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I. Introduction 

Over the past forty years, system dynamicists have developed techniques to aid in 

the design, development and testing of system dynamics models. Several articles have 

proposed model development frameworks (for example, Randers (1980), Richardson and 

Pugh (1981), and Roberts et al. (1983)), while others have provided detailed advice on 

more narrow modeling issues. This note is designed as a reference tool for system dynamic 

modelers, tying the numerous specialized articles to the modeling framework outlined in 

Forrester (1994). The note first reviews the “system dynamics process” and modeling 

phases suggested by Forrester (1994). Within each modeling phase, the note provides a 

list of issues to consider; the modeler should then use discretion in selecting the issues that 

are appropriate for that model and modeling engagement. Alternatively, this note can 

serve as a guide for students to assist them in analyzing and critiquing system dynamic 

models. 

II. A System Dynamic Model Development Framework 

 System dynamics modelers often pursue a similar development pattern. Several 

system dynamicists have proposed employing structured development procedures when 

creating system dynamics models. Some modelers have often relied on the “standard 

method” proposed by Randers (1980), Richardson and Pugh (1981), and Roberts et al. 

(1983) to ensure the quality and reliability of the model development process. Forrester 

(1994) Recently, Wolstenholme (1994) and Loebbke and Bui (1996) have drawn upon 

experiences in developing decision support systems (DSS) to provide guidance on model 

construction and analysis.  

 While Randers (1980) suggests four phases: conceptualization, model formulation, 
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model testing and implementation/representation, current system dynamics practice seems 

to fall into five phases that vary somewhat from Randers. First, due to the numerous issues 

incorporated in the conceptualization phase and different objectives of those tasks, the 

proposed framework (Figure 2) decomposes Rander’s initial phase into analysis and 

design. Richardson and Pugh (1981) refer to these two stages as problem identification 

and system conceptualization, respectively.  

 Second, and more importantly, Randers suggests model implementation as a final 

phase as would be found in a system development life cycle model. System dynamics 

consultants have questioned this view, describing their insights and contributions to 

organizations as “interventions,” “modeling for learning,” or “changing mental models” 

(Senge 1990, Graham 1994, Morecroft 1994). As Roberts (1972) suggests, “Indeed, to 

produce implementation of change the needed perspective is that implementation requires 

a continuous process of point-of-view that affects all stages of modeling.”1 Accordingly, 

the implementation phase is depicted as a parallel activity, overlapping the other four 

modeling stages.  

Intervention & Implementation

Analysis Design TestingFormulation

 

Figure 2. A System Dynamics Model Development Life Cycle 

 Over the past two decades, system dynamics modelers have identified a number of 
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important questions to consider while modeling and have developed new modeling 

techniques that warrant inclusion in a comprehensive model development framework. In 

the following sections, issues that system dynamicists have identified as key modeling 

concerns are presented. These issues are posed as questions that the modeler should 

consider with key conceptual terms highlighted by underlining.2 Accompanying each issue 

are references to system dynamics articles that examine the issue in depth and may offer 

specific tools and techniques that the modeler could use to address the concern.   

 Each issue is placed into a model development phase based upon the assignment in 

the “standard method” framework (Randers 1980, Richardson and Pugh 1981, and 

Roberts et al. 1983) and also the issue-specific references (for example. Forrester and 

Senge 1980 and Homer 1983).   

III. The Phases in the System Dynamics Model Development 

A. The Model Analysis Phase 

 During the model analysis phase, modelers become familiar with the problem area 

and work to clearly define the purpose of the model. At this point, it is important to assess 

what is the appropriate modeling technique to study the problem and what trade-offs are 

made in the selection of the modeling technique. The questions below cover problem 

definition and choice of modeling technique. 

1. Problem Definition 

 “A model needs a clear purpose.”3 

• What is the purpose of the model? (Forrester 1961, Sterman 1988a).  

Richardson and Pugh (1981) explain,  

From the system dynamics perspective, a model is developed to address a specific set 
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of questions. One models problems not systems. We emphasize the point because 

the purpose of a model helps guide its formulation. The problem to be addressed, 

the audience for the results of the study, the policies one wishes to experiment 

with, and the implementation desired all influence the content of the model.4 

• What is the nature of the problem being studied? linear vs. nonlinear, static 

vs. dynamic. 

