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Abstract

The methods of atomic physics offer a unique opportunity to study strongly correlated
many body systems. It is possible to confine BECs in periodic optical lattices to form
an analog of a solid state system. The study of these cold atoms in optical lattice
systems may prove a very useful testing ground for novel states of matter, testing
fundamental condensed matter theory, and may help illuminate a possible connection
between the mechanism behind high temperature superconductivity and quantum
magnetism.

This thesis will focus on trapping cold bosonic atoms in spin dependent optical
lattices to engineer a system that behaves according to the Hubbard model. By
loading the atoms into a state dependent lattice, it may be possible to explore the
full phase space of the Heisenberg model and see magnetic super exchange-driven
magnetic ordering in a variety of lattice geometries. The aim of this thesis is primarily
to explore some of the tools that may be needed accomplish this task.
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Chapter 1

Introduction: Magnetic Ordering

and Spin Exchange

The purpose of this thesis is to explore the possibility of investigating magnetic su-

per exchange with ultra cold atoms confined in an optical lattice. Ultra cold atoms

confined in optical lattices are very much an analog of condensed matter systems.

Although these systems are typically larger than lattices in solid state systems, ultra

cold atoms in lattices behave in much the same way traditional condensed matter

systems displaying such phenomenon as BCS superfluidity [1-5] and Mott insulation

[6-9]. Many of the traditional tools of atomic physics such as state preparation and

high precision spectroscopy can be combined with precise control of atomic interac-

tions via the application of external fields. These tools offer an attractive opportunity

to engineer many body Hamiltonians that are of interest in condensed matter physics

for investigating strongly correlated physics and to compare experimental results of

"pristine" atomic systems with first principle calculations.

Using cold atoms in optical lattices, it may be possible to simulate condensed

matter systems along the lines of Feynman's original idea for analog quantum sim-

ulation: build one quantum system (cold atoms in lattices that behave according to

the Bose-Hubbard model) to simulate another (solid state systems that interact via

an effective Heisenberg model) [10]. Building these kinds of quantum simulators may

be an important avenue for understanding strongly correlated physics and develop-



ing materials that are not well described by current mean field approaches to states

of broken symmetry or Landau Fermi liquid theory of weakly interacting electron

systems. Calculating the properties of even the simplest strongly correlated system

models, such as magnetic properties in the Heisenberg model, is challenging. Experi-

mentally confirming the results of some of these models is one of the major challenges

of modern experimental condensed matter physics.

Currently, there are two main avenues of research that are predicated on being

able to realize the Bose-Hubbard Hamiltonian: high temperature superfluidity and

quantum magnetism. This thesis will deal primarily with the latter in the context

of being able to observe magnetic ordering as the result of magnetic super exchange

with bosons in a three-dimensional cubic lattice. A natural extension of studying

magnetic super exchange with ultra cold bosons in optical lattices presented here is to

use a frustrated lattice in two dimensions with antiferromagnetic interactions. These

systems offer the opportunity of observing novel states of matter such as resonating

valence bond states and spin liquid states, as well as possible application in fault-

tolerant quantum computation [11]. Investigating these exotic spin systems may

shed light on the mechanism of high temperature superconductivity.

1.1 Magnetic Ordering with Classical Dipolar In-

teractions

The semiclassical picture of magnetic ordering is one based on dipole-dipole coupling

of atomic magnetic moments. What sorts of magnetic ordering are expected from

such an interaction? Consider Fig. 1.1 where dipole moments are arranged in a three

dimensional cubic lattice. The Hamiltonian for such as system is H = -/ - B, where

1t is the magnetic dipole moment of the atoms and B is the local magnetic field from

the surrounding magnetic dipoles. Consider populating the lattice with atoms one at

a time and consider only nearest neighbor interactions.

If one atom's dipole moment points along a lattice axis, the nearest neighboring



Figure 1-1: Semi classical dipole coupling between the magnetic moments of atoms
to their local field. The figure depicts the predicted magnetic ordering in a cubic
lattice. If the magnetic moment of the atom in the center of the array points along
a lattice axis, it generates a dipole magnetic field as shown by the lines in the figure.
The neighboring magnetic moments of atoms on the left and right of this central
atom point in the opposite direction to minimize their interaction energy. A classical
dipole coupling scheme then leads to striped antiferromagnetic ordering and excludes
the ferromagnetic state as the ground state at zero temperature.

atoms align their magnetic dipole moments with the magnetic field from the first atom

to minimize the energy of the configuration. Continuing to fill the lattice produces a

stripped pattern of dipole moments shown in Fig. 1.1. This system is distinctly odd

and does not display ferromagnetic ordering as one might naively expect. In fact,

changing the above system to a ferromagnetic state costs an energy of order twice

the dipole energy times half the number of atoms in the system to flip the spin of

roughly half of the atoms in the system in the thermodynamic limit. Clearly, this

model of magnetic ordering fails spectacularly: it expressly excludes the phenomenon

of a ferromagnetic ordered ground state in the low temperature limit.



1.2 Curie Temperature with Classical Dipolar In-

teractions

Even though classical dipolar interactions forbid a ferromagnetic ground state, sup-

pose one existed. It is possible to estimate the Curie temperature using a semiclassical

model of magnetic interactions in matter [12].

T N0
2  (1.1)

where p = eh/2m is the magnetic moment of an electron, and A is an adjustable

parameter that depends on geometry and is of order unity. For ferromagnetic sub-

stances like nickel, the density N - 1030 m-3, so the Cure temperature is of order

100 mK and is approximately three orders of magnitudes below observed Curie tem-

perature. If the ordering was classical, the Curie temperature is of order the nearest

neighbor dipole interaction energy, well below the observed Curie temperatures of

most ferromagnets (100 - 1000 K).

A semi-classical model of magnetic ordering based on classical dipole coupling

not only predicts ferromagnetic ground states do not exist, but that if one did exist,

the spin ordering would melt at very low temperatures. Magnetic ordering is not a

classical or semi-classical phenomenon; magnetic ordering is explained by quantum

mechanics. The model typically invoked to explain magnetic ordering is the so called

Heisenberg model

H - J ta is pul qa (1.2)
i=x,y,z;j

with the magnetic exchange constant J that is purely quantum mechanical in nature.



1.3 Quantum Magnetism and Magnetic Super Ex-

change

The quantum mechanical explanation for magnetic ordering generally involves two

types of exchange mechanisms: direct exchange and super exchange [13]. In the

direct ferromagnetic exchange case, electrons form spin symmetric states. This forces

the two-electron spatial wavefunction to be antisymmetric and reduces the coulombic

repulsion between the electrons, thus lowering the interaction energy. This result is

derivable from first order perturbation theory and is analogous to Hund's rules for

electrons in atoms. In the antiferromagnetic direct exchange case, an electron can

hop to a site with anti-parallel spin, thus lowering the kinetic energy of the electron.

This result is also derived from first order perturbation theory.

Magnetic super exchange is a virtual double occupation that is derivable from

second order (or higher order) perturbation theory. The physical interpretation is

that an electron hops to a neighboring site with anti-parallel spin, and owing to

a large on site repulsion energy, hops back to its original location. This virtual

double occupation process can reduce the kinetic energy of the electron system. Super

exchange process will be described more fully later in this thesis (see section 2.3). This

process is responsible for long range antiferromagnetic ordering in cuprate materials,

which turn superconducting when doped.

1.4 Quantum Magnetism and High Temperature

Superconductivity

The mechanism for high temperature superconductivity has been a major puzzle for

several decades [14-16]. The parent compounds of the high T, cuprates are antifer-

romagnetic Mott insulators and in general, high T, superconducting materials are

generally found close to Mott insulators with magnetic ordering. These supercon-

ducting materials have anisotropic pairing of electrons (d-wave pairing), and there



are some indications that d-wave pairing can be seen in the Hubbard model [17], a

model that is connected to the Heisenberg model.

Experiments have established the proximity of the undoped Mott insulator to the

doped superconductor, but there is still debate about the connection between the

undoped Mott insulator and the doped superconductor [18, 19]. The Mott insulating

state develops long ranged antiferromagnetic Neel ordering, but doping this insu-

lator extinguishes the magnetic ordering and the system becomes superconducting.

Current understanding suggests that doping the antiferromagnetic Mott insulator

effectively frustrates the Neel order and pushes the system into a superconducting

regime. Some have suggested that an understanding of the cuprate materials may

come from understanding Mott insulating states with no long range magnetic order,

such as spin liquids. Upon doping such nonmagnetic states, the system may become

a d-wave superconductor [18, 20-24].

If this is the origin of high temperature superconductivity, realizing and studying

spin liquids with cold atoms in optical lattices may prove a very fruitful avenue to

understanding high temperature superconductivity. It may be possible to achieve

a spin liquid with cold atoms in optical lattices by engineering antiferromagnetic

interactions between atoms on a frustrated lattice such as a triangular or Kagome

lattice [25].



