Learning in and about
Complex Systems

1.1

Experience is an expensive school.
—Benjamin Franklin

Experience is something you get just after you need it.
—Anonymous

INTRODUCTION

The greatest constant of modern times is change. Accelerating changes in tech-
nology, population, and economic activity are transforming our world, from the
prosaic—the effect of information technology on the way we use the telephone—
to the profound—the effect of greenhouse gases on the global climate. Some of the
changes are wonderful; others defile the planet, impoverish the human spirit, and
threaten our survival. All challenge traditional institutions, practices, and beliefs.
Most important, most of the changes we now struggle to comprehend arise as
consequences, intended and unintended, of humanity itself. All too often, well-
intentioned efforts to solve pressing problems lead to policy resistance, where our
policies are delayed, diluted, or defeated by the unforeseen reactions of other
people or of nature. Many times our best efforts to solve a problem actually make
it worse.

The dizzying effects of accelerating change are not new. Henry Adams, a
perceptive observer of the great changes wrought by the industrial revolution,
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formulated the Law of Acceleration to describe the exponential growth of tech-
nology, production, and population that made the legacy of colonial America he
inherited irrelevant:

Since 1800, scores of new forces had been discovered; old forces had been raised
to higher powers . . . Complexity had extended itself on immense horizons,
and arithmetical ratios were useless for any attempt at accuracy.

If science were to go on doubling or quadrupling its complexities every
10 years, even mathematics should soon succumb. An average mind had suc-
cumbed already in 1850; it could no longer understand the problem in 1900.
(Adams 1918, pp. 490, 496)

Adams believed the radical changes in society induced by these forces “would
require a new social mind.” With uncharacteristic, and perhaps ironic, optimism,
he concluded, “Thus far, since 5 or 10 thousand years, the mind had successfully
reacted, and nothing yet proved that it would fail to react—but it would need
to jump.”

A steady stream of philosophers, scientists, and management gurus have since
echoed Adams, lamenting the acceleration and calling for similar leaps to funda-
mental new ways of thinking and acting. Many advocate the development of sys-
tems thinking—the ability to see the world as a complex system, in which we
understand that “you can’t just do one thing” and that “everything is connected to
everything else.” If people had a holistic worldview, it is argued, they would then
act in consonance with the long-term best interests of the system as a whole, iden-
tify the high leverage points in systems, and avoid policy resistance. Indeed, for
some, the development of systems thinking is crucial for the survival of humanity.'

The challenge facing us all is how to move from generalizations about accel-
erating learning and systems thinking to tools and processes that help us under-
stand complexity, design better operating policies, and guide change in systems
from the smallest business to the planet as a whole. However, learning about com-
plex systems when you also live in them is difficult. We are all passengers on an
aircraft we must not only fly but redesign in flight.

System dynamics is a method to enhance learning in complex systems. Just as
an airline uses flight simulators to help pilots learn, system dynamics is, partly, a
method for developing management flight simulators, often computer simulation
models, to help us learn about dynamic complexity, understand the sources of pol-
icy resistance, and design more effective policies.

But learning about complex dynamic systems requires more than technical
tools to create mathematical models. System dynamics is fundamentally interdis-
ciplinary. Because we are concerned with the behavior of complex systems, system

'There are many schools of systems thinking (for surveys, see Richardson 1991 and Lane
1994). Some emphasize qualitative methods; others stress formal modeling. As sources of method
and metaphor they draw on fields as diverse as anthropology, biology, engineering, linguistics, psy-
chology, physics, and Taoism and seek applications in fields still more diverse. All agree, howeve},
that a systems view of the world is still rare. Jay Forrester developed system dynamics in the 1950s

at MIT. Richardson (1991) traces the history of the field and relates system dynamics to other sys-
tems approaches.
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dynamics is grounded in the theory of nonlinear dynamics and feedback control
developed in mathematics, physics, and engineering. Because we apply these tools
to the behavior of human as well as physical and technical systems, system
dynamics draws on cognitive and social psychology, economics, and other social
sciences. Because we build system dynamics models to solve important real world
problems, we must learn how to work effectively with groups of busy policy
makers and how to catalyze sustained change in organizations.

This chapter discusses the skills required to develop your systems thinking ca-
pabilities, how to create an effective learning process in dynamically complex sys-
tems, and how to use system dynamics in organizations to address important
problems. I first review what we know about how people learn in and about com-
plex dynamic systems. Such learning is difficult and rare because a variety of
structural impediments thwart the feedback processes required for learning to oc-
cur. Successful approaches to learning about complex dynamic systems require
(1) tools to elicit and represent the mental models we hold about the nature of dif-
ficult problems; (2) formal models and simulation methods to test and improve our
mental models, design new policies, and practice new skills; and (3) methods to
sharpen scientific reasoning skills, improve group processes, and overcome defen-
sive routines for individuals and teams.

1.1.1 Policy Resistance, the Law of Unintended
Consequences, and the Counterintuitive
Behavior of Social Systems

And it will fall out as in a complication of diseases, that by applying a
remedy to one sore, you will provoke another; and that which removes the
one ill symptom produces others . . .

—Sir Thomas More

The best-laid schemes o’ mice an’ men/ Gang aft a-gley.

—Robert Burns
Anything that can go Wmng will go wrong.
_‘GMurphyﬂ,
We have met the enemy and he is us.
—Pogo

From Thomas More in 1516 to Pogo in the mid 20th century it has long been ac-
knowledged that people seeking to solve a problem often make it worse. Our poli-
cies may create unanticipated side effects. Our attempts to stabilize the system may
destabilize it. Our decisions may provoke reactions by others seeking to restore the
balance we upset. Forrester (1971a) calls such phenomena the “counterintuitive
behavior of social systems.” These unexpected dynamics often lead to policy re-
sistance, the tendency for interventions to be delayed, diluted, or defeated by the

response of the system to the intervention itself (Meadows 1982). '



Ficure 1-1
Policy resistance:
Romanian birth
rates

The crude birth
rate in Romania
showing the effect
of restricting abor-
tion beginning in
1966
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As an example, consider the birth rate in Romania in the late 1960s. The crude
birth rate (births per year per 1000 people) was extremely low—about 15 per
thousand (Figure 1-1). For various reasons, including national pride and ethnic
identity, the low birth rate was considered to be a grave problem by the govern-
ment, including the dictator Nicolau Ceausesgu. The Ceausesgu regime responded
by imposing policies designed to stimulate the birth rate. Importation of contra-
ceptive devices was outlawed; propaganda campaigns extolling the virtues of large
families and the patriotic (matriotic would be more accurate) duty to have more
children were introduced, along with some modest tax incentives for larger fami-
lies. Perhaps most important, abortion—freely available on demand since 1957
through the state health care system—was banned in October 1966 (David and
Wright 1971).

The result was immediate and dramatic. The birth rate rose sharply to nearly
40 per 1000 per year, rivaling those of the fastest growing nations. The policy ap-
peared to be a sensational success. However, within months the birth rate began to
fall. By the end of 1970, only 4 years after the policy was implemented, the birth
rate had dropped below 20 per thousand, close to the low levels seen prior to the
intervention. Though the policy continued in force, the birth rate continued to fall,
reaching 16 per thousand by 1989—about the same low rate that led to the impo-
sition of the policy. What happened?

The system responded to the intervention in ways the regime did not antici-
pate. The people of Romania found ways around the policy. They practiced alter-
native methods of birth control. They smuggled contraceptive pills and devices in
from other countries. Desperate women sought and found back-alley abortions.
Many of these were unsanitary or botched, leading to a near tripling of deaths due
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to complications of abortion from 1965 to 1967. Most horribly, the number of
neonatal deaths rose by more than 300% between 1966 and 1967, a 20% increase
in the infant mortality rate (David and Wright 1971). The result: the policy was
rendered completely ineffective almost immediately after implementation.

But the unanticipated consequences didn’t end with the failure of the popu-
lation policy. The people of Romania, among the poorest in Europe, were having
small families because they couldn’t afford larger ones. Child care was unavail-
able for some. Many others lived with their extended families in small, crowded
apartments. Jobs were scarce; income was low. Many people gave children they
couldn’t support to state-run orphanages. The government’s policy didn’t prevent
the people of Romania from controlling their own fertility, but it did breed intense
resentment against the intrusive policies of the regime. In 1989, when the Berlin
wall fell and the totalitarian regimes of Eastern Europe toppled, Romania was the
only nation where the velvet revolution was violent. The hated Ceausescu and his
equally hated wife were summarily executed by firing squad. Their bloody bodies
were left in the courtyard of the presidential palace while the scene was broadcast
on national television. The law banning abortion was the first overturned by the
new government. The birth rate, already low, fell further. By the mid 1990s, the
population of Romania was actually declining as births dropped below deaths.

The children of Romania suffered the most from the population policy. During
the years of the population policy thousands of children were placed in the care of
state orphanages, where they were kept like animals in cribs (cages, really) with-
out attention to basic needs, much less the love that all of us need and deserve.
Food was so scarce that blood transfusions were routinely given as nutritional sup-
plements. Because needles were used repeatedly, an epidemic of AIDS spread
rapidly among the children. The side effects of the failed population policy cast a
shadow on the health and happiness of an entire nation, a shadow stretching over
generations. ;

Policy resistance is not limited to dictators. It doesn’t respect national borders,
political ideology, or historical epoch. Consider the US government’s fight against
inflation in the early 1970s. Figure 1-2 shows the Consumer Price Index (CPI) for
the United States between 1968 and 1976. In the early 1970s inflation had acceler-
ated and the Nixon administration felt action had to be taken. Though a Republi-
can, Nixon chose to implement wage and price controls. The policy was expensive:
A new federal bureaucracy, the Council on Wage and Price Stability, was created
to oversee the controls and enforce compliance. Wage and price controls were
viewed by many in Nixon’s own party as verging on socialism, costing Nixon
valuable political capital. At first, the policy seemed to work, although imperfectly.
During so-called Phase I of the controls, the rate of inflation fell by about half. The
administration decided the controls could be relaxed. In Phase II, President Ford
(who inherited the program from Nixon) launched a jawboning campaign, com-
plete with campaign-style buttons labeled “WIN!” for “Whip Inflation Now!”.
Few observers expected WIN! buttons to have any effect, and most felt inflation
would return to its rate prior to the start of controls. Instead, inflation actually ac-
celerated until, by 1975, the CPI had returned to the trajectory it was on prior to the
imposition of the price controls. Less than 4 years after the intervention there was
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FIGURE 1-2 Policy resistance in the fight against inflation

The US Consumer Price Index (CPI) showing the Nixon/Ford wage and price
controls
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no residue of benefit. Other examples of policy resistance can be found nearly
every day in the newspaper. Table 1-1 lists a few.?

