System Dynamics Tools IV

Dynamics of Simple Structures: Positive & Negative Feedback Loops

December 2010 - January 2011

Università della Svizzera italiana Paulo Gonçalves

Paper Folding

42 Folds:

-Paper Thickness:

440,000 km (Earth to moon = 385,000 km) $(.1 \text{ mm})^*2^{42} \approx .1 \text{ mm}^*4.4 \times 10^{12}$

100 Folds:

-Paper Thickness:

1 billion light-years

(852 *trillion* times the distance from the earth to the sun)

Exponential Growth

Doubling Time (t_d)

Structure: $\frac{dS}{dt} = gS$

Behavior: $S_t = S_0 \exp(gt)$

Doubling Time: $2S_0 = S_0 \exp(gt_d)$

 $2 = \exp(gt_d)$

 $ln2 = gt_d$

 $t_d = \ln 2/g \approx 0.693/g$

Rule of 70: t_d ≈ 70/(100g%)

Exponential Decay

Half Life (t_h)

Structure: $\frac{dP}{dt} = -dP$

Behavior: $P_t = P_0 \exp(-dt)$

Half Life: $(1/2)P_0 = P_0 \exp(-dt_h)$

 $1/2 = \exp(-dt_h)$

 $ln(1/2) = -dt_h$

 $t_h = -\ln(1/2)/d \approx 0.693/d$

Rule of 70: $t_h \approx 70/(100d\%)$

