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Thermometry and Cooling of Ultracold Atoms in an Optical

Lattice

by

Patrick Medley

Submitted to the Department of Physics
on June 8, 2010, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

Ultracold atoms of 87Rb were prepared in a mixture of two hyperfine states, |F =
1,mF = −1 > and |2,−2 >. This two-component system was then studied in the
presence of a magnetic field gradient and an optical lattice.

The presence of a magnetic field gradient separated the atoms into regions of
opposite spin, with a boundary region of mixed spin in the center. In the presence of
an optical lattice, the width of this region was found to be proportional to the system’s
temperature and inversely proportional to the strength of the magnetic field. This
allowed the measurement of the size of the boundary region to act as a thermometer
for the system, representing the first demonstration of spin gradient thermometry.
This thermometer represents the first practical method for thermometry in the Mott
insulator, and has features of high dynamic range and tunable sensitivity. Given
sufficient optical resolution and control over the magnetic field gradient, the lower
limit of this thermometer is set by quantum magnetic ordering effects.

The dynamic response of this system to changes in magnetic field gradient was
studied, both in the weak and strong lattice regimes. The result of these studies
was the development of spin gradient demagnetization cooling. By performing an
adiabatic drop in gradient strength while still in the superfluid, significant cooling
of the entire system was observed. When the same process was performed in the
Mott insulator, the spin temperature was cooled dramatically, while remaining out
of equilibrium with the remaining degrees of freedom of the system. By reversing
the gradient direction, inverted spin populations with negative temperatures have
been produced. Spin gradient demagnetization has produced the closest approach to
absolute zero yet recorded: 300 pK for the equilibrated system, and spin temperatures
of 75 pK as well as −75 pK. The ability to achieve these temperatures puts studies
of quantum magnetism in optical lattices within reach.
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Chapter 1

Introduction

1.1 From BEC to Optical Lattices

Fifteen years ago, Bose-Einstein Condensates (BEC) were first produced experimen-

tally in atomic gasses [4, 19]. Their creation marked the opening of a new field of

atomic physics involving the study of ultracold atoms. Initially, the field focused on

measuring the properties of BEC themselves, but as time moved on the role of BEC

expanded. No longer was it solely the subject of direct experimental study: it in-

creasingly has become a tool used to enable the creation of other cold atomic systems.

BEC have since been used in countless other roles. To count just a few: they have

been used as a refrigerant to produce degenerate fermions, as a storage medium to

slow and stop photons through electromagnetically induced transparency, and as a

source of cold atoms to fill optical lattices.

It is this last use, to produce ultracold atoms in an optical lattice, that is the

focus of this thesis, and that represents an important area in the future of atomic

physics. While past studies of BEC, even many of those involving optical lattices, were

often concerned with the properties of the superfluid state, optical lattices also point

the way toward an area beyond superfluidity: static but highly-ordered, crystal-like
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structures where superfluidity is left behind. Traditionally the realm of condensed-

matter physics, the advent of optical lattices puts the study of crystalline ordering

within the grasp of the atomic physicist as well. Already the superfluid to Mott

insulator transition has been the subject of thorough experimental study, and in the

future, many new and exotic phases will be open for experimental study in deep optical

lattices. As this field matures, the study of phases exhibiting magnetic ordering will

be within reach, and the work presented in this thesis will represent a significant step

in making the study of these phases possible.

1.2 Optical Lattices as a Simulation Tool

Whereas atomic physics once dealt primarily with dilute gasses of free-moving atoms,

much of condensed matter physics deals with solids with essentially rigid crystal

structures. The new states made possible by optical lattices provide an important

link between these two fields. By subjecting a cloud of ultracold atoms to a precisely-

tailored optical lattice potential, a wide range of crystal structures can be simulated

using the atoms loaded from the condensate as a proxy for particles in a crystal lattice.

This represents the possibility of a new frontier for the investigation of many-body

physics [7, 48].

An optical lattice is created by subjecting a cloud of atoms to a standing wave

of light. Via the AC Stark effect, this creates a periodic potential for the atoms. As

atoms are attracted to the minima of this potential, they arrange themselves in a

periodic structure similar to the structure of a crystal.

Optical lattices can offer many advantages over the direct probing of condensed

matter systems. Optical lattices can be tailored to the specific problem you wish to

solve, providing flexibility in the states and identities of the constituent atoms, the

strength of their interactions, their dimensionality, and the geometry of the lattice
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that holds them. Many of these properties can be changed continuously and inde-

pendently, even in the course of a single experimental run. This makes it possible for

a single atomic system to model many different types of condensed matter systems

without the need to fabricate them individually. It also allows the creation of simple

model systems that may be difficult to fabricate in solids in order to study particular

phenomena of interest in a controlled manner. Already, many studies involving the

Mott insulator transition have been made, and as research in optical lattice simula-

tion continues, interest is growing in producing states that exhibit more complicated

physics, such as magnetically ordered states. Achieving these sorts of states, how-

ever, presents significant new problems to be overcome, not just in engineering the

necessary interactions, but also in producing systems cold enough to exhibit them.

1.3 Why Temperature Matters

To achieve a magnetically-ordered state, it is necessary to have at least two components-

either two separate atomic species, or two states of the same species. The most

straightforward such system to produce experimentally is a system of two spin states

of a single atom in a cubic optical lattice. This system is described by the two com-

ponent Bose-Hubbard model, and can give rise, under the appropriate conditions,

to two types of ferromagnetic ordering, as well as antiferromagnetic ordering [21].

However, this potential also highlights the difficulties in achieving such orderings.

One of the clearest such difficulties is that of temperature. The acievement of

lower temperature scales has consistently led to new advancements in physics, and

the case of quantum magnetism is no exception. The strength of interactions between

atoms in an optical lattice is much weaker than those between their condensed matter

counterparts. As a result, extremely low temperatures, far below even the µK critical

temperature for Bose condensation, are required before any magnetic effects could
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reasonably be observed. For atoms of 87Rb in a lattice deep enough to form a Mott

insulator, this temperature is in the range of tens to hundreds of pK.

The low temperatures demanded by such systems are themselves a significant

challenge, but of equal concern has been the lack of an effective method for measuring

temperature in this regime. Temperatures as low as 450pK have been measured in

atomic gasses before [46]; however, the method used to do so required the atoms

to be in an unperturbed harmonic trap. The same method is unable to measure

temperatures of atoms in the presence of a lattice. Other methods for measuring

temperatures of atoms in an optical lattice have been tried, but they are largely

unable to measure with precision temperatures as low as needed. [16,29,38,51,56]

This thesis presents a method that has been developed to solve this problem in a

system of two spin components. Through the use of a carefully-controlled magnetic

field gradient to induce low-energy modes of excitation in the distribution of spins,

it becomes possible to image the Boltzmann distribution of those spins directly. The

resulting spin gradient becomes a thermometer from which one can straightforwardly

read out the temperature. Furthermore, experiments will be described in which this

thermometer is transformed into a refrigerator, cooling the atoms to the lowest tem-

peratures ever recorded.

1.4 The Rubidium Lab

This thesis describes experimental work performed in BEC IV, also known as Rubid-

ium lab, as it is the only one of the machines in the Ketterle-Pritchard group to work

with 87Rb. While all of the current research efforts in the Rubidium lab (and all the

results presented in this thesis) are focused on optical lattices, this was not the case

when I first joined nearly six years ago. At that time, the lab had just published

a paper on photon recoil in a dispersive medium [11], and still viewed itself largely
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as a machine optimised to produce high atom number BEC. Indeed, some of the

earliest projects I worked on as a junior student were still focused on the superfluid:

an early experiment involving scattering of atom pairs from a condensate in a one-

dimensional optical lattice potential [13] and an experiment involving the quantum

Zeno effect [68].

However, as time passed, it became increasingly evident that optical lattices were

the way of the future. The experiments I worked on involved systems of increas-

ingly lower dimension: a two-dimensional potential created by radio frequency (RF)

dressing of a magnetic trap [9], a one-dimensional magnetic tube potential above a

hard disk platter [8], and ultimately, in “zero-dimensions” a measurement of the shell

structure of the Mott Insulator state via RF spectroscopy [12].

The final project I worked on before beginning the experiments detailed in this

thesis was a first step toward the ultimate goal of probing phase diagrams in optical

lattices. In it, the transport properties of atoms in the presence of an optical lattice

were studied using a moving lattice to simulate AC particle flow. The result was

a phase diagram showing stable versus unstable flow as a function of lattice depth

and speed [53]. This diagram was compared to theoretical predictions based on a

mean field model [1], and the results showed excellent agreement. Additionally, these

experiments allowed a precision measurement of the lattice depth of the Mott insulator

transition.

While this result was a significant step forward, it also represented a kind of limit

in the interesting physics that was available in a simple, single component lattice. To

proceed further, into the realm of magnetic ordering, it was necessary to work with a

second component. Furthermore, the temperature scale required to probe this kind

of ordering—the superexchange tempreature scale—was a scale far colder than what

had yet been achieved. The experimental work that this thesis comprises opens up

this scale, providing both a method to measure these temperatures in the presence of
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a lattice and a means by which these temperatures can be attained. The development

of spin gradient thermometry and spin gradient demagnetization cooling represents an

important step towards bringing together the fields of atomic and condensed matter

physics. I can only hope that in the future this combined field will be as fruitful as

it appears today.

1.5 Outline

The remainder of this thesis will have the following structure. Chapter 2 will discuss

the basic theory underlying our experiments. It will begin with the theory of BEC, and

then discuss the theory of optical lattices, including the one and two component Bose

Hubbard models and the Mott insulator transition. Chapter 3 will cover the basic

experimental procedures and the setup of the machine used in the production of 87Rb

BEC. The next two chapters will then describe two experiments performed to measure

and lower the temperature of a system comprising an optical lattice loaded with 87Rb

atoms in two spin states. Chapter 4 describes how a thermometer was be created and

used to measure temperatures in the presence of a lattice, resulting in the process of

spin gradient thermometry. Chapter 5, meanwhile, discusses how this thermometer

was used to cool atoms through the process of spin gradient demagnetization cooling,

which has resulted in some of the coldest temperatures yet recorded.
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Chapter 2

Theory of BEC and Optical

Lattices

2.1 BEC in a Harmonic Trap without Interactions

Although all of the important experimental measurements described in this thesis

occur outside of the pure superfluid state, in optical lattice potentials, the atoms begin

as a BEC. Since the properties of BEC are important to the preparation of our atoms

and their transferral into the optical lattice, I will devote the first two sections of this

chapter to a brief overview of BEC. For a more thorough discussion of BEC, I refer

you to previous theses from this group [9,10,52,64], review articles [17,18,43,44,47],

and books [32,55,60].

In this section, I will derive an exact expression for the critical temperature and

condensate fraction for the simplest model of trapped bosons: that of a gas of non-

interacting bosons in a harmonic potential. For a harmonic potential with trap fre-

quencies ωx, ωy, and ωz, the energy levels for noninteracting particles are given by

equation 2.1. Recall that BEC occurred when the chemical potential µ became equal

the ground state energy, which for the noninteracting case was set to zero. In the
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case of interactions, however, the ground state energy is no longer zero, because it

depends on interactions. However, we know that in a BEC, the ground state energy

is equal to the chemical potential. Thus

E(nx, ny, nz) = h̄(ωxnx + ωyny + ωznz) (2.1)

If the gas is at temperature T and chemical potential µ, then the population in each

energy state is given by the Bose Einstein distribution

p(nx, ny, nz) =
1

exp(E(nx,ny ,nz)−µ
kBT

)− 1
(2.2)

and the total number is then

N =
∑

nx,ny ,nz

1

exp(E(nx,ny ,nz)−µ
kBT

)− 1
(2.3)

As the temperature of the system is lowered, the chemical potential (which is necessar-

ily negative) must rise to maintain constant total number. Eventually, the chemical

potential will reach zero and the expression for the population in the ground state,

p(0, 0, 0) will diverge. The temperature at which this will occur is the critical tem-

perature for Bose-Einstein condensation, and can be calculated by solving equation

2.3 for T when µ is set to zero. In the limit of large N, so we can treat the above

sum as an integral over energy times a density of states (
∑
nx,ny ,nz

→ ∫
dε ε2

2h̄3ωxωyωz
),

the critical temperature is given by

kBTc = h̄ωho(N/ζ(3))1/3 (2.4)

where ω3
ho = ωxωyωz and ζ(3) ≈ 1.202 is the Riemann Zeta function. in our experi-

ments with 87Rb, this temperature will be typically be 300 − 400 nK. At and below
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this temperature, the distribution of particles changes so that the population of the

ground state and the excited states are described differently. The population of each

excited state is still given by equation 2.2, but the fraction of atoms in the ground

state—the condensate fraction—is now

N0/N = (1− (T/Tc)
3). (2.5)

2.2 The Effect of Interactions

The approximation of the trapping potential as harmonic is reasonably accurate—the

actual potential produced in the experiments described in following chapters is the

sum of two gaussians. The approximation of the atoms as noninteracting, however, is

not so accurate. In reality, 87Rb atoms do interact, albeit weakly. Under experimental

densities and temperatures, only two-body s-wave scattering collisions will contribute

to the overall potential, although three-body collisions contribute to loss processes

and heating via recombination. The effective two-body potential generated by s-wave

scattering interactions can be written in terms of the scattering length as and the

distance between a pair of particles r12 as U(r) = 4πh̄2as/mδ(r12). This adds an

extra term to the original Hamiltonian, resulting in a corrected Hamiltonian given by

Ĥ =
∫
d~rψ̂†(~r)(

h̄2

2m
∇2 + Vtrap(~r) +

4πh̄2as
m

ψ̂†(~r)ψ̂(~r))ψ̂(~r) (2.6)

where Vtrap is the trapping potential. For T � Tc so that the thermal fraction can be

neglected, and neglecting also quantum fluctuations, we can then describe the BEC

as a single wavefunction ψ(~r) with the normalization condition
∫
d~r|ψ(~r)|2 = N . This

wavefunction will then obey the Gross-Pitaevskii equation:

ih̄
∂ψ(~r, t)

∂t
= (

h̄2

2m
∇2 + Vtrap(~r) +

4πh̄2as
m
|ψ(~r, t)|2)ψ(~r, t). (2.7)
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To solve the Gross-Pitaevskii equation, we should first write it in a time-independent

form, of the type Ĥψ = Eψ. The energy of the condensate is the ground state energy,

which can easily be derived by appealing to equation 2.3. Recall that BEC occurred

when the chemical potential µ became equal the ground state energy, which for the

noninteracting case was set to zero. In the case of interactions, however, the ground

state energy is no longer zero, because it depends on interactions. However, we know

that in a BEC, the ground state energy is equal to the chemical potential. Thus,

we can insert it into the Gross-Pitaevskii equation to produce a time independent

version:

µψ(~r) = (
h̄2

2m
∇2 + Vtrap(~r) +

4πh̄2as
m
|ψ(~r)|2)ψ(~r). (2.8)

The final approximation to solve this equation is the Thomas-Fermi approximation:

we throw out the kinetic term from equation 2.8. The resulting density distribution

is then easy to calculate:

n(~r) =
m

4πh̄2as
(µ− Vtrap(~r)). (2.9)

This approximaiton is valid as long as the ratio of kinetic energy to interaction energy

is small. Then, the kinetic term will make no important correction to the density

function. The length scale over which the kinetic term is important is given by the

healing length ξ—for changes in the wavefunction occuring over a distance shorter

than the healing length the kinetic term dominates over the interaction term. The

healing length is thus the length scale over which these two terms are equal, or

h̄2

2mξ2
=

4πh̄2asn

m
⇒ ξ =

1√
8πnas

(2.10)

. The function of the healing length is to take any sharp edges in the density distri-

bution given by the Thomas-Fermi approximation and transform them into a more-
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or-less smooth transition over the width of the healing length. This will be important

later on, as it will provide a limit to the resolution of the thermometry technique of

chapter 4 when applied by the superfluid. As we shall see, the presence of a reason-

ably deep lattice eliminates this limitation by lowering the condensate fraction to the

point that the Gross-Pitaevskii equation is no longer valid.

2.3 Atoms in Optical Potentials

2.3.1 Scattering Forces

An atom illuminated by a laser beam is subject to two different types of forces:

scattering and dipole forces. In optical dipole traps and lattices, the dipole force is

used to form potentials to trap atoms, while the scattering force leads to heating and

is generally desired to be as small as possible. Scattering occurs as photons from the

laser transfer the atom into an excited state, then the atom undergoes spontaneous

emission, sending out a photon of the same energy in a random direction. Assuming,

as is a good approximation for 87Rb, that the atom has only one relevant transition

to be excited, the scattering rate can be written in terms of the laser intensity I,

the transition’s saturation intensity Isat, the detuning δ, and the transition’s natural

linewidth Γ:

Γsc =
Γ

2

I/Isat
1 + I/Isat + (2δ/Γ)

. (2.11)

Each photon scattered imparts a momentum kick on the atom of h̄k in the direction

of the laser beam, where k is the wavevector of the light, as well as an additional kick

of h̄k in a random direction. The kick along the laser beam is used in instruments

such as Zeeman slowers and magneto-optical traps to slow and cool atoms, but is not

put to any use in dipole traps. The main reason for this is that the random kick leads

25



to heating, with a heating rate

U̇ =
h̄2k2

2m
Γsc. (2.12)

For atoms at temperatures well below 1µK, as is typical in experiments involving

BEC, this heating usually dominates any cooling effect that can be harnessed, so the

scattering rate should be made as small as possible.

2.3.2 Dipole Forces

The dipole force, on the other hand, has no dissipative component: it creates an

ordinary conservative potential. The dipole force arises because the electric field of

the light induces a dipole moment µ in the atom, which itself interacts with the

electric field with interaction energy Udip = −µ·E. The resulting shift in energy is

known as the AC Stark effect and in the limit of large detuning is equal to

Udip =
h̄Γ2

8δ

I

Isat
. (2.13)

The sign of the detuning determines the sign of the potential: blue-detuned light

repels atoms from positions of high intensity, while red-detuned light attracts to those

positions. This allows one to produce an optical dipole trap (ODT) by focusing a red-

detuned laser beam, as the focus of the beam will be a point of maximum intensity.

If a beam of wavelength λ is focused with a beam waist of w0 it will have a Rayleigh

range of zR =
πw2

0

λ
and will create a potential near the focus of

Vtrap(r, z) ≈ V0[1− (
r

w0

)2 − (
z

zR
)2]. (2.14)

All optical traps used to hold atoms in the experiments described in this thesis are

formed by one or more such traps, produced using light at 1064 nm, which is far to the

red of the nearest optical transition—the D lines of 87Rb at 780 nm and 795 nm. This
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large detuning is important to minimize scattering losses: note that while the dipole

force drops as 1/δ, the scattering rate drops as 1/δ2. Thus, a large detuning allows

deep optical traps with very low scattering rates. Typical spontansous scattering

rates even in very deep potentials are 0.01Hz, making them essentially negligible.

2.4 Optical Lattices

While an ODT is a simple and straightforward use of the dipole force, a more inter-

esting potential can be made by taking advantage of optical interference to produce

a standing wave. If a laser beam is reflected back onto itself, it will create a standing

wave with a node at the reflecting mirror. The total potential this standing wave

creates is

Vlatt(r, z) = 4V0 cos2(kz)[1− (
r

w0

)2 − (
z

zR
)2]. (2.15)

In our experiments, a combination of ordinary ODT beams confines the atoms to

a radius much smaller than the waist of the lattice beam, so the lattice potential

may safely be treated as a uniform sine wave with depth 4V0. This depth is usually

measured in recoils, where Erec = h̄2k2

2m
for a laser with wavenumber k and an atom of

mass m. By creating an optical lattice in each of three orthogonal dimensions, one

creates a three-dimensional sine wave potential, where the wells are arranged like the

atoms of a simple cubic crystal.