S(a) (b)
4-,

4-j
A - d-wave SC2:3 L~ d-wave SC Spin Liquid

A AF

Doping chemical potential

Figure 1-2: Illustration of a high Tc superconductor phase diagram as a function
of frustration and doping at zero temperature as suggested by [18]. The y-axis is
designated by the amount of frustration in the system, while the x-axis is doping.
At zero doping and finite frustration, there are at least two Mott insulating states:
an antiferromagnetic state (AF) with long range Neel order, and a spin liquid state.
The spin liquid state has no long range spin order but has well localized atoms at
lattice sites. Doping either of these states may lead to high temperature, d-wave
superconductivity (SC). Realizing antiferromagnets and spin liquids with cold atoms
in lattices may lead to new discoveries about the nature of high temperature super
conductivity.
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Chapter 2

The Bose-Hubbard Hamiltonian

The Hubbard Hamiltonian is an important model used to explain a wide variety of

phenomena in condensed matter physics, and its transformation to the Heisenberg

Hamiltonian forms the basis of understanding magnetic super exchange ordering and

predicts several exotic phases of matter such as spin liquids and valence bond states.

Another main area of research is the applicability of the Hubbard model to explain

high temperature superconducting materials. The Hubbard model may capture the

features of d-wave pairing by considering repulsive fermions on a lattice [17].

After the realization of Bose-Einstein condensation with ultra cold alkali gases in

the mid 1990s, Jaksch et al. suggested the possibility of studying the Hubbard model

using cold bosons in an optical lattice to observe the superfluid to Mott insulator

transition [26]. This transition was experimentally observed first by Greiner et al in

2002 [6]. The Bose-Hubbard model describes interacting bosons on a periodic lattice.

The general idea is that if the lattice potential is weak enough, the bosons can tunnel

from lattice site to lattice site to lower the kinetic energy of the system. However,

there is a potential energy cost from particles interacting with the light field and

scattering off of each other. The relative sizes of these energy terms determines the

phase of the system. The Bose-Hubbard model makes a few assumptions about the

energy scales involved in the system. The first is that the band gap is much larger

than both the thermal and interaction energies of the particles. The second is that the

Wannier functions decay rapidly compared to the lattice spacing. The Bose-Hubbard



model is

-t + aai) nin - 1) + E ini (2.1)
ij i i

where t represents the hopping matrix element and U is the potential enegy. The Ei

term is included because focusing light on atoms produces a slowly varying trapping

potential as a function of space. This term acts like a spatially dependent chemical

potential. In the ci = 0 limit, the Bose-Hubbard model has two terms that compete

to determine the state of the system: the kinetic energy term t favors particle de-

localization while the potential energy U term that favors one particle per site. By

adjusting the laser intensity of an optical lattice confining the bosons, it is possible to

tune the ratio U/t and thus go from a localized, Mott insulating state with an integer

number of particles per site, to a delocalized superfluid state. This is the superfluid

to Mott insulator quantum phase transition within the context of the Bose-Hubbard

model as worked out by Fisher et al [27].

2.1 From a weakly interacting quantum gas to the

single component Bose-Hubbard model

Now we want to derive the Bose-Hubbard model starting from the Hamiltonian de-

scribing a weakly interacting quantum gas of bosons. The Hamiltonian for a weakly

interacting quantum gas of bosons is [28]

H= d3 xIt(x) p2 + V(x) + UT4(x) (x) + 7ra d3 X'' t (x)It(x)I(x)I(x) (2.2)

In the above equation, T (it) is the bosonic field destruction (creation) operator

for a single boson in state la) at the position x. For multicomponent system, the

field operators can be summed over the various states j0i). A slowly varying external

trapping potential UT(x) compared to the period of the lattice is included and can

be the result of an external applied magnetic field or from the envelope of focused

laser beams that define an optical lattice. The s-wave scattering length is given by



as. In the ultra cold regime, the bosonic system is well approximated by a single

band model, so the bosonic field operators can be expanded in terms of creation and

destruction operators at individual lattice sites multiplied by the appropriate Wannier

functions centered at each lattice site xi.

T (x) = aiw(x - xi) (2.3)

The Hamiltonian now reads:

H - ti(aaj + aai) + E Uij t (2.4)
ii ija

where the coefficients tij and Uij are given by:

- d3xw(x - xi) (2 + V(x) + UT(x))w(x - x3 ) (2.5)

Ui 4a 2( i)2( x _ j) (2.6)
m J

Since the Wannier functions are orthogonal, and assuming an isotropic, deep lattice

and neglecting next nearest neighbor interactions, then the Uj can be replaced by

U, and can be interpreted as an onsite interaction while tij = t, the tunneling matrix

element. Adding the trapping potential back in yields the Bose-Hubbard Hamiltonian

for a single component bosonic system in a lattice

SU
H -t E ala + aa +- E ni(ni - 1) + E ini (2.7)

(ij) 2 i

2.2 Phases of the single component Bose Hubbard

Hamiltonian

It is difficult to solve Eq. 2.7 exactly for all ratios t/U, although the features of this

model and the properties of the quantum phase transition have been worked out as

a function of t/U [27]. In the limit U/t = 0, the many particle wave function is



delocalized to lower the kinetic energy of the system. The system is an ideal BEC,

and in the limit U/t -- 0, the ground state of the Bose Hubbard Hamiltonian is a

Gross-Pitaevskii state with a condensate fraction that approaches unity (Ult = 0 is

an ideal BEC). In the thermodynamic limit, the state of the system can be thought

of as a collection of local coherent states at each lattice site with average occupancy

(n) = N/NL where N is the number of atoms and NL is the number of lattice sites

[29]. In the opposite limit, t/U = 0, the atoms minimize their energy by fixing

the number of particles per lattice site to an integer value; the system is a Mott

insulator. Including the effect of the effective chemical potential from an overall

(approximately) harmonic external confinement, the insulator develops a "wedding

cake" structure with an integer number of particles per lattice site that decreases in a

stepwise fashion as one moves toward the edge of the cloud. This transition, including

the wedding cake structure, has been observed experimentally [6, 8, 9]. More detailed

information about this phase diagram can be found in [29] and the references therein.

2.3 Two component Bose Hubbard model

If there is one type of boson in an optical lattice in two different hyperfine levels, Eq.

2.7 should be modified to include the tunneling of both species individually, as well as

both inter- and intra- component interactions Ua, Ub, and Uab. The two component

Bose-Hubbard model is [25, 30]

H= - ta(aaj+aaj)+tb(b ibji bi)+Uab nhainbi S Unicr(nio-l)-5 irni

(ij) i i,a=a,b ia

(2.8)

The last term ei, arises from an additional trapping potential and o = a, b refers

to the two atomic hyperfine levels. If there is no transfer between the two different

hyperfine levels, the magnetization (na - rb) is conserved. The magnetization of the

sample can be used to set the effective chemical potentials for the two component

bosonic system.

As pointed out by Duan et. al [25] and E. Altmann et. al [30], it is possible



in principle to control the tunneling rates and interaction energies of cold atoms in

an optical lattice by making a state dependent optical lattice. The state dependent

optical lattice can be used to control spin dependent tunneling and interaction energies

of a two species ultra cold atomic system. This magnetic super exchange energy allows

one to control the exchange energy of the Heisenberg Hamiltonian which opens up

the possibility of studying magnetic ordering at the quantum level. This Hamiltonian

(Eq. 2.8) has a number of interesting insulating phases when U > t. The tunneling

term t is a small perturbation in this regime, and perturbation theory illuminates

the effective Hamiltonian of this system. Using the Schrieffer-Wolf transformation or

other methods [25, 30, 31], the two bosonic species Hamiltonian is equivalent to the

following Heisenberg Hamiltonian to leading order in t2/U

H = Z Az~r~u - Al(auu + ayr.) (2.9)

(ij)

neglecting a term proportional to t2/U - a z that can be canceled with an applied

magnetic field. The effective z-spin operator is related to the operators in the two

species Bose Hubbard model by ao = a aaia- abaib ia - nib, the difference between

the number of atoms in state "a" and the number of atoms in state "b." The x and

y spin operators are given by o = aaaib + aaiand = -i(aaaib - a aia). Since

the commutator [at, aj] = Jij, it is easy to show that the effective spin operators obey

the commutation relation [ai, a j ] = iEijkUk The coefficients Az and A1 are given by

[25]:

t 2 + t2 t 2  t2
AZ a b a b (2.10)

2Ub Ua Ub

tatb
A ttb (2.11)

Uab

Although a more complicated process is necessary to calculate the coefficients AL

and Az, it is possible to understand the magnitude and sign of these coefficients using

second order degenerate perturbation theory. In the insulating limit, take the zeroth

order Hamiltonian to have only the interaction terms proportional to U, and Uab.



