditions. For an infinite lattice, we

can set B = 0 to get localized states, which we call Wannier-Stark states. For ε = 0,

the eigenstate takes the form

|ψε=0〉 =
∑

l

J−l

(

2t

∆

)

a†l |0〉 . (2.29)

I.E. It is centered on site 0, and sites l away from the center have weights
∣

∣Jl
(

2t
∆

)∣

∣

2
.

If we change the energy by ∆ then the Wannier-Stark state is simply translated one

site left or right. In the case of large ∆ > t, tunneling is suppressed by energy

conservation and the states become more localized about a single site. Figure 2-4

shows the probability distribution associated with the Wannier-Stark state centered

about site 0 at several different tilt values.
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Chapter 3

Simulating Strong Magnetic Fields

Topological states of matter are an active area of research in physics, and are strongly

associated with high magnetic fields. While topological single-particle physics is well

understood, there are many open questions about the interaction of topological ma-

terials with strong interactions [47, 48], with connections to the fractional quantum

Hall effect [49] and Majorana fermions [50, 51, 52].

In neutral atoms, synthetic magnetic fields have previously been created through

use of the Coriolis force in rotating systems [53, 5, 54], Berry’s phases in multiple

hyperfine states [18, 19, 20, 21, 22], or lattice shaking [23, 24]. Much recent work has

focused on the Harper-Hofstadter Hamiltonian, which describes particles in a lattice

subject to a magnetic field strong enough that the cyclotron orbit length becomes

comparable to the lattice spacing [55, 56, 57]. The comparable length scales lead

to the fractal structure of Hofstadter’s butterfly, which has sub-bands with non-zero

Chern numbers [58]. Previous work on uniform magnetic fields has either been limited

in the magnitude of the synthetic field possible or plagued by heating. Bose-Einstein

condensation has previously been achieved only in staggered flux configurations [59,

23] or small ladder systems [60, 61].

In this chapter, I present the first observation of Bose-Einstein condensation in

the bulk Harper-Hofstadter Hamiltonian. I first explain some of the interesting prop-

erties of the Harper-Hofstadter Hamiltonian and describe how we use laser-assisted

tunneling to imprint the proper phase on the wavefunction. I then describe the ex-
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perimental sequence and upgrades that were required to achieve a cold superfluid

in the Harper-Hofstadter Hamiltonian. Our observations directly show the broken

translational symmetry of the vector potential, despite the uniform magnetic field,

and demonstrate the non-gauge invariant momentum distribution and degeneracy of

the ground band [62, 63, 64]. We observe the result of the addition of interactions

and make a Harper superfluid near the Mott Insulating transition. Finally, I end with

a discussion of the observed lifetime and some heating processe that may be relevant.

This chapter covers material from [65].

3.1 Harper-Hofstadter Hamiltonian

A two-dimensional system of charged particles in both a lattice potential and a high

transverse magnetic field are described by the Harper-Hofstadter Hamiltonian [55,

56, 57]

H =
∑

m,n

(

−K e−iφm,n â†m+1,nâm,n − J â†m,n+1âm,n

)

+ H.c. (3.1)

where K and J are real tunneling coefficients and am,n and a†m,n are the annihiliation

and creation operators for site (m,n). φm,n is a spatially dependent phase

φm,n =
1

~

∫ xm+1

xm

~A · d~r (3.2)

with the charge included in the vector potential ~A. For convenience, we choose a

gauge which has no component in the y direction. We want the vector potential to

correspond to a constant magnetic field in the ẑ direction, so we say

~B = ∇× ~A

B0ẑ = ∇× Ax̂

=
∂

∂z
Aŷ − ∂

∂y
Aẑ.

(3.3)

This tells us that the form of ~A must be (−By + f (x)) x̂, where f (x) is an arbitrary

function of x only. This is an example of gauge freedom, and the choice of f (x) does
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not change the physics of the system. Note that we later discuss some experimental

results that appear to be gauge dependent, but they rely on the specifics of the

simulation that we use and are not present in the real system discussed here. Most

theoretical work on the Harper-Hofstadter Hamiltonian has used the Landau gauge

~A = −Byx̂, which we will use in this section.

For intuition about the form of the Hamiltonian, first recall the Aharanov-Bohm

effect, which is most easily explained by looking at a closed adiabatic path P . The

definition of adiabaticity tells us that applying a closed-loop adiabatic transformation

leaves the probability distribution the same |ψi(x)|2 −→
P

|ψf (x)|2 = |ψi(x)|2 , which

implies that the only possible change to ψi(x) is a phase: ψf (x) = exp[iφAB]ψi(x) .

This phase is the Aharanov-Bohm phase, given by

φAB =
1

~

∮

P

~A · d~r = Φ

~
, (3.4)

where Φ is the enclosed magnetic flux. Now we look at a particle described by the

Harper-Hofstadter Hamiltonian in Equation 3.1 that is initially localized at (0, 0),

and then takes a counterclockwise path (0, 0) → (1, 0) → (1, 1) → (0, 1) → (0, 0).

The y legs of this path are mediated by real tunneling, and so add no phase to the

wavefunction. On the other hand, the forward move from (0, 0) → (1, 0) and the

backward move from (1, 1) → (0, 1) add a phase of φ0,0 − φ0,1. In the Landau gauge,

φm,n =
1

~

∫ xm+1

xm

−Byx̂ · d~r

=
−Bna2

~

=
−Φn

~
,

(3.5)

and thus, φ0,0 − φ0,1 = Φ
~
= φAB. From here, it is simple to see that this is true for

every closed path in the Harper-Hofstadter Hamiltonian.
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3.1.1 Hofstadter’s Butterfly

The most striking property of the Harper-Hofstadter Hamiltonian is that it leads to

a fractal bandstructure known as Hofstadter’s Butterfly, shown in Figure 3-1 for a

symmetric lattice K = J . We define the normalized flux α = Ba2/Φ0, or the ratio of

the flux enclosed in a single lattice unit cell to the magnetic flux quantum Φ0 = h/e,

which gives a phase of 2π when a particle circles it. In a normal material, with

a ∼ 1 Å, we would need a magnetic field of ∼10, 000 T to have α = 1.

Let us first build some intuition about the form of Hofstadter’s butterfly. At

zero flux, the unit cell is simply given by the lattice, and so the lowest band covers

the normal Brillouin zone, with an energy ranging from −4J to 4J . At α = 1, any

closed path that a particle takes encloses an integer number of flux quanta, and so

the particle picks up a phase that is a multiple of 2π, which is indistinguishable from

zero. We can therefore say that Hofstadter’s butterfly should be the same at α and

α+1. A system at −α is the same as a system with α and ẑ → −ẑ, so the associated

energies should be the same. Combining the two previous symmetries tells us that

the butterfly is symmetric about α = 1/2. Finally, for rational fluxes of the form

α = p/q for p, q ∈ Z, we can understand the structure of the subbands. If p and

q are relatively prime, then a particle must enclose q lattice unit cells to enclose an

integer number of flux quanta. We call this larger cell the magnetic unit cell, and

it provides the translation symmetry for the system. Since it is q times bigger than

the lattice unit cell, the new Brillouin zone is then q times smaller, and the ground

band is split into q subbands. In Figure 3-1, this is obvious for α = 1/3 and 1/4.

For α = 1/2, which is the magnetic field that we have simulated in this chapter, a

full bandstructure calculation shows that there are in fact two subbands, which are

connected at Dirac points.

For a more quantitative description of Hofstadter’s butterfly, we follow his original

paper [55, 56, 57], which begins by treating the wavefunction as a sum over Wannier
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Figure 3-1: The fractal spectrum of the Harper-Hofstadter Hamiltonian, known as
Hofstadter’s butterfly. The vertical axis is the flux per unit cell, or α, and the hori-
zontal axis is energy. Each filled point represents an eigenstate of the system under
a flux α with a corresponding eigenenergy.

functions localized at each lattice site m,n,

|ψ〉 =
∑

m,n

cm,n |m,n〉 . (3.6)

Using the Landau gauge, ~A = −Byx̂ = −Bnax̂ → φm,n = −2παn, we find the

following relation between coefficients:

ei2παncm+1,n + e−i2παncm−1,n + cm,n+1 + cm,n−1 = −E
J
cm,n. (3.7)

We make the ansatz that cm,n is separable into exp [ikxam] g(n), and then find a

recursion relation

2 cos(2παn+ kxa) g(n) + g(n+ 1) + g(n− 1) = −E
J
g(n) . (3.8)

Then to numerically calculate the Harper Hamltonian as in Figure 3-1, we assume

a lattice of sufficiently large size N with periodic boundary conditions. For rational
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α ∈ [0, 1] and kxa ∈ [−π, π], we plot the eigenenergies, revealing the fractal structure

of Hofstadter’s butterly.

3.2 Raman tunneling

The Harper-Hoftsadter Hamiltonian normally describes charged particles in a high

magnetic field, but we are working with neutral bosons of 87Rb. Equation 3.1 tells us

that the dynamics that we are interested in fundamentally come not from the charge,

but from the phase pattern imprinted during tunneling. Enforcing real tunneling is

relatively easy — we just put our atoms in a two-dimensional optical lattice. However,

adding a complex phase to the tunneling coefficient is more involved.

In order to remove the real tunneling coefficient along the x direction, we apply

a strong energy gradient, as shown in the schematic Figure 3-2. The tilt per lattice

site ∆ must be greater than the bandwidth of the untilted system, but smaller than

the bandgap. Then energy conservation freezes out normal tunneling. We can restore

tunneling by use of a pair of Raman lasers with a frequency difference δω = ∆. Then,

by accepting a photon from one laser and emitting into the other, an atom can hop

down one site and still conserve energy. When it does so, if the Raman lasers are not

collinear, the atom must also pick up a momentum kick δ~k = ~k1 − ~k2, which is what

determines the phase of our laser-induced tunneling. To provide intuititon for how

a momentum kick turns into a complex tunneling element, recall that a momentum

eigenstate has the form ψk = exp
[

i~k · ~r
]

, i.e., a spatially dependent phase. Instead

of explicitly thinking of momentum conservation for each tunneling event, we can

factor it into the tunneling term K exp [iφm,n], where

φm,n = δ~k · ~rm,n

= m δkxa+ n δkya.
(3.9)

This gives us an effective flux of α = δkya/2π, which is tunable simply by changing

the angle between the two Raman lasers.

For our specific implementation, our Raman lasers are far-detuned from the atomic
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Figure 3-2: Schematic of our laser assisted tunneling setup. (a) We suppress normal
tunneling in the x direction by applying a strong tilt ∆. It is then re-established by a
two-photon process with two Raman beams whose frequencies are offset by δω = ∆.
(b) The Raman lasers are at an angle to each other, and so impart momentum with
each x-tunneling event, which is equivalent to a complex tunneling parameter. The
lattice is untilted along y, and so has purely real tunneling. (c) Phase pattern of the
tunneling. In our gauge, φx = φy = π.
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resonance. This allows us to ignore light scattering, and should lead to long lifetimes

[21, 22]. In addition, it allows us to treat the effect of our Raman beams as a classical

external potential. The interference of the two Raman lasers gives a “running stand-

ing wave” with an intensity proportional to sin
(

δ~k · ~r − kxa
2

−∆t
)

, oscillating at the

difference of the two frequencies and moving in the direction of δ~k. (Here, the term
kxa
2

is purely for convenience and does not change the physics.) Next, we can quanti-

tatively analyze the physical system and show that it maps to the Harper-Hofstadter

Hamiltonian. The physical singe-particle Hamiltonian is as follows:

H =
~p2

2m
+ Vlatt(~r)−

∆

a
x+ Ωsin

(

δ~k · ~r − kxa

2
−∆t

)

, (3.10)

where Vlatt is the normal two-dimensional lattice potential, and Ω is the AC Stark

shift associated with the Raman lasers. If we restrict ourselves to the first band, we

can write the Hamiltonian in a localized basis of Wannier functions in the y-direction

and Wannier-Stark functions in the x direction:

H =
∑

m,n

[

−m∆ |m,n〉 〈m,n| − J |m,n+ 1〉 〈m,n|+ h.c.

∑

m′,n′

Ω |m′, n′〉 〈m′, n′| sin
(

δ~k · ~r − kxa

2
−∆t

)

|m,n〉 〈m,n|
]

.

(3.11)

To calculate the Raman matrix element, we shift the center and define θm,n = ∆t −
δ~k · ~rm,n = ∆t− φm,n:

〈m,n| sin
(

δ~k · ~r − kxa

2
−∆t

)

|m+ l, n+ p〉 = 〈0, 0| sin
(

δ~k · (~r + ~rm,n)−
kxa

2
−∆t

)

|l, p〉 .
(3.12)

We split the sin function, and in the tight binding limit, we have the following rela-
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tions:
〈0| sin(kyy) |p = 0〉 = 0

〈0| cos(kyy) |p = 0〉 = 1

〈0| sin(kxx) |l = 0〉 = 0

〈0| cos(kxx) |l = 0〉 = 1

〈0| sin(kx (x− a/2)) |l = 1〉 = Φx ≈ −2J
sin(kxa/2)

∆

〈0| cos(kx (x− a/2)) |l = 1〉 = 0.

(3.13)

Plugging these into the Hamiltonian gives us:

H =
∑

m,n

[

(−m∆− Ω sin(θm,n + kxa/2)) |m,n〉 〈m,n|

+ ΩΦx cosθm,n |m+ 1, n〉 〈m,n| − J |m,n+ 1〉 〈m,n|+ h.c.

]

.

(3.14)

Finally, we move into the rotating frame given by

U = exp

[

i
∑

m,n

(

m∆t− Ω

~∆
cos

(

θm,n +
kxa

2

))

]

|m,n〉 〈m,n| , (3.15)

which cancels the diagonal terms, and gives off-diagonal terms:

〈m+ 1, n|H |m,n〉 =ΩΦx cos(∆t− φm,n) e
−iωt

∑

r

Jr

(

2Ω

~∆
sin

(

kxa

2

))

eir(∆t−φm,n)

〈m,n+ 1|H |m,n〉 =− J
∑

r

Jr

(

2Ω

~∆
sin

(

kya

2

))

eir(∆t+(kx−ky)a/2−φm,n).

(3.16)

Here, we have used the identity eix sin θ =
∑

r Jr(x) e
irθ, where Jr are the Bessel

functions of the first kind. Averaging over a several ∆ periods, and using Bessel
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function identities, we find

Ke−iφm,n =Ωe−iφm,nΦxJ1

(

2Ω

~∆
sin

(

kxa

2

))(

2Ω

~∆
sin

(

kxa

2

))−1

=− JJ1

(

2Ω

∆
sin

(

kxa

2

))

J =− JJ0

(

2Ω

~∆
sin

(

kya

2

))

.

(3.17)

It is important to note here that, although we have previously stated that changing kx

merely leads to a gauge transformation, and does not change α, its value is important

here. In the Landau gauge, with kx = 0, the magnitude of the tunneling matrix

element in the x-direction would be exactly zero. A non-zero kx is necessary to the

overlap integral that allows x-tunneling to happen!

3.3 Experiment

For our specific experiment, we use a 1064 nm laser to make the optical lattices,

leading to either a two- or three-dimensional lattice potential with a spacing of 532

nm. For the Raman lasers, we use the same 1064 nm source, and we send one beam

along each lattice direction, which provides a momentum kick with δkya = δkxa = π,

leading to an effective flux of α = 1/2. We attempted several experimental sequences,

which I will discuss below, all of which follow the same basic formula. We start with

a BEC in an optical lattice before applying a tilt and turning on resonant Raman

beams. After some hold time, we snap off all potentials and use time-of-flight imaging

to view the momentum distribution. The form of the superfluid peaks seen in the

momentum distribution should demonstrate the symmetries of the Harper-Hofstadter

Hamiltonian, and their visibility will tell us the ground state fraction.

For our initial attempts, we tried two different methods of creating a gradient.

First, we attempted to ramp on a magnetic field gradient of about 1 kHz per lattice

site. However, because of the configuration of our magnetic gradient coils, this was a

slow process, taking a few hundred milliseconds. During the gradient ramp time, the
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Figure 3-3: Demonstration of the amplitude of laser-assisted tunneling. Here we plot
the increase in the squared width of a cloud 1500 ms after turning off dipole confine-
ment and turning on laser-assisted tunneling through the use of Raman beams. The
blue circles are the width in the tilt direction, and the red squares are in the trans-
verse direction. The widths qualitatively agree with the Bessel function predictions
shown in the inset.

system had time to undergo Bloch oscillations and totally dephase.

A faster method was to quickly turn off the confining dipole traps. After this

ramp-off, the atoms are then exposed to the full force of gravity, which is also around

1 kHz per lattice site. However, this method had several limitations. First, with

this method we were restricted to gradients less than or equal to the force of gravity,

leaving us much closer to the tunnelling rate of around 50 Hz than the bandgap near

10 kHz. Second, there is not an easy way to shim the gradient, meaning that if the x

lattice is not exactly aligned to true vertical, this will also induce Bloch oscillations

in the y-direction. Finally, turning off the dipole traps imprints on the cloud not only

the gradient that we want, but also curvature that is the inverse of the initial dipole

confinement. This leads to the Raman beams moving in and out of resonance across

the cloud, creating unwanted Bloch oscillations in the system.

Because of these non-idealities, we were initially unable to load the BEC into

the ground state of the Harper-Hofstadter Hamiltonian. We were, however, able

to demonstrate laser-assisted tunneling in Figure 3-3. We did this by turning off

the dipole confinement at the same time as we turned on the tilt and laser-assisted
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tunneling. We held for 1500 ms and measured the intrap width. We report σ2
f −

σ2
i , where σf,i are the initial and final intrap widths, because we expect diffusive

rather than ballistic expansion. As the Raman intensity is varied, we see qualitative

agreement in both the laser-assisted tunneling amplitude and the transverse tunneling

amplitude with the Bessel functions predicted in Equation 3.17.

3.3.1 Experimental Upgrades

In order to reach the ground state, we needed to make several upgrades to the ex-

periment. The first two deal with problems alluded to above, while the third is of a

more technical nature.

Fast Gradient Turn-on

In order to keep from having Bloch oscillations dephase during the tilt turn-on, we

want to to be able to turn the gradient on faster than a Bloch oscillation. This is

done using a hybrid gradient. First, we use a magnetic field gradient to levitate a

BEC in the |F = 1,mf = −1〉 spin state against gravity. At this point, the BEC feels

a force of −mg +mg = 0, from gravity and the magnetic field gradient respectively.

After ramping up the optical lattice, we perform a Landau-Zener RF sweep to flip all

atoms into the |2,−2〉 state in 0.29 ms. The magnetic moment of |2,−2〉 is −2 times

that of |1,−1〉, so the atoms now feel a force of −mg +−2×mg = −3mg, which for

our atoms and lattice spacing is 3.420 kHz per lattice site. This method of creating

a gradient gives us much higher gradients with much faster turn-on times.

Gradient Shimming

Now that we have a strong, fast gradient, it is important to ensure that it is exactly

aligned with the x-lattice to prevent slow Bloch oscillations and dephasing in the

transverse directions. To do this, we use amplitude modulation of the x-lattice as a

calibration tool [66, 67]. First, we apply a tilt as described above. Instead of restoring

tunneling using Raman lasers, we restore it by modulating the amplitude of the x-
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lattice at the tilt frequency. It is possible to fully analyze the system as in Section 3.2,

but here I will give only an intuitive explanation. We can view a lattice modulated

at δω as two sidebands at ±δω superposed on then normal lattice beam. If an atom

accepts a photon from one of the sidebands and emits one into the main lattice beam,

it will either move up or down one lattice site while conserving energy if δω = ∆.

This will restore real tunneling in the x-direction, and the lifetime of the superfluid in

this system is then limited by any projection of the gradient along transverse lattice

directions. We optimize the superfluid lifetime and therefore minimize the transverse

gradient by using small shim coils along the two transverse lattice axes.

Phase Locking

The final major improvement of the experiment was to ensure the phase stability of

the Raman lasers, since any relative phase slips are equivalent to randomly shifting

the origin of the system. To provide passive stability, we sourced both Raman beams

from the same fiber, and split the two beams on the machine table. Both beams are

frequency shifted by identical 80 MHz acousto-optic modulators, set at 80 MHz and

80 MHz + ∆. After the beams propogate along the x- and y-directions, they are re-

combined on another beam cube, and their interference is measured on a photodiode.

A lock-in amplifier set to ∆ measures the phase fluctuations caused by non-common-

mode vibrations and gives an error signal that is fed back to the phase of the RF

drive of one of the acousto-optic modulators.

3.3.2 Final Experimental Sequence

The experiment begins with a nearly pure |1,−1〉 BEC of ∼ 1 × 105 87Rb atoms

confined in a crossed dipole trap. We turn on a magnetic field gradient to levitate the

atoms against gravity. From here, there are two possible sequences, which we term

the “non-adiabatic” and “adiabatic” sequences, shown in Figure 3-4.