2.4.1 Band Structure

If we ignore the external potential, we can understand the behavior of particles in

the abscence of interactions by solving the Hamiltonian of a single particle in a sine

wave potential. In each dimension we can write:

H = − h̄2

2m

∂2

∂x2
i

+
siErec

2
(1− cos(2kxi)) (2.16)
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where si is the lattice depth, measured in recoils, for each dimension (usually all

dimensions have the same depth in our experiments, but this is not necessary). The

Schrödinger equation then admits solutions in the form of Mathieu functions, or

equivantly, by Bloch’s theorem, in the form of functions [50]

Faq[x] = eiµaqxPaq(x) (2.17)

where µ(a, q) is the Mathieu characteristic exponent, a = E/Erec−s/2, and q = s/4.

As µ appears in the leading exponent as though it were a momentum, and indeed is

equal to momentum in the limit of zero lattice depth, it is called the quasimomen-

tum. The function Paq is periodic with period π/k, and each function Faq[x] has a

sister function Faq[−x] which is also a solution with the same energy but negative

quasimomentum. These solutions are only normalizable if µ(a, q) is real, which is true

only within certain ranges. This implies the existence of energy bands where particles

below a certain threshold can only have energies within certain ranges. Figure 2.1

shows the appearance and growth of the first three energy bands as a function of

lattice depth. It is often useful to rewrite Faq(x) in terms of the quasimomentum µ

and band level n, forming the Bloch function ψµn(x). Note that these functions also

depend on the lattice depth s, even though it has been left off as an index.

2.4.2 Wannier Functions

While Bloch functions are useful for describing atoms in a shallow lattice and in the

absence of interactions, as the lattice becomes deeper, and especially as interactions

are taken into account, a delocalized wavefunction such as the Bloch function becomes

less and less useful as a basis to describe the atoms. Increasingly, atoms are confined

to a single site, and perhaps those adjacent to it, so an ideal basis would be one that

was likewise localized. The Wannier functions provide just such a basis. For an atom
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Figure 2-1: Bloch bands. Bloch bands begin to form with increasing lattice depth.
This plot shows allowed energies in light blue and forbidden energies in white, as a
function of lattice depth. The first three bands are labelled on the plot. Each band
appears at a progressively higher lattice depth.

29



localized to the jth lattice site and in the nth band, the Wannier function is

wjn(x) =
1

L

∫
dµe−iµjψµn(x). (2.18)

where L is the width of the band, and acts as a constant to normalize the wave-

functions. In experiments with ultracold atoms, nearly all of the atoms will find

themselves in the lowest band, with a large energy gap separating the other bands at

higher lattice depths, so we can generally take n to equal 1.

Using Wannier functions, we can finally begin to deal with interacting atoms in

a lattice by producing a proper expression for tunneling and onsite interaction ma-

trix elements. These matrix elements will be the key components in writing the

Bose-Hubbard Hamiltonian. The tunneling matrix element J is given by the over-

lap integral between the Wannier functions of two adjacent sites as coupled by the

Hamiltonian:

Jij =
∫
dxwi(x)(− h̄2

2m

∂2x

∂x2
+ Vlatt(x))wj(x). (2.19)

The interaction matrix element, U , for a given site is the repulsion felt between two

particles located at the same site. Recalling that the interaction term is U(r) =

4πh̄2as/mδ(r12), we can easily write:

Ui =
4πh̄2as
m

∫
dx|wi(x)|4. (2.20)

With these ingredients, we are finally ready to tackle the Bose-Hubbard Hamlitonian.

2.5 The Bose-Hubbard Model

The Bose-Hubbard model is a model for the Hamiltonian for atoms in an optical

lattice that assumes that the energy of an atom at a particular site is the sum of three

terms: the kinetic term, given by the tunneling matrix element to each adjacent site;
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the onsite interaction term, given by the interaction energy between that atom and

any others at the same site; and the external potential term εi = Vtrap(xi), which is

the potential energy of the atom at that location given by whatever external trapping

potential is imposed on top of the lattice. For a lattice potential that is relatively flat

compared to the external trapping potential, so that Ui and Jij are the same for all

lattice sites, the full Bose-Hubbard Hamiltonian is then [42]:

H = −J
∑
<i,j>

a†iaj + U/2
∑
i

ni(ni − 1) +
∑
i

(εi − µ)ni (2.21)

where a†i and ai are the creation and annihilation operator for an atom at site i and

ni = a†iai is the number operator at site i, while < i, j > denotes the sum over all

states i 6= j.

2.5.1 The Mott Insulator transition

As U and J are the only two energy scales imposed by the lattice in the Bose-Hubbard

model, it is natural that the physics of this model depends on their ratio, given by

the dimensionless interaction energy u = U/J . As the lattice depth increases, U

rises linearly, while J falls exponentially. Thus, u rises exponentially with increasing

lattice depth. To understand what happens to the ground state wavefunction as u

rises, let us consider two extreme cases: the small u case, where J � U and the large

u case, where U � J .

The small u case corresponds to a vanishingly small lattice, and thus to a superfluid

state. This state would be best described in the basis of Bloch states, but one can

write it also in the Bose-Hubbard basis. In the limit of no interactions, each atom

is independent, and is simply in the trap ground state. If the single particle ground
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state wavefunction is < x|φg >= φg(x), then the ground state for N particles is simply

|ψSF >∝ (
∑
i

a†iφg(xi))
N |0 > . (2.22)

If, as in the simplest case, φg(x) is a constant, we can easily see the expected

behavior of a superfluid: phase coherence along with poissonian number fluctuations

for each site. As the lattice raises, however, and J begins to vanish in favor of U , this

phase coherence gives way to well defined values of atom number, and Fock states

form the new basis for the ground state. The transition between these two limits is

the Mott Insulator transition, and its ground state wavefunction

|ψMI >∝
∑
i

a†ni
i |0 > (2.23)

where
∑
i ni = N . The actual value of ni is determined by the external potential and

the chemical potential. We can think of filling each well with particles until the onsite

energy equals the chemical potential minus the trapping potential. In other words,

we can minimize the expression Ei = U/2ni(ni− 1)− (µ− εi)ni. Since ni must be an

integer, however, the actual expression for ni moves in discrete steps:

ni = dµ− εi
U
e. (2.24)

This simple expression is only valid in the limit as J → 0—a more thorough anal-

ysis for nonzero J produces the phase diagram in figure 2.2. The actual point of the

Mott insulator transition, where certain sites first stop showing number fluctuations,

occurs for sites at the top of the n = 1 peak. The precise location of the Mott insula-

tor transition is not easy to measure, and has been the subject of many experimental

attempts [12, 24–26, 30, 42, 54, 66]. Nevertheless, a previous experiment performed in

this lab [53] measured the transition to be at u = 34.2±2.0 for 87Rb in a 3-dimensional
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Figure 2-2: Phase diagram for the superfluid-Mott insulator transition. As J/U
decreases, the system will undergo a phase transition into the Mott insulator. The
system will form regions of superfluid and insulating regions with fixed atom number,
determined by the value of (µ− εi)/U at that lattice site. Higher chemical potentials
lead to higher atom numbers at each site.

lattice made with light at 1064µm, which occurs at a depth of 13.5 ± 0.2Erec. This

result is in good agreement with the prediction of mean field theory [42], although it is

lower than the predictions from quantum monte carlo [14,28]. The measurement was

precise, but may have had systematic errors affecting its accuracy, so the transition

point may be slightly under the measured value. Nonetheless, it seems safe to say

that any lattice above 14Erec is well into the Mott insulator regime.

2.5.2 Excitation Spectrum

An important difference between the superfluid state and the Mott insulator can be

seen in their different excitation spectra. The superfluid state has a continuous excita-

tion spectrum described by Bogoliubov theory. In terms of momentum k, interaction
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parameter U0 = 4πh̄2as/m and density n, the excitation energy is [65]

εk =

√
(
h̄2k2

2m
+ U0n)2 − U2

0n
2. (2.25)

For small k this expression is approximately linear, implying excitations in the form of

phonons with speed of sound c =
√
nU0/m while for high k we have free particle-like

excitations with εk ≈ h̄2k2

2m
+ nU0.

This continuous excitation spectrum stands in sharp contrast to the Mott insu-

lator, whose excitation spectrum is gapped. Since the only variable determining the

energy of a state in the deep Mott insulator is ni, the only form an excitation can take

is a change in distribution of ni. For example, in an n = 1 Mott insulator, one site

can be left vacant while another is occupied by two atoms. This can be thought of

as a particle-hole excitation, as a “hole” is created in the form of an n = 0 site, while

a “particle” is created in the form of an n = 2 site. Such an excitation is illustrated

in figure 2.3, and has energy U .

Of course, in a real system, the inhomogeneous trap potential will cause different

atoms to be at different effective chemical potentials. Looking in figure 2.2, any atoms

that happen to be in the superfluid region will have continuous excitation spectra. In

a harmonic trap, these atoms will be located around a particular radius determined by

the trap frequency, forming ellipsoids of superfluid commonly referred to as superfluid

“shells.” However, for a reasonably deep lattice only a small fraction of the atoms will

be located in positions to form superfluid shells; the remainder will exhibit a gapped

excitation spectrum.

The effect of this gapped excitation spectrum is double-edged: on the one hand,

for temperatures kBT � U there will be few excitations, giving a relatively pure

system, but on the other hand, this freezing out of excitations makes it very difficult

to read temperatures. Only the superfluid shell regions show significant responses to
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U

Figure 2-3: Mott insulator excitations. In the Mott insulator, the lowest energy
excitation occurs when an atom tunnels to an adjacent lattice site. This lowers the
original site’s occupation number by 1 while raising the new site’s by 1, at an energy
cost of U , the onsite interaction energy.

temperature changes in this range, but they can be very small and difficult to resolve.

As we shall see, using atoms in a different hyperfine state as a second component, a

step necessary anyway for the observation of magnetic phenomena, provides a method

to overcome this difficulty.

2.5.3 Two-Component Bose-Hubbard Model

The presence of a second type of atom modifies the Bose-Hubbard Hamiltonian in the

following ways: for atoms numbered 1 and 2, we must introduce separate tunneling

matrix elements J1 and J2 if the two components have different tunneling rates,

and we must introduce different interaction energies U11, U22, U12 to represent the

differences in inter- and intra-species interactions. The resulting Hamiltonian is then

H = −
∑

<ij>,σ

Jσa
†
σiaσj +

∑
i,σ

(
Uσσ
2
nσi(nσi− 1) +U12

∑
i

n1in2i +
∑
iσ

(εσi−µσ)nσi (2.26)
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where sigma represents the index 1 or 2. In our experiments, the two species will

be two different hyperfine states of 87Rb, the |F = 1,mF = −1 > state and the

|2,−2 > state, where F and mF are the total spin and its projection along the axis of

the local magnetic field. The value J can be manipulated by the appropriate choice

of optical lattice: a spin dependent lattice can have different lattice depths for each

state, and hence different J . Similarly, differences in U can be achieved either by using

Feschbach resonances to manipulate the relative scattering lengths of the two species

(recalling that U ∝ as), or again by the use of specially engineered spin dependent

lattices [39, 49]. In the experiments described here, however, no use is made of spin

dependent lattices, so J is identical for the two species. Also, the scattering lengths of

the two species are not manipulated, and the natural differences in scattering lengths

for 87Rb are very small. The only remaining term is the different potentials, εσi felt

by the species, and it is this term that is the key to allowing thermometry in the

lattice. Nonetheless, it is instructive to briefly go over the resulting phase diagram

for lattices in the case of variable J and U , as we will see what magnetically ordered

phases will arise and why they require the very precise temperature control that is

the subject of this thesis.

2.5.4 Phase Diagram Of the Two-Component Bose Hubbard

Model

In the Mott Insulator regime, J is much less than U , so it is appropriate to expand the

Hamiltonian perturbatively in J . Taking only terms out to order J2/U , and ignoring

the external potential, it is possible to use the Schrieffer-Wolf transformation [2,21,45]

to write the Bose-Hubbard Hamiltonian in the form

H =
∑
<ij>

λzσ
z
i σ

z
j − λ⊥(σxi σ

x
j + σyi σ

y
j ) +

∑
i

hzσ
z
i . (2.27)
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Here σµi = a†kσ
µ
klal for the Pauli matrices σµkl, so σzi = n1i − n2i is the difference in

number at site i. Similarly, σxi gives the component of the net spin angular momentum

pointing along the x-axis and σyi along the y. The term hz is a term proportional

to the applied magnetic field plus a constant which may be neglected as a being an

offset to the total field. Meanwhile λz and λ⊥ can be written in terms of U and J as

λz =
J2

1 + J2
2

2U12

− J2
1

U1

− J2
2

U2

(2.28)

λ⊥ =
J1J2

U12

. (2.29)

Depending on the values of λz, λ⊥, and hz, this Hamiltonian gives rise to a ground

state in one of three different magnetically ordered phases: a z-ferromagnetically

ordered phase, where all spins align along the direction of the applied magnetic field;

an xy-ferromagnetically ordered phase, where the spins align orthogonal to the field;

and an antiferromagnetically ordered phase, where spins are alternately aligned and

anti-aligned to the field in a checkerboard pattern. Roughly speaking, as U12 drops

relative to U1 and U2, the xy-ferromagnet tends to be favored over the z-ferromagnet,

and as the tunneling difference β = J1/J2 +J2/J1 grows above its base value of 2, the

antiferromagnet tends to be favored over the xy-ferromagnet. The resulting phase

diagram is shown in figure 2.4.

Because these phases arise as a perturbative correction to the J = 0 model of the

Mott insulator, the energy involved in creating them will be on the order of J2/U .

This scale is known as the superexchange energy, as it is the energy term involved in

an interaction where a particle tunnels to an adjacent site, interacts with whatever

particles are there, then returns. It is when the system is below this scale that it

is possible for it to exhibit the ordering effects of quantum magnetism [35]. Various

proposals [3,22] have focused on the realization of quantum spin Hamiltonians in this

regime. But the small value of this scale is a serious problem for atomic systems:
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Figure 2-4: Two-component phase diagram. Two-component bosonic atoms in an
optical lattice obey this phase diagram very low temperatures. The three phases
depicted are labelled as follows: AF is the antiferromagnetic phase. X-FM is the
xy-ferromagnetic phase. Z-FM is the z-ferromagnetic phase. The variables λz and λ⊥
used in the axes are defined in equations 2.28 and 2.29, respectively, while hz is the
magnetic field. In the simplified case where J1=J2 and U11 = U22 = Uσ, the vertical
axis is proportional to the ratio U12/Uσ, plus a constant.
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for 87Rb in a lattice with average depth near the Mott insulator transition, recent

quantum Monte Carlo calculations have shown the Curie temperature for the xy

phase to be a mere 200 pK [15]. While the obvious answer might seem to be to raise

J or lower U to make J2/U larger, this would result in leaving the Mott insulator

regime and the failure of our perturbative assumption: the system would instead be

a superfluid, so we could no longer probe the phase diagram we wish to. Thus, we

are left with little alternative but to find a way to measure lattice temperatures in

the picoKelvin range, and find a way to produce such temperatures in experimental

conditions. Although some cooling schemes have been proposed [6, 36, 57, 58], their

implementation has not been easy. Chapters 4 and 5 will describe how these two

goals have been achieved experimentally through the development of spin gradient

thermometry and the use of adiabatic demagnetization cooling.
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Chapter 3

Experimental Setup

In this chapter I will review the basic details involved in the preparation of ultracold

87Rb atoms to be loaded into an optical lattice. The design of the experimental

apparatus has already been clearly described in Refs. [67], [52], and [69], so I will only

give a very brief description of the procedure for producing ultracold 87Rb atoms. The

87Rb machine is composed of an oven, Zeeman slower, and two chembers: the main

chamber and the science chamber. The main chamber contains a Magneto-Optical

Trap that catches and cools 87Rb atoms exiting the Zeeman slower. The atoms are

then optically pumped into the in the |1,−1 > hyperfine state and transferred to a

magnetic trap. The atoms are evaporatively cooled to a temperature of a few times

Tc before being loaded into an Optical Dipole Trap (ODT). This trap is produced by

focusing a 1064 nm wavelength laser through a lens on a translation stage. The stage

then moves the lens, translating the trapped atoms into the Science Chamber, where

they are then transferred into another ODT.

3.1 Science Chamber Setup

The Science Chamber is a vacuum chamber connected to the main chamber and

designed specifically for use with optical lattices. The design of this chamber is
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Figure 3-1: ODT and lattice diagram. This diagram shows the top view of the Science
Chamber. The configuration shows optical dipole traps in blue and optical lattices
in red. One lattice beam is oriented vertically through the atoms, coming out of the
page.

described in detail in Ref. [52]. Atoms are delivered into this chamber from the Main

Chamber using a translating ODT, then loaded into a crossed ODT formed by two

horizontal beams aligned 90 degrees apart from each other. The depth of the trap of

these two beams is lowered to evaporatively cool the atoms, and the atoms form a

BEC. Aligned with the trap bottom created by these beams are three optical lattices,

each formed by a retroreflected laser beam. One of the beams is vertical, while the

other two are horizontal at 45 degrees from the beams of the crossed ODT. The

configuration of these five beams is shown in figure 3.1.

All of these beams originate from the same source, a 1064 nm laser. The fre-

quencies of these beams are offset by at least 3 MHz from each of the others using
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Figure 3-2: Magnetic field geometry. These diagrams show the configuration of mag-
netic bias fields and gradients generated by the Science Chamber coils. The left shows
bias fields from a top view. The right shows a side view of ∇|B| near the atoms in
the absence of bias fields. With bias fields on, ∇|B| points along x axis only.

Acousto-Optical Modulators so that any interference effects are at high frequency and

will average out. The two optical dipole traps are given orthogonal polarizations, and

each of the lattice beams is also given a polarization orthoganal to each of the other

two so as to further minimize interference effects.

Magnetic field control is very important in our experiments, and it is performed

using six bias coils. Four small coils in the horizontal plane are configured to provide

a bias field of up to 15 G along the x-axis. Two larger coils, located above and below

the chamber are arranged in an anti-Helmholtz configuration to produce a magnetic

field gradient. In the presence of a strong bias field in the x direction, the gradient of

the absolute value of the field, ∇|B|, will point along the x-axis. In experiments, the

strength of this gradient can be varied from 2 G/cm to −1 G/cm. Figure 3.2 shows

the configuration of these coils and the fields they produce.
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3.2 State Preparation and Gradient Evaporation

The Main Chamber produces atoms in the |1,−1 > hyperfine state, and the atoms

remain in this state as they are transferred into the Science Chamber and evaporated

to BEC. Since we wish to have atoms in a mixture of two states, we transfer a fraction

of those atoms into the |2,−2 > hyperfine state. There are several reasons why the

|2,−2 > state is an attractive choice for a second state. First, it is a stretched state

in the same direction as the |1,−1 > state, so it cannot collide with a |1,−1 > atom,

or with itself, and produce atoms in different hyperfine states. This means that the

|1,−1 >/|2,−2 > mixture acts as a two-spin system with conserved magnetization.

Secondly, the transition from the |1,−1 > to the |2,−2 > state is a single photon

magnetic transition, so it is easy to drive with microwave radiation while at the same

time having an extremely long lifetime in the upper state. Finally, the two states

have opposite g-factors, so they are pulled in opposite directions by a magnetic field

gradient. This is important, because the interaction between spin and magnetic field

gradients is critical to our experiments.

The transition between |1,−1 > and |2,−2 > is driven with microwaves using a

rapid, nonadiabatic sweep of the magnetic field. A microwave signal at 6.844 GHz is

mixed with an RF signal at 36 MHz to produce microwave radiation at 6.808 GHz (as

well as a 6.880 GHz signal which is far off resonance and has no effect). The mixer

allows the use of RF function generators to provide easy control of the frequency and

intensity of the microwave radiation, but the same effect could be achieved using a

single frequency microwave source at 6.808 GHz instead. The microwaves are fed

into a microwave horn, which then exposes the atoms to radiation at that frequency.