In reference to econometrics and linear programming, Forrester (1976) suggests, “the 

techniques commonly used by social scientists to analyze statistical data can be 

inconclusive or misleading when applied to the kind of nonlinear dynamic systems 

found in real life.”5 

• What kinds of insights are being sought? Is it to study optimal or realistic 

behavior? Is it to better understand normative or positive behavior? 

According to Senge (1987), “Statistical methods aim at accurate estimation of 

model parameters and formal hypothesis testing. Simulation methods aid in 

understanding how the structure of complex systems produces the observed 

behavior.” Today, some simulation tools now allow the modeler to undertake both 

activities (Oliva 1996).  

• What is the role of the model? Is it a descriptive, explanatory, predictive or 

teaching model? 

• What are the hypotheses or theory underlying the model? Are these 

hypotheses dynamic? 

 2. Matching the Modeling Technique to the Performance Requirements 

“In addition to the shared concepts general to all mathematical modeling, each 
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methodological school also employs its own special set of theories, mathematical 

techniques, languages, and accepted procedures for constructing and testing 

models. Each modeling discipline depends on unique underlying and often 

unstated assumptions; that is, each modeling method is itself based on a model of 

how modeling should be done.”6 

• What type of modeling technique is appropriate? 

Forrester (1973) identifies 5 types of models: mental, descriptive, solvable 

mathematical, statistical, and system dynamics. The modeling technique should be 

consistent with the purpose as well as the nature of the problem being studied. 

Econometrics is often used to estimate parameters, study linear systems in 

equilibrium (Samuelson 1957). Linear programming is used to optimize an 

objective function in a resource-constrained environment. Discrete event 

simulation allows for spatially explicit and/or event-driven situations. System 

dynamics can be employed for non-linear and dynamically complex problems 

involving disequilibrium conditions, bottlenecks, delays, stock-flow relationships, 

and a realistic portrayal decision making (Sterman 1987).   

• What are the assumptions associated with each modeling technique? 

a) Discrete vs. Continuous Modeling 

Social scientists often model discrete events and rely upon discrete modeling 

techniques. In addition, difference equations are imposing an assumption of 

discrete time (for justification, see Samuelson 1957, Mathematical Appendix B). In 

contrast, system dynamicists employ continuous modeling and differential 

equations (Forrester 1961). 
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b) Correlation vs. Causal 

Most social scientists study correlation relationships, which are generally predicted 

by theory and may or may not be causal. In contrast, system dynamicists examine 

and model causal relationships which may or may not be supported in a correlation 

analysis. Richardson and Pugh (1980) explain, “The problem is that correlations 

made from total system behavior do not measure ceteris paribus causal 

relationships. Nature tends not to hold everything else constant while we collect 

data for the correlation.”7 

d) Equilibrium  

System dynamics permits disequilibrium modeling, while systems of simultaneous 

equations assume a stress-free equilibrium, in which desired and actual states are 

equal (Hines 1987). One econometrics text (Kennedy 1993) describes the 

shortcomings of time series modeling in analyzing dynamic problems as 

follows: 

 

One reason for the relative success of ARIMA models is that traditional 

econometric structural models were too static -- their dynamic specifications 

were not flexible enough to allow them adequately to represent an economy 

which when observed is more frequently out of equilibrium (going through a 

transition stage) than it is in equilibrium. This lack of attention to the dynamics 

of models was a natural outcome of the fact that economic theory has some 

ability to identify long-run relationships between economic variables, as 

created by equilibrium forces, but is of little help regarding the specification of 
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time lags and dynamic adjustments.8 

d) Parameters 

Econometrics imposes the assumption of equilibrium in which actual matches 

desired states (Hines 1987) in order to generate parametric estimates as the 

solution. System dynamics assume parameters and casual relationships between 

variables in order to better understand disequilibrium behaviors. 

e) Feedback  

System dynamicists view capturing feedback processes via stock and flow 

equations as critically important. In general, econometricans place less emphasis on 

feedback, although some relationships such as the multiplier-accelerator economic 

feedbacks are actively studied.  When feedback is present, advanced econometric 

techniques, such as instrumental variables, are employed to remove the effects of 

feedback and allow unbiased estimation of parameters. In some cases, the feedback 

can be retained through lagged variables; in others, the feedback is removed 

through the use of proxy/instrumental variables in order to allow unbiased 

estimation. 