Machiavelli, a keen observer of human systems, discussed policy resistance at
length, observing in the Discourses that

When a problem arises either from within a republic or outside it, one brought
about either by internal or external reasons, one that has become so great that it
begins to make everyone afraid, the safest policy is to delay dealing with it rather
than trying to do away with it, because those who try to do away with it almost
always increase its strength and accelerate the harm which they feared might come
from it. (Machiavelli 1979, pp. 240-241).

I find Machiavelli’s view too cynical but can sympathize with his frustration in ob-
serving his client princes (the CEOs of Renaissance Italy) take actions that only
made their problems worse. A more reflective view is offered by the late biologist
and essayist Lewis Thomas (1974, p. 90):

When you are confronted by any complex social system, such as an urban center or
a hamster, with things about it that you’re dissatisfied with and anxious to fix, you
cannot just step in and set about fixing with much hope of helping. This realization
is one of the sore discouragements of our century . . . You cannot meddle with one
part of a complex system from the outside without the almost certain risk of setting
off disastrous events that you hadn’t counted on in other, remote parts. If you want
to fix something you are first obliged to understand . . . the whole system . . .
Intervening is a way of causing trouble.

3l_?unher reading: John McPhee (1989) offers a wonderful description of policy resistance in the
relationship of people with nature. McPhee brilliantly describes the unanticipated side effects and
policy resistance arising from attempts to defeat three elemental forces of nature: volcanism, flood,
and fire. Edward Tenner (1996) also identifies many examples of policy resistance.
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Examples of policy
resistance
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“Use of Cheaper Drugs Pushes Costs Up, Not Down, Study Finds: Limiting
what is prescribed, as managed-care systems do, has unintended effect of
increasing costs, results show™ (Headline in LA Times, 3/20/96, p. 1, report-
ing Univ. of Utah study of 13,000 patients in various HMOs).

“Washington’s biggest conservation program, which pays farmers to take
soil out of cultivation for a decade to combat erosion and help the environ-
ment, is a waste of money, so says a new study of the 11-year-old

program . . . For every eroding acre a farmer idles, another farmer—or
sometimes the same one—simply plows up nearly as much additional
erosion-prone land . . . In the Great Plains, for instance, farmers set aside
17 million acres, yet the total cultivated land dropped by only 2 million acres”
(Business Week, 3/18/96, p. 6, reporting a Univ. of Minnesota study).

Low tar and nicotine cigarettes actually increase intake of carcinogens, CO,
etc. as smokers compensate for the low nicotine content by smoking more
cigarettes per day, by taking longer, more frequent drags, and by holding the
smoke in their lungs longer.

Antilock brakes and other automotive safety devices cause some people to
drive more aggressively, offsetting some of their benefits.

Information technology has not enabled the “paperless office”—paper con-
sumption per capita is up.

Road building programs designed to reduce congestion have increased traf-
fic, delays, and pollution.

Despite widespread use of labor-saving appliances, Americans have less
leisure today than 50 years ago.

The US government’s war on drugs, focusing on interdiction and supply dis-
ruption (particularly cocaine production in South America), with a cost in the
billions, has had only a small impact on cocaine cultivation, production, or
smuggling. Drug use in America and elsewhere remains high.

The US policy of fire suppression has increased the size and severity of
forest fires. Rather than frequent, small fires, fire suppression leads to the
accumulation of dead wood and other fuels leading to larger, hotter, and
more dangerous fires, often consuming the oldest and largest trees which
previously survived smaller fires unharmed.

Flood control efforts such as levee and dam construction have led to more
severe floods by preventing the natural dissipation of excess water in flood
plains. The cost of flood damage has increased as the flood plains were de-
veloped by people who believed they were safe.

Imposing 200-mile territorial limits and quotas to protect fish stocks did

not prevent the collapse of the Georges Bank fishery off the coast of North
America. Once the world’s richest, by the mid 1990s many species were
commercially extinct, the fishery was shut down, the fleets were idled,

and the local economies were in depression.

Deregulation of the US Savings and Loan industry, designed to save the
industry from financial problems, led to a wave of speculation followed by
collapse, at a cost to taxpayers in the hundreds of billions of dollars.
Antibiotics have stimulated the evolution of drug-resistant pathogens,
including virulent strains of TB, strep, staph, and sexually transmitted
diseases.

Pesticides and herbicides have stimulated the evolution of resistant pests
and weeds, Killed off natural predators, and accumulated up the food chain
to poison fish, birds, and possibly humans.
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FIGURE 1-3
Event-oriented
view of the world
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But how can one come to understand the whole system? How does policy resis-
tance arise? How can we learn to avoid it, to find the high leverage policies that
can produce sustainable benefit?

1.1.2 Causes of Policy Resistance

One cause of policy resistance is our tendency to interpret experience as a series of
events, for example, “inventory is too high,” or “sales fell this month.” Accounts
of who did what to whom are the most common mode of discourse, from the mail-
room to the boardroom, from headlines to history books. We are taught from an
early age that every event has a cause, which in turn is an effect of some still ear-
lier cause: “Inventory is too high because sales unexpectedly fell. Sales fell be-
cause the competitors lowered their price. The competitors lowered their price
because . . .” Such event-level explanations can be extended indefinitely, in an un-
broken Aristotelian chain of causes and effects, until we arrive at some First Cause,
or more likely, lose interest along the way.

The event-oriented worldview leads to an event-oriented approach to problem
solving. Figure 1-3 shows how we often try to solve problems. We assess the state
of affairs and compare it to our goals. The gap between the situation we desire and
the situation we perceive defines our problem. For example, suppose sales of your
organization were $80 million last quarter, but your sales goal was $100 million.
The problem is that sales are 20% less than you desired. You then consider various
options to correct the problem. You might cut prices to stimulate demand and in-
crease market share, replace the vice president of sales with someone more ag-
gressive, or take other actions. You select the option you deem best and implement
it, leading (you hope) to a better result. You might observe your sales increase:
problem solved. Or so it seems.

The system reacts to your solution: As your sales rise, competitors cut prices,
and sales fall again. Yesterday’s solution becomes today’s problem. We are not
puppet masters influencing a system out there—we are embedded in the system.
The puppet master’s movements respond to the position of the marionette on the
strings. There is feedback: The results of our actions define the situation we face in
the future. The new situation alters our assessment of the problem and the deci-
sions we take tomorrow (see the top of Figure 1-4).

Policy resistance arises because we often do not understand the full range of
feedbacks operating in the system (Fi gure 1-4). As our actions alter the state of the

system, other people react to restore the balance we have upset. Our actions may
also trigger side effects.

Goals

S

Problem ———p» Decision —® Results

Situation



FIGURE 1-4
The feedback view
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We frequently talk about side effects as if they were a feature of reality. Not so.
In reality, there are no side effects, there are just effects. When we take action, there
are various effects. The effects we thought of in advance, or were beneficial, we
call the main, or intended effects. The effects we didn’t anticipate, the effects
which fed back to undercut our policy, the effects which harmed the system—these
are the ones we claim to be side effects. Side effects are not a feature of reality but
a sign that our understanding of the system is narrow and flawed.

Unanticipated side effects arise because we too often act as if cause and effect
were always closely linked in time and space. But in complex systems such as an
urban center or a hamster (or a business, society, or ecosystem) cause and effect are
often distant in time and space. Narrow model boundaries often lead to beliefs that
violate the laws of physics: in the mid 1990s California and the automobile indus-
try debated the introduction of so-called zero emission vehicles (ZEVs) to reduce
air pollution. True, the ZEVs—electric cars—would have no tailpipe. But the
power plants required to make the electricity to run them do generate pollution. In
reality, California was promoting the adoption of DEVs—displaced emission ve-
hicles—cars whose wastes would blow downwind to other states or accumulate in
nuclear waste dumps outside its borders. Electric cars may turn out to be an envi-
ronmental boon compared to internal combustion. The technology is improving
rapidly, and air pollution is a major health problem in many cities. But no mode of

/ Decisions
Goals ( >

Environment

Our decisions alter our environment, leading to new decisions,

Side
Goal\s\ Effects
'/ Environment /
Goals of
Other
Agents Actions of
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but also triggering side effects, delayed reactions, changes
in goals and interventions by others. These feedbacks may
lead to unanticipated results and ineffective policies.
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transport or energy conversion process is free of environmental impact, and no
legislature can repeal the second law of thermodynamics.?

To avoid policy resistance and find high leverage policies requires us to ex-
pand the boundaries of our mental models so that we become aware of and under-
stand the implications of the feedbacks created by the decisions we make. That is,
we must learn about the structure and dynamics of the increasingly complex sys-
tems in which we are embedded.

1.1.3 Feedback

Much of the art of system dynamics modeling is discovering and representing the
feedback processes, which, along with stock and flow structures, time delays, and
nonlinearities, determine the dynamics of a system. You might imagine that there
is an immense range of different feedback processes and other structures to be
mastered before one can understand the dynamics of complex systems. In fact, the
most complex behaviors usually arise from the interactions (feedbacks) among the
components of the system, not from the complexity of the components themselves.

All dynamics arise from the interaction of just two types of feedback loops,
positive (or self-reinforcing) and negative (or self-correcting) loops (Figure 1-5).
Positive loops tend to reinforce or amplify whatever is happening in the system:
The more nuclear weapons NATO deployed during the Cold War, the more the So-
viet Union built, leading NATO to build still more. If a firm lowers its price to gain
market share, its competitors may respond in kind, forcing the firm to lower its
price still more. The larger the installed base of Microsoft software and Intel ma-
chines, the more attractive the “Wintel” architecture became as developers sought
the largest market for their software and customers sought systems compatible
with the most software; the more Wintel computers sold, the larger the installed
base. These positive loops are all processes that generate their own growth, lead-
ing to arms races, price wars, and the phenomenal growth of Microsoft and Intel,
respectively.

Negative loops counteract and oppose change. The less nicotine in a cigarette,
the more smokers must consume to get the dose they need. The more attractive a
neighborhood or city, the greater the inmigration from surrounding areas will be,
increasing unempioyment, housing prices, crowding in the schools, and traffic
congestion until it is no more attractive than other places people might live. The
higher the price of a commodity, the lower the demand and the greater the pro-
duction, leading to inventory accumulation and pressure for lower prices to elimi-
nate the excess stock. The larger the market share of dominant firms, the more
likely is government antitrust action to limit their monopoly power. These loops

all describe processes that tend to be self-limiting, processes that seek balance and
equilibrium.