Meanwhile, the bias field is swept linearly from about 12 G to 13.5 G over the course

of 20 ms. This sweep causes the resonance frequency of the atoms to pass over the

frequency of the microwaves, transferring some, but not all, of the atoms to the

|2,−2 > state. In the end, we want an equal mixture of the two states, but we
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initially prepare an excess number of |2,−2 > atoms. The reason for this is that in

the next step, gradient evaporation, the |2,−2 > atoms evaporate more rapidly due

to their high magnetic moment. Thus, we overpopulate the |2,−2 > state initially so

that after the evaporation the |2,−2 > atoms will be equal in number to the |1,−1 >

atoms.

After preparing the two spin states, we then begin another round of evaporation in

the presence of a magnetic field gradient. The gradient is turned on and increased to

a strength of 2 G/cm and held for between 1 and 4 seconds as the atoms evaporatively

cool. The reason for this extra evaporation step is that our state preparation adds

a great deal of entropy to the system, and evaporation in the presence of a gradient

can remove it [40]. The sweep is nonadiabatic, with the two states decohering within

milliseconds, so each atom can basically be thought of as having a random spin, either

|1,−1 > or |2,−2 >. Thus, we have added entropy of around kB ln 2 per particle.

This entropy can be mostly removed through gradient evaporation. Because the two

states have opposite g-factors, they are pulled in opposite directions by the magnetic

field: the |1,−1 > atoms toward the region of weaker field and the |2,−2 > atoms

towards the region of stronger field.

As the spins segregate, their spin entropy decreases, changing into kinetic entropy

in the form of heat. This heat is then removed by evaporation. Because the |2,−2 >

atoms have twice the magnetic moment of the |1,−1 > atoms, they are pulled more

strongly and evaporate more rapidly. The |2,−2 > population is initially made to be

more than half so that after this process they are equal in number to the |1,−1 >

atoms. Ultimately, in a stong gradient, the two spin states are completely separated

on opposite sides of the cloud. Figure 3.3 shows a cartoon picture of this process. The

state that results from this evaporation is then ready to be used in our experiments.
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Magnetic Field Gradient

Figure 3-3: Gradient evaporation procedure. Atoms are initially in the |1,−1 > state
(black) and zero magnetic field gradient. Roughly half of the atoms are then swept
into the |2,−2 > state (white). The gradient is then ramped up to 2 G/cm, partially
separating the two spins. As the atoms evaporate, the entropy added from state
preparation is removed, and the spins segregate on opposite sides of the trap.

3.3 Imaging the Atoms

At the end of each experimental run, we image the atoms using resonant absorption

imaging. The atoms are illuminated with light at 780 nm, resonant with the F = 2

to F = 3 cycling transition of 87Rb. Any atoms in the F = 2 hyperfine level cast

a shadow onto a camera—this image is the “probe with atoms” (PWA) frame. Two

additional images are taken immediately afterwards, one with the same light pulse

but no atoms, called the “probe without atoms” (PWOA) frame and one more frame

without the light, called the “dark field” (DF) frame. The absorption image is then

the ratio

ABS =
PWA−DF
PWOA−DF . (3.1)

The number of atoms in a given pixel N(x, y) is then given by the equation

N(x, y) = −A lnABS

σ0

, (3.2)

where A is the area of a single pixel and σ0 is the resonant cross section. In-trap

images are taken with a magnification factor of 10, and our camera has 13µm pixels,
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so the area A for in-trap images is (1.3µm)2. This basic equation can be used to

generate a two dimensional image of atom number density; however, there are two

corrections we use in processing images that improve the accuracy of of our absorption

images.

3.4 Saturation Correction

The first correction involves saturation effects. Equation 3.2 is only valid in the limit

of unsaturated imaging. As the light intensity approaches or exceeds the saturation

intensity Isat, that equation no longer remains accurate. The obvious solution would

seem to be to always use light intensities well below saturation, but this is not always

possible. Sometimes, especially when imaging dense clouds of atoms in-trap, the

parts of the cloud we are interested in measuring are optically dense. When this is

the case, unsaturated light will be almost entirely extinguished, so what signal does

get through will be only a few counts per pixel—this will result in high noise and poor

accuracy. In those cases, it is necessary to use much more intense light to retrieve

any signal at all, but of course, the signal will no longer give the correct density if

simply plugged into equation 3.2.

The solution is to use a correction term to cancel out the effects of saturation and

retrieve the correct signal. To do this, we must know the properties of the atoms we

are measuring and what the original intensity of the light was at each pixel. The first

part is no problem, as the optical properties of 87Rb are well understood. As for the

second part, we can retrieve that information from the PWOA shot. We can then

use an equation given by Ref. [59] to retrieve the real number of atoms:

N(x, y) =
A

σ0

[α ln(
PWA−DF
PWOA−DF −

PWOA− PWA

Isat
]. (3.3)

Here, Isat is the saturation intensity, in units of camera counts per pixel and α is a cor-
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rection factor that depends on a variety of factors such as imaging beam polarization

and the structures of the upper and lower states. We determined α experimentally

by imaging a constant number of atoms with different intensities of light. The best

fit value was 2.1 for our primary imaging setup, and this value was used in all in trap

shots to determine the correct atom number. For many of our experimental runs,

specifically those performed with unsaturated light, the correction factor is basically

negligible and equation 3.3 provides no more accurate informaiton than equation 3.2.

Nonetheless, when imaging clouds with large atom number, the flexibility given by

equation 3.3’s correction helps significantly.

3.5 Principal Component Analysis Correction

While the saturation correction described above is a correction based on the interac-

tion between 87Rb atoms and light, there is a second correction we also make that

involves only the laser. Specifically, the problem is the appearance of fringes arising

from the division of the PWA by the PWOA images to obtain an absorption image.

We normally assume that the only difference between the PWA and PWOA images is

that the atoms are gone—in other words, that the intensity distribution of the laser is

the same. But this is not necessarily true: the shots are taken about 1 second apart,

and in this time the shape of the light may change. Imaging artifacts can arise due to

vibrations in the different optics components, changes in intensity, and other effects.

These give rise to fringes in the absorption image.

One way of thinking about this problem is that the PWOA shot is equal to what

the PWA shot would have been in the absence of the atoms, plus some fringes that

arise due to vibrations and other imperfections in the apparatus. Basically, what we

want to know is not what the PWOA was, but rather what it should have been. We

can make a good guess at what the PWOA should have been by looking at correlations
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between different parts of an image. By masking off the part of the frame containing

the atoms in the PWA, we can infer what that area would have been be comparing the

rest of the image to a set of many PWOAs from different shots. We can then think of

reconstructing the “true” PWOA as a weighted sum over the set of several different

PWOAs, where the weighting coefficients are based on a comparison between the

masked PWA and each PWOA in the set. The mathematical method of determining

these coefficients is principal component analysis.

Principal component analysis can be used on a set of vectors to generate a principal

component matrix [62,63,72]. In this case, the original set of vectors are the masked

PWA shots and the (unmasked) PWOA shots. Let the principal component matrix be

P , whose column vectors pi are called the principal component vectors. The vectors

are two-dimensional arrays of the same size as our images, and P has an additional

dimension equal in length to the number of images used to generate it. Similarly,

let us call the PWA image IPWA and the PWOA image IPWOA, where again each

vector is a two-dimensional array. These images are used to generate the principal

component matrix. Finally, we choose a mask around the atoms, and so can break

the PWA image into two parts, IPWA = I−PWA + I0
PWA where I0

PWA is the masked off

region—the part with the atoms. The correction prescribed by principal component

analysis then depends on whether the fringes in an image arise due to elements in the

beam path before or after the atoms.

3.5.1 Post-Atom Fringes

If the fringes arise from elements in the beam path after the atoms, then the correction

is effectively one to the dark field of each of the probe beams. Each frame, the PWA

and PWOA, must then be corrected. The corrected frames can be straightforwardly

written as

I′PWA = IPWA −
∑
i

(I−PWA·P )ipi (3.4)
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I′PWOA = IPWOA −
∑
i

(IPWOA·P )ipi (3.5)

and the normalized absorption image is

I′ABS =
I′PWA − IDF
I′PWOA − IDF

(3.6)

However, in our experiments, we find that this type of correction, being an additive

correction of the same type as the dark field, does not significantly diminish the

visible fringes. This is reasonable, as the path length between the atoms and camera

is shorter, and contains fewer optical elements, than the path length leading up to

the camera. Thus, the multiplicative form of correction, which accounts for pre-atom

fringes, will be the one we use in the experiment.

3.5.2 Pre-Atom Fringes

When the fringes arise from elements in the beam path prior to the atoms, as we

find to be the case in our experiment, then a multiplicative correction should be

applied. This correction is only to the PWOA shot, and essentially involves first

subtracting the fringes of the PWOA, then adding in the fringes of the PWA, so that

in the end these fringes will divide out cleanly and give an accurate absorption image.

The procedure is more complicated than the additive correction, proceeding in the

following manner:

First, we must decompose the basis vectors pi in the same manner as the PWA

shots, writing pi = p−i + p0
i where p0

i is the part of the basis vector under the mask.

Next, we renormalize the remaining part of the basis vector by writing

p′i =
1√

p−i ·p−i
p−i . (3.7)
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Now we can extract the principal component coefficients ci from the PWA:

ci = IPWA·p′i. (3.8)

Now, we are ready to correct the PWOA image in two steps.

In the first step, we subtract the fringes of the PWOA in the same way as we did

for post-atom fringes:

I′PWOA = IPWOA −
∑
i

(IPWOA·P )ipi. (3.9)

In the second step, we then add to the PWOA the fringes that the PWA frame has,

so that we may properly divide them out later:

I′′PWOA = I′PWOA +
∑
i

cipi. (3.10)

Finally, the absorption image is given by

I′ABS =
IPWA − IDF
I′′PWOA − IDF

. (3.11)

The effect of using this image processing routine is to significantly reduce visible

fringes in images. This allows a more accurate in-trap image of the atom cloud

to be resolved. Figure 3.4 shows an example of a pair of frames before and after

fringe removal. Principal component analysis requires many frames to be useful in

subtracting fringes, so we use all the shots in a data set to produce the principal

component matrix. One problem to keep in mind is that bad frames—those caused

by camera malfunctions, for example—can cause the fringe subtraction routine to

worsen, rather than improve, the images. We occasionally had such bad frames,

and it was important to remove them prior to computing the principal component
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Figure 3-4: Fringe removal results. The left frames show absorption images of our
atoms without fringe removal, while the right frames show the results of fringe removal
using principal component analysis. Imaging artifacts are clearly removed (note, for
example, the uneven “blotches” on the left part of the images which are gone in the
corrected images), while the image of the atoms themselves is preserved.

matrix. Removing the bad frames afterwards is not sufficent, as they will contiminate

the remaining frames through the erroneous matrix.

3.6 Magnetic Field Gradient Calibration

A final topic important to the experiments presented in the following chapters is

the calibration of the magnetic field gradient. Precise control over the strength and

direction of the magnetic field gradient, as well as accurate knowledge of the point

at which the gradient strength is zero, are very important both for spin gradient

thermometry and spin gradient demagnetization cooling. This section will describe

the procedures used to calibrate all three of these.
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The direction of the gradient must remain constant, in the x direction, over the

full range of gradients used. To assure this, a strong bias field, of approximately 15

G, is maintained in the x direction. As long as this field is maintained, the direction

of the gradient will stay constant, as any gradients in orthogonal directions will be

quadratically suppressed. To see why, consider that we can expand the magnetic field

to first order in ~x as

~B = B0x̂+
∑
i

B′i~xi (3.12)

where B′i = ∂Bi

∂xi
is the gradient due to our antihelmholtz coils (other terms give rise

to curvature and can be neglected for well-aligned coils). Then the magnitude of the

magnetic field |B| can be written

|B| =
√
B2 =

√
B2

0 + 2B0B′xx+
∑
i

(B′i)2x2
i . (3.13)

Finally, to get ∇|B|, we expand the square root in the limit of large B0 to get

∇|B| = B′xx̂+O(B′/B0) (3.14)

. Thus, we can treat ∇|B| as a single number value B′, representing the strength of

the gradient along the x axis, ∇|B|· x̂.

To be sure that as we vary the strength of the gradient, we do not introduce

magnetic field components in the ŷ and ẑ directions, we make a Stern-Gerlach mea-

surement at various gradient strengths. The atoms are prepared in a mixture of

|2,−2 > and |1,−1 > as described in section 3.2. The gradient is set to a variable

value, then the trap holding the atoms is turned off, and the two atomic species sep-

arate in time of flight. As long as the atoms are separated along the same axis for all

values of gradient applied, we know the gradient is along that axis alone. If they do

not remain along the x axis, coils are adjusted and shimming currents are added until
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Figure 3-5: Stern-Gerlach calibration. Atoms in the |2,−2 > and |1,−1 > states
are dropped in time of flight in varying magnetic fields. The x axis is voltage of the
control apparatus, and is proportional to the magnetic field gradient. These data
can be fit to an absolute value function to extract the strength of the gradient in
G/cm/V. These data fit to a gradient strength of approximately 0.336 G/cm/V. The
vertical offset from zero is due to the finite trap size.

they do. This same measurement gives us the gradient strength, as the separation

of the atoms for a given time of flight should be proportional to the strength of the

gradient. Figure 3.5 shows a plot of such a set of measurements; the separation of the

atoms is an absolute value function because we do not differentiate between species

in this measurement.

The most important measurment, however, is the location of the magnetic field

zero. This value can be estimated from a Stern-Gerlach experiment, but for our

purposes we need to be much more precise in our zero determination, at a level of

about 1 mG/cm. To achieve this level of precision, we make an in-trap measurement of

the atoms. After gradient evaporation, the two atom species will be on opposite sides

of the trap. If the gradient is then lowered, the atoms will remain on opposite sides

until the gradient passes through zero and reverses, whereupon the atoms will switch
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Figure 3-6: Magnetic field gradient zero measurement. Atoms in the |2,−2 > and
|1,−1 > states are evaporated in a strong magnetic field gradient. The gradient
is then lowered to a new value, and the positions of the |2,−2 > atoms and the
atom cloud as a whole are measured. The x axis is gradient in arbitrary units with
an unknown offset, and the y axis is the difference in positions, also in arbitrary
units. The fit curve is to guide the eye; the gradient zero value is where the position
difference equals zero.

sides. To determine the zero point, we make a series of measurements comparing the

center position of the |2,−2 > atoms to the center of the atoms as a whole. The zero

is where the difference between the two goes to zero. Figure 3.5 shows an example of

the data from such a calibration run. This procedure can measure the gradient zero

position accurate to a few mG/cm. To achieve a precision of 1 mG/cm, the same

procedure is used, but the gradient is lowered more rapidly, in a manner similar to

the process of spin gradient demagnetization cooling described in chapter 5, and the

atoms are imaged in the presence of the lattice. This produces much colder atoms,

which have a correspondingly higher sensitivity to the gradient zero.
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Chapter 4

Spin Gradient Thermometry for

Ultracold Atoms in Optical

Lattices

As atoms in optical lattices are increasingly used to simulate condensed matter sys-

tems, the temperature of those atoms becomes more and more important to know.

New realms of physics open themselves up at ever decreasing temperatures. Mott

insulator shells first form at temperatures T ∼ 0.2U , and the layers between those

shells become superfluid at T ∼ zJ where z is the coordination number. For two-

component systems, magnetic ordering first arises at temperatures T ∼ J2/U . All of

these temperatures are well below the condensation temperature Tc, and the lowest

are difficult to achieve at all, even in the absence of a lattice. Before one can even

think about achieving these temperatures, however, it is important to have a method

to measure them. While methods exist to measure temperatures in this range in the

superfluid state, the development of similarly effective methods that can be applied

in the Mott insulator has proven more difficult [16, 29, 38, 51, 56]. The spin gradient

thermometry method described in this chapter provides such a method applicable in
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a two-component system. These experimental results have reported in [74], a reprint

of which is included in Appendix A.

4.1 Model of Spin Gradient Thermometry

Spin gradient thermometry admits a very simple theoretical treatment. The sys-

tem involved consists of a collection of 87Rb atoms in two different hyperfine states,

|2,−2 > and |1,−1 >. These atoms are put in the presence of a three-dimensional

cubic optical lattice made from light at 1064 nm. The lattice is typically raised to

a depth of 15Erec, putting the system above the Mott insulator transition. Finally,

the atoms are subjected to a magnetic field gradient. Since the two atoms have dif-

ferent magnetic moments, they are pulled in different directions by the gradient: the

|2,−2 > atoms are pulled towards the region of higher field while the |1,−1 > atoms

are pulled towards the region of lower field. The ground state of the system, assum-

ing a gradient high enough that we can neglect superexchange interactions, is for the

particles to be completely segregated on opposite ends of the trap. Conversely, at

high temperatures and low gradients, we should see a completely random mixture,

with each particle equally likely to be on either side of the trap. The behavior of

particles in between these two extreme cases is what we must understand.

Assume we have a lattice with total occupation number n = 1, composed of an

equal mix of |2,−2 > and |1,−1 > atoms. The magnetic moments of the |2,−2 >

and |1,−1 > atoms are −µB and µB/2, respectively for a difference of ∆µ = 3µB/2.

First, we can treat the force on these atoms due to a magnetic field gradient as a

constant force on both plus a symmetric force separating two particles of pseudospin

+1 and −1, with effective magnetic moments of ∆µ/2. The constant force will just

shift the trap, so it can be neglected, leaving only the symmetric force. Then, as

long as we are in a regime where spin coherence effects are negligible, we can treat
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each lattice site as being isolated, with a partition function factorizable as Z = ZσZ0.

Here, Z0 is the partition function corresponding to the atom number ni, and Zσ is

the partition function for the spin. The latter is then given by

Zσ = cosh(
β

2
∆µ·B(x)) (4.1)

for magnetic field B(x) and β = 1/kBT .

This expression is generally valid when the occupation number ni = 1, while

for occupation numbers other than 1, there are two correction factors. One is due

to a difference in scattering lengths, and is proportional to ∆U = U12 − U11+U22

2
.

This difference, due to different scattering lengths, is very small for 87Rb and can

generally be neglected. The other correction is due to the indistinguishibility of the

particles, and acts as a multiplier on the temperature, usually less than a factor of

two unless atom numbers are very large. The experimental data presented in this

chapter ignore these corrections and treat atoms as being in the n = 1 case, while

section 4.5 examines the corrections more closely and quantifies their size.

Setting these corrections aside, however, we can use this partition function to

easily find the expected spin. Using the formula < E >= −∂ lnZ
∂β

to get the energy at

a site, we then divide by ∆µ·B(x)/2, half the energy difference between the spin up

and down states. We can then write < s > as a function of position:

< s(x) >= tanh(−β
2

∆µ·B(x)) (4.2)

By measuring the actual spin distribution in a known magnetic field and fitting it

to the above equation, one can then extract the temperature. Roughly speaking,

as the temperature rises, the area near the boundary between the two spin regions

changes from a sharp step to a gradual slope. The width of this boundary region

is proportional to the temperature, and inversely proportional to the gradient of the
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magnetic field.

Because the magnetic moment of the atoms will always follow the direction of

the magnetic field, only the magnitude of the field is physically relevant. So we

can write the field term as a constant field plus a gradient B′ = ∂|B|
∂x

, in the form

µ·B(x) = µB′(x − x0). The actual value of the constant magnetic field term is

irrelevant to the physics of the problem: the position offset x0 actually acts as a fit

parameter to determine the ratio of spin up to spin down. If x0 is in the center of the

cloud, for example, then the spin ratio is 1 : 1.

4.2 Experimental Procedure

A mixture of 87Rb atoms in the |2,−2 > and |1,−1 > states is prepared in the presence

of a magnetic field gradient as described in section 3-2. Initially, the strength of the

magnetic field gradient is 2 G/cm, and in the same direction as the weakest axis of

the trap. This gradient is always kept in the same direction, but its magnitude can be

changed to any of a variety of other values. In equation 4.2, the argument of the tanh

function is proportional to the magnetic field gradient, while inversely proportional

to the temperature. Thus, applying a lower field gradient makes this thermometry

technique sensitive to lower temperatures.