f) Simultaneity and Time Delays 

Econometricians and system dynamicists often disagree on the presence and 

relative importance of time delays. In general, econometricians view adjustment 

processes as being rapid, justifying the use of simultaniety as an assumption  in 

their models.  System dynamicists assume that a time delay is present in every 

feedback process and that one can only approximate simultaniety through the use 

of a low time step (dt). 
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g) Determination/Identification of the System 

 Both econometric and system dynamic models must be determined, i.e. as many 

independent, consistent equations as unknowns. The two modeling schools rely on 

different sources of information to determine their models. According to Forrester 

(1992), economists rely on numerical data and economic theory in model 

development, while system dynamicists utilize a wider range of data, including 

unobservable concepts and soft variables. 

h) Linearity/Nonlinearity 

A linear relationship is one in which a variable increases as a constant percentage 

of another, such as y = mx + b. Linear representations are used in system dynamic 

models when converting one unit of measure into another (years into months) or 

when the relationship between to variables is essentially constant in the operating 

range being studied. It is important, however, to assess whether the relationship 

breaks down at extreme values that may be experienced in the real system. 

Simulation techniques, such as system dynamics, can allow the modeler the 

flexibility to introduce important non-linearities into the model.  

• Are there additional limitations of the modeling technique selected? 

a) Robustness of Results  

Senge observes, “Experiments with ordinary and generalized least-squares 

estimation (OLS and GLS) show that the parameter estimates derived from these 

methods are highly sensitive to errors in data measurement, especially when a 

model’s feedback structure is not completely known.”9 Kalman and other forms of 

optimal filtering can be employed to address some of these concerns (Ventana 
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1994). 

b) Units Consistency 

 Drawing upon its foundations in engineering control theory, system dynamicists 

are encouraged to ensure the consistency of units (Forrester 1973, Forrester and 

Senge 1980); economists do not emphasis this issue.  

• Should multiple modeling techniques be employed, either for comparison 

purposes or to fulfill different needs? 

Meadows (1980) suggests that econometrics and system dynamics are essentially 

complementary techniques that should be used to answer different questions. For 

example, comparative statics can be useful in understanding the relationship 

between model elements. Linear programming provides insight into resource 

allocation in a constrained environment. 

B. The Model Design Phase 

 During the model design phase, much of the model conceptualization occurs. The 

topic areas and associated questions for this phase are largely draw from Randers (1980) 

and Richardson and Pugh (1981). Generally, the following topics are examined during the 

model design phase: The variables of interest and reference modes are described. The 

feedback loops are outlined often in verbal and causal-loop diagrams, then the model 

scope, including time horizon and system boundary are assessed. Finally, the appropriate 

level of model aggregation is examined. 
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1. Variables of Interest 

• What are the variables of interest? 

• Should the variable be endogenous or exogenous?  

• Are pertinent variables included and the unnecessary ones excluded? 

2. Reference Modes 

Randers describes a reference mode as: 

... a graphical or verbal description of the social process of interest. The reference 

mode of a model under developed can be stated by drawing a graph of the 

expected behavior of major variables...Often the reference mode encompasses 

different possible time paths for the model variables.10 

• What are the behavior patterns that the variables display historically? 

Randers (1980) 

• What are the expected and/or desired future behavior patterns? 

• What level of confidence/certainty is associated with these values or 

patterns? 

• What considerations have been given to appropriately “slicing the problem”? 

(Saeed 1992) 

3. Dynamic Hypotheses 

Randers describes dynamic hypotheses as the reference modes along with the 

“basic mechanisms” of a problem. Basic mechanisms are the key feedback 

interactions between the variables of interest and can be depicted in causal loop 

diagrams (Randers 1980). 
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• What are core dynamic hypotheses? 

• How are they represented in causal-loop diagrams? Stock-flow diagrams? 

• Are the dynamic hypotheses meaningful, tangible and specific? (Forrester 

1961, Randers 1980) 

4. Model Scope 

“The art of model building is knowing what to leave out.”11 

• Boundary Adequacy Test: Is the boundary of the model appropriate given the 

purpose? Is the model too complex or too simple? Are the important concepts 

for addressing the problem endogenous to the model? (Graham 1974, 

Forrester and Senge 1990, Wittenberg 1992) 