~‘l$ven scientists suffer from these problems. I once heard a distinguished physicist argue that the
solution to the energy problem was to build hundreds of huge offshore nuclear power stations, to be
cooled by seawater. The warm wastewater would be pumped back in the ocean where, he said
“The waste heat would disappear.” Out of sight, out of mind. ’ ’
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FIGURE 1-5
Positive and negative feedback loops

Positive feedback: Positive loops are self-reinforcing.
In this case, more chickens lay more eggs, which hatch
and add to the chicken population, leading to still more
eggs, and so on. A Causal Loop Diagram or CLD (chap-
ter 5) captures the feedback dependency of chickens
and eggs. The arrows indicate the causal relationships.
The + signs at the arrowheads indicate that the effect is
positively related to the cause: an increase in the
chicken population causes the number of eggs laid each
day to rise above what it would have been (and vice
versa: a decrease in the chicken population causes egg
laying to fall below what it would have been). The loop is
self-reinforcing, hence the loop polarity identifier R. If
this loop were the only one operating, the chicken and
egg population would both grow exponentially.

Of course, no real quantity can grow forever. There must
be limits to growth. These limits are created by negative
feedback.

Negative feedback: Negative loops are self-correcting.
They counteract change. As the chicken population
grows, various negative loops will act to balance the
chicken population with its carrying capacity. One clas-
sic feedback is shown here: The more chickens, the
more road crossings they will attempt. If there is any
traffic, more road crossings will lead to fewer chickens
(hence the negative — polarity for the link from road
crossings to chickens). An increase in the chicken popu-
lation causes more risky road crossings, which then
bring the chicken population back down. The B in the
center of a loop denotes a balancing feedback. If the
road-crossing loop was the only one operating (say be-
cause the farmer sells all the eggs), the number of
chickens would gradually decline until none remained.
All systems, no matter how complex, consist of net-
works of positive and negative feedbacks, and all
dynamics arise from the interaction of these loops

with one another.
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1.1.4 Process Point: The Meaning of Feedback

In common parlance the term “feedback™ has come to serve as a euphemism for
criticizing others, as in “the boss gave me feedback on my presentation.” This use
of feedback is not what we mean in system dynamics. Further, “positive feedback™
does not mean “praise” and “negative feedback™ does not mean “criticism.” Posi-
tive feedback denotes a self-reinforcing process, and negative feedback denotes a
self-correcting one. Either type of loop can be good or bad, depending on which
way it is operating and of course on your values. Reserve the terms positive and
negative feedback for self-reinforcing and self-correcting processes, and avoid de-
scribing the criticism you give or receive to others as feedback. Telling someone
your opinion does not constitute feedback unless they act on your suggestions and
thus lead you to revise your view.

Though there are only two types of feedback loop, models may easily contain
thousands of loops, of both types, coupled to one another with multiple time de-
lays, nonlinearities, and accumulations. The dynamics of all systems arise from the
interactions of these networks of feedbacks. Intuition may enable us to infer the
dynamics of isolated loops such as those shown in Figure 1-5. But when multiple
loops interact, it is not so easy to determine what the dynamics will be. Before con-
tinuing, try the challenge shown in Figure 1-6. When intuition fails. we usually
turn to computer simulation to deduce the behavior of our models.

CHALLENGE

FIGURE 1-6
Dynamics
arise from the
interaction of
multiple loops.

Dynamics of Multiple-Loop Systems

What are the dynamics of the chicken population when both loops are simultane-
ously active (Figure 1-6)? Sketch a graph showing the behavior of the chicken
population over time. Assume the initial chicken population is small (but includes
at least one rooster).
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1.2 LEARNING Is A FEEDBACK PROCESS

Just as dynamics arise from feedback. so too all learning depends on feedback. We
make decisions that alter the real world: we gather information feedback about the
real world, and using the new information we revise our understanding of the
world and the decisions we make to bring our perception of the state of the system
closer to our goals (Figure 1-7).

. The feedback loop in Figure 1-7 appears in many guises throughout the social
sciences. George Richardson (1991), in his history of feedback concepts in the
social sciences, shows how beginning in the 1940s leading thinkers in economics,



FIGURE 1-7
Learning is a
feedback process.

Feedback from the
real world to the
decision maker
includes all forms
of information,
both quantitative
and qualitative.
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psychology, sociology, anthropology, and other fields recognized that the con-
cept of feedback developed in physics and engineering applied not only to servo-
mechanisms but to human decision making and social settings as well. By 1961,
Forrester, in Industrial Dynamics, asserted that all decisions (including learning)
take place in the context of feedback loops. Later, the psychologist Powers (1973,
p- 351) wrote:

Feedback is such an all-pervasive and fundamental aspect of behavior that it is as
invisible as the air that we breathe. Quite literally it is behavior—we know nothing
of our own behavior but the feedback effects of our own outputs.

These feedback thinkers followed in the footsteps of John Dewey, who recognized
the feedback loop character of learning around the beginning of the 20th century
when he described learning as an iterative cycle of invention, observation, reflec-
tion, and action (Schon 1992). Feedback accounts of behavior and learning have
now permeated most of the social and management sciences. Learning as an ex-
plicit feedback process has even appeared in practical management tools such as
Total Quality Management, where the so-called Shewhart-Deming PDCA cycle
(Plan-Do-Check-Act) lies at the heart of the improvement process in the quality
improvement literature (Shewhart 1939; Shiba, Graham, and Walden 1993).

The single feedback loop shown in Figure 1-7 describes the most basic type of
learning. The loop is a classical negative feedback whereby decision makers com-
pare information about the state of the real world to various goals, perceive dis-
crepancies between desired and actual states, and take actions that (they believe)
will cause the real world to move towards the desired state. Even if the initial
choices of the decision makers do not close the gaps between desired and actual
states, the system might eventually reach the desired state as subsequent decisions
are revised in light of the information received (see Hogarth 1981). When driving,
I may turn the steering wheel too little to bring the car back to the center of my
lane, but as visual feedback reveals the error, I continue to turn the wheel until the
car returns to the straight and narrow. If the current price for products of my firm
is too low to balance orders with production, depleted inventories and long deliv-
ery delays may cause me to gradually raise price until I discover a price that clears
the market.*

Real
World

Decisi Information
ecisions Foodback

v

“Depending on the time delays and other elements of dynamic complexity in the system, these
examples may not converge. It takes but little ice, fog, fatigue, or alcohol to cause an-accident, and
equilibrium eludes many industries that experience chronic business cycles.
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FIGURE 1-8
Single-loop
learning:
information
feedback is
interpreted by
existing mental
models.

The learning
feedback operates
in the context of
existing decision
rules, strategies,
culture, and
institutions which
in turn are derived
from our mental
models.

Part I Perspective and Process

The feedback loop shown in Figure 1-7 obscures an important aspect of the
learning process. Information feedback about the real world is not the only input
to our decisions. Decisions are the result of applying a decision rule or policy to
information about the world as we perceive it (see Forrester 1961, 1992). The poli-
cies are themselves conditioned by institutional structures, organizational strate-
gies, and cultural norms. These, in turn, are governed by our mental models
(Figure 1-8). As long as the mental models remain unchanged, the feedback loop
shown in the figure represents what Argyris (1985) calls single-loop learning, a
process whereby we learn to reach our current goals in the context of our existing
mental models. Single-loop learning does not result in deep change to our mental
models—our understanding of the causal structure of the system, the boundary we
draw around the system, the time horizon we consider relevant—nor our goals and
values. Single-loop learning does not alter our worldview.

Mental models are widely discussed in psychology and philosophy. Different
theorists describe mental models as collections of routines or standard operating
procedures, scripts for selecting possible actions, cognitive maps of a domain, ty-
pologies for categorizing experience, logical structures for the interpretation of
language, or attributions about individuals we encounter in daily life (Axelrod
1976; Bower and Morrow 1990; Cheng and Nisbett 1985: Doyle and Ford 1998;
Gentner and Stevens 1983: Halford 1993 Johnson-Laird 1983; Schank and Abel-
son 1977; Vennix 1990). The concept of the mental model has been central to Sys-
tem dynamics from the beginning of the field. Forrester (1961) stresses that all
decisions are based on models, usually mental models. In system dynamics, the
term “mental model” includes our beliefs about the networks of causes and effects
that describe how a system operates, along with the boundary of the model (which
variables are included and which are excluded) and the time horizon we consider
relevant—our framing or articulation of a problem.

Most of us do not appreciate the ubiquity and invisibility of mental models,
instead believing naively that our senses reveal the world as it is. On the contrary,

Real
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Decisions Information

vFeedback

Strategy, Structure,

3 Mental Models
Decision Rules

of Real World



FiGure 1-9
Kanizsa triangle

Do you see the
bright white
triangle lying on
top of the three
dark circles and a
second triangle?
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our world is actively constructed (modeled) by our senses and brain. Figure 1-9
shows an image developed by psychologist Gaetano Kanizsa. The vast majority of
people see a bright white triangle resting on top of three circles and a second tri-
angle with black edges. The illusion is extremely powerful (try to look at the fig-
ure and “not see” the two triangles!). Research shows that the neural structures
responsible for the ability to see illusory contours such as the white triangle exist
between the optic nerve and the areas of the brain responsible for processing visual
information.’ Active modeling occurs well before sensory information reaches the
areas of the brain responsible for conscious thought.® Powerful evolutionary pres-
sures are responsible: Our survival depends so completely on the ability to rapidly
interpret our environment that we (and other species) long ago evolved structures
to build these models automatically. Usually we are completely unaware these
mental models even exist. It is only when a construction such as the Kanizsa tri-
angle reveals the illusion that we become aware of our mental models.

The Kanizsa triangle illustrates the necessity of active and unconscious mental
modeling or construction of “reality™ at the level of visual perception. Modeling of
higher-level knowledge is likewise unavoidable and often equally unconscious.
Figure 1-10 shows a mental model elicited during a meeting between my colleague
Fred Kofman and a team from a large global corporation. The company worked
with the Organizational Learning Center at MIT in the early 1990s to reduce
the total cycle time for their supply chain. At that time the cycle time was 182 days
and they sought to cut it in half. The company viewed reductions in cycle time as
essential for continued competitiveness and even corporate survival. With the

5See Science, 256, (12 June 1992), pp. 1520-1521.

SEven more obviously, our ability to see a three-dimensional world is the result of extensive
modeling by the visual processing system, since the retina images a planar projection of the visual
field.
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FiGURe 1-10
Mental model
revealed by

a diagram of a
company’s
supply chain

The figure has
been simplified
compared to the
actual chart to
protect company-
confidential
information but is
drawn to scale.
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Current supply chain cycle time, 182 days;
goal, 50% reduction.

; Customer
Manufacturing Order Fulf_lllment Acceptance
Lead Time Lead Time e Times
75 22 85
Days Days Days

182
|< Days >|

support of senior management, they assembled a team to address these issues.
At the first meeting the team presented background information, including
Figure 1-10.