After lowering the gradient to the desired value, a three dimensional optical lattice

is raised, typically to a depth of 15Erec. Since this depth is past the Mott insulator

transition for 87Rb, which occurs at 13.5Erec, the spin distribution should be decou-

pled from the particle-hole distribution, meaning equation 4.2 is a good approximation

of the spin distribution. This distribution can then be measured and fit to extract

the temperature.

The measurement of the spin distribution is done via a pair of absorption images.

Although it is possible to extract the spin distribution from just a single image, using

60



Figure 4-1: Images used for spin gradient thermometry. Data on the left were taken
at a lower optical trap power than data on the right. Panels a and b are images of
the spin distribution. Panels c and d show the mean spin versus x position. The fit
to c gives a temperature of 52 nK; the fit to d gives a temperature of 296 nK. The
inset of a shows the axes referred to in the text. The bar in b) is a size scale.

two images simplifies the fitting procedure and guards against systematic errors. On

two consecutive runs, an absorption image is taken: the first run images the atoms in

the |2,−2 > state, while in the second run the |1,−1 > atoms are optically pumped

into the F = 2 manifold, and then an image of all the atoms is taken. The difference

between twice the first image and the second image shows the mean spin times the

column density of atoms at each pixel, so the difference divided by the image of all

atoms shows the mean spin as a function of x and y. Since the mean spin should

only depend on x (the direction parallel to the gradient), integrating over the y axis

gives a simple curve < s(x) >, which can then be fit to a hyperbolic tangent to

extract the temperature. Figure 4.1 shows a pair of composite images at two different

temperatures, along with the mean spin < s(x) >.

If the density of |2,−2 > atoms is ρ2(x) and the density of all atoms is ρ(x), then
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the fitting function used is

2ρ2(x)− ρ(x) = ρ(x) tanh[
3

4
µB

B′

kBT
(x− x0)]. (4.3)

The only free parameters used to fit are the position offset x0, which measures the

spin ratio, a vertical offset to cancel imaging errors, and the temperature, T .

4.3 Experimental Results

Figure 4.2 shows the results of this thermometry performed on 87Rb atoms at two

different temperatures, each at a variety of magnetic field values. As predicted by

equation 4.2, the inverse width of the spin distribution is proportional to the strength

of the magnetic field gradient for each constant temperature curve. However, the low

temperature curve disagrees with this prediction for high gradients. This is a result

of finite optical resolution of our apparatus–the real width is too small to resolve at

high gradients and low temperatures. This effect was approximated by applying a 4

µm Gaussian blur to the predicted curve, shown as a dash-dotted line. This curve

agrees with both the low and high gradient measurements. As a rule, however, this

effect will limit our ability to resolve temperatures using an arbitrary gradient: to

measure colder temperatures, it is necessary to lower the gradient to such a point

that the width is no longer less than our optical resolution. If one leaves the gradient

too high, the result is to overestimate the temperature.

In order to gauge the accuracy of spin gradient thermometry, it is necessary to

compare it to other thermometric techniques. While there currently exist no other

techniques capable of precisely extracting temperatures of atoms in optical lattices at

the coldest ranges measured in our experiments, there do exist other reliable methods

at higher temperatures. Figure 4.3 shows a comparison of one such technique to spin

gradient thermometry. The other method estimates the temperature by a comparison
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Figure 4-2: Independence of temperature on gradient. The inverse of the width of
the spin profile is plotted as a function of magnetic field gradient for two data sets
at two different temperatures. For constant temperature, a linear curve is expected.
The width is defined as the distance from the center to the position where the mean
spin is 1/2. The solid (dashed) line assumes a temperature of 123 nK (7 nK) and
perfect imaging. The measured width of the colder data set saturates at high gradient
because of finite imaging resolution. The dotted line assumes a temperature of 7 nK
and an imaging resolution of 4 µm.

63



to the width of the cloud in the lattice, using the relation σ2 = kBT/mω
2, where σ

is the 1/e2 half-width of the cloud along one axis and ω is the trap frequency along

that same axis [51]. The x-axis is the strength of the optical dipole trap in arbitrary

units. Because the depth of the optical dipole trap determines the rate of evaporative

cooling, higher trap depths should correspond to higher temperatures.

The width is extracted from the wings of the atomic cloud, and the simple relation

to the temperature depends on the approximation that the atoms are noninteracting.

For high temperatures, this is a reasonable approximation as there will be many empty

sites in the lattice, so atom-atom interactions are less important. However, as tem-

peratures fall and the atoms become more closely packed, the atomic cloud becomes

incompressible and this approximation breaks down. Figure 4.3 agrees with this ex-

pectation: at high temperatures, the two techniques give similar results, while at low

temperatures width thermometry gives consistently higher estimated temperatures

than spin gradient thermometry. The good agreement between these thermometry

techniques lends credence to the claim that spin gradient thermometry also produces

accurate results in temperature ranges where no other technique can currently be

used.

4.4 Limits and Comparison to Other Techniques

One of the most useful aspects of spin gradient thermometry is its wide range of ap-

plicability. As the data in Figure 4.3 indicate, spin gradient thermometry can provide

accurate temperature values at high temperatures, even those higher then the critical

temperature for Bose condensation. Moreover, this same technique can be used to

measure ever lower temperatures by setting the magnetic field gradient to lower val-

ues. The lowest temperature we measured in the lattice using ordinary evaporative

cooling techniques was approximately 1 nK, but even this temperature is by no means
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Figure 4-3: Validation of spin gradient thermometry. Comparison of two measured
temperatures versus final power in one of the optical trapping beams. Squares repre-
sent the results of in-trap cloud width thermometry, and circles represent the results
of spin gradient thermometry. Error bars represent estimated uncertainties. The
dashed line is a linear fit to the spin gradient thermometry data. The closeness of
this fit suggests that the temperature reached is proportional to the trap depth.

the lower limit of the resolution of this thermometry technique. The ultimate lower

temperature limit of spin gradient thermometry arises from a comparison of the opti-

cal resolution available and the precision of control over magnetic field gradient. For

our apparatus, for example, control over the gradient on the order of 1 mG/cm will

give a lower limit of approximately 50 pK. Of course, depending on the lattice depth

and atom-atom interactions, superexchange ordering may arise, in which case that

will instead determine the lower limit. In chapter 5, we will see how a new cooling

technique developed in this lab has measured spin temperatures down to this limit.

To further shed light on the utility of this technique, in is helpful to compare spin

gradient thermometry to other thermometric techniques available for use, both in and

out of the lattice. Because temperatures measured in the condensate do not always

correspond to temperatures in the lattice, it is most helpful to compare the range
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of entropies per particle, S/NkB, in which a thermometer can function. Condensate

fraction thermometry, for example, has difficulty measuring condensate fractions be-

low 10%, and as a result its effective range is from .35 < S/NkB < 3.5. The cloud size

thermometry discussed above and used in figure 4.3 has a similar lower limit, although

its upper limit is unbounded. Theromometry based on interference peak visibility is

computationally intensive, requiring advanced Quantum Monte Carlo calculations,

but has been used to measure temperatures as low as 0.08U [70]. However, this tech-

nique is not applicable in the deep Mott insulator [56]. Measurement of the width

of the conducting layers between Mott shells is the only other technique that can be

used in the Mott regime [27, 29, 35], but the range is narrow: 0.4 < S/NkB < ln(2).

Here the upper limit is the entropy at which the Mott shells melt, while the lower

limit is determined depends on the optical resolution and trap shape, but will not

vary too much from this estimated value for typical experiments.

By way of comparison, spin gradient thermometry is applicable in the range 0.1 <

Sσ/NkB < ln(2), where Sσ is the total spin entropy. By adjusting the strength of

the magnetic field gradient, entropy can be freely shifted between spin and particle-

hole degrees of freedom to keep Sσ/NkB within this range. In essence, spin gradient

thermometry measures the penetration of a boundary region similar to Mott shell

width thermometry. However, whereas Mott shell width thermometry’s boundary

is of a strength fixed by the lattice geometry, spin gradient thermometry involves

a boundary whose strength can be freely tuned by changing the gradient. This is

related to the fact that the energy of lowest energy excitations of the Mott insulator

is determined by U , as shown earlier in figure 2.3, which is intimately tied to the

lattice depth and not easy to change. For temperatures much less than U , this

freezes out excitations everywhere but the narrow superfluid shells, making resolution

of the temperature very difficult. By comparison, the lowest energy excitations in

spin gradient thermometry are given by B′∆µ∆x, where ∆x is the distance between
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B‘∆µ∆x
2

Figure 4-4: Excitations in spin gradient thermometry. In contrast to the Mott insu-
lator, which has a fixed energy U as its lowest excitation, spin gradient thermometry
introduces an excitation of tunable strength. The lowest energy excitation is a spin
exchange over a distance ∆x between adjacent lattice sites, and has total energy
B′∆µ∆x, or B′∆µ∆x/2 per particle. In this graph, the gradient is oriented to push
spin up particles to the left, and the ground state energy for each site, including the
energy due to the magnetic field gradient, has been set to zero.

lattice sites. These excitations are shown in figure 4.4. Because B′ is a freely settable

parameter, one can make these excitations as large or small as needed in order to

resolve them.

Furthermore, because of the decoupling between the spin and particle-hole degrees

of freedom, the bulk porperties of the Mott insulator are not significantly changed

by the existence of a second spin component or the gradient. Rather, they behave

as an extra thermometer attached to the cloud as a whole. It is only in the regime

of superexchange-driven magnetic ordering, when even spin gradient thermometry

breaks down, that the presence of a gradient and a second component begin to modify

the bulk properties of the system.
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4.5 Effects of Occupation Number ni > 1

The technique of spin gradient thermometry is most easily applicable in a lattice

with occupation n = 1 at all sites. At higher densities, where ni > 1, there are two

corrections for spin gradient thermometry, one to the partition function as a whole,

due to the indistinguishibility of the bosons, and one to the potential as a result

of unequal interaction strength between species. This section will quantify these two

effects, the first of which takes the form of a multiplier to temperature, and the second

of which acts approximately as an added term.

4.5.1 The Effect of Indistinguishability

The partition function Zσ described in section 4.1 is valid for sites with n = 1 filling,

and also for distinguishable particles at any occupation number. It is not, however,

valid for indistinguishable bosons with n > 1. This is because the degeneracy of the

different levels is miscounted. For example, in the case of n = 3, there are four possible

total spin values for the site: 3, 1, −1, and −3. In the classical (indistinguishable)

case, these values have degeneracy 1, 3, 3, 1, and these degeneracies are reflected in the

simple model where Z3 = Z3
1 . This partition function would imply that the spin per

particle for an n = 3 site is the same for an n = 1 site. However the same spin levels in

the indestinguishable case all have degeneracies of 1. Thus, Z3 6= Z3
1 . Instead, we can

write the general n particle partition function as Zn =
∑n/2
j=−n/2 exp(−β

2
∆µ·B(x)· 2n),

or in a simpler form,

Zn =
sinh[(n+ 1)β/2∆µ·B(x)]

sinh(β
2
∆µ·B(x))

. (4.4)

This partition function can then be used to predict the mean spin per particle at

a site. This value is easily calculated as

< s >=
n+ 1

n
coth[(n+ 1)

β

2
∆µB′x]− 1/n coth(

β

2
∆µB′x). (4.5)
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It can easily be checked that this simplifies to equation 4.1 in the n = 1 case, but for

n 6= 1 the form of the equation is not so easy to work with. It is especially not simple

to fit to when, as is common in experiments with higher filling factors, one must

integrate over a range of sites with different values of n. Nonetheless, with a good

knowledge of how many atoms are in each given n state, a good approximation can

be made. As n increases, the spin function changes from a hyperbolic tangent to a

similar function with a steeper slope. This makes it appear as though the temperature

has decreased. Thus, a site with n particles will look like it is a n=1 site, but with

temperature of approximately

Tapparent =
3

n+ 2
Treal. (4.6)

So, by fitting the temperature as though it the lattice were at n = 1 filling,

then multiplying by n+2
3

, we get an approximately correct temperature. If we are

integrating over a range of values for n, the correction to the temperature can then

be approximated as

Treal = (
∑
n

fn
n+ 2

3
)Tapparent (4.7)

where fn is the fraction of atoms in sites with occupation number ni = n. The

correction to the temperature caused by this is independent of the temperature itself,

and is a relatively small multiplier: for a lattice of pure n = 2 sites, for exemple,

the temperature appears 25 percent colder than it really is. Because sites with three

atoms or more decay rapidly through 3-body recombination [12], most experiments

will not have many lattice sites with three or more atoms, especially when trying to

achieve lower temperatures.
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Property Symbol Value
|1,−1 > s-wave scattering length a11 100.44a0

|1,−1 > /|2,−2 > s-wave scattering length a12 98.09a0

|2,−2 > s-wave scattering length a22 95.47a0

Table 4.1: 87Rb scattering lengths. Values are taken from [34]. The uncertainties of
these values are not given, but a measurement of a22 − a11 in the same reference has
uncertainty 0.31a0.

4.5.2 Scattering Length Correction

In addition to the above correction to the partition function, there is also a correction

to the potential the atoms feel in sites where ni > 1. This arises when the interaction

energy U depends on spin. Although atoms in both states experience the same

lattice potential in our experiment due to our lattice’s large detuning, there is a slight

difference in their interaction energies due to the states’ different scattering lengths.

In 87Rb, the scattering lengths of atoms in the F = 2 and F = 1 manifolds are nearly

identical, there is nevertheless a small difference: the best known values [34, 73] are

given in terms of the bohr radius a0 in table 4.1. While the variation between the

values a11, a12, and a22 is small on its own, ranging over only a few percent in value,

it is actually the much smaller difference ∆a = a12− a11+a22

2
= 0.135a0, that matters.

To see why, imagine two sites, separated by distance ∆x, one with n atoms in the

|2,−2 > state and one with the same number in the |1,−1 > state. The energy cost

per particle of switching one of the atoms from one well with one from the other

would normally be ∆µB′∆x/2. However, the interaction energy difference adds an

additional cost equal to (n−1)∆U where ∆U = U12− U11+U22

2
, the difference between

the interspecies interaction energy and the mean of the two intraspecies interaction

energies. Since Uij ∝ aij, we can write ∆U ≈ U∆a/a, which in a 15Erec lattice is

about kB· 40 pK. This should be treated as a rough value, as the scattering lengths

of 87Rb very nearly cancel, so this remainder is similar in size to the precision of

measurement.
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Clearly, this energy scale is much smaller than any of the temperatures measured

above, but in chapter 5, temperatures are reached that are sufficiently low that this

correction becomes significant—comparable in size to the partition function correc-

tion. Thus, it is worth writing out the full form of the correction to the potential now.

It can be written in a self-consistent manner as a function of the spin distribution

s(x) in the following manner:

E(x) =
∆µ

2
B′x+ s(x)(n− 1)∆U (4.8)

Because ∆U is positive, meaning these two states are naturally immiscible, the effect

is to make the sample appear colder than it really is. Of course, given the size of the

error bars on ∆U compared to its size, it is even possible that the sign of the effect is

opposite, favoring a mixture of spins rather than a segregation at zero temperature.

Nonetheless, the best estimate is that a small positive correction term must be added

to temperatures when they drop below 100 pK or so.

4.6 Dependence of Temperature on Gradient

As a final point of consideration, on careful examination of figure 4.2, one question

that may arise in the reader’s mind is this: Why do the data points in a given set all

fit to the same temperature? At first glance, the answer may appear obvious: each

shot was prepared in the same manner, with the same trap depth and lattice depth, so

of course they should be the same temperature. However, this is not quite true. One

thing that does vary between the shots is the final strength of the gradient. While

each shot is prepared by evaporatively cooling the two components in a gradient of

2 G/cm, that gradient is changed to the various values on the x-axis before turning

on the lattice. Might this changing gradient not affect the temperature? After all,

section 4.4 describes how changing the gradient moves entropy between spin entropy
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and bulk entropy, so it is natural to question whether this transfer of entropy would

heat or cool the system. Indeed, one would expect that if the gradient is lowered,

more entropy would go into spin, leaving less in the bulk and thus cooling the system

as a whole. Since we do not see this in the data in figure 4.2, we must explain why.

That is, why is the process of lowering the gradient isothermal in our experiment

rather than, say, adiabatic?

The answer to this question lies in the exact manner in which the gradient was

lowered. In each experimental run, the gradient was lowered from 2 G/cm to its

final value over a very long time: the gradient was changed linearly over the course

of 400ms. Then, the atoms were held an additional 400ms before ramping up the

lattice over the course of about 150ms. Thus, the atoms had nearly a second to

spend “adjusting” to the new lattice depth. The reason this kept the system at its

initial temperature is the same reason it was at that temperature to begin with: the

balance between heating and evaporative cooling. The trap depth determines the

temperature of the atoms by determining the rate of evaporative cooling. As the

atoms cool, the rate of evaporation drops. But this evaporative cooling is balanced

by heating due to three body losses, collisions with background gas particles, and

other mechanisms. The final temperature is the point at which this heating and the

evaporative cooling rate balance. If the atoms are suddenly cooled when the gradient

changes, the rate of evaporative cooling will drop, and on net, the system will begin

to heat up. Given enough time, this heating will continue until the atoms are back

to their initial temperature. Thus, a very slow change in gradient, such as was done

in our experiment, will be approximately isothermal.

But what about a more rapid change. one that did not allow time for heating

from collisions and other mechanisms to warm the atoms back up? Naturally, the

expectation is that we really would see cooling as entropy was shifted between spin

and bulk excitations. A fast enough ramp time could be almost perfectly adiabatic,
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allowing for a maximum cooling effect. And indeed, it is precisely this phenomenon,

analogous to the condensed matter technique of adiabatic demagnetization refrigera-

tion, that is used in the experiments of chapter 5 to achieve temperatures well into

the picoKelivn range. Also in that chapter, data will be presented that explicitly

check this transition between isothermal and adiabatic changes in gradient.

4.7 Conclusion

Spin gradient thermometry represents an important new technique for measuring the

temperature of ultracold atoms in optical lattices. We have demonstrated its wide

dynamic range, and its compatibility with other techniques within their own dynamic

ranges. It is well suited for measuring lattice temperatures for two-component sys-

tems, making it a valuable tool for use in quantum simulation of magnetically-ordered

systems. The limitations of this technique are very few, arising only at especially high

densities or at very low temperatures, as superexchange physics begins to play a role.

With future experiments, such as those described in the next chapter, it is hoped that

these limits will be put to the test, leading to a new frontier in atomic physics.
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Chapter 5

Spin Gradient Demagnetization

Cooling

Spin gradient thermometry provides the ability to measure very cold temperatures

in the presence of an optical lattice, but it does not, on its own, provide a means

to achieve them. For 87Rb, magnetically ordered states in the Mott insulator are

expected to arise at temperatures around 100 − 200 pK [21], which is significantly

below the temperatures usually accesible in ultracold atoms, even outside of a lattice.

However, the same physics that allows spin gradient thermometry to measure the

temperature of a two-component system can be harnessed to cool that same system.

By changing the strength of the gradient separating the two spin components, it is

possible to substantially cool the system. This process, which we call spin gradient

demagnetization cooling, is analogous to the condensed matter process of adiabatic

demagnetization refrigeration. By using a time-varying magnetic field gradient to

change the spin energy scale, it is possible either to cool the spins as an isolated sys-

tem, or to pump entropy into the spin degrees of freedom, thereby cooling the system

as a whole. Using this technique, we have prepared states with spin temperatures

of 75 pK and −75 pK. We have also produced bulk temperatures in an apparent
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equilibrium at 300 pK, although we cannot rule out long-lived metastable excitations

that may fail to couple to our thermometer. These temperatures represent the lowest

temperatures which have been achieved in any system [33, 46, 71]. The experimental

results described in this chapter were reported in [5] and is included in Appendix B.

