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Abstract

Bose-Einstein condensates in optical lattices have proven to be a powerful tool for
studying a wide variety of physics. In this thesis a series of experiments using optical
lattices to manipulate 87Rb Bose-Einstein condensates are described.

A systematic shift of the photon recoil momentum due to the index of refraction
of a dilute gas of atoms has been observed. The recoil frequency was measured
interferometrically using a two-pulse Ramsey interferometer. The two pulses were
created using a one dimensional optical lattice. By measuring the resulting frequency
as a function of the lattice detuning from the atomic resonance, we found a distinctive
dispersive shape for the recoil frequency that fit the recoil momentum as nr~k.

A one-dimensional optical lattice was used to modify the dispersion relation of the
condensate in order to demonstrate the matter-wave analogue of Optical Parametric
Generation (OPG) and Amplification (OPA) of photons. A condensate was loaded
into a moving optical lattice with adjustable quasimomentum k0. As the value for k0

was varied, we observed elastic scattering into two distinct final momentum states k1

and k2. When a small fraction of atoms was first transferred to k1 before ramping on
the lattice, we observed the amplification of scattered atoms into k1 and k2.

The superfluid-Mott Insulator transition was studied using microwave spectroscopy
in a deep three-dimensional optical lattice. Using the density dependent clock shift
we were able to spectroscopically distinguish sites with different occupation numbers,
and to directly image sites with occupation number from 1 to 5, revealing the shell
structure of the Mott Insulator phase.
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Chapter 1

Introduction

It has been over a decade now since the first experimental observation of Bose-Einstein

condensation (BEC) in dilute atomic clouds. The advent of BEC opened up a variety

of new research areas. In the early years after the first demonstration of BEC, ex-

periments were focused on studying the fundamental properties of condensation and

superfluidity, however today BEC is instead being used as a springboard for studying

a number of fields including atom optics, in particular nonlinear atom optics, quan-

tum measurement problems, precision measurements using atom interferometry, and

most recently as a quantum simulator to model more complicated condensed matter

systems.

Given the large number of theses which have preceded this work, as well as the

vast number of review papers and books now available on the subject, for the purposes

of this thesis I will limit my introduction of BEC to those aspects which are relevant

to the work described here. For a more detailed introduction to Bose-Einstein con-

densation, and the laser cooling and trapping methods used to realize it, I refer to

earlier theses [105, 55], review articles [18, 64, 88, 20, 72, 65], and books [92, 98] on

the subject.
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1.1 The BEC Phase Transition

The phase transition to Bose-Einstein condensation occurs when there is a macro-

scopic occupation of a single quantum state, where the quantum state is either the

ground state, or a long-lived metastable state. One can think of a Bose-Einstein Con-

densate as a giant matter wave. For a uniform gas of atoms with number density n,

and at temperature T, the spatial extent of an atom can be described by its deBroglie

wavelength which is given by

λdB =
h√

2πmkBT
, (1.1)

where h is Planck’s constant, m is the atomic mass, and kB is the Boltzmann constant.

At room temperature, the deBroglie wavelength is typically much shorter than the

interparticle spacing of the atoms, n−1/3. However, as the temperature of the gas

decreases, the wavelength increases until n−1/3 ≈ λdB, at this point the atoms start

to overlap and the system undergoes a phase transition to a Bose-Einstein condensate.

We can no longer think of the atoms as being distinguishable and instead there is a

single matter wave created by the overlap of all the individual atoms. One can also

describe the transition in terms of the phase space density of the gas, ρ = nλ3
dB, the

phase transition to condensation occurs when ρ ≈ 1.

1.2 Noninteracting Bosons in a Harmonic Trap

For N noninteracting Bosons trapped in an external 3D harmonic trap, with

Vext =
m

2

(

ω2
xx

2 + ω2
yy

2 + ω2
zz

2
)

, (1.2)

where ωi is the trap frequency in the ith direction. The energy levels are given by

ǫ(nx, ny, nz) =

(

nx +
1

2

)

~ωx +

(

ny +
1

2

)

~ωy +

(

nz +
1

2

)

~ωz. (1.3)
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In the condensed state, the atoms are all in the ground state of the system, and the

macroscopic wavefunction for the system is given by Φ(~r1, ....., ~rN) =
∏

i φ0(~ri), where

φ0(~r) =
(mωho

π~

)3/4

e−
m
2~

(ωxx2+ωyy2+ωzz2) (1.4)

and ωho is the geometric mean of the trap frequencies. The density distribution is

n(~r) = N |ψ0(~r)|2 and the radius of the condensate is given by the harmonic oscillator

length

aho =

(

~

mωho

)1/2

. (1.5)

For noninteracting bosons in thermal equilibrium the average number of particles

in a given state can be found using the Bose-Einstein distribution,

〈n(ǫ)〉 =
1

e(ǫ−µ)/kBT − 1
(1.6)

where 〈n(ǫ)〉 gives the number of particles in the energy level ǫ, µ is the chemical

potential of the gas and
∑

i〈n(ǫ)〉 = N . For large N, and harmonically confined

atoms, this gives a transition temperature of

kBTc = ~ωho (N/ζ(3))1/3 (1.7)

where ζ(3) ≈1.202 is the Riemann Zeta function. The number of atoms in the con-

densate N0, at temperature T is given by

N0 = N

[

1 −
(

T

TC

)3
]

. (1.8)

1.3 Atom-Atom Interactions

In the previous section a noninteracting gas of bosons was assumed, however in ex-

periments with alkali atoms this is not the case. Instead atom-atom interactions have

to be taken into consideration. Although atom-atom interactions do not significantly

effect the transition temperature or the condensate fraction, they do effect the density

15



distribution of the cloud, as well as the properties of the condensate. In fact, all of

the work described in this thesis is due to these interactions.

1.3.1 S-wave Collisions

For the typical densities used in BEC experiments with alkali gases (typically between

1012/cm3 to 1015/cm3), one must only consider two-body interactions, and in addition

at ultracold temperatures only s-wave collisions can occur. For two particles with

identical mass m, the interaction can be described by a delta function potential where

the potential is given by

U(r) =
4π~

2as

m
δ(r), (1.9)

and as is the s-wave scattering length [92].

1.4 Weakly Interacting Bosons

The effect of s-wave collisions is to add a nonlinear term to the normal Schrödinger

equation. The effective Hamiltonian for the system is

H =

N
∑

i=1

[

~p2
i

2m
+ V (~ri)

]

+
4π~

2as

m

∑

i<j

δ(~ri − ~rj), (1.10)

and the energy of the system is given by

E = N

∫

dr

[

~
2

2m
|∇φ(~r)|2 + V (~r)|φ(~r)|2 +

(N − 1)

2

4π~
2as

m
|φ(~r)|4

]

. (1.11)

As in the noninteracting case, in the condensed state all of the atoms occupy the

ground state of system, therefore the macroscopic wavefunction is still described by

Ψ(~r1, ~r2, ...., ~rN) =
∏N

i=1 φ(~ri). Defining ψ(~r) =
√
Nφ(~r), the density of condensate is

given by n(~r) = |ψ(~r)|2, and Eq. (1.11) can be rewritten as

E =

∫

dr

[

~
2

2m
|∇ψ(~r)|2 + V (~r)|ψ(~r)|2 +

4π~
2as

2m
|ψ(~r)|4

]

(1.12)
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where (N − 1) ≈ N for large N .

1.4.1 The Density Distribution

A Variational Approach

In the noninteracting case, the ground state wavefunction was given by Eq. (1.4).

Using Eq. (1.12) we can use a variational approach to find a new ground state wave-

function for the interacting system. Defining the trial wavefunction

ψ(r) =
√
N
(mωr

π~

)

e−mωrr2/2~, (1.13)

where ωr is the variational parameter, and where for simplicity we have assumed

an isotropic harmonic trap with trap frequency ωho. Substituting Eq. (1.13) into

Eq. (1.12), and integrating we find

E(ωr, ωho) = N~

[

3

4

(

ωr +
ω2

ho

ωr

)

+Nas

√

mω3
r

2π~

]

(1.14)

minimizing this with respect to ωho, and rewriting in terms of the harmonic oscillator

length aho =
√

~

mωho
, we find

ar

aho
=

[

1 +
Nas

ar

√

2

π

]1/4

. (1.15)

Fig. 1-1 shows this ratio for typical trap parameters as the condensate number N is

increased.

Thomas-Fermi Approximation

Alternatively for fixed µ, if E − µN is minimized using Eq. (1.12), the result is the

time-independent Gross-Pitaevskii equation

(

− ~
2

2m
∇2 + V (~r) +

4π~
2as

m
|ψ(~r)|2

)

ψ(~r) = µψ(~r). (1.16)
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Figure 1-1: Variational calculation of the change in the ground state wavefunction
due to interactions. The radius is given with respect to the harmonic oscillator length
aho, the radius of the condensate in the noninteracting case. The radius is found for
ωho = 2π × 100Hz.

As was derived in the variation approach, for large N the ratio of the kinetic energy

to the interaction energy
Ekin

Eint

∝ aho

N |as|
(1.17)

is very small. Therefore, in the Thomas-Fermi approximation, the kinetic energy

term is ignored and the Gross-Pitaevskii equation becomes

µψ(~r) =

[

V (~r) +
4π~

2as

m
|ψ(~r)|2

]

ψ(~r). (1.18)

The density of the condensate is given by

n(r) = |ψ(~r)|2 =
m

4π~2as
[µ− V (~r)] . (1.19)

For the harmonic potential given in Eq. (1.2), one has a parabolic density distribution,

where the Thomas-Fermi radius in the ith direction is given by Ri = 2µ
mωi
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1.5 The Excitation Spectrum

1.5.1 The Bogoliubov Approximation

Having found the ground state wavefunction of the condensate in a weakly interacting

system, we can next derive the excitation spectrum for the condensate. To show this

we again start with the hamiltonian for the system given in Eq. (1.10). However,

instead of writing the Schrodinger equation in terms of the condensate wavefunction,

we instead write the Hamiltonian in terms of the creation and annihilation operators

for bosons, ψ̂†(~r) and ψ̂(~r)

H =

∫

d~r

[

−ψ̂†(~r)
~

2

2m
∇2ψ̂(~r) + V (~r)ψ̂†(~r)ψ̂(~r) +

U0

2
ψ̂†(~r)ψ̂†(~r)ψ̂(~r)ψ̂(~r)

]

, (1.20)

where U0 = 4π~2as

m
. To find the excitation spectrum, we include fluctuations in the

ground state of the wavefunction by defining

ψ̂(~r) = ψ(~r) + δψ̂(~r), (1.21)

the average value of the operator plus a small fluctuation term. Using the Heisenberg

equation of motion for the operator,

ı~
∂

∂t
ψ̂(~r) = [ψ̂(~r), Ĥ] =

(

−~
2∇2

2m
+ V (~r) + U0ψ̂

†(~r)ψ̂(~r)

)

ψ̂(~r), (1.22)

and linearizing this equation for ψ̂(~r) in terms of δψ̂(~r) gives a set of linear coupled

equations for δψ̂(~r). This coupled equation is given by

ı~
∂

∂t
δψ̂(~r) =

(

− ~
2

2m
∇2 + V (~r)

)

δψ̂(~r) + U0δψ̂
†(~r)δψ̂2(~r) + 2U0|ψ2(~r)|δψ̂(~r), (1.23)

and similarly for the hermitian conjugate δψ̂†(~r). The normal mode solutions can be

found from these coupled equations, and as shown by Bogoliubov for a uniform gas
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Figure 1-2: Excitation spectrum for the condensate. The dispersion relation for a
condensate (solid line), free particles (dotted line), and for phonons (dashed line) is
shown. The free particle cure is offset by mc2. The momentum is in units of q = mc,
where c is the speed of sound in the condensate.

with V (~r), the Bogoliubov equations become







ǫq + nU0 − ~ωq −nU0

−nU0 ǫq + nU0 + ~ωq













uq

vq

= 0






, (1.24)

where ǫq = ~
2q2/2m and

δψ̂(~r) = e−iµt/~
∑

j

(

uj(~r)α̂je
−iωjt + v∗j (~r)α̂

†
je

iωjt
)

, (1.25)

where αj(
†) annihilate (create) bosonic excitations in the normal mode with frequency

ωj. Eq. (1.24) yields the dispersion relation

~ωq =
√

ǫ2q + 2nU0ǫq. (1.26)

As shown in Fig. (1-2) for low momenta, the excitations are phonon like with E = ~kc

where c =
√

nU0

m
is the speed of sound in the condensate. For large momenta the

excitations are particle like with E = ǫq + nU0.
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1.6 BECIV “The Rubidium Lab”

The experiments presented in this thesis were all performed in BECIV, the “Rubid-

ium Lab”, the newest of the BEC machines in the Ketterle-Pritchard group. To create

Bose-Einstein condensates, one requires ultrahigh vacuum, a stable laser system, and

high magnetic fields. The magnetic coils and optics necessary to trap and cool the

atoms greatly limits the optical access to the condensate, and the stringent require-

ments of high vacuum also make switching experiments inside the chamber difficult

and time consuming. To overcome these challenges, a new Rubidium Bose-Einstein

condensate apparatus was built. The goal of the new lab was to build an apparatus

which created condensates in a “production chamber” and then transported them

to an auxiliary chamber. The second chamber would allow for better optical access

and also allow for the exchange of experiments without breaking vacuum in the main

production chamber.

I arrived at MIT in the fall of 2001, just a few months before BECIV realized

its first condensate. Building a rubidium BEC apparatus which could both create,

and transport condensates posed some unexpected technical difficulties. My early

days in the lab focused on optimizing the performance of the new apparatus and

implementing the transport of the condensates to the auxiliary chamber. As detailed

accounts of the design and construction of the machine can be found in Ref.[111, 110],

here I will just highlight some important features of our machine.

Although the majority of Rubidium experiments use double MOTs loaded using

either a dispenser or a vapor cell, our machine instead uses an oven and Zeeman slower

to load the MOT. The atoms are then loaded into a Ioffe-Pritchard Magnetic trap.

After optimizing the performance of the apparatus, rubidium condensates containing

20 million atoms are now consistently produced in the production chamber. This is

significantly larger than other labs which produce rubidium condensates of around 1

million atoms. After first trapping and cooling atoms in the “production chamber”,

ultracold rubidium atoms have been transferred over 30 cm in 1.5 seconds to the aux-

iliary chamber. The atoms are moved between the chambers by first transferring the
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atoms from the magnetic trap to an optical dipole trap created with a single focused

laser beam (optical dipole trap, or ODT), and by then translating the focus of the

beam from the production chamber to the science chamber. The performance of the

transport was optimized to minimize heating and losses that occurred during accel-

eration so that the atoms could be evaporatively cooled to a BEC by simply lowering

the depth of the optical trap after transport. Although the transport of cold atoms

with an ODT had been previously demonstrated with sodium condensates [15, 47],

the original design of our apparatus had to be improved to compensate for the higher

mass and larger 3-body decay rate of rubidium. With the successful production of

condensates in the auxiliary chamber, we can now begin loading the condensates

onto atom optical devices, such as atom chips, waveguides and mirrors, or create op-

tical lattices with significantly better optical access than that in the main production

chamber. Although all the experiments described in this thesis have been performed

in the main production chamber, the next generation of lattice experiments will be

performed in the science chamber.

1.7 Outline of this thesis

In recent years optical lattices have proven to be a very versatile tool to study a wide

variety of physics with Bose-Einstein Condensate, the work presented in this thesis

highlights this versatility. All of the experiments presented here use optical standing

waves, however the standing waves are used in very different ways and for very dif-

ferent purposes. The experiments performed here fall into two main categories, atom

optics, both linear and nonlinear, and strongly correlated systems in optical lattices.

The structure of this thesis is as follows: In chapter 2, I give a brief introduction to

condensates in optical lattices, and in particular scattering from light gratings in the

Kapitza-Dirac and Bragg regimes. Chapter 3 is the first chapter with experimental

results. Here I discuss a measurement of the photon recoil momentum in dispersive

media, which was performed by diffracting a condensate off of a one-dimensional light

grating. In chapter 4 dispersion management is used to demonstrate the matter-wave
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analogue of optical parametric generation and amplification of scattered atom pairs.

In chapter 5 the superfluid-Mott Insulator transition in a deep three-dimensional op-

tical lattice is discussed, and in chapter 6 two-photon microwave spectroscopy is used

to study the superfluid-Mott insulator transition using atomic clock shifts. Chapter 7

briefly discusses the demonstration of Raman superradiance, where a polarization

grating is created from a applied light pulse and an end fire mode, leading to self-

stimulated Raman scattering. Finally, in chapter 8, I summarize the work presented

in this thesis and give a brief outlook. The appendices give reprints of the relevant

papers on which this thesis is based.
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Chapter 2

Bose-Einstein Condensates in

Optical Lattice Potentials

2.1 Atom-Light Interactions

If neutral atoms are placed in an electromagnetic field the atoms develop an induced

electric dipole moment µ, where the interaction energy is given by

U = −µ ·E, (2.1)

where E is the applied electric field. This dipole moment has two main effects, for

near-resonant light the effect is to change the atomic state through the absorption

and emission of photons. Using this effect one can coherently manipulate both the

internal and external states of the atom. For far off-resonant light, the primary effect

is an energy shift to the atomic energy levels through the AC stark shift.

In this chapter (and in the rest of this thesis), we focus on optical potentials created

with standing light waves. The first part of this chapter focuses on the diffraction of

atoms from standing wave potentials where, using near-resonant light, the momentum

state of the atom is coherently controlled. In the second we discuss the use of far

off-resonant beams to create optical lattices potentials, where atoms are trapped in

the nodes of the standing wave potential.
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2.2 Atomic Diffraction from Optical Gratings

Atomic diffraction from optical gratings has proven to be an ideal tool for atom optics

and atom interferometry. Kapitza-Dirac and Bragg Scattering from optical gratings

were both first demonstrated as coherent beamsplitters for atomic beams of Sodium

atoms [41, 77], and later demonstrated with Bose-Einstein condensates [70, 106, 86].

In the proceeding sections, diffraction from an optical grating is described using two

different models, a more detailed discussion can be found in [46].

2.2.1 The Grating Picture

If a condensate is incident upon a periodic grating, after traversing the grating the

condensate will be diffracted. The maxima of the resulting interference pattern can

be found from the grating equation

ℓλdB = d sin(θ), (2.2)

where ℓ is the diffraction order, λdB is the deBroglie wavelength as defined in Eq. (1.1),

and d is the grating spacing. Although this equation is typically used to describe

material gratings which modulate the amplitude of the wavefunction, it also holds

true for phase gratings, where a periodic light grating is used to diffract the atoms.

In light gratings, the atoms receive position dependent light shifts, and for wavelength

λ the grating spacing is given by d = λ/2, the spacing of the nodes in the standing

wave.

The electric field for a standing wave of light is given by

~E(z, t) = f(t) (E0sin(kz − ωt)ê+ E0sin(kz + ωt)ê) (2.3)

where k = 2π/λ is the wavevector of the grating light, and f(t) is the envelope

function for the standing wave. The light shifts for this field are given by the AC

Stark shift potential,

U(z, t) =
~ω2

R

δ
f(t)2 sin2(kz) (2.4)
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where ωR = µE0/~ is the Rabi frequency, with µ = 〈e|e~r|g〉 · ê the dipole matrix

element connecting the ground |g〉 and excited |e〉 states of the atom, and δ is the

detuning of the beam. Eq. (2.4) is valid in the limit δ2 >> Γ2/4, where Γ is the

natural line width of the excited state.

2.2.2 The Raman Picture

Alternatively, diffraction from the light grating can be described as a stimulated

Raman process, where the initial and final states, instead of being internal states,

are different momentum states. The momentum of the atoms is changed through the

stimulated absorbtion and subsequent emission of photons from the standing wave.

The ground, intermediate, and final states for this Raman process are |g, 0〉,|e, 1〉, and

|g, 2〉, where |g(e), ℓ〉 is the ground (excited) internal state with momentum p = ℓ~k.

The Hamiltonian for this Raman process is given by

H(t) = H0(t) +Hint(t), (2.5)

where in the electric dipole approximation

Hint(t) = −µ · E = −ıe−iωt ~ωR

2
(|e, 1〉〈g, 0| − |e, 1〉〈g, 2|) + h.c., (2.6)

and

H0(t) = ~ω0|e, 1〉〈e, 1|+ ~ωrec (|g, 0〉〈g, 0|+ |g, 2〉〈g, 2|) (2.7)

where ω0 is the transition frequency between the ground and excited state, and Erec =

~ωrec = (~k)2

2m
is the recoil frequency. To avoid scattering atoms into the wrong final

state, the fourier width of the applied light pulse with length τ must be smaller than

the separation between momentum states

τ >>
π

4ωrec
. (2.8)
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When this condition is fulfilled, the scattering is in the Bragg regime. If this condition

is not fulfilled than the scattering is described as Kaptiza-Dirac (or Raman-Nath)

scattering.

2.2.3 Bragg Scattering

In the Bragg regime, the fraction of atoms scattered into the final state |g, 2〉 can be

found by using the trial wavelength

|ψ(t)〉 = c0(t)e
−ıωrect|g, 0〉+ c1(t)e

−ıω0t|e, 1〉 + c2(t)e
−ıωrect|g, 2〉. (2.9)

Subbing this into Schrödinger equation, and solving for c2(t) one finds the transition

probability

P2(τ) = |c2(t)|2 = sin2

(

ω
(2)
R

2
τ

)

, (2.10)

where ω
(2)
R = ω2

R/2δ is the two-photon Rabi frequency. This can be extended to an

N th order Bragg process where atoms absorb N photons from one direction, and emit

N photons into the opposite direction, with Rabi frequency ω
(2N)
r =

ω2N
R

22N−1δ1δ2...δ2N−1
.