The state of the system is an insulator with either a single single atom in hyperfine

state la) or in state Ib) at every lattice site. The energy of this system is zero and has

high degeneracy. For simplicity, consider a two site, two atom, single band model.

The matrix elements of the degenerate Hamiltonian are

n (H(h) n)H( hpn)

where la) and 113) are the possible insulating states in the Hilbert space of the sys-

tem and Hhop is the perturbing Hamiltonian: the hopping terms in Eq. 2.8 . In

this case, there are four possible states because there are two sites with two internal

states. The hopping matrix can tunnel a boson of either hyperfine state from lattice

site to another, but upon doing so, the other hopping matrix element should make a

boson hop back to the empty lattice site to ensure there is only one boson per lattice

site. The order of the degenerate Hamiltonian's matrix elements is therefore -t 2/U.

Since bosons can be in the same quantum state, a boson can hop from one lattice

site to a neighboring site with a boson in the same hyperfine state. The boson can

then hop back to its original site, resulting in a reduction of the kinetic energy by

an amount tI/U,. Since there are two hyperfine species, either one can undergo this

process. This stimulative term (reduction of the energy of the system from having

alike hyperfine species neighbors) drives z-ferromagnetic ordering of bosons in three

dimensional, cubic optical lattices. Neighboring bosonic atoms with opposite spins

can also tunnel to adjacent lattice sites and tunnel back, resulting in a kinetic energy

decrease of order t2 /Uab (the negative sign is picked up by the spin operators ,z).

This antiferromagnetic term drives the bosons confined in a cubic, three dimensional

lattice to adopt classical Neel antiferromagnetic ordering. Finally, a boson in a par-

ticular hyperfine state can hop to its neighboring site and the opposite hyperfine state

neighbor can hop to fill the newly created hole. This reduces the kinetic energy by an

amount of order tatb/Uab and drives bosonic atoms to adopt XY ferromagnetic order.

In the case of fermions, there is no stimulative term because a fermion hopping to

an adjacent site in the same hyperfine state would violate the Pauli exclusion principle.



Fermionic atoms can hop to an adjacent site with opposite spin and hop back, lowering

the kinetic energy and driving the system to adopt classical Neel antiferromagnetic

ordering in the three dimensional cubic lattice. Like bosons, fermions in a particular

hyperfine state can also hop to a neighboring site in the opposite hyperfine state, and

the neighbor can hop back to fill the newly created hole. However, there is a minus

sign in front of A1 in the case of fermions because of the antisymmetry requirements.

This drives the fermionic atoms to adopt XY Neel order instead of XY ferromagnetic

order as in the case of bosonic atoms.

Without the second order process of virtual occupation of lattice sites, called

magnetic super exchange, a disordered system (random distribution of hyperfine

states amongst the singly occupied sites) would not order. The competition be-

tween -(t 2 + t2)/Ub and -t2 /U, and tatb/Uab allows for different possible orderings

of the atoms in the lattice. The atoms can adopt z Neel order and XY ferromag-

netic ordering in addition to z ferromagnetic order [25, 30]. Note that it is possible

to observe magnetic super exchange without making spin dependent lattices. The

magnetic super exchange mechanism will cause a two component bosonic system to

adopt ferromagnetic ordering.

2.4 Phases of the the two component Bose Hub-

bard model

The phase diagram of a two component, Bose Hubbard Hamiltonian displays a lot

of rich physics, the first of which is magnetic super exchange. This virtual double

occupation process is responsible for determining various magnetic phases that are

possible in the Heisenberg model. The phases are essentially controlled by the relative

sizes of the first term in the expression for A, (the antiferromagnetic term), the second

two terms (the stimulative terms) of Az and finally A1 (the XY term). It is possible

to get a qualitative sense for which magnetic phase appears within the parameter

space of t, U,, and Uab by simply comparing the antiferromagnetic term, the bosonic



stimulation term, and the XY term. In the limit the antiferromagnetic term is much

larger than the bosonic term, the inter species interaction energy must be much

smaller than the intra-species interaction energy: Uab <K U,. If the antiferromagnetic

term is much larger than the XY term, there must be a tunneling asymmetry between

the two hyperfine species: ta 5 tb. If these conditions hold, the system is a z-ordered

Neel antiferromagnet. In order for the system to display ferromagnetic behavior along

the z-axis, the bosonic stimulation term should be larger than the antiferromagnetic

term and the XY term. This occurs when the inter and intra species interaction

energies are approximately equal (Uab U,) and there is some tunneling asymmetry.

When the XY term dominates, the system is an XY ferromagnet. As pointed out

by Duan et al [25], a useful way to parameterize these ideas is to define a tunneling

asymmetry
ta tb (2.13)
tb ta

for the two component system. Note the minimum value this can take is 2. The

relative sizes of Az and A± change when / = ±(1/2 - Uab/U) - 1 [25], so it is possible

to use this requirement as an approximation for the phase boundaries as is shown in

Fig. 2.4.

There are other magnetic phases possible as well. For example, in the limit of

zero tunneling of one species, AL = 0 and the Hubbard Hamiltonian becomes an Ising

Hamiltonian. The application of an external magnetic field can cause first order spin-

flop transitions between the antiferromagnetic phase and a canted phase (a phase

with finite polarization in the z-direction and ferromagnetic order in the xy plane)

[32] at a critic field hz = Z(A2 - A )1/2 (Z is the number of nearest neighbors at each

lattice site). There is also a second order transition from the XY ferromagnetic phase

to a z-polarized phase at hz = Z(A, + A ).



14

12

z Neel

CN 8

6

Ferr
2

0 0.2 0.4

XY
roma

z Ferromagnet

gnet

0.6 0.8

Uab / U0

Figure 2-1: Bose Hubbard phase diagram of a two component bosonic system. The
vertical axis measures the tunneling asymmetry between the two component bosonic
species and is defined as O = ta/tb+tb/ta. The horizontal axis measures the ratio of the

interspecies interaction energy to the intra-species interaction energy. If the inter and
and intra species interaction energies are equal, the system is a z-ordered ferromagnet
as a result of bosonic stimulation. If the inter species interaction energy is much higher
than the intra species interaction energy, the magnetic super exchange mechanism will
force the bosons to form a z-Neel antiferromagnet for adequate tunneling asymmetry.
If the inter and intra species interaction energies are equal, the system will form an
XY ferromagnet as a result of magnetic super exchange.

2.5 General interactions of cold bosons in optical

lattices

There are other types of interactions that are realizable with ultra cold atoms in

optical lattices by applying magnetic fields, electric fields, and radiation fields [11].

The application of these additional fields modifies the Bose-Hubbard Hamiltonian

above.

H = Hhop + Hint + Hmag + Helec + Hrad (2.14)
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The vertical axis measures the ratio of the Heisenberg spin spin coupling in the z
direction to the coupling in the XY plane in both plots. The horizontal axis measures
the ratio of the field coupling in either the x or y direction to the XY ordering term.
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If an optical lattice confines two hyperfine levels of a single atomic species, the hopping

and interaction parts of the Hamiltonian are

Hhop - Zta(aaj + aa) + tb(b~bj + bjbi)3 3 -2
(ii)

- Z Uaaatalaiai + Ubbbtbtbjbi + Uabatbtbiai
i 2 t Za i 2 % Z 71

(2.15)

(2.16)Hint

Hhop + Hint =E
(ij)

A' (a'c J + ur) +Ai af)+ Ehz
ui 3 t 3 + h

where the sum runs over the lattice sites i and j and assumes nearest neighbor inter-

actions after transforming to the Heisenberg model. The effective magnetic field hz

is equal to t/Ub - t2/Ub and vanishes for maximally stretched hyperfine states. The

other terms in the Hamiltonian can be expressed as

Hmag

Helec

Haser

= c(atai - btbi)

- E3y(aa i +bbi)

(2.17)

(2.18)

(2.19)
atQ (a tbie ¢ + b aie- 'O)

2



where the coefficients e and - parameterize the Zeeman and Stark shifts from the

application of magnetic and electric fields respectively to atoms in hyperfine levels

1a) and Ib). The term Hrad represents the interaction of the two hyperfine levels with

a plane wave that connects the two hyperfine levels. In principle one could consider

the coupling of each hyperfine level to all other levels, modifying the Rabi frequency

Q. The introduction of a radiation field is important because all other terms conserve

the magnetization (na - nb) of the system while the radiation field does not. It is

possible to re-write the radiation field as proportional to an effective magnetic field

in the x and y directions.