5.1 Basic Theory

To understand the basic theory of this cooling technique we need only look at the

theory behind spin gradient thermometry. In the presence of a magnetic field gradient,

a two-component Mott insulator will separate into to regions of opposite spin, with

a boundary region of mixed spin in the center. The width of this region will be

proportional to the temperature of the spins and inversely proportional to the strength

of the magnetic field gradient. If the strength of the magnetic field gradient changes,

then one or both of the other two properties—the temperature or the width—must

change to maintain this equality. The way these two change depends on the manner in

which the gradient is changed, so it is useful to look at two different models to explain

it. The first will be most useful if the gradient is changed nonadiabatically and the

spin system is held out of equilibrium with the particle-hole degrees of freedom, while

the second covers the case where it is changed adiabatically and in thermal contact

with the particle-hole degrees of freedom.

5.1.1 Direct Cooling for Nonadiabatic Demagnetization

In the first, simplest case, we treat the nonadiabatic case in which the spin degree

of freedom is isolated from the particle-hole degrees of freedom. This case can be

accomplished experimentally by placing the atoms in a deep Mott insulator. In a

Mott insulator, the rate of spin relaxation is proportional to J2/U , a quantity which

can become very small at high lattice depths. Then, if the strength of the gradient

76



is changed on a timescale much shorter than the spin relaxation time, we can treat

the spin as an isolated system and ignore the particle-hole degrees of freedom (which

remain at their original distribution and temperature).

Because the spin system is “frozen” in place, the width of the domain wall will

not change, and the total spin entropy is conserved. In this case the temperature of

the spin system will scale proportional to the strength of the magnetic field. To see

why this is, recall the thermodynamic definition of temperature

T =
∂E(S)

∂S
|N,V . (5.1)

If E(S) is simply scaled by a constant without changing the configuration of the

system, then obviously T will be scaled by the same constant.

A good toy model to illustrate this effect is that of a system of spin-1/2 particles

with magnetic moment µ in a uniform magnetic field of initial strength B1. Figure

5.1 illustrates this system. The lower state has energy −B1µ/2 while the upper has

energy of B1µ/2. If the population in the upper state is p, then one can easily work

out from the Boltzmann distribution that the temperature is

T1 =
µB1

kB ln 1−p
p

. (5.2)

If the magnetic field is changed to B2 while the magnetization is held fixed then

the new temperature must be T2 = TB2/B1. Furthermore, if the field is reversed

in direction, then the temperature will be negative as a result, indicating that the

swapping of the two energy states has led to an inverted population.

The toy model illustrated in figure 5.1 is actually a reasonable approximation of

the spin physics behind the process of adiabatic demagnetization refrigeration used

in condensed matter systems. However, the full process of adiabatic demagnetization

refrigeration is more closely analogous to the adiabatic case, which is discussed in the
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Figure 5-1: Demagnetization toy model. This model illustrates the physics behing
the spin part of adiabatic demagnetization cooling. If the particles cooled by demag-
netization are decoupled from other degrees of freedom, then their spin can be cooled
in exactly this manner. In real atomic systems, the difficulty of controlling magnetic
fields to the necessary µK level limits the practicality of using this simple scheme of
demagnetization.
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next subsection. Regardless, magnetic field demagnetization of this sort is impractical

for use in atomic systems due to difficulties in magnetic field control [23]. However,

a magnetic field gradient can be used to generate a similar effect in a much easier

manner. As discussed in chapter 4, a two-component Mott insulator in the presence

of magnetic field gradient will have a spin distribution given by

< s(x) >= tanh(−∆µB′x

2kBT
). (5.3)

Clearly, if the spin distribution is held fixed and the gradient B′ is changed, the

temperature must shift by the same factor. Magnetic field gradients are much easier

to control than magnetic fields, so that cooling that would require an impractical

µG magnetic field control can be achieved with gradient control at the relatively

easy mG/cm level. Also, magnetic field gradients can easily be reversed in direc-

tion without inducing spin flips, allowing the straightforward production of negative

temperature systems.

5.1.2 Adiabatic Demagnetization as an Entropy Pump

The nonadiabatic case described above is simple because the spin distribution is held

fixed. As a result, it is only the spin temperature that is cooled—the particle-hole

degrees of freedom are thermally isolated and remain at their starting temperature.

This is fine if we only wish to cool the spin degree of freedom, but if we wish to

cool the system as a whole, it becomes more complicated. As this process requires

the system to equilibrate, it is best used as a model when the gradient is changed

in a shallow lattice, or none at all, so the system remains in equilibrium throughout

the demagnetization process. If this condition holds, we can model the process as

adiabatic.

In contrast to the nonadiabatic case, this process will be almost directly analogous
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to adiabatic demagnetization refrigeration [20, 31]. In adiabatic demagnetization re-

frigeration, a paramagnetic material is prepared in a strong magnetic field. The

magnetic field strength is then decreased, and entropy is absorbed into spin-flip exci-

tations, cooling the system. In our system, the total magnetization is conserved, so

there are no spin flips; however, the same role is played by spin exchanges across the

boundary region of randomly oriented spins in the center of the system. This will

allow the elimination of particle-hole excitations in favor of spin-exchange excitations.

In adiabatic spin gradient demagnetization, the gradient is lowered, causing the

energy scale of the spin degrees of freedom to fall while the energy of the particle-hole

degrees of freedom remain fixed. But since these two parts of the system are now

in thermal contact, entropy will flow out of particle-hole excitations to create spin

exctations. As a result, the width of the central “domain wall” of random spin will

widen. However, it will not widen proportionally to the change in magnetic field:

since entropy is leaving the particle-hole excitations, they are cooled, and therefore

the entire system must be colder. Roughly speaking, if the gradient changes from B′1

to B′2, then the final temperature will be

T2 =
B′2
B′1

S0 + ∆S

S0

T1 (5.4)

where S0 is the initial spin entropy and ∆S is the entropy absorbed by the spins. The

size of ∆S will depend on the relative heat capacities of the spins and the rest of the

system, which will depend on various factors including the density of atoms and the

lattice depth. In a sense, the spins are used as a “sponge” to soak up the entropy in

the rest of the system. In the end, at very low gradients, nearly all the entropy can

be transferred into the spins, and the final temperature of the system will be much

colder. Indeed, if the starting entropy is low enough (below about kB ln 2 per lattice

site), then in the limit as the gradient strength approaches zero, all of the entropy
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could be absorbed into the domain wall.

This gives us a lower limit for the temperature that can be achieved by adiabatic

spin gradient demagnetization. If the total starting entropy of the system is Stotal,

of which the spins initially contain Sspin, then applying equation 5.4 gives us an

expression for the maximum cooling factor:

T1

T2

=
B′1
B′2

Sspin
Stotal

. (5.5)

For our experiment, the ratio of magnetic field gradients available is around 1000. If

we have a starting temperature of about 5 nK, and about half the total entropy were

initially in the spins, with half initially in the particle-hole degrees of freedom, this

would suggest a lower limit of somewhere around 10 pK, assuming total transfer of

entropy and no additional heating. This equation also applies for the nonequilibrium

case, except that in that case, ∆S = 0, so Sspin/Stotal should be set to 1.

Another limit on the lowest achievable temperature stems from the effects of spin

coherence, which will start to become important near the Curie temperature of the

spin-ordered phases. Spin correlations reduce the heat capacity of the spin degrees of

freedom, because a magnetic domain containing multiple sites can only hold as much

entropy as a single site could in the absence of correlations. These practical and

theoretical limits on spin gradient demagnetization cooling do not appear to preclude

cooling below the Curie temperature of the spin-ordered phases. This technique thus

provides a specific and realistic method of realizing magnetic phase transitions in

lattice-trapped ultracold atoms.

5.2 Experimental Procedure

The initial state of the system is a two-component BEC at zero lattice depth in a

strong gradient. The two components are the |2,−2 > and |1,−1 > hyperfine states
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Figure 5-2: Details of two experimental cooling protocols. a: Experimental phase
diagram of lattice depth vs. applied gradient. Dashed lines show two different paths
along which one can move between the high-gradient superfluid state and the low-
gradient Mott insulating state. b: Lattice depth (solid line) and gradient strength
(dashed line) versus time for the lower path in panel a. c: Lattice depth (solid line)
and gradient strength (dashed line) versus time for the upper path in panel a. The
shape of the lattice rampup is designed to ensure maximum equilibration.

of 87Rb, and the gradient strength is initially 2 G/cm. The final state will be one of

high lattice depth, beyond the Mott insulator transition, and low gradient. The way

this state is reached depends on what type of experiment is to be performed. The two

experimental pathways used differ in which is done first: the lowering of the gradient

or the raising of the lattice. Figure 5.2 depicts these two orderings as different paths

in an experimental “phase space” of gradient vs lattice depth.

In the lower path, as shown in part b of figure 5.2, the gradient is first lowered with

the lattice still at zero depth. Because this occurs in the superfluid, we can expect the

change to be adiabatic so long as the rate of change of the gradient compares favorably

to the trap frequency. The typical demagnetization time is 100ms, which should be

sufficiently slow when compared to the lowest trap frequency of 36Hz. Next, the

lattice is raised to a depth of 15Erec, which is above the Mott insulator transition

point of 13.5Erec. The lattice is raised in three steps: a cubic spline to an intermediate
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lattice depth (typically 6 or 7Erec), held for a brief time, then raised again in a cubic

spline to its final depth. The process takes between 150 and 200ms in total. The

reason for the intermediate hold is an attempt to maximize equilibration in the lattice.

At higher lattice depths, tunneling slows down exponentially, while low lattice depths

are sensitive to vibrational heating, so spending more time at intermediate depths

helps ensure maximum equilibration without introducing too much extra heating.

This produces a system that has been cooled similar to the adiabatic case de-

scribed in the theory section. Although the particle-hole and spin degrees of freedom

may not be perfectly equilibrated—certainly they are frozen in at some point as the

lattice crosses the Mott insulator transition—they are nevertheless in equilibrium to

the greatest extent possible. As a result, the domain wall width will be widened

significantly from its initial width, and will provide an estimate of the temperature

of the system as a whole.

The upper path, on the other hand, is used to produce a nonequilibrium cooling

of the spin degrees of freedom alone. This path is depicted in part c of figure 5.2.

Here, the gradient is kept at a strength of 2 G/cm while the lattice is raised in the

same, three-step manner as in the adiabatic case. At this point, the lattice is then

held in the Mott insulating state, so the tunneling rate will very small, proportional

to the superexchange term J2/U , and the atoms can be treated as frozen in place. In

this case, we can say that the particle-hole and spin degrees of freedom are isolated

from each other, and will be essentially separate systems with fixed entropy and

independent temperatures. The spin temperature can now be directly cooled by

lowering the gradient. The gradient is lowered over the course of 100ms, which in

this case is much faster than the tunneling rate, supporting the assertion that we

are creating a spin temperature isolated from the rest of the system. Since the

spins are isolated, they can even be brought to negative temperature distributions by

reversing the direction of the gradient. These distributions should remain at a stable
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temperature on timescales on the order of the superexchange time.

5.3 Experimental Results

Each of the two experimental procedures described above was performed over a variety

of different values of final magnetic field gradient. The results of the nonadiabatic path

are shown in figure 5.3. The simple nature of this experiment allows one to essentially

set the temperature at whim by selecting a sufficiently low final field gradient value.

For negative field gradients, this produces negative temperatures. The minimum

temperature limit is ultimately set by one’s optical resolution and ability to measure

field gradient, so this procedure allowed the production of spin temperatures of 75 pK

and−75 pK. Since the total energy is monotonic in 1/T , these temperatures represent

the most extreme (coldest and hottest) thermodynamic states ever measured in spin

systems [33, 71]. Because these spin temperatures are well isolated from the bulk

temperature, they display long lifetimes. The inset of figure 5.3 shows temperature

versus hold time for both positive and negative spin distributions. If a negative

temperature distribution is held for several seconds in the lattice, its temperature

becomes more negative, as expected.

The results of the adiabatic path, on the other hand, are more difficult to model

theoretically, and reach lower temperatures, but they are also more interesting in

that they produce a system closer to true equilibrium. Figures 5.4 and 5.5 show

the results of initial spin gradient demagnetization cooling experiments. As the field

gradient is reduced, the width of the domain wall is observed to increase (see figure

5.4), indicating the transfer of entropy from the kinetic degrees of freedom to the

spins. The width increases much less steeply than would be expected for an isothermal

sample; this demonstrates cooling. The observed domain wall width can be converted

to a temperature using spin gradient thermometry. The measured temperature falls
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Figure 5-3: Preparation of arbitrary spin temperatures. Main Plot: measured spin
temperature versus final gradient, for the case of rapid gradient change in the Mott
insulating state. Inset: Temperature versus hold time in the lattice of spin distribu-
tions at negative (dashed line) and positive (solid line) initial temperature. Note that,
as expected, the temperature of the negative distribution becomes more negative as
it heats. Error bars represent the standard deviation of the data at each point.
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Figure 5-4: Plot of width vs. field gradient. Demonstration of spin gradient demagne-
tization cooling. Measured domain wall width vs. final magnetic field gradient, for the
case of adiabatic gradient lowering in the superfluid state followed by lattice rampup.
The dashed line is an isotherm, meaning that it represents the expected widening be-
havior assuming no cooling. The dotted line shows the minimum measurable width,
given our optical resolution. The blue curve is the theoretical prediction, assuming
adiabatic demagnetization from an initial temperature of 6.2 nK and including the
effects of finite optical resolution.

rapidly as the gradient is lowered (see figure 5.5). The lowest measured temperature is

on the order of 300 pK, which is within a factor of 2 of the expected Curie temperature

of the XY ferromagnet [15]. Theoretical curves in the two figures show good agreement

with the data and were fit with only one free parameter: the initial temperature prior

to demagnetization.

5.4 Modelling the Adiabatic Case

Figures 5.4 and 5.5 include a theoretical fit to the cooling data, assuming an initial

temperature of 6.2 nK, which is derived from a 1-paramater fit to the data. This sec-

tion will explain the method used to model this case. The theory for the spin degrees
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Figure 5-5: Plot of temperature vs. field gradient. Demonstration of spin gradient de-
magnetization cooling. Theoretical temperature and measured temperature vs. final
magnetic field gradient, for the case of adiabatic gradient lowering in the superfluid
state followed by lattice rampup. These measurements are the same as those plotted
in Fig. 3. The dashed line follows the isothermal trajectory and the dotted line shows
the optical resolution limit. The blue curve is the theoretical prediction, assuming an
initial temperature of 6.2 nK and not including the effects of finite optical resolution.
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of freedom is straightforward, as already discussed, but the particle-hole degrees of

freedom are more complicated. To deal with them, we will follow the theoretical treat-

ment from Refs. [29] and [35]. To calculate the partition function for the particle-hole

degrees of freedom, we make two approximations: first, that J = 0, so that each site

can be treated separately, and second, that the number of particles at a site is no more

than one different than the T = 0 number, n0 = dµ/Ue. This second approximation

is called the particle-hole approximation, and gives a partition function

z0 = 1 + exp(−β(Un0 − µ)) + exp(β(Un0 − U + µ)). (5.6)

The particle-hole approximation is valid for kBT < 0.2U , which is certainly true

for the temperatures measured in our experiments. From this we can get the mean

occupation number

n ' n0 + (exp(−β(Un0 − µ))− exp(β(Un0 − U + µ)))/z0. (5.7)

Here we use the position-dependent chemical potential µ(r) = µ− Vtrap(r).

Now that we have both the partition function for the spin degrees of freedom (from

equation 4.1) and the partition function for the particle-hole degrees of freedom, we

can directly calculate the entropy of each as a function of temperature at varying

gradients. Figure 5.6 shows calculated values for particle number and particle-hole

entropy per site, while figure 5.7 shows a calculation of spin entropy per site and

total entropy per site at a variety of gradients and temperatures. We can then plot a

temperature vs. gradient curve given an initial temperature (which we treat as a fit

parameter), a measurement of the total atom number and trap frequencies from our

original data, and the assumption of fixed total entropy. The result is the fit curve

shown in figures 5.4 and 5.5.
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Figure 5-6: Particle-hole entropy distribution and number. The upper two plots show
atom number as a function of position for two different temperatures, given our known
trap frequencies and atom number. Each graph is a slice through the center of the
trap. The lower right shows entropy per site for a the same slice. Finally, the lower
right shows both atom number and entropy per site along a cut through the center.

Figure 5-7: Spin entropy distribution. Calculated distributions of spin entropy per
particle at various values of magnetic field gradient and temperature. The upper left
diagram shows spin entropy alone, while the other three show total entropy, including
both particle hole and spin entropies.
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5.5 Equilibration and Adiabaticity

In the nonadiabatic path, lack of equilibration is a feature: we are interested in

directly cooling the spins, so minimizing the thermal contact with the remainder of

the system can only help. However, on the adiabatic path, we are interested in using

the spins to cool the remainder of the system, so a lack of equilibration can be a

serious obstacle. Hence, the degree to which the system remains in equilibrium along

the adiabatic path is an important thing to assess. Since there are two steps along

the path, we can estimate how well the atoms equilibrate along each of these steps

by testing their reversibility. If a given step is adiabatic, it is reversible, and should

also be in equilibrium at all times.

We have tested the reversibility of the gradient ramps used in spin gradient de-

magnetization cooling by decreasing, then increasing, then decreasing the gradient,

and we observe no detectable difference between the resulting data and data pro-

duced by a single gradient ramp. This indicates that the gradient ramps used in spin

gradient demagnetization cooling in the superfluid state are adiabatic, as is expected

based on the trap frequencies (36, 141, and 156 Hz) and total demagnetization times

(100 ms).

However, equilibration in the Mott insulator is more difficult to demonstrate be-

cause equilibration timescales get very long as the system approaches the Mott insu-

lator transition. This makes it nearly certain that the system leaves equilibrium at

some point during lattice rampup, so the question may really be whether this dise-

quilibrium is significant. Still, the previously demonstrated agreement between spin

gradient thermometry and trap width thermometry at high temperatures (as shown

in chapter 4) indicates that the kinetic and spin degrees of freedom are reasonably

well equilibrated in that regime. The strong fits in this colder regime to theoretical

predictions is a further indication of good equilibration—both the hyperbolic tan-

gent shape of the spin distribution and the good one-parameter fit to our model of
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demagnetization (which assumes adiabaticity).

Nonetheless, when we perform the same test of reversibility on the lattice raising

step as we did on the demagnetization step, heating is generally observed. Thus,

we cannot rule out the existence of long-lived metastable excitations in the Mott

insulating state which do not couple to the spin degrees of freedom and thus do

not influence our temperature measurement. This result is consistent with other

experiments which have also seen evidence of long equilibration times in the Mott

insulator [41, 61]. On the bright side, the long lifetime of such excitations may mean

they are so decoupled from the spin degrees of freedom as to be irrelevant to the bulk

magnetic properties of the spin system. So if we are interested in using this cooling

technique to observe spin ordering, these types of excitations may not interfere.

The reason for the poor equilibration of some of these excitations is the very

small second-order tunneling rate, J2/U , which for our system is on the order of

1Hz at the deepest lattice depths. How much of a problem this is depends on the

degree of equilibration that happens at lower lattice depths, and how much remains to

equilibrate above the Mott insulator transition. The same second-order tunneling rate

governs the formation of spin-ordered domains, so the same problems would be faced

if we were to try to achieve magnetic ordering in this system. Other, similar systems

may not have so hard a time: for example, equilibration time of a lighter atomic

species (e.g. 7Li) would be faster by up to an order of magnitude due to the higher

recoil energy, making such species ideal candidates for spin gradient demagnetization

cooling.

5.6 Isothermal Demagnetization

An additional question closely related to the question of equilibration is the one posed

in section 6 of chapter 4: why did the thermometry performed in those experiments
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not show evidence of demagnetization cooling? In that section it was suggested that,

although the experimental procedures of the thermometry were similar to those of

demagnetization cooling, the very long time spent demagnetizing (about 1s) may

have allowed other heating processes to cancel it out.

