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Level
Increasing Decreasing

Bathtub  
Immediate Parents:  None 

Ultimate Parents: None 

 

Used by:  Cascaded levels 

Problems solved:  How to increase and decrease something incrementally. 

Equations: 

Level = INTEG(Increasing-Decreasing,___) 
 Units: widgets 
Decreasing = ___ 
 Units: widgets/year 
Increasing = ___ 
 Units: widgets/year 
 
Description:  A bathtub accumulates the difference between its inflow and its outflow.  A 
physical example is an actual bathtub.  The level of water is increased by the inflow from 
the tap and decreased by the outflow at the drain.   

Classic examples:  A workforce might be represented as a bathtub whose inflow is hiring 
and whose outflows is attrition.  A final-goods inventory could be a bathtub whose inflow 
is arrivals of product and whose outflow is unit sales.  Factories could be represented as a 
bathtub whose inflow is construction and whose outflow is physical depreciation.  
Retained earnings could be represented as a bathtub with revenues as the inflow and 
outflow of expenses. 

Caveats:  Often bathtubs represent physical accumulations which should not take on 
negative values.  To prevent negative values, the outflow must be influenced directly by 
the level.  This is termed “first order feedback” (i.e. a feedback loop is created that 
includes only one level (a feedback loop with two levels would be “second order”).  
Molecules employing first-order feedback include smooths, decays, and protected levels 
(e.g. level protected by level and level protected by flow). 

Technical notes:   
A bathtub is simply an integration of one inflow and one outflow.  System 
dynamics takes an integral view of calculus, which is reflected in the form that 
level equations take in all system dynamics languages (DYNAMO, Vensim, iThink, 
Powersim, etc.)   
 

∫ −+=
T

T
ttTT dtoutflowinflowLevelLevel

0
0

)(  

 
or, in modified DYNAMO notation 
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)(* dttdttdttt outflowinflowdtLevelLevel −−− −+=  

 
The idea is expressed in the differential calculus as 
 

tt
t outflowinflow

dt
Leveld −=  
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Cascaded levels  
(also known as “chain”) 
 

Level 1 Level 2 Level 3
flowingIn movingTo

Level2
movingTo

Level3
flowingOut

 
 
Immediate Parents:  Bathtub 
Ultimate Patents:  Bathtub 

Used by:  Conversion, Aging chain, Broken cascade, Smooth (higher order), Traditional 
cascaded coflw, Doing work cascade  

Problem solved:  How to represent something that accumulates at a number of points 
instead of just one.   

Equations:   
flowingIn = ____ 
 Units: material/Month 
flowingOut = ____ 
 Units: material/Month 
Level 1 = INTEG(flowingIn-movingToLevel2, ____) 
 Units: material 
Level 2 = INTEG(movingToLevel2-movingToLevel3, ____) 
 Units: material 
Level 3 = INTEG(movingToLevel3-flowingOut, ____) 
 Units: material 
movingToLevel2 = ____ 
 Units: material/Month 
movingToLevel3 = ____ 
 Units: material/Month 
 
Description:  A cascade is a set of levels, where one level’s outflow is the inflow to a 
second  level, and the second level’s outflow is the inflow to a third, etc.  A cascade can 
be seen as a structure that divides up an accumulation into “sub-accumulations”.  The 
number of levels in a cascade can be any number greater than two. 

Behavior:  Because the rates are not defined, behavior is not defined. 

Classic examples:  Items being manufactured accumulate at many points in the system, 
perhaps in front of each machine in a production line as well as in finished inventory.  
Conceptually it is possible to have a chain with a level for each machine.  Usually this is 
too detailed for a system dynamics model; instead we represent material accumulating in a 
smaller number of levels, perhaps three:  manufacturing starts, work in process, and 
finished inventory.   
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A measles epidemic model might represent people in three stages (levels):  susceptible, 
infected, and recovered.  (See Aging Chain molecule) 

A workforce might be composed of three stocks:  Rookies, Experienced, and Pros.  As 
they are hired, people flow into the rookies level from which they flow in the level of 
experienced employees.  Experienced employees flow into the stock of pros, which is 
depleted by people retiring.  (See Aging Chain molecule).  

Caveats:  Often the levels represent physical accumulations which should not go negative.  
See caveats under Level. 

Technical notes:  In nature, there are phenomena which combine the characteristics of 
both flows and stocks.  A river, for example, is both a rate of flow and has volume.  In 
system dynamics modeling we represent the world as consisting of pure flows having no 
volume; and pure levels having no flow.  We view a river as being composed of a chain of 
“lakes”, each having a volume, connected by flows each being a pure rate:  The water 
accumulates only in the “lakes” not in the flows.  A river might be represented as a 
cascade of two levels: an upstream stock and a downstream stock.  This “lumped 
parameter” view of the world permits the use of integral equations.  To represent flows 
that have volume would require the more complicated mathematics of partial integral 
(partial differential) equations.  Such a view of the world is more difficult to model and 
more time consuming to simulate. 
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Conversion 
Immediate parents:  Cascaded levels  
Ultimate parents: Bathtub 

Used by:  Diffusion 

Problem solved:  How to represent people changing their status.  E.g. from non-believer 
to believer, from non-customer to customer, from non-infected to infected 

Equations:   

Source of converts = INTEG(-converting, ___) 
 Units: people 
converting = ___ 
 Units: people/Year 
Converts = INTEG(cnverting, ___) 
 Units: people 
 
Description:  People flow from one category to the other 

Behavior:  Converting is undefined, so behavior is undefined 

Classic examples:  Used in diffusion models 

Caveats:  None 

Technical notes:  None 

ConvertsSource of
converts converting
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Broken Cascade 
 

ordersIn
Process

inventory

ordering ordersBeing
Fulfilled

shippingreceiving
Inventory

avgOrder
Size

Level 1

Level 2

inflowTo
Level1

outflowFrom
Level1

outflowFrom
Level2

inflowTo
Level2

General Form

Example

 
Immediate Parents:  Cascaded levels 
Ultimate Parents:  Bathtub 

Used by:  Split flow, Traditional cascaded coflow 

Problem solved:  How to represent a conceptual break in set of cascaded levels.  (The 
conceptual break often, but not always, involves a change of units). 