Hrad cos(0) -' + sin(0)ay (2.20)

Adding an electric field gradient to the system effectively changes the pseudo spin

interaction energies [11]. For example, if an electric field gradient is added, the Stark

shift term y = yo + r x k, then the pseudo spin interactions energies are modified as

follows:

U " --+ _ 2 (2.21)
Ua

For small magnetic field gradients compared to the pseudo spin interaction energies,

the Zeeman term in the Hamiltonian is c = co + v x k, and the resulting effective

magnetic field in the z direction becomes

h = Ub + aa (2.22)
Ub2b V Ua2 a - V2

Using these tools, it is possible to engineer a wide variety of bosonic Heisenberg

Hamiltonians because the constants in front of the spin operators are all experimental

control parameters. Furthermore, it is possible to apply effective vector fields along

the x, y, and z directions using electric, magnetic, and radiation fields. The full

Hamiltonian that can be simulated with two component cold bosons in an optical



lattice is then:

H = ,Vi - A'(uj + uya) + 7 i - i (2.23)
(i,j) i

with the parameters A , A~ and the three components of the effective magnetic field h

all adjustable by the experimenter. Exploring the phase diagram of this Hamiltonian

may offer key insights in condensed matter physics and may serve as a useful tool for

making controlled-phase gates: a universal gate that may prove useful for quantum

computation [11, 33].



Chapter 3

Realizing Magnetic Super

Exchange with Ultra Cold Atoms

The purpose of this section is to illuminate the construction of a spin dependent

optical lattice for bosons (and especially Rb) as a means to engineer the tunneling

and interaction energies associated with the effective Heisenberg model. Rb atoms

have Feshbach resonances, so in principle their scattering lengths are tunable with

externally applied fields, but the applied fields necessary to tune the scattering length

are large. Another way to change the interaction energies is to engineer a spin de-

pendent lattice where the atoms are slightly displaced from the electric field maxima

or minima in a direction that depends on their hyperfine states.

Consider a standing light wave with linear polarization. This light wave may

be decomposed in to an equal superposition of a lattice with a+ polarization and a

lattice with a- polarization. These lattices form periodic potentials for atoms, and

the potential minima can be shifted with respect to each other as will be described

in section 3.2. Consider what this does to the atomic interaction energies. In Fig. 3,

an atom in a particular hyperfine state (depicted in blue as spin up in the center of

the lattice) virtually tunnels to the right and interacts with another "spin up" atom.

These atoms are virtually located at the same point in space, so they interact with

an energy Ua. Now consider a virtual tunneling event from the center atom to the

left, "spin down" atom. Upon virtual occupation of the site to the left, the spin up
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Figure 3-1: A spin dependent lattice based on moving lattice minima for different
hyperfine species apart. An atom in a particular hyperfine state (depicted in blue
as spin up in the center of the lattice) virtually tunnels to the right and interacts
with another "spin up" atom (depicted in red). These atoms are virtually located
at the same point in space, so they interact with an energy Ua. Now consider a
virtual tunneling event from the center atom to the left, "spin down" atom. Upon
virtual occupation of the site to the left, the spin up atom is slightly displaced in
space from the spin down atom. These atoms interact with energy Uab, but since
their wavefunctions overlap less, this interaction energy is less than Ua.

atom is slightly displaced in space from the spin down atom. These atoms interact

with energy Uab, but since their wavefunctions overlap less, this interaction energy is

less than U,. Displacing the lattice minima of the two hyperfine species thus lowers

the ratio Uab/U, and drives the system to adopt antiferromagnetic ordering in the

limit Uab/U,, - 0 if there is spin dependent tunneling.
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3.1 Magnetic Super Exchange in non-Spin Depen-

dent Lattices

First, consider the possibility of seeing super exchange in a lattice with no spin depen-

dence. The two component Bose Hubbard Hamiltonian is equivalent to an effective

Heisenberg Hamiltonian for bosons confined to an optical lattice in the Mott insulat-

ing regime. The Heisenberg Hamiltonian is

H - azcj - A(jz_ -'7j) (3.1)

(ij)

with coefficients

2 + t t2  t2
A = a  b a b (3.2)

2Uab Ua Ub

tatb

Uab

where ta,b is the spin dependent tunneling energy of hyperfine species 1a) and hyper-

fine species jb) and Ua,b and Uab are the intra and inter species interaction energies

respectively. In the absence of any difference in the tunneling or interaction energies

of the hyperfine species, the resulting Hamiltonian is

t2
H= -- E S, - Sy (3.4)

(ij)

This Hamiltonian displays ferromagnetic ordering with exchange constant t2/U as a

result of magnetic super exchange. If cold bosons are in a random, incoherent mixture

of hyperfine levels and are confined to an optical lattice that has no spin dependence,

they will order ferromagnetically. Since the overall magnetization (n, - nb) of the

system is conserved, a random collection of hyperfine states will form ferromagnetic

domains in the limit of a vanishing applied external magnetic field in the xy-plane.

There are inevitably uncontrolled magnetic field gradients present in labs at the

10- 3 G/cm level. For alkali atoms like Rb, the Zeeman energy is of order 1 MHz/G,



so assuming a magnetic field gradient of 10-3G/cm, the energy shift across the cloud

is of order 0.1 Hz /pm or about 0.05 Hz across a lattice site with a lattice constant

of 500 nm. This energy scale is more than an order of magnitude below the super

exchange energy (a 1 Hz) for Rb confined in an optical lattice in a Mott insulating

state. By controlling ambient magnetic field gradients, magnetic ordering should be

controlled by the magnetic super exchange mechanism and not the Zeeman energy.

The Zeeman energy may control the formation of ferromagnetic domain boundaries as

the Zeeman energy shift from ambient magnetic field gradients becomes comparable

to the super exchange energy across tens of lattice sites. The magnetic super exchange

mechanism should be manifested as ferromagnetism with bosons confined in an optical

lattice with no spin dependence.

3.2 Spin Dependent Optical Lattices

An optical lattice can be formed from two linearly polarized counterpropagating

beams that constructively interfere to make a standing wave. This standing light

wave can be decomposed in to an equal superposition of a+ and a- circular po-

larized lattices. If the two counter propagating beams' polarization directions are

at an angle q with respect to each other, the resulting light intensity pattern is

I = I + cos2(kx + q/2) + I- cos2 (kx - 0/2). These two independent, circularly polar-

ized lattices are displaced from each other in space with the separation dictated by

the angle ¢ by Ax = /k = qA/27r. If 0 = 0, the lattice minima of both lattices are

on top of each other. As the angle 0 is increased, the lattice separation increases until

0 = 7r/2. At this angle the lattice separation reaches a maximum value A/4, corre-

sponding to half of the lattice period A/2. Atoms in two different spin states confined

in such an optical standing wave experience a spin dependent lattice if the two circu-

lar polarizations couple differently to the two different states. For example, consider

the following two IF,mF) hyperfine states of 87Rb: Ia) = 12,2) and Ib) = 11,-1).

The dipole potential for each species with A = 785 nm is Va- cos 2(kx - 0/2) and

Vb = Vb COS 2(kx - 0/2) + 3/4Vb cos2 (kx + 4/2) for states la) and Ib) respectively.



Figure 3-2: Experimental setup for tuning the angle q in a spin dependent lattice
in a one dimension. Linearly polarized light is incident on a BEC, represented by a
red dot in the figure. The light continues through a quarter-wave plate and passes
through an electro-optic modulator (EOM). The mirror retro-reflects the light where
it passes back through the EOM and quarter-wave plate. The counter-propagating
light that reaches the BEC is rotated by an angle ¢ which can be adjusted by use of
the EOM and quarter-wave plate. The resulting standing light wave can be written
as a superposition of two circularly polarized lattices with intensity extrema that are
separated from each other by a distance Ax = OA/27r.

Experimentally, it is possible to tune the angle 0 by using one retro reflected beam

that travels through a quarter wave plate and an electro-optic modulator (see Fig.

3.2.) [34] By controlling the applied voltage to the EOM, it is possible to change 0.

The resulting potential for an atom in hyperfine state 1a) confined in this optical

potential is

U = Ua cos2 (kz + 0/2) + Uj cos2(kz - 0/2) (3.5)

with the plus and minus superscripts referring to light shift from a + and a- polariza-

C



tions. If there are two different hyperfine species (hyperfine state la) and hyperfine

state Ib)) of atoms in the optical potential, then the potentials for each atom are

Ua = Ua cos2 (kx + q/2) + U a cos 2 (kx - q/2) (3.6)

Ub = Ub+ COS2 (kx + ¢/2) + Ub COS22 (kx - 0/2) (3.7)

None of coefficients in the above equation are necessarily equal to each other. How-

ever, by choosing the appropriate hyperfine states, it is possible to make one hyperfine

state interact more strongly with o- polarized light and the other hyperfine state in-

teract more strongly with a- polarized light. The potential minima of these two

hyperfine states are separated from each other by an amount dictated by the phase

0/2 and the coefficients U~b. This separation of the hyperfine species near a lattice

site allows for control of the interaction term Uab in the two component Heisenberg

Hamiltonian. Experimentally, by adjusting ¢, the laser intensity, and the laser de-

tuning, it is possible to tune the ratio of Uab/U, as well as the differential tunneling

to explore the phase diagram of the Heisenberg Hamiltonian.