To test this explanation, we set up our system in a way similar to our thermome-

try runs, and with higher optical trap depths to create similar starting temperatures

(warmer than our best demagnetization runs). We then performed demagnetization

runs alternately with fast demagnetization, as we normally do, and slow demagneti-

zation, as we did in the original thermometry experiments. These showed a marked

difference: the fast demagnetization runs showed cooling similar to what we have

described above, while the slow demagnetization runs showed little to no cooling,

producing an isothermal demagnetization just as we observed in our thermometry ex-

periments. This indicates that our explanation in section 4-6 was probably accurate:

demagnetization must be done rapidly, lest various uncontrolled heating mechanisms

cancel it out and reduce it to an isothermal demagnetization. However, it is also

worth noting that more aggressive demagnetization starting from the lowest possible

initial temperature still showed some deviation from the isothermal line, even with

the longer wait time. This suggests that some of our coldest results in the previous

chapter, for example our quoted lowest temperature of 1 nK, may have inadvertently

been the result of demagnetization cooling. The necessity of measuring these tem-

peratures at very low gradients (to be able to resolve them optically) means also that

they were subjuct to a large demagnetization, which may not all have been eliminated

by heating before we imaged the atoms.
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5.7 Future Prospects

Spin gradient demagnetization cooling represents a significant step forward in the field

of quantum simulation. The lack of a method to cool atoms in an optical lattice has

been an important stumbling block in the effort to probe Hamiltonians exhibiting

quantum magnetism. Many cooling mechanisms have been proposed [6, 36, 37, 58],

but await experimental realization. By contrast, the method presented here can

be immediately implemented in existing experiments. We have demonstrated the

ability to produce and measure spin distributions at arbitrary temperature by rapidly

changing the magnetic field gradient applied to a two-component Mott insulator. In

the same system, we have proposed and demonstrated a new cooling technique for the

Mott insulator, based on adiabatic demagnetization of a domain wall prior to lattice

rampup. This procedure has produced final temperatures of 300 pK, although we

cannot rule out the presence of long-lived metastable excitations which do not couple

to our thermometer. Ultimately, both of these techniques are capable of cooling a

two-component Mott insulator below the superexchange temperature. It remains to

be seen which technique will be of most use: the answer to this question depends on

whether low spin temperature alone, or low temperature for the entire system is most

important. However, the choice between these two techniques allows for the possibility

of tailoring spin and particle-hole entropies to suit the needs of a given experiment.

This opens a realistic path towards experimental observation of superexchange-driven

phase transitions in optical lattices.
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Chapter 6

Conclusion

It seems clear that quantum simulation will be a field of significant scientific interest

and advancement in the coming years. The desire to understand quantum magnetic

phenomena, especially those leading to exotic but incompletely understood behavours

such as superconductivity, has attracted substantial interest in the field of ultracold

atoms. The work presented in this thesis clears a significant hurdle in the path toward

achieving these goals.

The development of spin gradient thermometry and spin gradient demagnetization

cooling represents a significant step forward in the field of ultracold atoms. For

the first time, we have the ability to measure temperatures in an optical lattice

at whatever scale and precision we need. We also have the ability to cool atoms

colder than ever before, with cooling of spin temperatures by a factor of 1000 within

relatively easy reach. Moreover, the experimental technique is simple to implement

and generalizable to nearly any system with at least two components with different

magnetic moments. The cooling technique could even be used as a refrigerator for

sympatetic cooling of a third species, if needed. The existence of these techniques,

and the new realm of temperatures they allow, opens the door to new fields of study

in quantum magnetism and simulation.
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The next goal of the Rubidium lab will be to look for these orderings, beginning

with the search for an xy-ferromagnetically ordered phase in the Mott insulator. To

achieve this objective, a spin-dependent lattice will be implemented to tune the in-

teractions between the two different spin states. In conjunction with the technique of

spin gradient demagnetization cooling, advancements in this direction may be stun-

ningly fast. However, other problems already touched on in this thesis, especially the

long equilibration times observed in the Mott insulator, may hinder the observation

of quantum magnetic phenomena in 87Rb.

As an alternative approach, driven largely by the discoveries made while develop-

ing these techniques, a new lab is being founded in the Ketterle-Pritchard group to

focus on using 7Li in place of 87Rb in an optical lattice. It is hoped that this substi-

tution will be able to overcome the problem of equilibration we faced in 87Rb. The

high mass of 87Rb made equilibration in the Mott insulator slow and uncertain; 7Li’s

lower mass and correspondingly higher tunneling rate may help resolve this problem.

All other things being equal, the tunneling rate near the Mott insulator transition

is inversely proportional to the mass, so lighter elements have a natural advantage

in this regard. Furthermore, the presence of usable Feschbach resonances in 7Li, a

feature lacking in 87Rb, may allow the tuning of interactions without resorting to

spin-dependent lattices. Still, regardless of which lab is best able to advance into this

new regime, the outlook of the field is bright, and I have every expectation of success

for both labs in the future.
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Appendix A

Spin gradient thermometry for

ultracold atoms in optical lattices

This appendix contains a reprint of Ref. [74]: David M. Weld, Patrick Medley,

Hirokazu Miyake, David Hucul, David E. Pritchard, and Wolfgang Ketterle, Spin

gradient thermometry for ultracold atoms in optical lattices. Phys. Rev. Lett.,

103(24):245301, (2009).
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Spin Gradient Thermometry for Ultracold Atoms in Optical Lattices

David M. Weld, Patrick Medley, Hirokazu Miyake, David Hucul, David E. Pritchard, and Wolfgang Ketterle

MIT-Harvard Center for Ultracold Atoms, Research Laboratory of Electronics, and Department of Physics,
Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

(Received 20 August 2009; revised manuscript received 10 October 2009; published 7 December 2009)

We demonstrate spin gradient thermometry, a new general method of measuring the temperature of

ultracold atoms in optical lattices. We realize a mixture of spins separated by a magnetic field gradient.

Measurement of the width of the transition layer between the two spin domains serves as a new method of

thermometry which is observed to work over a broad range of lattice depths and temperatures, including in

the Mott insulator regime. We demonstrate the thermometry using ultracold rubidium atoms, and suggest

that interesting spin physics can be realized in this system. The lowest measured temperature is 1 nK,

indicating that the system has reached the quantum regime, where insulating shells are separated by

superfluid layers.

DOI: 10.1103/PhysRevLett.103.245301 PACS numbers: 67.85.�d, 03.75.Mn, 05.30.Jp, 75.10.Jm

Ultracold atoms trapped in optical lattices represent a
new frontier for the investigation of many-body physics
[1,2]. The existence of novel physics at decreasing energy
scales drives the quest for lower temperatures in the atomic
Mott insulator. Insulating Mott shells form at a temperature
T � 0:2U, where U is the interaction energy. At the lower
temperature T � zJ, where J is the tunneling amplitude
and z is the number of nearest neighbors, the conducting
layers become superfluid and the system enters a quantum
insulator state [3]. At the even colder temperature scale
T � J2=U, superexchange-stabilized phases can exist in
the two-component Mott insulator; this is the regime of
quantum magnetism [4]. Various proposals [5,6] have fo-
cused on the realization of quantum spin Hamiltonians in
this regime. Detection of superexchange-driven phase tran-
sitions in these systems remains a major goal of ultracold
atomic physics. Perhaps the most important barrier to
experimental detection of such a phase transition is the
requirement of temperatures well below 1 nK [4].
Additional cooling methods [7–10] will be needed to reach
this very interesting temperature scale. However, it is clear
that to assess current methods and to validate future cool-
ing techniques, low-temperature thermometry of the Mott
insulator is needed.

Thermometry of systems in the Mott insulating state has
remained a challenge [3,11–14]. In this Letter, we discuss
and demonstrate a simple and direct method of thermom-
etry using a magnetic field gradient which works in the
two-component Mott insulator.

The theory behind this method of thermometry is
straightforward. The system under consideration is an
ensemble of atoms in a mixture of two hyperfine states
loaded into a three-dimensional optical lattice in the pres-
ence of a weak magnetic field gradient. The two states have
different magnetic moments, and are thus pulled towards
opposite sides of the trapped sample by the gradient. At

zero temperature, the spins will segregate completely, and
a sharp domain wall will exist between the two spin
domains (a small width due to superexchange coupling is
typically negligible). This system has the same bulk phys-
ics as the single-component Mott insulator, but includes
additional degrees of freedom in the form of spin excita-
tions in the domain wall. At finite temperature, spin ex-
citations will increase the width of the domain wall. This
width will depend in a simple way on the field gradient, the
differential Zeeman shift, and the temperature, and can
thus be used as a thermometer.
For an incoherent mixture of two spins, the partition

function for an individual lattice site can be approximately
factorized as Z ¼ Z�Z0, where Z� ¼ P

� expð���� �
BðxÞÞ, � is 1=kBT, �� is the magnetic moment of the
spin �, BðxÞ is the spatially varying magnetic field, and
Z0 is the partition function of the particle-hole degrees of
freedom (for which see [3]). This approximation is gen-
erally valid for the case of one atom per lattice site; for
occupation number n > 1, it is valid when the mean of the
intraspin interaction energies �U� is equal to the interspin
interaction energy U"#, which is a good approximation in
87Rb [15]. Since the total magnetization is fixed, the aver-
age value of the magnetic field is canceled by the corre-
sponding Lagrange multiplier; we include this in the
definition of BðxÞ. We are free to treat the two states as
having pseudospinþ1 and �1; making that identification,
the mean spin hsi as a function of position, gradient
strength, and temperature has the simple form

hsi ¼ tanhð�� ��� � BðxÞ=2Þ; (1)

where�� is the difference between the magnetic moments
of the two states. A fit of the measured spin distribution
with a function of this form will give the temperature of the
system. When the Zeeman shift due to the magnetic field
gradient is a linear function of position, imaging of the spin

PRL 103, 245301 (2009)

Selected for a Viewpoint in Physics
PHY S I CA L R EV I EW LE T T E R S

week ending
11 DECEMBER 2009

0031-9007=09=103(24)=245301(4) 245301-1 � 2009 The American Physical Society



distribution essentially corresponds to direct imaging of
the Boltzmann distribution.

The apparatus used to produce ultracold 87Rb atoms is
described in Ref. [16]. After cooling, approximately 105

atoms are held in a far-red-detuned crossed optical dipole
trap with trap frequencies between 100 and 200 Hz. A
three-dimensional cubic optical lattice, formed by three
retroreflected beams each of radius �150 �m, overlaps
the trapping region. Since spin gradient thermometry does
not depend on the number of atoms per lattice site n, we
perform measurements at a range of n values between 1
and 4. The trapping and lattice beams are all derived from
one fiber laser, with a wavelength � of 1064 nm. Magnetic
field gradients up to a few G=cm can be applied with
external coils, and calibrated using Stern-Gerlach separa-
tion of the different spin states after release from the trap.
The gradient is applied along the x direction, which is the
weakest axis of the crossed dipole trap. Absorptive imag-
ing of the atoms is performed with a camera pointing down
along the vertical z axis.

The sequence of steps used to measure temperature
is as follows. First, a sample of 87Rb atoms in the
jF ¼ 1; mF ¼ �1i state is prepared by evaporation in the
optical trap. Here F and mF are the quantum numbers for
the total spin and its projection on the z axis, respectively.
The atoms are then placed into a mixture of the j1;�1i and
j2;�2i states by a nonadiabatic magnetic field sweep
through the microwave transition between the two states.
This pair of states was chosen in order to avoid spin-
exchange collisions. A magnetic field gradient of
2 G=cm is applied along the weak axis of the trap and
results in additional evaporation, which is intended to
remove the entropy created by the state preparation [17].
At this point, the field gradient is changed to the value to be
used for measurement; lower gradients are used for lower-
temperature measurements to keep the domain wall width
larger than the imaging resolution. The optical lattice is
then adiabatically ramped up, typically to a depth of
14:5ER, where ER ¼ h2=2m�2 is the recoil energy and m
is the atomic mass. The transition to the Mott insulator
occurs at 13:5ER. At this point, the spin structure depends
on the temperature as discussed above.

There are several ways to measure the resulting spin
distribution. One way is to first take an image of the F ¼ 2
atoms in the 14:5ER lattice, then in a second run to illumi-
nate the atoms with an optical repumper beam resonant
with the F ¼ 1 to F0 ¼ 2 transition for a few �s prior to
imaging. This method gives an image of all atoms and an
image of just the F ¼ 2 atoms; appropriate subtraction can
provide the spin distribution. It is possible to determine the
temperature from a single image of one spin, but the data in
this Letter were all taken using pairs of images to guard
against systematic errors.

The temperature can then be measured by fitting the spin
distribution to the hyperbolic tangent form. The resulting

thermometer has high dynamic range and variable sensi-
tivity, works at all accessible temperatures of interest, and
requires only the simplest fitting procedures.
Figure 1 shows data of the type used for spin gradient

thermometry. An image of the total atom density and an
image of the spin density are obtained as discussed above.
Both images are then integrated along the y direction,
which is transverse to the gradient. The spin distribution

is then fit by a function of the form �ðxÞ tanhð34��B
djBj
dx xÞ,

where �ðxÞ is the total density distribution. The only free
parameters in this fit are a horizontal and vertical offset and
the temperature T ¼ 1=kB�.
Figures 2 and 3 show the results of this thermometry on

ultracold 87Rb atoms in an optical lattice. Figure 2 shows
the linear scaling of the inverse width of the domain wall as
the magnetic field gradient is varied while holding the
temperature constant. For widths larger than the optical
resolution, the scaling is as predicted by Eq. (1). The two
data sets plotted in Fig. 2 were taken at two different
temperatures: 7 and 123 nK, according to the best-fit
theoretical lines. Finite optical resolution or motion of
the atoms during imaging will blur the measured spin
profile and result in an overestimate of the domain wall
width at high gradients. This effect was modeled by apply-
ing a Gaussian blur of radius 4 �m to the theoretical 7 nK
spin profile at various gradients. The resulting curve, plot-
ted as a dash-dotted line in Fig. 2, reproduces the saturation
of measured width observed in the experimental data. The
effect of finite resolution is always to overestimate the
temperature.
Figure 3 shows the measured temperature plotted as a

function of the power in the dipole trapping beam which
confines the atoms in the direction of the magnetic field
gradient (the x direction). Higher powers in this beam lead
to less effective evaporation, and thus higher final tempera-

FIG. 1. Images used for spin gradient thermometry. Data on
the left were taken at a lower optical trap power than data on the
right. Panels (a) and (b) are images of the spin distribution.
Panels (c) and (d) show the mean spin versus x position. The fit
to (c) gives a temperature of 52 nK; the fit to (d) gives a
temperature of 296 nK. The inset of (a) shows the axes referred
to in the text. The bar in (b) is a size scale.
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tures. As a check of the new method of thermometry, Fig. 3
also presents an analysis of the same data using an existing
method of thermometry, based on measurement of the in-
trap width of the atomic cloud along the direction perpen-
dicular to the gradient. This second method is based on the
well-known relation �2 ¼ kBT=m!2, where � is the 1=e2

half-width of the atomic cloud and ! is the trap frequency

in the direction along which the width is measured [12].
The width is determined by a fit to the wings of the trapped
cloud. Trap width thermometry is based on a noninteract-
ing approximation, and will fail at temperatures less thanU
when the system starts to become incompressible. As in
Ref. [12], all points on this plot are in the high-temperature
single-band regime (T is less than the band gap but greater
than the bandwidth). For the temperatures plotted in Fig. 3,
the agreement between the two methods is reasonably
good, and gives confidence in the use of spin gradient
thermometry in regions of parameter space where no other
thermometer exists.
The large dynamic range of spin gradient thermometry

is evident in Fig. 3. Thermometry can be performed at
temperatures so high that no condensate exists before
lattice ramp-up. The lowest temperature we have measured
was achieved by using the new thermometry as a feedback
signal, enabling adjustment of experimental parameters for
optimization of the final temperature in the Mott insulator.
This method allowed us to achieve a measured temperature
as low as 1 nK. At the lattice depth used here, U is 37 nK,
and zJ is 6 nK. The measured temperature is thus well
below Tc ¼ zJ, the predicted critical temperature for the
superfluid layer between the n ¼ 1 and n ¼ 0 Mott do-
mains. According to the treatment of Ref. [3], at 1 nK the
system should be well inside the quantum regime, with
concentric quantum insulator shells separated by super-
fluid layers. This represents the first direct demonstration
that this temperature regime has been achieved in the Mott
insulator.
At a given value of the magnetic field gradient, very low

temperatures will result in a width of the transition region
smaller than the imaging optics can resolve (see Fig. 2).
However, the width can be increased by decreasing the
magnetic field gradient. The lowest measurable tempera-
ture will then depend on the minimum achievable gradient
as well as the optical resolution, which are technical rather
than fundamental limitations. In our apparatus, back-
ground gradients with all coils turned off are of order
10�3 G=cm, which, given our imaging resolution of a
few �m, would in principle allow measurement of tem-
peratures down to �50 pK or the superexchange scale,
whichever is higher.
It is instructive to compare the useful range of this new

method of thermometry with that of existing methods. To
facilitate meaningful comparison with non-lattice-based
methods, we discuss the range of entropy per particle
S=NkB at which a given thermometer works, rather than
the range of temperature. Condensate fraction thermome-
try works for 0:35< S=NkB < 3:5, where the lower limit is
set by the difficulty of detecting a thermal fraction less than
10%, and the upper limit is set by disappearance of the
condensate. Thermometry based on the thermal cloud size
has a similar lower bound, but extends to arbitrarily high
values of S=NkB. Quantitative thermometry based on the

FIG. 3. Validation of spin gradient thermometry. Comparison
of two measured temperatures versus final power in one of the
optical trapping beams. Squares represent the results of in-trap
cloud width thermometry, and circles represent the results of
spin gradient thermometry (see text for details). Error bars
represent estimated uncertainties. The dashed line is a linear fit
to the spin gradient thermometry data. The closeness of this fit
suggests that the temperature reached is proportional to the trap
depth.

FIG. 2. Independence of the measured temperature on the
applied field gradient. The inverse of the width of the spin profile
is plotted as a function of magnetic field gradient for two data
sets at two different temperatures. For constant temperature, a
linear curve is expected. The width is defined as the distance
from the center to the position where the mean spin is 1=2. The
solid (dashed) line assumes a temperature of 123 nK (7 nK) and
perfect imaging. The measured width of the colder data set
saturates at high gradient because of finite imaging resolution.
The dotted line assumes a temperature of 7 nK and an imaging
resolution of 4 �m.
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visibility of interference peaks upon release from the lat-
tice requires state-of-the-art quantum Monte Carlo calcu-
lations fitted to the data. This technique was recently used
to measure temperatures as low as 0:08U in the superfluid
phase near the Mott insulator transition [18]. This method
cannot be applied deep in the Mott insulating state [11].
Measurement of the width of the conducting layers be-
tween the Mott shells is the only previously proposed
method which works directly in the Mott insulating state
[3,4,19]. However, this method requires tomographic tech-
niques, and the useful range of entropy is rather narrow:
0:4< S=NkB < lnð2Þ, where the upper limit is set by the
melting of the Mott shells, and the lower limit is an
estimate based on typical trapping parameters and optical
resolution. Counting only spin excitations, the range of
spin entropy per particle at which spin gradient thermom-
etry works in our system is 0:1< S�=NkB < lnð2Þ, where
the lower limit is a function of optical resolution and
sample size and the upper limit corresponds to the point
at which the domain wall becomes as wide as the sample. It
is important to note that spin gradient thermometry can
work even if the entropy of the particle-hole excitations
lies outside of this range in either direction. For example,
spin gradient thermometry can work at arbitrarily high
values of the total entropy per particle S=NkB, assuming
the field gradient is increased to the point where S�=NkB <
lnð2Þ.