Equations:   

General Form Example 
ordersInProcess ordersInProcess = INTEG( 
      orderingrdersBeingFulfilled,__) 

Units: orders 
ordering = ___ 

Units: orders/Month 
ordersBeingFulfilled = 100 

Units: orders/Month 
inventory= INTEG (receivingInventory-shipping,__) 

Units: widgets 
shipping = ___ 

Units: widgets/Month 
receivingInventory=ordersBeingFulfilled*avgOrderSize 

Units: widgets/Month 

Level 1 = INTEG(  
       inflowToLevel1-outflowFromLevel1,___) 
 Units: material 
inflowToLevel1 = ___ 
 Units: material/Month 
inflowToLevel2=outflowFromLevel1 
 Units: material/Month 
Level 2= INTEG ( 
       inflowToLevel2-outflowFromLevel2,___) 
 Units: material 
outflowFromLevel1 = ___ 
 Units: material/Month 
outflowFromLevel2 = 100 
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avgOrderSize=_________ 
 Units: widgets/order 

 Units: material/Month 

 

  
Description:  A broken cascade is a cascade where the outflow of one level, rather than 
flowing directly into the next level, instead terminates in a cloud.  The inflow to the next 
level is then a function of the prior outflow.  If the inflow to the next level is equal to the 
outflow from the prior level (e.g. receivengInventory = ordersBeingFulfilled), then the 
broken cascade is mathematically equivalent to the regular cascade.  Often the inflow to 
the next stock is the outflow from the stock multiplied by a constant that represents a 
change of units (e.g. avgOrderSize in the example above.  

Behavior:  Behaves like a regular cascade 

Classic examples:  In modeling a supply chain, there is often a conceptual break from raw 
materials inventory to work in process.  The conceptual break often also involves a change 
in units. 

Caveats:  None 

Technical notes:  None 
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Split Flow  
 
Immediate Parents:  Broken 
cascade 
Ultimate Parents:  Bathtub 
 
Used by:  Work accomplishment 
structure, Low-visibility pipeline 
correction 
 
Problem solved:  How to 
disaggregate an outflow into sub-
flows 
 
Equations:   
Source Stock = INTEG(-Aggregate Outflow,____) 
 Units: Widgets2 
Aggregate Outflow = ____ 
 Units: Widgets/Month 
First Subflow = Aggregate Outflow*Fractional Split to First Subflow 
 Units: Widgets/Month 
Fractional Split to First Subflow = ____ 
 Units: fraction 
First Destination Stock = INTEG(First Subflow,0) 
 Units: Widgets 
Second Subflow = Aggregate Outflow*(1-Fractional Split to First Subflow) 
 Units: Widgets/Month 
Second Destination Stock = INTEG(Second Subflow, ____) 
 Units: Widgets 
 
Description:  This structure splits an outflow into two (or more) subflows into other 
levels (or into sinks).. 
 
Behavior:  Aggregate outflow is undefined, so behavior is undefined. 
 
Classic examples:  Work Accomplishment Structure 
 
Caveats:  None 
 
Technical notes:  Traditionally the split outflow is represented with the aggregate flow 
going into a sink (cloud) and the two sub-flows coming out of sources (clouds).  Although 
not standard, it is possible to draw the pipe splitting in two.  The equations remain the 
same.  

Source
Stock

Second
Destination

Stock

First
Destination

Stock

Aggregate
Outflow

First
Subflow

Second
Subflow

Fractional Split to
First Subflow
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Work Accomplishment Structure 
Also known as Rework Cycle 
 
Immediate Parents:  Split Flow 
Ultimate Parents: Bathtub 
 
Used by:  None 
 
Problem solved:  How to 
represent rework 
 
 
 
 
 
Equations:   
WorkToDo = INTEG( DiscoveringRework – AccomplishingWork,___)  
 Units: SquareFeet 
DiscoveringRework = ___ 
 Units: SquareFeet/Week 
AccomplishingWork = ___ 
 Units: SquareFeet/Week 
CorrectWork = INTEG( AccomplishingCorrectly , 0)  
 Units: SquareFeet 
AccomplishingCorrectly = AccomplishingWork * Quality  
 Units: SquareFeet/Week 
Quality = ___ 
 Units: fraction 
UndiscoveredRework = INTEG(  
     AccomplishingIncorrectly - DiscoveringRework ,___)  
 Units: SquareFeet 
AccomplishingIncorrectly = AccomplishingWork * ( 1 - Quality )  
 Units: SquareFeet/Week 
 
Description:  We begin with some work to do and begin to accomplish it by some 
process (perhaps by the producing molecule).  Some of the work is done correctly, but 
some is not.  Quality is the fractional split.  Quality here has a very narrow definition: the 
fraction of work that is being done correctly.  The work that is not done correctly flows 
into undiscovered rework, where it sits until it is discovered (again by a process not 
shown).  When it is discovered it flows into work to be (re) done. 
Note that the stock of undiscovered rework is not knowable by decision makers “inside” 
the model.  The stock is really there, but no-one, except the modeler and god, know how 
much it holds. 
Behavior:  Work can make many cycles. 

WorkToDo

CorrectWork

Undiscovered
Rework

Accomplishing
Work

Accomplishing
Correctly

Accomplishing
Incorrectly

Discovering
Rework

Quality
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Classic examples:  This is the classic project structure.  It was originally developed by 
Pugh-Roberts, which continues to use and develop the structure.  The structure is at the 
heart of Terek Abdel-Hamid’s work on software project management.  Today it is used by 
a number of consultants and consulting firms. 
Caveats:  none 
Technical notes: The structure, as shown does not contain the definition of accomplishing 
work or discovering rework.  Typically these flows are formulated using the producing 
molecule, although discovering rework is sometimes represented as a Go to Zero (i.e. 
undiscovered rework is represented as a material delay).  Quality is usually formulated as 
an anchoring and adjustment molecule.  Often the discovered rework flows into a level 
that keeps it separate from the original work to do -- this permits one to model a 
productivity and a quality on rework that are potentially different from productivity and 
quality on original work. 
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Go To Zero 
 
Immediate Parents:  None 
Ultimate Parents:  None 

Used by:  Decay, Backlog shipping protected by flow, 
Level protected by flow 

Problem solved:  How to generate an action (i.e. a flow) 
that will move a current value (of a stock) to zero over 
time. 