Consider the potential that confines an atom in hyperfine state Ia) in Eq. 3.6. This

potential may be re-written in the form of a DC offset plus two oscillatory functions.

Ua + U a cos() cos(2kx) U a - sin() sin(2kx) (3.8)
2 2 2

This equation can be rewritten again as a DC offset and one oscillatory function

Ua = U U + Ud cos(2kx -/) (3.9)
2

Ud = 2V(U+)2 + (U-)2 + 2(Ua+)(Ua) cos(O) (3.10)

a = tan-1 (U- U tan(O)) (3.11)
where + is the lattice depth. The potential for Ub is of the exact same form as Ua

where Vd is the lattice depth. The potential for Ub is of the exact same form as Ua



with all subscripts replaced. The two different atoms are thus separated by a distance

Az = - (3.12)
2k

Note that since each of the coefficients U1b should be linearly proportional to the

light intensity. The separation of the hyperfine species therefore does not depend

on the laser power because /a,b depends on the ratio of linear combinations of Ua,b.

The angle q, the laser frequency, and dipole moments of the atoms determine the

separation of the lattice minima of the hyperfine species.

The ratio of the inter species interaction energy to the intra species interaction en-

ergy Uab/U, can be explicitly calculated in terms of Ax. In the deep lattice limit (well

defined number state), the atomic wave functions at each site can be approximated

as Gaussians, so Wannier functions can be replaced with Gaussian wavefunctions

w(x) 27u 2 4,- (3.13)

with a 2 = h/2mw so the individual wave functions on each lattice site are normalized.

The trap frequency w is related to the trap depth Vd (defined by Eq. 3.10) by

a 2 = 4ERVd/h 2 where ER = h 2k 2 /2m is the recoil energy. The pseudo spin interaction

energy between two unlike pseudo spins is proportional to the overlap of two Gaussian

wavefunctions. If atoms in states Ia) and Ib) are separated by a distance Az, then

the interaction energy is

1 00 X2 (x-AX)
2  e-A/4o2

U2b OC b =e- e-----dz = 2Co (3.14)

The pseudo spin interaction energy between a) and 1a) atoms is proportional to

Uaa x' (Oa' Oa) =] I(X)14 dx = 4 2 (3.15)



The ratio of the pseudo spin interaction energies is

Uab _ -Ax 2/2 2  e-m zx 2 
VdER/h

2  (3.16)

Ua

For fixed lattice depth, the ratio of the spin interaction energies can vary wildly by

increasing the separation Ax between [a) and Ib) atoms on a single lattice site.

3.3 Calculating the Spin Dependent Potentials

Calculating the required intensity as a function of wavelength to produce a particular

ratio of inter to intra species interaction energies requires the calculation of the spin

dependent potentials. In order to calculate the required intensities, we will select

a desired ratio of the intra to inter species interaction energy and fix the lattice

depth Vd = NRER so the two component system is in the Mott insulation regime (for

example- Rb confined in an optical lattice of depth 15 ER is a Mott insulator). The

intensity comes from Eqn. 3.10 if 0 is known after fixing the lattice depth. The angle

¢, like Eqn. 3.10, requires calculation of the spin dependent coefficients Uab-

In atomic two-level systems, the spin dependent potential coefficients Ub come

from the appropriate atomic levels coupling to the light that forms the optical lattice.

We will see that for certain states in atomic systems, the differential coupling of two

atomic states to the o polarization states of light will lead to a different potential

for the two atomic states as the result of differing AC Stark shifts. For an atom

interacting with light, the AC stark shift is written as

1
U = a(w)E 2 (3.17)

4

where a(w) is the atomic polarizability and E is the amplitude of the electric field.

The atomic polarizability is

-2e2 w= I(alzb)12  (3.18)
CW w - WL

40



where wo is the resonance frequency, L is the laser frequency, and j(ajzlb) 2 is the

oscillator strength. The Rabi frequency is wR = (alzlb)eEo/h = E - D/h with the

dipole moment D. The laser intensity is the product of the electromagnetic energy

density and the wave velocity, so I = ceoE 2/2. The spin dependent potential can

then be written as

ID 2  -1 1 ID2Cc ( 1
Ua = - + ) cos2 (kz - 0/2) + i -) cos2 (kz + ¢/2) (3.19)

where A = WL - W0 is the detuning and E = wL + wo. This equation should actually

be summed over all possible transitions with the appropriate Clebsch-Gordan coeffi-

cients; the coefficient in front of cos2 (kz - 0/2) should be summed over all possible

a- transitions. The coefficient in front of cos2(kz + ¢/2) should be summed over all

possible a+ transitions.

As a concrete example, consider the S1/2 ground state of rubidium atoms in the

IF, mF) = I1, -1) hyperfine state. Linearly polarized light is an equal superposition

of a+ and a- polarizations, so the light can couple to the F = 2 and F = 1 manifolds

in the P1/2 state (the D1 transition) and the F = 0, 1, and 2 manifolds of the P3/2

state (the D2 transition). For a+ polarization, the I1, -1) state couples to the mF = 0

states of the F = 0, 1, 2 manifolds of the D2 transition. The sum of the squares of

the Clebsch-Gordan coefficients from this transition are 1/6 + 5/24 + 1/24 = 5/12.

Taking in to account the D1 and D2 transitions of 87Rb, the spin dependent lattice

potentials for a+ and a- polarized light of the I1, -1) state are

1 5 -1 1 1 -1 1
U1 D 2 + ) + ID + ) cos2 (kz + /2) (3.20)

1,-(12 2 4IA2o 6 A, E

- I D 21 +  ) +  D  1 + cOS2(kz - 0/2) (3.21)
4co lc 4 A2 2 2 A, Ei

where A 1,2  WL - W1, 2 is the detuning from the D1 and D2 resonant transitions

and E 1,2 = WL + W1,2 . The dipole moments D1 and D2 are 2.99 eao and 4.23 eao

respectively where e is the magnitude of the charge of an electron and ao is the Bohr

radius. The 1I, 1) state has the same coefficients in front of the cosine squared factors,



except that the coefficients are exchanged.

I 1 -1 1 1 ( -1 1
1 4chc 4 2 + ) + cos2 (kz + q/2) (3.22)

A4Ec 4 A2 E2 2 A El )

1 5 - 1 1 2- 1
4 0 c D2 + 2)  D+ ) cos2 (kz - q/2) (3.23)

Using Eq. 3.10, it is possible to constrain the lattice depth for a particular species

of atoms and solve for the intensity necessary to achieve the lattice depth for a given

spin dependent interaction ratio Uab/U,. If maximally stretched hyperfine states are

chosen, it greatly simplifies the analysis of the spin dependent potential because both

species are guaranteed to have the same lattice depth by symmetry. Secondly, the

angle 0a = - 3
b (defined by Eq. 3.12) is Ax = I3 a,bI/k. Using this and Eq. 3.16, it is

possible to solve for q in terms of the spin dependent interaction ratio.

S tan-1 U,° + Uo+  In ( ) 1] (3.24)12= tan 1 [(N n (3.24)

In the above equation, the lattice depth is measured in lattice recoil units Vd = NRER

where NR is the number of recoil units. Using Eq. 3.24 for q and fixing the spin

dependent interaction ratio, it is possible to solve for the neccessary laser intensity as

a function of wavelength to achieve a certain lattice depth. The plot in Fig. 3.3 shows

the required intensity as a function of wavelength for 87Rb for a fixed pseudo spin

interaction ratio of 1/4 and fixed lattice depth of 15 ER. There are several features

of note in the plot. For wavelengths near the D1 and D2 lines of Rb, the required

power to make a spin dependent optical lattice is very low because one species will

interact much more strongly with the optical lattice than the other (at the expense

of scattering). Moving farther away from resonance requires more laser intensity for

a fixed lattice depth and pseudo spin interaction ratio.