For Bragg scattering to occur energy and momentum must be conserved in the

scattering process. Instead of varying the angle and velocity of the condensate relative

to the standing wave it is typically easier to vary the standing wave by adding a small

detuning, δL between the two laser beams used to make the standing wave. The

resonance condition is then given by

~δL = 2N
~

2k2

m
sin2(θ/2), (2.11)

where as shown in Fig. 2-1, θ is the angle between the two beams.

Effect of the Mean Field Interaction

As discussed in section 1.5, for particle like excitations in the condensate ~ω = ~ωrec+

nU0, and there is a mean field shift to the resonance frequency. Atoms in the initial
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Figure 2-1: Bragg scattering (a) In Bragg scattering the atom absorbs a photon from
one beam, and emits the photon into the second. The detuning of the beams are set
such that the atom only absorb photons from one of the beams, therefore atoms are
only scattered in one direction. (b) Since two photons are scattered, the momentum
of the atom changes by 2~k (c) Bragg transition diagram. Atoms are only diffracted
when the frequency and angle between the beams is tuned such that both energy and
momentum are conserved.

condensate are indistinguishable, however once atoms have been scattered into the

final momentum state they are distinguishable and have twice the mean field energy

due to the exchange term in the interaction potential [106], therefore the resonance

frequency is shifted by nU0, the mean field energy.

2.2.4 Kapitza-Dirac Scattering

In the Kapitza-Dirac, or Raman-Nath regime τ << 1/ωrec. In this limit, the fourier

width of the pulse is larger than the separation between adjacent momentum states,

and atoms can be scattered into higher order momentum states. For short interaction

times, the motion of the atoms during the pulse can be neglected, therefore the kinetic

energy term in Eq. 2.7 can be ignored. The population in a given momentum state

2N~k can be found by looking at the phase shift applied to the atoms by the AC

Stark shift (Eq. (2.4)) during the interaction time,

|ψ〉 = |ψ0〉e
−ı
~

R
dtU(z,t) = |ψ0〉e

−ı
2δ

ω2
R

τe
ı
2δ

ω2
R

τ cos(2kz). (2.12)
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Using an identity for Bessel functions, one finds

PN = J2
N(ω

(2)
R τ) (2.13)

where JN is the N th order Bessel Function of the first kind. As shown it Fig. 2-2, as

the power is increased the fraction of atoms in higher orders increases.

2.3 Bose-Einstein Condensates in Optical Lattices

In the discussion of diffraction from optical gratings, a few assumptions were made:

1) The standing wave was pulsed on for a short period of time. 2) A plane wave was

used. These assumptions allowed us to ignore the external trapping potential created

by the standing wave, and also allowed us to use the excitation spectrum derived in

section 1.5. However if the optical lattice is not pulsed on, but is instead ramped

on these assumptions are no longer valid. In recent years Bose-Einstein condensates

held in optical lattices has become an active research field, and a review of recent

work done with Bose-Einstein condensates in optical lattices can be found in [84]. In

the following section the energy spectrum and ground state wavefunction for Bose-

Einstein condensates held in optical lattices is discussed. In this chapter only weak

lattices are discussed where the system can still be described as a superfluid with a

macroscopic wavefunction. In chapter 5 the behavior in deep optical lattices where

this is no longer true is discussed.

2.3.1 Optical Dipole Traps

In Bragg and Kapitza-Dirac scattering, near-resonant laser light is used to manipulate

the final momentum state of the atoms. For optical lattices if near-resonant light is

used the high spontaneous scattering rate leads to short condensate lifetimes. If a

condensate is illuminated with a laser beam, the resulting potential due to the AC
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Figure 2-2: Kapitza-Dirac scattering. (a) In Kapitza-Dirac scattering, due to the
short length of the pulse the atom can absorb photons from either of the beams,
and atoms are symmetrically scattered in both directions. As the power in the pulse
is increased atoms are scattered into higher momentum states 2N~k where N is an
integer. (b) The fraction of atoms in a given momentum state can be fit by Bessel

functions as PN = J2
N(ω

(2)
R τ), where ω

(2)
R is the 2-photon Rabi frequency, and τ is the

length of the pulse. The fraction of atoms is shown for the 0th (circles), 1st (squares),
and 2nd (triangles) order momentum states.
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Stark shift can be written as

V (r) =
~ω2

R

δ
=

3πc2

2ω3
0

(

Γ

ω0 − ω
+

Γ

ω0 + ω

)

I(r) ≈ 3πc2

2ω3
0

Γ

δ
I(r), (2.14)

where the natural line width Γ is given by

Γ =
ω3

0

3πǫ0~c3
µ2, (2.15)

and I is the intensity of the laser beam. Depending on the sign of the detuning the

atoms are either attracted or repelled from the region of maximum intensity. The

spontaneous scattering rate from the laser is

ΓSC(r) =
3πc2

2~ω3
0

(

Γ

δ

)2

I(r) =
Γ

~δ
V (r) (2.16)

for a given potential depth, the spontaneous scattering rate can be decreased by using

far off-resonant light. Although the above potential is only for two level atoms, for

multilevel atoms the potential can be generalized to

V (r) =
3πc2Γ

2ω3
0

I(r)
∑

j

cj
δj

(2.17)

where δj is the detuning between the ground |g〉 and the excited state |ej〉, and

cj = ‖µ‖/muj is the relative coupling strength.

The simplest way to trap atoms using the AC Stark shift potential is by using a

focused red-detuned laser beam [5, 17]. The intensity profile of a focused gaussian

laser beam with power P , focused along the z-axis is

I(r, z) =
2P

πw2(z)
e
−2 r2

w2(z) (2.18)

where the beam waist along the z-axis is given by w(z) = w0

√

1 + (z/zR)2. The

minimum beam waist at the focus is w0, and zR = πw2
0/λL is the Rayleigh length

of the focus. If the spatial extent of the condensate is less than the beam waist

31



(RTF << w0, zR), then the resulting trapping potential can be approximated as

Vext(r, z) ≈ V

[

1 − 2

(

r

w0

)2

−
(

z

zR

)2
]

, (2.19)

this potential has cylindrical symmetry with trap frequencies ωr =
√

4V/mw2
0 and

ωz =
√

2V/mz2
R in the radial and axial directions.

If a second, counter-propagating beam is added where the frequency, polarization,

and power of the beam are identical to the initial dipole trap, than a standing wave

potential is created with

Vlat(r, z) = 4V cos2(kz)

[

1 − 2

(

r

w0

)2

−
(

z

zR

)2
]

. (2.20)

As shown in Fig 2-3 the easiest (and most stable) way to create this lattice potential

is by retroreflecting the initial dipole beam. Typically the lattice trap depth Vlat is

given in terms of the recoil frequency Erec. The lattice trap frequency along the axial

direction is given by

ωlat =
~k2

m

√

Vlat

Erec

. (2.21)

2.3.2 Band Structure

Ignoring the external trapping potential, the potential due to the lattice can be written

as

Vlatt(z) = sErec sin2(kz) =
sErec

2
(1 − cos(2kz)), (2.22)

where sErec gives the lattice depth in terms of the recoil energy. This potential

is invariant under translation, i.e Vlatt(z + π/k) = Vlatt(z). Therefore from Bloch’s

theorem (see for example [76]) the eigenstates of this potential are

ψnq(z) = eıqrunq(z) (2.23)
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Figure 2-3: Optical lattice potential. (a) Retroreflected one-dimensional lattice using
a focused gaussian laser beam. (b) The resulting 1D lattice potential. (c) Experi-
mental setup for retroreflected 2D lattice. (d) Resulting 2D potential, where the two
lattice beams have either perpendicular polarization or different frequencies.
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where u(z + π/k) = u(z). The eigenstates are plane waves whose amplitude are

modulated with the same periodicity as the lattice potential. The energy spectrum

has a band structure, where q is the quasimomenta, and n is the band index. The

band energy is found from the Schrödinger equation,

Ĥ|ψnq〉 = Enq|ψnq〉. (2.24)

Since both the lattice potential, and unq are periodic functions, we can write then

both as Fourier series

Ψnq(z) = eıqr
∑

j

cnj e
2ıjkr (2.25)

U(r) =
∑

m

Ume
1ıkr. (2.26)

Subbing these into the Schrödinger equation, and truncating the sum at |j| = jmax,

one finds 2(2jmax) + 1 linear equations. For our sinusoidal wavefunction this is sim-

plified as only the U±2k = Ulatt/4 and U0 = Ulatt/2 terms are non zero in Eq. (2.26).

For a given quasimomenta, this leads to 2jmax+1 different eigenenergies, which are

the band energies En, with n = 0, 1, ..., 2jmax. If only the first few energy bands are

of interest, these equations can be easily solved by truncating j.

Fig 2-4 shows the resulting band structure for a one-dimensional lattice for dif-

ferent lattice depths as a function of the quasimomenta q in the first Brillouin zone.

For 0Erec (i.e no lattice), the band structure is just the quadratic dispersion relation

for free particles. As the lattice depth is increased, a band gap appears between the

energy bands and the dispersion relation flattens out.

2.3.3 Wannier Functions

The Bloch functions given above are plane waves, they are completely delocalized over

the entire lattice sites. As we will see in chapter 5, it is sometimes more convenient

to instead use Wannier functions to describe the behavior of atoms in the lattice.

The Wannier functions are an orthogonal set of wavefunctions which in contrast to
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Figure 2-4: Band structure in the optical lattice. Energy of the Bloch state versus
the quasimomentum is shown in the first Brillouin zone is shown for the lowest bands.
Lattice depths of 0 Erec, 5 Erec, 10 Erec, and 15 Erec are shown. As the lattice depth
is increased the band structure flattens out, and the energy gap between the bands
increases.

the Bloch functions are localized wavefunctions at individual lattice sites [76]. The

Wannier function for an atom in the jth lattice site in the nth energy band can be

constructed from the Bloch functions as

wjn(z) =
1√
N

∑

q

e−ıqjψnq(z). (2.27)

Using the Wannier functions, one can calculate the probability for an atom to tunnel

from the jth to the kth site by calculating the overlap integral between the Wannier

functions in the two adjacent sites, the tunneling matrix element J is given by

J =

∫

wjn(z)

(

− ~
2

2m

∂2

∂z2
+ Vlatt

)

wkn(z)dx. (2.28)

2.3.4 Adiabaticity

If a condensate is loaded into the optical lattice adiabatically, it will also be loaded

into the ground state of the optical lattice. For low lattice depths, where the tunneling
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Figure 2-5: Separation between the first two energy bands for q = 0 (solid line),
q = 0.5k (dashed line), q = 0.9k (dotted line). The adiabatic condition is easily
fulfilled for q = 0, but becomes more difficult for higher quasimomenta.

rate is high, the condensate can still be described with a macroscopic wavefunction.

In a stationary state the chemical potential is constant throughout the lattice, and

the condensate has quasimomentum q = 0. The adiabaticity condition for loading a

condensate with quasimomentum q into the lowest Bloch band, |0, q〉 of the lattice is

given by [96]
∣

∣

∣

∣

〈1, q|∂H
∂t

|0, q〉
∣

∣

∣

∣

<< ∆E2(q, t)/~, (2.29)

where |1, q〉 is the 1st excited band, and ∆E is the energy gap between the two bands.

Fig 2-5 shows the energy separation for three different quasimomenta. For q = 0, the

adiabaticity condition can be met for dVlatt/dt << (4Erec)
2/~, since the separation

between the bands is a minimum at Vlatt = 0 where ∆E = 4Erec. This is the

separation from the free particle dispersion curve. However, as the quasimomentum

increases, the separation at Vlatt = 0 approaches zero, and the adiabaticity condition

becomes more difficult to fulfill.

In addition to being adiabatic with respect to the lattice frequency, as the lattice

depth is increased the external trap frequencies also increase due to the gaussian

beam profile. The lattice ramp must be adiabatic with respect to the external trap

frequencies, and the mean field energy of the condensate.
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2.3.5 Atomic Diffraction from Optical Gratings Revisited

In the beginning of this chapter, diffraction from optical gratings was discussed by

modeling it both as a classical grating, and also by modeling it as stimulated raman

process. After discussing the band structure for condensates loaded into optical lat-

tices it seems useful to revisit Bragg and Kapitza-Dirac scattering in the context of

nonadiabatic loading of the lattice. If the lattice potential is abruptly turned on,

instead of ramped on adiabatically, the resulting wavefunction is analogous to Bragg

and Kaptiza-Dirac scattering [25].

If a condensate, initially assumed to be a plane wave φq(t) with momentum q at

t = 0 is suddenly loaded into an optical lattice, the wavefunction can be written as a

superposition of Bloch states |n, q〉. Where

|ψ(t = 0)〉 =
∞
∑

n=0

|n, q〉〈n, q|φq〉, (2.30)

and 〈n, q|φq〉 = cn,q(0). While the lattice is turned on each Bloch function evolves at

its respective eigenenergy, and the condensate wavefunction evolves as

|ψ(t)〉 =
∞
∑

n=0

cn,q(0)e−ıEn(q)t/~|n, q〉. (2.31)

If the lattice is then suddenly turned off after time τ , the final wavefunction for the

condensate is given by mapping the lattice state back onto the plane wave basis. The

resulting wavefunction is given by

|ψ(τ)〉 =

∞
∑

j=0

dq(j)|φq+2j~k〉, (2.32)

where

dq(j) =

∞
∑

n=0

cn,q(0)cn,q(j)e
−ı

En(q)
~

τ . (2.33)

The exponential term produces oscillations in the population of the plane wave mo-

mentum states as a function of τ , the time the condensate is held in the optical
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lattice. If the condensate is initially created with q = 0, then the initial wavefunc-

tion is symmetric, and only even energy bands are populated. The population in the

|2j~k〉 states oscillates with time, and this describes Kapitza-Dirac scattering. The

observed oscillation period is given by the energy gap between the ground and excited

bands at q = 0, which for deep lattices (Ulatt > 5Erec) is given by the lattice trap

frequency ~ωlatt. If instead of being initially at rest, the condensate is created with

initial momentum, for example in the momentum state q = ~k, then the odd bands

are also populated, and for a shallow lattice this is equivalent to first order Bragg

Scattering.

2.3.6 Momentum vs. Quasimomentum

As a final note, a common confusion when loading condensates into optical lattices

is the difference between momentum and quasimomentum. Due to the translational

symmetry of the lattice, the only physically distinct quasimomenta are in the first

Brillouin zone between q = −k to q = k. But when the lattice is ramped on or off

how does momentum map to quasimomentum and vice-versa? To understand this

it is easiest to look at the “band structure” for the free particle shown in Fig 2-

4(a). If an atom initially has momentum q0 > k, then the energy for the particle

is given by E0 = ~
2q2

0/2m, and the atom will be in an excited band, as the lattice

is ramped on, the atom has quasimomentum q0Mod(2k), but will be in an excited

energy band. Similarly, if an atom is in the excited energy band n in the lattice,

with quasimomentum qL, if the lattice is adiabatically ramped down the atom will

be mapped onto the free particle momentum state |qF | = |qL + nk| with energy

EF = ~
2q2

F/2m.
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Chapter 3

Photon Recoil Momentum in

Dispersive Media

This chapter describes a measurement of the photon recoil momentum in dispersive

media, and supplements work previously reported in Ref [63], which is also included

in Appendix A

3.1 Momentum in Dielectric Media

The transmission of momenta in dielectric media has raised controversy for over 100

years, starting with the papers of Minkowski [79, 80], and Abraham [2, 3] in 1908

and 1909. The main question is as follows, is the momentum density carried by

an electromagnetic wave in dispersive medium given by ( ~D × ~B)/4πc as suggested

by Minkowski, or by ( ~E × ~H)/4πc as was argued the following year by Abraham.

Stated more simply, is the momentum in a dispersive medium given by pmin = nrh/λ,

or pab = h/nrλ, where nr is the index of refraction of the medium, and λ is the

wavelength of the electromagnetic wave in vacuum. If one does a literature search

over the last 100 years, numerous papers are found on the subject with each form of

the momentum receiving roughly equal support (for a review see [21, 91]) until the

1970’s when Peierls [90] building on the earlier work of Gordon[40], argued that both
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were incorrect, and the momentum was instead given by

p =
h

nrλ

[

1

2
(1 + n2

r) −
1

10
(n2

r − 1)2

]

. (3.1)

When an electromagnetic field enters a dispersive media, the frequency of the

light ν remains the same, but the wavelength of the light is modified by the index

of refraction. The wavelength in the media is given by λ′ = λ/nr, and the elec-

tromagnetic momentum carried by the photon is also modified. For momentum to

be conserved in the system, this means that the electromagnetic wave must carry

mechanical momentum with it as it travels through the medium. The medium is

accelerated as the pulse enters the medium, and decelerates as the pulse exits. The

total momentum for the system is given by p = pem + pmech, however confusion arises

when one tries to properly divide the total momentum into the electromagnetic mo-

mentum pem, and the mechanical momentum pmech, carried with the wave. As a

simple example of the confusion surrounding this question, if one assumes that the

electromagnetic momentum is given by the deBroglie wavelength p = h/λ, then in

the medium pem = nrh/λ = nr~k. However, if one assumes that the fundamental

relation is given by E = mc2, and p = E/c then one instead finds pem = h/nrλ.

3.1.1 Previous Experiments

Early experiments did little to solve the controversy, the first attempts to measure

the momentum in dispersive media were made by Jones and Richards [61], and later

updated by Jones and Leslie [60]. In their experiments, a beam of light was bounced

off of a mirror suspended in a dielectric. The results showed that the momentum

transferred to the mirror was given by 2nr~k. Although at first glance these results

seem to agree with the Minkowski momentum, it was later shown that these results

were consistent with both the Abraham and Minkowski pictures. These results can

be simply understood by considering the standing wave created by the incident and

reflected beam. The standing wave imparts momentum to the medium which remains

even after the pulse has left.
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Figure 3-1: Light grating interferometer. (a) The atoms are split into two momentum
components using a light pulse. A phase shift can be applied along one of the two
arms. (b) A second pulse is applied redirecting one of the momentum components,
while leaving the other unchanged. (c) A third light pulse is applied to recombine
the components, and the interference pattern is read out.

3.2 Precision Measurements and Atom Interfer-

ometry

Recently, there have been discussions about the momentum transferred to a single

atom when it absorbs a photon, when that atoms is part of a dilute atomic cloud

with index of refraction nr. Besides answering a fundamental question about the

transmission of momenta in dielectric media, this is also an important question for

atom interferometry. As was discussed in chapter 2, standing waves can be used

in atom interferometry to manipulate the state of atoms, and as shown in Fig.3-1,

a phase shift can be applied to one of the arms. As discussed in chapter 2, the

outcoupled atoms have momentum p = 2N~k, therefore a phase shift will occur just

due to the recoil momentum of the outcoupled atoms. In order to understand any

phase shift due to external sources, one must therefore first have a clear understanding

of the recoil momentum transferred to the atoms.

This is of particular importance for precision measurements of h/m with ultracold

atoms. Where precise measurements of the recoil frequency are used to determine a

value for h/m, which in turn can be used to derive a value of α, the fine structure con-

stant [112, 119, 120, 45, 6, 71]. This result combined with the value of alpha derived
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p=??

p=??

Figure 3-2: The index of refraction in dispersive media. (a) A laser beam is incident on
a dilute atomic cloud with index of refraction nr, initially at rest. (b) An atom within
the cloud absorbs a photon. When the atom absorbs the photon what momentum is
transferred to the atom, and what momentum (if any) is left in the cloud?

from the (g-2) measurements for the electron and positron [62, 66, 51] provide a test

of QED. Currently the largest uncertainty in measurements of the recoil momentum,

and the resulting value for α, was due to the uncertainty of dispersive effects on the

value for the recoil frequency [120].

What is the recoil frequency when an atom in an atomic cloud absorbs a photon?

In illustration of this question is shown in Fig. 3-2. If one assumes that no momentum

is left in the medium after the photon is absorbed, then the momentum transferred

to the atom should be p = ~k. One also reaches the same conclusion if one considers

a dilute gas, where the absorbing atom is isolated from the surrounding medium

by vacuum. However, if one calculates the momentum transferred to the atoms

classically using the Lorentz force applied to the atom during the absorption, you

find that momentum transferred to the atom is p = nr~k, which would also imply

that momentum must be left in the medium after the pulse has passed [49].
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3.3 Index of Refraction of a Dilute Atomic Cloud

When a dilute cloud of atoms is illuminated by a laser beam, the index of refraction

nr, can be found from the macroscopic polarization of the gas, P = ρ〈d〉 = χǫ0E,

where ρ is the density of the atomic cloud, 〈d〉 is the average dipole moment of the

atoms, χ is the atomic susceptibility and ǫo is the permittivity of free space. The

dipole moment for an atom within the cloud is given by 〈d〉 = ǫ0α(EL +Eint), where

α is the atomic polarizability, EL is the applied laser field, and Eint, the internal

electric effect due to the surrounding cloud is given by Eint = 1
3ǫ0
P . Combining these

equations we find1

χ =
ρα

1 − ρα/3
. (3.2)

For a two level atom, the atomic polarizability

α = − µ2

~ǫ0

1

Γ − i∆
=

3πλ3Γ

Γ − i∆
, (3.3)

where Γ is the natural line width, and ∆ is the detuning of the laser beam. For

a dilute cloud, in the limit of ρλ3 ≪ 1 the polarizability can be approximated as

χ = ρα. For 87Rb, the situation is complicated by the hyperfine structure. In Fig. 3-3

the D2 transition hyperfine structure is shown.

For a condensate initially in the |F = 1, mF = −1〉 state, there are a number of

possible excited states however, the situation can be simplified by using π-polarized

light. For π-polarized light there are only two allowed transitions, the 52S1/2, F =

1 → 52P3/2, F = 1 and the 52S1/2, F = 1 → 52P3/2, F = 2 transition. The index of

refraction for the condensate, nr =
√

1 + χ is then given by

nr =

√

√

√

√1 − 12πρ

(

λ

2π

)3
(

5

12

∆1

Γ

1

1 + (2∆1

Γ
)2

+
1

4

∆2

Γ

1

1 + (2∆2

Γ
)2

)

, (3.4)

where ∆1 and ∆2 are the detunings relative to the F=1 → F′=1 and F′=2 transitions,

respectively.