The method of thermometry presented here works be-
cause the two-component Mott insulator in a field gradient
has a spectrum of soft and easily measurable spin excita-
tions. The wide dynamic range of this method is a result of
the fact that, in contrast to the gapped spectrum of the bulk
one-component Mott insulator, the energy of the spin ex-
citations can be tuned by adjusting the strength of the
magnetic field gradient. The addition of a field gradient
and a second spin component does not change the bulk
properties of the Mott insulator and can be regarded as
‘‘attaching’’ a general thermometer to the first component.

The two-component Mott insulator in a field gradient is
a rich system which can provide experimental access to
novel spin physics as well as thermometry. In the work
presented here, we have always allowed the spin distribu-
tion to equilibrate in the gradient before ramping up the
optical lattice. However, changing the gradient after the
atoms were already loaded into the lattice should open up
several interesting scientific opportunities, in which the
gradient is used to manipulate or perturb the atoms rather
than as a diagnostic tool. If, for example, the gradient were
suddenly changed after lattice ramp-up, one could probe
nonequilibrium spin dynamics in a many-body quantum
system. If the gradient were instead lowered adiabatically
after ramp-up, adiabatic cooling of theMott insulator could

potentially be performed which, in contrast to [20], would
not involve spin-flip collisions.
In conclusion, we have proposed and demonstrated a

new method of thermometry for ultracold atoms in optical
lattices. We have used the new method to measure tem-
peratures in the Mott insulator as low as 1 nK. This
temperature is to the best of our knowledge the lowest
ever measured in a lattice, and it indicates that the system
is deep in the quantum Mott regime.
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[19] S. Fölling, A. Widera, T. Müller, F. Gerbier, and I. Bloch,

Phys. Rev. Lett. 97, 060403 (2006).
[20] M. Fattori et al., Nature Phys. 2, 765 (2006).

PRL 103, 245301 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

11 DECEMBER 2009

245301-4



102



Appendix B

Spin Gradient Demagnetization

Cooling of Atoms in an Optical

Lattice

This appendix contains a reprint of Ref. [5]: Patrick Medley, David M. Weld, Hirokazu

Miyake, David E. Pritchard, and Wolfgang Ketterle, Spin gradient demagnetization

cooling of atoms in an optical lattice. This paper is under revision and will be sub-

mitted for publication shortly.
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Spin gradient demagnetization cooling of atoms in an op-
tical lattice

BEC IV1

1MIT-Harvard Center for Ultracold Atoms, Research Laboratory of Electronics, and Department

of Physics, Massachusetts Institute of Technology, Cambridge MA 02139

Attainment of lower temperatures has often led to discoveries of new physical phenomena.

This observation has driven the search for new cooling methods which can be applied to

neutral atoms in optical lattices. Such systems are expected to exhibit correlated magnetic

quantum phases1, but only below a Curie or Néel temperature which is typically on the order

of 100 picokelvin. Realization of this low temperature in a lattice is a major goal of atomic

physics. Here we present a general method of refrigeration which works in an optical lat-

tice. We show that a time-varying magnetic field gradient applied to a lattice-trapped spin

mixture can substantially cool the system. Cooling can be achieved either by nonadiabatic

preparation of thermally isolated spin distributions at arbitrary (including negative) temper-

atures or by adiabatic reduction of the temperature of an equilibrated sample in a manner

analogous to adiabatic demagnetization refrigeration2, 3. We have prepared spin tempera-

tures of +75 picokelvin and -75 picokelvin, and have used spin gradient demagnetization

cooling to adiabatically reduce the temperature of an apparently equilibrated sample to 350

picokelvin, although the possibility of long-lived metastable excitations which do not couple

to our thermometer cannot be ruled out. These are the lowest temperatures which have been
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achieved in any system4–6. This new refrigeration technique appears to be capable of cooling

below the Curie temperature of spin-ordered phases. These results open a realistic path to

the observation of magnetic quantum phase transitions in optical lattices.

Application of a magnetic field gradient to a spin mixture will result in spatial segregation of

the two spin components. In our experiments, these two spin domains always remain in thermal

contact, with a “domain wall” of intermixed spins between them. In the Mott insulating state,

the equilibrium spin distribution depends on the applied gradient ∇B and the temperature T as

〈s(x)〉 = tanh(−β · ∆µ · B(x)/2), where 〈s(x)〉 is the expectation value of the spin at position

x, β is 1/kBT , and ∆µ is the difference between the magnetic moments of the two states. The

recently developed technique of spin gradient thermometry7 is based on the fact that the resulting

domain wall width is proportional to T . The technique works because the two-component Mott

insulator in a field gradient has a spectrum of soft and easily measurable spin excitations, the

energy of which can be tuned by adjusting the strength of the magnetic field gradient.

This coupling between the applied gradient and the energy spectrum allows exploration of

the system’s response to a time-varying gradient. The gradient can be varied either quickly or

slowly with respect to the spin relaxation timescale. If the gradient is changed in the deep Mott

insulating state, the spin relaxation rate due to coupling to other degrees of freedom, which scales

as J2/U where J is the tunneling energy and U is the interaction energy, is so slow that the gradient

can easily be varied much faster than the spin system can respond. This very slow relaxation

enables the production of negative temperature distributions, and distributions with a very low
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positive temperature typically set by the accuracy with which the field gradient can be measured.

Conversely, if the gradient is changed at shallow or zero lattice depth, the spin relaxation is fast

enough that adiabatic adjustment to the lowering of the gradient occurs. Fig. 1 shows these two

possible paths in experimental phase space. Experiments performed in these two regimes give very

different results.

Figure 1: Details of two experimental cooling protocols. a: Experimental “phase diagram” of

lattice depth vs. applied gradient. Dashed lines show two different paths along which one can

move between the high-gradient superfluid state and the low-gradient Mott insulating state. b:

Lattice depth (solid line) and gradient strength (dashed line) versus time for the lower path in panel

a. c: Lattice depth (solid line) and gradient strength (dashed line) versus time for the upper path in

panel a. The shape of the lattice rampup is designed to ensure maximum equilibration.

If instead of ensuring equilibration, we prevent it entirely, by lowering the gradient quickly

deep in the Mott insulator, then the response of the system is so slow that we can achieve essen-
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tially arbitrary spin temperatures. This includes negative temperatures. Figure 2 shows the results

of such an experiment. Spin distributions at 75 pK and -75 pK have been prepared. Since the

total energy is monotonic in −1/T , these temperatures represent the most extreme (coldest and

hottest) thermodynamic states ever measured in spin systems4, 5. The inset of Fig. 2 shows temper-

ature versus hold time for both positive and negative spin distributions. If a negative temperature

distribution is held for several seconds in the lattice, its temperature becomes more negative, as

expected.

If the gradient is instead changed adiabatically, another intriguing possibility exists, which

is based on an analogy with a common technique in experimental condensed matter physics: adia-

batic demagnetization refrigeration2, 3. Adiabatic demagnetization refrigeration in condensed mat-

ter systems typically makes use of a paramagnetic material, which is placed in a strong magnetic

field and allowed to come to thermal equilibrium. The field is then slowly decreased, which re-

duces the energy of spin flip excitations and results in an effective increase in the heat capacity

of the material. Energy and entropy flow from other degrees of freedom into the spin degrees of

freedom; the non-magnetic degrees of freedom are thus cooled. In the two component Mott insu-

lator, the total magnetization is fixed, so our proposed technique of “spin gradient demagnetization

cooling” proceeds slightly differently. Instead of a magnetic field, a magnetic field gradient is re-

duced, which results in a decrease of the slope of the spin distribution. This decrease in slope can

be thought of as an increase in the width of the domain wall between the spin-up and spin-down

regions of the sample. Since each lattice site in the domain wall carries entropy, this pumps entropy

into the domain wall from other (e.g. particle-hole) degrees of freedom, cooling them. If the initial
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Figure 2: Preparation of arbitrary spin temperatures. Main Plot: measured spin temperature versus

final gradient, for the case of rapid gradient change in the Mott insulating state. Inset: Temperature

versus hold time in the lattice of spin distributions at negative (dashed line) and positive (solid line)

initial temperature. Note that, as expected, the temperature of the negative distribution becomes

more negative as it heats. Error bars are statistical.

entropy is low enough (less than about kB ln(2) per lattice site), then at some decreased value of

the gradient all of the entropy of the system will be pumped into the domain wall. In principle, the

entropy in the spin system could be removed at this point by optical pumping, resulting in a very

cold single-component Mott insulator. Further adiabatic reduction of the gradient below this point

cannot widen the domain wall further, and will thus linearly decrease the temperature of the spin
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degrees of freedom.

The initial state of the system is a two-component BEC at zero lattice depth in a strong

gradient. The gradient is adiabatically decreased, which cools the system as described above, and

the lattice is then raised past the superfluid–Mott insulator transition. If the atoms are in a Mott

insulator which is initially at a temperature low enough for the particle-hole approximation to hold,

the maximum entropy per lattice site is about kB ln(2). The total entropy per site will be smaller

by a factor of the ratio of conducting “shell” volume to total volume 8. The maximum entropy per

site for the spin degree of freedom in a very small gradient is kB ln(n + 1), where n is the local

number of indistinguishable bosons per site. For temperatures below the melting point of the Mott

phase, the maximum heat capacity of the spin system is thus strictly larger than the heat capacity

of the kinetic (i.e. particle-hole) degrees of freedom. This suggests that substantial cooling of the

particle-hole degrees of freedom can be achieved with this method, even in a one-shot (non-cyclic)

experiment. We have made a more quantitative analysis of the proposed technique by calculating

entropy-versus-temperature curves of the two-component Mott insulator in various field gradients,

using a model which is exact in the limit of no tunneling (manuscript in preparation). The results of

these calculations (see theory curves in Figs. 3 and 4) confirm that spin gradient demagnetization

cooling is in principle capable of reaching extremely low temperatures well below the expected

Curie temperatures of spin-ordered states.

There are, however, both practical and theoretical limits on the temperatures which can be

attained with spin gradient demagnetization cooling. In traditional magnetic refrigeration exper-
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iments, the minimum temperature is often set by the minimum achievable magnetic field or the

presence of unavoidable internal fields due to spin ordering in the material9. Analogues of both

these limits are relevant to spin gradient demagnetization refrigeration. Practically, the ratio be-

tween the highest and lowest magnetic field gradients which can be applied to the system is an

upper bound on the ratio between the initial and final temperatures. In our experiment, the maxi-

mum value of ∇Bi

∇Bf
is about 1000, which would give a minimum temperature below 10 picokelvin

assuming a typical initial temperature of 7 nanokelvin. Another limit on the lowest achievable

temperature stems from the effects of spin coherence, which will start to become important near

the Curie temperature of the spin-ordered phases. Spin correlations reduce the heat capacity of

the spin degrees of freedom, because a magnetic domain containing multiple sites can only hold

as much entropy as a single site could in the absence of correlations. These practical and theoret-

ical limits on spin gradient demagnetization cooling do not appear to preclude cooling below the

Curie temperature of the spin-ordered phases. This technique thus provides a specific and realistic

method of realizing magnetic phase transitions in lattice-trapped ultracold atoms.

Figures 3 and 4 show the results of initial spin gradient demagnetization cooling experiments.

As the field gradient is reduced, the width of the domain wall is observed to increase (see Fig. 3,

indicating the transfer of entropy from the kinetic degrees of freedom to the spins. The width

increases much less steeply than would be expected for an isothermal sample; this demonstrates

cooling. The observed domain wall width can be converted to a temperature using spin gradient

thermometry. The measured temperature falls rapidly as the gradient is lowered (see Fig. 4). The

lowest measured temperature is 350±50 picokelvin, which is within a factor of 2 of the expected
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Curie temperature of the XY ferromagnet 10. Theoretical curves in Figs. 3 and 4 show good

agreement with the data. These curves were fitted to the measured data using only one variable

parameter: the initial temperature at the maximum gradient. The initial temperature inferred from

this fit is 7 nanokelvin. In light of these data, it seems possible that the 1 nanokelvin temperatures

measured in our earlier work7, which were observed at low field gradients, were in fact the result

of adiabatic demagnetization cooling.

The idea behind spin gradient demagnetization cooling is straightforward, and if adiabaticity

can be maintained then it is clear that cooling can be achieved. Our experimental protocol was

designed to allow the system to equilibrate as much as possible at low lattice depths where the re-

sponse times are short. However, equilibration timescales get very long as the system approaches

the Mott insulator transition, and this can make it difficult to demonstrate perfect adiabaticity. We

have tested the reversibility of the gradient ramps used in spin gradient demagnetization cooling by

decreasing, then increasing, then decreasing the gradient, and we observe no detectable difference

between the resulting data and data produced by a single gradient ramp. This indicates that the

gradient ramps used in spin gradient demagnetization cooling in the superfluid state are adiabatic,

as is expected based on the trap frequencies (36, 141, and 156 Hz) and total demagnetization times

(100 ms). Equilibration in the Mott insulator is more difficult to demonstrate, although the previ-

ously demonstrated agreement between spin gradient thermometry and trap width thermometry at

high temperatures7 indicates that the kinetic and spin degrees of freedom are equilibrated in that

regime. The fact that the spin distribution fits well to the hyperbolic tangent form expected of an

equilibrated spin system is also indirect evidence for equilibration, as is the good one-parameter
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Figure 3: Demonstration of spin gradient demagnetization cooling. Circles represent measured

domain wall width vs. final magnetic field gradient, for the case of adiabatic gradient lowering

in the superfluid state followed by lattice rampup. Solid lines connect the points, and error bars

are statistical. Insets show examples of spin images at the indicated point. The dashed line is an

isotherm, meaning that it represents the expected widening behavior assuming no cooling. The

dash-dotted line shows the minimum measurable width, given our optical resolution. The dotted

curve is the theoretical prediction, assuming adiabatic demagnetization from an initial temperature

of 7 nK and including the effects of finite optical resolution.

fit to our theoretical predictions (which assume adiabaticity). However, if the lattice is raised, then

lowered to zero, then raised again, heating is generally observed. Thus, we cannot rule out the
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Figure 4: Demonstration of spin gradient demagnetization cooling. Circles represent measured

temperature vs. final magnetic field gradient, for the case of adiabatic gradient lowering in the

superfluid state followed by lattice rampup. Error bars are statistical. These measurements are the

same as those plotted in Fig. 3. The dashed line follows the isothermal trajectory and the dash-

dotted line shows the optical resolution limit. The solid line is the theoretical prediction, assuming

an initial temperature of 7 nK and including the effects of finite optical resolution. The dotted line

is the same theoretical prediction without the effects of optical resolution.

existence of long-lived metastable excitations in the Mott insulating state which do not couple to

the spin degrees of freedom and thus do not influence our temperature measurement. Indeed, other

experiments have seen evidence of long equilibration times in the Mott insulator11, 12. However,
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the long life of such excitations may mean they are so decoupled from the spin degrees of freedom

as to be irrelevant to the bulk magnetic properties of the spin system. In this case, they would not

prevent spin ordering. The slowest relevant timescale for the formation of spin-ordered domains is

the second-order tunneling rate J2/U (although dynamics in the single-component Mott insulator

at the faster timescale of U have recently been observed)13. For 87Rb at the highest lattice depths

used in our system, this time is of order 1 Hz, although faster ordering could be achieved if, as is

expected, some equilibration takes place at lower lattice depths. Additionally, equilibration time of

a lighter atomic species (e.g. 7Li) would be faster by up to an order of magnitude due to the higher

recoil energy, making such species ideal candidates for spin gradient demagnetization cooling.

Although spin gradient demagnetization cooling was inspired by (and is locally similar to)

magnetic refrigeration in condensed matter systems, there are important differences between the

techniques. For example, it was generally believed that demagnetization cooling required spin-

flips. However, spin gradient demagnetization cooling, because it uses a magnetic field gradient

instead of a spatially homogeneous field, proceeds via spin transport in a system with fixed mag-

netization. In contrast to a previously reported technique in atomic systems14, spin gradient de-

magnetization cooling involves no spin-flip collisions, and thus avoids heating effects associated

with such collisions. On a practical level, it is easier to achieve very small magnetic field gradients

than very small magnetic fields. In our system, an energy resolution of kB×25 picokelvin can be

relatively easily achieved with a gradient of 1 milligauss/cm and an optical resolution of 5 µm,

while similar energy resolution in a homogeneous system would require control of the magnetic

field at the microgauss level. Thus our results extend the applicability of magnetic refrigeration
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techniques beyond their previously accepted limits.

The Hubbard Hamiltonian describing a mixture of pseudo-spin-1/2 bosons in a lattice can

be reduced to an XXZ Heisenberg spin hamiltonian1. This observation has generated substantial

interest in the possibility of studying magnetic phase transitions in such a system. Recent quan-

tum Monte Carlo calculations studying the XY -ferromagnetic ground state in a system with the

same parameters as our experiment indicate a critical entropy per particle of 0.35kB and a critical

temperature of 200 picokelvin at U↑↓/Uσ = 0.510. The critical entropy for the antiferromagnetic

state is higher, at 0.5kB. The nonadiabatic cooling technique presented here has achieved spin

temperatures and entropies well below these critical values, and the total entropies and temper-

atures we observe after adiabatic spin gradient demagnetization cooling are within reach of the

critical values. This indicates the feasibility of achieving spin-ordering using one of these cooling

techniques. It is not yet clear which of the two cooling methods is better suited to the production

of spin-ordered states; the answer will depend on the achievable initial entropy and the ratio of

heating timescales to ordering timescales.

Ultracold atoms trapped in optical lattices have the potential to be used as flexible quan-

tum simulators of strongly interacting many-body systems. Progress in this field has depended

upon the development of a cooling method which works in a lattice. Many such methods have

been proposed15–18 but await experimental realization. The method presented here can be imme-

diately implemented in existing experiments. We have produced and measured spin distributions

at arbitrary spin temperatures as low as 75 picokelvin by rapidly changing the magnetic field gra-
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dient applied to a two-component Mott insulator. Using the same system, we have proposed and

demonstrated an adiabatic cooling technique for the Mott insulator, based on demagnetization of a

domain wall. Using the adiabatic cooling we have measured final equilibrated temperatures of 350

picokelvin, although we cannot rule out the presence of long-lived metastable excitations which do

not couple to our thermometer. Ultimately, this technique is capable of cooling a two-component

Mott insulator below the superexchange temperature. This work opens a realistic path towards

experimental observation of superexchange-driven phase transitions in optical lattices.

Methods

The apparatus used to produce ultracold 87Rb atoms is described elsewhere19. After being trapped

and pre-cooled with RF evaporation, the atoms are delivered to the experimental vacuum chamber

by translation of a far-detuned optical tweezer beam. The atoms are then loaded into a crossed

optical dipole trap. Evaporation is performed by decreasing the power in the trapping beams, which

cools the atoms below Tc, the critical temperature for Bose-Einstein condensation. The atoms are

then placed into a mixture of the |F = 1,mF = −1〉 and |F = 2,mF = −2〉 hyperfine states by a

nonadiabatic magnetic field sweep through the microwave transition between the states. Further

evaporative cooling in a 2 Gauss/cm magnetic field gradient removes the entropy created by state

preparation, and shifts the two spin states to opposite sides of the trap. A three-dimensional cubic

optical lattice, formed by three retroreflected beams, overlaps the trapping region. This lattice is

raised using the profile shown in Fig. 1, which includes a pause at intermediate lattice depths. This

profile was observed to improve spin equilibration. Magnetic field gradients up to a few Gauss/cm
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can be applied with external coils, and measured using Stern-Gerlach separation. The gradient

is applied along the weak axis of the crossed dipole trap, and can point in either direction. The

zero-crossing point is measured by observing the point at which the |1,−1〉 and |2,−2〉 atoms

swap sides as the gradient is reversed in the superfluid state. Absorption imaging of the atoms is

typically performed with a camera pointing down along the vertical axis, which is perpendicular to

the direction of applied field gradient. In order to resolve the density profile of the optically dense

thick atomic cloud, the saturation parameter of the imaging beam is typically greater than 1. The

saturated images are corrected and calibrated according to a standard procedure20.
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Appendix C

Phase Diagram for a Bose-Einstein

Condensate Moving in an Optical

Lattice

This appendix contains a reprint of Ref. [53]: Jongchul Mun, Patrick Medley, Gretchen

K. Campbell, Luis G. Marcassa, David E. Pritchard, and Wolfgang Ketterle, Phase

Diagram for a Bose-Einstein Condensate Moving in an Optical Lattice. While not

discussed in detail in this thesis, this paper is a good example of the sort of quantum

simulation work already performed in this lab, and the desire to extend this work

to two component systems led to the development of the cooling and thermometry

techniques this thesis presents.