It is tempting to simply tune the laser near an atomic resonance to achieve a deep

lattice and a large spin dependent interaction with relatively little laser power. How-

ever, the scattering rate greatly increases near resonance. The relevant energy scales

for super exchange are t2/U 1Hz for atomic physics experiments, so the scattering
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Figure 3-3: Laser intensity required to produce a lattice with Uab/U, = 1/4. This
ratio of onsite pseudo spin interaction energies places the system well in to the XY-
ferromagnetic regime for equal pseudo-spin species tunneling energies (3 = 2). The
required laser intensity for several lattice depths are plotted in units of lattice recoils
NR. With rubidium atoms, a lattice depth of NR = 15 has been shown experimentally
to be in the Mott-insulating regime. The general trend for blue and re-detuned
lattices is that for fixed wavelength and pseudo-spin interaction energy, the laser
power increases for deeper lattices as expected. The power requirements for rubidium
are not that severe. For example, at A = 775 nm, the required laser intensity is
approximately 4000 mW/mm2 for lattice depth of 15 recoils and Uab/U, = 1/4.
If a laser is focused down to a waist size of 300pm, the necessary laser power for
that laser beam is approximately 280 mW. Tuning the laser wavelength closer to an
atomic transition decreases the necessary power, but the scattering rate of the atoms
increases significantly.

rate from the lattice light should be low. Experimentally, the laser wavelength should

be detuned enough so that the lifetime for scattering (1/-y) is long compared to any

dynamic time scales in the experiment necessary for the atomic system to achieve

thermodynamic equilibrium. The time scale should be of order the tunneling time

multiplied by the system size. This balance between laser intensity and lifetime is

possible because the lattice depth depends linearly on the laser power and as 1/A 2

while the lifetime varies as A 2/I.
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Figure 3-4: Laser intensity required to produce a 15 recoil lattice depth for varying
pseudo spin interaction energy ratios Uab/U, as a function of wavelength. Generally,
a smaller ratio of Uab/U, requires more laser power. The laser power requirements
are less for wavelengths near atomic transitions, but the spontaneous scattering rate
increases greatly. The power requirements for sweeping from Uab/U, - 1 to Uab/Ua =
1/4 require a laser intensity sweep from 1000 mW/mm 2 to 4000 mW/mm 2 for A =
775nm. If the laser beam is focused down to a beam waist of 300 pm, the laser power
sweep is from approximately 70 mW to 280 mW. This laser power sweep will cause
the rubidium atoms to undergo a phase transition from a ferromagnetic state to an
XY ferromagnetic state as a result of the magnetic super-exchange mechanism.

The time averaged power from an oscillating dipole is given by the Larmor formula

w
4 d

2

P =2
127rEOc 3 (3.25)

The classical dipole moment can be replaced with the quantum mechanical version

d = D2 + I) (3.26)

where D2 is the square of the dipole moment multiplied by the square of the appro-

priate Clebsch-Gordan coefficient and E is the amplitude of the electric field. The

scattering rate is the power scattered divided by the energy per photon scattered, so
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the scattering rate is

r 3 D4(1 + 12(3.27)

This scattering rate should be summed over all possible a+ and a- transitions. For

example, the scattering rate from the I1, -1) state of 87 Rb is

Iw 3  7 1 1 2 - + 1 )2)

W 3 C ( 1  2 ) 1 + )2) cOs 2 (kx + /2) (3.28)

I 3 1 4 -1 1 2 1 -1 1 2
_1 - 6r h 3c 4 (D4( 2 -+ - + )2) cos 2 (kx - 0/2) (3.29)1,-1 67 16A3C4 E(A16 2 E

where the cosine squared factors are the result of the spatially varying electric field

and the total scattering rate is the sum of F+ and F-. The atoms are confined

at electric field maxima for red-detuned lattces and electric field minima for blue-

detuned lattices. One might expect then that blue detuned lattices always have a

lower spontaneous scattering rate than red detuned lattices. However, the atomic

wave function is not a delta function- the ground state of wavefunction of ultra cold

atoms in an optical lattice in the Mott insulating phase can be approximated as a

collection of gaussian wave packets. These wave packets have finite spatial extent,

so even in blue detuned optical lattices, the atoms still see an appreciable, non zero

electric field. For typical trap fequencies of order 10 kHz, the variance in the atomic

position is given by a = h/mw 100 nm. If the scattering rate as a function of

position above is written as F(x) = R+ cos2(kx + q/2) + R- cos2(kx - 4/2), then the

scattering rate is a convolution of atomic probability density with the scattering rate

as a function of position F(x)

7tot I w(x- x')12(z)dx' (3.30)

F+ e- 1/ cos2(2kxo + ) + (1 + e- 1/ cos2(2kxo - )( .31)

with a2 = h/2mw and xo is the potential energy minimum. Using Eq. 3.11 and Eq.

3.12, the potential minima in the above cosine terms are approximately at 2kxo =
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Figure 3-5: Light scattering from an optical lattice versus wavelength for several
lattice depths. The y axis is the reciprocal scattering rate (lifetime) multiplied by
the intensity of the light and shows the lifetime dependence as a function of lattice
wavelength for several lattice depths measured in recoil units. The ratio of the inter
species interaction energy to the intra species interaction energy is Uab/U, = 1/4.

nr + 4 with

2 In 1/2 (3.32)

The value n varies depending on the laser detuning, but for A < 780nm and A between

790nm and 795 nm, n e 1. For A > 795nm or A between 780nm and 795nm, n _ 0.

Each cosine term may then be written as cos 2(2kzo + ) = cos 2(nr + 4 ± q). Plots

of the lifetime 7 = 1/F per intensity in mW/mm 2 are given in Fig. 3.3 as a function

of wavelength for several different lattice depth values in recoil units NR.

The above prescription allows one to vary the angle 0 and move the potential

minima of two different hyperfine species apart. The separation of the potential

minima affects the wavefunction overlap and hence the pseudo-spin interaction energy

ratio Uab/U,. Starting with 0 = 0 means the lattice minima are not separated, and

Uab/U, = 1. This puts the system in a z-ferromagnetic state; all of the spins are

aligned. Varying the angle 0 will decrease the pseudo spin interaction ratio, moving

the system to the left on the phase diagram in Fig. 2.2. This will be enough to take
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Figure 3-6: Light scattering from an optical lattice versus wavelength for ratios of
the inter to intra species interaction energies as a function of lattice wavelength. The
lifetime (reciprocal scattering rate) is multiplied by the laser intensity. The lattice
depth is fixed at 15 recoils so the system is well in the Mott insulating regime.

the system from a ferromagnetic state to an xy ferromagnetic state. The existence

(and subsequent detection) of an xy ferromagnetic state directly tests the theory of

magnetic superexchange. The superexchange mechanism is responsible for the phase

transition.

3.4 Tunneling Asymmetry in Spin Dependent Op-

tical Lattices

In order to get to an antiferromagnetic, z-Neel ordered state, it is necessary to in-

crease the differential tunneling of the two pseudo-spin species. The tunneling of the

stretched hyperfine states, such as the I1, ±1) state of 87Rb, are the same, so it is

not possible to use the above recipe to achieve antiferromagnetic ordering. There are

several ways to make a differential tunneling of the two pseudo-spin hyperfine states.

The simplest way is vary the intensity of the a + and o_ lattices by using elliptically

polarized light in the lattice instead of linearly polarized light.

ii



The tunneling asymmetry is given by

t = + tb (3.33)
tb ta

where ta,b is the tunneling term in the Bose Hubbard Hamiltonian. The tunneling

asymmetry /t take a constant value of 2 for equal depth lattices for both pseudo-spin

species. Each species tunnels between its own optical optical potential minimum, and

since both potentials are equally deep for stretched hyperfine states, the tunneling

terms must be equal to each other, i.e. ta = tb. This equality could be broken by

choosing atoms in different hyperfine manifolds such as the F = 1 and F = 2 ground

state manifolds of 87Rb, or by simply choosing non stretched states within the same

hyperfine manifold (11, -1) and 11, 0)). This complicates the above analysis somewhat

in the sense that it is not possible to move directly left and right on the phase diagram

because the two spin species will not be in equally deep lattices. Experimentally, it

is necessary that the two spin species sit in lattices of varying depth to make a

differential amenable to realizing antiferromagnetic ordering. By varying the angle 0

and the intensities of the two circular polarizations, it is possible to search the entire

phase diagram in Fig. 2.4. The tunneling terms are given by [25]

t, = 4 E U/ e-2 /(3.34)

Curiously, there seems to be some disagreement over this expression in the literature,

even amongst the authors of the above paper. In another paper, the expression for

the tunneling is [30]
I
-2

t = -U/e - / 4 V  ER (3.35)
4

which does not agree with the author's earlier expression for the tunneling in Eq.

3.34. Attempting to resolve this puzzle by calculating t, directly according to [28]

leads to a third expression for to.