Forrester states,  

...it follows that one starts not with the construction of a model of a system but 

rather one starts by identifying a problem, a set of symptoms, and a behavior mode 

which is the subject of the study. Without a purpose, there can be no answer to the 

question of what system components are important. Without a purpose, it is 

impossible to define the system boundary....In defining a system, we start at the 

broadest perspective with the concept of the closed boundary. The boundary 

encloses the system of interest. It states that the modes of behavior under study are 

created by the interaction of the system components within the boundary. The 

boundary implies that no influences from outside of the boundary are necessary for 

generating the particular behavior being investigated. So saying, it follows that the 

behavior of interest must be identified before the boundary can be determined.12 
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Richardson and Pugh (1981) define the system boundary as “includes all concepts 

and variables considered by the modeler to relate significantly to the dynamics of 

the problem being addressed.”13 

• Time Horizon: What is the appropriate time horizon of the model? 

First, the time horizon of the model should be related to the issue under study as 

well as the potential decisions being considered (Forrester, 1973). Second, the 

model should be used when the modeler has confidence in the validity of the model 

structure (Forrester 1973, Forrester and Senge 1980, Pindyck and Rubinfeld 

1991). Therefore, the model should not be used to develop understanding or 

predict outside of a narrow time horizon if the structure of the problem is 

undergoing substantial change and if the model fails to account for those changes. 

In other words, the model should only be used as long as the model structure 

makes sense.  

 

Third, if the model is being used for prediction purposes, then a longer time 

horizon may be required during the historical period in order to improve the 

quality of parameter estimation (Pindyck and Rubinfeld 1991). Fourth, if possible, 

dynamic models should be simulated over a long enough time period so that 

transient behavior can be played out. Some control theorists suggest that this time 

period should be 5 times the longest time delay in the system (Franklin et al., 

1986). System dynamists tend to measure the transient time as four times the sum 

of time constants around the dominant loop (Forrester 1961).  



   

   13

5. Aggregation 

• Is the model consistent in its level of aggregation? 

• Is a particular construct depicted at the appropriate level of aggregation? 

As reported in Legasto and Maciariello (1980), Forrester suggests: 

a) phenomena with similar dynamic behavior may be aggregated together 

b) phenomena with different response times may not be mixed together in a model 

c) phenomena with similar underlying dynamic structures may be aggregated           

 together 

 d) model purpose determines the appropriate level of aggregation 

 

Alfeld and Graham (1976) offer three conditions for aggregation: 

a) The actions or processes influence the model variables in similar fashion. 

b) The actions or processes respond to conditions represented by model 

variables in similar fashion. 

c) The depiction of the individual actions or processes is not critical to the utility of 

the model. 

Others suggest that the level of aggregation should be determined by what is 

necessary to address policy issues and -- when the underlying process can not be 

verified by real world data -- by the structure necessary to generate the reference 

mode. 
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• Is the model at the appropriate level of aggregation given the desired policy 

tests? 

C. The Model Formulation Phase 

 The model formulation phase entails the construction of the model. Modelers 

employ different styles to complete this phase. Some system dynamicists proceed by 

writing out the proposed detail structure (with rates, levels and constants), building the 

model, testing it and revising it (Randers 1980). In contrast, Lyneis (1980) provides an 

example of constructing a core model based on a few feedback loops, conducting 

extensive model tests, particularly policy tests. He then modifies formulations and adds 

more feedback loops and tests the impact on model behavior.  
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1. Variable Formulation 

• Do variables correspond with the real world? (Forrester 1961, Randers 

1980). 

• Should a variable be a stock or flow? 

• Should the constants be constant? Should the variables be variable?  

• Are units dimensionally consistent? (Forrester 1973, Forrester and Senge 

1980) 

• Are the names understandable and clearly convey the meaning? (Kampmann 

1991) 

2. Formulation of Table Functions 

• Are the x-axis and y-axis normalized, i.e. dimensionless? (Richardson and 

Pugh 1981) In stress-free equilibrium, does the model use the normal 

operating point, which is often (1,1)? 

• Does the table function generate unrealistic values? (Kampmann 1991)  

• Is the shape of the function smooth (Alfeld and Graham 1976)?  

• Is the shape of the table function consistent with reference lines that bound 

the potential values?  

• Is there bias implicit in the formulation through an asymmetric table function? 

• Does the table function depict a single effect or several dissimilar effects 

(implying it should be disaggregated) (Alfeld and Graham 1976)? Is the table 

function monotonically increasing or decreasing as disaggregated table 

functions should be?  