The figure shows the current cycle time divided into three intervals along a
line: manufacturing lead time, order fulfillment lead time, and customer accep-
tance lead time. Order fulfillment, which then required 22 days, occupies more
than half of the total length of the line, while the manufacturing lead time, then re-
quiring 75 days (70 days due to suppliers), receives about one-fourth of the length.
Customer acceptance, then requiring 85 days, occupies only about one-eighth of
the total length. What the figure reveals is the prominence of order fulfillment op-
erations in the mental models of the people on the team and the insignificance in
their minds of suppliers and customers. It will come as no surprise that the mem-
bers of the team all worked in functions contributing to order fulfillment. There
was not a single person at the meeting representing procurement, nor a single sup-
plier representative, nor anyone from accounting, nor a single customer. Until Fred
pointed out this distortion, the members of the group were as unaware of the illu-
sory character of their image of the supply line as we normally are of the illusory
contours our brains project onto the data transmitted by our optic nerves. The dis-
torted mental model of the supply chain significantly constrained the company’s
ability to reduce cycle time: Even if order fulfillment could be accomplished in-
stantly the organization would fall well short of its goal.

The type of reframing stimulated by Fred’s intervention, denoted double-loop
learning by Argyris (1985), is illustrated in Figure 1-11. Here information feed-
back about the real world not only alters our decisions within the context of exist-
ing frames and decision rules but also feeds back to alter our mental models. As
our mental models change we change the structure of our systems, creating differ-
ent decision rules and new strategies. The same information, processed and inter-
preted by a different decision rule, now yields a different decision. Altering the
structure of our systems then alters their patterns of behavior. The development of
systems thinking is a double-loop learning process in which we replace a reduc-
tmmst.‘nur.row. short-run, static view of the world with a holistic, broad, long-term,
dynamic view and then redesign our policies and institutions accordingly.
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Double-loop
learning

Feedback from the
real world can also
stimulate changes
in mental models.
Such learning
involves new
understanding

or reframing of

a situation and
leads to new goals
and new decision
rules, not just

new decisions.
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1.3 BARRIERS TO LEARNING

TaBLE 1-2
Teaching scurvy
dogs new tricks

Total delay
in learning:
264 years.

For learning to occur each link in the two feedback loops shown in Figure 1-
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must work effectively and we must be able to cycle around the loops quickly

relative to the rate at which changes in the real world render existing knowled

ge

obsolete. Yet in the real world, particularly the world of social action, these feed-
backs often do not operate well. More than two and a half centuries elapsed from
the first experiments showing that lemon juice could prevent and cure scurvy until

citrus use was mandated in the British merchant marine (Table 1-2). Learning
this case was terribly slow, despite the enormous importance of the problem a

in
nd

* Prior to the 1600s, scurvy (vitamin C deficiency) was the greatest killer of
seafarers—more than battle deaths, storms, accidents, and all others
combined.

* 1601: Lancaster conducts a controlled experiment during an East India
Company voyage:

The crew on one ship received 3 tsp. of lemon juice daily; the crew on three
other ships did not.

Results: At the Cape of Good Hope 110 out of 278 sailors had died, most
from scurvy. The crew receiving lemon juice remained largely healthy.

* 1747: Dr. James Lind conducts a controlled experiment in which scurvy
patients were treated with a variety of elixirs. Those receiving citrus were
cured in a few days; none of the other treatments worked.

* 1795: The British Royal Navy begins using citrus on a regular basis. Scurvy
wiped out.

* 1865: The British Board of Trade mandates citrus use. Scurvy wiped out in
the merchant marine.

Source: Mosteller (1981).
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FIGURE 1-12
Impediments
to learning

Part1 Perspective and Process

the decisive evidence supplied by controlled experiments throughout the years.
You may reply that today we are much smarter and learn faster. Perhaps. Yet the
rate of corporate and organizational failure remains high (for example, over one-
third of the Fortune 500 largest industrial firms in 1970 had disappeared by 1983
[de Geus 1997]). Today the rate of change in our systems is much faster, and their
complexity is much greater. The delays in learning for many pressing problems
remain woefully long. In most settings we lack the ability to run experiments,
and the delays between interventions and outcomes are much longer. As the
rate of change accelerates throughout society, learning remains slow, uneven, and
inadequate.

Figure 1-12 shows the main ways in which each link in the learning feedbacks
can fail. These include dynamic complexity, imperfect information about the state
of the real world, confounding and ambiguous variables, poor scientific reasoning
skills, defensive routines, and other barriers to effective group processes, imple-
mentation failure, and the misperceptions of feedback that hinder our ability to un-
derstand the structure and dynamics of complex systems.

Real World

* Unknown structure
* Dynamic complexity
* Time delays

* Inability to conduct controlled
experiments

Decisions Information Feedback
« Implementation failure * Selective perception
« Game playing * Missing feedback
* Inconsistency *Delay
« Performance is goal * Bias, distortion, error
* Ambiguity
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Mental Models

* Misperceptions of feedback
* Unscientific reasoning

* Judgmental biases

* Defensive routines

Strategy, Structure,
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* Inability to infer dynamics
from mental models
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1.3.1 Dynamic Complexity

Much of the literature in psychology, economics, and other fields suggests learn-
ing proceeds via the simple negative feedback loops described in Figure 1-11. Im-
plicitly, the loops are seen as swift, linear, negative feedbacks that produce stable
convergence to an equilibrium or optimal outcome, just as immediate visual feed-
back allows you to fill a glass of water without spilling. The real world is not so
simple. From the beginning, system dynamics emphasized the multiloop, multi-
state, nonlinear character of the feedback systems in which we live (Forrester
1961). The decisions of any one agent form but one of many feedback loops that
operate in any given system. These loops react to the decision maker’s actions in
ways both anticipated and unanticipated; there may be positive as well as negative
feedback loops, and these loops will contain many stocks (state variables) and
many nonlinearities. Natural and human systems have high levels of dynamic com-
plexity. Table 1-3 shows some of the characteristics of systems that give rise to
dynamic complexity.

Most people think of complexity in terms of the number of components in a
system or the number of combinations one must consider in making a decision.
The problem of optimally scheduling an airline’s flights and crews is highly com-
plex, but the complexity lies in finding the best solution out of an astronomical
number of possibilities. Such needle-in-a-haystack problems have high levels of
combinatorial complexity (also known as detail complexity). Dynamic complex-
ity, in contrast, can arise even in simple systems with low combinatorial complex-
ity. The Beer Distribution Game (Sterman 1989b, chap. 17.4) provides an example:
Complex and dysfunctional behavior arises from a very simple system whose rules
can be explained in 15 minutes. Dynamic complexity arises from the interactions
among the agents over time.

Time delays between taking a decision and its effects on the state of the system
are common and particularly troublesome. Most obviously, delays reduce the num-
ber of times one can cycle around the learning loop, slowing the ability to accu-
mulate experience, test hypotheses, and improve. Schneiderman (1988) estimated
the improvement half life—the time required to cut defects in half—in a wide
range of manufacturing firms. He found improvement half lives as short as a few
months for processes with short delays, for example reducing operator error in a
job shop, while complex processes with long time delays such as product develop-
ment had improvement half lives of several years or more.”

Dynamic complexity not only slows the learning loop; it also reduces the
learning gained on each cycle. In many cases controlled experiments are prohibi-
tively costly or unethical. More often, it is simply impossible to conduct controlled
experiments. Complex systems are in disequilibrium and evolve. Many actions
yield irreversible consequences. The past cannot be compared well to current cir-
cumstance. The existence of multiple interacting feedbacks means it is difficult to
hold other aspects of the system constant to isolate the effect of the variable of
interest. Many variables change simultaneously, confounding the interpretation

"Sterman, Repenning, and Kofman (1997) show how these differential improvement rates led to
difficulty at a leading semiconductor manufacturer.
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TaBLE 1-3
Dynamic
complexity

Part 1 Perspective and Process

Dynamic complexity arises because systems are

Dynamic: Heraclitus said, “All is change.” What appears to be unchanging is, over a
longer time horizon, seen to vary. Change in systems occurs at many time scales,
and these different scales sometimes interact. A star evolves over billions of years as
it burns its hydrogen fuel, then can explode as a supernova in seconds. Bull markets
can go on for years, then crash in a matter of hours.

Tightly coupled: The actors in the system interact strongly with one another and
with the natural world. Everything is connected to everything else. As a famous
bumper sticker from the 1960s proclaimed, “You can't do just one thing.”

Governed by feedback: Because of the tight couplings among actors, our actions
feed back on themselves. Our decisions alter the state of the world, causing changes
in nature and triggering others to act, thus giving rise to a new situation which then
influences our next decisions. Dynamics arise from these feedbacks.

Nonlinear: Effect is rarely proportional to cause, and what happens locally in a sys-
tem (near the current operating point) often does not apply in distant regions (other
states of the system). Nonlinearity often arises from the basic physics of systems: In-
sufficient inventory may cause you to boost production, but production can never fall
below zero no matter how much excess inventory you have. Nonlinearity also arises
as multiple factors interact in decision making: Pressure from the boss for greater
achievement increases your motivation and effort—up to the point where you per-
ceive the goal to be impossible. Frustration then dominates motivation and you give
up or get a new boss.

History-dependent: Taking one road often precludes taking others and determines
where you end up (path dependence). Many actions are irreversible: You can’t un-
scramble an egg (the second law of thermodynamics). Stocks and flows (accumu-
lations) and long time delays often mean doing and undoing have fundamentally
different time constants: During the 50 years of the Cold War arms race the nuclear
nations generated more than 250 tons of weapons-grade plutonium (***Pu). The half
life of 23°Pu is about 24,000 years.

Self-organizing: The dynamics of systems arise spontaneously from their internal
structure. Often, small, random perturbations are amplified and molded by the feed-
back structure, generating patterns in space and time and creating path dependence.
The pattern of stripes on a zebra, the rhythmic contraction of your heart, the persis-
tent cycles in the real estate market, and structures such as sea shells and markets
all emerge spontaneously from the feedbacks among the agents and elements of the
system.

Adaptive: The capabilities and decision rules of the agents in complex systems
change over time. Evolution leads to selection and proliferation of some agents while
others become extinct. Adaptation also occurs as people learn from experience, es-
pecially as they learn new ways to achieve their goals in the face of obstacles. Learn-
ing is not always beneficial, however.

Counterintuitive: In complex systems cause and effect are distant in time and space
while we tend to look for causes near the events we seek to explain. Our attention is
drawn to the symptoms of difficulty rather than the underlying cause. High leverage
policies are often not obvious.