In the nonadiabatic sequence, the condensate is first adiabatically loaded into a

two-dimensional optical lattice in the x (vertical) and y (horizontal) directions, with
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Figure 3-4: Experimental sequences for two different state preparation protocols. The
non-adiabatic scheme switches suddenly from a standard 2D lattice to the Harper-
Hofstadter lattice. The adiabatic protocol uses a quantum phase transition to the
3D Mott insulator as an intermediate step. For this, lattice beams are adiabatically
ramped up in all three directions to 20 Er to enter the Mott insulating phase, after
which the hyperfine state is flipped with a 0.29 ms RF sweep as done in the non-
adiabatic scheme. The lattices are then ramped down to their final values while the
Raman lattice is ramped up in 35 ms. Lifetimes of both methods are given in the
top corner of each figure; the lifetime of the adiabatic approach is measured from the
end of the 35 ms ramp. Errors are statistical and given by the exponential fit to the
decay of the peak visibility.
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a depth of 11 recoil energies (ER) in each direction. The third direction is confined

only by the overall harmonic confinement, and so we have a two-dimensional array of

tubes. At the same time, we raise a very weak Raman lattice (< 0.1ER) and hold for

a short time to allow phase lock to be achieved as discussed above.

Next, we apply a gradient in the method of Section 3.3.1 and linearly ramp the

intensity of the Raman beams in 0.58 ms to 2Ω/∆ = 1.6, where Ω is the two-photon

Rabi frequency. We hold for a variable time before snapping off all laser beams to allow

a 20 ms time-of-flight and absorption imaging to reveal the momentum distribution.

The non-adiabatic sequence is rather violent and quenches the system from a

Hamiltonian where the ground state has a constant phase to one with a complex

phase pattern. It is surprising that we can even form a Harper superfluid at all with

this method, but we have found it to give consistently crisp superfluid peaks. This

can be explained by looking at the third dimension. When we take absorption images,

we automatically integrate over this dimension and therefore cannot see excitations

in the z-direction. Since the system is only weakly trapped in z, we should treat each

lattice site as a tube of about 500 atoms with gapless excitations along z. When we

apply the tilt and laser-assisted tunneling, we perform a quench and create excitations

in the phase between the tubes. As the system thermalizes, the z-direction acts as a

bath and absorbs entropy created during the non-adiabatic sequence.

While this sequence works well for studying non-interacting physics, it does not

allow a lattice in the third dimension, which is used to modify interactions and study-

ing the strongly-interacting regime. In order to do this, we developed what we call

the “many-body adiabatic” sequence. In this sequence, before applying the tilt, we

ramp up a three-dimensional lattice to 20 ER in all directions. The system is then

in a Mott Insulator, where there is no phase coherence between the sites. In fact,

in the deep lattice limit of U � J,K the ground state wavefunction for the Harper-

Hofstadter Hamltonian is the same as in the standard Bose-Hubbard Hamiltonian.

Therefore, once we are in the deep Mott Insulator, we can apply the tilt and turn

up the laser-assisted tunneling with the proper phase as quickly as we like without

adding entropy. Then we ramp the lattice depths down to the final values for the
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experiment before holding and imaging as usual. We call this sequence “many-body

adiabatic” because it is adiabatic at all points except one, where it is protected by

the many-body gap of the Mott Insulator.

We used both sequences in this work and found that the adiabatic sequence was

less robust against technical noise, leading to a higher shot-to-shot variability. This

is likely because of the higher specific heat of a system with gapless excitations in one

direction. We do, however, find that the coherence lifetimes of the system after each

turn-on procedure are comparable.

3.4 Results

For our first experiment, we use the non-adiabatic sequence to prepare the Harper

superfluid and observe its momentum distribution in Figure 3-5h-j. The sharp peaks

are the hallmark of a superfluid BEC in a lattice potential and demonstrate that we

have prepared a low entropy state in the bulk Harper-Hofstadter Hamiltonian.

We first look at the pattern of peaks in Figure 3-5, which directly indicate the

reduced symmetry of the Hamiltonian, despite the translational symmetry of the

uniform magnetic field. The way to understand the pattern of peaks in the momentum

distribution of a superfluid begins with the real-space symmetries of the Hamiltonian.

In a square lattice with real tunneling in both directions, the Hamiltonian has the

discrete symmetry vectors ax̂ and aŷ and has a unit cell of size a× a. In momentum

space, the symmetry vectors map to 2π/a k̂x and 2π/a k̂y, and the unit cell to a

Brillouin zone of size 2π/a × 2π/a, as shown in Figure 3-5c and g. In our analysis

of the Harper Hofstadter Hamltonian, Figure 3-5a, we must also take the tunneling

phase into account, which leads to two new unit cells — gauge and magnetic. For

our gauge, the new symmetry vectors are 2π/a (x̂± ŷ) , and both the magnetic and

gauge unit cells are twice the size of the bare lattice unit cell. The magnetic unit cell

is gauge independent and is the smallest unit cell that contains an integer number of

flux quanta [68]. For a magnetic flux α = p/q, the magnetic unit cell is q times larger

than the original unit cell and contains q indistinguishable sites [64]. The gauge unit

46



� � � �
� � �� � � �� � � �� � � �� � � � � � � � � � � � �

� �� π� �
π

� ��� π� �
π

� � �  ¡ ¢ £

¤ ¥ ¦ § ¦ � ¨ � � � � ¥ © ¨ � ¦ ª « � � ¬ � ¦ � ¦ � � ­
π/2

®

¯ ° ± ² ³ ´ µ ¶ ´ · ¸ ¹ º » ¼ ½ ¾ ¿ À

« � � ¬ � ¦ � ¦ � � ­ Á ®
ÂÃÄ Å Æ Ç

π
È É

Ê Ë Ì Ë Í Ë Î Ë
Ï Ë Ð Ë

� ¦ � Ñ ¨ � � ¦ � ¦ � � �
Ò Ë Ó Ëπ

Ôπ Õ πÕ π Ö π× � � ¨ � � � � �Ø Ë
Ù Ë
Figure 3-5: Observation of Bose-Einstein condensation in the Harper-Hofstadter
model. (a) Spatial structure of the cubic lattice with the synthetic vector potential
– (dashed) x-bonds feature a spatially dependent tunneling phase, whereas tunneling
along (solid) y-links is the normal tunneling. The synthetic magnetic field generates
a lattice unit cell that is twice as large as the bare cubic lattice (green diamond).
(b) The band structure of the lowest band shows a twofold degeneracy of the ground
state. The magnetic Brillouin zone (green diamond) has half the area of the orig-
inal Brillouin zone. Due to the twofold degeneracy, the primitive cell of the band
structure is even smaller (doubly reduced Brillouin zone, brown square). These lat-
tice symmetries are both revealed in time-of-flight pictures showing the momentum
distribution of the wavefunction. (c-f) Schematics of the momentum peaks of a super-
fluid. The dominant momentum peak (filled circle) is equal to the quasimomentum of
the ground state. Due to the spatial periodicity of the wavefunction, additional mo-
mentum peaks (empty circles) appear, separated by reciprocal lattice vectors (green
arrows) or vectors connecting degenerate states in the band structure (brown arrows).
(g-j) Time-of-flight images. The superfluid ground state of the normal cubic lattice
is shown in (g) in comparison to different repetitions of the same sequence for the
superfluid ground state of the HH lattice (h-j). In (h), only one minimum of the band
structure is filled, directly demonstrating the symmetry in our chosen gauge. The
number of momentum components in (i-j) is doubled again due to population of both
degenerate ground states. The micromotion of the Floquet Hamiltonian is illustrated
in (e-f, i-j) as a periodically shifted pattern in the x-direction, analogous to a Bloch
oscillation. All diffraction images have a field of view of 631 µm× 631 µm and were
taken at a lattice depth of 11 Er and 2.7 kHz Raman coupling with at least 30 ms
hold in the HH lattice.
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cell takes into account the specific gauge implemented in an experiment, and in highly

symmetric gauges like ours can entirely overlap with the magnetic unit cell. There

is a further symmetry caused by the indistinguishability of the q sites contained in

each magnetic unit cell, which leads to a q-fold degeneracy of each state within the

magnetic Brillouin zone, seen clearly in Figure 3-5b.

If the condensate occupies only one of the two degenerate momenta, we see a

momentum distribution (Figure 3-5d and h), which clearly shows that the gauge

symmetries are in the 2π/a (x̂± ŷ) directions. Figure 3-5e and i show the full sym-

metry of the bandstructure. Here, both energy minima are equally populated, and

we can understand the image as the sum of Figure 3-5h with a second copy shifted

by the gauge-invariant scale 2π/ (qa) in either x̂ or ŷ. The fourfold increase in visible

peaks [69] should be thought of as a factor of two from the reduced symmetry of

the lattice vectors and an additional factor of two from the degeneracy of the ground

band. This is the first direct observation of the several symmetries of a square lattice

in a uniform magnetic field.

Finally, in Figure 3-5e, f, i, and j, we comment on a subtlety of our method of

simulation. In Section 3.2, we moved into a rotating frame for our analysis. However,

we actually do our measurements in the stationary lab frame! Shifting from the

rotating frame to the lab frame manifests itself as a kick in the x-direction that is

dependent on the hold time, the initial phase of the stationary and Raman lattices [22],

and the relative position of the harmonic confinement beams [70]. In our experiment,

these wavelength scale drifts are not controlled from shot-to-shot, and we present two

example shots with a phase of 0 and π/2.

3.4.1 Apparent Gauge Dependent Observables

In our above dicussion, we stated the time-of-flight images show the symmetries of the

gauge, which seems to contradict the common wisdom that all observables are gauge-

independent. There are two ways to square this with what we see in our systems with

synthetic magnetic fields. First, we can view time-of-flight imaging, where we snap

off all potentials, as preserving the form of the wavefunction at snap-off, but then
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allowing it to evolve under the untrapped Hamiltonian H = ~p2/2m. This maps the

gauge-dependent canonical momentum to mechanical momentum, which we observe

[71, 62, 63].

A second, equivalent, description looks at this from the perspective of Maxwell’s

equations. When we perform time-of-flight measurements, we are turning off the

vector potential ~A at the same time as all other fields. By Maxwell’s equations, the

changing vector potential creates an electric field ~E = −∂ ~A/∂t, which leads to an

impulse ∆~p =
∫

~E · dt. Thus, the mechanical momentum immediately after the field

is turned off is given by a combination of the initial mechanical momentum and the

starting vector potential in the natural gauge. This natural gauge is the one that has

the same symmetry as whatever is physically creating the vector potential. In our

case, this is the symmetry of the Raman lasers, while for a real magnetic field, it is

the symmetry of the current used to create it. It is possible to analyze the system in

a gauge with a different symmetry, but the gauge transformation will also add a term

to the electric field pulse that cancels any physical effect of the gauge transformation.

Thus, when we say that we have implemented a system with a specific gauge, we

mean that our implementation has symmetries that make a given gauge the most

natural for our analysis.

3.4.2 Population Imbalance

Nearly all iterations of the experiment result in roughly equal populations in both

minima, and less than 1% of the shots show a single minima filled as in Figure 3-5h.

To quantify this, we use a bandmapping technique before time-of-flight imaging. In

bandmapping, we ramp down the lattice potentials slower than the timescale given

by the bandgap, but faster than that given by the external harmonic confinemnt.

This maps a quasimomentum q in lattice band n to a momentum state 2πn/a+ q in

a harmonic trap. We then rapidly snap off the harmonic confinement and perform

time-of-flight imaging. This technique would be useful for us because it allows us to

“collapse” all the peaks seen in Figure 3-5 into only one or two, depending on how

many minima are filled.
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However, there are two subtleties of our bandmapping procedure for an α = 1/2

Harper superfluid that differ from the standard bandmapping. First, the two sub-

bands are connected at Dirac points, and there is no bandgap! Bandmapping would

fail at quasimomentum at or near the Dirac points, but since our atoms are condensed

into the minima, they are sufficiently far from the Dirac points, and the gap we

care about is the local gap. Note that this means that this bandmapping technique

would not work for fermions or thermal atoms that fill a significant part of the lowest

band. The second subtlety is that this rampdown is occuring in a real magnetic field

gradient, which will cause potentially destructive Bloch oscillations. Thus, the whole

procedure needs to be done on a time of the order of a Bloch oscillation time. We

empirically found that first ramping down the Raman beams in 0.88 ms, then the

lattice beams in 0.43 ms, and finally snapping off the harmonic confinement provides

a good signal-to-noise.

Figure 3-6 shows the results of this bandmapping. As a control, we first ap-

plied the bandmapping sequence to a superfluid with only real tunneling created by

amplitude modulation (labeled “AM” in the inset). As expected, we see only one

quasi-momentum occupied. For a Harper superfluid, we nearly always see two peaks,

one for each degenerate minima. We integrate the density in each peak and plot a

histogram of the absolute population imbalance between the two for 30 shots, each

taken at a 29.4 ms hold time.

We find that the population imbalance is sharply peaked around zero, demonstrat-

ing the degeneracy of the two minima. In some gauges, such as the Landau gauge,

it is predicted that a superposition of the two single particle minima avoids density

modulation and is therefore the ground state for a weakly interacting system [63, 64].

However, in our gauge, the quasimomentum eigenstates already have uniform occu-

pation of the lattice sites, and so the weakly interacting ground state should be a

single minimum. Therefore, we interpret the equal populations to be attributable to

domain formation, likely as a result of technical fluctuations or non-adiabatic state

preparation. Domain formation in a different Floquet system has been studied re-

cently, and it was shown that single domains can be achieved with proper adiabatic
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Figure 3-6: Population imbalance of the two ground states of the Harper-Hofstadter
Hamiltonian with 1/2 flux. (a) Band mapping sequence adiabatically connecting
quasimomentum to free space momentum. The Raman beams were ramped down
from the initial strength of 1.4Er to zero in 0.88 ms, followed by a linear ramp
down of the lattice beams from 11Er to zero in 0.43 ms. (b) The histogram shows
the relative population imbalance of the two degenerate minima. Equal population
in the two diffraction peaks is suggestive of domain formation due to spontaneous
symmetry breaking but can also be driven by lattice noise and technical fluctuations.
The data consists of 30 shots taken after a hold time of 29.4 ms in the HH lattice.
The inset displays a raw image for the band mapping of the 1/2 flux superfluid with
two degenerate ground states compared to a topologically trivial superfluid with one
ground state (see text). The Brillouin zones of the cubic lattice (grey) and the gauge
(green) are overlaid for clarity.
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#$
Figure 3-7: An example fit for a 1/2 flux superfluid image after a hold time of 34
ms. The thermal fraction fit is shown in yellow with the components of the superfluid
diffraction fit in cyan, purple, and green. Their sum is shown in dark blue laid over
the raw data in orange. The residuals are shown in dark red. A visibility of V = 0.40
is derived from the amplitudes of this fit.

state preparation [72].

3.4.3 Superfluid Peak Fitting

In order to move forward with our experiments, we want a measure of the coherence

of the system, which we quantify using peak visibility. All of our absorption images

are the sum of the superfluid peak pattern with 25 peaks and a broad incoherent

background, which we associate with the thermal portion of the system. In analogy

with Michelson’s definition of optical fringe contrast, we define the visibility of a

given superfluid peak as its amplitude divided by twice the thermal background at

its center.

The full two-dimensional image has too many degrees of freedom to fit reliably,

so our fitter works by fitting to two one-dimensional line cuts, one in each lattice

direction. We make these line cuts by first finding the center of mass and then

averaging several rows or columns of pixels around this. We then fit the x and y line

cuts to the sum of six Gaussian peaks, which correspond to the one thermal and five
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superfluid peaks mentioned above. We report the average visibility of the peaks in

both directions.

Even restricting ourselves to one lineout requires us to fit a high-dimensional

parameter space — we need to find the center of the thermal background, its width

and amplitude, the phase of the micromotion, the distance between superfluid peaks,

the width of the superfluid peaks, and each peak’s amplitude. We can constrain

the fit so that the superfluid peak differences are equal and that they all have the

same width, but this still leaves 11 fitting parameters. Therefore, our nonlinear least

squares fit requires good initial guesses. Find our initial guesses for the thermal

bakground first by fitting a single Gaussian to the image with frequencies of order

the normal superfluid peak spacing and higher filtered out. Next, we subtract this

fit from the raw data and pick the highest five remaining peaks, whose position and

amplitude become the initial guess for the superfluid peaks in the final fit. Finally,

we fit the full model using the initial conditions collected from the pre-processing.

An example of a typical fit is shown in Figure 3-7.

3.4.4 Adding Strong Interactions

Now that the single-particle physics of the Harper-Hofstadter Hamiltonian has been

verified, we wish to study the strongly interacting limit, near the Mott Insulator

transtion. This transition for α = 1/2 and a filling factor of five occurs at J/U ∼ 0.016

[73]. For an isotropic HH lattice, the transition happens around 15-16 Er, with the

precise value depending on multiple lattice parameters such as anisotropy, Raman

drive strength, and tilt strength. For lower filling factors, the critical J/U ∼ 0.059,

and the transition occurs around 12 Er, so our experiments with a three-dimensional

lattice can be in the strongly interacting regime.

We use the many-body adiabatic sequence, with a lattice in the third dimension, to

reach this regime. We keep the final lattice depths (and therefore tunneling strenghts)

along the x- and y-directions constant, while varying the z lattice depth, which can

give us a Hubbard U parameter from nearly zero to ∼450 Hz, which with the filling

factor of five mentioned above, brings us near the Mott Insulator transition.
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Figure 3-8: Harper-Hofstadter Hamiltonian with strong interactions. Here we present
a selection of shots with the x-and y-lattices fixed at 11 Er and a variable z lattice of
11, 14, 17, and 20 Er.
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Figure 3-9: Strongly interacting Harper superfluid lifetime. Shown is the lifetime of
the visibility of the diffraction pattern versus z-lattice depth. The top axis shows the
Hubbard interaction parameter U. All lifetimes are measured from the end of the 35
ms ramp exiting the Mott insulator. Uncertainty is given by the statistical error of
the mean of five repetitions of the experiment, added in quadrature to uncertainty in
the peak visibility fitting.

In Figure 3-8, we present representative shots of a BEC in the Harper-Hofstadter

Hamiltonian with strong interactions. We see visible, if weak, superfluid peaks for

z-lattice depths up to 20 Er, while the other two lattices are held at 11 Er. Above a

z-lattice of 11 Er, we found significant shot-to-shot variation, likely due to technical

fluctuations, so in Figure 3-9, we measured the visibility lifetime of strongly inter-

acting Harper superfluids with interaction parameters up to U = 450 Hz. We find

that the lifetime is reduced in the strongly-interacting system in compariston to the

non-interacting system, but only by a factor of ∼2− 4.

3.5 Lifetime of the Harper Superfluid

There are many open questions about topological physics in the presence of strong

interactions, which often involve small energy scales and therefore require longer

coherence lifetimes than we have achieved. Since our system is relatively complex,

there are several categories of heating that can limit our lifetimes. First, there is what

we call “generic technical heating,” which encompasses the sorts of heating which are
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Figure 3-10: Decay of Bose-Einstein condensates in modulated lattices. The figure
compares the decay of the 1/2 flux Harper superfluid (red circles) to the decay of
the amplitude-modulated superfluid (blue squares). Note that the lower visibility of
the Harper superfluid is due to the peak doubling, which at the same condensate
fraction, leads to lower visibility. Exponential fits to the decay of the visibility of
the diffraction patterns give lifetimes of 142 ± 15 ms and 71 ± 8 ms, respectively.
Data were taken with 11 Er cubic lattice with either 2.7 kHz Raman coupling or
20% amplitude modulation and start after a 10 ms hold time after switching on
the final Hamiltonian using the non-adiabatic procedure. Uncertainty is given by the
statistical error of the mean of five repetitions of the experiment, added in quadrature
to uncertainty in the peak visibility fitting.

common to all lattice systems, e.g., lattice and amplitude modulation, beam pointing

drifts, and magnetic field fluctuations. The second category is “Floquet heating,”

which include all heating processes that occur in periodically driven Floquet systems

as ours is. The final category is heating specific to the Harper-Hofstadter Hamiltonian,

which is still an open field.

In order to disentagle these different sorts of heating, we compared our non-

interacting Harper superfluid to a normal superfluid created using amplitude modu-

lation [66, 67]. This system is also a Floquet system, and should have many heating

sources in common with the Harper superfluid. In Figure 3-10, we show the lifetime

of the superfluid peak visibility for both the Harper superfluid and the amplitude-

modulated superfluid. At first, the Harper superfluid’s lifetime was notably shorter

than that of the amplitude-modulated superfluid, but the experimental upgrades dis-

cussed in Section 3.3.1 improved the Harper superfluid lifetime until it was comparable
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to the amplitude-modulated lifetime.

By looking at atom number loss, we can rule out several possible sources of noise.

We observed no discernable number loss out to 500 ms, which immediately tells us

that neither two-body dipolar collisions nor three-body recombination are the limiting

source of heating. Because the tilt ∆ is so strong, higher Bloch bands are coupled

to the continuum and would rapidly be lost from our system, so the lack of atom

loss during experimental timescales makes it clear that the majority of the heating is

intra-band.

3.5.1 Floquet Fermi’s Golden Rule

We next look to a Floquet heating explanation for intra-band heating. The lowest

order decay path in a Floquet system is via overlap of neighboring Wannier-Stark

states with offset energy ∆, which is transferred to excitations of the lowest bands,

or to the free particle motion along the tubes orthogonal to the two-dimensional

lattice. We can analyze this by using Fermi’s golden rule for Floquet systems [74, 75].