• What sections of the table function are used? Does the model regularly 
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simulate off one end of the table function? If the model simulates off the end 

of a table function, what value is assumed by the software?  

• If real world data are used to calibrate a table function, did the researcher 

take into account potential perception biases of information sources? (Ford 

and Sterman 1998) 

• If the table is data-driven, is it still robust at the extremes? 

3. Other Formulation Issues 

• Extreme Conditions Test: Are the formulations robust under extreme 

conditions? (Forrester and Senge 1980, Kampmann 1991, Peterson and 

Eberlein 1994) For example, if division is present in an equation can the 

denominator become zero? Does first-order negative feedback control 

prevent stocks that are not negative in the real world from becoming negative 

in the model? 

• System Dynamics Tradition: Are formulations consistent with the generic 

structures and “molecules of structure” used commonly in the system 

dynamics literature and their rationale? (Forrester 1961, Paich 1985, 

Richmond et al. 1987, Hines 1996, Lane and Smart 1996) 

• Discrete vs. Continuous: Can a discrete formulation (e.g. IF THEN ELSE) be 

captured more effectively or realistically through the use of a continuous 

(table function) formulation? (Forrester 1961, Kampmann 1991, MacDonald 

1996) Do discrete formulations correspond to the real world? Does the 

discrete formulation obscure bias? 

• Rate Design: Is the classic “goal, current condition, discrepancy and action” 
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structure present? (Forrester 1961)  

• Parameters: Are the values of constants and initial stocks reasonable? Are 

parameters relatively consistent with each other? Are parameters explicit?  

• Initial Conditions: Are initial stock values set equal to algebraic expressions 

that are a function of other stocks and parameters in the system rather than 

numbers? If the model is initialized in a stress-free equilibrium, are the initial 

stocks functions of desired stock levels and normal conditions? 

• Physical Structures: Are the “physics of the system” correctly depicted 

(structure verification test of Forrester 1973 and Forrester and Senge 1980)? 

Are materials conserved?  

• Information Structures: Are the largest and more important information delays 

in the system present in the model? Are information structures consistent 

with the real world? (structure verification test of Forrester 1973 and 

Forrester and Senge 1980) 

• Time Delays: Are time delays correctly depicted as material or informational 

delays? Is the length of the delay appropriate? Does the delay order chosen 

approximate well the delayed response of the system? (Hamilton 1980) 

• Decision Rules: Are the decision rules realistic and boundedly/intendedly 

rational? Has bounded rationality been implemented effectively? (Morecroft 

1983a, 1983b and 1985, Sterman 1985) 

By bounded rationality, Simon (1976) means (1) incomplete knowledge, (2) values 

and outcomes can only imperfectly be anticipated, and (3) not all possible 

alternatives are known. Morecroft (1983) provides an expanded view of Simon’s 
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bounded rationality theory (1957). He believes that the key limitations that 

generate bounded rationality are: (1) decentralized/local decision making, (2) 

partial information, and (3) rules of thumb. As a benchmark, it can be useful to 

compare decision performance to optimal or near-optimal decisions (Sterman 

1987). 

4. Other Elements of Model Structure 

• Time Step (dt): Is the dt selected appropriate? Is the model sensitive to 

changes in time step? 

Forrester (1961) recommends that the time step be 1/4 to 1/10 of the smallest time 

constant. Some software produces fewer numerical errors if dt is set to be (1/2)n. If 

dt is too large, it may introduce an implicit delay in feedback (Kampmann 1991) or 

create integration error (Forrester 1961). Integration error can be detected by 

observing rapid changes in variable values that disappear once the dt is decreased.  

• Integration Method: Is the integration method selected appropriate? Is the 

model sensitive to changes in integration method? 

Euler Integration is generally the fastest and simplest computational technique. 

Runge-Kutta is preferable for models with oscillations. Depending on the software, 

the choice of integration technique can influence the test inputs (e.g. step or pulse) 

• Noise: Are noise variables introduced at appropriate locations in the model? 

What type of noise is introduced into the model? 

White noise assumes that the noise being introduced is uncorrelated with itself. 

Pink assumes that there is serial correlation. While modelers have historically used 

white noise, pink may more accurately depict the real world process. (Forrester 
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1961, Richardson and Pugh 1981, Glidden et al. 1995). 