= Jw(x - xi) ( + mw2x2)w(x - xj)dx (3.36)

=2 2



where tij is the tunneling from lattice site i to lattice site j and w is the trap frequency

of the periodic optical lattice potential expanded about the potential minima. By

replacing the Wannier functions in the above expression with Gaussian wave packets,

and by recognizing that a gaussian wave packet is an eigenfunction of the harmonic

oscillator Hamiltonian,

Jw(x - - x)dx 3 ERUoe 4ER (3.37)

and disagrees with both [25] and [30]. The common feature is that all depend on

the inter species interaction energy to some power multiplied by an exponential with

the square root of the inter species interaction energy measured in units of the recoil

energy. Therefore, displacing the lattice potential minimum location does not create

any tunneling asymmetry. Using maximally stretched hyperfine states results in no

tunneling asymmetry because the inter species interaction energies will be the same by

symmetry. Creating tunneling asymmetry will require using non maximally stretched

hyperfine states, using different hyperfine manifolds (such as the F = 1 and F =

2 hyperfine manifolds in Rb), or using separate circularly polarized lattices with

adjustable powers in each polarization.
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Chapter 4

Seeing Magnetic Super Exchange

with Polarization Rotation Imaging

4.1 Polarization Rotation Imaging

Polarization rotation imaging is a dispersive imaging technique that relies on an object

having different indices of refraction for different polarizations of light. Consider an

atomic sample in an applied uniform magnetic field in the z-direction. If incident

light along the z-direction is linearly polarized in the x-y plane, the polarization of

light can be written as a superposition of a + and o-- polarizations. These orthogonal

polarizations in general couple to different Zeeman sublevels differently, resulting in a

differential phase shift of the two circular polarizations. This differential phase shift

means that the linear polarization direction is rotated through some angle, and the

rotation angle can be measured by the use of a linear polarizer. As will be shown, if

the atomic sample is a mixture of two different Zeeman levels, the rotation angle will

be linearly proportional to the density difference of the atomic species given certain

assumptions about detuning from the Zeeman sublevels.

As a simple model, consider an atomic species in an F = 1 state with some

population in mF = -1 and the remaining population in mF = 1 state. An applied

magnetic field in the z direction breaks the degeneracy of the ground state manifold,

and in the small field limit, the Zeeman energy in frequency units is gFpuBB where



the Bohr magneton is AB = 1.4 MHz/G and gF is the Lande g-factor. If these atoms

are coupled to an F = 0 excited state by linearly polarized light in the x-direction,

an incident plane wave polarized in the z-direction can be written as a superposition

of circularly polarized light

E = xEoei(kzz- w t) -= ei(kzz-wt)(+ ) (4.1)

with &' as the circular polarization unit vectors. In an atomic sample, the k-vector

should be multiplied by the index of refraction, and in general the index of refraction

has both real and imaginary components. The real part of the index of refraction

will cause the wave to accumulate a phase while the imaginary part of the index of

refraction leads to absorption by the atomic sample. The real part of the index of

refraction is related the the linear susceptibility of the sample by Re(n) = 1+Re(X)/2.

The real part of the linear susceptibility for ua-polarized light is [35]

Re(X±) = 2  A FBBz (4.2)
oh(A g Bz) (A TFJBBz)2 + rP2/4 + Q2/2

In the above equation, N 1 refers to the atomic density of atoms in the |1, T±1) state, d

is the dipole moment of the transition multiplied by the appropriate Clebsch-Gordan

coefficient, F is the width of the transition, Q = dEo/h, and A is the detuning from

the F = 0 to F = 1 transition with no magnetic field (A = wL - wo). The accumulated

phase for an atomic species in the mF = ±1 state is given AO = wLeW/C• An where WL

is the laser frequency, £ is the length of the atomic sample, and An is the difference

in the indices of refraction for a+ and a- light for each species. The phase delay for

each species is

4b)1 = +FBBz (4.3)
2ohc ((A ± gFPBz)2 + F2/4 + Q2/2

The rotation angle 0 is the difference in the phase delays AO divided by two. The

factor of two comes from the fact that rotating light that is linearly polarized in the

x-direction by 180 degrees results in light that is still polarized in the x-direction.



Rb
F=O

0

-1
F=1 0

Figure 4-1: Simple model for polarization rotation by coupling an F = 1 manifold to
an F = 0 manifold. The detuning A is defined by the energy difference between the
11, 0) state and the 10, 0) state. In general, the couplings of the hyperfine levels in the
ground state manifold to all excited states should be considered.

The rotation angle is therefore

0 wfD2  N+ 1 (A + 9gFIBBz) N-L(A - 9FPBBZ) (
4cohc (A + gFPBBz) 2 + r2/4 + Q 2/2 (A - gFPBBz) 2 + r2/4 + Q2/2)

There are several noteable features of the above equation. If the detuning A is

zero and the system is only in the I1, ±1) hyperfine states (or any other maximally

stretched hyperfine state), then the rotated angle is linearly proportional to the sum

of the densities. Setting A = 0 in the above equation yields:

wCD2  gFBBz
0 = (Nl + N_1) (4.5)4cEhc (gFPBBz)2 + Q2 /2

Note that for fixed atom number NV, the polarization rotation angle is independent

of fraction of atoms in a particular hyperfine state. In the limit of large detuning

compared to the Zeeman energy and Q, the rotated angle is linearly proportional to



the density difference of the two species A > gYpFBBz, 2:

w.D 2  gFPIBBz
- D= (N+I - N-1 + O( )) (4.6)

4cohcA A

The large detuning limit is particularly interesting because two different hyperfine

species rotate the angle of the linear polarization in equal but opposite directions

(to order the ratio of the Zeeman energy to detuning). This fact can be used to

measure deviations from an equal mixture of spins as a function of space. Consider

the following experimental imaging setup. Linearly polarized light is incident on an

atomic sample. If the atoms are in an equal mixture of hyperfine levels, there is no

net polarization rotation. If this light then impinges on a linear polarizer oriented 45

degrees relative to the initial polarization direction and is imaged on a CCD array,

the light intensity will be half of the original light intensity. If the atomic sample has

any deviation from an equal mixture, there is a net rotation of the light polarization.

The linear polarizer then lets either more or less light through, depending on the

concentration of the hyperfine species. In the context of magnetic ordering, Farady

rotation imaging is then a direct measure of the magnetization of the sample in the

limit of large detuning. Any magnetic domains that form in the sample will either

appear lighter or darker than background (zero magnetization).

Faraday rotation imaging is a dispersive imaging technique. Absorption of light

by the atomic sample will in general result in less light passing through the imaging

system, resulting in an offset in a magnetization measurement. If the absorption is

significant and varies appreciably as a function of the magnetization, the measurement

of the magnetization can be biased. Increasing the laser detuning eliminates absorp-

tion but results in less rotation of the polarization direction for a given deviation

from zero magnetization. There is a tradeoff between sensitivity to small amounts

of small magnetization (small detuning) and magnetization measurement accuracy

(small absorption by large detuning). The amount of absorption can be calculated
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Figure 4-2: Linearly polarized light impinges on an atomic sample in some mixture
of hyperfine states. The atoms cause the light to undergo differing phase delays
depending on the hyperfine states of the atom, and if the hyperfine states of the atomic
sample are maximally stretched (ex: IF, mF) = 1, ± 1)), the linearly polarized light
will be rotated in equal but opposite directions for each hyperfine state. The linear
polarizer will let more or less light through depending on the direction of rotation of
the linear polarization. A lens images the light on a CCD array, and the resulting
image intensity on the CCD array is proportional to the net magnetization of the
atomic sample in the limit of large detuning.

from the imaginary part of the index of refraction [35]

Imr(n) Nd 2  r/2
2Eoh (A - gFpBBz)2 + r2/4 + Q2 /2

where n± refers to the index of refraction for ua polarized light. In the limit of large

detuning, the imaginary part of the index of refraction is

ND 2 pF g9FBBz
Im(n+) (1 O( )) (4.8)

4cohA2  A

The absorption of the o- light is 1/2 - exp(-wUlm(n±)/c)2 , so the intensity fraction



of the transmitted light in the limit of large detuning is (correct to order 1/A 2)

I wCFD 2

= 1 2c 0hA 2 (N+ + N_) (4.9)
lo 2ccohA2

In order to directly probe the magnetization of the atomic sample, it is necessary to

minimize the absorption of the light by the atomic sample while maintaining a large

enough polarization rotation angle to be sensitive to small magnetization changes of

the sample. In the large detuning limit, the absorption of light is proportional to

1/A 2 while the Faraday rotation angle is proportional to 1/A. The different scaling

with detuning allows for such an optimization.

If the detuning is fixed at A = 0, then the Farady rotation signal is proportional

to the sum of the atomic concentrations N+ + N_. The imaginary part of the index

of refraction in the limit of a large applied magnetic field (compared to the linewidth

of the r' transitions and Q) is

N+D2F
Im(n±) 2 (4.10)

4coh(gF yBBz) 2

The resulting intensity absorption is

I wED2S 1 oh(g BB) 2 (N+ + N_) (4.11)
1o 4ccoh(gFPpBz) 2

This equation has the same form as the equation for absorption of the atomic sample

in the limit of large detuning. The application of a magnetic field pushes the a± tran-

sitions farther out of resonance, so this result is not surprising. Practically, for alkali

atoms like rubidium, increasing the magnetic field to cut down on light absorption

requires fairly large magnetic fields (a 100 Gauss) to detune the laser a light from

resonance by a few linewidths.