1For dense clouds there is also a correction due to resonant Dipole-Dipole interactions [82].
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Figure 3-3: Hyperfine structure for the 87Rb D2 transition. The frequency splitting
between the hyperfine energy levels is given. Starting with a condensate in the |F =
1, mF = −1〉 state, and using π-polarized light there are only two allowed transitions.
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Figure 3-4: The index of refraction for a |1,−1〉 87Rb condensate illuminated with
π-polarized light, as a function of the laser detuning ∆. The detuning is given relative
to the 52S1/2, F = 1 → 52P3/2, F = 1 transition.
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Figure 3-5: . Experimental setup of the two pulse light grating interferometer. The
effect of the first pulse was to outcouple a small fraction of atoms into the | ± 2~krec〉
momentum state, where krec = nrk is the single photon momentum in the medium.
During the delay between pulses the phase of atoms in the| ± 2~krec〉 momentum
states evolve at a faster rate than those still at rest due to the recoil energy. After a
variable delay time τ , a second pulse was applied recombining a portion of atoms in
the | ± 2~krec〉 state with those at rest in the initial condensate. The condensate was
then released from the trap and imaged in time of flight. A typical absorption image
taken after 43ms time of flight is shown.

3.4 Experimental Setup

To measure the index of refraction of the condensate, a two pulse light grating interfer-

ometer was used, as shown in Fig. 3-5. The grating was creating using retroreflected,

near-resonant light detuned from the 52S1/2, F = 1 → 52P3/2, F = 1 transition at

780nm. The light was π-polarized both to minimize the number of allowed transitions,

and also to minimize superradiant scattering [53, 100]. The laser had a linewidth γ

much smaller than Γ, the natural linewidth for the transition. The laser was aligned

perpendicular to the long axis of the condensate.

The two applied pulses were 5 µs in length, this is sufficiently short that we can

assume the atoms do not move during the pulse, and therefore describe them using

Kapitza-Dirac scattering (as described in Chap.2.2.4).The first pulse outcouples a

fraction of atoms into the momentum states | ± 2ℓ~krec〉, where the population in
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the ℓth momentum state is given by Pℓ = J2
ℓ (θ), θ =

ω2
Rtp
2∆

, krec = nrk is the single

photon momentum in the medium, and tp is the length of the pulse. For
ω2

R
tp

2∆
< 1 a

negligible fraction of atoms is diffracted into states with ℓ > 1, and we can restrict

our discussion to the | ± 2~krec〉 momentum states. Given that the initial condensate

is at rest, |ψo〉 = |0~krec〉. Immediately after the pulse, the wavefunction is given by

|ψ(tp)〉 = J1(θ)| ± 2~krec〉 + J0(θ)|0~krec〉. (3.5)

During the delay time τ , the phase of the | ± 2~krec〉 states evolves at a faster rate

than the |0~krec〉 state due to the recoil energy, Erec = 4~ωrec. After the delay τ , the

wavefunction will have evolved as

|ψ(τ)〉 = |ψo〉
(

J1(θ)| ± 2~krec〉e∓i4ωrecτ + J0(θ)|0~krec〉
)

. (3.6)

At t = τ we apply a second pulse that partially recombines the momentum states.

Immediately after this second pulse the wavefunction is given by

|ψ(τ + tp)〉 = J1(θ)J0(θ)
(

e∓i4ωrecτ + 1
)

| ± 2~krec〉

+
(

J2
1 (θ)

(

e−i4ωrecτ + ei4ωrecτ
)

+ J2
0 (θ)

)

|0~krec〉. (3.7)

After applying the two pulses, the probability of finding the atoms in the |0~krec〉
momentum state, ρ0 = 〈ψ(τ + tp)|0~krec〉|2 is given by

ρ0 = J4
0 (θ) + 4

(

J2
0 (θ)J2

1 (θ) + J4
1 (θ)

)

cos(4ωrecτ). (3.8)

As a function of the delay time τ , the density of the recombined components will

oscillate at 4 ωrec.

In addition to the index of refraction shift, the observed recoil frequency will also

have a mean field shift [106]; the atoms in the | ± 2~krec〉 state have twice the mean

field energy as those at rest due to the exchange term in the interatomic potential.

Including both the mean field shift and the index of refraction, the frequency of the
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Figure 3-6: S-wave collision halos in time of flight. If the density of the condensate
was two high atoms in the | ± 2~krec〉 momentum peaks collided with atoms at rest
in the condensate during time of flight.

observed interference fringes should be:

ω = 4n2
rωrec +

ρU0

~
, (3.9)

where ρU0 = 4π~
2aρ/m, and as is the s-wave scattering length. The average density

ρ = 4/7ρo, where ρo is the peak condensate density.

As given in Eq. (3.4), the index of refraction nr is proportional to the density of

the condensate ρ. To maximize the index of refraction effects, it would seem that

using condensates with high initial density would be beneficial. However, although

increasing the density does increase the index of refraction, using high density con-

densates also introduces a number of problems. Eq. (3.4) is only valid for ρλ3 ≪ 1,

if this condition is not met than additional corrections need to be made to the index

of refraction, increasing the uncertainty in the result. In addition, if the condensate

density is too high, the condensate becomes collisionally dense. As shown in Fig. 3-6,

if the density is too high, in time of flight the outcoupled atoms collide with atoms

initially at rest in the condensate creating a “halo” of scattered atoms which have

undergone s-wave collisions. The condensate density was chosen to be as high as

possible without creating appreciable s-wave collision halos in time of flight. The

optimal density was found to be ρo ≈ 2 × 1014cm−3, which corresponded to a total

condensate number of No = 1.5 × 106 for our trap parameters. For this condensate

density ρλ3 ≈ 0.2.
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The intensity of the pulse was set such that ≈ 5% of the atoms were outcoupled

into the |±2~krec〉 momentum states, this not only made the analysis of the resulting

interference pattern easier by limiting the number of states, but also ensured that the

condensate density remained approximately constant throughout the measurement.

For a density of ρo ≈ 2× 1014cm−3, the mean field shift to the resonance was almost

1 kHz, on the same order as the index of refraction effects. Any change in the density

of the condensate during the measurement would have potentially masked the index

of refraction effects. Due to both the density dependence of the index of refraction,

and the mean field shift, it was essential to have consistent atom number from shot

to shot, for all of the data the variation in the condensate number was <10% for the

duration of the experiment.

3.5 The Recoil Frequency

The recoil frequency was measured by counting the number of atoms in either the

|0~krec〉 or the | ± 2~krec〉 momentum state and by then normalizing the signal to the

total atom number, as a function of the delay time τ between pulses. Interference

fringes for a detuning of ∆ = 520Hz are shown in Fig. 3-7. In the previous section the

motion of the atoms during the delay time τ was ignored, however the amplitudes of

the recombined components will only interfere if they spatially overlap. After the first

pulse, the atoms in the |±2~krec〉 momentum states move within the initial condensate

with the recoil velocity (∼ 12 µm/ms). As the overlap between the recoiling atoms

and those at rest decreases, the interference fringes decay. The overlap integral for

this decay can be approximated as a Gaussian with time constant, τc ≈ 0.75 RTF/vrec,

where RTF is the Thomas-Fermi radius of the condensate, and vrec is the recoil velocity

[116]. For our experimental parameters, RTF = 8µm in the radial direction giving a

coherence time of 500µs. The experiments were performed perpendicular to the long

axis of the condensate. The coherence time for the process could have been increased

by instead performing the experiments along the long axis of the condensate, however,

if the pulse was applied along the long axis the probability for collisions in time of
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Figure 3-7: Interference fringes for ∆ = 520Hz. (b) The atom number in the |0~krec〉
momentum state as a function of the hold time τ , showing interference fringes which
oscillate at the recoil frequency. The fitted frequency was ω = 2π×156268(39) Hz and
the decay constant τc = 461(25) µs. The signal was normalized using the total atom
number in all momentum states. (a) Absorptions images for τ = 10-50µs showing the
first period of the oscillation.The field of view is 0.5 mm × 1.5 mm

flight increased. To compensate for the increased collisions a lower density must be

used negating any advantage to this geometry. The recoil frequency was found by

fitting the resulting fringes to a cosine function with a gaussian envelope:

A exp

(

−τ
2

τ 2
c

)

cos(4ωτ + φ) + C. (3.10)

The expected values for A and C can be found from Eq. 3.8. The observation of

up to ten oscillations provided a precise value of the recoil frequency. The fitted

recoil frequency was found as a function of the laser detuning ∆, and the results are

shown in Fig. 3-8. As the detuning was varied a shift of over 2kHz was seen across

the resonance, whereas the statistical uncertainty in the points was < 100Hz clearly

showing that the recoil momentum is given by |nr~k〉.
When the pulse was applied the condensate density was lowered slightly due to

spontaneous scattering from the laser beam. In order to accurately calibrate the

density of the condensate a single 5 µs pulse was first applied to the atoms. The

condensate number was then found by fitting a Thomas-Fermi profile to the integrated

optical density of the absorption image in time of flight. Although the polarization of
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Figure 3-8: Recoil frequency as a function of detuning ∆/2π showing the dispersive
effect of the index of refraction. The average density of the condensate for the solid
points was 1.14(4)× 1014 cm−3, giving a mean-field shift of 880 Hz to the resonance.
The shaded area gives the expected recoil frequency including the uncertainty in the
density. The dashed line is at ω = 4n2ωrec +ρU0/~, the expected value without index
of refraction effects. The data shown as open diamonds had increased spontaneous
light scattering due to σ± light contamination in the laser beam. The increased light
scattering led to a lower initial density in the condensate, thus leading to a smaller
mean-field shift and index of refraction. The open points have been scaled upward to
correct for this lower density.
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Figure 3-9: Separation between the | ± 2~krec〉 momentum peaks as a function of the
laser detuning ∆/2π. The separation between the peaks also shows the dispersive
effect of the index of refraction.

the beam was set to be π-polarized (and this was optimized by minimizing Rayleigh

superradiance), there was still a small amount of σ± contamination in the pulse.

The σ± contamination allowed ∆mF = ±1 transitions, thus for small detunings the

proximity to the |1,−1〉 → |0′, 0〉 transition located at ∆/2π = −72 MHz resulted

in higher spontaneous scattering rates, and a lower initial condensate density. Data

points taken at these small detunings were shifted upward in Fig. 3-8 to compensate

for this.

In addition to measuring the recoil frequency, one can also measure the separation

between the |±2~krec〉 momentum peaks in time of flight. Once the atoms have been

outcoupled they move with vrec = nr~k/m, therefore the separation should also vary

with the index of refraction. The separation as a function of the detuning ∆, is shown

in Fig. 3-9. The separation between the peaks also clearly showed a dispersive shape,

showing the dependence of the recoil velocity on the index of refraction.
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3.5.1 Grating Picture

To understand the quadratic dependence of the recoil frequency on nr, we can return

to the grating picture discussed in section 2.2.1. When the light grating is incident

on a dispersive media, the grating spacing goes from λ to λ/nr. After diffracting

off of the grating the velocity imparted to the atoms is also modified by nr, with

v = nr~k/m. When the second pulse is applied, the atoms have both moved farther

by a factor of nr and the grating is smaller by a factor of nr leading to a change of

the beat frequency on the order of n2
r .

3.5.2 The Lorentz Force

The increase in the momentum transferred to the atoms can also be explained by

considering the momentum transferred to atoms by a classical field [49]. Classically,

the force applied to an atom with dipole moment ~d during the absorption of the

photon can be found using the Lorentz force,

~F (t) = (~d · ▽) ~E(x, t) +
∂~d

∂t
× ~B(x, t). (3.11)

For a plane wave with π-polarization we have:

~F (t) =
∂~d

∂t
× ~B(x, t) (3.12)

A two-level atom initially in its ground state will undergo Rabi oscillations with

ωR = µEL/~, where µ is the dipole matrix element connecting the ground |g〉 and

excited |e〉 states of the atom, and EL is the Electric field of the applied laser pulse.

At t = π/ωR the atom will have absorbed a photon, and will be in the excited

state. The instantaneous dipole moment during this interaction is given by d ∝
µ sin(ωRt) exp(iωt). The change in momentum during the interaction with the field

then is given by,

∆p =

∫ π/ωR

0

µω sin(ωRt)Bdt. (3.13)
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Evaluating this we find ∆p = ~ω(BL/EL). The ratio of BL/EL = n/c, giving ∆p =

nr~k. More qualitatively one can understand this by considering the integration time

for Eq. (3.13). If the index of refraction nr > 1, the Rabi frequency ωR is smaller

and the integration time will be longer, thus the change in momentum due to the

absorption of a photon in the medium will be larger than the vacuum momentum,

the converse holds for nr < 1.

However, the above derivation actually has two errors which luckily cancel each

other. In calculating the force applied to the atoms the macroscopic electric field

was used, but this is not correct. To calculate the force applied to the atom the

microscopic force at the dipole must instead be used. As discussed in the derivation

of the index of refraction, in Sec. 3.3, the microscopic electric field at a dipole within

the cloud is given by Eeff = EL +Eint = EL + 1
3ǫ0
P . If the field is modified, then how

is the result the same? In the initial derivation of the Lorentz force another error was

made, the Lorentz force is given by

F = (d · ▽)Eeff + ḋ× Beff (3.14)

for a nonmagnetic medium, Beff can be replaced by BL. However, the use Eeff in

the first term results in a non-vanishing contribution. After much algebra2, one can

show that fortuitously the term due to the gradient of Eeff in the first term cancels

out the change in the second term due to Eeff (which enters Eq. 3.13 through ωR),

and the result is still given by nr~k.

3.6 The Recoil Momentum in Bragg Processes

If the recoil momentum is in fact nr~k, as both the recoil frequency measurement

and the separation between the peaks show, then this means that for momentum to

be conserved, momentum must be left in the medium. Atoms which do not scatter

photons are left with momentum even after the pulse has passed, and that momentum

2Which can be found in [90].
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can be either parallel (nr <1) or anti-parallel(nr >1) to the direction of the light

depending on the value of the index of refraction. In the experiments described above

the atoms were outcoupled symmetrically using Kapitza-Dirac diffraction, therefore

momentum was clearly conserved and this effect was not observable. However, if

instead the length of the pulse was increased, and the lattice beams detuned to

instead use Bragg scattering, it is possible that this effect could be resolved. In Bragg

scattering atoms are only outcoupled in one direction with momentum p = |2j~krec〉
for a jth order Bragg process. If a large fraction of atoms are outcoupled, for example

using a π/2 pulse, and for large values of j this effect could potentially be resolved

in time of flight. Using a π/2 pulse, the momentum left in the |0~krec〉 state would

be p = 2j(nr − 1)~k〉. Measuring this with a condensate is complicated by two

considerations; for Bragg scattering the length of the pulse is a factor of 100 times

longer. Using near resonant light (to maximize the change in the index of refraction),

the spontaneous scattering rate can be quite high, to compensate for the longer pulse

length the detuning of the beam must be increased. This in turn decreases the index

of refraction effect. However, as an example, using a detuning of ∆ = 1 GHz, with

a jth order Bragg pulse, vrec=0.05j µm/ms for the |0~krec〉 momentum state in time

of flight. For a 100ms time of flight this is over 5µm! But resolving this change is

complicated by mean-field effects. For large outcoupling the position of the |0~krec〉
state can also change position due to mean-field repulsion between the outcoupled

atoms and those at rest making the index of refraction effects difficult to distinguish.
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Chapter 4

Parametric Generation and

Amplification of Scattered Atom

Pairs

This chapter describes parametric generation and amplification of scattered atom

pairs, and supplements work previously reported in Ref [13], which is also included in

Appendix B

4.1 Nonlinear Atom Optics

In Chapter 3, a measurement of the photon recoil momentum in dispersive media,

an important consideration for atom optics, was discussed. Another rapidly growing

field is nonlinear atom optics [73]. In nonlinear optics, since photons are noninter-

acting a nonlinear medium must be used to provide effective interactions. However,

in nonlinear atom optics using Bose-Einstein condensates, the nonlinearity is pro-

vided by s-wave collisions within the condensate. Using condensates a number of

nonlinear processes first demonstrated with photons have been demonstrated with

matter-waves, including four-wave mixing [23, 118], solitons [24, 10, 4, 109], second-

harmonic generation [122, 1, 74, 78], and sum-frequency generation [1]. One of the

driving forces behind nonlinear atom optics is to find an efficient way to create en-
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Figure 4-1: Optical parametric generation of photons. A pump beam is incident on
a nonlinear medium, creating a signal and idler beams.

tangled pairs of atoms for quantum information processing. In particular four-wave

mixing has previously been suggested as a promising way to create pairs of momentum

entangled atoms [27, 93, 118].

4.2 Can a Condensate Collide with Itself?

Another possible way to create pairs of momentum entangled beams is the matter-

wave analogue of Optical Parametric Generation (OPG)[94]. In optical parametric

generation of photons, as shown in Fig. 4-1, a probe laser is sent into a nonlinear

medium to create a signal and idler, where 2~ωp = ~ωS + ~ωI . Given the nonlinear

interaction in condensates, is the matter-wave equivalent to an OPG possible? In the

matter-wave analogue, as shown in Fig. 4-2, two atoms in the condensate with velocity

v0, collide to create one “red” atom with lower velocity v1, and one “blue” atom with

higher velocity v2. Clearly momentum can be conserved in this collision, but as

was discussed in Section 1.5, the excitation spectrum for the condensate is quadratic

for particle-like excitations. As shown in Fig. 4-2(b), for final states equally spaced

in momentum space, energy is not conserved. It would appear that the matter-wave

analogue of OPG is not possible. Four-wave mixing has been previously demonstrated

with condensates, where two atoms with initial velocity v1 and v2 scatter into final

states v3 and v4. However, in these experiments [23, 118] using condensates in free

space, the quadratic dispersion relation for free particles only allowed for the phase-

matching condition to be fulfilled when the magnitudes of all four momenta were
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Figure 4-2: Can a condensate collide with itself? (a) In the matter-wave analogue
to OPG, two atoms in the condensate with initial velocity v0 collide and scatter into
final states v1 and v2. (b) Due to the quadratic dispersion relation, it is not possible to
conserve both energy and momentum in this collision. Given final momentum states
k0, k1, and k2 equally spaced in momentum space, the average of the final energies
clearly exceeds the initial value.

equal (in the center-of-mass frame), and the final momentum states could only be

distinguished if the experiments were performed in two dimensions.

4.2.1 Collisions in a 1D Optical Lattice

But what happens if instead a 1D optical lattice is added to the system? As discussed

in Chap.2, in a lattice the motion of the atoms is described by a band structure,

where for even shallow lattices the dispersion relation is no longer quadratic near the

boundary of the first Brillouin zone. As shown in Fig. 4-3 it now becomes possible to

find pairs of quasimomentum states k0, k1, and k2 where both momentum and energy

can be conserved [50].

The phase matching condition for the scattering process is given by

2k0 = k1 + k2 (4.1)

2ǫ(k0) = ǫ(k1) + ǫ(k2) (4.2)

where ǫ(ki) is the energy of atoms in the quasimomentum state ki, determined from

a band structure calculation. In the optical lattice the conserved quantity is qua-
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Figure 4-3: Collisions in a 1D optical lattices. If a 1D lattice is added, the dispersion
curve is no loner quadratic near the boundary of the first Brillouin zone. It now
becomes possible to find phase matched quasimomentum states k0, k1 and k2 where
both energy and momentum can be conserved. (a) Phase matched momentum states
are shown for a lattice depth of Vlatt = 0.5Erec. The dispersion curve is shown for
the ground and first excited band. The boundary of the first Brillouin zone is at
±kL, where kL is the wavevector of the optical lattice. (b) Since the phase matched
momentum state k2 is beyond the boundary of the first Brillouin zone, the final
momentum state is mapped back into the first Brillouin zone at k2 − 2kL.

58



simomentum, and the quasimomentum is restricted to be between values of ±kL,

therefore

k2 = (2k0 − k1)Mod(2kL). (4.3)

If a one-dimensional optical lattice is added, it becomes possible to realize the matter-

wave analogue to OPG, and a condensate can in fact collide with itself!

4.3 Parametric Generation

To demonstrate parametric generation with atoms, the condensate must first be pre-

pared at an initial quasimomentum k0. To do this one has two options, one can either

create a condensate with an initial velocity v0, or one can instead use a moving lattice.

Technically, it is much easier to create a moving lattice, so for our experiments the sec-

ond option was chosen.1 As shown in Fig. 4-4, two counter-propagating laser beams

with frequency difference δν = ν2 − ν1 were used to create a moving one-dimensional

lattice with velocity v = λ
2
δν. The lattice was ramped onto a magnetically trapped

condensate initially at rest. In the rest frame of the lattice the condensate had qua-

simomentum k0 = mλ
2~
δν. For a given value of k0, there is only one set of states k1

and k2 where the phase matching condition is met, and as the value of k0 is varied

the phase matched momentum states also vary. In Fig. 4-4(b), the phase matched

momentum states are shown for two values of k0.