Equations:   

ActionToGo to zero = CurrentValue/timeToGo to zero 
 Units: widgets/Month 
CurrentValue = ___ 
 Units: widgets 
timeToGo to zero = ___ 
 Units: months 
Description:  The action (or rate of flow) that will take a quantity (a stock) to zero over a 
given time is simply the quantity divided by the given time. 

Behavior:  No stocks, so no behavior 

Classic examples:  The outflow of a decay or material delay.  The desired shipping in a 
Backlog shipping protected by flow molecule. 

Caveats:  When time “constant” (timeToGo to zero) is formulated as a variable, care 
should be taken to ensure its value can not become zero to avoid a divide-by-zero error. 

Technical notes:  The intuition behind this formulation is the following:  Consider a 
variable whose current value is CurrentValue.  The variable will become zero in exactly 
timeToGo to zero months if the variable declines at a constant rate equal to actionToGo to 
zero.  Usually, however, the actionToGo to zero will not remain constant, because the 
action itself will change the currentValue and/or value of timeToGo to zero.  
Consequently, the variable in question will typically not be zero after timeToGo to zero 
months.  Depending on the actual formulation, the timeToGo to zero often will have a real 
world meaning.  In the case of a decay, for example, the average time for an aggregate of 
things (e.g. a group of depreciating machines) to decline to zero is equal to timeToGo to 
zero. 

Other molecules that can generate an action (or a flow) include  close gap (and its 
children) and flow from resource (and its children)  

 

Current
Value

timeToGo
ToZero

ActionToGo
ToZero
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Decay 
Immediate parents:  Go to zero 
Ultimate parents: Go to zero 
 
Used by:  Present value, Material delay, Residence 
time 

Problem solved:  How to empty or drain a stock. 

Equations:   

Material = INTEG(-Material draining, ___ ) 
 Units: stuff 
Material draining = Material / time to drain 
 Units: stuff/Year 
time to drain = ___ 
 Units: Year 
Description:  The stock in the decay structure, drains gradually over a period of time 
determined by the time to drain.  The decay can be viewed as a smooth with a goal of 
zero.  As a rule of thumb the stock is emptied in three time constants.  The time for the 
stock to decline by half is termed the half life and is approximately equal to 70% of the 
time to drain. 

Behavior:  The decay declines exponentially toward 
zero.  Because the outflow is simply a fraction of the 
stock, the outflow also declines exponentially toward 
zero. 

Classic examples:  Radioactive decay. 

Caveats:  Sometimes a decay process is better 
represented more explicitly.  For example, one could 
represent the draining of a finished-goods inventory as 
a decay.  But, the real process involves people 
purchasing the merchandise.  The purpose of the model 
will determine whether the decay representation is 
“good enough” or whether a more accurate 
representation is called for. 

Technical notes:  The equation for a decay is 

 Material
t
 = Material

0
 * e-t/smoothingTime 

BEHAVIOR
Material

20
15.03
10.06
5.093
.1244

Material draining
10

7.515
5.031
2.546
.0622

0 5 10
Time (Month)  

Material
Material
draining

drainingTime
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The half life can be determined from this equation to be:  ln(0.5)*timeToDrain.  ln(0.5) is 
approximately 0.7.  The outflow from the decay is distributed exponentially.  The average 
residence time of material in the level is equal to the timeToDrain. 
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Residence Time 
Immediate Parents:  Decay 
Ultimate parents:  Go to zero 
 
Used by:  None 

Problem solved:  How to determine the 
average residence time of items flowing 
through a stock. 

Equations:   

AverageResidenceTime = Material/Material draining 
 Units: Year 
Material = INTEG(-Material draining,  ___) 
 Units: items 
Material draining = ___ 
 Units: items/Year 
 
Description:  This is based on the same understanding as that behind the decay; however 
the inputs and outputs are switched.  Here, we know the rate at which material is draining 
(as well as the stock) and we calculate the average time to drain (i.e. the average residence 
time). 

Behavior:  No feedback, so no endogenous dynamic behavior 

Classic examples:  None 

Caveats:  None 

Technical notes:  This is based on Little’s Law.  In equilibrium the calculation for the 
average residence time is correct, no matter what process is actually draining the level.  To 
derive the formula for the specific process of a decay provides the intuition.  The equation 
for a decay’s outflow is. 

t

t
t decayTime

StockowdecayOutfl =  

The above equation says that if we know the values of the Stock and the value of the 
decayTime, we can figure out the value of the decayOutflow.  Now if we already know the 
value of the decayOutflow (as well as the Stock’s value) but we don’t know the 
decayTime’s value, we can re-arrange the above equation to yield 

t

t
t owdecayOutfl

StockdecayTime = . 

Which is an equation that allows us to figure out the decayTime if we know the other two 
quantities.  The equation above is the Residence Time molecule. 

Material
Material
draining

Average
ResidenceTime



Molecules of Structure  Page 23 of 128 

 Copyright © 1996,1997,2004, 2005  Jim Hines 

Present value 
Immediate parents:  
Decay 
Ultimate parents:  Go to 
zero 
Used by:  None 

Problem solved:  How 
to calculate the present 
value of a cash stream. 

 

 

 

 

Equations:   

PresentValueOfProfits = INTEG(IncreasingPresentValue, ___) 
 Units: $ 
IncreasingPresentValue = Profits * DiscountingFactor 
 Units: $/Year 
Profits = 
 Units: $/Year 
DiscountingFactor = INTEG( - ReducingDiscountingFactor, 1) 
 Units: fraction 
DiscountRate = ___ 
 Units: fraction / Year 
ReducingDiscountingFactor = DiscountRate * DiscountingFactor 
 Units: fraction / Year 
 
Description:  The present value of a cash stream (e.g. profits) is simply the accumulation 
of profits, weighted at each instant by a discounting factor.  The discounting factor decays 
at a rate determined by the discounting factor. 

Classic examples:  Discounted profits. 

Caveats:  None. 

Technical notes:  A discount rate of 0.10 (10%) is equivalent to a time constant of 10 
years on the decay structure that represents the discounting factor.  (See note on decay 
molecule). 
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Material Delay 
Immediate parents:  Decay 
Ultimate parents:  Go to zero 
 
Used by:  Aging chain 

Problem solved:  How to delay a 
flow of material. 