Policy resistant: The complexity of the systems in which we are embedded over-
whelms our ability to understand them. The result: Many seemingly obvious solutions
to problems fail or actually worsen the situation.

Characterized by trade-offs: Time delays in feedback channels mean the long-run
response of a sys.te_m to an intervention is often different from its short-run response.
ng'hlleverage policies often cause worse-before-better behavior, while low leverage
policies often generate transitory improvement before the problem grows worse.
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of system behavior and reducing the effectiveness of each cycle around the learn-
ing loop.

Delays also create instability in dynamic systems. Adding time delays to
negative feedback loops increases the tendency for the system to oscillate.® Sys-
tems from driving a car, to drinking alcohol, to raising hogs, to construction of
office buildings all involve time delays between the initiation of a control action
(accelerating/braking, deciding to “have another,” choosing to breed more hogs,
developing a new building) and its effects on the state of the system. As a result,
decision makers often continue to intervene to correct apparent discrepancies
between the desired and actual state of the system even after sufficient corrective
actions have been taken to restore the system to equilibrium. The result is over-
shoot and oscillation: stop-and-go traffic, drunkenness, commodity cycles, and real
estate boom-and-bust cycles (see chapter 17.4). Oscillation and instability reduce
our ability to control for confounding variables and discern cause and effect, fur-
ther slowing the rate of learning.

1.3.2 Limited Information

We experience the real world through filters. No one knows the current sales rate
of their company, the current rate of production, or the true value of the order back-
log at any given time. Instead we receive estimates of these data based on sampled,
averaged, and delayed measurements. The act of measurement introduces distor-
tions, delays, biases, errors, and other imperfections, some known, others unknown
and unknowable.

Above all, measurement is an act of selection. Our senses and information sys-
tems select but a tiny fraction of possible experience. Some of the selection is hard-
wired (we cannot see in the infrared or hear ultrasound). Some results from our
own decisions. We define gross domestic product (GDP) so that extraction of non-
renewable resources counts as production rather than depletion of natural capital
stocks and so that medical care and funeral expenses caused by pollution-induced
disease add to the GDP while the production of the pollution itself does not reduce
it. Because the prices of most goods in our economic system do not include the
costs of resource depletion or environmental degradation, these externalities re-
ceive little weight in decision making (see Cobb and Daly 1989 for thoughtful dis-
cussion of alternative measures of economic welfare).

Of course, the information systems governing the feedback we receive can
change as we learn. They are part of the feedback structure of our systems.
Through our mental models we define constructs such as GDP or scientific re-
search, create metrics for these ideas, and design information systems to evaluate
and report them. These then condition the perceptions we form. Changes in our
mental models are constrained by what we previously chose to define, measure,

$Technically, negative loops with no time delays are first-order; the eigenvalue of the linearized
system can only be real and oscillation is impossible. Adding delays (state variables) allows the
eigenvalues to become complex conjugates, yielding oscillatory solutions. Whether the oscillations
of the linearized system are damped or expanding depends on the parameters. All else equal, the
more phase lag in a control loop, the less stable the system will be.
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and attend to. Seeing is believing and believing is seeing. They feed back on one
another.

In a famous experiment, Bruner and Postman (1949) showed playing cards to
people using a tachistoscope to control exposure time to the stimuli. Most could
identify the cards rapidly and accurately. They also included some anomalous
cards, such as a black three of hearts or a red ten of spades. People took on average
four times as long to judge the anomalous cards. Many misidentified them
(e.g., they said three of spades or three of hearts when shown a black three of
hearts). Some could not identify the card at all, even with very long exposure
times, and grew anxious and confused. Only a small minority correctly identified
the cards. Bruner and Postman concluded, “Perceptual organization is powerfully
determined by expectations built upon past commerce with the environment.”
Henri Bergson put it more succinctly: “The eye sees only what the mind is pre-
pared to comprehend.”

The self-reinforcing feedback between expectations and perceptions has been
repeatedly demonstrated in a wide variety of experimental studies (see Plous 1993
for excellent discussion). Sometimes the positive feedback assists learning by
sharpening our ability to perceive features of the environment, as when an experi-
enced naturalist identifies a bird in a distant bush where the novice birder sees only
a tangled thicket. Often, however, the mutual feedback of expectations and per-
ception limits learning by blinding us to the anomalies that might challenge our
mental models. Thomas Kuhn (1970) cited the Bruner—Postman study to argue that
a scientific paradigm suppresses the perception of data inconsistent with the para-
digm, making it hard for scientists to perceive anomalies that might lead to scien-
tific revolution.®

As one of many examples, the history of ozone depletion by chlorofluoro-
carbons (CFCs) shows the mutual dependence of expectation and perception is no
laboratory artifact but a phenomenon with potentially grave consequences for
humanity.

The first scientific papers describing the ability of CFCs to destroy atmos-
pheric ozone were published in 1974 (Molina and Rowland 1974; Stolarski and
Cicerone 1974). Yet much of the scientific community remained skeptical, and
despite a ban on CFCs as aerosol propellants, global production of CFCs remained
near its all time high. It was not until 1985 that evidence of a deep ozone hole in
the Antarctic was published (Farman, Gardiner, and Shanklin 1985). As described
by Meadows, Meadows, and Randers (1992, pp. 151-152):

The news reverberated around the scientific world. Scientists at [NASA] ... scram-
bled to check readings on atmospheric ozone made by the Nimbus 7 satellite, mea-

surements that had been taken routinely since 1978. Nimbus 7 had never indicated
an ozone hole.

%Sterman (1985a) developed a formal model of Kuhn’s theory, which showed that the positive
feedback between expectations and perceptions suppressed the recognition of anomalies and the

emergence .o.f new paradigms. Sterman and Wittenberg (1999) extended the model to simulate
the competition among rival theories.
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Checking back, NASA scientists found that their computers had been pro-
grammed to reject very low ozone readings on the assumption that such low
readings must indicate instrument error.

The NASA scientists’ belief that low ozone readings must be erroneous led them
to design a measurement system that made it impossible to detect low readings that
might have shown their belief to be wrong. Fortunately, NASA had saved the orig-
inal, unfiltered data and later confirmed that ozone concentrations had indeed been
falling since the launch of Nimbus 7. Because NASA created a measurement sys-
tem immune to disconfirmation the discovery of the ozone hole and resulting
global agreements to cease CFC production were delayed by as much as 7 years.
Those 7 years could be significant: ozone levels in Antarctica dropped to less than
one-third of normal in 1993, and current models show that even with full compli-
ance with the ban (there is a thriving black market in CFCs), atmospheric chlorine
will not begin to fall until the first decade of the 21st century, and then only slowly.
Data collected near Toronto in the early 1990s showed a 5% increase in cancer-
causing UV-B ultraviolet radiation at ground level, indicating that ozone depletion
already affects the heavily populated and agriculturally vital northern hemisphere
(Culotta and Koshland 1993). The thinning of the ozone layer is a global phenom-
enon, not just a problem for penguins.

1.3.3 Confounding Variables and Ambiguity

To learn we must use the limited and imperfect information available to us to un-
derstand the effects of our own decisions, so we can adjust our decisions to align
the state of the system with our goals (single-loop learning) and so we can revise
our mental models and redesign the system itself (double-loop learning). Yet much
of the information we receive is ambiguous. Ambiguity arises because changes in
the state of the system resulting from our own decisions are confounded with si-
multaneous changes in a host of other variables. The number of variables that
might affect the system vastly overwhelms the data available to rule out alternative
theories and competing interpretations. This identification problem plagues both
qualitative and quantitative approaches. In the qualitative realm, ambiguity arises
from the ability of language to support multiple meanings. In the opening solilo-
quy of Richard 111, the hump-backed Richard laments his deformity:

And therefore, since I cannot prove a lover

To entertain these fair well-spoken days,

I am determingd to prove a villain

And hate the idle pleasures of these days.
1,1, 28-31)

Does Richard celebrate his free choice to be evil or resign himself to a predestined
fate? Did Shakespeare intend the double meaning? Rich, ambiguous texts, with
multiple layers of meaning often make for beautiful and profound art, along with
employment for literary critics, but also make it hard to know the minds of others,
rule out competing hypotheses, and evaluate the impact of our past actions so we
can decide how to act in the future.
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In the quantitative realm, engineers and econometricians have long struggled
with the problem of uniquely identifying the structure and parameters of a system
from its observed behavior. Elegant and sophisticated theory exists to delimit the
conditions in which one can identify a system from its behavior alone. In practice
the data are too scarce and the plausible alternative specifications are too numer-
ous for statistical methods to discriminate among competing theories. The same
data often support wildly divergent models equally well. and conclusions based on
such models are not robust. As Leamer (1983) put it in an article entitled “Let’s
Take the *Con’ Out of Econometrics™

In order to draw inferences from data as described by econometric texts, it is neces-
sary to make whimsical assumptions . . . The haphazard way we individually and
collectively study the fragility of inferences leaves most of us unconvinced that any
inference is believable.'”

1.3.4 Bounded Rationality and the Misperceptions
of Feedback

Dynamic complexity and limited information reduce the potential for learning and
performance by limiting our knowledge of the real world. But how wisely do we
use the knowledge we do have? Do we process the information we do get in the
best way and make the best decisions we can? Unfortunately, the answer is no.
Humans are not only rational beings, coolly weighing the possibilities and

judging the probabilities. Emotions, reflex, unconscious motivations, and other

nonrational or irrational factors all play a large role in our judgments and behavior.
But even when we find the time to reflect and deliberate we cannot behave in a
fully rational manner (that is, make the best decisions possible given the informa-
tion available to us). As marvelous as the human mind is. the complexity of the real
world dwarfs our cognitive capabilities. Herbert Simon has best articulated the
limits on human decision-making ability in his famous “principle of bounded ra-
tionality,” for which he won the Nobel Memorial Prize in economics in 1979:

The capacity of the human mind for formulating and solving complex problems is
very small compared with the size of the problem whose solution is required for ob-
jectively rational behavior in the real world or even for a reasonable approximation
to such objective rationality. (Simon 1957, p. 198)

Faced with the overwhelming complexity of the real world, time pressure, and lim-
ited cognitive capabilities, we are forced to fall back on rote procedures, habits,
rules of thumb, and simple mental models to make decisions. Though we some-
times strive to make the best decisions we can, bounded rationality means we of-
ten systematically fall short, limiting our ability to learn from experience.