When a moving lattice was applied to the condensate, as shown in Fig. 4-4(c), as

the value of k0 was varied elastic scattering of atom pairs into final momentum states

k1 and k2 was observed. As the value of k0 was increased the final momentum states

moved closer towards the edge of the Brillouin zone, as was expected. This process is

analogous to Optical Parametric Generation, where instead of scattering two pump

photons into one red photon and one blue photon, we have instead scattered two

atoms into a higher and lower momentum state. For values of k0 below ≈ 0.55kL,

the dispersion relation imposed by the lattice did not allow for phase-matched final

1Although as will be discussed in Chapter 6, technical issues due to vibrations can be difficult to
overcome in moving lattices.
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Figure 4-4: Parametric generation of scattered atom pairs. (a) A moving lattice
was created using two counter propagating laser beams with frequency difference
δν = ν2 − ν1 between the beams. In the rest from of the lattice the condensate has
quasimomentum k0 = mλ

2~
δν. (b) For a given value of k0, there is only one pair of

states k1 and k2 where the phase matching condition is fulfilled. If k0 is varied, the
allowed values for k1 and k2 change. The circles (squares) show allowed states k0,
k1, k2 for k0 =0.66kL (0.70kL). As k0 is increased, the final momentum states move
closer together. The lattice depth was Vlatt=0.5Erec. (c)Absorption images showing
parametric generation. As k0 was varied, elastic scattering into final momentum
states k1 and k2 was observed. After ramping up the lattice, the atoms were held for
10 ms at a constant lattice depth. The atoms were then released from the trap and
imaged after 43 ms time of flight. The field of view is 0.5 mm×0.3 mm.
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Figure 4-5: Parametric amplification of scattered atom pairs. (a) First, a 2 ms Bragg
pulse was applied to the condensate. The Bragg pulse outcoupled a small fraction
of atoms along the long axis of the condensate with momentum kB = (ka − kb) in
the lab frame. The optical lattice was then adiabatically ramped on and applied for
10 ms. When the phase matching condition was fulfilled, parametric amplification
of atoms was observed in the seeded state k1 and its conjugate momentum state
k2. (b,c) Absorption images taken for two different Bragg angles. In (b) the Bragg
wavevector was kB=0.43kL, and in (c) the Bragg wavevector was kB=0.34kL. In the
top two images, the phase matching condition was not met, and only the initial seed
and a small amount of spontaneously scattered atom pairs are visible. In the bottom
pictures k0 and k1 have been tuned to fulfill the phase matching condition by varying
the detuning δν. When the phase matching condition was fulfilled amplification of
the initial seed and its conjugate momentum state was observed.

momentum states and no scattering was observed. For values of k0 above ≈ 0.75kL,

the final momentum states were no longer distinguishable, and the condensate became

unstable.

4.4 Parametric Amplification

If the matter-wave analogue to OPG is possible, then if the process is first seeded

the matter-wave analogue of Optical Parametric Amplification (OPA) should also be

possible. To demonstrate the matter-wave analogue of an OPA, as shown in Fig. 4-5,

a small seed of atoms was first created by applying a Bragg pulse to the atoms. The

effect of the Bragg pulse was to outcouple a small fraction of atoms into the state kB.

Immediately after applying the pulse the lattice was ramped on. In the rest frame of

the lattice, the seed has quasimomentum k1 = k0 + kB. As with OPG, for a given
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Figure 4-6: Scattering resonance for parametric amplification of atoms. (a) Resonance
curve showing amplification of k2, when k1 was seeded. Amplification occurred only
when the phase-matching condition was met. For a fixed kB, the resonance condition
was found by varying the detuning δν of the lattice. The data was taken for kB

= 0.43kL. The fraction of amplified atoms was obtained by subtracting images with
and without the seed pulse. (e) Absorption images showing amplification of k1 and k2

when the phase matching condition is met. The center of the resonance was at δν ≈
5450Hz, close to the calculated value of δν ≈ 5350Hz. The width of the resonance is
determined by the Fourier width of the Bragg pulse. Most of the scattered atoms in
the third image were independent of the pulse.

value of k0, the phase matching condition is only met for one set of states k1, and

k2. However, to find the phase matching condition k0 and k1 could not be varied

independently; the difference k1 - k0 is set by the initial Bragg pulse. The phase

matching condition was found by changing both k0 and k1 by varying the detuning

δν. As shown in Fig. 4-6, when the phase matching condition was met amplification

of the seed k1 as well as its conjugate momentum k2 was observed. The growth of k1

and k2 as a function of time is shown in Fig. 4-7.

In Fig. 4-7, less than 5% of the initial condensate was outcoupled by the initial

Bragg pulse with kB = 0.43kL. The gain for the process is determined by the strength

of the nonlinear interaction, U0 between atoms in the condensate. For a shallow lattice

U0 = 4π~
2as

m
, where as is the s-wave scattering length. From this we can estimate the
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Figure 4-7: (a) Amplification of atoms with quasimomentum k1 (solid points), and
with conjugate momentum k2 (open points), when state k1 was seeded. (b) Am-
plification of atoms with quasimomentum k1 (solid points), and with the conjugate
momentum k2 (open points), when state k2 was seeded. The values for k0,k1,k2 were
0.66kL,0.23kL,and -0.92kL respectively. The solid lines shows the expected gain using
Eq. (4.4) with variable scale factors for each curve as the only free parameters.

maximum amplification rate to be η = 2ρ0U0/~ [118], with Ṅ1(2) = ηN1, where N1(2)

is the number of atoms in the momentum state k1(2). For the data shown in Fig. 4-7,

the condensate number was N0 = 1.3(3)×105. For this atom number, the maximum

growth rate should be η = 540 Hz. The amplification rate will decrease as the

number of atoms in the initial condensate, in quasimomentum state k0, is depleted.

However, for our small seeds, the amplification was not limited by this depletion of

the source but instead, was limited by the loss of overlap between the condensate and

the amplified pulses. The Thomas-Fermi radius (RTF ) of the condensate in the axial

direction was 33 µm, and the recoil velocity (vrec) for the final states k1 and k2 with

respect to the initial condensate was vrec=1.8 µm/ms and 6.8µm/ms respectively.

The overlap integral between the amplified atoms and the initial condensate can

be approximated as a Gaussian with time constant τc ≈ 0.75RTF/vrec, which for our

parameters is 3.75 ms. Including this loss of overlap gives us a modified rate equation,

Ṅ1,2 = ηN1e
−t2

τ2
c (4.4)
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Since atoms are scattered into states k1 and k2 in pairs, the final atom number in

those two states (minus the initial seed) should be equal. Instead, the final atom

number in k2 was approximately a factor of 2 smaller than that in k1. This is due the

proximity of k2 to the boundary of the Brioullin zone. This leads to instabilities where

atoms are scattered into other momentum states or into higher bands. Allowing a

variable scale factor to correct for this in our model, the experimental data followed

Eq. ??eq:rate).

4.5 Experimental Setup

The experiments were performed using condensates initially prepared in a magnetic

trap. The magnetic trap was cigar shaped with a radial trap frequency of 35 Hz, and

an 8 Hz axial trap frequency. The condensate, containing between 0.5 − 3.0 × 105

atoms was produced in the |52S1/2, F = 1, mF = −1〉 state. The optical lattice

was created using two counter-propagating beams derived from the same laser with

λ = 1064nm, and the frequency of the two beams was controlled by two separate

acousto-optic Modulators (AOMs) driven with a frequency difference δν. The lattice

was also aligned along the long axis of the condensate, and was ramped on in 1 ms

using an exponential ramp. The Bragg pulse was created with two laser beams derived

from the same laser, which was red-detuned from the 52S1/2, F = 1 → 52P3/2, F = 1

transition at λ = 780nm by 400MHz, and was π-polarized to minimize Rayleigh

superradiance. As shown in Fig 4-5, the Bragg beams were aligned such that atoms

were outcoupled along the long axis of the condensate. The intensity of the Bragg

pulse was chosen such that less than 5% of the initial condensate was outcoupled into

the state kB, and the length of the pulse was 2ms. The angle between the Bragg

beams could be varied to change the momentum of the outcoupled atoms. After the

condensate was held in the lattice for a variable time τ it was then released from the

trap and imaged after 43 ms of ballistic expansion.

The time scales for the lattice ramp up and the Bragg pulse were both very

important. Due to the coherence length of the condensate, the time scale for the
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experiment was limited to < 10ms (as can be seen from Fig. 4-7) therefore, in order to

measure the gain it was important to ramp up the lattice as quickly as possible, while

still maintaining adiabaticity. As shown in Fig. 2-5, as the initial quasimomentum k0

is increased this becomes more difficult. For our lattice wavelength of λ = 1064 nm,

Erec = 2 kHz setting the lower bound on the ramp time. Our 1 ms ramp time was

chosen to be the fastest ramp possible while still being adiabatic with respect to k0.

Due to the limited optical access of our machine, atoms could not be seeded

directly into k2 = -0.92kL for the growth curve shown in Fig. 4-7(b). However, due

to the proximity of k2 to the boundary of the Brillouin zone, the 1 ms ramp up was

no longer adiabatic. Because of this, if atoms were instead seeded into the state k =

1.08kL, atoms from the seed were loaded into both the second Bloch band (with k =

1.08kL) and the ground state (with k = -0.92kL = k2). As shown in Fig. 4-7(b), the

gain in this case was almost identical to when the atoms were seeded in state k1.

The 2ms length of the Bragg pulse was also limited by the coherence length of the

condensate. The width of the scattering resonance shown in Fig. 4-6 was limited by

the Fourier width of the Bragg pulse, therefore it is beneficial to make the Bragg pulse

as long as possible. However, once the Bragg pulse has been applied the outcoupled

atoms recoil within the initial condensate. Since the length of the Bragg pulse was

on the same order as the time scale for the amplification the pulse was applied before

the lattice was ramped on.

4.6 Dynamic Instabilities in Optical Lattices

With longer coherence times parametric amplification could be used to produce pairs

of momentum entangled atoms, however first the problem of secondary collisions out

of the final state k2 must be solved. Since secondary collisions were primarily caused

by the proximity of k2 to the boundary of the Brillouin zone, one way of addressing

this issue is to find phase matched momentum states with k2 farther from the edge.

As shown in Fig. 4-8, this could be accomplished by increasing the lattice depth.

However, as the lattice depth is increased the phase matched momentum states also
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Figure 4-8: Phase matching condition for different lattice depths. The phase matched
momentum states are shown for k0 = 0.7kL (solid points) and k0 = 0.8kL. For lattice
depths of Vlatt = 0.25Erec(solid line), 0.5Erec (dashed line), and 1 Erec (dotted line).
As the lattice depth is increased the phase-matched momentum states move closer
together.

move closer together, and this leads to dynamic instabilities.

Longer coherence times and larger gain could be created by using condensates with

higher atom number.2 However, when the experiments were performed with either

higher atom numbers, or with large values of k0, the condensate became unstable,

and scattered into a broad band of final momentum states. For kB = 0.43kL, the

energy of atoms outcoupled by the Bragg beams was ≈ 370 Hz, whereas the chemical

potential of the condensate was ≈ 300 Hz. Because of this, if the atom number was

increased significantly the momentum peaks were no longer distinguishable. When

the chemical potential of the condensate was larger than the separation between

the phase matched momentum states the process was self-seeded, i.e the momentum

spread of the initial condensate contained atoms with momentum k0, k1,and k2, and

considerable scattering occurred. This can be seen in Fig. 4-9, where the growth is

compared for two different condensate numbers.

Similarly, if the atom number was kept constant, and the value of k0 was increased,

the phase-matched momentum states moved closer together until they too were no

2The gain is increased due to the higher density, and the coherence time is increased due to the
larger radius.
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Figure 4-9: Effect of atom number on instabilities. Optical Parametric Amplification
is shown for two different atom numbers. (a) For small atom numbers the chemical
potential of the condensate was smaller than the energy of atoms outcoupled by
the Bragg pulse. The phase matched momentums states were distinguishable and
atoms were only scattered into k0, k1 and k2. (b) For larger atom number, the
chemical potential become comparable to, or larger than the separation between the
phase matched momentum states. The final states were no longer distinguishable,
the process became self-seeded and atoms were scattered into a range of final states.
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longer distinguishable. For our density, this occurred at values of k0 above ≈ 0.75kL,

and we observed a dynamic instability. If the lattice depth is increased the phase

matched momentum states also move closer together. For both larger atom number,

and higher lattice depth, the critical value of k0 leading to instabilities decreases. For

values of k0 less than 0.55k0 elastic scattering cannot occur, and the system should

be stable for all atom numbers. Instabilities of condensates in optical lattices has

attracted much attention recently, both theoretically [121, 103, 75, 69, 102, 125, 81,

115] and experimentally [11, 14, 19, 30, 97]. Dynamic instabilities of condensates in

moving lattices were observed in Ref. [30, 97], in Ref. [97], the chemical potential was

a factor of 3 higher than in our experiment, leading to a dynamic instability for all

values of k0 above 0.55kL. Although discrete momentum states could not be observed

in those experiments, it is possible that the mechanism for the dynamic instability

is self-seeded parametric amplification. Indeed, the phase-matching condition for

parametric amplification is identical to the resonance condition for dynamic instability

in the noninteracting limit [121].
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Chapter 5

The Superfluid to Mott Insulator

Transition in Ultracold Atoms

In the previous chapter, a one-dimensional optical lattice was used for nonlinear

atom optics, where the lattice was used to modify the dispersion relation. Even

though the dispersion curve was modified, the condensate was still delocalized over

the entire lattice. The condensate was still a superfluid, and could be described

with a macroscopic wavefunction. This is only true for shallow optical lattices where

the tunneling energy is large. In this chapter, the behavior of condensates loaded

into deep optical lattices is discussed. As the lattice depth is increased, atom-atom

interactions start to dominate as the tunneling rate decreases. The system undergoes

a phase transition from a delocalized condensate, to a localized insulating state, from

a superfluid to a Mott Insulator (MI).

This chapter starts with a simple double well model which qualitatively describes

the physics of the superfluid-to-MI transition. The double well model is then general-

ized to a full lattice, and the Bose-Hubbard model is derived. The phase transition for

the superfluid-Mott Insulator (MI) transition with ultracold atoms is also calculated.

Finally the effects of the external confinement on the phase transition are discussed.
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5.1 The Double Well Model

The behavior of atoms loaded into a deep optical lattice can qualitatively be under-

stood by first examining a double well potential. If the atoms are held in two wells

with a potential barrier between the wells, where the height of the barrier can be

varied independently, the hamiltonian for the system is given by [85]

H = γ
(

a†LaR + a†RaL

)

+ gβ/2
(

(a†LaL)2 + (a†RaR)2
)

, (5.1)

where γ is the tunneling or hopping term between the wells, and gβ is the mean field

energy per atom due to the atom-atom interactions in a single well. The behavior

of this system is determined by the ratio of Ngβ/γ. When Ngβ/α << 1, the atom-

atom interactions are negligible. In the ground state of the system the atoms exist in

an equal superposition of the left and right well given by the symmetric state |S〉 =

1/
√

2(|L〉+ |R〉). For large N , the ground state of the system is a coherent state, with

mean atom number N/2 per well, and with number fluctuations σn ∼
√

N/2, which

are Poissonian in this case. For Ngβ/α >> 1 the atom-atom interactions dominate

the behavior of the system. The ground state of the system becomes independent

Fock states (since there is no longer a coupling term between the wells), where there

is a fixed number of atoms per site, N/2 and σn = 0. As the value of Ngβ/α is varied,

by increasing the barrier between the wells, σn decreases and number fluctuations go

to zero.

5.2 Quantum Phase Transitions

In classical phase transitions, the temperature dependent free energy of the system is

minimized. The state of the system exhibits a discontinuity, which leads to a phase

transition. At zero temperature such classical phase transitions are frozen out, but

quantum fluctuations still exist due to the Heisenberg uncertainty relation, and the

system can undergo quantum phase transitions [95]. When an external parameter

is varied, a ground state with a different symmetry can appear, and the system can
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find a new ground state in a finite time due to quantum fluctuations. In contrast,

classical phase transitions are driven by temperature fluctuations. An example of

a quantum phase transition is the superfluid-MI transition, which is a second order

quantum phase transition.

5.3 Bose-Hubbard Model

To model the optical lattice we generalize our double well system to the full lattice

system. Starting with the Hamiltonian given in Eq. (1.20), the external potential is

now given by V (~r) = Vext(~r) + Vlatt(~r) (where the lattice potential Vlatt is given in

Eq. (2.22)). Expanding ψ in terms of the Wannier functions as ψ(~r) =
∑

i aiwi(~r)(the

Wanner functions are given in Eq. (2.27)) gives

H =
∑

〈i,j〉

a†iaj

∫

d~rwi(~r)

(

~
2

2m
∇2 + Ulat

)

wj(~r)

+
∑

i

a†ia
†
iaiai

4πas~
2

2m

∫

d~r|wi(~r)|4 +
∑

i

a†iai

∫

d~r|wi(~r)|2Uext. (5.2)

This can be rewritten as the familiar Bose-Hubbard Hamiltonian[58, 32],

H = −J
∑

〈i,j〉

a†iaj +
1

2
U
∑

i

ni(ni − 1) +
∑

i

(ǫi − µ)ni, (5.3)

where J =
∫

d~rwi(~r)
(

~
2

2m
∇2 + Ulat

)

wj(~r) is the tunneling term between nearest

neighbors, U = 4πas~
2

2m

∫

d~r|wi(~r)|4 is the repulsive onsite interaction, ni = a†iai is

the number operator for bosons at site i, ǫi =
∫

d~r|wi(~r)|2Uext ≈ Uext(r̂i), is the

energy offset at the ith site due to the external confinement, and µ is the chemical

potential. For deep lattices, the Wannier function on a given lattice site wi(~r), can

be approximated as the ground state of the harmonic oscillator, and the numerical

values for U and J can be easily calculated1. For lower lattice depths, the values can

be calculated using the wavefunctions found from the single particle band structure

1see Ref. [57] for a comparison of this approximation to numerical calculations of U and J .
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calculation shown in Chapter 2.

5.3.1 The Mott Insulator Transition

As in the double well case the kinetic energy, or tunneling term, tends to delocalize

particles over the lattice site, and minimizes phase fluctuations. The ground state of

the system is a coherent state with N atoms. This is equivalent to the behavior we’ve

seen in previous chapters where the condensate is a superfluid and can be described

with a macroscopic wave function

|ψSF 〉 ∝
(

s
∑

i

a†i

)N

|0〉, (5.4)

where s is the number of lattice sites, and the site occupation shows Poissonian num-

ber statistics. However, as the lattice depth is increased, as in the double well system

the behavior changes dramatically. As the lattice depth is increased, the tunneling

rate decreases exponentially and atom-atom interactions dominate the behavior of the

system. The effect of the interactions is to localize atoms to individual lattice sites,

and to minimize number density fluctuations. The system undergoes a phase transi-

tion to a MI state, which can no longer be described by a macroscopic wavefunction,

but instead is described as a product of Fock states

|ψMI〉 ∝
s
∏

i

(a†i )
n|0〉, (5.5)

where n is the number of atoms in the lattice site. In the MI phase there are no

number fluctuations, the per site occupation number is completely determined and

the system has perfect number correlations.

5.3.2 Calculating the Phase Diagram

If we ignore the effect of the external potential (i.e set ǫi = µ to a constant value), the

phase diagram for the Superfluid-to-MI transition can be calculated by minimizing
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the ground state energy [32, 95]. To calculate the phase diagram it is easiest to first

examine the system when J = 0, when there is no tunneling. Minimizing the onsite

energy, Hi = U
2
(ni(ni − 1) − µni), gives

2Hi

U
= ni[ni − (1 + 2µ/U)]. (5.6)

The solution gives regions with different atom number per site, where the boundary

is given by the degeneracy points. The onsite energy is minimized if each site i is

occupied by exactly n atoms. For J 6= 0 one can use a mean-field parametrization

where we construct H as the sum of the single site Hamiltonians

HMF =
∑

i

(

−µn+
Un(n− 1)

2
− ψ†

MFa− ψMFa
†

)

, (5.7)

where ψMF is a variational parameter which describes the interaction with adjacent

sites. Since the MI transition is a second order phase transition, we can expand the

ground state energy in terms of ψMF , the variational parameter, as E0 = E+r|ψMF |2.
Combining the mean-field and Bose-Hubbard Hamiltonians and using second-order

perturbation theory to minimize the energy one finds an expression for r in terms of

µ/U [95]

r =
X(µ/U)

U

[

1 − zJ
X(µ/U)

U

]

(5.8)

X(µ) =
n(µ) + 1

n(µ) − µ
+

n(µ)

(µ+ 1) − n(µ)
(5.9)

where n(µ) is the number of atoms per site, and z is the number of nearest neighbors

which is determined by the dimensionality of the system. For a 3D lattice z = 6. For

J = 0, the value of r changes from positive to negative at the boundary of the phase

transition where the occupation number changes by 1. Similarly, for values of J > 0,

solving r = 0 gives the boundaries of the phase transition.

Fig. 5-1 shows the phase diagram as a function of µ/U , the chemical potential to

the onsite interaction. As we move towards a boundary by increasing µ, we reach
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Figure 5-1: Phase diagram for the superfluid-Mott insulator diagram. The phase
diagram is calculated using Eq. (5.8). As the ratio of J/U decreases, the system
undergoes a phase transition to a MI phase with fixed integer filling. If the chemical
potential µ is increased the filling factor n also increases.

a point where the addition of one atom to they system costs no energy; the kinetic

energy gained balances the interaction energy. If an atom is added to the system it

can tunnel freely, and thus will immediately condense into the superfluid state. If we

instead increase J , and approach the tip of the MI state, we reach a point where the

ground state changes to a superfluid to minimize energy. Contours of constant onsite

number density surround the MI lobes.

Taking the derivative of Eq. (5.8), the critical value for the phase transition can

also be found. For a 3D lattice

(

J

U

)

c

=
1

6

(

1 + 2n− 2
√
n2 + n

)

. (5.10)

In Table 5.1 the critical values are given for filling factors of n = 1 to n = 5.

Although J/Erec is independent of the wavelength of light used, U is proportional to

as/λL, in table 5.1, the values are given for 87Rb and λlatt = 1064nm.
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n
(

J
U

)

c
Ulatt

1 0.0286 14.5Erec

2 0.0168 16.5Erec

3 0.0120 17.5Erec

4 0.0093 18.5Erec

5 0.0076 19.5Erec

Table 5.1: Critical values for
(

J
U

)

c
with different filling factors. The values are calcu-

lated using Eq. (5.10). The critical lattice depth Ulatt is given for λlatt =1064nm.