Equations:   

Material flowing out = Material / Time to flow out 
 Units: stuff/Year 
Time to flow out = ___ 
 Units: Year 
Material = INTEG(Material flowing in-Material flowing out, Material flowing in*Time to flow out) 
 Units: stuff 
Material flowing in = ___ 
 Units: stuff/Year 
 
Description:  The material delay creates a delayed version of a flow by accumulating the 
flow into a level and then draining the level over some time constant (timeToFlowOut).  
The outflow from the level is a delayed version of the inflow.  The average time by which 
material is delayed is equal to the time constant. 

Classic examples:  A flow of material is shipped and received after a delay.  The stock in 
this case is the material in transit. 

Caveats:  None. 

Technical notes:  The actual delay times for the items that comprise the flow are 
distributed exponentially with a mean of the time constant.  Instead of dividing by a time 
constant, one can multiply by a fractional decay rate.  For example, a 10 year time 
constant would correspond to a decay rate of 0.10 (10%) per year. 

Material
Material

flowing out

Time to
flow out

Material
flowing in
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Aging Chain 
Also known as Cascaded Delay 

Newmaterial Material
maturing

Time to
mature

Material
flowing in

Mature
material

Old
materialMaterial

aging
Material

flowing out

Time to age
Time to flow

out

 
 
Immediate parents:  Material delay, Cascaded levels 
Ultimate parents:  Bathtub, Go to zero 
 
Used by:  Capacity Ordering, Aging Chain with PDY, Hines Cascaded Coflow, 
Traditional Cascaded Coflow 

Problem solved:  How to drain a stock so that the outflow is hump shaped, that is more 
“normally” distributed.  How to create a chain of stocks. 

Equations:   

New material = INTEG(Material flowing in-Material maturing,Material flowing in*Time to mature) 
 Units: stuff 
Material flowing in = ___ 
 Units: stuff/Year 
Material maturing = New material / Time to mature 
 Units: stuff/Year 
Time to mature =  
 Units: Year 
Mature material = INTEG(Material maturing-Material aging, Material maturing*Time to age) 
 Units: stuff 
Material aging = Mature material/Time to age 
 Units: stuff/Year 
Time to age = ___ 
 Units: Year 
Old material = INTEG(Material aging-Material flowing out, Material aging*Time to flow out) 
 Units: stuff 
Material flowing out = Old material/Time to flow out 
 Units: stuff/Year 
Time to flow out = ___ 
 Units: years 
Description:  An aging chain is a cascade of material delays.  Although, the example 
above has three stocks (a third-order aging chain), an aging chain can have any number of 
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stocks greater than two.  Sometimes only the average time it takes an item to transit the 
entire chain is known and the time constants associated with each individual flow are not 
known.  In this case, simply set each time constant equal to the overall transit time divided 
by the number of stocks in the chain.  That is the delay for stock i is defined as 

nocksInChainumberOfSt
totalDelaydelayi =  

Behavior:  A pulse input into an aging chain will come out with a hump distribution.  For 
an aging chain whose individual-stage time constants are all equal, the more levels in the 
chain, the more the 
outflow will be 
concentrated around 
the chain’s total delay, 
and the more central 
the peak will become.  
The output of an 
infinite-order delay will 
be identical to the 
input, but offset by the 
total delay time.   

 

As a rule of thumb, a third-order aging chain is usually sufficient from a dynamic 
perspective (i.e. more levels in an aging chain will not materially affect the behavior of the 
system of which the aging chain is a component).  An exception to this rule is the case of 
an “echo”, which requires at least a sixth-order aging chain.  For example if people buy a 
large quantity of a hot new product with a five-year product-life, there may be a surge of 
replacement purchases five years later – that is, there may be a purchasing “echo” with a 
five-year period. 

Classic examples:  A production process from production starts to production finishes is 
often represented as an aging chain.  A workforce gaining experience is often represented 
as an aging chain.   

Caveats:  None 

Technical notes:  The average residence time in an aging chain is equal to the total delay.   
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Aging Chain with PDY 
Parents:  Aging 
chain 

Used by:  None 

Problem 
solved:  How to 
represent a 
workforce 
where people 
gain experience 
they become 
more 
productive. 

Equations: 

Production = ExperiencedProduction+GrayHairProduction+RookieProduction 
 Units: widgets/Year 
RookieProduction = Rookies*RookieProductivity 
 Units: widgets/Year 
RookieProductivity = ___ 
 Units: widgets/person/Year 
Rookies = INTEG(Hiring - Maturing, Hiring*TimeForRookiesToMature ) 
 Units: people 
Hiring = ___ 
 Units: people/Year 
Maturing = Rookies / TimeForRookiesToMature 
 Units: people/Year 
TimeForRookiesToMature = ___ 
 Units: years 
ExperiencedProduction = Experienced*ExperiencedProductivity 
 Units: widgets/Year 
ExperiencedProductivity= ___ 
 Units: widgets/person/Year 
Experienced = INTEG(Maturing - GainingWisdom, Maturing  *TimeToGainWisdom  ) 
 Units: people 
GainingWisdom = Experienced / TimeToGainWisdom 
 Units: people/Year 
TimeToGainWisdom = ___ 
 Units: years 
GrayHairProduction = GrayHairs*GrayHairProductivity 
 Units: widgets/Year 
GrayHairProductivity = ___ 
 Units: widgets/person/Year 
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GrayHairs = INTEG(GainingWisdom -  Retiring, GainingWisdom*TimeForGrayHairToRetire ) 
 Units: people 
Retiring = GrayHairs / TimeForGrayHairToRetire 
 Units: people/Year 
TimeForGrayHairToRetire = ___ 
 Units: Year 

Description: This is an aging chain of people, where each level also has an (optional) 
added decay structure to represent attrition.  Each category of people has a different 
productivity.  Total production is simply the sum of each category working at its own 
productivity. 

Behavior:  See notes for decay and for Cascaded delay or aging chain 

Classic examples:  A common structure for representing difficulties encountered when a 
company must grow -- and, hence, expand employment - quickly. 

Caveats:  Gaining of experience is purely a function of time, rather than a function of 
doing the work.  The latter would be more accurate in most situations, but the structure as 
formulated is simpler and often good enough.  The rule of thumb for DT (see Caveats 
under Smooth) must be amended because each level has two outflows -- DT should be 
one fourth to one tenth of the effective time constant which may be quite short (see 
technical note). 