We follow and extend [75], which calculates the heating rate for a one-dimensional

amplitude-modulated lattice. Here, the ground state of the corresponding Floquet

Hamiltonian is a superfluid in a lattice in one dimension and free motion in the other

two.

There are two main processes that contribute to the decay of the condensate.

Wannier-Stark states – which are mostly localized in a given well n – have small

components in lower wells n − 1, with amplitude ∝ 2J/∆. This small component,

which has energy ∆ higher than the Wannier-Stark state localized in the well n− 1,

can collide with atoms in the lower lattice site, thus creating two excitations with

energy ∆/2 in the transverse direction (the creation of two exitations is necessary for

conservation of transverse momentum) . The second mechanism involves the counter-

rotating term of the phonon or photon assisted tunneling process. The co-rotating

term enables resonant tunneling to a lower lattice site by stimulated emission of a

phonon. In the counter-rotating process, the atoms tunnels to a lower lattice site,

but absorbs a lattice phonon. Therefore, it has now an excess energy of 2∆ which
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Figure 3-11: Lifetime of a Bose-Einstein condensate in a 1D lattice with resonant
amplitude modulation. Shown are the decay of the number of trapped atoms, and
the decay of the visibility of the diffraction pattern observed after ballistic expansion.

can create two transverse excitations where each of them has energy ∆.

These two-body elastic collisions convert modulation or tilt energy into motion

along the transverse directions. The characteristic relaxation times of the two pro-

cesses are given by τ1 and τ2:

1

τ1
∝ 4J2

∆2

∑

k

2πδ(E
(0)
k −∆/2)

1

τ2
∝ K2

∆2

∑

k

2πδ(E
(0)
k −∆).

We can associate τ1 with a process that occurs even in the absence of modulation

– the rate is proportional to the tunnel coupling squared between neighboring sites,

whereas the rate of the τ2 process is proportional to the square of the phonon induced

tunneling rate. Both decay processes are rather general and should apply to both

tilted lattices and lattices modulated by superlattices.

As a test of these predictions, we implemented this Hamiltonian experimentally

using the same experimental procedure as used for a two-dimensional amplitude-

modulated superfluid. We measured the coherence and lower band population life-

times as shown in Figure 3-11. Approximate values in our experiment were gn =

h×550−830 Hz, as = 5.03 nm, d = 254 nm, K = h×10 Hz, J = h×30 Hz, and ∆ =
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h × 3420 Hz, with gn as the chemical potential, as the s-wave scattering length, K

laser-assisted tunneling rate, J the bare tunneling rate, and ∆ the energy tilt per lat-

tice site. d−1 =
∫

dx φx(x)
4 is the size of the Wannier state in the x-direction φx(x).

These give us the values of 1/τ2 = 0.003−0.005 s−1 and 1/τ1 = 0.13−0.20 s−1, which

are longer than our observed lifetime. Uncertainty is driven by uncertainty in our

density measurements due to redistribution during lattice ramp-up. However, during

the long coherence lifetime, significant population loss was observed (due to inelatic

two- or three-body collisions, or transfer to higher bands), and detailed further study

is needed to identify the contributions of different processes to the decay rate.

The mechanism proposed in [75] appears to give a reasonable upper limit for

collisional decay in 1D lattices. We expect the same mechanism to explain at least

part of the decoherence observed for both amplitude modulation in a two-dimensional

lattice and the HH Hamiltonian. For a quantitative comparison, we modify the

calculation in [75] to reflect that a 2D lattice has only one orthogonal direction of

free motion, which changes the density of states for decay processes. For resonant

modulation, in the Floquet basis, the Hamiltonian is

H =
∑

k

εk(t)b
†
k
bk +

g

2V

∑

k1,k2,k3

b†
k1
b†
k2
bk3

bk4

with k4 = k1 + k2 − k3, V as the system volume, and bk and b†
k

as the annihiliation

and creation operators for states with quasimomentum k. The interaction parameter

is given by

g =
4π~2as
m

λ2
∫

dx dyφx(x)
4φy(y)

4 =
4π~2as
m

λ2

d2

where φx(x) and φy(y) are the Wannier functions in the tilted (x) and untilted (y)

lattice directions, λ is the lattice spacing, and d is the size of the Wannier state. The

instantaneous single particle dispersion εk(t) is given by

εk(t) = −2K cos(kx)− 2Jy cos(ky)− 2K cos(kx − 2∆t)− 2Jx cos(kx −∆t) +
~
2k2z
2m

.

where Jx and Jy are the bare tunneling rates in the x and y directions, and K
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is the effective tunneling in the tilt direction (x). We ignore the overall harmonic

confinement and treat motion along z as free. Following a similar argument, we find

that the scattering rate is given by

1

τ
=

1

τ2
+

1

τ1

1

τ2
=

2(gn/2)2

N~

K2

∆2

∑

k

2πδ(E
(0)
k −∆)

1

τ1
=

2(gn/2)2

N~

4J2

∆2

∑

k

2πδ(E
(0)
k −∆/2)

with the effective dispersion:

E
(0)
k = 2K[1− cos(kx)] + 2Jy[1− cos(ky)] +

√

gn

m
(~kz)2 +

(

(~kz)2

2m

)2

.

Note that ref. [75] uses a Hartree-Fock excitation energy with free particle dispersion.

The high mean field energy in the one dimensional tubes created by a two dimensional

lattice, gn, is similar in energy scale to the tilt frequency, and we thus use the full

Bogoliubov spectrum for the energy of quasi-particles.

Since K and Jy are small, we neglect the dependence of E(0)
k on kx and ky, giving

ρ(ν) =
∑

k

2πδ(E
(0)
k − ν) (3.18)

=
V

λ2

∫

dkz
2π

2πδ





√

gn

m
(~kz)2 +

(

(~kz)2

2m

)2

− ν



 (3.19)

=
V m

~2λ2
ν

√

(gn)2 + ν2

√

2~2

m
√

−(gn) +
√

(gn)2 + ν2
(3.20)

and thus

1

τ2
=
gn

~

4πas
d

K2

∆2

∆
√

(gn)2 +∆2

√

~2

2md2
√

−(gn) +
√

(gn)2 +∆2
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1

τ1
=
gn

~

4πas
d

4J2

∆2

∆/2
√

(gn)2 + (∆/2)2

√

~2

2md2
√

−(gn) +
√

(gn)2 + (∆/2)2

For our system, representative numbers are gn = h × 740 − 1740 Hz, and ∆ =

h × 3420 Hz, K = h × 10 Hz, J = h × 30 Hz, as = 5.03 nm, d = 254 nm, and

m = 1.4× 10−25 kg, resulting in 1/τ2 = 0.006− 0.014 s−1 and 1/τ1 = 0.29− 0.67 s−1.

This is less than the decay rates measured in the experiment by a factor of ∼10− 20.

A three-dimensional lattice should be helpful for reducing heating described by the

Floquet Fermi’s golden rule. If a three-dimensional lattice has a bandbap at energies

∆ and ∆/2, we expect to see a “gapping out” of this heating and a strong increase

in the lifetime [76]. However, in our experiment, we do not see this strong change

when changing the bandgap. We therefore believe that the heating we see is either

technical heating common to both amplitude-modulated and Harper superfluids, or

some as-yet-unexplained heating process for Floquet systems.

3.6 Conclusion

In conclusion, for the first time, we have demonstrated Bose-Einstein condensation

in a strong synthetic magnetic field. The momentum distribution of the ground state

clearly shows how the vector potential and gauge break the translation symmetry

of the bare lattice and uniform magnetic field. We have added strong interactions

to our system and have demonstrated reasonable coherence times near the Mott

Insulating transition. With longer lifetimes, modifications of our system could lead to

the realization of Weyl points [77], the quantum spin Hall Hamiltonian and ultracold

atom topological insulators [78], and bosonic Laughlin states [73, 79, 38, 80]. A full

understanding of Floquet heating is still an open area of research in the field [81, 82],

while it is possible that a tripled-superlattice system could avoid some of the heating

processes in this work [78].
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Chapter 4

Superfluid Shielding

A central feature of quantum mechanics is the wave-particle duality, where matter

that we normally think of as composed of particles can be described by a wavefunction

ψ(x). Since the probability of finding a particle is given by |ψ(x)|2, it is tempting

to think of the wavefunction as merely a probability distribution. However, we must

note that the probability distribution is the squared modulus of the wavefunction,

and that ψ(x) has an additional degree of freedom in its complex phase ψ(x) =

exp[iφ(x)] |ψ(x)| . This quantum phase is directly relevant for many applications in

in quantum information, quantum simulation [83, 84, 65], atom interferometry [25],

and force sensing [29, 30, 31].

Important applications rely on maintaining phase coherence between spatially sep-

arated quantum subsytems. However, our ability to split a quantum system, perform

an operation on the separated subsystems, and use interference to read out phase in-

formation is limited. For now, I will ignore technical or environmental limitations and

focus on the fundamental limits. In a non-interacting system of size N , classical shot

noise leads to fluctuations of ∼ 1/
√
N in the number of particles in each subsystem,

which determine the final signal-to-noise ratio and precision of the measurement of

the phase, but do not affect the coherence lifetime.

In an interacting system, on the other hand, the coherence time is also set by shot

noise. The phase of each subsystem evolves at a rate given by the total energy Etotal =

Eexternal+µ, where µ is the chemical potential. The shot noise fluctuations mentioned

63



above give rise to fluctuations of the chemical potential δµ = δN × |∂µ/∂N | , leading

to decoherence. Previous work has focused on either one of the two terms in the

formula for δµ. In [85], the researchers use Feshbach resonances to modify interatomic

interactions and therefore |∂µ/∂N |, which lead to very long coherence times. Other

work has modified δN by using non-classical squeezed states, which can be created

using nonlinear interactions [86, 87] or quantum measurements [88]. While most

work on squeezing has been done with relatively small numbers of atoms, highly

spin-squeezed states have been observed for pairs [89] and arrays [90] of independent

Bose-Einstein condensates.

In this chapter, I present a new method for increasing the phase coherenc time

of separated BECs beyond the projection noise limit. If we immerse the separated

BECs in a common superfluid bath, we find that the interactions between the bath

and the system can compensate for technical and number fluctuations that normally

shorten the phase coherence time. I begin with a review of atom interferometry, which

provides an intuitive way to think about the effects of phase coherence and separated

quantum objects. I then discuss the phenomenon of Bloch oscillations, where a BEC

in a tilted lattice precesses through the Brillouin zone, and demonstrate how this effect

can be thought of as a form of atom interferometry. I provide a more quantitative

explanation of superfluid shielding, and report on several experiments that explore

the effect in various parameter regimes that demonstrate that superfluid shielding is

a robust effect that can in principle reduce chemical potential fluctuations in atom

interferometers by two orders of magnitude.

This chapter covers work covered in [91].

4.1 Atom Interferometry

The importance of phase coherence is most obvious in the technique of atom interfer-

ometry. This technique exemplifies the wave nature of ultracold atoms by making an

analogy with optical interferometry. I will first review classical optical interferometry

and then point to the analogs of each piece in atom interferometry.

64



Figure 4-1: A basic optical interferometer. A coherent light source (red arrows) is
split by a 50:50 beamsplitter and travels along two different paths. The two paths
are recombined on a second beamsplitter and interfere. The path length difference
between the two arms becomes a phase difference and determines the photodiode
reading.

The simplest form of an optical interferometer (cartoon in Figure 4-1) starts with

a single coherent light source (i.e. a laser), which is split on a 50:50 beamsplitter. The

light travels in two arms, of length l1 and l2, and then is re-combined at the second

beamsplitter. The two arms will interfere with a phase given by 2π (l1 − l2) /λ, where

λ is the wavelength of the light, and we can thus use a photodiode or camera to read

out the difference in path-length. The conceptually simplest atom interferometers

map exactly to this optical interferometer. Instead of a laser, start with a BEC,

which is a coherent state and therefore has a well-defined phase. The beam splitter

can be implemented with Raman pulses, which provide a momentum kick that sep-

arates the clouds, or optical lattices, which can remove tunneling between different

sites, effectively separating the condensates. The phases of each now-separated con-

densate evolve at a rate given by −E(1,2)/~, where E(1,2) are the energies of the two

condensates. The condensates are re-combined and interfered by physically overlap-

ping the two condensates. If they were split using a Raman pulse, subsequent Raman

pulses can reverse the momentum and push the clouds back together. On the other

hand, if a lattice was used to separate the condensates, we use time-of-flight imaging,

where we snap off all trapping potentials. Then the condensate on each lattice site

acts as an emitter of a spherical matter wave with a phase given by the phase of

the wavefunction on that site. Once they have expanded to several times the initial

system size, the interference pattern can be used to read out the phase information

65



from the interferometer.

An important difference between an atom interferometer and its optical counter-

part is the role of interactions. As discussed above, inter-particle interactions (which

are not present for an optical interferometer) can limit the coherence lifetime and

decrease the contrast of the interferometer. Thus, most atom interferometers use

atoms just above the BEC transition point, where interactions are negligible, and are

therefore more similar to a white-light interferometer. Superfluid shielding on the

other hand allows us to use a high-brightness coherent source without being limited

by interaction effects, and should lead to better overall contrast and coherence times

in atom interferometers.

4.2 Bloch Oscillations

In our experiments, we used the coherence of Bloch oscillations as our measure of

coherence of the separated condensates. Since Bloch oscillations are not normally

described as an atom interferometry effect, it makes sense to take some time to

discuss the effect now. We should emphasize that the following discussion and our

experiments are in the high-tilt regime, in contrast to most previous work on Bloch

oscillations, which have focused on the low-tilt regime [92, 93, 94] where adjacent

Wannier-Stark states overlap and tunneling is still allowed.

As discussed in Section 2.1, the single-particle eigenstates in a one-dimensional

lattice potential are described by Bloch wavefunctions |ψk〉 with quasimomentum k

and energy Ek = −4J cos (ka). The traditional explanation of Bloch oscillations is

that if we apply a constant energy tilt per lattice site of ∆, we can write this as a
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Figure 4-2: (a) Cartoon of Bloch oscillations as an atom interferometry effect. Bloch
oscillations occur when a BEC is placed into a tilted optical lattice. After the tilt, each
lattice site has a separated condensate whose phase is represented by the clocks. Each
phase evolves at a different rate, given by the on-site energy, which leads to different
interference patterns after different evolution times. (b) Interference patterns of 87Rb
atoms in a lattice the course of a Bloch cycle at times 0, π/2, π, 3π/2, 2π.

force F = −∆/a, and quasi-classical dynamics then tells us

~
dk

dt
= F

v =
1

~

dE

dk

=
4Ja

~
sin (ka)

=
4Ja

~
sin

(

Fat

~

)

(4.1)

which shows that a constant force begets oscillations whose frequency provide a mea-

sure of the applied force. However, this traditional explanation does not make obvious

the connection to atom interferometry and the importance of phase coherence.

To do this, first note that in the tight-binding limit, we can write |ψk〉 as the

sum of Wannier states centered on site j, with |ψk〉 =
∑

j exp [ikaj] a
†
j |0〉 where a†j is

the Wannier state creation operator. To see Bloch oscillations, we start in with an

untilted lattice, so the atoms are in some |ψk〉. This is the equivalent to the initial

single BEC in traditional atom interferometry. We then rapidly turn on a constant
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tilt ∆. The Hamiltonian is simply given by

H = −J
∑

j

a†j+1aj +∆
∑

j

ja†jaj. (4.2)

Since we assume the high-tilt regime of ∆ � 4J , the lattice sites are decoupled, which

is equivalent to physically separating the two sub-condensates. The state evolves to

|ψ (t)〉 =
∑

j

exp [ij (ka−∆/~)] a†j |0〉 =
∣

∣ψk+F/~

〉

. (4.3)

We can picture this, as in Figure 4-2 as each lattice site having a clock attached to it,

that runs at the phase evolution rate. When all the clocks have evolved by a multiple

of 2π, we are back at the starting point, leading to oscilliatory motion. Finally, to

see this effect, we can interfere parts of the wavefunction from different lattice sites

by performing time-of-flight imaging, as discussed above.

4.3 Superfluid Shielding

If we are using an interacting system for the atom interferometer, number fluctuations

in the separated condensates lead to chemical potential fluctuations. These chemical

potential fluctuations change the phase evolution of the systems, leading to dephas-

ing and a shortened coherence time. Rather than attempting to reduce the number

fluctuations using sqeezed states, or reduce the interactions via a Feshbach resonance,

we present a new technique. In superfluid shielding, the separated condensates are

immersed in a superfluid bath. The interactions between the bath and the interfer-

ometer cancel out the effect of projection noise on the phase evolution and increase

the coherence time.

Fig. 4-3a-c provides a graphical view of superfluid shielding in our experiment.

After the sudden tilting of the |↓〉 atoms, each lattice site is a separate condensate,

with no resonant tunneling from site to site. Then, if there is no shielding component,

the evolution of the phase on each site is given only by the local chemical potential
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Figure 4-3: Schematic of superfluid shielding. (a) Before applying a tilt, the atoms
are in a superfluid, which is approximately described by a coherent state on each site.
The chemical potential is constant across the cloud. (b) In the limit of a strong tilt
(∆ � J), the wavefunction at each lattice site is projected onto the number basis,
leading to fluctuations in the number of atoms and chemical potential from site to
site. (c) If the gas has two components, one which is localized by the tilt, and one
which remains superfluid, the itinerant component can compensate for fluctuations
in the localized component. (d-f) Momentum distribution over the course of a single
Bloch oscillation after ten cycles. (d) Without superfluid shielding, the diffuse cloud
indicates decoherence of the condensate. (e) The itinerant component feels no force
and does not Bloch oscillate. (f) For the shielded component, the Bloch oscillation
contrast is high. (g) Exponential decay of the Bloch oscillation contrast for a one-
component (blue dots) and two component (red squares) gas, for a transverse lattice
depth of 11 Er and ∼8× 103 atoms.
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and its fluctuations, µ↓
j , and has a relatively short coherence time. On the other hand,

when the system is immersed in a superfluid of |↑〉 atoms, which are not subject to

the tilt, we see superfluid shielding. The |↓〉 atoms and the |↑〉 atoms on a given

site interact repulsively. However, because |↑〉 atoms remain superfluid, these atoms

can freely adjust their local density in order to counteract the fluctuations in |↓〉
atoms and thus maintain a uniform global chemical potential. This leads to an anti-

correlation in the densities of the two components, which mitigates the fluctuations

in the chemical potential of the |↓〉 component. Previous work in the low-tilt regime

has shown that the presence of disorder applied before the tilt leads to a shortened

coherence time of Bloch oscillations, and that this can be partially compensated for

by weak interactions [95, 96]. This work demonstrates a different regime, where a

separate superfluid bath can compensate for disorder created during and after the

tilt, including projection noise disorder.

We use two more quantitative descriptions of the effect of superfluid shielding:

one is based on the Gross-Pitaevskii equation and provides a useful intuitive picture,

while the other treats the effect fully quantum mechanically.

4.3.1 Gross-Pitaevskii Description

In the Thomas-Fermi approximation, the Gross-Pitaevskii equation for a two compo-

nent gas in a lattice is given by the following:

µ↓
j = g↓↓n↓

j(x, y) + V ↓
ext,j(x, y) + g↑↓n↑

j(x, y) (4.4)

µ↑
j = g↑↑n↑

j(x, y) + V ↑
ext,j(x, y) + g↑↓n↓

j(x, y), (4.5)

where µ
(↑,↓)
j and n

(↑,↓)
j are the chemical potential and number density, for a given

component and lattice site index j. The interaction terms g↑↑,↓↓,↑↓ are the standard

contact interactions 4π~2a(↑↑,↓↓,↑↓)/m with a(↑↑,↓↓,↑↓) as the s-wave scattering lengths

for intra- and inter-component collisions. In our experiment, before the tilt is applied,

both spin components are superfluid, and are subject to a common trapping potential

V
(↑,↓)
ext,j = Vtrap,j. Then the initial densities are such that the chemical potentials µ(↑,↓)

j
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are constant, and the trapping potential is fully compensated by an inhomogeneous

Thomas-Fermi density profile [97].

After our experiment is initialized, we apply an additional potential with a spin-

independent part δVj, and a spin-dependent force −j∆, which is only felt by |↓〉
atoms. The spin-dependent force separates the condensates of |↓〉 atoms, which feel

an energy shift of ∆ per lattice site, while leaving |↑〉 atoms, which feel no shift, in

a superfluid state with a constant chemical potential. We label the frozen-in number

fluctuations δn↓
j and the |↑〉 chemical potential µ↑

j = µ↑ ∀ j. The constraint on µ↑
j

allows us to determine the induced density fluctuations in |↑〉:

δn↑
j = −δVj

g↑↑
− g↑↓

g↑↑
δn↓

j . (4.6)

If we plug this into Equation 4.4, we find that the |↓〉 chemical potential after the

applied tilt is

µ↓
j = g↓↓

(

n↓
j + δn↓

j

)

+ V ↓
ext,j + g↑↓

(

n↑
j + δn↑

j

)

= µ↓,0 − j∆+ δµ↓
j

(4.7)

where µ↓,0 is defined as the constant chemical potential of |↓〉 before the tilt is applied.