U

Figure 5-2: Excitations in the MI phase. The first excitation in the Mott insulating
phase occurs when an atom tunnels into an adjacent cell, creating a particle hole
excitation. The energy of the excitation is given by U , the onsite interaction.

5.3.3 Excitation Spectrum

After the critical lattice depth is reached, another distinctive feature of the MI phase

is the excitation spectrum. In the superfluid phase, the excitation spectrum is con-

tinuous, and takes the Bogolibov form, (see Eq. (1.26)). Whereas in the MI phase a

gap appears in the excitation spectrum. As illustrated in Fig. 5-2, the first excited

state for the MI phase occurs when an atom tunnels into an adjacent site, creating

a particle-hole excitation. For a MI with n atoms per site, one site has n + 1 atoms,

and one site is left with n − 1 atoms. The energy of the system increases due to

the repulsive onsite interaction, and this increase in energy, due the creation of the

particle-hole excitation, is given by the onsite interaction between the atoms, U .
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5.3.4 Effect of the External Confinement

In calculating the phase diagram above, the external confinement was set to a constant

value. This would be correct if the experiments were performed in a box potential.

In such a potential, there is only one MI phase with integer filling factor n. If an

additional atom is added to the system the atom is able to tunnel freely, in a box

potential the addition of a single extra atom is enough to destroy the MI state.

Therefore, the realization of a MI phase in this configuration would be extremely

difficult.

In real experiments with cold atoms, the atoms are of course held in an external

harmonic trap. The effect of the external trap, and the initial density distribution of

the condensate is to instead create a shell structure. Near the edges of the trap there

is a n = 1 MI phase and as you move towards the center of the trap the occupation

number increases. As shown in Fig. 5-3, if we again take a look at the phase diagram

for the superfluid-MI transition, instead of sampling a point of this diagram we instead

sample a line. To find the occupation number for a given lattice site we can define a

local chemical potential which is equal to the chemical potential of the atoms minus

the energy offset at a given site [22]. As shown on the phase diagram, as one moves

towards the center of the trap, there are shells of increasing occupancy n, separated

by small regions of superfluidity between each MI phase. In Fig. 5-3(c) the density

distribution for a 2D slice shows this “wedding cake” structure of the MI phase.

The filling factor in a given lattice site i, can be found after defining the local

chemical potential, µi = µ − ǫi in the lattice. The global chemical potential is given

by [89, 83, 42]

µ =

(

15

16

(λ/2)3m3/2NUω3
trap√

2π

)2/5

, (5.11)

As shown in Fig. 5-1, the boundary between a n and n + 1 MI phase occurs when

µi/U = n. For a given external potential Uext(ri), the radius and width of the MI

phases can also be calculated.
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Figure 5-3: Effect of the external confinement on the Mott insulator transition. The
external confinement of the trap and the initial density distribution of the condensate
lead to a shell like structure, where near the edges of the trap there is a n = 1 MI
and the occupation number increases as you move towards the center of the trap.
(a) On the superfluid-MI phase diagram, instead of sampling a point on the diagram
we sample a line. The phase diagram predicts shells of MI phase separated by small
regions of superfluid in between each lobe. (b)A cartoon of a 1D slice through the
lattice shows the resulting shell structure of the MI phase. (c) The density distribution
for a 2D slice through the MI phase is shown.
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5.4 Studying Condensed Matter Physics with Ul-

tracold Atoms

The Mott Insulator transition was originally used to describe how electron correla-

tions can lead to insulating behavior even for partially filled conduction bands, not to

describe the behavior of neutral atoms. The superfluid-MI transition is just one exam-

ple of how Hamiltonians (here the Bose-Hubbard model) which have been developed

to describe condensed matter systems could be studied using ultracold atoms.

Using ultracold atoms to study model Hamiltonians offers a number of advanta-

geous over typical condensed matter experiments. Ultracold atoms allow for a full

range of control over the Hamiltonians. Using the Bose-Hubbard model as an ex-

ample, we can vary J by tuning the depth of the lattice, or by changing the lattice

spacing. U can be varied in similar ways, or by tuning the interaction using either

magnetic or optical Feshbach resonances [52, 9, 113], and in addition the dimension-

ality of the system can be varied from 0D to 3D by varying the number of lattice

beams used. Ultracold atoms also offer easy measurement techniques, one can either

take pictures of the atoms in trap to see the spatial distribution, or in time of flight to

see the momentum distribution. In addition, optical lattices are defect free and are

well isolated from the environment, leading to long coherence times. One difference

between ultracold atom realizations of model Hamiltonians, and condensed matter

systems is the external potential (the third term in Eq. (5.3)). However, as was dis-

cussed above, this can even be advantageous for realizing the Mott insulating phase.

A number of model Hamiltonians can be studied by using multiple atomic species

or internal states, or by varying the lattice geometry[59, 8]. In recent experiments,

in addition to the superfluid-MI transition [43, 107], the Tonks-Giradeau regime has

been explored by trapping ultracold atoms in tight 2D optical lattices [39, 87, 67, 114].

The transition to a Bose glass phase was also recently demonstrated [29]. In addition

to bosons, a number of groups are also pursuing experiments with ultracold fermions

loaded into optical lattices [16, 68], and superfluidity of ultracold fermions loaded into

optical lattices was recently demonstrated [16].
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Chapter 6

Imaging the Mott Insulator

Transition using Microwave

Spectroscopy

This chapter describes experiments performed with condensates loaded into three-

dimensional optical lattices, and supplements work previously reported in Ref [12],

which is also included in Appendix C

6.1 Investigating the Superfluid to Mott Insulator

Transition

A number of different diagnostics have been used to characterize the superfluid to

Mott insulating (MI) phase transition with ultracold atoms. As discussed in chapter 5,

the MI phase is characterized by perfect number states. In our experiments the lattice

spacing, λ/2 ≈ 0.5 µm, is much less than our imaging resolution, since individual

lattice sites can not be resolved, it is easier to characterize the loss of phase coherence

as the system undergoes the phase transition. For low lattice depths, in the superfluid

phase, when the atoms are released from the trap and imaged after time of flight,

one sees the familiar interference pattern, the atoms are still phase coherent across
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(a) (e)(d)(c)(b)

Figure 6-1: Superfluid to MI transition. Absorption images taken during the lattice
rampup at lattice depths of: (a) 5 Erec, (b) 9 Erec, (c) 12 Erec, (d) 15 Erec, and (e) 20
Erec. As the system undergoes the phase transition the interference fringes disappear.
The images were taken after 41 ms time-of-flight

the lattice. As the lattice depth is increased number fluctuations are suppressed, and

phase coherence between the lattice sites is lost. In time of flight, as shown in Fig. 6-1,

as one enters the MI phase the interference peaks disappear.

The easiest diagnostic of the superfluid to MI transition is the loss of phase coher-

ence as the lattice is ramped through the MI transition, and the restoration of phase

coherence as the lattice is ramped back down to the superfluid phase. However,

this loss of phase coherence does not conclusively prove a Mott insulating state as

other processes such as quantum depletion [123], or collisions during the time of flight

expansion can also lead to similar effects. A further diagnostic must therefore be per-

formed. Previously, groups have measured the gap in the excitation spectrum in the

insulating state by either tilting the lattice potential using a magnetic gradient [43]

or by using Bragg spectroscopy [108]. In addition, to characterize the MI phase, the

Mainz group recently used noise correlations to find correlations in the momentum

distribution of the cloud [33]. Although these diagnostics can be used to show a Mott

insulating state exists, they are not able to distinguish between sites with different

filling factor, and could not resolve the shell structure of the Mott insulating phase in

cold atoms. Recently, spin changing collisions [35, 34] in sites with n = 2 were selec-

tively addressed, however this method would be difficult to use for higher occupation

numbers. In this chapter, two-photon microwave spectroscopy, and in particular the

cold-collision “clock” shift is used to spectroscopically resolve, and directly image the

shell structure of the MI phase in ultracold atoms.
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6.2 Clock Shifts in Magnetically Trapped Conden-

sates

For the past 50 years, the definition of the second has been based on microwave

transitions between hyperfine levels in Cesium atomic clocks. The accuracy of these

clocks is limited by cold collision shifts [31, 104], because of their importance in atomic

clocks, this shift is commonly referred to as the “clock” shift [38]. The clock shift

originates from the interaction between atoms in the initial and final hyperfine states.

Given an initial state |A〉 and a final state |B〉, as described in previous chapters, the

interaction is provided by s-wave collisions within the condensate. If the scattering

length for the final state differs from the scattering length for the initial state, then

atoms in the final state have a different mean field energy. This leads to a shift in

the resonance frequency, and the resulting clock shift is given by [48]:

∆νAB =
~

m
(aABρA + aBBρB − aAAρA − aABρB) , 1 (6.1)

where m is the atomic mass, aAB is the scattering length between an atom in state |A〉
and an atom in state |B〉, and ρA is the density of atoms in state |A〉. In addition to

the clock shift, the resonance frequency can also be shifted by the differential Zeeman

shift between the two hyperfine levels. For 87Rb, if one uses the states |1,−1〉 and

|2, 1〉 for the initial and final states, at a magnetic bias field of B0 ∼ 3.23G the states

have the same first order Zeeman shift [48].

6.2.1 Two-Photon Microwave Spectroscopy

The bare transition frequency between the |1,−1〉 and |2, 1〉 state is ν0 = 6.834 682

610 904 29(9) GHz [7]. To transfer atoms between the two states a two-photon pulse

is used with one microwave pulse at ∼ 6.83 GHz and one RF pulse at ∼ 1.6 MHz. To

find the resonance, the frequency of the RF photon is varied. If only a small fraction

1This equation is only true for a coherent mixture, for an incoherent mixture the shift is a factor
of two larger.
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of atoms are transferred to the final state, then Eq. (6.1) can be simplified to

∆ν12 =
h

πm
ρ(a12 − a11), (6.2)

where for 87Rb, the a21 and a11 scattering lengths are 5.19 nm and 5.32 nm, respec-

tively [117].

When two-photon spectroscopy is performed on a magnetically trapped conden-

sate (at a bias field of 3.23G), in addition to the mean field shift, the resonance is

also broadened due to the inhomogeneous density distribution of the condensate. The

broadened line shape is given by [106]

I(ν) =
15h(ν − ν0)

4ρ0∆E

√

1 − h(ν − ν0)

ρ0∆E
, (6.3)

where the mean field energy difference is

∆E =
h2

πm
(a21 − a11) , (6.4)

and ρ0 is the peak condensate density. This line shape is asymmetric with the center of

the line shape at ν = ν0+2ρ0∆E/3h, and the average frequency at ν = ν0+4ρ0∆E/7h.

In our experiments, another broadening mechanism was the Fourier width of the

two-photon pulse. For a square pulse of length τ , the line shape is given by a sinc

function

I(ν) =

(

sin(πντ)

πν

)2

. (6.5)

This washes out the asymmetry of Eq. (6.3) and broadens the line further, although

the resulting lineshape is a convolution of the above two lineshapes, for our experi-

ments we typically fit the spectra using a symmetric gaussian fit.

In Fig. 6-2(a), spectra are shown for a magnetically trapped condensate at two

different densities. As the density of the condensate is increased, as expected, the

line is both shifted and broadened. Gaussian fits of the spectra are shown, as well as

the calculated lineshape. In Fig. 6-2(b), the center of the line is shown for increasing
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density, and in Fig. 6-2(c), the width is shown.

6.2.2 Clock Shifts in Optical Lattices

When the condensate is instead loaded into an optical lattice the density increases

as given in Eq. (5.11). If the two-photon resonance is measured for condensates held

in a combination of a magnetic and optical lattice trap, then as the lattice depth is

increased in the superfluid phase, the line should be shifted and broadened due to

the increased density of the condensate. In the MI phase, the spectra will change

considerably. For an n = 1 MI phase, since there is only one atom per site, there is

no onsite interaction, and there will not be a clock shift to the resonance frequency.

In addition, the line will no longer be broadened. For MI phases with n > 1, the

onsite interaction increases by U for each atom > 1, and the resonance frequency will

be shifted, but not broadened. The separation in the resonance frequency for the n

and n− 1 MI phase is given by

δν =
U

h
(a21 − a11) /a11. (6.6)

As the lattice depth is increased from 0Erec, the line should first be shifted and

broadened due to the increased density until the MI phase transition, when discrete

peaks should appear corresponding to MI phases with different filling factors.

6.3 Experimental Setup

In previous chapters, the condensate was initially created in a Ioffe-Pritchard magnetic

trap, and then the lattice potential was either ramped or pulsed on. To prevent 3-

body losses during the lattice ramp it is beneficial to start with low density in the

initial condensate. This can be accomplished by either lowering the atom number,

or by decreasing the initial trapping frequencies. In order to maintain good signal

to noise in the data lowering the initial trap frequencies is the better of these two

options. Due to technical limitations in our magnetic trap it was difficult to lower the
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Figure 6-2: Two-photon spectrum of a magnetically trapped condensate. (a) Atoms
in a magnetically trapped condensate are transferred from the |1,−1〉 to the |2, 1〉
state using one microwave photon at ≈ 6.8 GHz and one RF photon at ≈ 1.6 Mhz.
The a11 and a21 scattering lengths differ by a few percent, leading to a density-
dependent “clock” shift of the resonance frequency. The resonance is shown for mean
condensate densities of 9 ×1013cm−3 (circles) and 24 ×1013cm−3 (squares), using a
20ms two-photon pulse length. As the density of the condensate is increased the
resonance is shifted and broadened due to the inhomogeneous density distribution of
the condensate. The solid line shows a gaussian fit to the data, the dotted line shows
the calculated lineshape using a convolution of Eq. 6.3 and Eq. 6.5. The spectra were
taken at a magnetic bias field of ∼3.2 Gauss. (b) Transition frequency and (c) width
of two-photon resonance as a function of the mean condensate density. The solid
lines in (b) gives a fit to the data. The slope of the line gives a clock shift of 1.9(1)×
10−13 Hz/cm−3. The solid line in (c) shows the calculated width of the resonance,
calculated using the clock shift found from (b). For low densities, the linewidth is
limited by the Fourier width of the pulse, which for a 20ms pulse is ≈ 25Hz.
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aspect ratio between the radial ωrad and axial ωax trap frequencies in the magnetic

trap to < 10. This meant that when the radial trap frequency was decreased to

ωrad ≈ 20Hz in order to decrease the density of the initial condensate, the axial trap

frequency decreased to < 2Hz. With trap frequencies this low it is extremely difficult

to ramp up the lattice potential adiabatically without causing excitations.

In order to create a low density condensate which did not have these limitations

we instead used a combined magnetic and optical trap. The magnetic trap frequen-

cies were first lowered as much as possible, and then an optical dipole trap was added

perpendicular to weak axis of the magnetic trap increasing the axial trap frequency

ωax. The optical trap was created using a retroreflected laser beam, however the

polarization of the retroreflected beam was initially rotated to minimize the interfer-

ence between the two beams. The polarization was later rotated to create a lattice

beam using a liquid crystal waveplate. The intensity in the dipole trap was set such

that when the waveplate was rotated to maximize the interference, the desired lattice

depth, Vlatt was reached. RF evaporation was used to create condensates in the com-

bined magnetic and optical trap, however if the optical potential was to deep initially,

the evaporation became less efficient and we were not able to produce condensates.

This placed an upper limit on the lattice depths which could be achieved in the ex-

periments. Typically, condensates with N > 1×106 in the |1,−1〉 state were created,

with shot to shot number fluctuations of < 10%. To decrease the density further, a

fast RF sweep through the RF resonance was used to decrease the atom number to

N ≈ 1 × 105. The sweep was 5 ms long and ramped from 1.5 MHz to 3.00 MHz.

The RF power was varied from 50 to 150mVpp depending on the desired final atom

number. The trap bottom was at ≈ 2.35MHz, and varied by ± 0.05MHz from day to

day.

A 3D optical lattice was then adiabatically ramped onto the condensate. As

shown in Fig. 6-3, the lattice was created using three perpendicular, retroreflected

laser beams. To prevent interference between the three separate lattice beams, the

frequency of each beam was shifted by δν ≫ Γlas, where Γlas is the linewidth of the

lattice laser. The polarization of each beam was set to be perpendicular to the other
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Figure 6-3: Three-dimensional optical lattice. The optical lattice was created with
three retro-reflected laser beams using far off resonant light at λ = 1064 nm. The
three beams were perpendicular creating a cubic lattice.

time

la
tt
ic

e
 d

e
p
th

(a)

(b)

(c)

Figure 6-4: Lattice experimental setup. (a) The lattice was adiabatically ramped up
by increasing the intensity in two of the beams, and increasing the contrast in the
third direction. An exponential ramp with a 40 ms time constant was used. (b) While
holding in the lattice a 100 ms two-photon pulse was applied to the atoms, which if
on resonance transferred a small fraction of atoms to the |2, 1〉 state. (c) The atoms
were then released from the trap, and atoms transferred to |2, 1〉 state were imaged
after a 3 ms time of flight.

lattice beams. One of the lattice beams was created using the initial optical dipole

trap, the lattice was ramped on adiabatically by rotating the polarization of this

beam, while increasing the intensity in the other two lattice beams. An exponential

ramp was used with a 40 ms time constant, where for a final lattice depth of 35 Erec,

the ramp up time was 200 ms. During the lattice ramp, an RF knife was kept on to

remove any atoms from the trap which were heated during the ramp. As shown in

Fig. 6-4, after ramping on the lattice, a 100 ms two-photon pulse was applied. If the

pulse was on resonance a small fraction of the atoms were transferred to the |2, 1〉
state. The RF power was set such that on resonance, less then 20% of the atoms were

transferred to the final state. Immediately after applying the pulse the atoms were
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released from the trap and were imaged using light resonant with the F = 2 → F ′ =

3 transition. The atoms were typically imaged in 3 ms time of flight to decrease their

column density. To image the spatial distribution the atoms were imaged in-situ.

6.4 Two-Photon Spectroscopy of the Superfluid to

MI Transition

In Fig. 6-5, two-photon spectra are shown as the lattice depth is increased. The

spectra were taken with a 100 ms pulse length, giving a Fourier limited linewidth

of ≈ 5 Hz. The width of the spectra are shown in Fig. 6-6. At 0Erec, in only

the combined magnetic and optical trap with no lattice, the linewidth of the spectra

was 8.3(6) Hz, a convolution of the mean-field broadened lineshape and the Fourier

width of the two-photon pulse. As the lattice depth was increased to 5Erec the center

of the line was shifted and the width broadened to 13(1) Hz due to the increased

density of the condensate. At 10Erec, the line was shifted and broadened further,

and in addition became asymmetric as the atom number in lattice sites with small

occupation number became squeezed. Fitting the spectra as a double gaussian, the

narrower peak originating from number squeezed sites had a linewidth of only 7.5(9)

Hz, reflecting the lower number variance, whereas the width of the broader peak

increased to 43(3)Hz. At 20 Erec, discrete peaks appeared corresponding to the n =

1 and n = 2 MI phases, with a third broad peak corresponding to sites with larger

occupation still in a superfluid phase. The width of the n = 1 MI peaks decreased to

5.0(.7)Hz, whereas the width of the broad superfluid was 18(2)Hz, a decrease from the

10Erec width consistent with number squeezing in high occupancy sites. At 25Erec,

discrete peaks corresponding to n = 1 to n = 3 were observed, with linewidths limited

only by the bandwidth of the two-photon pulse, and no superfluid peak was observed.

At 35 Erec, peaks corresponding to n = 4 and 5 were also observed. Since there is

no mean field shift, the center of the resonance frequency for the n = 1 peak should

not shift as the lattice depth is increased however, as shown in Fig. 6-5, as the lattice
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Figure 6-5: Two-photon spectroscopy of the superfluid to MI transition. Spectra for
3D lattice depths of 0Erec (open squares), 5Erec(open triangles), 10Erec(open circle),
20Erec(solid triangles), 25Erec (solid squares), and 35Erec(solid circles). The spectra
are offset for clarity. The dashed line shows gaussian fits of the peaks. As the lattice
depth is increased, the spectra are first broadened and shifted due to the increased
density. After crossing the MI transition discrete peaks appear, corresponding to MI
phase with integer filling n. The phase transition occurs at higher lattice depths for
higher values of n. As the lattice depth is increased in the MI phase, the center of
the n = 1 peak is shifted slightly due to the differential AC stark shift of the lattice.
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Figure 6-6: Change in the two-photon linewidth as the lattice depth is increased. The
1/e width of each peak in the spectra shown in Fig. 6-5 are plotted. As the lattice
depth is increased from 0Erec, initially the width of the peaks increases (circles), due
to the increased superfluid density. As the lattice depth is increased further the peaks
start to narrow indicating number squeezing (squares), until finally in the MI phase,
the width is only limited by the bandwidth of the two-photon pulse (triangles). The
dashed line shows the bandwidth of the two-photon pulse.

depth was increased the center of the n = 1 peak shifted slightly to lower values2, this

shift was due to the differential AC stark shift due to the lattice potential. In addition,

the center of the resonance could also be shifted by the admixture of particle-hole

pairs within the n = 1 state [37, 36]. This effect scales with J/U , and should therefore

decrease with increasing lattice depths.