Technical notes:  The outflow from any one level is  

Outflow = Level/τ  + Level * η   
 where τ is the time it takes on average to move to the next category and 
  η is the fractional attrition rate for people in the category 
Or, 
Outflow = Level / (τ/(1 + ητ)) 
 

So DT needs to be shorter than 1/4 to 1/10 of the effective time constant: (τ/(1 + ητ) 
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Close gap 
Immediate parents:  None 
Ultimate parents:  None 
 
Used by:  Smooth 

Problem solved:  How to generate a flow or action 
to close a gap between a quantity and its desired 
value 

Equations:   

ActionToCloseGap = Gap/TimeToCloseGap 
 Units: widgets/Month 
Gap = Goal - Current Value 
 Units: widgets 
Goal = ___ 
 Units: widgets 
Current Value = ___ 
 Units: widgets 
TimeToCloseGap = ___ 
 Units: months 
 
Description:  The action, if it stayed constant, would close the gap in the 
TimeToCloseGap.  Because, the gap will usually be closing via the action (this feedback is 
not contained in the structure), the gap will not stay constant.  If the goal is zero; this 
structure becomes the action to eliminate the current value (see the Decay). 

Behavior:  No levels, so no endogenous dynamics 

Classic examples:  Backlog Inventory and Ordering molecule 

Caveats:  None 

Technical notes:  Other molecules that can generate an action (or a flow) include go to 
zero (and its children) and flow from resource (and its children). 

Current
Value

Goal

Gap

ActionTo
CloseGap

TimeTo
CloseGap
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Smooth (first order) 
Immediate parents:  Close gap 
Ultimate parents: Close gap 

Used by:  First-order stock adjustment, Hines 
coflow, Traditional coflow, Trend, Effect of 
fatigue, Workforce, Scheduled completion date, 
Sea Anchor and Adjustment 

Problem solved:  How to have a quantity 
gradually and smoothly move toward a goal.  
How to delay information.  How to represent a 
perceived quantity.  How to smooth information.  
How to represent an expectation. 

Equations:   

smoothed quantity = INTEG(updating smoothed quantity, quantity) 
 Units: stuff 
updating smoothed quantity = Gap / smoothing time 
 Units: stuff/Year 
smoothing time = ___ 
 Units: Year 
Gap = quantity - smoothed quantity 
 Units: stuff 
quantity = ___ 
 Units: stuff 

 
Description:  A smooth is a level with a specific inflow/outflow formulation.  The inflow 
is formulated as a net rate (i.e. negative values of the “inflow” decrease the level).  The 
rate of change is intended to “close the gap”.  The gap is the difference between some goal 
and the smooth itself. 

Behavior:  The stock adjusts 
toward the goal exponentially.  As 
illustrated at the right for a step 
increase in the goal.   

The gap between the stock and the 
goal is closed according to the 
constant (the smoothing time).  
Intuitively, the magnitude of the 
gap would decline to zero over the 
smoothing time if the net inflow 
were held constant.  In fact, the net 
inflow changes continuously as the 
level changes.  The rule of thumb is that the gap is almost completely eliminated within 
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three time constants. 
 
 If the goal is oscillating the smooth will also oscillate with a lag and with a reduced 
amplitude.  The lag gives rise to the use of a smooth a delay.  The reduced amplitude gives 
rise to using the smooth as means of “smoothing out” random ups and downs in the goal. 

Classic examples:  The smooth is used in virtually every system dynamics model.  A 
classic example is a cooling cup of coffee.  The temperature of the coffee can be 
represented as the stock; the goal is the temperature of the air surrounding around the 
cup.  The temperature of the coffee gradually adjusts to equal the air temperature.  The 
time constant is determined by the volume of coffee and the insulating properties of the 
cup. Adaptive expectations are modeled with a smooth.  Say one is forming a judgment of 
how many projects a consultant can sell in a month.  If sales have been roughly half a 
project per month, but in September sales jump to two; we perhaps adjust our 
expectations upward a bit, but not to two sales per month.  If sales stay at around two per 
month, though we gradually will come to expect that number of sales.  A smooth is the 
structure to capture this. 

Caveats:  When using Euler integration, a large DT (Time Step) can give rise to 
integration error which will show up as very rapid oscillations of the stock.  As a rule of 
thumb DT should be no larger than 1/4 to 1/10 of the time constant. 

Technical notes:  If the goal is held constant, the smooth can be expressed 
mathematically as 

SmoothedQuantity
t
 =  

 Goal - (Goal - SmoothedQuantity
0
)e-t/smoothingTime 

The “three time constants to close the gap” comes from the above equation.  For any 

number n of time constants the original gap is multiplied by a e-n.  In particular in three 

time constants, the gap is reduced to e-3 ≈ 5% of its original size. 
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Workforce 
Immediate parents:  Smooth (first order) 
Ultimate parents:  Close gap 
 
Used by:  Overtime 

Problem solved:  How to represent the number 
of people working on a project 

Equations:   
Workforce = INTEG( Hiring and Firing , 
DesiredPeople )  
 Units: people 
Hiring and Firing = Worker Shortage / time to hire or fire  
 Units: people/Year 
time to hire or fire =  
 Units: Year 
Worker Shortage = DesiredPeople - Workforce  
 Units: people 
DesiredPeople =  
 Units: people 
 

Description:  The workforce is just a smooth of the desired workforce.  This means that 
people will be hired or fired to (gradually) move the actual workforce to the desired level.   

Behavior:  Obvious 

Classic examples:  This is often used in models of projects 

Caveats:  None 

Technical notes:  Time to hire or fire aggregates a number of lags including:  the time for 
someone to realize that the workforce is not at the correct level, the time to communicate 
this realization, the time to get authorization for a new workforce level, the time to 
advertise for workers, the time to interview them, the time to actually bring them on 
board, and the time to bring them up to speed as fully productive workers. 

Note:  The essence of this molecule is that the workforce is a smooth of DesiredPeople.  
Although DesiredPeople is often formulated as a Desired workforce molecule; there is no 
requirement that this be the case.  Consequently, this molecule is not a child of Desired 
workforce. 