While bounded rationality affects all decision contexts, it is particularly acute
in dynamic systems. Indeed, experimental studies show that people do quite poorly

101 am not arguing that econometrics should be abandoned. despile its difficulties. On the con-
trary. wise use of numerical data and statistical estimation is central to good sv
tice, and more effort should be devoted to the use of these tools in sirnLrlationd
and testing. See chap. 21.

stem dynamics prac-
model development
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in systems with even modest levels of dynamic complexity (Table 1-4). These
studies led me to suggest that the observed dysfunction in dynamically complex
settings arises from misperceptions of feedback. The mental models people use
to guide their decisions are dynamically deficient. As discussed above, people
generally adopt an event-based, open-loop view of causality, ignore feedback
processes, fail to appreciate time delays between action and response and in the
reporting of information, do not understand stocks and flows and are insensitive to
nonlinearities that may alter the strengths of different feedback loops as a system
evolves.

Subsequent experiments show that the greater the dynamic complexity of the
environment the worse people do relative to potential. Further, the experiments
show the misperceptions of feedback are robust to experience, financial incentives,
experience, and the presence of market institutions (see, €.g.. Dichl and Sterman
1993: Paich and Sterman 1993; Kampmann and Sterman 1998).

The robustness of the misperceptions of feedback and the poor performance
they cause are due to two basic and related deficiencies in our mental model. First,
our cognitive maps of the causal structure of systems are vastly simplified com-
pmMunMcmm%UWOﬂmSﬁmmsmwwd%&S%mﬁAwamumMemmkr
correctly the dynamics of all but the simplest causal maps. Both are direct conse-
quencesofboundedraﬁonaHQAthati&thelnanylhnhaﬁonsofauenﬁon,nunnory
recall, information processing capability, and time that constrain human decision
making.

« In a simple production—distribution system (the Beer Distribution Game),
people, from high school students to CEOs, generate costly fluctuations
(business cycles). Average costs were more than 10 times greater than
optimal (Sterman 1989b).

« Subjects responsible for capital investment in a simple multiplier-accelerator
model of the economy generate large amplitude cycles even though con-»
sumer demand is constant. Average costs were more than 30 times greater
than optimal (Sterman 1989a).

« Subjects managing a firmin a simulated consumer product market generate
the boom and bust, price war, and shake-out characteristic of industries from
video games to chain saws (Paich and Sterman 1993).

« Participants in experimental asset markets repeatedly bid prices well above
fundamental value, only to see them plummet when a “greater fool” can no
longer be found to buy. These speculative bubbles do not disappear when
the participants are investment professionals, when monetary incentives are
provided, or when short-selling is allowed (Smith, Suchanek, and Williams
1988).

« In a forest fire simulation, many people allow their headquarters to burn
down despite their best efforts to put out the fire (Brehmer 1989).

« In a medical setting, subjects playing the role of doctors order more tests
while the (simulated) patients sicken and die (Kleinmuntz and Thomas

1987).
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1.3.5 Flawed Cognitive Maps

Causal attributions are a central feature of mental models. We all create and update
cognitive maps of causal connections among entities and actors, from the pro-
saic—if I touch a flame 1 will be burned—to the grand—the larger the government
deficit, the higher interest rates will be. Studies ot cognitive maps show that few
incorporate any fteedback loops. Axelrod (1976) found virtually no feedback
processes in studies of the cognitive maps of political leaders: rather. people tended
to formulate intuitive decision trees relating possible actions to probable conse-
quences—an event-level representation. Hall (1976) reports similar open-loop
mental maps in a study of the publishing industry. Dérner (1980. 1996) found that
people tend to think in single strand causal series and had ditficulty in systems with
side effects and multiple causal pathways (much less feedback loops). Similarly,
experiments in causal attribution show people tend to assume each etfect has a sin-
gle cause and often cease their search for explanations when the first sufficient
cause 1s found (sce the discussion in Plous 1993).

The heuristics we use to judge causal relations lead systematically to cognitive
maps that ignore feedbacks. multiple interconnections. nonlinearities, time delays.
and the other elements of dynamic complexity. The causal field or mental model of
the stage on which the action occurs is crucial in framing people’s judgments of
causation (Einhorn and Hogarth 1986). Within a causal lield, people use various
cues Lo causality including temporal and spatial proximity of cause and effect, tem-
poral precedence of causes. covariation. and similarity of cause and eflect. These
heuristics lead to difficulty in complex systems where cause and cffect are often
distant in time and space, where actions have multiple effects, and where the de-
layed and distant consequences are different from and less salient than proximate
effects (or simply unknown). The multiple feedbacks in complex systems cause
many variables to be correlated with one another, confounding the task of judging
cause. However. people are poor judges of correlation. Experiments show people
can generally detect linear, positive correlations among variables it they are given
enough trials and if the outcome feedback is accurate enough. However. we have
great difficulty in the presence of random error. nonlinear ity. and negative correla-
tions. often never discovering the true relationship (Brehmer 1980).

A fundamental principle of system dynamics states that the structure of the
system gives rise to its behavior, However., people have a strong tendency to at-
tribute the behavior of others to dispositional rather than situational factors, that is.
to character and especially character flaws rather than the system in which these
people are acting. The tendency to blame the person rather than the system is so
strong psychologists call it the “fundamental attribution error” (Ross 1977). In

complex systems different people placed in the same structure tend to behave in
similar ways. When we attribute behavior to personality we lose sight of how the
structure of the system shaped our choices. The attribution of behavior to individ-
uals and special circumstances rather than system structure div
from the high leverage points where redesigning the sy
can have significant. sustained. beneficial effects on perfi
chap. 6: Meadows 1982). When we attribute beh
structure the focus of man

CIts our attention
stem or governing policy
ormance (Forrester 1969.
avior to people rather than system
agement becomes scapegoating and blame rather than
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the design of organizations in which ordinary people can achieve extraordinary
results.!!

1.3.6 Erroneous Inferences about Dynamics

Even if our cognitive maps of causal structure were perfect, learning, especially
double-loop learning, would still be difficult. To use a mental model to design a
new strategy or organization we must make inferences about the consequences of
decision rules that have never been tried and for which we have no data. To do so
requires intuitive solution of high-order nonlinear differential equations, a task far
exceeding human cognitive capabilities in all but the simplest systems (Forrester
1971a; Simon 1982). In many experimental studies, including Diehl and Sterman
(1995) and Sterman (1989a), the participants were given complete knowledge of
all structural relationships and parameters, along with perfect, comprehensive, and
immediate knowledge of all variables. Further, the systems were simple enough
that the number of variables to consider was small. Yet performance was poor and
learning was slow. Poor performance in these tasks is due to our inability to make
reasonable inferences about the dynamics of the system despite perfect and com-
plete knowledge of the system structure.

People cannot simulate mentally even the simplest possible feedback system,
the first-order linear positive feedback loop.'? Such positive feedback processes are
commonplace, from the compounding of interest to the growth of populations.
Wagenaar and Sagaria (1975) and Wagenaar and Timmers (1978, 1979) showed
that people significantly underestimate exponential growth, tending to extrapolate
linearly rather than exponentially. Using more data points or graphing the data did
not help, and mathematical training did not improve performance.

Bounded rationality simultaneously constrains the complexity of our cognitive
maps and our ability to use them to anticipate the system dynamics. Mental mod-
els in which the world is seen as a sequence of events and in which feedback, non-
linearity, time delays, and multiple consequences are lacking lead to poor
performance when these elements of dynamic complexity are present. Dysfunction
in complex systems can arise from the misperception of the feedback structure of
the environment. But rich mental models that capture these sources of complexity
cannot be used reliably to understand the dynamics. Dysfunction in complex sys-
tems can arise from faulty mental simulation—the misperception of feedback
dynamics. These two different bounds on rationality must both be overcome for
effective learning to occur. Perfect mental models without a simulation capability
yield little insight; a calculus for reliable inferences about dynamics yields sys-
tematically erroneous results when applied to simplistic models.

I'Repenning and Sterman (1999) show how the fundamental attribution error arose in a
major manufacturing organization, thwarting their efforts to improve operations and product
development.

I2The first-order linear positive loop is represented by the differential equation dx/dt = gx and
yields pure exponential growth, x = xexp(gt); see chap. 8.
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1.3.7 Unscientific Reasoning:
Judgmental Errors and Biases

To learn effectively in a world of dynamic complexity and imperfect information
people must develop what Davis and Hogarth (1992) call “insight skills"—the
skills that help people learn when feedback is ambiguous:

[T]he interpretation of feedback . . . needs to be an active and disciplined task gov-
erned by the rigorous rules of scientific inference. Beliefs must be actively chal-
lenged by seeking possible disconfirming evidence and asking whether alternative
beliefs could not account for the facts (emphasis in original).

Unfortunately, people are poor intuitive scientists, generally failing to reason in ac-
cordance with the principles of scientific method. For example, people do not gen-
erate sufficient alternative explanations or consider enough rival hypotheses.
People generally do not adequately control for confounding variables when they
explore a novel environment. People’s judgments are strongly affected by the
frame in which the information is presented, even when the objective information
is unchanged. People suffer from overconfidence in their judgments (under-
estimating uncertainty), wishful thinking (assessing desired outcomes as more
likely than undesired outcomes), and the illusion of control (believing one can pre-
dict or influence the outcome of random events). People violate basic rules of
probability, do not understand basic statistical concepts such as regression to the
mean, and do not update beliefs according to Bayes’ rule. Memory is distorted by
hindsight, the availability and salience of examples, and the desirability of out-
comes. And so on. Hogarth (1987) discusses 30 different biases and errors docu-
mented in decision-making research and provides a good guide to the literature
(see also Kahneman, Slovic, and Tversky 1982). The research convincingly shows
that scientists and professionals, not only “ordinary” people, suffer from many of
these judgmental biases.

Among the failures of scientific reasoning most inimical to learning is the ten-
dency to seek evidence consistent with current beliefs rather than potential discon-
firmation (Einhorn and Hogarth 1978; Klayman and Ha 1987). In a famous series
of experiments, Wason and colleagues presented people tasks of the sort shown in
Figure 1-13." Before continuing, try the challenge shown in the fi gure.

Hypothesis Testing

You are shown these four cards. Each card has a letter on one side and a number on
the other. What is the smallest number of cards you should turn over to test the rule
that cards with vowels on one side have even numbers on the reverse? Which are

BN olciola

""The summary of the Wason test is drawn from Plous (1993, chap. 20).
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In one version you are shown one side ol four cards. cach with a letter on one
side and a number on the other. say . K. 4. and 7. You are told that it a card has a
vowel on it. then it has an even number on the other side. You must then identify
the smallest set of cards to turn over to see if the proposed rule Iy correct.