The observation of discrete peaks is direct evidence for the suppression of tunneling

by interactions when the MI transition is reached. The tunneling of atoms between

sites of different occupation number during the microwave pulse would smear out the

discrete peaks and eventually lead to peaks reflecting the clock shift at an averaged

density. The characteristic energy associated with tunneling between sites is given

by the width of the first Bloch band, 4J . Therefore the tunneling time in a lattice

site with n atoms, in the absence of interactions, is given by h/4Jnz, where z is the

number of nearest neighbors (this can also be approximated using the double-well

model). The tunneling rates for n = 1 to n = 5 are given in Table 6.1 A very

deep lattice, where the tunneling rate was less than the length of the two-photon

2From 8069.1(4)Hz to 8066.8(1) Hz as the lattice depth was increased from 20 to 35Erec.
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Ulatt[Erec] n = 1 [ms] n = 2 n = 3 n = 4 n = 5

5 0.20 0.10 0.07 0.05 0.04

15 2.1 1.0 0.7 0.5 0.4

20 5.3 2.7 1.8 1.3 1.1

25 12.8 6.4 4.2 3.2 2.5

35 60 30 20 15 12

Table 6.1: Tunneling times in the optical lattice as a function of n, the occupation
number

pulse would still localize atoms even for a thermal or non-interacting gas. However

as shown in Table 6.1, even at 35Erec, all of the tunneling times, and in particular

the times for high occupation numbers, were shorter than the 100 ms two-photon

pulse. With these short tunneling times if the system were not in a MI state, the

resulting spectra would be distorted, blurring out the separation between the n and

n + 1 peak. In addition, for our lattice depths no discrete spectrum were observed

when the cloud was heated up during the lattice ramp by misalignment of the lattice

beams. A sample spectra taken with a slight lattice misalignment is shown in Fig 6-7.

All of our spectra were taken under conditions where the condensate fraction after

ramping down the lattice was greater than 80%.

6.5 Imaging the Shell Structure

At 35 Erec, the spectra for individual MI phases were well resolved. Therefore a

given RF frequency was on resonance with at most one MI phase, and only atoms

from an individual shell were transferred to the F = 2 state. By using resonant RF

to transfer all of the atoms in a single MI phase to the F = 2 state, and by then

imaging the atoms in trap, without time of flight, the spatial distribution of the MI

phases could be directly imaged. In Fig. 6-8, in-situ absorption images which were

taken at RF frequencies corresponding to the peaks in the two-photon spectra are

shown. The absorption images are integrated along the line of sight, however they

still clearly show the shell structure of the MI phase due the external confinement.
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Figure 6-7: Effect of heating on the two-photon spectra. The spectra was taken using
a lattice depth of 40 Erec, the rest of the parameters were identical to the spectra
shown in Fig.6-5. A slight misalignment of one of the lattice beams led to heating
during the lattice ramp, blurring out the discrete peaks shown in Fig. 6-5.

The n = 1 phase is shown to originate from the edge of the trap and the radius of the

shells decreases until n = 5 which originates from the center of the trap. In Fig.6-8,

absorption images taken at RF values between the peaks are also shown. Although

the signal is significantly less between the resonances a small fraction of atoms are

still transferred to the F = 2 states. As discussed in Chapter 5, at non-zero values of

J/U the phase diagram predicts shells of MI phase separated by regions of superfluid.

Absorption images taken in between the resonances could be used to measure the

fraction of atoms in these superfluid rings, however in order to study this the signal

to noise must first be increased by either using a longer two-photon pulse, or by using

deeper lattices to increase the separation between the MI resonances. The fraction

of atoms in the superfluid rings could also be used to probe the temperature of the

system [22].

In Fig. 6-8, the calculated radius for the MI shells is also shown, the value

for the radius of the nth MI phase was calculated using the condition n − 1 <
(

µ− m
2
ω2

rr
2
)

/U < n. As discussed in the next section, the measured values of U

extracted from the spectra were used to calculate the radius. With the exception of

the n = 1 peak, the observed radii were in good agreement with the calculated values.
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Figure 6-8: Imaging the shell structure. (a) Two-photon spectra at 35Erec.
(b)Absorption images for decreasing RF frequencies. To image the spatial struc-
ture of the MI phase the absorption images were taken in trap with no time-of-flight.
Images 1 to 5 show the shell structure for the n = 1 to 5 MI phase shown in (a).
Images taken in between the peaks (i to iv) show a much smaller signal. With better
resolution images in between the peaks could be used to determine the extent of the
superfluid shells. The field of view was 185 µm by 80 µm
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The disagreement with the n = 1 peak was most likely due to anharmonicities in the

external trap caused by the overlap between the combined magnetic and optical di-

pole trap. This has since been remedied by increasing the waist of the initial optical

dipole trap leading to a more spherical trap.

6.6 Onsite Interaction

As mentioned briefly in the previous section, we can also extract a measurement of

U , the onsite interaction from the spectra. As shown in Fig. 6-9, as the lattice depth

is increased within the MI phase, the separation between the n and n + 1 peaks

increased. The separation between the peaks, as given in Eq. 6.6, is dependent on

only the scattering lengths and the onsite interaction U . Therefore, the increase in

the separation of the peaks as the lattice depth is increased gives us a direct measure

of the onsite interaction. In Fig. 6-9(b), the separation between the n = 1 and n =

2 peak is compared to the calculated values using a band theory calculation. The

uncertainty in the calculated values is due to the uncertainty in the a12 scattering

length, and the uncertainty in the measured points is due to the uncertainty in the

lattice calibration. Including these uncertainties, the measured values for the onsite

interaction were in good agreement with the expected values.

From a close examination of the two spectra shown in Fig. 6-9, one may notice that

although the separation between the n = 1,2, and 3 peaks seems to be approximately

constant, the n = 3,4 and 5 peaks appear to be closer together. As shown in Fig. 6-

9(c), if one plots out the separation between the peaks relative to the n = 1 peak,

they are in fact closer. At 35Erec, the separation between the n = 1 and n = 2

peak is 30(1) Hz, whereas the separation between the n = 4 and n = 5 peak is

only 22(2) Hz, a 25(7)% decrease from the expected onsite interaction! For deep

lattices, the wavefunction on an individual lattice site can typically be approximated

as the ground state of the harmonic oscillator, however this deviation shows that

for high filling factors this is no longer a good approximation. As the filling factor

in a given lattice site is increased, the repulsive interactions also increase, causing
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Figure 6-9: Measuring the onsite interaction. (a) Two-photon spectra for lattice
depths of 25 Erec (squares) and 35 Erec (circles) as the lattice depth was increased.
The separation between the n and n + 1 resonance increased due to the increased
onsite interaction, and the separation between the peaks gives a direct measurement
of the onsite interaction. The spectra are offset for clarity. (b) The separation between
the n = 1 and n = 2 peaks for the two spectra shown in (a) are plotted. The separation
increased from 22(1)Hz to 30(1)Hz between 25 Erec and 35 Erec. The shaded line area
gives the expected value for the onsite interaction including the uncertainty in the
a11 and a12 scattering lengths. (b) The separation for the n = 1 to n = 5 resonances
are shown relative to the position of the n = 1 peak. For low occupation numbers
the separation was approximately constant, implying a constant U . However for
higher occupation the peaks moved closer together showing a decrease in the onsite
interaction for higher n. The line is a fit to the separation between the n = 1 and n
= 2 peak.
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the wavefunction to “bulge” out slightly, lowering the onsite interaction. Our spectra

allow for both a measurement of the onsite interaction, and also allows us to infer how

the wavefunction changes for higher filling factors. Using a variational calculation,

similar to that shown in Chapter 1.4.1, one can find the change in the harmonic

oscillator length due to the increased repulsive interactions. The variation calculation

for n = 5 predicts a 7% increase in the harmonic oscillator length, leading to an 18%

decrease in the onsite interaction, in agreement with our measured value.

6.7 Lifetime of the Shells

In the superfluid phase, the lifetime of the condensate is limited by 3-body recom-

bination. As the lattice is ramped on, as was shown by the two-photon spectra, the

condensate density increases dramatically. In order to decrease 3-body related heat-

ing during the lattice ramp up, the initial condensate density must be kept as low as

possible. Once in the MI phase the lifetime is highly dependent on the filling factor in

a given MI shell. By adding a hold time into the experimental sequence after ramping

up the lattice, but before applying the two-photon pulse, the lifetime of individual

MI phases could be measured.

In Fig. 6-10, two-photon spectra are shown for increasing hold times. For the n =

1 MI phase, since collisions cannot occur, (and ignoring technical noise) the lifetime

of the atoms should be limited only by spontaneous scattering from the lattice. The

spontaneous scattering rate from the lattice potential using Eq. (2.16)is only ΓSC ≈
.005Hz for a 35 Erec lattice. For the n = 2 MI phase 2-body processes are allowed,

however for 87Rb the dipolar relaxation rate is quite small, with ΓDP < 10−2Hz. For

sites with n >3, 3-body recombination again becomes the limiting factor. For the MI

phase the 3-body rate is given by Γ3B = γn(n − 1)(n − 2)[56]. For our parameters,

γ = K3

12

∫

d~r|wi(~r)|6 = 0.026 Hz, where the Wannier function has been approximated

as the ground state of the harmonic oscillator. Using this value, the scattering rate

for the MI phases are Γ3B = 0.16 Hz, 0.63 Hz and 1.58 Hz for the n = 3, 4 and 5 MI

phase. If we adjust the rate of γ using our variational calculation for the harmonic
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Figure 6-10: Lifetime of the shells. By adding a hold time before applying the two-
photon pulse the lifetime of individual MI phases could be measured. Holds of 0
ms (solid circles), 100 ms (solid squares), 400 ms (open circles) and 2000 ms (open
squares) are shown. The lattice depth was 35Erec except for the 100 ms hold time for
which it was 34Erec. The spectra were offset for clarity.
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oscillator length for the n = 5 MI phase we find a rate of Γ3B = 1.05 Hz. Our

measured lifetimes derived from Fig 6-10, were τ ≈ 1s, 0.5s and 0.2s for the n = 3,4

and 5 MI phases. The disagreement between our measured lifetimes and the 3-body

rate was most likely due to technical noise in the lattices. For n = 1 and 2 lifetimes

of over 5 s were observed.

6.8 Lattice Design and Alignment

In the following section I describe the design of the optical lattice setup, and detail

some of the technical difficulties that arose during the lattice experiments. The section

is primarily meant as a resource for future lab members.

6.8.1 Lattice Setup

The lattice experiments were all preformed in the main “production chamber” where

the optical access is severely limited by both MOT optics and by imaging optics.

To couple the IR lattice light into these beam paths dichroic mirrors3, which reflect

1064 nm light and transmit 780 nm light, were used for both the input of the lattice

beam and for the retro reflection. Using dichroic mirrors is non-optimal for multiple

reasons. For the lattice light (at 1064 nm), a few percent of the beam is transmitted

instead of being reflected. For the mirrors before the chamber this has no effect,

however for the retroreflected beam this means that the lattice contrast is not 100%.

Reflections from the back surface of dichroic can also cause problems. For the 780

nm light <90% of the light is transmitted, leading to unbalanced MOT beams and

also imaging problems. However, given our limited optical access the lattice beams

had to be aligned on top of 780 nm beams.

The lattice laser was a 20W single frequency Ytterbium fiber laser, purchased

from IPG Photonics, a single laser was used for all three lattice beams. The laser

was split into three beam paths and then transferred from the optics table to the

3The mirrors used at 45◦ incidence were short wave pass dichroic beamsplitters, the 0◦incidence
mirrors were Nd:YAG mirrors which only reflected 1064 nm light and act as a window for 780 nm
light.
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Figure 6-11: Lattice setup. The lattice light is brought to the table using a high power
optical fiber (see text for description). Immediately after the fiber a polarizing beam
splitting cube (PBSC) is used to clean up the polarization of the light. A pick-off
window is then used to send a few percent of the light to a photodiode which is used to
stabilize the intensity of the beam. After the pick off, both a λ/4 and a λ/2 waveplate
are used to set the polarization of the beam. The beam is then expanded using a
telescope, and is focused on the condensate using an achromatic lens. The beam is
re-collimated after exiting the chamber and is then retro-reflected. Three irises are
used to block back reflections from lenses and the vacuum chamber viewports.

experiment table using high power single mode optical fibers made from components

also purchased from IPG Photonics. A detailed description of how to make and align

light through these fibers is given in [124]. A generalized schematic and description

for the lattice setup is shown in Fig. 6-11. The liquid crystal waveplate used to

control the polarization of the optical dipole trap used in the combined magnetic and

optical trap was purchased from Meadowlark optics (LRC-100 IR2 1” with attached

compensator), and was placed immediately after the chamber before the final lens

and mirror. The waveplate requires a 2 kHz square wave, and the retardation is

determined by the amplitude of the square wave. The response time of the waveplate

was between 10 - 50ms for a λ/4 rotation which was sufficient for our experiments4.

4A λ/4 retardation rotates the beam by λ/2 since the beam is transmitted through the waveplate
twice, once after exiting the chamber, and once after retroreflection before reentering the chamber.
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The lattice lifetime and the quality of the Mott insulating state were highly sensitive

to slight misalignments in the lattice beams. In the following section the alignment

procedure for the lattice is detailed.

6.8.2 Lattice Alignment

To align the optical lattice, the BEC was first imaged along the lattice direction by

transmitting imaging light through the lattice beam path. The dichroic mirror used

for the retroreflection was removed to ensure that the imaging beam was not displaced

relative to the lattice beam. The BEC was focused onto the imaging CCD camera

(an additional lens was added just before the camera to focus the image) by moving

the second achromatic lens (the lens used to re-collimate the lattice beam before the

final mirror). The pixel position of the focused condensate was then marked on the

camera, and the lattice beam was aligned and focused onto the same spot. To focus

the lattice beam onto the camera the first achromatic lens was moved. To fine tune

the alignment, the laser power was turned up to its maximum value (∼3W), and a

BEC was created in the combined magnetic and optical trap (with the initial beam,

but no retro-reflected beam). The final lattice mirror before the chamber was then

aligned such that the position of the BEC in the combined trap was identical to the

position in just the magnetic trap. The position was checked along both directions

perpendicular to the lattice. This process was repeated for all three lattice beams.

After aligning the initial beam, the retro-reflected beam was roughly aligned by

reflecting the beam back onto itself, and then by maximizing the power coupled back

through the fiber coupling onto the optics table. The alignment was then fine tuned

using Kapitza-Dirac(KD) diffraction. To align the beam using KD, the lattice was

pulsed on for 12.5 µs. The retro-reflecting mirror was then aligned to maximize the

diffraction pattern. After alignment, the lattice depth was calibrated by measuring

the population in each KD order as a function of the laser intensity as discussed in

section 2.2.4.
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6.8.3 Technical Issues

To ensure good stability and lifetime in the lattice there are a few essential points:

1. Proper alignment of the beams. Even slight misalignments of the lattice caused

substantial center-of-mass oscillations when the lattice was ramped onto the conden-

sate. Although this does not severely affect the lifetime in a 1D lattice, when a 3D

lattice was ramped on these oscillations led to considerable heating of the cloud.

2. Back reflections. If back reflected beams were aligned onto the atoms this de-

creased the lifetime of the lattice significantly. The majority of viewports in our main

“production” chamber are not IR coated, in particular, the “penny window” view-

ports which are parallel to the long axis of the magnetic trap reflect a non negligible

amount of light.5 To limit the effect of back reflections, as shown in Fig. 6-11 irises

were placed as close as possible on either side of the chamber. An additional problem

from back reflections was on the intensity stabilization. If back reflections were not

blocked they formed an interference pattern on the photodiode used to stabilize the

intensity of the beam (see Fig. 6-11). The feedback then stabilized the interference

signal between the initial and retroreflected beam leading to intensity fluctuations on

the atoms. These intensity fluctuations led to heating in the lattice and shortened

lifetimes. To minimize this problem, if polished fibers are used, it is essential to use

angle polished fibers to avoid near normal reflections off the face of the fiber.

3. Vibrations. Although the retro-reflected lattice is less sensitive to vibrations

then the moving lattice described in chapter 4, we have still seen vibrations effect

the lifetime of the lattice. In particular, our original CCD camera was air cooled and

vibrations from the fan caused significant problems. Suspending the camera from

the table increased the lattice lifetime for the retroreflected lattice by approximately

a factor of 2, and for the moving lattice by more than an order of magnitude. We

have since switched to a water cooled camera which seems to have alleviated these

problems. However, due to our lack of optical access, all of our lattice beam paths

are quite long. The longest being over 3 m, making vibration isolation difficult. For

5We once mistakenly aligned only the back reflection from the penny windows onto the condensate
and saw considerable Kapitza-Dirac diffraction.
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moving lattices vibrations pose an additional problem, since the lattice is sensitive to

any element in the beam path vibrating, not just the retroreflection mirror.

4. Polarization. Besides back reflections, the “penny window” viewports are

also birefringent. Because of this, the lattice in this direction is very sensitive to

the polarization of the light. In order to maximize the contrast of the lattice, the

polarization must be linear.

In the future, first transporting the atoms to an auxiliary chamber, with better

optical access, coated windows, and with shorter beam paths allowing for better

vibration isolation should make aligning and creating stable lattices a much easier

task.
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Chapter 7

Raman Amplification of Matter

Waves

This chapter briefly introduces Raman superradiance, which was previously described

in [99], and is also included in Appendix D

The first research that I made a major contribution to after arriving at MIT was

the demonstration of a “Raman Amplifier” for matter waves. Since the majority of

this thesis has been focused on the use of optical lattices to manipulate ultracold

atoms, I only briefly introduce the experiment here, and refer the interested reader

to appendix D for a more detailed description. The Raman superradiance project

gives an excellent example as to how “mistakes” in the lab can sometimes lead to

new physics.

7.1 Rayleigh Superradiance

I start this chapter with a very simple question, what happens when you illuminate a

Bose-Einstein condensate with a single off resonant laser beam? Normally of course,

you would expect to just see normal Rayleigh scattering, where an atom absorbs a

photon and spontaneously emits a photon. The result is a dipolar emission pattern.

However, as was shown in [54], if an elongated condensate is illuminated with an
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off resonant laser beam, and if the beam is perpendicular to the long axis of the

condensate, instead one sees highly direction scattering into discrete momentum states

[Fig. 7-1(b)]. This phenomena of supperradiant scattering was first proposed by Dicke

[26], where he showed that spontaneous emission from an ensemble of N localized

atoms in a cooperative state is enhanced by a factor of N over the single atom

emission rate.

To understand Rayleigh superradiance one can consider the grating formed by the

recoiling and stationary atoms. Initially, when the laser beam is first incident on the

condensate the first atom can scatter a photon in any direction. Once the atom has

scattered a photon it will then recoil within the condensate due to the recoil velocity.

The recoiling atoms are still in the ground state, therefore the recoiling atoms and

those at rest can still interfere, creating a moving density grating, which can then

diffract subsequent photons. This process is self-amplifying, since each diffracted

photon creates a recoiling atom, which in turn increases the amplitude of the matter

wave grating. If the condensate is elongated, the gain will be largest when the photons

are scattered along into the long axis of the condensate, this is the so called “end-fire”

mode. Alternatively, one can also think of the probe beam and end-fire mode as an

intensity grating, or a moving optical lattice.

In early 2002, the first experiments performed on the newly built “Rubidium”

machine at MIT were on Rayleigh superradiance in the short and long pulse regime

[101]. In the short pulse (Kaptiza-Dirac) regime atoms were scattered both parallel

and anti-parallel to the direction of the incoming beam, and in the long pulse (Bragg)

regime only parallel to the beam.

7.2 Raman Superradiance

Rayleigh superradiance is highly depend on the polarization of the incident laser

beam. In Rayleigh superradiance, the initial and final state of the atom are the same.

The absorbed and emitted photons have the same polarization, and in order to see

superradiance we must have emission into the end-fire mode. As shown in Fig. 7-1,
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Figure 7-1: Transition from Rayleigh to Raman superradiance. (a) A elongated
condensate is illuminated with a single pump beam. The condensate is then released
from the trap and imaged after 30 ms time of flight. The field of view is 1.3 mm×1.4
mm. (b) When the pump beam was π-polarized with the electric-field vector E

perpendicular to the long axis of the condensate supperradiant Rayleigh scattering
was observed. (c) When the polarization of the beam was instead parallel to the long
axis of the condensate the supperadiance was suppressed, and a “halo” pattern from
normal rayleigh scattering was observed. In (b,c) the pulse length was 1 ms, with 40
µW of power. In (d,e) the pulse length was both shortened and the intensity increased
by a factor of 100. (d) For E perpendicular to the long axis, self-stimulated Kapitza-
Dirac scattering was observed. (e) For E parallel, superradiant Raman scattering was
observed. The pump beam detuning was ∆ = -340MHz for all of the images. The
detuning is given relative to the 52S1/2, F = 1 → 52P3/2, F = 1 transition.

this requirement is fulfilled by using π-polarized light, where the polarization of the

electric field vector E is perpendicular to the long axis of the condensate. However, if

you rotate the polarization such that E is parallel to the long axis of the condensate

then emission into the end-fire mode is suppressed. As shown in Fig. 7-1(c), instead of

seeing superradiant scattering one instead sees the dipole emission pattern of normal

rayleigh scattering.

One night in early 2002, while finishing up the Rayleigh superradiance experiment,

a very strange signal was seen. Instead of a cascade of superradiant states, as seen in

Fig. 7-1(b), the condensate was instead depleted into just one order. After checking

a variety of parameters it was realized that the polarization of the beam wasn’t quite

right. The polarization was fixed, and the problem was solved. However, we always

wondered what had caused those strange pictures. A year later we returned to the

problem and decided to try to reproduce the pictures. The results are shown in 7-1(e).

With E polarized parallel to the long axis of the condensate, where superradiance

should be suppressed, instead when the pulse length was shortened and the intensity
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Figure 7-2: Time Evolution of Raman superradiance. Absorption images taken for
increasing pulse length. The detuning of the beam was ∆ = -340MHz. The pulse had
2.2mW of power. As the pulse length was increased the atoms were scattered into
two discrete states. The initial condensate was in the |1,−1〉 state and the final peaks
were in the |2,−2〉 state. In (a) Absorption images are taken after first repumping
the F = 1 atoms into the F = 2 state and by then imaging with light resonant with
the F = 2 state. (b) Absorption images of only the F = 2 atoms.

increased, supperadiant peaks appeared. But how could this be? In Fig. 7-3, a

time evolution of the process is shown. When the power in the pulse was increased

by a factor of 100 from those used in the Rayleigh supperradiance experiments, the

scattering became highly directional again and two distinct peaks appeared into which

the entire condensate was transferred. Unlike the normal cascade pattern seen in

Rayleigh supperadience due to higher order scattering events, the atoms remained in

these two peaks, even when the light was left on.