Workforce
Hiring and

Firing

Desired
People

Worker
Shortage

time to
hire or fire
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Scheduled
completion

dateSchedule
Updating

Time to change
schedule

Estimated
Completion

Date

Scheduled Completion Date 
 

Immediate parents:  Smooth (first order),  
Ultimate parents:  Close gap 

Used by:  None 

Problem solved:  How to represent the 
process by which the scheduled completion 
date is set. 

Equations:   

Scheduled completion date = INTEG( ScheduleUpdating , EstimatedCompletionDate ) 
 Units: week 
ScheduleUpdating =  
                ( EstimatedCompletionDate - Scheduled completion date ) / Time to change schedule 

Units: weeks/week 
Time to change schedule = ___ 
 Units: week 
EstimatedCompletionDate = ___ 
 Units: week 
 
Description:  The scheduled completion date adjusts toward the estimated completion 
date.  The scheduled completion date is simply a smooth of the estimated. 

Behavior:  Obvious 

Classic examples:  Used in project models 

Caveats:  None 

Technical notes:  None 
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Smooth (higher-order) 
Also known as cascaded smooth. 
 

Smooth1
updating
smooth1

goal

Gap1

smoothing time1

Smooth2
updating
smooth2

Gap2

smoothing time2

Smooth3.
updating
smooth3

Gap3

smoothing time3

 
Immediate Parents:  Smooth (first order), Cascaded levels 
Ultimate Parents: Close gap, Bathtub 

Used by:  Hines cascaded coflow 

Problem solved:  How to create a “smooth” where the adjustment toward the goal starts 
out slowly, gains speed, and then slows for the final approach.  How to model a situation 
where people are slow to initially perceive a change, but ultimate do catch on completely. 

Equations:   

Smooth1 = INTEG( updating smooth1 , goal )  
 Units: stuff 
updating smooth1 = Gap1 / smoothing time1  
 Units: stuff/Year 
smoothing time1 = ___ 
 Units: Year 
Gap1 = goal - Smooth1  
 Units: stuff 
goal = ___ 
 Units: stuff 
Smooth2 = INTEG( updating smooth2 , Smooth1 )  
 Units: stuff 
updating smooth2 = Gap2 / smoothing time2  
 Units: stuff/Year 
smoothing time2 = ___ 
 Units: Year 
Gap2 = Smooth1 - Smooth2  
 Units: stuff 
"Smooth3." = INTEG( updating smooth3 , Smooth2 )  
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 Units: stuff 
updating smooth3 = Gap3 / smoothing time3  
 Units: stuff/Year 
smoothing time3 = 2 
 Units: Year 
Gap3 = Smooth2 - "Smooth3."  
 Units: stuff 
 
Description:  A higher order smooth is a cascade of two or more smooths where each 
smooth becomes the goal of the immediately following smooth.  The stock of final smooth 
is often considered the “output” variable  -- that is the variable that’s ultimately adjusting 
toward the goal.  The usual case is to have the same delay at each stage of the smooth.   
That is if k is a constant  

O
agaggregateLk

kOrderkagaggregateL

i
Order

Orderiklag

Orderi

i

i

=

==

=∀=

∑
=

=

 as defined isk  elseor 

*

as defined is lag) average (or the agaggregateL either the
  whereand

stage individual eachfor  lag  theisk 
cascade  thein stage particularany  is 

delay  theoforder   theis 
where

...1   

1

 

 

For example in the usual case where the individual lags are all the same,  if the aggregate 

lag is, say, thirty weeks, then the lag for each stage will be  weeks10
3

 weeks30
= . 

Behavior:  In the case where the individual-stage lags are all the same, the adjustment will 
become more sudden and more concentrated at the point of the aggregate lag.  All of the 
adjustment would happen at the aggregate lag in the case of an infinite-order smooth.  
(Note in such a case the aggregate lag is a finite real number and each individual-stage lag 

is an infinitesimal, intuitively 
∞

=
Orderk  which is an infinitesimal.  The infinite-order 

smooth’s response to a step is another step offset from the original by the overall (or 
aggregate) lag. 
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Classic examples:  Third order smooths are fairly common.  Second-order smooths very 
rare, as are smooths with order higher than 3. 

Caveats:  If you create the delays by dividing an overall delay by the number of smooths 
in the cascade, be watchful of integration error.  Remember, the solution interval (“dt” or 
“time step”) should be one-quarter to one-tenth as large as the smallest time constant.  
The time constant on a higher-order smooth is not the overall delay, but rather the delays 
on the individual smooths making up the cascade.   This consideration holds even when 
using the built in 3rd order smooth functions provided by most SD simulation modeling 
environments.  These built  in functions typically take a parameter for the overall delay.  
Keep in mind that internally the software converts this overall delay into three individual 
delays, each one third the size of the time “constant” parameter.  

Technical notes:  If you take an aggregate view of the a higher-order smooth, the 
“aggregate delay” is equal to the average delay.  For example, if you use a third order 
smooth with overall delay of 3 month (implying individual stage delays are each equal to 
one month) to represent how buyers gradually adjust their perception of a price, the 
average buyer will adjust his perceptions completely in 3 months – of course some buyers 
will adjust more quickly and others less quickly than the average. 

 

“aggregate” 
delay time 

3 X “aggregate” 
delay time 
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First-order 
stock 
adjustment 
Immediate parents:  
Smooth (first order) 
Ultimate parents:  
Close gap 
 
Used by:  Low-visibility 
pipeline correction, 
High-visibility pipeline 
correction 

Problem solved:  How 
to purchase in order to 
maintain a stock at a 
desired level 

 

 

 

 

Equations:   

Level = INTEG( Stocking - outFlow , DesiredLevel )  
 Units: widgets 
outFlow = ___ 
 Units: widgets/Year 
DesiredLevel = ___ 
 Units: widgets 
Stocking = StockingToAdjustLevelToDesired + StockingForReplacement  
 Units: widgets/Year 
StockingForReplacement = outFlow  
 Units: widgets/Year 
StockingToAdjustLevelToDesired = Gap / AdjustmentTime  
 Units: widgets/Year 
Gap = DesiredLevel - Level  
 Units: widgets 
AdjustmentTime = ___ 
 Units: years 
 
Description:  The key component of the first order stock adjustment molecule is the 
stocking decision.  The stocking decision can be thought of as having two parts.  First, one 

Gap
Desired

Level

Level
Stocking outFlow

StockingTo
AdjustLevel
ToDesired

StockingFor
Replacement

Adjustment
Time

Inventory
Gap

Desired
Inventory

Inventory
Purchasing Shipping

Purchasing
ToChange
Inventory

Replacement
Purchasing

Purchasing
Time

Generic
Structure

Example



Molecules of Structure  Page 38 of 128 

 Copyright © 1996,1997,2004, 2005  Jim Hines 

“orders” what ever is being used up (this is StockingForReplacement).  This portion of the 
decision will keep inventories at their current levels.  The second component of the 
decision is to “order” a bit more or a bit less to move the Level to its desired value.  This 
decision is done in a “goal-gap” way.  Structurally this molecule is a smooth with a piece 
added on to take care of an extra outflow from the level. 