D. The Model Testing Phase 

 The model testing phase includes questioning individual formulations, sections of 

model structure, as well as the entire model. Unexpected model behavior can lead the 

modeler to conclude that the model is flawed, causing the modeler to revisit particular 

formulations and revise them. Alternatively, the modeler may conclude that the model is 

performing correctly and that it is one’s understanding of the problem that was flawed. 

These insights may lead the modeler to reexamine the model analysis and design or 

provide a valuable lesson for how to address the problem area. The following questions 

are often addressed during the model testing phase. 

1. Model Validity 

• How do you determine if the model is valid? How do you develop confidence 

in the model? (Barlas and Carpenter 1990, Barlas 1996) 

Social scientists often differentiate between construct, internal and external validity 

(Judd et al. 1991). Construct validity examines whether the constructs of 

theoretical interest are well-operationalized. System dynamicists often ask whether 

the constructs correspond to the real-world. In a consulting environment, system 

dynamicists are often more concerned whether the client has developed confidence 

in the model (see Section E.1. Model Intervention below). 

• What kinds of predictions or forecasts are the modelers making? 

Generally, econometricans seek to make “point predictions,” while system 

dynamicists seek to predict qualitative changes in reference modes. 

• In what operating range do the modelers feel comfortable making model 
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predictions? 

System dynamicists attribute many structural changes to a shift in loop dominance 

(Forrester 1987b, Richardson 1995) created by endogenous factors in the system, 

and hence they feel comfortable making forecasts about model behavior into the 

future and under varied assumptions. Economic modelers generally view structural 

change as arising from exogenous forces; additional model variables must be added 

to accommodate structural changes. 

• Are the results of the model reproducible from publications or reports? 

(Sterman 1988a) 

• How is the model documented, and will the documentation be publicly 

available? (Robinson 1980, Sterman 1988a) 

2. Model Behavior Testing 

“Testing is the intellectual highpoint of the modeling process.”14 

• Behavior Reproduction Test: How well does the model reproduce the 

historical reference mode? (Forrester 1973, Senge 1978, Forrester and 

Senge 1980) 

• Pattern Behavior Test: Is the model capable of producing realistic future 

patterns of behavior in terms of periods, phase relationships and shape? 

(Forrester and Senge 1980)  

• Is the model initialized as a stress-free equilibrium, in which inflows equal 

outflows and desired equals actual states? 

Setting an existing model into a stress-free equilibrium can be a challenging and 

time-consuming activity.  If the model is developed with the system always 
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initialized in a stress-free equilibrium, then accurately assessing different policy 

tests becomes much easier.  

• What forms of stressed equilibrium are possible?  

Stressed equilibrium exists when inflows equal outflows but not all actual states 

equal desired. For example, an inventory management system generates a constant 

level of inventory when production equals shipments; however, there are numerous 

potential levels for the inventory, many may be too low and many too high. The 

“unstressed equilibrium” exists when actual inventories equal the desired level.  

• What is the origin of unusual or unexpected behavior? Is it generated by the 

use of discrete formulations or integration error (too large DT)? Is it actually 

an unexpected insight into the behavior of the system? 

• Dynamic Analysis: How does the model respond to various inputs (pulse, 

step, ramp, sinwave)? Is the transient behavior as expected? What is the 

long term behavior, e.g. oscillation, limit cycle or steady state equilibrium? 

(The next two questions are closely related). 

• Does the model display chaotic behavior?  

An extensive system dynamics literature has developed (see Andersen and Sturis 

1988, and Sterman 1988b). Phase plots can often detect the presence of chaotic 

behavior (Andersen and Sturis 1988) 

• Parameter Sensitivity Test: Have the “insensitive many” parameters been 

distinguished from the “critical few”? (Forrester 1971 and 1973, Forrester and 

Senge 1980) If the parameters are sensitive, were they estimated individually 

or in a multivariate fashion? (Richardson and Pugh 1981) Were the 



   

   22

appropriate techniques used to develop parameter estimates? (Forrester 

1973, Forrester and Senge 1980, Graham 1980, Peterson 1980, Oliva 1996) 

• Behavior Mode Sensitivity: How does the behavior of the model change 

under different assumptions? What gives rise to the shifts in loop 

dominance? Has the model been systematically tested using dynamic 

analysis and analytical techniques to see if it can be pushed into different 

reference modes? (Mass 1991, Richardson 1995) What causes changes in 

the timing of behavior, amplification, or system stability?  