The condensates used in these experiments were initially created in the |F =

1, mF = −1〉 state. Imaging the atoms using light only resonant with atoms in the F

= 2 state, and applying a magnetic field gradient during the time of flight to perform a

Stern-Gerlach separation, we discovered that the atoms in the two final peaks were no

longer in the |1,−1〉 state. They had instead been transferred to the |2,−2〉 state, we

had demonstrated Raman superradiance. The atoms absorbed a π-polarized photon

from the laser beam, and emitted a σ-polarized photon into the end-fire mode. For

the detuning of our probe beam, ∆ = -340MHz, the |2,−2〉 state this was the most

probable transition. Once the atoms had scattered a photon and were in the |2,−2〉
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Figure 7-3: Experimental setup for raman superradiance(a) An atom absorbs a pho-
ton with momentum k. The atom then emits a photon with momentum k − q into
the end fire mode of the condensate, and recoils with momentum q. (b) The absorbed
photon has π-polarization, and the emitted photon σ±-polarization leading to a Ra-
man transition to a different hyperfine state. The final state was ≈ 6.8GHz detuned
from the pump beam.

state, as shown in Fig. 7-3, they were 6.8 GHz out of resonance with the probe beam

and no higher order scattering events could occur. By varying the detuning of the

probe beam, the final states could also be varied. The fraction of atoms transferred

to a given state could be calculated from the two-photon transition matrix for a given

detuning. In Fig. 7-4, the results are shown for a detuning of ∆ = -140 MHz, where

atoms were scattered into |1, 0〉, |1,−1〉, as well as the |2,−2〉 state.

In addition, this process was used to demonstrate a matter wave amplifier where

the initial and final states are different. It is really quite amazing the number of

different phenomena which can be seen by simply shining a single laser beam onto a

condensate. This project also showed how simple “mistakes”, here a wrong polariza-

tion, can led to unexpected results.
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Figure 7-4: Hyperfine state identification of Raman supperradiance. (a) Absorption
image showing superradiant Raman scattering. The pump beam had a detuning of
∆ = -140MHz. The pulse was 5 µs, with 0.9 mW of power. (b-d) Absorption images
taken using a magnetic field gradient to separate the hyperfine states. (b)The initial
condensate in the |1,−1〉 hyperfine state. (c,d) After applying the laser pulse the
atoms were scattered into two superradiant orders. (c) Absorption image showing
both F=1 and F=2 atoms. (d) Absorption image showing only F=2 atoms. The first
order peaks had atoms in the final states |2,−2〉 and |1, 0〉. Atoms in the |1, 0〉 state
were still near-resonant with the pump beam and scattered atoms into the second
order peak which was in state |1, 1〉. The field of view was 4.6 mm × 0.2 mm
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Chapter 8

Conclusion and Outlook

The unifying theme of this thesis has been the use of optical lattices to manipulate

Bose-Einstein condensates. However, in each experiment the lattice has been used in

very different ways and to study very different physics.

Precision Measurements and Atom Interferometry - A pulsed optical lattice was

used to measure the photon recoil momentum in dispersive media. Not only did

this answer a fundamental question about momentum in dielectric media, but it will

also hopefully improve the accuracy of precision measurements made using ultracold

atoms.

Nonlinear Atom Optics - A shallow one-dimensional optical lattice was used to

modify the dispersion relation for the condensate in order to demonstrate the matter-

wave analogue of both optical parametric generation and amplification of photons.

Strongly Interacting Systems - A deep three-dimensional optical lattice was used

to demonstrate the superfluid-to-Mott insulator transition. Two photon microwave

spectroscopy was then used to resolve and directly image the shell structure of the

MI phase.

8.1 The Future of BEC IV

The superfluid to MI transition with ultracold atoms, is just one example of how

ultracold atoms can be used to simulate more complicated condensed matter systems
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([8], and references therein). As we start to study more complicated systems, the mi-

crowave spectroscopy detailed in this thesis should prove to be an excellent diagnostic.

In future experiments with the MI transition one could precisely measure the number

statistics as the system undergoes the phase transition. Although at low lattice depths

the tunneling rate is still high, the lattice depth can be suddenly increased, freezing

in the population [44], which can then be probed using high-resolution microwave

spectroscopy. In addition, by applying a magnetic gradient across the lattice, tomo-

graphic slices could be selected, combining full 3D resolution with spectral resolution

of the site occupancy.

The addressability of individual shells described here could be used to create

systems with only selected occupation numbers (e.g., by removing atoms in other

shells). Such a preparation could be important for the implementation of quantum

gates, for which homogenous filling is desirable. The ability to address sites with unit

occupancy can also be used to make improved precision measurements [28].

In the near future, our optical lattice experiments will move from being preformed

in the main “production” chamber, to the auxiliary “science” chamber. The improved

optical access and vibration isolation of the science chamber should lead to better

stability and longer lifetimes in the optical lattice, and in general should make the

experiments much easier to setup and perform. New lattice geometries, such as

triangular lattices, spin-mixtures, and disordered potentials will all be possible to

realize in the new science chamber, leading to almost endless possibilities. I am

leaving the Rubidium lab in very capable hands, and look forward to hearing of their

future successes, of which I’m sure there will be many.
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Appendix A

Photon Recoil Momentum in

Dispersive Media

This appendix contains a reprint of Ref. [63]: G.K. Campbell, A.E. Leanhardt, J.M.

Mun, M. Boyd, E.W. Streed,W. Ketterle, and D.E. Pritchard, Photon Recoil in Dis-

persive Media, Phys. Rev. Lett. 94, 170403 (2005).
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Appendix B

Parametric Amplification

This appendix contains a reprint of Ref. [13]: G.K. Campbell, J.M. Mun, M. Boyd,

E.W. Streed,W. Ketterle, and D.E. Pritchard, Parametric Amplification of Scattered

Atom Pairs, Phys. Rev. Lett. 96, 020406 (2006).
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Parametric Amplification of Scattered Atom Pairs

Gretchen K. Campbell, Jongchul Mun, Micah Boyd, Erik W. Streed, Wolfgang Ketterle, and David E. Pritchard*

MIT-Harvard Center for Ultracold Atoms, Research Laboratory of Electronics and Department of Physics,

Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
(Received 12 September 2005; published 19 January 2006)

We have observed parametric generation and amplification of ultracold atom pairs. A 87Rb Bose-
Einstein condensate was loaded into a one-dimensional optical lattice with quasimomentum k0 and
spontaneously scattered into two final states with quasimomenta k1 and k2. Furthermore, when a seed of
atoms was first created with quasimomentum k1 we observed parametric amplification of scattered atoms
pairs in states k1 and k2 when the phase-matching condition was fulfilled. This process is analogous to
optical parametric generation and amplification of photons and could be used to efficiently create
entangled pairs of atoms. Furthermore, these results explain the dynamic instability of condensates in
moving lattices observed in recent experiments.

DOI: 10.1103/PhysRevLett.96.020406 PACS numbers: 03.75.Kk, 03.75.Lm, 05.45.�a

Nonlinear atom optics is a novel research area born with
the advent of Bose-Einstein condensates of alkali atoms
[1]. Unlike photons, ultracold atoms have a very strong
nonlinearity directly provided by s-wave collisions, and
therefore they do not need a nonlinear medium to provide
effective interaction. A number of nonlinear processes first
observed with photons have been demonstrated with matter
waves such as four-wave mixing [2,3], solitons [4–7],
second-harmonic generation [8–11], and sum-frequency
generation [9]. Nonlinear atom optics, and, in particular,
four-wave mixing, has previously been suggested as an
ideal way to create entangled pairs of atoms [3,12,13].
However, in previous four-wave mixing experiments
[2,3] using condensates in free space, the quadratic disper-
sion relation for free particles only allowed for the phase-
matching condition to be fulfilled when the magnitudes of
all four momenta were equal (in the center-of-mass frame).
This is the only way in which two particles can scatter off
each other and conserve energy and momentum. In par-
ticular, in free space, if a condensate is moving with
momentum k0, atoms within the condensate cannot elasti-
cally scatter into different momentum states, and therefore
the analog to optical parametric generation of photons is
not possible.

The situation is very different when an optical lattice is
added. The lattice delivers energy in the form of the ac
Stark effect and momentum in units of 2@kL to the atoms,
where kL is the wave vector of the optical lattice. The
motion of atoms in this periodic potential is described by
a band structure, which deviates from the quadratic free
particle dispersion curve. In a lattice, as recently suggested
[14], it becomes possible for two atoms in the condensate
to collide and scatter into a higher and lower quasimomen-
tum state and conserve energy. As we discuss below, this
can lead to dynamic instabilities of the condensate, but also
enables nondegenerate four-wave mixing and the atom-
optics analog of optical parametric generation.

Phase matching is essential for high efficiency in non-
linear processes in quantum optics including optical para-

metric generation of photons [15], and a modification of
the dispersion curve has been used to demonstrate optical
parametric amplification in semiconductor microcavities
[16]. In atom optics, dispersion management was used to
modify the effective mass of atoms [17], and to create
bright gap solitons [18]. Here we demonstrate that by
modifying the dispersion curve using an optical lattice,
scattering processes which cannot occur in free space
become possible, and we realize the matter-wave analogue
of an optical parametric generator (OPG) and an optical
parametric amplifier (OPA).

To demonstrate the matter-wave analogue of an OPG, a
87Rb Bose-Einstein condensate with quasimomentum k0
was loaded into a one-dimensional optical lattice. To load
the atoms at a given quasimomentum relative to the
Brillouin zone, a moving optical lattice was adiabatically
applied to a magnetically trapped condensate initially at
rest in the lab frame. The lattice was created using two
counter-propagating laser beams with frequency difference
��, giving the lattice a velocity of v � �

2
��, where � is the

wavelength of the optical lattice. In the rest frame of the
lattice, the condensate has quasimomentum k0 �

m�
2@
��,

where m is the atomic mass. By changing the detuning
between the lattice beams, ��, k0 could be varied. As
shown in Fig. 1(d), as the value of k0 was varied we
observed elastic scattering of atom pairs into final states
k1 and k2. The range of possible final states varied with k0
due to the phase-matching condition. For values of k0 less
than � 0:55kL the dispersion relation imposed by the
Bloch structure of the optical lattice does not allow elastic
scattering to occur. For our lattice depth of V � 0:5Erec,
where Erec � @

2k2L=2m, the values of k2 which satisfied
energy and momentum conservation were beyond the first
Brillouin zone. Since the scattering process occurs within
the first Bloch band, the atoms in state k2 have a quasimo-
mentum k2 � �2k0 � k1�Mod �2kL� [see Fig. 1(a)]. As the
value for �� (and the resulting value of k0) is increased, the
separation between k0 and the allowed states k1 and k2
decreases as is clearly observed in Fig. 1(d). For values of
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k0 above � 0:75kL, the final momentum states were no
longer distinguishable, and the condensate became
unstable.

To demonstrate the matter-wave analogue of an OPA,
we first created a small seed of atoms with quasimomen-
tum k1 before ramping on the moving lattice (see Fig. 2).
To create the seed we applied a Bragg pulse to the mag-
netically trapped condensate, outcoupling a small fraction
of atoms into the momentum state kBragg [19]. Immediately

after applying the pulse, the optical lattice was adiabati-
cally ramped on. In the rest frame of the lattice, the seed
has quasimomentum k1 � kBragg � k0. The phase-

matching condition for a given seed kBragg was found by

varying the frequency difference �� of the lattice, and
therefore the quasimomenta k0 and k1 of the atoms. As
shown in Fig. 2(d), when the phase-matching condition
was fulfilled, we observed amplification of the seed k1 as

well as its conjugate momentum k2. The growth of k1 and
k2 as a function of time are shown in Fig. 3.

The experiments were performed using an elongated
87Rb condensate created in a magnetic trap previously
described in Ref. [20]. The magnetic trap had a radial
(axial) trap frequency of 35(8) Hz. The condensate, con-
taining between 0:5–3:0� 105 atoms, was produced in the
j52S1=2; F � 1; mF � �1i state. The Bragg pulse was cre-

ated with two laser beams derived from the same laser,
which was red detuned from the 52S1=2; F � 1 !

52P3=2; F � 1 transition at � � 780 nm by 400 MHz,

and was � polarized. As shown in Fig. 2, the Bragg beams
were aligned such that atoms were outcoupled along the
long axis of the condensate. The intensity of the Bragg
pulse was chosen such that less than 5% of the initial
condensate was outcoupled into kBragg, and the length of

the pulse was 2 ms. The angle between the Bragg beams
could be varied to change the momentum of the outcoupled
atoms. The optical lattice was created using two counter-
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FIG. 2. Parametric amplification of scattered atom pairs in a
1D optical lattice. (a) First, a 2 ms Bragg pulse was applied to the
condensate. (b) The Bragg pulse seeded atoms along the long
axis of the condensate with momentum kBragg � �ka � kb� in the

lab frame. (c) The optical lattice was then adiabatically ramped
on and applied for 10 ms. When the phase-matching condition
was fulfilled, parametric amplification of atoms in the seeded
state k1 and its conjugate momentum state k2 was observed.
(d) Resonance curve showing amplification of k2, when k1 was
seeded. Amplification occurred only when the phase-matching
condition was met. For a fixed kBragg, the resonance condition

was found by varying the detuning �� of the lattice. The data
was taken for kBragg � 0:43kL. The fraction of amplified atoms

was obtained by subtracting images with and without the seed
pulse. (e) Absorption images showing amplification of k1 and k2
when the phase-matching condition is met. The center of the
resonance was at �� � 5450 Hz, close to the calculated value of
�� � 5350 Hz. The width of the resonance is determined by the
Fourier width of the Bragg pulse. Most of the scattered atoms in
the third image were independent of the seed pulse.
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FIG. 1. Dispersion curve for the optical lattice and experimen-
tal setup. (a) Band structure for a lattice depth of V � 0:5Erec.
The dashed line shows the free particle dispersion curve. The
dispersion relation of the lattice allows two atoms with momen-
tum k0 to elastically scatter into the final momentum states k1
and k2. Energy and quasimomentum are conserved when k0 is
the average of k1 and k2 and the three points on the dispersion
curve lie on a straight line. If k0 is varied, the allowed values for
k1 and k2 change. For values of k0 below � 0:55kL, where kL is
the wave vector of the optical lattice, atoms cannot scatter
elastically into different momentum states. The circles (squares)
show allowed states k0; k1; k2 for k0 � 0:66kL (0:70kL). As k0 is
increased, the final momentum states move closer together. Since
the scattering occurs within the lowest band of the lattice, the
final momentum is k2 � �2k0 � k1�Mod �2kL�. (b) A 87Rb Bose-
Einstein condensate is illuminated by two counter-propagating
laser beams with detuning ��, which create a moving optical
lattice. The condensate is initially held at rest. In the rest frame
of the lattice, the condensate has quasimomentum k0 �

m�
2@
��.

(c) As k0 was varied, we observed elastic scattering into states k1
and k2. (d) Absorption images for different lattice detunings, ��,
showing parametric generation. After ramping up the lattice, the
atoms were held for 10 ms at a constant lattice depth. They were
then released from the trap and imaged after 43 ms of ballistic
expansion. The field of view is 0:5 mm� 0:3 mm.
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propagating beams derived from the same laser with � �
1064 nm, and the frequency of the two beams were con-
trolled by two separate acousto-optic modulators (AOMs)
driven with a frequency difference ��. The lattice was also
aligned along the long axis of the condensate, and was
ramped on in 1 ms using an exponential ramp. After the
condensate was held in the lattice for a variable time � it
was then released from the trap and imaged after 43 ms of
ballistic expansion.

For all of our experiments, the depth of the optical lattice
was V � 0:5Erec with a band structure shown in Fig. 1.
When the process was not seeded, atoms were elastically
scattered into a narrow band of states k1 and k2, where both
energy and momentum were conserved. However, the
population in neither state was large enough for amplifica-
tion to be observed. When the process was seeded, ampli-
fication occurred when the quasimomentum was tuned
such that energy and momentum were conserved for the
states k0, k1, and the conjugate momentum k2. In our
experiment, the difference �k � k0 � k1 between the qua-
simomenta of the condensate k0 and seed k1 was set by the
angle of the initial Bragg pulse. For a given Bragg angle,
there is only one set of quasimomenta k0, k1, and k2 where
the phase-matching condition is fulfilled. To find this point,
we varied the velocity of the moving lattice for fixed hold

times. Results for kBragg � 0:43kL are shown in Fig. 2. The

phase-matched value for k2 is at 1:08kL, beyond the bound-
ary of the first Briollouin zone. Therefore, the atoms are
observed with a momentum k2 � �0:92kL. For kBragg �

0:43kL, 0:34kL, and 0:28kL, we observed resonances at
�� � 5450 Hz, 5750 Hz, and 6100 Hz, respectively. For
these Bragg angles and our lattice depth, the expected
values were 5350 Hz, 5700 Hz, and 6050 Hz.

In Fig. 3, 5% of the initial condensate containing N0 �
1:3�3� � 105 atoms was outcoupled with kBragg � 0:43kL.

The gain for the process is determined by the strength of

the nonlinear interaction U � 4�@2a
m

between atoms in the

condensate, where a is the s-wave scattering length. We
can estimate the maximum amplification rate to be � �
2n0U=@ [3], with _N1�2� � �N2�1�, where N1�2� is the num-

ber of atoms in the momentum state k1�2�, and n0 is the

condensate density. For N0 � 1:3�3� � 105, the maximum
growth rate should be � � 540 Hz. The amplification rate
will decrease as the state k0 is depleted. However, for our
small seeds, the amplification was limited by the loss of
overlap between the condensate and the amplified pulses.
The Thomas-Fermi radius (RTF) of the condensate in the
axial direction was 33 �m, and the recoil velocity (vrec)
for the final states k1 and k2 with respect to the initial
condensate was vrec � 1:8 �m=ms and 6:8 �m=ms, re-
spectively. The overlap integral between the amplified
atoms and the initial condensate can be approximated as
a Gaussian with time constant �c � 0:75RTF=vrec, which
for our parameters is 3.75 ms. We compare our results to
the modified rate equation

_N 2�1� � �N1�2�e
�t2=�2c : (1)

Since atoms are scattered into states k1 and k2 in pairs, one
would expect that the final atom number in the two states
(minus the initial seed) are equal. Instead, we observe a
smaller number in state k2 which we ascribe to the prox-
imity of k2 to the boundary of Brillouin zone. This leads to
instabilities, where atoms in state k2 are scattered into other
momentum states or into higher bands. If we allow a
variable scale factor in our model to correct for the loss
of atoms in N2, as shown in Fig. 3, the gain for N1;2 is in

agreement with the experimental data.
Amplification was also observed when atoms were

seeded in state k2. Because of the geometry of our experi-
mental setup, we were unable to load atoms directly into
k2 � �0:92kL. However when atoms with quasimomen-
tum k � 1:08kL were loaded into the lattice, the ramp-up
was no longer adiabatic due to their proximity to the
boundary of the first Brillouin zone. Because of this, atoms
from the seed were loaded into both the second Bloch band
(with k � 1:08kL) and the ground state (with k �
�0:92kL � k2). As shown in Fig. 3(b), the gain for this
process was almost identical to when atoms were seeded in
state k1.
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FIG. 3. Growth curve for atomic population in quasimomen-
tum states k1 and k2 when the process was seeded.
(a) Amplification of atoms with quasimomentum k1 (solid
points), and with the conjugate momentum k2 (open points),
when state k1 was seeded. (b) Amplification of atoms in k1 (solid
points), and k2 (open points), when k2 was seeded. The values for
k0; k1; k2 were 0:66kL, 0:23kL, and �0:92kL respectively. The
solid lines shows the expected gain using Eq. (1) with variable
scale factors for each curve as the only free parameters.

PRL 96, 020406 (2006)
P H Y S I C A L R E V I E W L E T T E R S week ending

20 JANUARY 2006

020406-3



The loss of overlap could be alleviated by using a more
extreme trap geometry in which the condensate is more
elongated, e.g., by confining atoms in a tight transverse
optical lattice. In this configuration, it may be possible to
observe the parametric scattering dynamics for longer time
scales, which may allow for the observation of Rabi oscil-
lations between k0 and k1, k2 as predicted in Ref. [14]. For
longer coherence times, parametric amplification could
also be an efficient means of producing pairs of momentum
entangled atoms for quantum information applications
[12,13], but the issue of secondary collisions out of states
k1 and k2 has to be carefully addressed.

For high atom numbers, and for large values of k0, the
condensate became unstable and scattered into a broad
band of final momentum states [Fig. 2(e)]. For kBragg �

0:43kL, the energy of atoms outcoupled by the Bragg
beams was � 370 Hz, whereas the chemical potential of
the condensate was � 300 Hz. Because of this, if the atom
number was increased significantly the momentum peaks
were no longer distinguishable. When the chemical poten-
tial of the condensate was larger than the separation be-
tween the phase-matched momentum states, the process
was self-seeded; i.e., the momentum spread of the initial
condensate contained atoms with momentum k0, k1, and
k2, and considerable scattering occurred. Similarly, if the
atom number was kept constant, and the value of k0 was
increased, the phase-matched momentum states moved
closer together until they were no longer distinguishable.
This occurred at values of k0 above � 0:75kL, and we
observed a dynamic instability. For larger atom numbers,
the critical value of k0 decreases. For values of k0 less than
0:55k0 elastic scattering cannot occur, and the system
should be stable for all atom numbers. Instabilities of
condensates in optical lattices has attracted much attention
recently, both theoretically [21–28] and experimentally
[29–33]. Most recently, dynamic instabilities of conden-
sates in moving lattices were observed in Refs. [29,30]. In
Ref. [30], the chemical potential was a factor of 3 higher
than in our experiment, leading to a dynamic instability for
all values of k0 above 0:55kL. Although discrete momen-
tum states could not be observed in those experiments, it is
possible that the mechanism for the dynamic instability is
self-seeded parametric amplification. Indeed, the phase-
matching condition for parametric amplification is identi-
cal to the resonance condition for dynamic instability in the
noninteracting limit [21]. After the submission of this
Letter, recent work on period-doubling instabilities in a
shaken optical lattice [34] was reinterpreted as parametric
amplification [35].