Behavior:  This structure will smoothly move the actual inventory to the desired level.  If 
the outflow were zero, this structure would be equivalent to a smooth.  If the replacement 
part of the decision can be made immediately (as shown above) without a perception 
delay, the structure will behave like a smooth no matter what the outflow is. 

Classic examples:  A very common structure. 

Caveats:  In many cases the stocking  flow should not go negative (e.g. if the inflow is 
actually a manufacturing process, one cannot “unmanufacture” what has already been 
placed in the level).  In this case, the modeler should modify the inflow so that it cannot go 
negative. 

This structure assumes that stocking can be made with no delay (i.e. the inflow is from off 
the shelf, immediately available, products).  If there is a delay (e.g. the things being 
ordered need to be custom-made), then it may be important to consider the supply 
pipeline.  For this see the Capacity Ordering molecule. 

In some situations one may want to recognize a perception lag between the outflow and 
the knowledge of how much should be replaced.  In this case, StockingForReplacement 
will should be modeled as a smooth (or perhaps an extrapolation) of the outflow. 

Technical notes:  None 
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High-Visibility Pipeline Correction 
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Immediate parents:  Aging chain, First-order stock adjustment 
Ultimate parents: Close gap, Bathtub, Go to zero 
 
Used by:  None 
Problem solved:  How to adjust a stock to its desired value, items taking account of what 
is in the pipeline 
Equations:   
PerceivedMaterialInProcessGap = MaterialInProcessGap * awarenessOfMaterialInProcess 
 Units:  
MaterialInProcessGap = TargetMaterialInProcess - MaterialInProcess  
 Units: stuff 
outflow = ___ 
 Units: stuff/Year 
AwarenessOfMaterialInProcess = ___ {must be between zero and one} 
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 Units: fraction 
DesiredStock = ___ 
 Units: stuff 
Stock = INTEG( Processing - outflow , DesiredStock )  
 Units: stuff 
StockGap = DesiredStock - Stock  
 Units: stuff 
Processing = MaterialInProcess / Processingtime  
 Units: stuff/Year 
Processingtime = ___ 
 Units: years 
Gap = StockGap + PerceivedMaterialInProcessGap  
 Units: stuff 
MaterialInProcess = INTEG( Starting - Processing , TargetMaterialInProcess) 
 Units: stuff 
ReplacementStarts = outflow  
 Units: stuff/Year 
Starting = max ( 0, StartsToAdjustStocks + ReplacementStarts )  
 Units: stuff/Year 
StartsToAdjustStocks = Gap / StockAdjustmentTime  
 Units: stuff/Year 
StockAdjustmentTime = ___ 
 Units: Year 
TargetMaterialInProcess = outflow * Processingtime  
 Units: stuff 
 
Description:  Based on the First-order stock adjustment structure, this molecule adds the 
idea that creating material is a time consuming process.  As in the first-order molecule, 
this one also represents the need to replace what is being used (or sold) and also adjusts 
the stock toward a desired level.  This molecule takes account not only of what is 
ultimately needed in the final stock, but also what is needed in the “pipe line”.   Put 
differently, this molecule keeps track not only of what is on hand in the final stock, but 
also of what it has been started but has not yet been completed.  The representation shown 
above provides a single level for in-process material, which – when combined with the 
final stock – results in a second-order aging chain.  However, the in-process stock can 
easily be disaggregated simply by adding stocks to the aging chain – for example, for a 
production-distribution system one could have stocks of raw materials, in-process 
inventory, finished inventory, inventory-at-the-warehouse arranged in a fourth-order aging 
chain. 
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Behavior:  Failing to keep track of what is in 
process (i.e. failing to keep track of the 
“pipeline”, means that the decision for starting 
will over order -- it will keep ordering the same 
item until it is received; rather than realizing the 
order has been placed even though it hasn’t 
shown up yet.  This is the main mistake that 
people make in playing the Beer Game.  The 
variable awarenessOfMaterialInProcess can be 
set anywhere between zero and 1 to represent 
partial awareness of the pipeline.  Failing to 
include replacement demand will result in 
steady state error. 

Classic examples:  Structures like this are found in Forester’s Industrial Dynamics model 
to represent a production-distribution system (supply chain) and in the System Dynamics 
National Model to represent an economy-wide aggregate structure leading from raw-
materials to company’s final inventories and, ultimately, to consumer’s stocks.  The 
structure is also used to represent construction processes for, say, office buildings or 
factories. 

Caveats:  The process of moving material from in-process to the final stage in this 
molecule only takes time.  It does not take productivity or people.  In some instances this 
is relatively accurate.  In many instances, such as manufacturing, this is not accurate.  
However, the structure is still used in many such situations by the best modelers in the 
field, because it is simple and good enough in the sense that the dynamics of interest are 
not obscured. 

In cases where “capacity” represents final inventory, desired inventory (i.e. “desired 
capacity” in the diagram) should respond to demand.  If it doesn’t, the structure is at the 
mercy of a positive loop involving the effect of stockouts on shipments (not shown), 
shipments (i.e. “retiring capacity”) and ordering (i.e. “replacing capacity” and “adjusting 
capacity”). 

Technical notes:  This molecule provides a more detailed (and more specific) 
representation of the pipeline than the closely related Low-visibility pipeline correction 
molecule.  This molecule is more appropriate when the decision maker has visibility of the 
process that “creates” the inflow into the final stock. 