Here δµ↓
j are the final fluctuations of the |↓〉 chemical potential:

δµ↓
j = η1g

↓↓δn↓
j + η2δVj, (4.8)

which are reduced by the factors η1 =
(

g↑↑g↓↓ −
(

g↑↓
)2
)

/g↑↑g↓↓ and η2 =
(

g↑↑ − g↑↓
)

/g↑↑.

For the case of 87Rb, g↑↑ ≈ g↓↓ ≈ g↑↓, to the percent level, so the shielding factors

can be around 100. Since the chemical potential is then dependent only on the linear

tilt −j∆, we should see long-lived Bloch oscillations.

4.3.2 Quantum Mechanical Description

The previous section is useful for intuition and calculations in the limit of large

atom numbers, but it raises a question. Atom number and condensate phase are

conjugate variables, and so cannot both be definite, but the above derivation appears
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to treat them as such. In this section, I present a more complete quantum mechanical

description that resolves this tension. For this analysis, I will look at the wavefunction

on a single lattice site, written in the basis |n↓, n↓ + n↑〉 , and assume that all scattering

lengths are equal.

First, look at the situation without superfluid shielding, where the atoms begin

in a |↓〉 coherent state

∣

∣ψ
(

0−
)〉

= e−|β|2/2
∑

N

βN

√
N !

|N,N〉 . (4.9)

Then the only dynamics are phase evolution given by the on-site interaction energy

UN (N − 1) and at later times, the wavefunction is

|ψ(t)〉 = e−|β|2/2
∑

n

βN

√
N !
e−iUN(N−1)t |N,N〉 , (4.10)

which diverges from a coherent state and therefore loses its phase information at later

times.

On the other hand, in the situation of superfluid shielding, we begin with a co-

herent state of |↓〉 atoms within each component of the coherent state of overall atom

number
∣

∣ψ
(

0+
)〉

= e−|β|2/2e−|α|2/2
∑

n<N

βN

√
N !

αn

√
n!

|n,N〉 . (4.11)

We allow the wavefunction to evolve under the same operator as above, and at later

times the density matrix is

ρ(t) =e−|β|2e−|α|2
∑

n<N
m<M

βN

√
N !

αn

√
n!
e−iUN(N−1)t |n,N〉 〈m,M | eiUM(M−1)t α

∗m

√
m!

β∗M

√
M !

.

(4.12)

Our measurement looks only at |↓〉 atoms, so we trace over the total atom number

to get

TrNρ = e−|β|2e−|α|2
∑

P

∑

n<P
m<P

βPβ∗P

P !

αnα∗m

√
n!m!

|n〉 〈m| , (4.13)
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which if the fraction in |↓〉 is small enough (I.E. |α|2 is sufficiently smaller than

|β|2), is close to the density matrix for a pure coherent state in n↓ for all time. In

our experiments, where |β|2 ∼ 1000, we need only a small proportion of superfluid

component (|β|2 − |α|2) to see good superfluid shielding.

4.4 Experiment

In order to demonstrate the effect of superfluid shielding, we use two spin components

in a spin-independent lattice with a spin-dependent force. The experiments start with

a BEC in the |F,mf〉 = |1,−1〉 state, levitated against gravity by a magnetic field

gradient and confined in a crossed dipole trap made with 1064 nm light. We raise a

three-dimensional lattice potential with a lattice spacing of 532 nm in 100 ms. The

vertical lattice is always raised to 12 Er, and the transverse lattice height is varied,

which allows us to control the on-site density and therefore interaction parameters.

To create a spin-dependent force, we perform an RF sweep to transfer a fraction

of the atoms from the |↑〉 ≡ |1,−1〉 state to the |↓〉 ≡ |2,−2〉 state. Using an RF

sweep makes us robust against fluctuations in the bias field, and allows us to control

the fraction of atoms flipped into |↓〉 by varying the intensity of the RF drive.

The magnetic moment of |↓〉 atoms is equal to −2 times the magentic moment of

the levitated |↑〉 atoms, and so they feel a force equal to three times gravity, which

gives a tilt per lattice site of ∆ = h× 3410 Hz along the vertical direction. tunneling

is ∼h× 24 Hz, so for |↓〉, we are deep in the separated condensate regime. Based on

our atom number and harmonic trap, we have about ten pancake shaped condensates,

each with up to 3500 atoms. The |↑〉 atoms remain untilted and act as the superfluid

bath. After we prepare the two component system, we allow it to evolve for a variable

time before switching off all confining potentials for time-of-flight imaging. During the

expansion, we perform a Stern-Gerlach pulse to separate the two spin components,

allowing us to image the interference pattern of the |↓〉 atoms only.
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4.4.1 Contrast Fitting

The figure of merit for our experiment is the contrast of the interference pattern.

We obtain the contrast from two-dimensional absorption images, which have already

integrated the atomic density along the imaging axis (one of the transverse directions).

We then integrate along the other transverse direction to get a one-dimensional plot

of two-dimensional density as a function of momentum along the tilt direction. For

a perfectly coherent cloud, we expect to see a series of peaks whose spacing is given

by the lattice spacing, width by the initial spatial extent of the cloud, and overall

envelope by the shape of the on-site Wannier function. Our lattice depth is such that

only the zeroth and first order peaks are non-negligible. On the other hand, for a

perfectly incoherent cloud, we expect to see a single broad peak given just by the

envelope function from the Fourier tranform of the Wannier function.

We fit the integrated atomic density to a sum of four Gaussians with appropriate

constraints on the fitting parameters to ensure that the fitting routine picks out

which three are associated with the coherent part and which one is associated with

the incoherent part. We define contrast as the fitted number of atoms under the

three coherent peaks divided by the total fitted number of atoms. For most of the

following experiments, we report the 1/e lifetime of the contrast, which has a one-to-

one correspondence to the coherence lifetime.

4.5 Projection Noise Limit Analysis

In order to demonstrate that superfluid shielding can move the coherence lifetime

beyond the projection noise limit, we must first calculate what the projection noise

limit actually is. We do this by numerically simulating the discrete Gross-Pitaevskii

equation in the direction of the tilt. Along the other two directions, we use a discrete

Thomas-Fermi profile to find the average occupation number in each two-dimensional

pancake. We then project onto states with a definite number, drawn from one of

two distributions. If we were to snap the lattice up from a low value, the atom

number distribution would be Poissonian. On the other hand, if the lattice ramp
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were perfectly adiabatic, the distribution should exhibit some number squeezing (see

Section 4.5.2). Since we know our lattice ramps are not perfect, we run the simulations

for each distribution, and plot both results, which should place bounds on the true

projection noise limit.

Once we have added the number fluctuations to the model, we time evolve the

system. Since tunneling is suppressed, we can assume that the only relevant dy-

namics are given by the two-dimensional Gross-Pitaevskii equation as |ψj(t)〉 =

exp[−iµjt/~] |ψj(0)〉 for each pancake at a lattice site j. The chemical potential

µj is given by the two-dimensional Thomas-Fermi profile to take into account the

pancake shape of the condensate on each site, as discussed in Section 4.5.1. After

a variable evolution time, we take a Fourier tranformation of the wavefunction to

simulate time-of-flight imaging. We average twenty simulated images, and then fit

them using the same fitting method as our experimental data. In this chapter, the

simulated projection noise limits are marked by dashed black lines for both the upper

and lower bounds.

4.5.1 Two-Dimensional Discrete Thomas-Fermi Profile

Since we have lattices in the two transverse dimensions, we slightly modify the normal

Gross-Pitaevskii equation in the Thomas-Fermi approximation to

µj = Unjkl +
1

2
ma2

(

ω2
zj

2 + ω2
xk

2 + ω2
yl

2
)

, (4.14)

where U is the Hubbard interaction parameter, a is the lattice spacing, ωx,y,z are

the harmonic trapping frequencies, j is the index along the tilt direction, and k

and l are the indices along the two transverse directions. To solve for µj, we write
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njkl = nj (x, y) and find the total atom number in a pancake Nj:

nj (x, y) = Max

(

µ− 1
2
ma2

(

ω2
zj

2 + ω2
xk

2 + ω2
yl

2
)

U
, 0

)

Nj =

∫∫

nj (x, y) dxdy

=
π

mωxωyUa2

(

µj −
1

2
ma2ω2

zj
2

)2

.

(4.15)

Inverting this expression shows us that µj ∝ (NjU)
1/2.

4.5.2 Two-Mode Number Squeezing Model

In order to determine the maximum number squeezing expected, we use a two-mode

model [98], but modify it to take into account the two-dimensional nature of the

lattice sites.

This model looks at a double-well system, with a two-dimensional BEC in each

well and tunnel-coupling J between them. For large total atom number 2N , the

effective Hamiltonian is

H = −J
(

a†lar + a†ral

)

+
2µ0

3
√
N0

(

n
3/2
l + n3/2

r

)

(4.16)

with al and ar as the annihilation operators for the two wells, and nl and nr as

the respective number operators. At first, the interaction term looks unusual. The

form of the interaction term is chosen so that µ = ∂E/∂N ∝
√
N for a single well

as required by the two-dimensional Gross-Pitaevskii equation. We have defined the

prefactor to make the chemical potential µ0 when N0 atoms are in the well.

We can write the Hamiltonian in the Fock state basis of |n〉 ≡ |N + n〉l |N − n〉r:

H
∑

n

cn |n〉 =
∑

n

[−J(
√
N + n

√
N − n+ 1cn−1+

√
N − n

√
N + n+ 1cn+1)+

2µ0

3
√
N0

N3/2

(

2 +
3

4

( n

N

)2
)

cn] |n〉 ,

(4.17)
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dropping terms of order O
(

(

n
N

)4
)

and higher. In the spirit of [98], we write cn±1 as

cn±1 ≡ C(n ± 1) = C(n) ± C ′(n) + 1
2
C ′′(n) + . . . and then expand the coefficients

C(n), C ′(n), C ′′(n) in powers of 1/N . Dropping constant terms and all orders higher

than 1/N gives us

εC(n) =

(

−JN∂2n +
(

J

N
+

3

4

2µ0

3
√
N0

1

N1/2

)

n2

)

C(n). (4.18)

This has the same form as the Schroedinger equation for the simple harmonic oscil-

lator, and so the ground state is a Gaussian with the width

δn2 = N





J

J +
µ0

√
N/N0

2





1/2

. (4.19)

4.6 Results

In order to demonstrate the efficacy of superfluid shielding, we performed several

different experiments. In Figure 4-3d-f, we present the time-of-flight patterns of the

tenth Bloch oscillation after applying a tilt in two scenarios. Figure 4-3d is our

control, with all atoms in the tilted state, and no superfluid shielding. It is clear

that there is no appreciable phase coherence left in the system. The time-of-flight

patterns for a sequence with superfluid shielding are shown in 4-3e-f. Subfigure e is

the shielding component, which we can see is not oscillating, demonstrating that |↑〉
atoms do not feel the gradient. Subfigure f is the oscillating component, whose crisp

peaks make clear that the phase coherence is protected by the superfluid shielding.

Finally, Figure 4-3g shows the contrast decay for an unshielded (red, for all figures)

and shielded (blue, for all figures) system, which we have fit to an exponential to

obtain the coherence lifetime. Even by eye, it is clear that the shielded system has a

longer coherence lifetime.

Next, we quantitatively compare coherence lifetimes, with and without superfluid

shielding, over a range of chemical potentials. In the absence of technical fluctu-

ations, the fundamental limit on coherence lifetime is given by the projection noise
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Figure 4-4: Superfluid shielding for different atom numbers and densities. Shown are
the exponential decay lifetimes of spin |↓〉 Bloch oscillating component for unshielded
(blue dots) and shielded (red squares) cases versus chemical potential. In (a), the
chemical potential is changed by varying atom number from ∼6 × 103 to ∼2 × 104

while keeping the lattice depths at 10 Er in both transverse directions. In (b), the
chemical potential is varied by changing the transverse lattice depth from 4 Er to
11 Er. In both plots, the dashed lines represent the projection noise limit given by
two theoretical models.
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Figure 4-5: Contrast lifetime versus shielding fraction. Exponential decay lifetime of
spin |↓〉 Bloch oscillating component upon varying the number of atoms in spin |↑〉
state (i.e. fraction of atoms in |↑〉 state over total number of atoms) indicates that
shielding is effective beyond projection noise limits once more than 25% atoms are
in the |↑〉 state.

discussed above. An upper and lower bound for the projection noise limits are plotted

as dashed lines in the following figures. In Figure 4-4a, we vary the chemical poten-

tial by changing the total atom number. Recall that for a two-dimensional cloud in

a harmonic oscillator, |∂µj/∂Nj| ∝ N
−1/2
j U1/2. Since the lower bound is given by

Poissonian number fluctuations, which are ∝ N
1/2
j , the lower limit is actually inde-

pendent of atom number, while the upper limit slightly increases with increasing atom

number. We observe that the shielded lifetimes in 4-4a are all above the projection

noise limit in either model, and are constant to within experimental uncertainty. In

Figure 4-4b, we vary the transverse (non-tilted direction) lattice depths while keeping

the atom number constant. This varies the chemical potential via U , and we see that

the projection noise limit decreases with increasing U . For low U , the shielded and

unshielded lifetimes are consistent with the projection noise limits, but at higher U ,

the unshielded lifetimes are clearly below the projection noise limit, and the shielded

lifetimes clearly above it.

Having demonstrated that superfluid shielding with equal weight in both the

shielding and oscillating components works over a range of parameters, we next ask
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Figure 4-6: Superfluid shielding of external fields, applied by increasing the trap
frequency. The vertical dashed line is the initial trap frequency that corresponds to a
linear chemical potential for the |↓〉 atoms. We compare the contrast after 25 Bloch
oscillation cycles for unshielded (blue dots) and shielded (red squares) components.
In this figure only, for technical reasons, one of the transverse lattices had a spacing
of 392.5 nm.

how much of the shielding component is actually needed. If we are limited to a con-

stant total atom number, then there must be a tradeoff: as we increase the fraction

in the shielding component f , the signal-to-noise of the measurement decreases by a

factor of
√
1− f . In Figure 4-5, we hold the total atom number constant and vary

the fraction that is in the shielding component to see that as long as the shielding

fraction is at least 20-30%, we get the full effect of superfluid shielding., and that

at f ≈ 1/2, we find an increase in lifetime of a factor of 3.2. Thus, the increase

in coherence time because of superfluid shielding is much more important than the

decrease in signal-to-noise because of the reduced atom number in the measurement

component. In principle, the chemical potential of the shielding component needs

only be of order the residual fluctuations in the oscillating component to provide full

superfluid shielding.

Since δn↓
j/n

↓
j ≈ 0.02 is much less than the observed fraction required to achieve full

shielding, we most likely have technical sources of dephasing in our system. For un-

shielded samples in Figure 4-4, we may have introduced chemical potential curvature

if the lattice ramp was not fully adiabatic with respect to global density redistribu-
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tion. However, this curvature would be common mode to both the |↑〉 and |↓〉 atoms,

and in principle, superfluid shielding should be able to compensate for this. To test

this, we intentionally added common-mode curvature to the system after applying the

tilt, when the |↓〉 density is already frozen in. In Figure 4-6, we increase the vertical

trapping frequency from ωi = 2π × 128 Hz to a variable ωf , adding a quadratic term

δVj = 1
2
m

(

ω2
f − ω2

i

)

z2j to the chemical potential. It is clear that added curvature

drastically reduces the lifetime of an unshielded system, and that adding superfluid

shielding cancels much of this effect.

However, even taking this into account, the increase in shielded lifetimes seen in

Figure 4-4 are still lower than the factor of ∼ 100, as Equation 4.8 suggests, tells

us that there is some non-common-mode disorder in our system. We estimate the

curvature of the applied magnetic field to be ∼ 100 Hz across the sample, which is

consistent with the shielded lifetimes observed.

4.7 Conclusion

In this chapter, I have presented a new method to increase the phase coherence lifetime

of separated quantum systems — superfluid shielding. The shielding component,

which stays superfluid acts to “fill in the gaps” caused by technical and inherent

fluctuations in the chemical potential of the measuring component. We have used

Bloch oscillations as a measure of phase coherence to demonstrate that superfluid

shielding can increase the coherence lifetime beyond the projection noise limit. Not

only is this work directly applicable to force sensors based on Bloch oscillations [30],

but it is also part of a growing body of work in atomic clocks [99, 100, 101] and atom

interferometers [87, 89] demonstrating that interactions can be useful in precision

measurement.

While this work has focused on the phase coherence of the oscillating component,

there are also interesting dynamics in the superfluid component. For example, since

the mean field of the |↓〉 atoms acts as disorder for the |↑〉 superfluid, in certain

regimes, we should see localization of the |↑〉 atoms as well. In addition, adding laser-
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assisted tunneling to the tilted component [83, 84, 65] (see Chapter 3) would lead to

an interacting system with a spin-dependent synthetic magnetic field.
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Chapter 5

Spin-1 Heisenberg Hamiltonian

A major theme of research in ultracold atoms in recent years has been to attempt to

achieve low-entropy spin-ordered ground states of magnetic Hamiltonians [102, 103,

104, 105, 106]. The paradigmatic magnetic Hamiltonian is the Heisenberg Hamilto-

nian, which describes the interactions of quantum spins pinned to a lattice and has

many interesting phases. Recently, there has been much success using fermions in

quantum gas microscopes to study anti-ferromagnetic order [104, 105, 106], but de-

spite the fact that BECs can achieve much lower temperatures than degenerate fermi

clouds, there has been less progress on the bosonic side.

In this chapter, I present a method for using a spinful bosonic Mott insulator

to study the spin-1 Heisenberg Hamiltonian [39, 40] and discuss preliminar results.

This Hamiltonian has a gapped magnetically ordered state known as the spin Mott

insulator, which can be used as a cold starting point for explorations of the phase

space. The next state that is most natural for us to look at is the xy-ferromagnet,

which is a spin superfluid and exhibits spin-charge separation. I begin by discussing

how we map our Bose-Hubbard Hamiltonian onto the Heisenberg Hamiltonian. I

then discuss the phase diagram and some special properties of the spin-1 Heisenberg

Hamiltonian. I conclude with dicussion of the current state of the experiment and

proposals for moving forward.
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5.1 Heisenberg from Bose-Hubbard

In order to study the spin-1 Heisenberg Hamiltonian, we use a two-component Mott

Insulator with two atoms per site. At first, this seems counter-intuitive — the ground

state of 87Rb is in F = 1 and so is already a spin-1 system. However, as we describe

here, using a pair of spin-1/2 bosons instead of a single spin-1 particles gives us more

flexibility and control over the system parameters.

First, we restrict our analysis to sites with exactly two atoms, both in the lowest

band. Then because of the symmetry requirements for bosons, the pair of atoms

must be in the triplet spin state. For this chapter, we use |↑〉 and |↓〉 to represent the

physical atomic spins and |+1〉, |−1〉, and |0〉 for the effective spins in the Heisenberg

Hamiltonian. We identify the effective spins with the physical states as follows:

|+1〉 = |↑, ↑〉

|0〉 = 1√
2
(|↑, ↓〉+ |↓, ↑〉)

|−1〉 = |↓, ↓〉 .

(5.1)

In a one-dimensional lattice, the physical Hamiltonian is given by the multi-spin

Bose-Hubbard Hamiltonian [39, 40]

H =− t↑
∑

j

(

a†↑,ja↑,j+1 + h.c.
)

− t↓
∑

j

(

a†↓,ja↓,j+1 + h.c.
)

+ U↑↓

∑

j

(

n↑,j −
1

2

)(

n↓,j −
1

2

)

+
U

2

∑

j

[n↑,j (n↑,j − 1) + n↓,j (n↓,j − 1)]

− µ↑

∑

j

n↑,j − µ↓

∑

j

n↓,j

(5.2)

where aσ,j and nσ,j are the annihilation and number operators for a given spin and

lattice site. U is the intra-spin interaction, which is assumed to be symmetric, while

the inter-spin interaction U↑,↓ can vary. The chemical potentials µ↑ and µ↓ are set

by the total atom number. To find the effective Hamiltonian, we restrict ourselves to
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Figure 5-1: Cartoon of the superexchange process. Superexchange is a second order
process, with two tunneling events an intermediate virtual particle-hole excitation,
which is mapped to terms in the spin Hamiltonian. (a) Superexchange that leads to
spin changes give J⊥. (b) Superexchange terms that leave spin unchanged give Jz.

sites with exactly two atoms and define the spin operators

S+
j =a†↑,ja↓,j

S−
j =a†↓,ja↑,j

Sz
j =

1

2
(n↑,j − n↓,j) .