Wason and Johnson-Laird (1972) found that the vast majority of subjects se-
lected E or E and 4 as the answers. Less than 4% gave the correct answer: Eund 7.
The rule has the logical form if p. then . Falsification requires observation of
p and not-q. The only card showing p is the E card. so it must be examined (the
back of the E card must be an even number for the rule to hold). The only card
showing not-¢ is the 7. 50 it oo must be examined. The K and 4 cards are irrele-
vant. Yet people consistently choose the card showing ¢. a choice that can only
provide data consistent with the theory. but cannot test itz if the back of the 4 15 a
consonant. you have learned nothing, since the rule is silent about the numbers as-
sociated with consonants. Experiments show the tendency to seek confirmation is
robust in the face of training in logic. mathematics. and statistics. Search strategies
that focus only on contirmation of current beliefs slow the generation and recogni-
tion of anomalies that might lead to learning, particularly double-loop learning.

Some argue that while people err in applying the principles of logic. at least
people are rational in the sense that they appreciate the desirability of scientitic ex-
planation. Unfortunately, the situation is far worse. The rational. scientific world-
view is a recent development in human history and remains rare. Many people
place their faith in what Dostovevsky's Grand Inquisitor called “miracle. mystery.
and authority.” for example. astrology. ESP. UFOs. creationisim. conspiracy theo-
ries of history. channeling of past lives. cult leaders promising Arnageddon, and
Elvis sightings. The persistence of such superstitious beliefs depends partly on the
bias towards confirming evidence. Wade Boggs. former Boston Red Sox batting
champion. ate chicken every day for years because he once had a particularly good
day at the plate after a dinner of lemon chicken (Shaughnessy 1987). During this
time Boggs won five batting championships. proving the wisdom ol the “chicken
theory.” Consider the continued popularity of astrology. psychies, and economic
forecasters. who publicize their successes and suppress their (more numerous)
tailures. Remember that the 40th president of the United States and first lady man-
aged affairs ol state on the basis of astrology (Robinson 1988). And it worked: He
was reclected in a landshide.

Such lunacy aside. there are deeper and more disturbing reasons for the preva-
lence of these learning failures and the superstitions they engender. Human beings
are more than cognitive information processors. We have a deep need for emo-
tional and spiritual sustenance. But from Copernican heliocentrism through evolu-
tion. relativity. quantum mechanics. and Godelian uncertainty. science has stripped
away ancient and comforting beliefs placing humanity at the center ol a rational
universe designed for us by a supreme authority. For many people scientilic
thought leads not to enlightenment and empowerment but to existential angst and
the absurdity of human insignificance in an incomprehensibly vast universe.
Others believe science and technology were the shock troops for the triumph of
materialism and instrumentalism over the sacred and spiritual. These antiscientilic
reactions are powerful forces. In many ways they are important truths. They have
led to many of the most profound works of art and literature. But they can also lead
to mindless new-age psychobabble.
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The reader should not conclude from this discussion that I am a naive defender
of science as it is practiced nor an apologist for the real and continuing damage
done to the environment and to our cultural, moral, and spiritual lives in the name
of rationality and progress. On the contrary, I have stressed the research showing
that scientists are often as prone to the judgmental errors and biases discussed
above as laypeople. It is precisely because scientists are subject to the same cog-
nitive limitations and moral failures as others that we experience abominations
such as the US government funded research in which plutonium was injected into
seriously ill patients, and in which radioactive calcium was fed to retarded chil-
dren, all without their knowledge or consent (Mann 1994). A central principle of
system dynamics is to examine issues from multiple perspectives; to expand the
boundaries of our mental models to consider the long-term consequences and “side
effects” of our actions, including their environmental, cultural, and moral implica-
tions (Meadows, Richardson, and Bruckmann 1982).

1.3.8 Defensive Routines and Interpersonal
Impediments to Learning

Learning by groups, whether system dynamics is used or not, can be thwarted even
if participants receive excellent information feedback and reason well as individu-
als. We rely on our mental models to interpret the language and acts of others, con-
struct meaning, and infer motives. However, as Forrester (1971) argues,

The mental model is fuzzy. It is incomplete. It is imprecisely stated. Furthermore,
within one individual, a mental model changes with time and even during the flow
of a single conversation. The human mind assembles a few relationships to fit the
context of a discussion. As the subject shifts so does the model . . . [E]ach partici-
pant in a conversation employs a different mental model to interpret the subject.
Fundamental assumptions differ but are never brought into the open.

Argyris (1985), Argyris and Schon (1978), Janis (1982), Schein (1969, 1985,
1987), and others document the defensive routines and cultural assumptions peo-
ple rely on, often unknowingly, to interact with and interpret their experience of
others. We use defensive routines to save face, assert dominance over others, make
untested inferences seem like facts, and advocate our positions while appearing to
be neutral. We make conflicting, unstated attributions about the data we receive.
We fail to distinguish between the sense-data of experience and the attributions and
generalizations we readily form from them. We avoid publicly testing our hy-
potheses and beliefs and avoid threatening issues. Above all, defensive behavior
involves covering up the defensiveness and making these issues undiscussable,
even when all parties are aware they exist.

Defensive routines are subtle. They often arrive cloaked in apparent concern
and respect for others. Consider the strategy called “easing-in:”

If you are about to criticize someone who might become defensive and you want
him to see the point without undue resistance, do not state the criticism openly; in-
stead, ask questions such that if he answers them correctly, he will figure out what
you are not saying (Argyris, Putnam, and Smith 1985, p. 83).
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But easing-in often

Creates the very defensiveness that it is intended to avoid, because the recipient
typically understands that the actor is easing-in. Indeed, easing-in can be successful
only if the recipient understands that he is supposed to answer the questions in a
particular way, and this entails the understanding that the actor is negatively evalu-
ating the recipient and acting as if this were not the case (Argyris, Putnam, and
Smith 1985, p. 85).

Defensive behavior, in which the espoused theories we offer to others differ from
our theories in use, prevents learning by hiding important information from others,
avoiding public testing of important hypotheses, and tacitly communicating that
we are not open to having our mental models challenged. Defensive routines often
yield groupthink (Janis 1982), where members of a group mutually reinforce their
current beliefs, suppress dissent, and seal themselves off from those with different
views or possible disconfirming evidence. Defensive routines ensure that the men-
tal models of team members remain ill formed, ambiguous, and hidden. Thus
learning by groups can suffer even beyond the impediments to individual learning.

1.3.9 Implementation Failure

In the real world decisions are often implemented imperfectly, further hindering
learning. Even if a team agreed on the proper course of action, the implementation
of these decisions can be delayed and distorted as the actual organization responds.
Local incentives, asymmetric information, and private agendas can lead to game
playing by agents throughout a system. Obviously implementation failures can
hurt the organization. Imperfect implementation can defeat the learning process as
well, because the management team evaluating the outcomes of their decisions
may not know the ways in which the decisions they thought they were implement-
ing were distorted.

Finally, in the real world of irreversible actions and high stakes the need to
maintain performance often overrides the need to learn by suppressing new strate-
gies for fear they would cause present harm even though they might yield great in-
sight and prevent future harm.

1.4 REQUIREMENTS FOR SUCCESSFUL LEARNING IN
COMPLEX SYSTEMS

We face grave impediments to learning in complex systems like a nation, firm, or
family. Every link in the feedback loops by which we might learn can be weakened
or cut by a variety of structures. Some of these are physical or institutional features
of the environment—the elements of dynamic complexity that reduce opportuni-
ties for controlled experimentation, prevent us from learning the consequences of
our actions, and distort the outcome feedback we do receive. Some are conse-
quences of our culture, group process, and inquiry skills. Still others are funda-
mental bounds on human cognition, particularly the poor quality of our mental
maps and our inability to make correct inferences about the dynamics of complex
nonlinear systems.
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FIGURe 1-14
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Part I  Perspective and Process

1.4.1 Improving the Learning Process:

Virtues of Virtual Worlds

What then are the requirements for successful learning in complex systems? If we
are to create useful protocols and tools for learning effectively in a world of dy-
namic complexity we must attend to all of the impediments to learning. Figure
1-14 shows how the learning feedbacks would operate when all the impediments
to learning are addressed. The diagram features a new feedback loop created by the
use of virtual worlds. Virtual worlds (the term is Schén’s [1983]) are formal mod-
els, simulations, or “microworlds” (Papert 1980), in which decision makers can re-
fresh decision-making skills, conduct experiments, and play. They can be physical
models, role plays, or computer simulations. In systems with significant dynamic
complexity, computer simulation will typically be needed (though there are notable
exceptions, such as the Beer Distribution Game (Sterman 1989b) and the Mainte-
nance Game described in section 2.4, along with role-play/computer hybrids such
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as Fish Banks, Ltd. (Meadows, Fiddaman, and Shannon 1993). Many of the tools
of system dynamics are designed to help you develop useful, reliable, and effective
models to serve as virtual worlds to aid learning and policy design.

Virtual worlds have several virtues. First, they provide low-cost laboratories
for learning. The virtual world allows time and space to be compressed or dilated.
Actions can be repeated under the same or different conditions. One can stop the
action to reflect. Decisions that are dangerous, infeasible, or unethical in the real
system can be taken in the virtual world. Thus controlled experimentation becomes
possible, and the time delays in the learning loop through the real world are dra-
matically reduced. In the real world the irreversibility of many actions and the need
to maintain high performance often override the goal of learning by preventing ex-
periments with untried possibilities (“If it ain’t broke, don’t fix it”). In the virtual
world you can try strategies that you suspect will lead to poor performance or even
(simulated) catastrophe. Often pushing a system into extreme conditions reveals
more about its structure and dynamics than incremental adjustments to successful
strategies. Virtual worlds are the only practical way to experience catastrophe
in advance of the real thing. Thus a great deal of the time pilots spend in flight
simulators is devoted to extreme conditions such as engine failure or explosive
decompression.

Virtual worlds provide high-quality outcome feedback. In the People Express
Management Flight Simulator (Sterman 1988a), for example, and similar system
dynamics simulations, players receive perfect, immediate, undistorted, and com-
plete outcome feedback. In an afternoon one can gain years of simulated experi-
ence. The degree of random variation in the virtual world can be controlled. Virtual
worlds offer the learner greater control over strategy, lead to more consistent deci-
sion making, and deter implementation failure and game playing. In contrast to the
real world, which, like a black box, has a poorly resolved structure, virtual worlds
can be open boxes whose assumptions are fully known and can even be modified
by the learner.

Virtual worlds for learning and training are commonplace in the military, in
pilot training, in power plant operations, and in many other real time tasks where
human operators interact with complex technical systems. Virtual worlds are also
common in professions such as architecture and engineering that lend themselves
to the use of physical models (Schon 1983). The use of virtual worlds in man-
agerial tasks, where the simulation compresses into minutes or hours dynamics ex-
tending over years or decades, is more recent and less widely adopted. Yet these
are precisely the settings where dynamic complexity is most problematic, where
the learning feedbacks described above are least effective, and where the stakes are
highest.