For a system like Rb, there are multiple allowed transitions, so the phase delay

and subsequent rotation angles should be summed over the allowed dipole transitions.

Plots of the rotation angle as a function of mF = -1 fraction are given for various

detunings from the 11, 0) -- 0, 0) energy at an applied field of 10 Gauss. A plot of the
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Figure 4-3: Faraday rotation angle as a function of mF = -1 fraction for various
detunings at a fixed magnetic field of 10 Gauss. The assumed laser intensity is
10 mW/cm 2 incident on a cloud of 105 atoms confined in a spherical volume with
a 10 pm diameter. As can be seen by the plot, at zero detuning (defined as the

I1, 0) --+ 0, 0) energy), the rotation angle is independent of hyperfine species fraction
in the cloud. This happens because of symmetry; the mF = ±1 levels suffer equal but
opposite detunings when an imaging laser is tuned near the transition to the f = 0
hyperfine manifold. This causes an equal but opposite phase delay which cancels
upon subtracting the phase delays to calculate the Faraday rotation angle.

fraction of the intensity transmitted through the atomic sample is given as a function

of mF = -1 fraction for various detunings at a field of 10 Gauss.

Since Faraday rotation imaging is directly proportional to the magnetization of an

atomic cloud, it may be well suited for measuring a cold atomic cloud with magnetic

ordering that varies as a function of space. The setup in Fig. 4.1 should allow more

light to reach the CCD camera as one atomic species rotates the light polarization to-

ward the linear polarizer's polarizing axis. The other hyperfine species will rotate the

polarized light farther from the linear polarizer's polarization axis, resulting in less

light reaching the CCD camera. In a non-spin dependent lattice, the effective Heisen-

berg Hamiltonian should make bosonic atoms in a lattice align ferromagnetically, with

possible domain structure being driven by ambient uncontrolled magnetic field gra-

dients. The resulting dispersive image from the proposed Faraday rotation imaging

scheme should show domains as black and white spots. This offers an opportunity

to directly observe the super exchange mechanism as well as any time dependence of

domain growth.
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Figure 4-4: Transmission intensity fraction as a function of mE = -1 fraction for
various detunings at a fixed magnetic field of 10 Gauss. The assumed laser intensity
is 10 mW/cm 2 incident on a cloud of 105 atoms confined in a spherical volume with a
10 gm diameter. Detuning away from the F = 0 energy decreases the total absorption
of the could and will not bias the results of reading out the magnetization of the cloud
as the hyperfine concentration varies across the cloud at the expense of sensitivity to
deviations from zero magnetization.

To drive the system to order as an XY ferromagnet, it is possible to create a

spin dependent lattice by experimentally controlling an electro-optic modulator as

described in the previous chapter. As the spin dependence of the lattice is increased

(a decrease in the ratio of the inter to intra species interaction energies Uab/U), the

ferromagnetic ordering should change to XY ferromagnetic ordering. The amount

of magnetization in the z-direction should decrease, and deep in the XY regime, the

atomic cloud will appear indistinguishable from the background as the magnetization

in the z-direction decreases.

It is also possible to control the size of an XY domain by applying a magnetic

field gradient across the could. If there is no spin dependence in the lattice, a large

field gradient will cause the atoms to form one domain wall in the center of the cloud.

If the spin dependence of the lattice is turned on and the magnetic field gradient is

lowered, an XY ferromagnetic domain will form in the center of the cloud. As the field

gradient is lowered, the XY domain should grow to the system size. It is possible to

get an estimate on the field gradients needed by performing a variational calculation.

Using the following wave function, it is possible to minimize the energy with respect



to the angle 0 which measures the spin polarization out the XY plane:

AH = S )cor - A( j+ y  
- 5 (4.12)

(ij) i

= cos(O)7 + sin(O)V (4.13)

Minimizing this energy with respect to 0 gives the canting angle and is shown in Fig.

4.1:
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Figure 4-5: Canting angle out of the XY plane versus trap position for various mag-
netic field gradients. The atomic cloud is 50 pm in size and is in a lattice with depth
15 ER. The ratio of the inter to intra species interaction energies is Uab/U, = 0.8
and there is no tunneling asymmetry. Decreasing the magnetic field gradient allows
an XY ferromagnetic domain to grow in size, until at the 100 pG/cm level where
the XY domain size reaches reaches the approximate system size. These plots also
set limits on the tolerable ambient magnetic field gradients; large field gradients will
make any XY domains that form very small and the ordering will be driven by the
field gradients across the cloud.
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Chapter 5

Future Prospects and challenges

Confining ultra cold atoms to an optical lattice may proven a useful avenue for in-

vestigating condensed matter phenomena such as quantum magnetism and may shed

light on the mechanism behind high temperature superconductivity. When bosons are

confined to an optical lattice, they behave according the Bose Hubbard model, and

in the limit of deep confinement, are modeled by an effective Heisenberg spin Hamil-

tonian. The Heisenberg spin Hamiltonian predicts the system will order into a wide

variety of magnetic phases as a result of the magnetic super exchange mechanism.

Exploring the magnetic ordering phase diagram of this effective Hamiltonian may

provide key insights in to the formation of magnetic domains governed by super

exchange as well as the opportunity to study domain formation dynamics. It may be

possible to see magnetic super exchange by waiting for a two component insulating

system to order in a lattice. This form of Z ferromagnetism is driven by magnetic

super exchange and competes energetically with local ambient magnetic field gradient

fluctuations. It seems possible to observe ordering given the exchange energy, size

of the cloud, and expected field gradient fluctuations. The formation of magnetic

domains may even be driven by field gradients.

Realizing phases beyond z-ferromagnetism requires the creation of a spin depen-

dent lattice where the inter species interaction energy can be tuned relative to the

intra species interaction energy. Tuning this ratio drives the system in to an XY

ferromagnetic state. Reaching the antiferromagnetic regime requires decreasing this



interaction energy ratio further and creating a lattice with tunneling energy asym-

metry between the two hyperfine species. Such a configuration may be possible by

creating elliptically polarized lattices.

Detecting these magnetic phases provides its own set of challenges. One way to see

z-ferromagnetism is to use a dispersive imaging technique such as Faraday rotation

imaging. Given assumptions about detuning, Faraday rotation imaging directly mea-

sures the magnetization of the cold atomic cloud by measuring the density difference

of the two hyperfine atomic states. If the system develops finite magnetization in the

quantization direction in form of domains, Faraday rotation imaging should be able

to directly image these domains, providing the opportunity to observe the ordering

and its associated dyanmics.

By driving the system to adopt XY ferromagnetic ordering, the Faraday rotation

signal should disappear because the atomic cloud loses its magnetization in the z-

direction. It should be possible to observe this transition and investigate its associated

dynamics by using an eletro-optic modulator to create spin dependent lattices as

described in this thesis.

Observing antiferromagnetic ordering is not possible with Faraday rotation imag-

ing because the system has no macroscopic net magnetization in the z-direction.

Antiferromagnetic ordering will produce the same Faraday rotation signal as an XY

ferromagnet. There are a few ways to see antiferromagnetic ordering. For example,

M. Greiner et al have proposed building a quantum gas microscope capable of resolv-

ing individual lattice sites. Taking absorption pictures using this device will show a

checkerboard arrangement of hyperfine species in a square lattice. Another way to

possibly observe antiferromagnetic ordering is through the use of Bragg scattering off

lattice planes. By using a hyperfine state selective laser, it may be possible to observe

the suppression and sudden appearance of new Bragg peaks as the period of the lat-

tice doubles when the system goes from ferromagnetic ordering to antiferromagnetic

ordering. This seems possible for Rb in a lattice with lattice constant 532 nm and

using a laser tuned near either a D1 or D2 transition incident on the (111) plane of

the crystal.



There are several remaining challenges to be met before exploring the full Heisen-

berg Hamiltonian. Because the super exchange energy is so low (of order 1 Hz),

cooling the atoms to sufficiently low temperatures is challenging. It may be possible

to move entropy out of the system by constructing an analog to adiabatic demag-

netization refrigeration. For example, by spatially separating a mixture of hyperfine

states in a magnetic field gradient and then slowly lowering the gradient field, it may

be possible to move the entropy of the system in to the spin degrees of freedom at the

interface of the spin up and spin down sections of the cold atomic cloud. By using

optical pumping, it may be possible to move this spin entropy out of the system in

the form of photons. It remains to be seen if such a scheme or any other scheme can

achieve temperatures low enough for the super exchange mechansim to drive magnetic

ordering.
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