(5.3)

We can use second-order perturbation theory to find the forms of the coefficients in

the spin-1 Heisenberg model:

Heff = −
∑

j

[

J⊥
2

(

S+
j S

−
j+1 + S−

j S
+
j+1

)

+ JzS
z
jS

z
J+1

]

+ u
∑

j

(

Sz
j

)2 − h
∑

j

Sz
j . (5.4)

Figure 5-1 shows examples of the sort of processes that go into J⊥ and Jz, known as

superexchange. Figure 5-1a shows one process that lowers the spin in the right well by

one while raising the spin in the left well. In the intermediate state, there is an energy

deficit of U , so the matrix element J⊥ ∝ t↑t↓/U. In Figure 5-1b, the state goes back

to the initial state through two different paths, so we can see that Jz ∝
(

t2↑ + t2↓
)

/U.
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The
(

Sz
j

)2
term u is the energy difference between having two atoms of the same spin

on one site and one of each, and h is the difference in chemical potentials. The full

analysis [39, 40] gives the following coefficients:

J⊥ =
4t↑t↓
U

Jz =2
t2↑ + t2↓
U

u =U − U↑↓

h =µ↑ − µ↓,

(5.5)

and so when t↑ = t↓ = t, the spin term is symmetric:

J⊥
2

(

S+
j S

−
j+1 + S−

j S
+
j+1

)

+ JzS
z
jS

z
J+1 =

4t2

U
~Sj · ~Sj+1. (5.6)

5.1.1 Spin-Dependent Lattice

Our experiments are all done in an optical lattice, which allows us to easily vary t

and U , but the novel piece of the experiment comes from our control over U↑↓. If the

Wannier functions for the two atomic species are w↑,↓(~r), we can write

U↑↓ =
4π~2a↑↓
m

∫

d~r |w↑(~r)|2 |w↓(~r)|2 , (5.7)

where for 87Rb, the S-wave scattering length a↑↓ is approximately spin-independent.

In other atoms, including 7Li, Feshbach resonances are available to vary the ratio of

a↑↓/a↑↑, but for 87Rb, the Feshbach resonances are either too lossy or at too high of a

field. Instead, we focus on the second part of Equation 5.7, the overlap between the

Wannier functions of the two spins.

To do this, we use an effect known as the vector AC Stark shift. In Section 2.1,

we introduced the scalar AC Stark shift by treating an atom as a two-level system

exposed to an oscillating electromagnetic field. The AC Stark shift associated with a
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specific intermediate state is given by

V = −2παa20I
|Mgi|2
δ

, (5.8)

whereMgi is the dipole matrix element between the ground state and the intermediate

state being off-resonantly addressed and δ is the detuning from that resonance. (For

simplicity, we have dropped the counter-rotating term.) If δ is large, we can generally

ignore the fine and hyperfine structure, and treat the laser field as addressing one

combined resonance. However, closer to the atomic resonance, this assumption breaks

down and we have to take different Mgi and δi into account. In general, the matrix

elements will depend on the starting state, the intermediate state, and the polarization

of the light. We will restrict ourselves to looking at circularly polarized light σ+ or σ−

and will look at the combined effect for the D1 line and the D2 line. We will denote

the possible matrix elements as M+,−
(↑,↓)(1,2). We also assume that |↑〉 and |↓〉 form a

pair in the ground state manifold |F,±mf〉 . Finally, we define the energy difference

between the D1 and D2 lines ∆FS and let the detuning δ be the detuning from the

midpoint between the lines.

We write the potentials as

V +,−
(↑,↓) = −2παa20I







∣

∣

∣
M+,−

(↑,↓),1)

∣

∣

∣

2

δ +∆FS/2
+

∣

∣

∣
M+,−

(↑,↓),2)

∣

∣

∣

2

δ −∆FS/2






(5.9)

and by symmetry, we can say

V +
↓ =V −

↑

V −
↓ =V +

↑ .
(5.10)

For a given polarization, the two spins will feel different potentials. We define the

common-mode part of the potential to be the scalar AC Stark shift and the differential

potential to be the vector AC stark shift. In general, when we interfere two linearly-

polarized laser beams of the same frequency, we will get both an intensity lattice, as

usual, and a polarization lattice, where the polarization changes from σ+ to linear
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and then σ− and back. In this case, we can associate the intensity lattice with the

scalar shift and the polarization lattice with the vector shift. With a few symmetry

relations, we can say

Vvec ∝
1

δ +∆FS/2
− 1

δ −∆FS/2

∝∆FS

δ2

(5.11)

for large δ.

Now if we use the states |1,±1〉 and a polarization lattice, we can separate the

two spins and therefore reduce U↑↓. There are two ways to do this. The conceptually

simplest way has us creating two independent lattices at the same wavelength, one

with a polarization σ+, and one with σ−. We retro-reflect both of them off the

same mirror, which forces the standing waves to both have a zero at that point. We

can give them a slight frequency offset δf , and if the distance between the atoms

and the retro-reflecting mirror is l, then at the atoms, the two lattices will have a

phase difference of 2π 2lδf
c
. This is most easily implemented by using a double-pass

AOM on one of the arms to give a variable frequency offset. Unfortunately, this is

relatively power inefficient, so for most of this work, we use a second method. In

this method, the input beam is linearly polarized, and in the retro-reflecting path,

we have a quarter-waveplate and liquid crystal phase retarder, which when combined

and double-passed rotate the linear polarization by a variable amount. Two linearly

polarized beams with their polarizations at an angle to each other create lattices of

σ+ and σ− light with a phase offset between the sublattices that varies from 0 when

the polarizations are parallel to π when they are perpindicular.

Finally, we note that while the vector Stark shift is non-zero at large detunings,

the scalar-to-vector ratio scales as δ. At high scalar-to-vector ratios, two effects are

important. First, the effect of the curvature of the gaussian envelope of the lattice

beam, which is usually negligible, is given by the scalar Stark shift, and so becomes

dominant at large δ. In addition, if we have any polarization impurity when we are

attempting to separate the sublattices by π, this will lead to a small intensity lattice

whose strength scales with the scalar Stark shift. Therefore, at large detunings, we
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are extremely sensitive to polarization fluctuations or impurities, leading to a practial

upper limit on the detuning at which we can work.

5.2 Spin-1 Heisenberg Hamiltonian Phase Diagram

Before going into the details of the experiment, we wish to discuss the phase diagram

of our system, as well as the states that are available to us, the xy-ferromagnet and

the spin Mott insulator. Following [40], we can make the ansatz that the ground state

wavefunction of the spin-1 Heisenberg Hamiltonian will have the form

|Ψ〉 =
∏

j

(

cos

(

θ

2

)

|0〉j + eiη sin

(

θ

2

)

(

eiφ cos
(χ

2

)

|1〉j + e−iφ sin
(χ

2

)

|−1〉j
)

)

.

(5.12)

We wish to look for the phase transition between the xy-ferromagnet, which is a

spin superfluid, and the spin Mott insulator, so in analogy with charge superfluids,

which use 〈a〉 as their order prarameter, we look at

〈

S−
j

〉

=
1√
2
eiη sin θ

(

e−iφ sin
(χ

2

)

+ eiφ cos
(χ

2

))

(5.13)

and define the order parameter ψ = sin θ. We then plug our ansatz into the Hamil-

tonian to get the energy functional

E =− J⊥
2

sin2 θ (1 + sinχ cos 2η)− Jz sin
4 θ

2
cos2 χ+ u sin2 θ

2
− h sin2 θ

2
cosχ

=− J⊥
2
ψ2 (1 + sinχ cos 2η)− Jz

(

1−
√

1− ψ2
)2

cos2 χ+ (u− h cosχ)
(

1−
√

1− ψ2
)

=

(

−J⊥
2

(1 + sinχ cos 2η) +
u

4
− h

4
cosχ

)

ψ2,

(5.14)

where in the last line, we have dropped all terms higher order than ψ2. Our experi-

ments are done with equal |↑〉 and |↓〉 atom number, so we can set h = 0. In addition,

we see that sinχ cos 2η is bounded in [−1, 1] , and so the energy is minimized when

sinχ cos 2η = 1 and

E =
(

−J⊥ +
u

4

)

ψ2. (5.15)
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Figure 5-2: (a) Phase diagram of the spin-1 Heisenberg Hamiltonian with DMRG
calculations from [39]. The color scale gives the calculated gap in units of t for a
system of 12 particles on 6 sites. (b) At high U↑↓, u is small and the ground state is
an xy-ferromagnet, with a superposition of |0〉 and |±1〉 on each lattice site. (c) When
U↑↓ is small, u dominates the system and the ground state is a spin Mott insulator,
with |0〉 on every site.

The phase transition occurs where the energy switches from being minimized by ψ = 0

to being minimized by a non-zero ψ, or in other words, when

J⊥
u

=
1

4
, (5.16)

which is the black line plotted in Figure 5-2a, along with DMRG calculations from

[39]. We should note that the DMRG calculations give a phase transition at a higher

J⊥/u than the mean field calculations done here, but this is not surprising because

mean field calculations are known to be innacurate for one-dimensional systems.

5.2.1 xy-Ferromagnet

The variational ansatz, despite its slight disagreement with some DMRG calculations,

provides intuition for the form of the wavefunction and can be used to calculate

observables useful for our experiment. We first want to look at the properties of the

“deep” xy-ferromagnet.
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First, we set χ = π/2 and η = 0, which minimize Equation 5.14 as discussed

above. For the deep xy-ferromagnet, the order parameter ψ is maximized, and since

ψ = sin θ, we set θ = π, giving us a wavefunction of

|ψxy〉 =
∏

j

(

1√
2
|0〉j +

1√
2

(

eiφ√
2
|1〉j +

e−iφ

√
2
|−1〉j

))

. (5.17)

From this, we immediately see that the population on any site is in a superposition

of |0〉 and |±1〉, with weights 1/2, 1/4, and 1/4, respectively. We also see that there

is a free phase φ, which does not appear in the energy function Equation 5.14. This

leads to Goldstone modes and gapless excitations from long-wavelength variations in

φ across the system, and thus Equation 5.17 gives the ground state when all φj are

equal. In order to get a better intuition of the form of these excitations, we can write

the wavefunction in the atomic basis

|ψxy〉 =
∏

j

[

(

eiφj/2 |↑〉+ e−iφj/2 |↓〉
)

√
2

⊗
(

eiφj/2 |↑〉+ e−iφj/2 |↓〉
)

√
2

]

. (5.18)

From this, it is clear that the xy-ferromagnetic ground state has exactly two atoms

on a site, each with a spin pointing along the equator of the Bloch sphere with a

direction given by φ. Thus, variations in φ should be interpreted as gapless spin

waves, and we can think of the xy-ferromagnet as a superfluid in the spin sector.

Interestingly, the state always has exactly two atoms per site, and normal charge

tunneling is forbidden, so the state is still a charge insulator. Therefore, the xy-

ferromagnet shows spin-charge separation, a very unusual and interesting property.

5.2.2 Spin Mott

The xy-ferromagnet occurs in both the spin-1/2 and the spin-1 Heisenberg Hamil-

tonian, but we chose to implement the spin-1 version for the following state, which

occurs when the
(

Sz
j

)2
term is dominant. We call this state the spin Mott, and in

the same way that the xy-ferromagnet is a superfluid in spin space, this is a Mott

91



insulator. Deep in the spin Mott, the wavefunction is given by

|ψ〉 =
∏

j

|0〉j =
∏

j

1√
2

(

|↑, ↓〉j + |↓, ↑〉j
)

(5.19)

and the state has a gap of u.

The form of the ground state is clearest in the limit of u = U , or when U↑↓ = 0,

which occurs when the σ+ and σ− lattices are offset by π. Then, we can think of the

system as two interleaved, but non-interacting Mott insulators, each with exactly one

atom per site. It is obvious then that we must have exactly one atom of each type

per site, and that we are protected by the normal Mott insulator gap U , which should

make adiabatic ramps into the spin Mott easier than into the xy-ferromagnet.

In our experimental system, we have an additional harmonic confining potential,

which forces us to use the local density approximation. Thus, when the center of the

cloud is in the spin Mott state, it will be surrounded by a superfluid, which has no

gap. For a system in thermal equilbrium, entropy will be pushed from the gapped

to the gapless part of the cloud, leaving the center at a locally lower entropy than

average. This acts as additional cooling if we are later able to selectively measure the

Mott insulating shell only.

5.3 Experiment

Our goal is to ramp into the ground state of the xy-ferromagnet by using the spin Mott

insulator as a cold starting point. We start with a BEC of |F = 1,mf = −1〉 atoms in

a bias field of ∼9 G, after using a dimple trap and side evaporation to precisely control

the atom number. We then convert the atoms into an equal mixture of |1, 1〉 = |↑〉
and |1,−1〉 = |↓〉 atoms via two Landau-Zener transitions through |2, 0〉 . A three-

dimensional lattice is ramped up to take the system into a Mott insulating state. The

two transverse arms are made by spin-independent 1064 nm beams, while the lattice

arm along the direction of the magnetic field bias is our spin-dependent lattice. We use

a Ti-sapphire laser with a wide tuning range to create the spin-dependent lattice and
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determine the separation between the σ+ and σ− sublattices by one of the methods

discussed in Section 5.1.1. We can then move the sublattices to ramp U↑↓/U through

the phase diagram.

5.3.1 On-Site Correlations

Once we have prepared a state, we first wish to measure the on-site correlations. For

this, we will ignore the phases φj and look only at the spin population on a site.

Since we know that we have an equal number of |↑〉 and |↓〉 atoms, measuring the

fraction of sites that are in |0〉 will also tell us how many are in |±1〉 . We also need to

note that because the harmonic traps cause density variation across the cloud, not all

atoms are in an n = 2 Mott insulating state. Thus, we need to measure the fraction

of atoms in |0〉 relative to those in sites which have exactly two atoms, which we call

the “spin-paired doublon fraction,” or SPDF.

Figure 5-3 demonstrates how we measure the SPDF in three different experimental

runs. At the end of each run, we ramp up the lattice height and merge the spin-

dependent sublattices together, projecting the system to a set of independent sites,

each with a fixed atom number and spin configuration. In the first run, we measure

the total atom number N using an intrap absorption image. For the second run, we

want to measure the number of atoms in |0〉. This is done through the use of a lossy

Feshbach resonance [107, 108]. We use an RF sweep to convert the |1,−1〉 atoms to

|2,−2〉, which have a Feshbach resonance with |1, 1〉 at 9.045 G. We then sweep the

bias field to this value and modulate it for 25 ms. During this time, the sites that

started in |0〉 (i.e. the sites with one atom of each spin) will decay through Feshbach

loss, while the |±1〉 sites stay stable. Measuring the remaining atom number and

subtracting from N gives us the number of atoms in |0〉 . Finally, we need to measure

the fraction of atoms that are on an n = 2 site. We first use an RF sweep to flip

all of the |1,−1〉 atoms to |2, 0〉, which has a lossy Feshbach resonance with |1, 1〉 at

9.091 G. As before, we shift and modulate the bias field, but that is not enough to

kill all of the n = 2 sites, so we additionally perform about ten 50:50 Landau-Zener

sweeps between |1, 1〉 and |2, 0〉 . If a site started in |0〉 , then it will decay after the
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Figure 5-3: Description of our measurement for on-site correlations. (a) To measure
the spin-paired doublon fraction (SPDF), we used three experimental runs. First, we
measure the total atom number. In the second run, we flip the |1,−1〉 atoms into
|2,−2〉, which has a lossy Feshbach resonance with |1, 1〉, so all of the sites with one
spin of each type will decay. For the third run, we flip the |1,−1〉 atoms into |2, 0〉
and then perform several incomplete Landau-Zener sweeps between it an |1, 1〉. This
causes all of the sites with two atoms to decay. (b) Here we plot the atom number
remaining as a function of hold time during the Feshbach loss process for a spin Mott
initial state. We see that for both of the processes, the loss saturates by 10-15 ms,
which is much shorter than any other relevant time scales in the system.

first sweep. On the other hand, a site that started in |±1〉 has a 50% chance to turn

have one of each spin and therefore decay after a 50:50 Landau-Zener sweep. After

the ten sweeps, all but a negligible fraction ((1/2)10 ∼ 0.1%) of the n = 2 sites have

decayed, while n = 1 sites are unaffected. Again, by measuring the atom number

remaining and subtracting from N , we can get the total number of atoms in n = 2

sites. The ratio of these two results gives us the SPDF.

There are three important possible results that we could get when we measure the

SPDF. First, look at a system in a thermal state with a temperature T, larger than the

Heisenberg energy scales, but lower than the Mott insulator gap, u, J⊥, Jz � T � U.

Then the three possible spin states should be equally populated, and the SPDF will be

1/3. For a spin Mott insulator or an xy-ferromagnet, the wavefunctions from Section

5.2 give an SPDF of 1 and 1/2 respectively.
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5.3.2 Off-Site Correlations

While the spin Mott is a relatively simple system, with no off-site correlations, much

of the xy-ferromagnet’s interesting properties come from offsite correlations. Recall

that the ground state wavefunction is

|ψxy〉 =
∏

j

[

1√
2
|0〉+ 1√

2

(

eiφj

√
2
|1〉+ e−iφj

√
2

|−1〉
)]

. (5.20)

If all of the φj are equal, then we are in the ground state. On the other hand, non-

constant φj are caused by some excitations or spin waves. We can quantify the level

of excitation with the spin correlation
〈

S+
0 S

−
j + S−

0 S
+
j

〉

. There are two ways in which

we can measure the correlation length.

Fluctuation Analysis

To understand the first way to measure correlation length, write the wavefunction in

the atomic basis

|ψxy〉 =
∏

j

[

(

eiφj/2 |↑〉+ e−iφj/2 |↓〉
)

√
2

⊗
(

eiφj/2 |↑〉+ e−iφj/2 |↓〉
)

√
2

]

(5.21)

and note that we can interpret this wavefunction as having two atoms on each site,

each of which is on the equator of the Bloch sphere, with a direction given by φj.

To measure the correlation length, we apply a π/2-pulse and measure the resulting

polarization, defined as (N↑ −N↓) /N. Even in the perfect case of constant φj across

the cloud, the result will be random, as it depends on φmw − φj, where φmw is the

uncontrolled phase given by our microwave source and φj is spontaneously chosen

by the system. However, looking at the fluctuations in the polarization over many

iterations can tell us the number of domains and therefore the correlation length.

Each domain, after the π/2-pulse, becomes a patch of constant polarization. Since

the domains are uncorrelated, the fluctuation of the average polarization will scale as

1/
√
Ndomains ∼

√
lcorr, where lcorr is the correlation length. Note that other fluctua-

tions (e.g. fluctuations in initial polarization) will add to this measure, and so this
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can only give us an upper bound on the correlation length.

Arbitrary Order Spin Correlations

While the above method can give us a measure of the correlation length, it makes

no distinction between true random domains and something like a phase gradient

caused by a slight magnetic field gradient. In order to distinguish between the two,

we present a method that uses the spin-dependent lattice to measure arbitrary order

spin correlation functions in an n = 1 xy-ferromagnet.

Look at the wavefunction at sites 0 and j of the xy-ferromagnet

|ψxy〉 =
eiφ0 |↑〉0 + |↓〉0

2
⊗
ei(φ0+δ) |↑〉j + |↓〉j

2
⊗ |ψelse〉 (5.22)

where δ = φj−φ0 and |ψelse〉 is the wavefunction on all sites except for 0 and j. Then

the spin correlation can be related to δ as

CS =
〈

S+
0 S

−
j + S−

0 S
+
j

〉

=
eiδ

4
+
e−iδ

4

=
cos(δ)

2
.

(5.23)

We define Rπ/2 to be a π/2-rotation operator, and the shift operator Sj to be the

operator that shifts |↓〉 atoms over by j sites, so that |↓〉 atoms that start on site k end

up at the same position as |↑〉 atoms starting at site k + j. This can be implemented

by adding 2πj to the phase difference between σ+ and σ− lattices [109]. Finally,

we denote the effect of interaction term of the Bose Hubbard Hamiltonian W (t) =

exp[−iU∑

k (n↑,k + n↓,k) ((n↑,k + n↓,k)− 1)] , where we have assumed that U↑↓ = U,

as is valid when the phase difference between the sublattices is a multiple of 2π.

We can measure δ by use of a Ramsey-style sequence:

|ψf〉 = Rπ/2S
†
jW (t)SjRπ/2 |ψxy〉 . (5.24)
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Let us go step-by-step to understand this sequence. First, the π/2-rotation trans-

forms the state on each site into a mixture of |↑〉 and |↓〉 with weights sin2(φj/2)

and cos2(φj/2) , respectively. We have converted phase information into population

information. W (t)Sj allows the |↓〉 component on site 0 to interact with the |↑〉
component on site j. If there is a non-zero δ, then the shift operation will move more

atoms away from site j and the site receives from site 0 or vice versa. Then, since

the action of W (t) depends only on the total atom number per site, a phase will be

imparted that directly depends on the value of δ. We then shift the lattice back,

and perform a second π/2-rotation, which converts the phase information created by

W (t) into population on site 0.

Measuring the polarization on site 0 gives us

〈

n↑,0 − n↓,0

n↑,0 + n↓,0

〉

=−cos2
[

φ0 + δ

2

]

sin[Ut] sin[φ0]

=
sin[δ]

4

(5.25)

where for the second line we have assumed that t is chosen such that sin[Ut] = 1,

and we have averaged over φ0. Thus, we can measure spin correlations to arbitrary

distances, limited only by how quickly we can apply the shift operator without losing

phase coherence.