121



Phase Diagram for a Bose-Einstein Condensate Moving in an Optical Lattice

Jongchul Mun, Patrick Medley, Gretchen K. Campbell,* Luis G. Marcassa,† David E. Pritchard, and Wolfgang Ketterle
MIT-Harvard Center for Ultracold Atoms, Research Laboratory of Electronics, and Department of Physics, MIT,

Cambridge, Massachusetts 02139, USA
(Received 26 June 2007; published 12 October 2007)

The stability of superfluid currents in a system of ultracold bosons was studied using a moving optical
lattice. Superfluid currents in a very weak lattice become unstable when their momentum exceeds 0.5
recoil momentum. Superfluidity vanishes already for zero momentum as the lattice deep reaches the Mott
insulator (MI) phase transition. We study the phase diagram for the disappearance of superfluidity as a
function of momentum and lattice depth between these two limits. Our phase boundary extrapolates to the
critical lattice depth for the superfluid-to-MI transition with 2% precision. When a one-dimensional gas
was loaded into a moving optical lattice a sudden broadening of the transition between stable and unstable
phases was observed.
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The realization of condensed matter systems using ultra-
cold atoms brings the precision and control of atomic
physics to the study of many-body physics. Many studies
have focused on Mott insulator physics, an important
paradigm for the suppression of transport by particle cor-
relations. Previous studies of the superfluid (SF)-to-Mott
insulator (MI) transition in optical lattices with ultracold
bosons [1–8] addressed the quenching of superfluidity
below a critical lattice depth. Here we extend these studies
into a second dimension by studying stability of superfluid
current as a function of momentum and lattice depth as
suggested in Ref. [9]. These transport measurements show
the stability of superfluid at finite current, which is in
nonequilibrium.

Transport measurements extend previous work on sta-
tionary systems in two regards. First, superfluidity near the
MI transition has only been indirectly inferred from coher-
ence measurements, whereas in this work, we characterize
the superfluid regime by observing a critical current for
superfluid flow through the onset of dissipation. Second,
previous studies [1–8] were not able to precisely locate the
phase transition, since the observed excitation spectrum
and atomic interference pattern did not abruptly change
[3,5,6], partially due to the inhomogeneous density. In
contrast, the sudden onset of dissipation provides a clear
distinction between the two quantum phases. In the SF
phase, current flows without dissipation if the momentum
does not exceed a critical momentum, while in the MI
phase the critical momentum vanishes and transport is
dissipative.

Bosonic atoms in an optical lattice are often described
by the Bose-Hubbard Model where the tunneling between
nearest neighbor lattice sites is characterized by the hop-
ping matrix element J and the repulsive interactions by the
on-site matrix element U [1,10–12]. The dimensionless
interaction energy u � U=J determines the quantum phase
of the system. For u > uc, the system is in the MI phase, for
u < uc, the SF phase. uc increases with the number of
atoms N per site.

For weak interactions (u! 0), the system approaches
single-particle physics in a periodic potential well de-
scribed by Bloch states and band structure. The critical
momentum for a stable current-carrying state is 0.5 pr
(pr � h=� is the recoil momentum of an atom, where �
is the wavelength of the optical lattice light) [13]. At the
critical momentum, it becomes possible for two atoms in
the same initial Bloch state to scatter into two other states
and conserve energy and quasimomentum [14,15]. Insta-
bilities in a 1D optical lattice were studied theoretically
using a linear stability analysis of the Gross-Pitaevskii
equation [13,16], and experimentally [14,17,18]. The theo-
retical studies predicted that for increasing lattice depth or
increasing atomic interactions the stability of superfluid
flow should increase [13,16]: the dynamic instability
would stay near 0.5 pr, whereas the Landau critical veloc-
ity and therefore the energetic instability would shift to
larger momenta (For more discussions on dynamic and en-
ergetic instability, see Refs. [19,20]). However, these
analyses neglect the growing importance of quantum cor-
relations for larger lattice depth which leads to the SF-MI
phase transition, where the critical momentum for a super-
fluid current vanishes. In this Letter, we study the decrease
of the critical momentum from its value for the weakly
interacting regime towards zero at the MI transition
(Fig. 1).

Most studies of the SF-MI phase transition monitor the
coherence in the superfluid phase through an interference
pattern observed in the ballistic expansion resulting from a
sudden turn-off of the confining potential and lattice.
Previous observations of the phase transition found the
experimental transition point to lie in the range between
10 and 13 ER (with the recoil energy defined as ER �
p2
r=2m, where m is the atomic mass) [3]. This uncertainty

is related to the inhomogeneous density profile of trapped
atoms and to the fact that the visibility of the interference
extends beyond the transition point due to short-range
coherence in the MI phase [6]. It has been suggested that
observed kinks in the visibility are linked to the formation
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of the MI shells with occupation numbers N � 2 and 3 [6].
Several authors have suggested other features in the mo-
mentum distribution beyond coherent interference peaks as
a more distinct signature of the phase transition [21,22].
Here we show that the disappearance of the critical mo-
mentum for superfluid flow provides such a signature and
allows the determination of the transition point with high
precision.

Our measurement was not limited by the inhomogene-
ous density profile. For our range of lattice depths, low
critical momenta and the onset of dissipation occur only
near the formation of MI shells with integer occupation
numbers N [9]. The onset of dissipation related to the N �
1 domains occurs at smaller momentum than for other N
domains. For instance, with increasing momentum p the
N � 1 domain becomes unstable first, and this triggers
dissipation over the whole atomic cloud [9]. Therefore,
the breakdown of superfluid flow in the system was deter-
mined by the formation of the N � 1 domain and was not
smeared out by the inhomogeneous density. Our criterion,
the sudden onset of dissipation, depended on the formation
of an insulating shell surrounded by a superfluid region,
which occurs only in the inhomogeneous case.

In our experimental setup, a Bose-Einstein condensate
(BEC) of 87Rb atoms in the 5S1=2 j1;�1i state was pre-
pared and trapped in a combination of an Ioffe-Pritchard
magnetic trap and an optical dipole trap. The number of
atoms in the BEC was typically 2� 105. The magnetic trap
frequencies were !x;y � 40 Hz radially and !z � 4:6 Hz
axially. The laser beam for the optical dipole trap was ori-
ented along the x axis. This laser beam was retroreflected
and the polarization of the retroreflected beam was rotated
in order to minimize interference between the two beams.
Along the vertical direction (y axis) a lattice was formed by
a retroreflected laser beam. For the z axis, a moving lattice

was created by introducing a small frequency detuning �f
between the two counterpropagating laser beams using
acousto-optical modulators driven by phase-locked fre-
quency generators. The 3D optical lattice was ramped up
exponentially in 160 ms. All lattice beams were derived
from the same laser operating at � � 1064 nm and had an
1=e2 waist of 100–200 �m. The lattice depth was cali-
brated with 1% accuracy by applying a 12:5 �s lattice
laser pulse to a BEC and comparing the observed
Kapitza-Dirac diffraction pattern of a BEC to theory.

For transport measurements, we moved an optical lattice
[17,23] which provides more flexibility to change the
momentum than exciting a dipole oscillation by displace-
ment of the BEC [24,25]. A moving optical lattice with
velocity v � ��f=2 was created along the long axis of the
BEC by introducing a small frequency detuning �f be-
tween two counterpropagating lattice beams. If the velocity
v�t� changes slowly enough not to induce interband ex-
citations, the initial Bloch state jp � 0i of the condensate
in the optical lattice adiabatically evolves into the current-
carrying state jp�t� � �mv�t�i where p is the quasimo-
mentum. For increasing lattice depth, the effective mass of
atoms m� � �@2E�p�=@p2	�1 increases, and the group ve-
locity vg � ��m=m��v�t� decreases. As a consequence,
atoms prepared in a moving lattice with quasimomentum
p � �mv travel in the frame of the moving lattice with vg
and in the lab frame with velocity �v � v
 vg � �1�
m=m��v, which approaches v in a deep lattice.
Consequently, we observed that in a deep moving lattice
atoms were dragged along to the edge of the trapping
region limiting the experimental time scale to probe for
dissipation. This became an issue for larger values of p and
was addressed by first ramping up the lattice with p � 0
and then alternating the velocity of the moving lattice, thus
performing a low-frequency ac transport measurement in-
stead of dc.

We have used two sets of experimental procedures
(Fig. 1), and our results were consistent for both. Close
to the SF-MI phase transition, the lattice was increased to
Vlatt with a fixed (and small) value of momentum p (dashed
arrows in Fig. 1). After a variable hold time thold at Vlatt the
lattice was ramped down to zero, and the magnetic trap
switched off. After 33 ms of ballistic expansion, the atoms
were imaged and the condensate fraction was determined
as a function of momentum by using a bimodal fitting
function. For smaller lattice depths, the lattice was ramped
up with p � 0 (Fig. 1). Then a sinusoidal momentum
modulation of the moving lattice with amplitude pM was
applied by modulating the frequency detuning �f between
the counterpropagating lattice beams. The 10 ms period of
this momentum modulation was slow enough to meet the
adiabaticity condition, but fast enough to limit the dis-
placement of the atomic cloud to less than a few �m.
Both the trapping potential and the optical lattice were
then turned off suddenly. After 33 ms of ballistic expan-
sion, the condensate fraction of the center peak of the
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FIG. 1. Phase diagram showing the stability of superfluid flow
in an optical lattice and the experimental procedure. The gray
curve shows the predicted boundary between superfluid flow and
dissipative flow phases for a three-dimensional gas with a
commensurate filling of N � 1 atom per site [9]. The solid
(dashed) arrows illustrate the experimental trajectory used for
small (large) lattice depths (see text for details).
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superfluid interference pattern was recorded as a function
of the momentum modulation amplitude pM. Several
cycles (typically, three to five) of the momentum modula-
tion were applied to obtain a high contrast between the
stable and dissipative regimes [Fig. 2(a)].

Figure 2(a) shows how the transition between superfluid
and dissipative currents became sharper with increasing
number of cycles of the momentum modulation. The criti-
cal momentum was determined from a log-log plot of the
condensate fraction as a function of momentum p
[Fig. 2(c)]. The intersection between two linear fit func-
tions was taken as the critical momentum. Our result was
found to be independent of the time period and number of
cycles of the momentum modulation at a few percent level.

In the MI phase, stable superfluid flow is not possible
and the critical momentum should vanish. However, using
the procedure described above, we measured a small criti-
cal momentum of 0.02 pr for lattice depths Vlatt � 14, 15,
16 ER. Up to this momentum, the SF-MI phase transition
remained reversible. We interpret the nonzero critical mo-
mentum as a finite-size effect. For our cloud size of

60 �m, the corresponding Heisenberg momentum uncer-
tainty of 0.018 pr agrees with our measured critical mo-
mentum. In cold atom experiments, some sloshing motion
of the cloud in the trapping potential is unavoidable. The
momentum uncertainty determined above indicates how
much sloshing motion can be tolerated without affecting
the observed phase transition.

The critical lattice depth for the SF-MI phase transition
can be determined as the point where the critical momen-
tum vanishes. Using the predicted functional form [9] of
the approach towards zero, pc /

��������������������
1� u=uc

p
, as a fit func-

tion for the data points close to the SF-MI phase transition
(the data points shown in the inset of Fig. 3) we determined
the critical value uc � 34:2 (�2:0) corresponding to a
lattice depth of 13:5��0:2� ER. Our result agrees with the
mean-field theory prediction uc � 5:8� 6 � 34:8 forN �
1 SF-MI phase transition [1] and deviates by 2 � from the
predictions of uc � 29:34�2� of quantum Monte Carlo
(QMC) simulation [26,27], which includes corrections
beyond the mean-field theory. This demonstrates that our
method has the precision to identify non-mean-field cor-
rections. However, to turn precision into accuracy, experi-
ments or QMC simulations [21,26,27] have to address
corrections due to finite size, finite temperature, and finite
time to probe the onset of the instability [27]. In our experi-
ment, these corrections seemed to be small, but have not
been characterized at the level of 1% in lattice depth.

The mean-field prediction for stable superfluid flow in
1D is similar to that for the 3D system [9]. However, it is
well known that fluctuations play a much more important
role in 1D. For studying a 1D system, we prepared an array
of one-dimensional gas tubes by ramping two pairs of
optical lattice beams up to lattice depths of Vx � Vy �
30 ER suppressing hopping between the tubes. After a hold
time of 10 ms, a moving optical lattice was ramped up
along the z axis. As in our 3D experiment, a momentum
modulation was applied, after which the moving optical
lattice was ramped down to zero, followed by the other two
optical lattices. The condensate fraction was determined
after 33 ms of ballistic expansion as a function of the
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FIG. 2 (color online). Determination of the critical momentum
of superfluid flow. Shown is the condensate fraction as a function
of a momentum p. (a) Condensate fraction with u=uc � 0:61 for
a variable number of cycles of the momentum modulation (one
cycle: � and blue line, two cycles: � and purple line, three
cycles: � and red line). A dashed vertical line indicates the
critical momentum where instability begins to occur. The two
and three-cycle data are offset vertically for clarity. These data
were fitted with an error function to guide the eye. (b) Images of
interference patterns released from an optical lattice at u=uc �
0:61 moving with variable momentum. Instability occurred
between p � 0:31pr and 0:32pr. Some of the triangular data
points in (a) were obtained from these images. (c) Condensate
fraction on a log-log scale for two different interaction strengths.
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momentum modulation amplitude. The critical momen-
tum, where the onset of dissipation begins, was identified
from a log-log plot as in the 3D case. Since the transitions
became very broad, we characterized them by an error
function fit, with the center of the fitted error function
taken as the center of the transition (Fig. 4).

In the 1D system, at a very shallow lattice depth of 0.25
ER (corresponding to u=uc � 0:08) a sharp transition was
observed, and the measured critical momentum agreed
very well with the prediction [9,28] of a critical momentum
of 0.39 pr. However, a slight increase of the interaction
strength (to u=uc � 0:09 at a lattice depth of 0.5 ER) led to
a significant decrease of the critical momentum as well as a
dramatic broadening of the transition as shown in Fig. 4.
For lattice depths larger than 2 ER, the transition became
very broad and showed complex behavior, and we could
not obtain quantitative fits. Our results show a significant
deviation from the mean-field theory predictions and are in
agreement with previous works [25,29,30].

The observed broadening of the transition confirms
theoretical studies which emphasize the importance of
quantum fluctuations in the 1D system. Quantum tunneling
out of metastable states which are ignored in the mean-field
description can lead to a decay of the superfluid current at
very low momenta [28]. In addition to quantum fluctua-
tions, thermal fluctuations provide a mechanism for current
decay [28]. In our experiment, we used a ‘‘pure’’ BEC
without a discernible thermal component. The close agree-
ment with T � 0 predictions indicates that thermal fluctu-
ations were not dominant.

In conclusion, we have used transport studies to connect
a well-known dynamical instability for weakly interacting
bosons with the equilibrium superfluid to Mott insulator
transition. A comparison of 3D and 1D systems confirms

the applicability of a mean-field description in three di-
mensions and the crucial importance of fluctuations in one
dimension. The disappearance of superfluid currents at the
SF-MI phase transition precisely located the phase transi-
tion. Our results illustrate the control and precision of
condensed matter physics experiments done with ultracold
atoms and their suitability to test many-body theories.
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and Immanuel Bloch. Phase coherence of an atomic mott insulator. Phys. Rev.
Lett., 95(5):050404, Jul 2005.

[31] W. F. Giauque. Paramagnetism and the third law of thermo-dynamics. inter-
pretation of the low-temperature magnetic susceptibility of gadolinium sulfate.
J. Amer. Chem. Soc., 49(8):1870–1877, 1929.

[32] A. Griffin, D.W. Snoke, and S. Stringari, editors. Bose-Einstein Condensation.
Cambridge University Press, New York, 1995.

[33] P. J. Hakonen, R. T. Vuorinen, and J. E. Martikainen. Nuclear antiferromag-
netism in rhodium metal at positive and negative nanokelvin temperatures. Phys.
Rev. Lett., 70(18):2818–2821, May 1993.

[34] D. M. Harber, H. J. Lewandowski, J. M. McGuirk, and E. A. Cornell. Effect of
cold collisions on spin coherence and resonance shifts in a magnetically trapped
ultracold gas. Phys. Rev. A, 66(5):053616, Nov 2002.

[35] Tin-Lun Ho and Qi Zhou. Intrinsic heating and cooling in adiabatic processes
for bosons in optical lattices. Phys. Rev. Lett., 99(12):120404, Sep 2007.

[36] Tin-Lun Ho and Qi Zhou. Squeezing out the entropy of fermions in optical
lattices. Proceedings of the National Academy of Sciences, 106(17):6916–6920,
2009.

129



[37] Tin-Lun Ho and Qi Zhou. Universal cooling scheme for quantum simulation.
arXiv:0911.5506, Nov 2009.

[38] Alexander Hoffmann and Axel Pelster. Visibility of cold atomic gases in optical
lattices for finite temperatures. Phys. Rev. A, 79(5):053623, May 2009.

[39] David Hucul. Magnetic super-exchange with ultra cold atoms in spin dependent
optical lattices. Master’s thesis, Massachusetts Institute of Technology, Cam-
bridge, Massachusetts, Jun 2009.

[40] Chen-Lung Hung, Xibo Zhang, Nathan Gemelke, and Cheng Chin. Accelerating
evaporative cooling of atoms into bose-einstein condensation in optical traps.
Phys. Rev. A, 78(1):011604, Jul 2008.

[41] Chen-Lung Hung, Xibo Zhang, Nathan Gemelke, and Cheng Chin. Slow mass
transport and statistical evolution of an atomic gas across the superfluid–mott-
insulator transition. Phys. Rev. Lett., 104(16):160403, Apr 2010.

[42] D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner, and P. Zoller. Cold bosonic
atoms in optical lattices. Phys. Rev. Lett., 81(15):3108–3111, Oct 1998.

[43] W. Ketterle, D. S. Durfee, and D. M. Stamper-Kurn. Making, probing and
understanding bose-einstein condensates. Varenna Summer School, 1999.

[44] Wolfgang Ketterle. Nobel lecture: When atoms behave as waves: Bose-einstein
condensation and the atom laser. Rev. Mod. Phys., 74(4):1131–1151, Nov 2002.

[45] A. B. Kuklov and B. V. Svistunov. Counterflow superfluidity of two-species ul-
tracold atoms in a commensurate optical lattice. Phys. Rev. Lett., 90(10):100401,
Mar 2003.

[46] A. E. Leanhardt, T. A. Pasquini, M. Saba, A. Schirotzek, Y. Shin, D. Kielpinski,
D. E. Pritchard, and W. Ketterle. Cooling Bose-Einstein Condensates Below 500
Picokelvin. Science, 301(5639):1513–1515, 2003.

[47] Anthony J. Leggett. Bose-einstein condensation in the alkali gases: Some fun-
damental concepts. Rev. Mod. Phys., 73(2):307–356, Apr 2001.

[48] M. Lewenstein, A. Sanpera, V. Ahufinger, B. Damski, A. Sen, and U. Sen. Ul-
tracold atomic gases in optical lattices: mimicking condensed matter physics and
beyond. Advances in Physics, 56(2):243–379, Jul 2007.

[49] Olaf Mandel, Markus Greiner, Artur Widera, Tim Rom, Theodor W. Hänsch,
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