Mass and Senge (1980) ask: 

a) Does omission (inclusion) of the factor lead to a change in predicted numerical 

values of the system? 

b) Does omission (inclusion) of the factor lead to a change in the behavior mode of 

the system? For example, does it damp out or induce fluctuations in the system? 

c) Does omission (inclusion) of the factor lead to rejection of policies that were 

formerly found to have had a favorable impact or to reordering of preferences 

among alternative policies? 

Homer (1983) recommends that to answer these questions one should undertake 

partial model testing. It allows the modeler to test a sub-system of the model and 

understand its behavior before adding it to a more complex model.  

• Are the behavioral responses realistic? boundedly rational? Could “smarter” 

agents or better decision rules change outcomes or policy conclusions? 

• Does the model reflect forms of policy resistance present in the real world? 

Richardson and Pugh (1981) observe “compensating feedback is a property of real 
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systems, as well as system dynamics models, and is the reason real systems tend to 

be resistant to policies designed to improve behavior....parameter change may 

weaken or strengthen a feedback loop, but the multi-loop nature of a system 

dynamics model naturally strengthens or weakens other loops to compensate. The 

result is often little or no overall change in model behavior.”  

• Event Prediction Test: Can the model predict events based on particular 

changes in circumstances? (Forrester and Senge 1980) 

• Family Member Test: To what degree is the model generalizable to a family 

of similar situations, i.e. externally valid? Are the model structures generic? 

• How well is the model calibrated to real-world data? 

Statistical tests are frequently conducted to assess the validity of models, particular 

econometric models. In the 1970s and 1980s, system dynamicists had been hesitant 

to employ statistical tests. Mass and Senge (1980) note the limitations of statistical 

tests, “such tests actually measure the degree to which available data permit 

accurate estimation of model parameters and thus, should be viewed more as test 

of data usefulness than as tests of model specification.”15 More recently, system 

dynamicists used statistical tests such as Theil statistics (Theil 1966) and other 

tests (Sterman 1984, Barlas 1989 and 1990, Oliva 1996) are recommend by system 

dynamicists to assess how well simulated variable values conform to real world 

data. 
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• How is the modeling outcome influenced by the selection of modeling 

technique? How might the answer change if a different technique were 

employed? (Andersen 1980) 

• Are the modeling insights surprising or not? 

3. Policy Implications and Testing 

• What structures must be added to accommodate policy testing? Do the 

structures represent policies that could be instituted in the real world? 

• Are the policies effectively implemented in the model from a formulation 

viewpoint? 

• System Improvement Test: What behaviors in the system are desirable to 

improve? What policies/controllers can improve them? (Forrester and Senge 

1980) 

• Policy Sensitivity Test: Is the model sensitive to the policy introduced? Is the 

policy a leverage point? 

According to Sterman (1997) “Policy sensitivity exists when a change in 

assumptions reverses the desirability or impacts of a proposed policy. If reducing 

the federal deficit benefited the economy under one set of assumptions but ruined 

it under another, the model would exhibit policy sensitivity. Obviously, such 

sensitivity is far more important than numerical sensitivity. Policy sensitivity tends 

to arise when one considers changes in assumptions about model boundary and 

time horizon.” 

• Is the effectiveness of the policy dependent on the state of the system? In 

other words, is the influence of the policy the same if it is implemented in 
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stress-free equilibrium, stressed equilibrium, near equilibrium and well out-of-

equilibrium? 

E. The Model Intervention and Implementation Phase 

 Systems thinking concentrates its focus on gaining systems insights during the 

model analysis and design phases, by identifying feedback processes and leverage points 

that can serve as policy levers (Senge 1990). System dynamicists have also highlighted  

counterintuitive or “surprise” behavior in systems that occur during the model formulation 

and testing phases as another important source of insights (Forrester 1987a, Forrester and 

Senge 1980, Mass 1991).  

  While the system dynamics literature describes methods for gaining 

insights, less focus has been placed on the implementation phase. Traditionally, system 

dynamic modelers generated reports highlighting the studies’ findings and left the 

implementation to their clients. Today, more emphasis is placed upon converting the 

modeling insights into effective interventions within organizations. The questions below 

are drawn largely from recent articles that have focused on converting model insights into 

organizational change. 

1. Client Interaction 

• What are the key deliverables to the client? Are the insights learned during 

the modeling process the key deliverable or is it a functioning model or 

simulator? 

• What is the most desirable interaction with a client (managers) and observers 

(academics)? If so, in what fashion? 