5.4 Results

Our first experiments looked at the on-site spin correlations of a Mott insulator with

varying distances between the spin-dependent sublattices. The spin-dependent lattice

was given a polarization structure using the liquid crystal phase retarder and quarter-

waveplate setup discussed in Section 5.1.1, and was held at a wavelength of 810 nm,

slightly red-detuned of both the D1 and D2 line. With the liquid crystal phase

retardance held constant, we raised up a three-dimensional lattice to 25 ER in the

transverse directions, and 10 ER in the spin-dependent lattice direction. In Figure 5-

4, we plot the spin-paired doublon fraction versus the ratio of inter-spin to intra-spin
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Figure 5-4: Spin paired doublon fraction after ramping directly into the Mott insu-
lator at varying U↑↓/U . For this experimental run, we used two 25 ER lattices in the
transverse directions and an 10 ER spin-dependent lattice. The dashed line marks the
expected phase transition point calculated in [39]. We see that deep in the spin Mott,
we have a SPDF near one, and that at U↑↓ = U , we have a thermal Mott insulator.

interactions U↑↓/U at the final lattice depth.

Near U↑↓/U = 0, we are in the deep spin Mott, and we see that the SPDF is

approximately 1. The phase transition from a spin Mott to an xy-ferromagnet occurs

at U↑↓/U = 0.94 [39] and is marked by the dashed line. While we would expect the

SPDF to stay near one up until the phase transition, we instead see that it starts

to drop around U↑↓/U = 0.4, indicating that our ramp is not perfectly adiabatic for

small u. On the other end, at U↑↓/U = 1, if we were perfectly cold, we would be in

the xy-ferromagnet, but we instead achieve a SPDF that is consistent with 1/3, a

thermal Mott insulator, as discussed above.

Instead, in order to prepare the xy-ferromagnet, we want to use the spin Mott

as a cold starting state. To do this, we first ramp the lattices up in the deep spin

Mott U↑↓/U = 0 configuration before ramping the liquid crystal retardance and spin-

dependent lattice intensity to keep the lattice depth constant but change the sublattice

separation and therefore U↑↓/U. In Figure 5-5, we plot the final SPDF at different final

U↑↓/U. The SPDF begins to drop before the phase transition, but at U↑↓/U = 0.6,

rather than 0.4, and the SPDF at U↑↓/U = 1 is between 1/3 and the 1/2 that we
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Figure 5-5: Spin paired doublon fraction after ramping from the spin Mott insulator
to varying U↑↓/U . As before, we used two 25 ER lattices in the transverse directions
and an 10 ER spin-dependent lattice, and the dashed line marks the expected phase
transition point calculated in [39]. At U↑↓ = U , we see that the SPDF is between 1/3
and 1/2, which tells us that we are doing some cooling with this sequence, but not
enough to be truly in the xy-ferromagnet.

expect for an xy-ferromagnet. Our sequence is doing some cooling, but not enough.

At first, this is confusing, since we can consistently make what appear to be

high-purity spin Mott insulators. However, our measurements until now have looked

exclusively at spin temperature. The paradigmatic charge excitation in a Mott insu-

lator is a “hole,” or a site with one fewer atom than expected. Our spin measurement

procedure cannot distinguish a hole from a site that is in the surrounding superfluid

or n = 1 shell, and therefore normalizes them out. First, look at the effect of a hole

in the deep spin Mott, as in Figure 5-6a. In this regime, we can think of the system

as two interleaved n = 1 Mott insulators — one for each spin. Therefore, a hole is

simply an empty site in one of these two Mott insulators, and that site is unmeasured.

A hole on the |↑〉 sublattice can only tunnel to another site on that lattice, and so

also with a |↓〉 hole. Therefore, a hole tunneling event will simply change the position

of the excitation, but will not change the total number of sites with |0〉 on them.

Figure 5-6b shows the effect of holes for a shallow spin Mott or an xy-ferromagnet.

If u is comparable to the hole bandwidth ∼ 4t, then from a site next to a hole, either

a |↑〉 atom or a |↓〉 atom can tunnel to fill the hole, regardless of the second atom
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Figure 5-6: Cartoon of the effect of hole tunneling on the measured SPDF. (a) In
a deep spin Mott, a hole tunneling event will not change the SPDF, and therefore
charge and spin excitations are decoupled. (b) When u / 4t, some tunneling events
(top) preserve SPDF, but others (bottom) can cause a spin excitation.

sitting on the hole site. If the tunneling atom happens to be the one “missing” on the

other site, then the SPDF is unchanged. However, if it is the wrong spin state, this

will create a spin excitation.

To measure charge excitations, after creating the state we are interested in, we

adiabatically ramp the lattices down to 0 ER and perform time-of-flight imaging. We

fit to a bimodal distribution and extract the condensate fraction, which is a measure

of the entropy in the system. In Figure 5-7 we see the measured condensate fraction

for one- and two-component clouds at various spin-dependent sublattice differences.

We note that both adding a second spin component and moving towards U↑↓/U = 0

significantly hurt the condensate fraction.

In order to get a quantitative understanding of the numbers involved in Figure

5-7, we calculate the relationship between the measured condensate fraction CF , and

the hole fraction at the center of the Mott insulator. For an ideal BEC of N atoms,
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Figure 5-7: Initial condensate fraction measurements after ramping back to BEC. For
these measurements, we ramped up a three-dimensional 20 ER lattice, held for 10 ms,
and ramped back to BEC before measuring the condensate fraction in time-of-flight.
The spin-dependent lattice was made with 810 nm wavelength light, and we varied
the phase difference between the σ+ and σ− sublattices. At a phase difference of 0,
U↑↓ = U , while a phase difference of π corresponds to U↑↓ = 0. We report condensate
fractions measured for one component (blue) and two component (red) systems.
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Figure 5-8: Calculated excitation fraction at the center of the Mott insulator as a
function of measured condensate fraction when ramped down to BEC.
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the total entropy is given by

S = 3.602 kBN (1− CF ) . (5.26)

To find the entropy associated with the Mott insulator, we ignore tunneling and look

at each individual site, which has an energy En = U
2
n (n− 1)− nµ. We can find the

partition function and average filling for a given temperature and chemical potential:

Z =
∞
∑

n=0

e
− En

kBT

〈n〉 =
∑∞

n=0 ne
− En

kBT

Z
.

(5.27)

To find the entropy on a given site, we recall

F =− kBT ln[Z]

S =− kB
∂F

∂T
.

(5.28)

Finally, given a known harmonic confinement, we can make the local density approx-

imation µ→ µ− V (~r) and sum over all lattice sites to get a total entropy and atom

number. We numerically find the chemical potential and temperature required to

have the entropy and atom number in the Mott insulator match that which is mea-

sured in the BEC. From there, it is easy to find the excitation fraction at the center of

the Mott insulator. Figure 5-8 plots the Mott insulator excitation fraction versus the

measured condensate fraction for representative parameters for a single-component

n = 1 Mott insulator, which should be equivalent to our system at U↑↓/U = 0. We

see that a measured condensate fraction of ∼ 0.65 is equivalent to about 10% charge

excitation fraction in the Mott insulator, and that lower condensate fractions are

correspondingly worse.

Over the past year, we have performed several upgrades to the experimental se-

quence and apparatus, which have led to increased condensate fraction in the single

component system. In Figure 5-9, we plot the condensate lifetime of the system with
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Figure 5-9: Condensate fraction measurements after experimental upgrades. Here,
we plot the condensate fraction lifetime measurements for a one-component system
with 20 ER in all three directions and a spin-dependent lattice wavelength of 810.
These lifetimes were measured after the upgrades discussed in the text.

all three lattices at 20 ER, and a spin-dependent lattice wavelength of 810 nm. The

starting condensate fraction and 1/e lifetime at a phase shift of 0 are 0.91 and 1,400

ms, respectively, and are 0.81 and 280 ms for a phase shift of π. Both of these are

notably better than the previous condensate fractions, leading us to believe that we

may be able to ramp into the xy-ferromagnet as described above.

The most important upgrades are as follows:

• We empirically found the optimal shape for a piecewise linear lattice ramp with

ten pieces. The optimal ramp closely matches a form of exp
[

(t/τ)7
]

, which we

use in order to reduce the search space to one parameter whenever we change

the lattice depth or sublattice phase.

• We set all lenses at a small angle to the optical axis, to ensure that stray

reflections from the lens do not hit the atoms.

• We ensure that all dipole beams, lattice beams, and retro beams are aligned to

the center of the cloud to within 2 µm.

• We added passive low frequency vibration isolation with a corner frequency ∼10

Hz to the breadboard that supports the two non-vertical retroreflection mirrors.
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The last two items seem initially surprising, since the conventional wisdom is that a

Mott insulator is robust against any noise with a frequency less than its gap at U.

While this is true, the initial purity of a Mott insulator state is extremely sensitive

to excitations during the lattice ramp up, where we cross a phase transition and the

excitation gaps close.

5.5 Spontaneous Scattering

It appears that in the spin Mott configuration, when the lattice intensity is highest,

the condensate fraction lifetime is limited in part by spontaneous scattering, which

is a process where an atom will accept a photon from the spin-dependent lattice to

go into a virtual excited state, which then decays to some spin state (maybe not

the same one) and emits a real photon. The emitted photon can destroy any phase

coherence the atom initially had and can scatter atoms into higher bands. For a single

intermediate state, the scattering rate takes the form

R =
8πα2a40I

3~c2
ω3 |Mi→f |2 (5.29)

where α and a0 are the fine structure constant and the Bohr radius. The local

intensity of the lattice beam and its frequency are denoted I and ω, and the second

order perturbation theory matrix element for the transition from intial spin state i

to the final spin state f is Mi→f . It is tempting to treat scattering from the D1 and

D2 lines separately, and simply add the rates given by analyzing each one by itself.

This will work for large detunings, but is not valid close to the atomic resonance.

For a set i and f , we must linearly add the matrix elements associated with different

intermediate states, and then square the magnitude. To find the total scattering rate

of an atom in state i, we can then add in quadrature the matrix elements associated

with different final states f , as these processes cannot interfere.

For far detunings δ, the scattering rate drops as ∼ 1/δ2, which is the same scaling

as the vector AC Stark shift discussed in Section 5.1.1. This seems to imply that
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Figure 5-10: Calculated photon scattering rate of an atom sitting in a purely vector
AC Stark shift lattice of 1 ER, 780 nm. We see that at large detunings, the scattering
rate is flat with wavelength, but near resonance there is non-trivial structure and
optimization to be had.

the spin-dependent lattice wavelength does not matter, and that the heating rate will

always be the same. The analysis is more subtle for several reasons. First, look at

Figure 5-10, which shows the calculated scattering rate for a vector Stark shift of 1

ER, 780 nm. At wavelengths greater than ∼ 820 nm, the scattering rate dependence on

wavelength is flat, but closer to resonance, we can find scattering rates that are much

greater.

In addition, not all spontaneous scattering is the same. As shown in Figure 5-11, at

far detunings, most of the scattering is Rayleigh scattering, which preserves the atomic

spin and will only add band excitations. On the other hand, at closer detunings and

between the D1 and D2 lines, scattering is dominated by Raman scattering, where

the atom is flipped to a different spin state. If the new spin state has a different

magnetic moment than the initial spin state, after scattering, the atom will be sitting

at the maximum rather than the minimum of the potential. This highly excited state

has much more energy than a band excitation.

Finally, although much of our work so far has been in the fully separated regime of

U↑↓/U = 0, we have seen evidence that we can make a relatively cold spin Mott with

U↑↓/U up to at least 0.4. For this configuration, the lattice potential has both vector
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Figure 5-11: Scattering fraction of Raman and Rayleigh scatteing off of a σ− lat-
tice. We see that when the lattice wavelength is between the D1 and D2 lines,
spin-changing (Raman) scattering events are dominant, while at far detunings, spin-
preserving (Rayleigh) scattering dominates.

and scalar Stark shift components, and so the required intensity scales somewhere

between δ and δ2, leading to a scattering rate that decreases sub-linearly with δ at far

detunings. Therefore, we believe that the optimal wavelength for the spin-dependent

lattice is as far detuned as possible given power constraints and the curvature and

stability considerations in Section 5.1.1.

5.6 Conclusion

In this chapter, I have presented a method for using a two-component Mott insulator

and a spin-dependent lattice to create a highly tunable spin-1 Heisenberg Hamilto-

nian. We have already shown that we can create a spin Mott insulator that is cold

in spin space and discussed possible upgrades to reduce the charge excitations. Once

this is done, we will be able to use the measures discussed here to read out both

on-site and off-site spin correlations through the clever use of RF fields, Feshbach

resonances, and the spin-dependent lattice.

For future work, there are two main directions that could increase the flexibility

and stability of the system. First, we are currently working on designing and installing
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a quantum gas microscope that will have single site resolution. In addition to single-

site readout, this allows us to project arbitrary potentials, which can be used as a

“cookie cutter” to remove entropy from the system once the spin Mott has pushed it

into the superfluid wings.

The second possible upgrade is the addition of a large gradient along the spin-

dependent lattice direction. If we are in the spin Mott state, and then quickly apply

a gradient ∆ � t, normal tunneling is frozen out. This will localize all the charge

excitations, which travel with t and will not allow entropy flow from the superfluid

edges to the center. In addition, for a strong enough tilt, the first excited band will

be strongly coupled to the continuum, and any band excitations will escape. This

will mean that instead of depositing a bandwidth and possibly a bandgap of energy

and the corresponding entropy into the system, each band excitation will result in

only one lost particle, which is much lower entropy. Finally, we note that this tilt,

while it blocks normal tunneling, still allows for superexchange. Instead of the normal

J = t2/U, the superexchange tunneling will be renormalized to t2/ (U −∆), which

can be much higher than the normal J and even change sign. This will allow us to

explore new regimes of the spin-1 Heisenberg Hamiltonian phase space, including the

possibility of observing the Haldane phase [110].
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Chapter 6

Conclusion

The work in this thesis has covered applications of ultracold bosons in optical lattices

to both precision measurement and quantum simulation. It is unified in its focus on

the phase coherence between different lattice sites.

Chapter 4 presented the work most closely related to precision measurement and

had the most obvious connection to phase coherence. When condensates sitting on

different sites in a lattice are separated, either by applying a strong energy gradient

or by rapidly increasing the lattice depth, each condensate’s phase evolves indepen-

dently of the others, with a phase evolution given by the local energy. Since in

a condensate, interactions are generally non-negligible, density fluctuations lead to

noise in the phase evolution and thereby dephasing between the condensates on sep-

arate sites. We presented and explored the technique of superfluid shielding, which

uses the interactions with a superfluid bath to cancel out the effects of density fluc-

tuations, which allows the separated condensates to maintain phase coherence. We

have demonstrated that superfluid shielding can protect against fundamental pro-

jection noise as well as common-mode external curvature, and this method should

allow for greater coherence in BEC atom interferometers. In addition, the system

used here, where one spin feels a strong magnetic tilt and the other does not, should

have dynamics that are interesting in themselves, like localization of the superfluid

component or potentially a spin-dependent synthetic gauge field.

In Chapters 2 and 5, we present work on quantum simulation. Chapter 2 dis-
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cusses our simulation of the Harper-Hofstadter Hamiltonian, which describes charged

particles in a high magnetic field. The ground state of a simple lattice superfluid,

without a magnetic field, has a simple phase pattern — every site has a coherent state

of atoms on it, all of which have the same phase. On the other hand, the ground

state of a Harper superfluid has the same constant density, but a complex phase pat-

tern, like that of a vortex lattice. In our system, this phase pattern is given by the

complex tunneling that we have added to the system using a tilt and laser-assisted

tunneling. However, in general, if we start with a trivial superfluid and immediately

switch to a novel Hamiltonian, we will end in some highly excited mixture of states

without phase coherence between lattice sites. We have explored two ways to get

around this and transform a trivial superfluid into a ground-state Harper superfluid.

In the first, we use a two-dimensional lattice, so that the condensate on each site is

a long one-dimensional tube. Immediately after switching from the Bose-Hubbard

to the Harper-Hofstadter Hamiltonian, there is no phase coherence between the lat-

tice sites, as we feared. However, the excitations in the lattice direction quickly

thermalize with the tube direction, which has many low-lying excited states. Each

tube needs only accept ∼1 kB of entropy to fully restore phase coherence, and so

we still achieve a cold sample. This method allowed us to study the single particle

physics of the Hamiltonian, including demonstrating the gauge-dependent nature of

some observables. To observe the result of strong interactions, we needed a three-

dimensional lattice, so this loading technique was unavailable. Instead, we created

a many-body adiabatic sequence. In this loading sequence, we started with a trivial

superfluid and adiabatically ramped into the deep Mott insulator, where the ground

state has a definite number on each site, and therefore no well-defined phase. Then,

we switch the Hamiltonian to the Harper-Hofstadter Hamiltonian with interactions,

which also has a Mott insulating regime. From there, we “melt” the Mott insulator

into a relatively cold Harper superfluid. This allowed us to study the lifetime of the

interacting Harper superfluid near the Mott insulating transtion and will be a useful

tool in future simulations of interacting systems.

The work on simulating the spin-1 Heisenberg model is discussed in Chapter 5.

110



Since phase is a continuous variable, the presence of phase correlations is generally

associated with gapless excitations. Because we work exclusively in a Mott insulating

shell, one may think that there is no phase coherence, and so we have some measure

of protection. While this is true in the charge sector, the xy-ferromagnet has a phase

in the spin sector. One can picture the ground state xy-ferromagnet as having a spin

on every lattice site pointing in the same direction along the equator of the Bloch

sphere. The direction within the plane is given by the phase, so any phase gradients or

fluctuations are interpreted as spin waves. These gapless excitations make it difficult

to adiabatically ramp directly from a BEC into the xy-ferromagnet, so we propose

and study a ramping sequence similar to the many-body adiabatic sequence used

above. We first wish to ramp from a BEC into the spin Mott insulator, which has no

phase coherence in either spin or charge space and has a gapped excitation spectrum.

This protects our system from non-adiabaticities and noise during the initial ramp-up.

Then, once we are in the spin Mott phase, we wish to ramp into the xy-ferromagnet,

where phase correlations will be created by superexchange processes. In this work, we

have focused on the first part, and have begun by creating a spin Mott insulator that

is cold in spin space. Technical upgrades, as discussed in Chapter 5, have reduced

our charge temperature to the point that adiabatic ramps to the xy-ferromagnet are

in reach.

In the near future, our lab is planning a major upgrade — adding a quantum gas

microscope to the setup, which will greatly expand our capabilities. We are using a

custom-made objective with an NA of 0.8 and a long working distance of 11 mm. The

objective will sit directly on the top window, which also provides a reference for the

vertical lattice. This removes three degrees of freedom from the objective alignment

(focus and two angles from the optical axis) and so should be more stable against

long-term alignment drifts.

The most obvious application of the quantum gas microscope is for single-site

imaging. By allowing us to directly image particle-hole excitations, it will speed the

optimization of lattice ramps and Mott insulator preparation. In addition, single-

site readout will make measuring nearest neighbor correlations in the xy-ferromagnet
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much easier. Single-site imaging is not the only benefit of a quantum gas microcsope

— perhaps the more important one is that it allows for single-site addressing of the

applied potential. Ramping to a Mott insulator in a harmonic trap pushes entropy

out into the superfluid wings of the system. With a microscope, we can add a sharp

wall at the edge of the Mott insulating region of the cloud to act as a “cookie-cutter”

and selectively remove the high entropy superfluid wings, leaving us with an even

colder system to start our simulations in. Another use of projected potential walls

is to create sharp edges, which will allow us to image the topological edge currents

associated with a Harper superfluid. By combining our lab’s expertise in laser-assisted

tunneling and spin-dependent lattices with the new tools provided by a microscope,

we will open new doors in the realm of quantum simulation.
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Appendix A

Lattice Noise Measurements

In order to achieve a low entropy in our spin Mott insulating state, we must minimize

excitations driven by external noise. In this appendix, I report on emprical studies

of noise coming from our lattices, as measured in Spring 2018.

We assume that all of our heating in the deep lattice is parametric heating of

separate harmonic oscillators, with frequency ω0, equal to the bandgap. Then we are

only sensitive to intensity noise at 2ω0 and phase noise at ω0.

The calculated excitation rates R0→2 and R0→1 are given by

R0→2 =
πω2

0

8
S (2ω0) (A.1)

R0→1 =
πmω3

0

2~
Sx (ω0) (A.2)

where S (ω) is the power spectral density of the relative intensity noise of the laser

measured in 1/s−1, and Sx (ω) is the power spectral density of the phase noise of the

laser and retro mirror, measured in nm2/s−1.
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Figure A-1: Intensity spectrum after injecting noise at various frequencies. This plot
shows that our injection is linear up to at least tens of kiloHertz.

A.1 Empirical Measure of Condensate Fraction De-

cay

Regardless of the calculations that we do, an empirical way to tell whether we are

limited by noise is to first measure the noise present in the system. Then add noise

until the injected noise is a few dB above background, and see if this affects the

coherence lifetime. Note that for the phase noise measurements so far, we have

measured with the interferometer and the mirror on the same breadboard, so there

may be common-mode vibration that we do not measure.

A.1.1 Intensity Noise

We inject intensity noise into the closet arm (1064 nm light) simply by directly adding

intensity noise to the output of the PID controller of our intensity stabilization. Figure

A-1 shows that this process is linear up to tens of kiloHertz. We see that injecting 0

dBm noise with a 1kHz bandwidth gives a response of about −50 dBc/Hz, while the

background noise is around −110 dBc/Hz at twice the bandgap, which is about 26

kHz for a 19 ER lattice. If we plug these numbers into Equation A.1, we calculate a

rate of 4× 10−3 s−1 for the background noise.