In conclusion, we have demonstrated a matter-wave
analogue of both optical parametric generation and optical
parametric amplification using a condensate moving in a
one-dimensional optical lattice. The optical lattice modi-
fied the dispersion curve and ensured phase matching. If
the separation of the phase-matched momentum states

becomes less than the speed of sound, a condensate will
self-seed the process and become dynamically unstable.
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Imaging the Mott Insulator Shells
by Using Atomic Clock Shifts
Gretchen K. Campbell,1* Jongchul Mun,1 Micah Boyd,1 Patrick Medley,1

Aaron E. Leanhardt,2 Luis G. Marcassa,1† David E. Pritchard,1 Wolfgang Ketterle1

Microwave spectroscopy was used to probe the superfluid–Mott insulator transition of a Bose-Einstein
condensate in a three-dimensional optical lattice. By using density-dependent transition frequency
shifts, we were able to spectroscopically distinguish sites with different occupation numbers and to
directly image sites with occupation numbers from one to five, revealing the shell structure of the Mott
insulator phase. We used this spectroscopy to determine the onsite interaction and lifetime for
individual shells.

T
he Mott insulator (MI) transition is a

paradigm of condensed matter physics,

describing how electron correlations can

lead to insulating behavior even for partially filled

conduction bands. However, this behavior

requires a commensurable ratio between electrons

and sites. If this condition for the density is not

exactly fulfilled, the system will be conductive.

For neutral bosonic particles, the equivalent

phenomenon is the transition from a superfluid

to an insulator for commensurable densities. In

inhomogeneous systems, as in atom traps, the

condition of commensurability no longer ap-

plies: For sufficiently strong interparticle inter-

actions, it is predicted that the system should

separate into MI shells with different occu-

pation number, separated by thin superfluid

layers (1–3).

The recent observation of the superfluid-

to-MI transition with ultracold atoms (4) has

stimulated a large number of theoretical and ex-

perimental studies E(5) and references therein^.
Atomic systems allow for a full range of control

of the experimental parameters, including tun-

ability of the interactions and defect-free prepa-

ration, making them attractive systems for

studying condensed matter phenomena. The MI

phase in ultracold atoms has been characterized

by studies of coherence, excitation spectrum,

noise correlations (4, 6, 7), and molecule

formation (8). Recently, by using spin-changing

collisions, Gerbier et al. selectively addressed

lattice sites with two atoms and observed the

suppression of number fluctuations (9).

In this study, we combined atoms in the MI

phase with the high-resolution spectroscopy used

for atomic clocks and used density-dependent

transition frequency shifts to spectroscopically

resolve the layered structure of the Mott shells

with occupancies from n 0 1 to n 0 5 and to

directly image their spatial distributions.

Bosons with repulsive interactions in an

optical lattice can qualitatively be described by

the Hamiltonian (10, 1),

Ĥ 0 jJ
X
bi, jÀ

â
.
i aj þ 1=2U

X
i

n̂iðn̂i j 1Þ þ

X
i

ðei jmÞn̂i ð1Þ

where the first two terms are the usual

Hamiltonian for the Bose-Hubbard model, the

last term adds in the external trapping potential,

and J is the tunneling term between nearest

neighbors, â
.
i and âi are the boson creation and

destruction operators at a given lattice site. U 0
(4pI2a/m)Xkw(x)k4d3x is the repulsive onsite

interaction, where I is Planck_s constant divided
by 2p, m is the atomic mass, a is the s-wave

scattering length, w(x) is the single particle

Wannier function localized to the ith lattice site,

and n̂i 0 â
.
i âi is the number operator for bosons

at site i. The last term in the Hamiltonian is due

to the external trapping confinement of the

atoms, where e
i
0 V

ext
(r
i
) is the energy offset

at the ith site due to the external confinement

and m is the chemical potential.

The behavior of this system is determined by

the ratio J/U. For low lattice depths, the ratio is

large and the system is superfluid. For larger

lattice depths, the repulsive onsite energy begins

to dominate, and the system undergoes a

quantum phase transition to a MI phase. For

deep lattices, the atoms are localized to individ-

ual lattice sites with integer filling factor n. This

filling factor varies locally depending on the

local chemical potential m
i
0 m j e

i
as

n 0 Modðmi=UÞ ð2Þ

where Mod is the modulo and decreases from

the center to the edge of the trap.

To prepare the atoms in the Mott insulating

phase, we first created a 87Rb Bose-Einstein

condensate in the the kF 0 1, m
F
0 j1À state

(where F and m
F
are the quantum numbers for

the total spin and its t component, respectively)

by using a combination of an Ioffe-Pritchard

magnetic trap and an optical dipole trap. The

optical trap was oriented perpendicular to the

long axis of the magnetic trap, creating a more

isotropic trapping potential that was better

matched to the optical lattice. The laser beam

for the optical trap had a 1/e2 waist , 70 mm
and was retroreflected. However, the polariza-

tion of the retroreflected beam was rotated such

that the interference between the two beams

had minimal contrast. The resulting trap had

radial and axial trap frequencies of w 0 2p �
70 Hz and w 0 2p � 20 Hz, respectively, where

the axial direction is now parallel to the optical

trap. A three-dimensional (3D) optical lattice

was created by adding two additional retro-

reflected laser beams derived from the same laser

at l 0 1064 nm. The lattice was adiabatically

ramped up by rotating the polarization of the

retroreflected optical trapping beam to increase

the interference contrast along that axis and by

increasing the laser power in the other two axes.

The lattice depth was increased by using an

exponential ramp with a 40-ms time constant.

After ramping on the lattice, all three beams were

linearly polarized orthogonal to each other and
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had different frequency detunings generated by

using acousto-optic modulators. The lattice depth

was up to 40E
rec
, where E

rec
0 I2k2/2m is the

recoil energy and k 0 2p/l is the wave vector of

the lattice light. At 40E
rec
, the lattice trap

frequency at each site was w
lat
0 2p � 25 kHz,

and the external trap frequencies increased to

w 0 2p � 110 Hz and w 0 2p � 30 Hz in the

radial and axial directions, respectively.

Zeeman shifts and broadening of the clock

transition from the F 0 1 to the F 0 2 state were

avoided by using a two photon transition

between the k1, j1À state and the k2, 1À state,

where at a magnetic bias field of È 3.23 G both

states have the same first-order Zeeman shift

(11). The two-photon pulse was composed of

one microwave photon at a fixed frequency of

6.83 GHz and one radio frequency (rf) photon at

a frequency of around 1.67 MHz. The pulse had

a duration of 100 ms, and when on resonance

the fraction of atoms transferred to the k2, 1À

state was less than 20%. After the pulse, atoms

in the k2, 1À state were selectively detected with

absorption imaging by using light resonant with

the 52S1/2k2, 1À Y 52P3/2k3, 1À transition. For

observing the spatial distribution of the Mott

shells, we imaged the atoms in the trap. For

recording spectra, we released the atoms from

the trap and imaged them after 3 ms of ballistic

expansion in order to reduce the column density.

When the two-photon spectroscopy is per-

formed on a trapped condensate without a lattice,

the atoms transferred to the k2, 1À state have a

slightly different mean field energy because of the

difference between a
21
and a

11
scattering lengths,

where a
21

is the scattering length between two

atoms in states k2, 1À and k1, j1À and a
11

is the

scattering length between two atoms in the

k1, j1À state. This difference in scattering

lengths leads to a density-dependent shift to the

resonance frequency, Dn º r(a
21
j a

11
), where

r is the condensate density (11). This collisional

shift is commonly referred to as the clock shift

(12) because of its importance in atomic clocks,

where cold collisions currently limit the accura-

cy (13, 14). When performed on a condensate

with peak density r
0
in a harmonic trap in the

limit of weak excitation, the line shape for the

two-photon resonance is given by (15):

IðvÞ 0 15hðv j v0Þ
4r0DE

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1j

hðv j v0Þ
r0DE

s
ð3Þ

where n
0
is the hyperfine transition frequency

and the mean field energy difference is

DE 0
h2

pm
ða21 j a11Þ ð4Þ

In the case of 87Rb, a
21
0 5.19 nm and a

11
0

5.32 nm (16). Both the frequency shift and the

linewidth increase with the condensate density.

As the lattice is ramped on, the peak density of

the condensate in a given lattice site increases as

r0ðrÞ 0 m j 1=2mw2
trapr

2
� �

1=U ð5Þ

where w
trap

is the external trap frequency for the

combined magnetic and optical trap, and, by

using the Thomas-Fermi approximation m, the
chemical potential, is given by

m 0

"
15=16

ðl=2Þ3m
3=2NUw3

trapffiffiffi
2

p
p

#2=5

ð6Þ

where N is the total atom number. For low lattice

depths, the system is still a superfluid, delocalized

over the entire lattice. However, the two-photon

resonance line is shifted and broadened because

of the increased density, with the center of the

resonance at n 0 n
0
þ 2r

0
DE/3h. For deep

lattices in the MI regime, the repulsive onsite

interaction dominates, number fluctuations are

suppressed, and each lattice site has a sharp

resonance frequency determined by the occupa-

tion number in the site. The separation between

Fig. 1. Two-photon spectroscopy across the superfluid-to-MI transition. Spectra for 3D lattice depths of
0Erec (open squares), 5Erec (open triangles), 10Erec (open circles), 25Erec (solid squares), and 35Erec
(solid circles) are shown. The spectra are offset for clarity. The shift in the center of the n 0 1 peak as
the lattice depth is increased is due to the differential AC Stark shift from the lattice. The dotted lines
show Gaussian fits of the peaks.

Fig. 2. Probing the
onsite interaction energy.
(A) The separation be-
tween the n 0 1 and
n 0 2 peaks is shown for
lattice depths of V 0
25Erec (square) and V 0
35Erec (circle). As the
lattice depth was in-
creased, the separation
increased from 22(1) Hz
to 30(1) Hz. The shaded
area gives the expected value determined from a band structure
calculation, including the uncertainty in the scattering lengths. The
uncertainty in the measured separation is indicated by the size of the
points. (B) Location of resonances for all MI phases relative to the n 0 1
phase for V 0 25Erec and V 0 35Erec. For low site occupation (n values

from 1 to 3), the separation between the resonances is roughly constant,
implying constant U. For V 0 35Erec, the separation between the n 0 4 and
n 0 5 peaks was 22(2) Hz, a 27% decrease from the 30(1) Hz separation
between the n 0 1 and n 0 2 peaks. The slope of the lines is fit to the
separation between the n 0 1 and n 0 2 peaks.
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the resonance frequencies for the n and n j 1

MI phases is given by

dv 0
U

h
ða21 j a11Þ=a11 ð7Þ

The linewidth of the resonances is no longer

broadened by the inhomogeneous density and

should be limited only by the bandwidth of the

two-photon pulse.

The resonance transitioned from a broadened

line to several sharp lines as the lattice depth was

increased (Fig. 1). At a lattice depth of V 0 5E
rec
,

the line was broadened and the line center was

shifted slightly because of the increased density.

At V 0 10E
rec
, the line was shifted and broadened

further, and in addition the line shape became

asymmetric as the atom number in lattice sites

with small occupation was squeezed. For deeper

lattice depths, the system underwent a phase

transition to a MI phase, and discrete peaks

appeared, corresponding to MI phases with

different filling factors; for V 0 35E
rec
, MI phases

with occupancies of up to five were observed.

When the lattice depth was increased inside

the MI regime (from V 0 25E
rec

to V 0 35E
rec
),

the separation between the resonance peaks

increased, presumably because of the larger

onsite interaction energy as the lattice trap was

increased. As given in Eq. 7, the separation

between the peaks provides a direct measure-

ment of the onsite interaction energy, U. Our

results are in good agreement with calculated

values of U (Fig. 2A). Although the separation

between the n 0 1, n 0 2, and n 0 3 peaks is

roughly constant, for higher filling factors the

separation between the peaks decreases; the

effective onsite interaction energy becomes

smaller for higher filling factors (Fig. 2B). This

result shows that for low occupation numbers the

atoms occupy the ground state wave function of

the lattice site, whereas for larger occupation

numbers, the repulsive onsite interaction causes

the wave function to spread out, lowering the

interaction energy. From a variational calcula-

tion of the wave function similar to (17), we

find that the onsite energy for the n 0 5 shell

should be È20% smaller than that for the n 0 1

shell, in agreement with the measured value

(Fig. 2B).

The peaks for the different occupation

numbers were spectrally well separated. There-

fore, on resonance, only atoms from a single

shell were transferred to the k2, 1À state. An

image of these atoms (without any time of

flight) shows the spatial distribution of this

shell. Figure 3B shows absorption images for

n 0 1 to n 0 5 shells. As predicted (1), the n 0 1

MI phase appears near the outer edge of the

cloud. For larger n, the radius of the shell

decreases, and the n 0 5 sites form a core in

the center of the cloud. The expected radius for

each shell was obtained from Eq. 2 by using

the measured values for the onsite interaction.

The observed radii were in good agreement

except for the n 0 1 shell, which may have

been affected by anharmonicities in the exter-

nal trap. Absorption images taken with rf

values between the peaks show a small signal,

which may reflect the predicted thin superfluid

layers between the insulating shells; however,

this needs be studied further with improved

signal-to-noise ratio. The expected absorption

image of a shell should show a column density

with a flat distribution in the center and raised

edges. However, because of limitations (reso-

lution and residual fringes) in our imaging

system, these edges were not resolved.

Because we were able to address the dif-

ferent MI phases separately, we could determine

the lifetime for each shell. For this, the atoms

were first held in the lattice for a variable time t
before applying the 100-ms two-photon pulse.

For the n 0 1 MI phase and ignoring technical

noise, the lifetime should only be limited by

spontaneous scattering from the lattice beams.

Even for the deepest lattices, the spontaneous

scattering rate is less than 10j2 Hz. For the n 0
2 MI phase, the lifetime is limited by dipolar

relaxation, which for 87Rb is slow, with a rate G
10j2 Hz. For sites with n Q 3, the lifetime is

limited by three-body recombination with a rate

equal to gn(n j 1)(n j 2) (18), with g 0 0.026

Hz for our parameters. This gives three-body

lifetimes of t
3B

of 6.2 s, 1.6 s, and 0.6 s for the

n 0 3, n 0 4, and n 0 5 MI phases, respectively.

This calculation of g assumes for the density

distribution the ground state of the harmonic

oscillator potential, so for higher filling fac-

tors the actual lifetime could be higher. We

Fig. 4. Lifetime of individ-
ualMI shells.The lifetime for
each MI phase can be
measured independently by
adding a hold time before
applying the two-photon
pulse. Spectra are shown
for hold times of 0ms (solid
circles), 100 ms (solid
squares), 400 ms (open
circles), and 2000 ms (open
squares). The lattice depth
was V 0 35Erec except for
the 100-ms hold time, for
which it was V 0 34Erec. The
lines show Gaussian fits to
the peaks, and the spectra
were offset for clarity.

Fig. 3. Imaging the shell structure of the MI. (A) Spectrum of the MI at V 0
35Erec. (B) Absorption images for for decreasing rf frequencies. Images a to
e were taken on resonance with the peaks shown in (A) and display the
spatial distribution of the n 01 to n 0 5 shells. The solid lines shows the

predicted contours of the shells. Absorption images taken for rf frequencies between the peaks (images i to iv) show a much smaller signal. The field of
view was 185 mm by 80 mm.
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show relative populations as a function of the

hold time and derive lifetimes as t almost

equal to 1 s, 0.5 s, and 0.2 s for the n 0 3, n 0
4, and n 0 5 MI phases, respectively (Fig. 4);

this is shorter than predicted, which is possibly

due to secondary collisions. For n 0 1 and n 0
2, lifetimes of over 5 s were observed.

We expect that this method can be used to

measure the number statistics as the system un-

dergoes the phase transition. One would expect

that the spectral peaks for higher occupation num-

ber become pronounced only at higher lattice

depth; an indication of this can be seen already in

Fig. 1. For low lattice depths, the tunneling rate is

still high, but one can suddenly increase the lat-

tice depth and freeze in populations (19), which

can then be probed with high-resolution spec-

troscopy. Fluctuations in the atom number could

identify the superfluid layers between the Mott

shells. In addition, by applying a magnetic gra-

dient across the lattice, tomographic slices could

be selected, combining full 3D resolution with

spectral resolution of the site occupancy. These

techniques may address questions about local

properties that have been raised in recent theo-

retical simulations (20). The addressability of

individual shells could be used to create systems

with only selected occupation numbers (e.g., by

removing atoms in other shells). Such a prepara-

tion could be important for the implementation of

quantum gates, for which homogenous filling is

desirable. For atoms other than rubidium, atomic

clock shifts are much larger, e.g., for sodium,

larger by a factor of 30. Therefore, it should be

easier to resolve the MI shells, unless the

collisional lifetime of the upper state of the clock

transition sets a severe limit to the pulse duration.

Note added in proof: After submission of

this work, the vertical profile of an n 0 2 MI

shell was obtained by using spin-changing

collisions and a magnetic resonance imaging

technique (21).
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Nature 415, 39 (2002).
5. I. Bloch, Nature Phys. 1, 23 (2005).
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Evidence for a Past High-Eccentricity
Lunar Orbit
Ian Garrick-Bethell,* Jack Wisdom, Maria T. Zuber

The large differences between the Moon’s three principal moments of inertia have been a mystery
since Laplace considered them in 1799. Here we present calculations that show how past high-
eccentricity orbits can account for the moment differences, represented by the low-order lunar
gravity field and libration parameters. One of our solutions is that the Moon may have once been
in a 3:2 resonance of orbit period to spin period, similar to Mercury’s present state. The possibility
of past high-eccentricity orbits suggests a rich dynamical history and may influence our
understanding of the early thermal evolution of the Moon.

T
he Moon is generally thought to have

accreted close to the Earth and migrated

outwards in a synchronously locked low-

eccentricity orbit. During the early part of this

migration, theMoonwas cooling and continually

subjected to tidal and rotational stretching. The

principal moments of inertia A G B G C of any

satellite are altered in a predictable way by

deformation due to spin and tidal attraction. The

moments are typically characterized by ratios

that are easier to measure, namely, the libration

parameters b 0 (C – A)/B and g 0 (B – A)/C,

and the degree-2 spherical-harmonic gravity

coefficients C
20

0 (2C – B – A)/(2Mr2) and

C
22

0 (B – A)/(4Mr2), where M and r are the

satellite mass and radius. Of these four values

b, g, and C
20

can be taken as independent.

Using the ratio (C – A)/A, Laplace was the first

to observe that the lunar moments are not in

equilibrium with the Moon_s current orbital

state (1). He did not, however, address the

possibility of a Bfossil bulge,[ or the frozen

remnant of a state when the Moon was closer to

the Earth. Sedgwick examined the lunar

moments in 1898, as did Jeffreys in 1915 and

1937, and both authors effectively showed that

b is too large for the current orbit, suggesting

that the Moon may carry a fossil bulge (2–5).

However, Jeffreys showed that the fossil

hypothesis might be untenable because the ratio

of g/b 0 0.36 does not match the predicted ratio

of 0.75 for a circular synchronous orbit (equiv-

alently, C
20
/C

22
0 9.1, instead of the predicted

ratio of 3.33). Indeed, using data from (6), none

of the three independent measures of moments

represent a low-eccentricity synchronous-orbit

hydrostatic form; C
20

0 2.034 � 10j4 is 22

times too large for the current state, and b 0

6.315 � 10j4 and g 0 2.279 � 10j4 are 17 and

8 times too large, respectively (7, 8).

The inappropriate ratio of g/b orC
20
/C

22
has

led some to dismiss the fossil bulge hypoth-

esis as noise due to random density anomalies

(9, 10). However, the power of the second-

degree harmonic gravity field is anomalously

high when compared to the power expected

from back extrapolating the power of higher

harmonics (7, 11). This suggests that the bulge

may be interpreted as a signal of some

process. Degree-2 mantle convection has been

proposed as a means of deforming the Moon

(12, 13), but the dissimilarity of all three prin-

cipal moments violates the symmetry of any

simple degree-2 convection model (12). The

Moon_s center-of-mass/center-of-figure offset

influences the moment parameters slightly,

but that problem is geophysically separate and

mathematically insignificant to the degree-2

problem (8, 14).

Because C
20

is due primarily to rotational

flattening, and C
22

is due to tidal stretching,

the high C
20
/C

22
ratio seems to imply that the

Moon froze in its moments while rotating

faster than synchronous. However, in such

cases no constant face would be presented to

the Earth for any C
22

power to form in a

unique lunar axis. This apparent dilemma can

be avoided by considering that in any eccen-

tric orbit with an orbit period to spin period

ratio given by n:2, with n 0 2, 3, 4, I, the

passage through pericenter results in higher

C
22

stresses throughout a single elongated

axis (hereafter called the pericenter axis).

When the stresses experienced over one orbit

period are time-averaged, the highest stresses
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Appendix D

Raman amplification of Matter

Waves

This appendix contains a reprint of Ref. [99]: D. Schneble, G.K. Campbell, E.W.

Streed, M. Boyd, D.E. Pritchard, and W. Ketterle, Raman amplification of matter

waves, Phys. Rev. A 69, 041601(R) (2004).
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a Strongly Interacting 1D Superfluid to a Mott Insulator. Phys. Rev. Lett.,

92:130403, 2004.
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