The system dynamics community has become increasingly aware of the limitations 
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of the expert mode of consulting and have increasingly emphasized “learner-

centered” learning and “modeling as learning” (Graham 1994, Lane 1994) and 

developing educational environments in which managers can learn effectively 

(Isaacs and Senge 1994).  

• What process will be followed to help build the client’s confidence in the 

•  model and modeling process? 

a) Knowledge Elicitation 

The process of building the client’s confidence should occur throughout the 

modeling process. Brainstorming, hexagon, or other group process techniques can 

be employed to elicit information from clients (Vennix et Gubbels 1994, Hodgson 

1994).  

b) Group Model Building 

An entire issue of the System Dynamics Review (Vol. 13, No. 2, Summer 1997) is 

devoted to articles on group model building and working with clients to build 

confidence in models.  

• Do the users understand the role of the system, its appropriate uses as well 

as limitations? 

As Meadows (1980) reminds us: 

A model is simply an ordered set of assumptions about a complex system. It is an 

attempt to understand some aspect of the infinitely varied world by selecting from 

perceptions and past experience a set of general observations applicable to the 

problem at hand....The model we have constructed is, like every other model, 

imperfect, oversimplified, and unfinished.16 
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2.  Evaluation of the Modeling Process 

• Was scientific method followed? 

Scientific method is employed to try to falsify the underlying theory (Popper 

1959). Scientific methods call for first developing the theoretical basis along with 

hypotheses and subsequently testing the hypotheses and searching for 

disconfirming evidence.   

• What is the world view held by the modelers employing the technique 

selected? How may that bias the model, results and interpretation of results? 

 It is important to discern the world view and mental models held by the modelers. 

Arrow observes, “There is really an identified model in the minds of the 

investigators, which, however, has not been expressed formally because of the 

limitations of mathematics or of language in general.”17 Meadows (1980) suggests 

that system dynamicists believe that the real world is non-linear, multi-variable, 

time delayed and disaggregated, while economists believes that world is linear, 

open loop and conforms to economic theory. The world view influences one’s 

confidence in various techniques. For example, Richardson and Pugh note that it is 

disturbing for those with experience in statistical models to hear that statistical 

estimation of model parameters are not important.  

 

Econometricans are often accused of “tape spinning,” i.e. searching for significant 

relationships rather than developing adequate theory or real world understanding. 

System dynamicists have been accused of “falling in love with their models,” 

inadequately testing their model against data and fully taking advantage of testing 
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opportunities. 

• What kind of impact did the model and the modeling process have on the 

world? 

Some system dynamicists hold the view: “Modeling is not functional unless it leads 

to an improvement of operational conclusions on the client’s side.”18 Others seek 

to have an impact on the academic community rather than upon the actors in the 

real system, viewing that the knowledge will then be disseminated to a broader 

audience and become common rather than proprietary knowledge. 

IV. What Next? 

 By following a rigorous model development methodology, the system dynamics 

community may benefit from more reliable models that better meet the users’ needs, are 

faster to produce, and are more economical to develop. The System Dynamics Model 

Development Life Cycle framework provides a methodology to be followed when 

developing a model. As the model moves through the different development phases, the 

modeler can employ the associated list of issues as a procedures checklist to support the 

model development process.  

 The current paper is designed to provide an organized list of issues to consider; the 

modeler should then use discretion in selecting the issues that are appropriate for that 

model and modeling engagement. This paper can serve as a guide for students to assist 

them in analyzing and critiquing existing system dynamic models. In addition, system 

dynamics software is increasingly including controls (e.g. not simulating if equations are 

not defined) and tools (e.g. graphical depictions of variable types, unit checking, causal 

tracing) to assist the modeler in following a more rigorous and disciplined model 
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development process.  

 Just as systems developers have adapted the traditional systems development life-

cycle to be more compatible with new development techniques, system dynamic modelers 

may find it desirable to expand and modify this framework to be more consistent with their 

model development approach. For example, some system dynamicists are gravitating to a 

more object-oriented approach, using software layers (Peterson 1994, iThink/Stella 

software) and software components (such as the molecules of structure described in Hines 

1996). These modelers could modify the model development life-cycle framework to 

include procedures to test standardized components prior to inclusion in models. Over 

time, the framework and associated procedures will also need to be expanded and 

modified to reflect new modeling insights. 
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