In Figure A-2, we inject intensity noise at twice the bandgap in a 19 ER Mott

Insulator for 100 ms. We see that we have to inject noise above -20 dBm to sig-

nificantly heat our atoms. This corresponds to −70 dBc/Hz, which is 40 dB above
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Figure A-2: Condensate fraction lifetime with intensity noise applied.

Figure A-3: Spectrum after injecting phase noise at -20 dBm at various frequencies.
Note that at 16-20 kHz, we are about 10 dB above background.

background in heating, where, theory predicts an excitation rate of 40 s−1. Since we

needed to inject noise that is so much higher than the background to see an effect,

we can conclude that the intensity noise at the bangap is not the primary heating

source.

A.1.2 High Frequency Phase Noise

In Figure A-3, we see that injecting noise at -20 dBm in boxed white noise from 16-20

kHz gives us noise that is about 10 dB above background in amplitude. The bandgap

for a 1064 nm lattice at 24ER is around 18 kHz, and the background phase noise is

about 3 × 10−5 nm/
√
Hz. If we plug these numbers into Equation A.2, we calculate

a rate of 5× 10−4 s−1.

We measured the lifetime of the condensated fraction with different noise intensi-

ties, as seen in Figure A-4, and fit to exponential decays with lifetimes given in Table

115



Figure A-4: Condensate fraction lifetime with high-frequency phase noise applied.

Table A.1: 1/e lifetimes of a 24ER Mott Insulator with 16-20 kHz noise added.
Noise Intensity (dBm) dB above background Lifetime (ms)
None 0 2480± 170
-25 10 1970± 190
-20 20 990± 90
-10 30 400± 40

A.1. We see that if we go about a factor of ten in amplitude (which should be a factor

of a hundred in heating) above the background, we only get a factor of about two

change in lifetime. If we add a further factor of ten in noise intensity, to -10 dBm, we

get only an additional factor of two in lifetime.

A.1.3 Low Frequency Phase Noise

In Figure A-5, we see that mirrors mounted like the vertical retro have about 10 dB

extra amplitude noise at low frequencies, but are similar to the horizontal-type retro

mirrors at bandgap frequencies. We want to see if this higher low-frequency phase

noise possibly heats the atoms. We can add -12 dBm of phase noise from 0.6-1.3

kHz, which raises the low frequency noise by more than 10 dB in amplitude above

background. As seen in Figure A-6 and Table A.2, we see little increase in the heating

rate when we add -12 dBm noise. When we increase the noise injection by 20 dB in

intensity (which should be a factor of a hundred in heating) we only see a decrease

in lifetime of a factor of four or five.
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Figure A-5: Spectrum after injecting -12 dBm phase noise at low frequencies. The
legend gives the lattice arm-length.

Figure A-6: Condensate fraction lifetime with low-frequency phase noise applied.

Table A.2: 1/e lifetimes of a 20 ER Mott Insulator with 0.6-1.3 kHz noise added.
Noise Intensity (dBm) dB above background Lifetime (ms)
None 0 1890± 170
-12 20 1720± 270
+8 40 390± 100
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A.1.4 Conclusion

Given the above data, we can conclude that intensity noise on the lattices is definitely

not limiting our Mott insulator lifetime. For phase noise both at the bandgap and

at low frequencies, the situation is complicated by the sub-linear scaling that we see

in heating rate. We expect the inverse lifetime to be insensitive to added noise while

the heating rate associated with it is lower than the background heating, and for it

to then scale linearly with the intensity of added noise once we pass the background

threshold. Instead, we see non-zero but strongly sublinear behavior. This may point

to a saturation effect, but further study is needed before definitive statements can be

made.
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Appendix B

Realizing the Harper-Hamiltonian

with Laser-Assisted Tunnneling in

Optical Lattices

This appendix contains a reprint of [22], which was touched on, but not discussed in

detail in the main text.
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Realizing the Harper Hamiltonian with Laser-Assisted Tunneling in Optical Lattices
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We experimentally implement the Harper Hamiltonian for neutral particles in optical lattices using

laser-assisted tunneling and a potential energy gradient provided by gravity or magnetic field gradients.

This Hamiltonian describes the motion of charged particles in strong magnetic fields. Laser-assisted

tunneling processes are characterized by studying the expansion of the atoms in the lattice. The band

structure of this Hamiltonian should display Hofstadter’s butterfly. For fermions, this scheme should

realize the quantum Hall effect and chiral edge states.

DOI: 10.1103/PhysRevLett.111.185302 PACS numbers: 67.85.!d, 03.65.Vf, 03.75.Lm

Systems of charged particles in magnetic fields have led

to many discoveries in science—including both the integer

[1] and the fractional [2,3] quantum Hall effects—and have

become important paradigms of quantummany-body phys-

ics [4]. Generalizations have led to important developments

in condensed matter physics, including topological insula-

tors [5,6], fractional Chern insulators [7,8], and Majorana

fermions [9,10]. At high magnetic fields, exotic new phe-

nomena like the fractal energy spectrum of Hofstadter’s

butterfly [11] are predicted to emerge. Its direct observation

would require an inaccessibly high magnetic field of one

flux quantum per unit cell—corresponding to"10000 T in

a traditional condensed matter system. Recently, some

aspects of Hofstadter’s butterfly were addressed using

superlattices in high magnetic fields [12–15].

Neutral atoms provide an excellent platform to simulate

the physics of charged particles in magnetic fields free

from disorder. Rotating quantum gases realize the limit

of weak magnetic fields, exploiting the equivalence

between the Lorentz force and the Coriolis force. The

observed vortex lattices [16,17] are analogous to magnetic

flux lattices. A more general method to create synthetic

magnetic fields for neutral atoms is based on the insight

that vector potentials introduce spatially varying phases !
into the wave function when the particle propagates ! ¼
H
A $ ds=@, where the charge is included in the vector

potential. For neutral atoms, such a phase structure can

be realized through Berry phases, when two hyperfine

states of the atom are coupled by Raman lasers with

inhomogeneous intensity or detuning [18,19]. This concept

of coupling of two or several internal states to realize

synthetic magnetic fields was also suggested in optical

lattice geometries [20–22]. Here, the crucial element is

laser-assisted hopping between neighboring sites which

imprints the phase of the laser into the atomic wave func-

tion. Alternatively, instead of using Raman laser beams,

lattice modulation techniques can generate complex tun-

neling matrix elements in optical lattices [23,24].

Experimentally, these techniques have been used so far

only to realize staggered magnetic fields [24,25]. In the

Munich experiment, the two internal states in the proposed

schemes [20,22] were replaced by doubling the unit cell of

the optical lattice using superlattices [25].
So far, all proposals for generating high magnetic fields

are based on the coupling of different internal states. For
alkali atoms, this involves different hyperfine states [20].
Spin flips between such states require near-resonant light
which heats up the sample by spontaneous emission. At
least for staggered fluxes, the realizations with lattice
shaking and superlattices demonstrate that internal struc-
ture of the atom is not essential. Here, we suggest and
implement a scheme which realizes the Harper
Hamiltonian [26], a lattice model for charged particles in
magnetic fields, the spectrum of which is the famous
Hofstadter’s butterfly [11]. Our scheme requires only far-
off-resonant lasers and a single internal state. It is an
extension of a scheme suggested by Kolovsky [27], which
was shown to be limited to inhomogeneous fields [28], but
as we show here, an additional momentum transfer in the
laser-assisted hopping process provides a simple solution.
While this work was in progress [29], an identical scheme
was proposed by the Munich group [30]. In this Letter, we
describe the features and implementation of this scheme,
and characterize the laser-assisted hopping process.

We start with the simple Hamiltonian for noninteracting

particles in a 2D cubic lattice

H ¼ !
X

m;n

ðJxâ
y
mþ1;nâm;n þ Jyâ

y
m;nþ1âm;n þ H:c:Þ; (1)

where JxðyÞ describes tunneling in the x (y) direction and

âym;n (âm;n) is the creation (annihilation) operator of a

particle at lattice site (m, n). Tunneling in the x direction

is then suppressed by a linear tilt of energy ' per lattice

site, where'=h is the Bloch oscillation frequency. This tilt

can be created with magnetic field gradients, gravity, or an

ac Stark shift gradient. Resonant tunneling is restored with

two far-detuned Raman beams of two-photon Rabi fre-

quency (, frequency detuning -! ¼ !1 !!2, and mo-

mentum transfer -k ¼ k1 ! k2, as shown in Fig. 1(a).
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Note that the two Raman beams couple different sites but

do not change the internal state of the atoms. For resonant

tunneling -! ¼ '=@, time averaging over rapidly oscillat-

ing terms [20] yields an effective Hamiltonian which is

time independent. As a result, the tilt has disappeared

because, in the dressed atom picture, site (m, n) with j
and k photons in the two Raman beams is degenerate with

site (mþ 1, n) and jþ 1 and k! 1 photons in the two

beams. This effective Hamiltonian describes the system

well, assuming that ' is larger than the bandwidth"J and

smaller than the band gap Egap. In addition, the effects of

power broadening can be avoided if we choose( less than

'. The resulting Hamiltonian is equivalent to one that

describes charged particles on a lattice in a magnetic field

under the tight-binding approximation [11,26]—the

single-band Harper Hamiltonian

H¼!
X

m;n

ðKe!i!m;n âymþ1;nâm;nþJâym;nþ1âm;nþH:c:Þ (2)

with a spatially varying phase !m;n ¼ -k $Rm;n ¼

m!x þ n!y where Rm;n denotes the position of each

lattice site. Solutions in this model are periodic with

respect to the number of flux quanta per unit cell 4. If
the frequencies of the Raman beams are similar to those

used for the optical lattice, one can tune 4 over the full

range between zero and one by adjusting the angle between

the Raman beams, and consequently ky. A similar

Hamiltonian can be realized for the tunneling of phonons

between ion microtraps [31].

The spatially dependent phase imprinted by the Raman

lasers, given by !m;n, can be intuitively understood in a

perturbative regime, where Jpert ¼ Jy and

Kpert ¼
(

2

Z

d2rw)ðr!Rm;nÞe
!i-k$rwðr!Rm;n ! ax̂Þ

¼ Ke!i-k$Rm;n : (3)

Adding up the accumulated phases around a closed path,

one sees that this method leads to an enclosed phase of

!y ¼ -kya per lattice unit cell of area a
2, thus realizing the

Harper Hamiltonian with 4 ¼ !y=27.

In a cubic lattice, the Wannier function wðrÞ factorizes
into wðxÞwðyÞ which are the localized Wannier-Stark

and Wannier wave functions, respectively. The resulting

expression for K ¼ ð(=2Þ
R
dxw)ðxÞe!ikxxwðx! aÞ *

R
dyw)ðyÞe!ikyywðyÞ shows that the momentum transfer

in the x direction is necessary to have a nonvanishing

tunneling matrix element K without changing the internal

state. The x momentum transfer distinguishes our scheme

from Refs. [20,22,27] and contributes to the vector poten-

tial A ¼ ½@ðkyyþ kxxÞ=a,x̂ but does not contribute to the

enclosed flux or the value of the synthetic magnetic fieldB.

Note that this scheme does not realize the simple Landau

gauge for the magnetic field.

For a more comprehensive description, we add the

moving lattice—VRM ¼ (sinð-k $ r!!tÞ—of the two

Raman lasers along with a linear tilt to the Hamiltonian

in Eq. (1). In addition to the off-diagonal laser-assisted

tunneling term, this moving lattice causes a diagonal term,

which is a temporal modulation of the on-site energies. A

unitary transformation, as in Refs. [29,32], leads to a frame

rotating nonuniformly in time and position that eliminates

the diagonal time dependence. For resonant drive ' ¼
@-!, the on-site energies are all equal and vanish while

the remaining off-diagonal coupling has a time-

independent part, leading to the Harper Hamiltonian, as

in Eq. (2). The resulting expressions for K and J are (see

the Supplemental Material [33])

K ¼ (4y0

%

4x1

J1ð5xÞ

5x

þ i40
x1

dJ1ð5xÞ

d5x

&

;

J ¼ JyJ0ð5yÞ; 5i ¼
2(4y04x0

'
sin

'
kia

2

(

;

(4)

where 4i0 ¼ h0j cosðkixiÞj0i is the on-site matrix

element, and 4x1 ¼ h0j sin½kxðx! a=2Þ,j1i and 40
x1 ¼

h0j cos½kxðx! a=2Þ,j1i are the off-diagonal matrix ele-

ments. This result is more general than the case of phase

modulation [32] and the tight-binding limit in

Refs. [30,34], where K is proportional to J1ðxÞ.
We implement the Harper Hamiltonian with each Raman

laser aligned along one of the two lattice directions x and y
corresponding to momentum transfer in both directions of

@kL—the single-photon recoil of the lattice laser. The mag-

netic flux per unit cell resulting from ky ¼ kL is4 ¼ 1=2. In

the tight-binding limit for this momentum transfer,4i0 1 1

(b)

(a)

(c)

FIG. 1 (color online). (a) Raman-assisted tunneling in the

lowest band of a tilted lattice with an energy offset ' between

neighboring sites and two-photon Rabi frequency (.

(b) Experimental geometry to generate uniform magnetic fields

using a pair of far-detuned laser beams and a uniform potential

energy gradient. Tunneling along the x direction with amplitude

K imprints a complex, spatially varying phase !m;n—with site

indices (m, n)—into the system due to the momentum transfer in

the y direction. (c) A schematic depicting the position-dependent

phases of the tunneling process. The equivalent number of flux

quanta per unit cell is 4 ¼ !y=27.
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and 4x1 1 !2Jx=' 2 40
x1, so the resonant tunneling

amplitudes resulting from kx ¼ kL simplify to

K ¼ JxJ1

'
2(

'

(

and J ¼ JyJ0

'
2(

'

(

: (5)

Experimentally, the system is prepared by starting with a

Bose-Einstein condensate of "5* 105 87Rb atoms in the

j2;!2i state in a crossed dipole trap. The Raman lasers are

ramped up to their final intensities in 30 ms at a large

detuning of 200 kHz and are switched to their final detun-

ing after the tilt is applied to the system (see below).

Unwanted interferences between lattice and Raman lasers

are avoided with relative frequency offsets of >30 MHz
using acousto-optic modulators. Next, we adiabatically

load the condensate in 100 ms into a two-dimensional

cubic optical lattice of spacing >latt=2 ¼ 532 nm. For lon-

ger hold times, a weak 2Er lattice beam along the third

direction is simultaneously ramped up to provide addi-

tional confinement. Here, Er ¼ @
2k2L=2m 1 h* 2 kHz is

the single-photon recoil energy. The two-photon Rabi fre-

quency of the moving Raman lattice is determined using

free-space Rabi oscillations and chosen to be considerably

smaller than the static lattice.

After loading the condensate into the lattice, a uniform

potential energy gradient of mga=h 1 1:1 kHz between

adjacent lattice sites is applied by turning off the confining

crossed dipole traps in 20 ms. Alternatively, we have

successfully used a magnetic field gradient to access a

broader range of tilts. The gravitational gradient has the

advantage of a much faster switching time compared to the

magnetic gradient. The cloud widths Bx and By are

obtained by standard absorption imaging along the direc-

tion perpendicular to the 2D lattice.

The essential feature of our implementation of the

Harper Hamiltonian is that tunneling in the x direction is

suppressed by a potential tilt and reestablished by laser-

assisted tunneling. This is demonstrated in Fig. 2, which

shows the resonance for the laser-assisted process. For this,

tunneling is characterized by looking at the expansion of

the cloud within the lattice. Expansion occurs since the

confinement by the optical dipole trap has been switched

off, and due to some heating during the 500 ms hold time.

Note that for fully coherent time evolution, charged parti-

cles in a magnetic field will undergo cyclotron motion

which would suppress the expansion. The resonance width

of 60 Hz may have contributions from laser frequency

jitter, inhomogeneous lattice potential, and atomic inter-

actions. The Lorentzian fit suggests a homogenous broad-

ening mechanism.

The dependence of K and J on the intensity of the

Raman lasers (described by Bessel functions) allows tun-

ing of the ratio of the two. For low intensities, K increases

linearly with the intensity, and J decreases quadratically.

The latter reflects the depletion of the unperturbedWannier

function by the modulation due to the moving Raman

lattice. Figure 3(a) shows experimental results in qualita-

tive agreement with these predictions.

For a quantitative interpretation of the expansion of the

cloud, we assume an incoherent diffusion process, where

the square of the width B of the expanded cloud is propor-

tional to the tunneling rate times expansion time. For short

times, the expansion of the cloud should be fully coherent,

and the width should increase linearly with time. However,

heating by light scattering and intensity fluctuations of the
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(b) Time evolution of the squared width for different Raman

laser intensities. From the slope of the lines, we obtain the laser-

assisted tunneling rates and their statistical errors: 0:23 0:08
(red squares), 43 0:5 (blue circles), 123 1 (black diamonds),

and 83 0:5 Hz (blue triangles).
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laser beams lead to an incoherent, diffusive expansion. For

finite time, we correct for the initial size B0 by assuming

that the expansion and initial size add in quadrature, and

plot the corrected squared width B2
corr ¼ B2 ! B2

0 versus

time. The slope is proportional to the laser-assisted tunnel-

ing rate. Absolute tunneling rates are obtained by compar-

ing this result to the expansion of the cloud in the y
direction with the Raman beams far off resonance, when

normal tunneling occurs. The ratio of the slopes is then

K=Jy, with Jy calculated from the calibrated lattice depth

to be"h* 48 Hz. Figure 3(b) shows the time evolution of

the square of the corrected size for various Raman inten-

sities. The linear fits support the assumption of incoherent

diffusion and allow a determination of tunneling rates, as

summarized in the figure caption.

Laser-assisted tunneling is a powerful tool to manipulate

the motion of atoms in optical lattices and to create novel

Hamiltonians. We now describe different tunneling pro-

cesses observed by a wide scan of the Raman detuning,

shown in Fig. 4. A strong peak near 568 Hz fulfills the

resonance condition 2-! ¼ '=@ for a four-photon

nearest-neighbor tunneling process. This resonance is simi-

lar to the one observed in Ref. [35] by shaking the lattice.

Note that the four-photon resonance is narrower (20 Hz

versus 60 Hz) than the two-photon resonance, indicative

of a higher-order process. Broad features at even lower

frequency are most likely due to higher-order tunneling

resonances and low-lying excitations within the first band.

Next-nearest-neighbor tunneling occurs at -! ¼ 2'=@,
twice the frequency of the fundamental resonance. For a

shaken lattice (no Raman beams), this was studied in

Ref. [36]. Analyzing the expansion of the cloud gives a

tunneling rate of 0:43 0:1 Hz, comparable to the next-

nearest-neighbor tunneling rate in an untilted lattice,

"0:8 Hz in our system. However, in an untilted lattice,

next-nearest-neighbor tunneling is typically a hundred

times slower than nearest-neighbor tunneling, whereas in

laser-assisted tunneling, the two processes can be indepen-

dently controlled by the laser power at the two resonant

frequencies. Tunneling rates below 1 Hz are too slow for

pursuing many-body physics, but the same scheme can be

implemented for lighter atoms such as lithium in a shorter

wavelength lattice, where the relevant scale factor, the

recoil energy, is increased by a factor of 50.

After realizing and characterizing all parts of the Harper

Hamiltonian, the next goal is to map out its band structure

as a function of quasimomentum and magnetic field 4—
the Hofstadter butterfly. The ground state for a given 4
should be accessible by adiabatically transferring a con-

densate into this Hamiltonian. The ground state of the

Harper Hamiltonian for 4 ¼ 1=2 has a clear signature in

that its magnetic unit cell is twice as large as the lattice unit

cell and its wave function has a unit cell that is 4 times as

large, so time of flight imaging will reveal the resulting

reduction of the Brillouin zone in momentum space by a

factor of 4 [25,29,37–39]. So far, we have not been able to

preserve the low entropy of the initial condensate and

observe the ground state.

Preliminary experiments have shown less heating by the

Raman beams at larger frequency detuning, requiring

larger magnetic field gradients. An optimum detuning

should be near half the band gap, avoiding inter- and

intraband transitions. Possibly, an extension of the treat-

ment of light scattering in optical lattices [40] could predict

if there is a fundamental lower limit to the ratio of heating

rate over K. Another potential source of heating is atomic

interactions. Instabilities of certain quasimomentum states

in optical lattices have been studied in Refs. [41,42].

Interaction-induced heating effects can in principle be

avoided by using Feshbach resonances to tune the scatter-

ing length to zero or by using a single spin component of a

fermionic gas. Once the ground state of the Harper

Hamiltonian is established, different quasimomentum

states can be populated through Bloch oscillations which

occur at frequency - ¼ -!!'=@, when the Raman

lasers are slightly detuned from the resonance studied here.