1.4.2 Pitfalls of Virtual Worlds

Virtual worlds are effective when they engage people in what Dewey called “re-
flective thought” and what Schon (1992) calls “reflective conversation with the
situation.” Though simulation models and virtual worlds may be necessary for
effective learning in dynamically complex systems, they are not sufficient to over-
come the flaws in our mental models, scientific reasoning skills, and group
processes.
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Obviously, while the virtual world enables controlled experimentation, it does
not require the learner to apply the principles of scientific method. Many partici-
pants in system dynamics projects lack training in scientific method and awareness
of the pitfalls in the design and interpretation of experiments. A commonly ob-
served behavior among modelers and in workshops using management flight sim-
ulators is the video game syndrome in which people play too much and think too
little. People often do not take time to reflect on the outcome of a simulation, iden-
tify discrepancies between the outcomes and their expectations, formulate hy-
potheses to explain the discrepancies, and then devise experiments to discriminate
among the competing alternatives. Effective learning using system dynamics will
often require training for participants in scientific method. Protocols for the use of
simulations should be structured to encourage proper procedure, such as keeping
laboratory notebooks, explicitly formulating hypotheses and presenting them to the
group, and so on.

Defensive routines and groupthink can operate in the learning laboratory just
as in the real organization. Indeed, protocols for effective learning in virtual worlds
such as public testing of hypotheses, accountability, and comparison of different
strategies can be highly threatening, inducing defensive reactions that prevent
learning (Isaacs and Senge 1992). The use of system dynamics to stimulate learn-
ing in organizations often requires members of the client team to spend time ad-
dressing their own defensive behavior. Managers unaccustomed to disciplined
scientific reasoning and an open, trusting environment with learning as its goal will
have to build these basic skills before a system dynamics model—or indeed, any
model—can prove useful. Developing these skills takes effort and practice.

Still, settings with high dynamic complexity can garble the reflective conver-
sation between the learner and the situation. Long time delays, causes and effects
that are distant in time and space, and the confounding effects of multiple nonlin-
ear feedbacks can slow learning even for people with good insight and group
process skills. Learning in virtual worlds can be accelerated when the modeling
process also helps people learn how to represent complex feedback structures and
understand their implications rather than simply presenting the results of an analy-
sis. To learn in dynamically complex systems participants must have confidence
that the model is an appropriate representation of the problem they care about.
They must believe it mimics the relevant parts of the real world well enough that
the lessons emerging from the virtual world apply to the real one. To develop such
conﬁdence. t.h(? virtual world must be an open box whose assumptions can be in-
spected, criticized, and changed. To learn, participants must become modelers, not
merely players in a simulation game.

Whef]nﬂ;l);ag;lcc:i:,i;ff;c;ll(\gslezrrltlggat;rom mo;ie!s occurs best, and perhaps only,
Modeling here includes thel::licitalt)ioe alf nl:e 4 19 t‘he de:/el(?prpent o the mod ]
including articulating the issues ( lom st oy o . mode
_ : problem structuring), selecting the model bound-

ary and time honﬁzon, and mapping the causal structure of the relevant system.
policy structure diagramf imeract'vaval i lncludu}g sl 109p diagrams,
structuring and soft systen;s methoc;se(: B e Tt Tt
see, e.g., Checkland 1981; Eden, Jones and
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Sims 1983; Lane 1994; Morecroft 1982; Morecroft and Sterman 1994; Reagan-
Cirincione et al. 1991; Richmond 1987, 1993; Rosenhead 1989; Senge and
Sterman 1992; and Wolstenholme 1990).

1.4.3 Why Simulation Is Essential

Eliciting and mapping the participants’ mental models, while necessary, is far from
sufficient. As discussed above, the temporal and spatial boundaries of our mental
models tend to be too narrow. They are dynamically deficient, omitting feedbacks,
time delays, accumulations, and nonlinearities. The great virtue of many protocols
and tools for elicitation is their ability to improve our models by encouraging peo-
ple to identify the elements of dynamic complexity normally absent from mental
models. However, most problem structuring methods yield qualitative models
showing causal relationships but omitting the parameters, functional forms, exter-
nal inputs, and initial conditions needed to fully specify and test the model. Re-
gardless of the form of the model or technique used, the result of the elicitation and
mapping process is never more than a set of causal attributions, initial hypotheses
about the structure of a system, which must then be tested.

Simulation is the only practical way to test these models. The complexity of
our mental models vastly exceeds our capacity to understand their implications.
Typical conceptual models such as the type of causal diagram shown in Figure 1-6
are too large and complex to simulate mentally. Without simulation, even the best
conceptual models can only be tested and improved by relying on the learning
feedback through the real world. As we have seen, this feedback is very slow and
often rendered ineffective by dynamic complexity, time delays, inadequate and
ambiguous feedback, poor reasoning skills, defensive reactions, and the costs of
experimentation. In these circumstances simulation becomes the only reliable way
to test hypotheses and evaluate the likely effects of policies.

Some scholars argue that formal modeling can at best provide quantitative
precision within preexisting problem definitions but cannot lead to fundamentally
new conceptions (for various views see Dreyfus and Dreyfus 1986 and the discus-
sion in Lane 1994). On the contrary, formalizing qualitative models and testing
them via simulation often leads to radical changes in the way we understand real-
ity. Simulation speeds and strengthens the learning feedbacks. Discrepancies
between formal and mental models stimulate improvements in both, including
changes in basic assumptions such as model boundary, time horizon, and dynamic
hypotheses (see Forrester 1985 and Homer 1996 for philosophy and examples).
Without the discipline and constraint imposed by the rigorous testing enabled by
simulation, it becomes all too easy for mental models to be driven by ideology or
unconscious bias.

Some argue that formalization forces the modeler to omit important aspects of
the problem to preserve tractability and enable theorems to be proved or to omit
soft variables for which no numerical data exist. These are indeed dangers. The lit-
erature of the social sciences is replete with models in which elegant theorems are
derived from questionable axioms, where simplicity dominates utility, and where
variables known to be important are ignored because data to estimate parameters
are unavailable. System dynamics was designed specifically to overcome these
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limitations and from the beginning stressed the development of useful models;
models unconstrained by the demands of analytic tractability, based on realistic as-
sumptions about human behavior, grounded in field study of decision making, and
utilizing the full range of available data, not only numerical data, to specify and es-
timate relationships (see Forrester 1961, 1987).

Some people don’t believe that models of human behavior can be developed.
Simulations of natural and technical systems such as the climate or an oil refinery
are based on well-understood laws of physics, but, it is argued, there are no com-
parably reliable laws of human behavior. This view overestimates our understand-
ing of nature and underestimates the regularities in human decision making. As
Kenneth Boulding points out, “Anything that exists is possible.” You will see many
examples of models of human systems throughout this book (see also the models
in Levine and Fitzgerald 1992; Roberts 1978; Langley et al. 1987; Sterman 1985a;
Homer 1985; and many of the models cited in Sastry and Sterman 1993).

Is it possible to learn effectively in complex settings without simulation? Can
the use of problem structuring methods, elicitation techniques, and other qualita-
tive systems methods overcome the impediments to learning? If intuition is devel-
oped highly enough, if systems thinking is incorporated in precollege education
early enough, or if we are taught how to recognize a set of “system archetypes”
(Senge 1990), will we be able to improve our intuition about complex dynamics
enough to render simulation unnecessary?

The answer is clearly no. It is true that systems thinking techniques, including
system dynamics and qualitative methods such as soft systems analysis, can en-
hance our intuition about complex situations, just as studying physics can improve
our intuition about the natural world." As Wolstenholme (1990) argues, qualitative
systems tools should be made widely available so that those with limited mathe-
matical background can benefit from them. I am a strong advocate for the intro-
duction of system dynamics and related methods at all levels of the educational
system. Yet even if we all began serious study of physics in kindergarten and con-
tinued it through a Ph.D., it is ludicrous to suggest that we could predict the track
of a hurricane or understand by intuition alone what happens when two galaxies
collide. Many human systems are at least as complex. Even if children learn to
think in systems terms—a goal I believe is vitally important—it will still be nec-
essary to develop formal models, solved by simulation, to learn about such sys-
tems.

Most importfmt, when experimentation in real systems is infeasible, simulation
becomes the main, and perhaps the only, way you can discover for yourself how
complex systems work. The alternative is rote learning based on the authority of
the teach.er a_nd textbook, a method that dulls creativity and stunts the development
of the scientific reasoning skills needed to learn about complexity.

1“Such knowledge of basic physics is de i
ba sperately needed. When asked the question “If a pen is
droppf’:,d on the moon, will it (a). float away; (b) float where it is; (c) fall to the‘:urface of thep’3
moon?” 48 out of 168 students in physics courses at Towa State University gave incorrect answers.
Typical student explanations were “The gravity of the moon can be said to be negligible” and “The



Chapter 1 Learning in and about Complex Systems 39

The implications for this book are clear. System dynamics is not a spectator
sport: Throughout the book I have tried to encourage the active participation of
you, the reader. You will find Challenges in each chapter—examples for you to
consider and work through yourself, such as the chicken and egg causal loop dia-
gram in Figure 1-6 and the Wason card puzzle in Figure 1-13. Some of these are
followed by a suggested response. Others are not. As you work through the book,
extend the examples. Build the models. Experiment with them. Apply your skills
to new problems and new issues. And, most of all, have fun."

1.5 SumMmARY

Complex dynamic systems present multiple barriers to learning. The challenge of
bettering the way we learn about these systems is itself a classic systems problem.
System dynamics is a powerful method to gain useful insight into situations of
dynamic complexity and policy resistance. It is increasingly used to design more
successful policies in companies and public policy settings. However, no one
method is a panacea. Overcoming the barriers to learning requires a synthesis of
many methods and disciplines, from mathematics and computer science to
psychology and organizational theory. Theoretical studies must be integrated with
field work. Interventions in real organizations must be subjected to rigorous
follow-up research.

The field of system dynamics is itself dynamic. Recent advances in interactive
modeling, tools for representation of feedback structure, and simulation software
make it possible for anyone to engage in the modeling process. Corporations, uni-
versities, and schools are experimenting vigorously. The library of successful in-
terventions and insightful research is growing. Much further work is needed to test
the utility of the tools and protocols, evaluate their impact on individual and orga-
nizational learning, and develop effective ways to train others to use them. Never
before have the challenges of our increasingly dynamic world been more daunting.
Never before have the opportunities been greater. It’s an exciting time to be learn-
ing in and about complex systems.

15The accompanying CD-ROM and website (http://www.mhhe.com/sterman) include the models
developed in the text and simulation software you can use to run and extend them.