The Harper Hamiltonian established in this work will be

the starting point for many exciting explorations, including

the quantum Hall effect, Dirac points, and novel topologi-

cal phenomena [8,43]. Interactions between atoms may

also lead to bosonic Laughlin states [44] and nonlinear

Hofstadter eigenmodes [45]. The lowest band is topologi-

cally nontrivial with a Chern number of 1 [46] and should

show chiral edge states. Most importantly, our scheme is

simpler and potentially more robust than other suggestions,
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FIG. 4 (color online). Spectrum of excitations and tunneling

resonances. (a) A strong, four-photon, nearest-neighbor tunnel-

ing resonance appears at '=2h along with the K resonance at

'=h. These data were taken at a lattice depth of 9Er, for a two-

photon Raman Rabi frequency of 1092 Hz and 500 ms expansion
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tunneling at 2' and the expansion of the cloud as a function of

(. Inset: No saturation is reached. Expansion time of 1500 ms.
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since it does not require near-resonant light for connecting

hyperfine states. It can be implemented for any atom—

including the workhorse fermionic atoms lithium and

potassium—which has small fine structure splittings, mak-

ing it impossible to couple different spin states with neg-

ligible heating by spontaneous emission.
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Note added.—Recently, we became aware of similar

work carried out by Bloch and co-workers [34].

[1] K. von Klitzing, G. Dorda, and M. Pepper, Phys. Rev. Lett.

45, 494 (1980).

[2] D. C. Tsui, H. L. Stormer, and A. C. Gossard, Phys. Rev.

Lett. 48, 1559 (1982).

[3] R. B. Laughlin, Phys. Rev. Lett. 50, 1395 (1983).

[4] M. Lewenstein, A. Sanpera, and V. Ahufinger, Ultracold

Atoms in Optical Lattices (Oxford University Press,

Oxford, England, 2012).

[5] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 226801

(2005).

[6] M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann,

L.W. Molenkamp, X.-L. Qi, and S.-C. Zhang, Science

318, 766 (2007).

[7] N. Regnault and B.A. Bernevig, Phys. Rev. X 1, 021014

(2011).
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Appendix C

Spin-Orbit Coupling and Quantum

Spin Hall Effect for Neutral Atoms

without Spin Flips

This appendix contains a reprint of [78], which was touched on, but not discussed in

detail in the main text.

125



Spin-Orbit Coupling and Quantum Spin Hall Effect for Neutral Atoms without Spin Flips

Colin J. Kennedy, Georgios A. Siviloglou, Hirokazu Miyake, William Cody Burton, and Wolfgang Ketterle

MIT-Harvard Center for Ultracold Atoms, Research Laboratory of Electronics, Department of Physics,

Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
(Received 28 August 2013; revised manuscript received 25 October 2013; published 25 November 2013)

We propose a scheme which realizes spin-orbit coupling and the quantum spin Hall effect for neutral

atoms in optical lattices without relying on near resonant laser light to couple different spin states. The spin-

orbit coupling is created by modifying the motion of atoms in a spin-dependent way by laser recoil. The spin

selectivity is provided by Zeeman shifts created with a magnetic field gradient. Alternatively, a quantum spin

Hall Hamiltonian can be created by all-optical means using a period-tripling, spin-dependent superlattice.
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Many recent advances in condensed matter physics are

related to the spin degree of freedom. The field of spintronics

[1], the spin Hall effect [2], and topological insulators [3] all

rely on the interplay between spin and motional degrees of

freedom provided by spin-orbit coupling. Quantum simula-

tions with neutral atoms have started to implement spin-orbit

coupling using Raman transitions between different hyper-

fine states [4–8]. Since the Raman process transfers momen-

tum to the atom, the resonance frequency is Doppler

sensitive, and thus couples motion and spin.

The possibility of using spin-flip Raman processes to

create interesting gauge fields was first pointed out in

[9–11], and extended to non-Abelian gauge fields, which

imply spin-orbit coupling, in [12,13]. With the exception of

an atom chip proposal where the spin flips are induced with

localized microwave fields [14], all recently proposed

schemes are based on spin-flip Raman processes [8,15–20].

The major limitation of these Raman schemes is that

spin-flip processes are inevitably connected with heating

by spontaneous emission if they rely on spin-orbit coupling

in the excited state, as in alkali atoms or other atoms with

an S orbital ground state. Since laser beams interact with

atoms via the electric dipole interaction, they do not flip the

spin. Spin flips occur only due to intrinsic spin-orbit inter-

actions within the atoms; therefore, spin-orbit coupling by

spin-flip Raman processes relies on the spin-orbit coupling

within the atom. Since the spontaneous emission rate and

the two-photon Rabi frequency for Raman spin-flip pro-

cesses scale in the same way with respect to the ratio of

laser power to detuning, for a given atom the coupling

strength relative to the spontaneous emission rate is fixed

by the fine structure splitting compared to the natural

linewidth. This has not been a limitation for the demon-

stration of single-particle or mean-field physics [4–8], but

will become a severe restriction for many-body physics

where interactions introduce a smaller energy scale and

therefore require longer lifetimes of the atomic sample.

Some authors have considered transitions involving meta-

stable states of alkaline earth atoms to reduce the effects of

spontaneous emission [21,22].

Here we present a spin-orbit coupling scheme that does

not involve spin flips, is diagonal in the spin component "z,

and corresponds to an Abelian gauge field. This scheme can

be implemented with far-off-resonant laser beams, thus

overcoming the limitation of short sample lifetimes due to

spontaneous emission. In the field of cold atoms, many

discussions of spin-orbit coupling emphasize its close rela-

tionship to non-Abelian gauge fields [17,23] which are non-

diagonal for any spin component and therefore mix spin and

motion in a more complicated way. However, a scheme

diagonal in the spin component is sufficient for quantum

spin Hall physics and topological insulators [24,25], and its

implementation has major experimental advantages. In the

theoretical proposals and demonstration of the spin Hall

[23,26] and quantum spin hall [27] effects for quantum

gases, Raman spin flips are used to create an Abelian gauge

field diagonal with respect to one spin component.

The physical principle of the spin-orbit coupling scheme

presented here is very different from spin-flip schemes. It

does not require any kind of spin-orbit coupling within

the atom. Rather, spin-dependent vector potentials are

engineered utilizing the Zeeman effect in a magnetic

field—atoms in the spin-up and -down states interact

with different pairs of laser beams, or differently with the

same pair, and the photon recoil changes the atom’s motion

in a spin-dependent way. This results in spin-orbit coupling

which is diagonal in the spin basis.

To begin, we summarize the relationship between spin-

orbit coupling and spin-dependent vector potentials. For

charged particles, the origin of spin-orbit coupling is the

relativistic transformation of electromagnetic fields. When

an electron moves through an electric fieldE it experiences

a magnetic fieldB in its moving framewhich interacts with

the spin ! (described by the Pauli spin matrices). Spin-

orbit coupling contributes a term proportional to

ðp#EÞ % ! in the Hamiltonian. As such, an electric field

in the z direction gives rise to the Rashba spin-orbit cou-

pling ð! # pÞz ¼ "xpy ! "ypx.

Assuming a 2D system confined to the x, y plane, and an
in-plane electric field, the spin-orbit interaction conserves
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"z. Following [25], a radial electric field E' Eðx; y; 0Þ
leads to a spin-orbit coupling term in the Hamiltonian of

the form E"zðxpy ! ypxÞ, or equivalently to E! %L,

where L is the angular momentum of the atom. Such a

radial field could be created by a uniformly charged cyl-

inder, or can be induced by applying stress to a semicon-

ductor sample [25]. This spin-coupling term is identical to

the A % p term for the Hamiltonian describing a spin in a

magnetic field, "zB. Using the symmetric gauge for the

vector potentialA ¼ ð"zB=2Þðy;!x; 0Þ, one obtains a term
in the Hamiltonian proportional to "zBðxpy ! ypxÞ.

Therefore, this form of spin-orbit coupling is equivalent

to a spin-dependent magnetic field which exerts opposite

Lorentz forces on spin-up and -down atoms. This leads to

the spin Hall effect which creates a transverse spin current

and no charge or mass currents [24,25]. The A2 term

constitutes a parabolic spin-independent potential which

is irrelevant for the spin physics discussed here.

We now present a scheme which realizes such an

Abelian gauge field [28] and manifests itself as a spin-

dependent magnetic field. Recently, the MIT group [30,31]

and the Munich group [32,33] have suggested and imple-

mented a scheme to generate synthetic magnetic fields for

neutral atoms in an optical lattice. The scheme is based on

the simple Hamiltonian for noninteracting particles in a 2D

cubic lattice,

H ¼ !
X

m;n

ðJxâ
y
mþ1;nâm;n þ Jyâ

y
m;nþ1

âm;n þ H:c:Þ; (1)

where JxðyÞ describes tunneling in the x (y) direction and

âym;n (âm;n) is the creation (annihilation) operator of a

particle at lattice site (m, n). The setup is detailed in [30]

and summarized as follows: a linear tilt of energy ' per

lattice site is applied using a magnetic field gradient in the

x direction, thus suppressing normal tunneling in this

direction. Resonant tunneling is restored with two far-

detuned Raman beams of two-photon Rabi frequency (,

frequency detuning 1! ¼ !1 !!2, and momentum trans-

fer k ¼ k1 ! k2. Considering only the case of resonant

tunneling, 1! ¼ '=@, rapidly oscillating terms time aver-

age out [34], yielding an effective Hamiltonian which is

time independent [30]:

H¼!
X

m;n

ðKe!i6m;n âymþ1;nâm;n þ Jâym;nþ1
âm;n þH:c:Þ: (2)

This effective Hamiltonian describes charged particles

on a lattice in a magnetic field under the tight-binding

approximation [35,36]. The gauge field arises from the

spatially varying phase 6m;n ¼ k %Rm;n ¼ mkxaþ nkya,

where a is the lattice constant, and has the form A ¼

½@ðkxxþ kyyÞ=a+x̂. One can tune the flux per unit cell 8

for a given spin state over the full range between 0 and 1 by

adjusting the angle between the Raman beams, and con-

sequently ky.

We now extend this scheme to the spin degree of freedom,

and assume a mixture of atoms in two hyperfine states,

labeled spin up and down. If the potential energy gradient

is the same for the two states, then the two states experience

the same magnetic field. This is the situation when the tilt is

provided by gravity, a scalar ac Stark shift gradient, or a

magnetic field gradient if both states have the same mag-

netic moment—the phase 6m;n is independent of "z.

If the two states have the same value of the magnetic

moment, but opposite sign, then the potential gradient is

opposite for the two states. This can be realized by using

states of the same hyperfine level F, but with opposite

magnetic quantum number MF (e.g., in 23Na or 87Rb, the

jF;MFi ¼ j2; 2i and j2;!2i states), or by picking another

suitable pair of hyperfine states. In this case, for laser-

assisted tunneling between two sites m and mþ 1, the

roles of the two laser beams—absorption of a photon

versus stimulated emission of a photon—for the Raman

process are reversed, as depicted in Fig. 1. Therefore, the

two states receive opposite momentum transfer, and this

sign change leads to a sign change for the phase,

6m;n ¼ ðmkxaþ nkyaÞ"z; (3)

and also for the vector potential and the magnetic field. The

vector potential realized by this scheme,

A ¼

"

@

a
ðkxxþ kyyÞx̂

#

"z; (4)

creates the spin-orbit coupling discussed in the introduc-

tion, although in a different gauge. The x dependence in the
x component ofA is necessary for a non-negligible tunnel-

ing matrix element for the laser-assisted process [30].

FIG. 1 (color online). Spin-dependent tunneling in an optical

lattice tilted by a magnetic field gradient. When the two spin

states have opposite magnetic moments, the role of absorbtion

and emission of the two photons is exchanged. The result is that

the two states have tunneling matrix elements with opposite

phases, leading to opposite synthetic magnetic fields and realiz-

ing spin-orbit coupling and the quantum spin Hall effect.
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This system now has time-reversal symmetry, in contrast

to the system with the same synthetic magnetic field for

both states (since a magnetic field breaks time-reversal

symmetry). This scheme implements spin-orbit coupling

both in two and three dimensions and with bosons and

fermions. For fermions, in two dimensions it realizes the

quantized spin Hall effect consisting of two opposite quan-

tum Hall phases. It is protected by a Z topological index

due to the fact that "z is conserved [24,25].

When the values of the two magnetic moments are differ-

ent, and the potential energy gradient is provided by a

magnetic field gradient, then the two states have different

Bloch oscillation frequencies, '=h. Each state now needs

two separate Raman beams for laser-assisted tunneling (or

they can share one beam). This implies that the synthetic

magnetic field can now be chosen to be the same, to be

opposite, or to be different for the two spin states. One option

is to have zero synthetic magnetic field for one of the states.

Atoms in this state can still tunnel along the tilt direction by

using a Raman process without y-momentum transfer, or,

equivalently, by inducing tunneling through lattice modula-

tion [37–39]. In the case of two different magnetic moments,

one could also perform dynamic experiments, where laser

parameters are modified in such a way that one switches

either suddenly or adiabatically from the quantumHall effect

to the spin quantum Hall effect.

An intriguing possibility is to couple the two states. Since

"z is no longer conserved, the system should become a

topological insulator with the Z2 classification [3,40], pro-

vided that the coupling is done in a time-reversal invariant

way. This can be done with a term which is not diagonal in

"z—i.e., a "xpy term—by adding spin-flip Raman lasers to

induce spin-orbit coupling, or by driving the spin-flip tran-

sition with rf or microwave fields. A coherent rf drive field

would not be time-reversal invariant, but it would be inter-

esting to study the effect of symmetry breaking in such a

state [41]. A drive field where the phase is randomized

should lead to a time-reversal invariant Hamiltonian.

Our scheme implements the idealized scheme for a quan-

tum spin Hall system consisting of two opposite quantum

Hall phases. This is a starting point for breaking sym-

metries and exploring additional terms in the Hamiltonian.

References [41,42] discuss a weak quantum spin Hall phase,

induced by breaking the time-reversal symmetry by a mag-

netic field—this can be achieved by population imbalance

between the two spin states. A spin-imbalanced quantum

Hall phase can turn into a spin-filtered quantum Hall phase

[41,42] where only one component has chiral edge states.

This can be achieved by realizing a finite synthetic magnetic

field for one component and zero for the other. Changing the

spin-orbit coupling can induce topological quantum phase

transitions between a helical quantum spin Hall phase and a

chiral spin-imbalanced quantum Hall state. This can proba-

bly be achieved in a population-imbalanced system by add-

ing additional Raman spin-flip beams [41,42].

Thus far, we have discussed single-particle physics.

Adding interactions, by increasing the density with deeper

lattices or through Feshbach resonances, will induce inter-

esting correlations and may lead to fractional topological

insulators [43]. Another option is spin-drag experiments

[44,45], transport experiments where one spin component

transfers momentum to the other component. For the situ-

ation mentioned above, where the synthetic magnetic field

is zero for one component (e.g., spin up), a transport

experiment revealing the Hall effect [46] for spin down

would show a nonvanishing Hall conductivity for spin up

due to spin drag. In addition, one would expect that spin-

exchange interactions destroy the two opposite quantum

Hall phases, and should lead to the quantum spin Hall

phase with Z2 topological index.

We now present another way of realizing the physics

discussed above, using optical superlattices instead of a

potential energy gradient. This has the advantage of purely

optical control and avoids possible heating due to Landau-

Zener tunneling [47] between Wannier Stark states. Thus

far, optical superlattices have allowed the observation of

the ground state with staggered magnetic flux [48], in

contrast to experiments with magnetic tilts [30,33].

Figure 2 summarizes the new scheme. The superlattice

has 3 times the period of the basic lattice, thus distinguish-

ing sites A, B, C in energy. Resonant tunneling is reestab-

lished using three pairs of Raman beams with frequencies

!1 þ 'AB=@,!2 þ 'BC=@, and!3 ! ð'AB þ 'BCÞ=@ col-
linear in one arm and !1, !2, and !3 collinear in another

arm at an angle to the first. Consequently, there is always

the same momentum transfer for tunneling in the y direc-

tion, leading to the same flux as the scheme with the

magnetic tilt, and Eqs. (3) and (4) apply. This is in contrast

FIG. 2 (color online). Superlattice scheme for realizing the

quantum Hall and quantum spin Hall effect. A superlattice with

3 times the spatial period as the fundamental lattice leads to three

distinguishable sites A, B, C. For the quantum spin Hall effect, the

superlattice operates at a magic wavelength where the ac Stark

effect is opposite for the two spin states. For rubidium, this is

achieved at a wavelength of 790 nm. When filled with fermions

the quantum Hall and spin quantum Hall effects are realized.
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to schemes with two distinguishable sites A and B (by

using internal states [21,34] or a superlattice [48]), which

lead to a staggered magnetic field. Rectification of the

magnetic flux in a staggered configuration by adding a

tilt [34,48] or a superlattice [21] has also been proposed.

In the latter scheme, this would result in four distinguish-

able sites (two internal states A, B, doubled up by the

superlattice). Another rectification scheme uses three in-

ternal states [49]. Our scheme avoids spin-flip transitions

between internal states, and has the minimum number of

ingredients of three different sites to provide directionality.

Furthermore, by adjusting the spatial phase shift between

the fundamental and the superlattice, one can choose the

energy offsets 'AB ¼ 'BC ¼ !'CA=2 (see Fig. 2). The

scheme can then be implemented by shining Raman beams

from two directions, each beam having two frequencies.

This scheme would realize Hofstadter’s butterfly and the

quantum Hall effect. For the quantum spin Hall effect, one

has to choose the superlattice laser to be at the magic

wavelength where the scalar ac Stark shift vanishes, and

only a vector ac Stark shift remains, corresponding to a so-

called fictitious magnetic field [50,51]. By detuning the laser

between the D1 and D2 lines, one can achieve a pure vector

ac Stark shift, which is equal in magnitude but opposite in

sign when the atoms in the two hypefine states have opposite

magnetic moments. In this case, the superlattice will provide

opposite potentials for the two states, resulting in opposite

momentum transfers due to the Raman beams and opposite

vector potentials. The superlattice period is ?=½2 sinð@=2Þ+,
where @ is the angle between the two superlattice beams,

which is adjusted to make the superlattice period 3 times the

period of the basic lattice. This scheme realizes the quantum

spin Hall effect and a topological insulator with two oppo-

site quantum Hall phases with a purely optical scheme and

no Raman spin-flip transitions.

To replace the magnetic field gradient by a superlattice

that generates a fictitious magnetic field, the laser detuning

has to be on the order of the fine structure splitting, result-

ing in heating due to spontaneous emission. For atoms like

rubidium, the lifetime is many seconds [50]. To be specific,

we consider a low-density gas 87Rb atom in the F ¼ 2,

MF ¼ .2 states in a lattice with a depth of 10 photon

recoils at the wavelength of 1064 nm. A superlattice with a

lattice depth of 10 kHz is created by interfering two laser

beams at 790.0 nm of 1.0 mW of laser power and a beam

waist of 125 Am. The resulting offset'AB and'AC will be

approximately 4 and 8 kHz, respectively, well placed in the

band gap of the basic lattice. The spontaneous scattering

rate induced by the superlattice beams is less than 0.1 per

second. Alternatively, the superlattice producing the ficti-

tious magnetic field can be replaced by a sinusoidal (real)

magnetic field generated by an atom chip [52].

There have been several suggestions of how to detect

properties of the quantum Hall and quantum spin Hall

phases. Time-of-flight pictures will reveal the enlarged

magnetic unit cell due to the synthetic magnetic field

[48,53–55]. Hall plateaus can be discerned in the density

distribution [56]. The Chern number of a filled band can be

measured interferometrically [57] or using ballistic expan-

sion [58]. Topological edge states can be directly imaged

[59,60] or detected by Bragg spectroscopy [61–63].

Topological insulators can be realized by engineering

appropriate lattice Hamiltonians with ultracold atoms [64].

This may allow studying classes of topological insulators

[65,66] which have not been realized in nature. Topological

insulators with strong interactions [64] can be explored in

cold atom systems using Feshbach resonances.

Our work maps out a route towards spin-orbit coupling,

the spin Hall effect, and topological insulators which does not

require coupling of different internal states with spin-flipping

Raman lasers. The Hamiltonian describing the system is

diagonal in the "z spin component. This follows closely

the two original Letters on the spin Hall effect [24,25]. In

addition, we have presented two configurations for realizing a

quantum spin Hall Hamiltonian. The scheme with the mag-

netic tilt completely avoids near resonant light, and the

superlattice scheme provides a purely optical approach.
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Note added.—After most of this work was completed

[67], we became aware of similar work carried out by

Bloch and colleagues in Munich [33,68].
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Fleischhauer, Phys. Rev. Lett. 95, 010404 (2005).

[13] K. Osterloh, M. Baig, L. Santos, P. Zoller, and M.

Lewenstein, Phys. Rev. Lett. 95, 010404 (2005).

[14] B.M. Anderson, I. B. Spielman, and G. Juzeliūnas, Phys.

Rev. Lett. 111, 125301 (2013).
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[18] B.M. Anderson, G. Juzeliūnas, V.M. Galitski, and I. B.

Spielman, Phys. Rev. Lett. 108, 235301 (2012).

[19] Z. F. Xu and L. You, Phys. Rev. A 85, 043605 (2012).

[20] W. S. Cole, S. Zhang, A. Paramekanti, and N. Trivedi,

Phys. Rev. Lett. 109, 085302 (2012).

[21] F. Gerbier and J. Dalibard, New J. Phys. 12, 033007

(2010).

[22] B. Béri and N. R. Cooper, Phys. Rev. Lett. 107, 145301

(2011).

[23] M.C. Beeler, R. A. Williams, K. Jiménez-Garcı́a, L. J.
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