PIPE AWARE
PIPE UNAWARE
Capacity

1.818 M
1.614 M
1.409 M
1.204 M

1 M
0 25 50

Time (Year)  
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Low-visibility Pipeline Correction 
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Immediate parents:  First-order stock adjustment, Split flow, Residence time 
Ultimate parents:  Close gap, Bathtub 
 
Used by:  None 

Problem solved:  How to adjust a stock to its desired value, taking into account what is 
in the pipeline in a situation where the decision maker does not have explicit visibility of 
the pipeline itself. 

Equations:   

Ordering = max ( 0, correctionForOrdersInPipeline + ReplacementOrdering + inventoryCorrection 
 Units: cases/quarter 
ReplacementOrdering = Shipping  
 Units: cases/quarter 
Shipping = ___ 
 Units: cases/quarter 
inventoryCorrection = ( DesiredInventory - Inventory ) / timeToCorrectInventory 
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 Units: cases/quarter 
timeToCorrectInventory = ___ 
 Units: quarter 
DesiredInventory = ___ 
 Units: cases 
Inventory = INTEG( Receiving Product - Shipping , DesiredInventory )  
 Units: cases 
Receiving Product = ___ 
 Units: cases/quarter 
correctionForOrdersInPipeline = OrderPipelinegGap / TimeToCorrectOrderPipeline 
 Units: cases/quarter 
TimeToCorrectOrderPipeline = ___ 
 Units: quarter 
OrderPipelinegGap = ( RequiredOrdersInPipeline - Orders Not Received ) * AwarenessOfPipeline 
 Units: cases 
AwarenessOfPipeline = ___ (usually a number between between 0 and 1) 
 Units: fraction 
Orders Not Received = INTEG( Ordering - Orders being fulfilled , ___)  
 Units: cases 
Orders being fulfilled = Receiving Product  
 Units: cases/quarter 
RequiredOrdersInPipeline = ForecastedDemand * CalculatedDeliveryDelay  
 Units: cases 
CalculatedDeliveryDelay = Orders Not Received / Orders being fulfilled  
 Units: quarters 
ForecastedDemand = ____   
 Units: cases/quarter 
 
Description:  As in the First-order stock adjustment molecule, ordering has two 
components:  replacing whatever is (expected to be) sold, and adjusting inventory.  This 
formulation also recognizes a hidden component of inventory:  Inventory that is on the 
way (or has been ordered), but has not yet been received.  In steady state, this inventory-
on-the-way will be non-zero.  In fact, if the ordering rate is constant, this inventory-on-
the-way will be equal to the ordering rate multiplied by the time it takes to receive orders.  
In other words, the inventory on the way will be the entire stream of orders that have been 
placed, but not received. 

This structure represents a great deal of what is present at each stage of the beer game.  
The mistake that most beer-game players make is that they do not keep track of orders not 
received - they do not take account of the pipeline.  In this structure this is represented by 
setting the Pipeline Recognition Factor to a small number.  The result will be oscillations 
caused by placing the “same” order more than once. 

Behavior:  No relevant behavior because the process of incoming orders (and shipping) is 
not specified in this molecule. 

Classic examples:  This molecule is commonly used. 
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Caveats:  None 

Technical notes:  This molecule does not specify how an order is “processed” by a 
supplier.  The closely related High-visibility pipeline correction molecule may be more 
appropriate if the decision maker has explicit knowledge of the process used to create the 
material.   
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Trend 
Immediate parents:  Smooth (first order) 
Ultimate parents:  Close gap 
 

Used by:  Extrapolation 

 

 

Equations:   

FractionalTrend = (PerceivedQuantity - HistoricalQuantity) / 
                     (HistoricalQuantity * DurationOverWhichToCalculateTrend) 
 Units: fraction/year 
PerceivedQuantity = SMOOTH(ActualQuantity, TimeToPerceiveQuantity) 
 Units: Quantity units 
ActualQuantity = ___ 
 Units: Quantity units 
TimeToPerceiveQuantity = ___ 
 Units: year 
HistoricalQuantity = INTEG(ChangeInHistoricalQuantity, PerceivedQuantity) 
 Units: Quantity units 
ChangeInHistoricalQuantity = (PerceivedQuantity - HistoricalQuantity) /  
                                                       DurationOverWhichToCalculateTrend 
 Units: Quantity units / year 
DurationOverWhichToCalculateTrend = ___ 
 Units: years 
 
Description:  The basic idea is very intuitive if one regards the historical quantity as an 
observation made at a point in the past and the perceived quantity as the current 
observation.  The difference between the two is the absolute growth or decline.  Dividing 
this quantity by the past observation gives the fractional growth or decline over the period 
separating the two observations.  Dividing by the time between the two observations give 
growth fraction per time unit.  The perceived quantity is a smooth of the actual quantity 
and the historical quantity is a further smooth of the perceived quantity; the time between 
these two smooths is the time constant on the historical quantity. 

Behavior:  The structure will eventually converge to the actual fractional growth rate of 
an exponentially growing quantity. 

Classic examples:  Often used to calculate the rate at which sales or demand is increasing. 

Caveats:  None 

Technical notes:  The perception lag on the perceived quantity is often conceptually 
necessary.  On a technical level, however, smoothing actual conditions prevents the 
fractional trend from changing abruptly. 
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Extrapolation 
Immediate parents:  Trend 
Ultimate parents:  Close gap 
 

Used by:  None 

 

 

 

 

 

Equations: 

ExtrapolatedQuantity = PerceivedQuantity * 
               (1 + FractionalTrend * (TimeToPerceiveQuantity + ForecastHorizon) ) 
 Units: Quantity units 
ForecastHorizon =  
 Units: year 
FractionalTrend = (PerceivedQuantity - HistoricalQuantity) / 
                     (HistoricalQuantity * DurationOverWhichToCalculateTrend) 
 Units: fraction/year 
PerceivedQuantity = SMOOTH(ActualQuantity, TimeToPerceiveQuantity) 
 Units: Quantity units 
ActualQuantity =  
 Units: Quantity units 
TimeToPerceiveQuantity =  
 Units: year 
HistoricalQuantity = INTEG(ChangeInHistoricalQuantity, PerceivedQuantity) 
 Units: Quantity units 
ChangeInHistoricalQuantity = (PerceivedQuantity - HistoricalQuantity) /  
                                                       DurationOverWhichToCalculateTrend 
 Units: Quantity units / year 
DurationOverWhichToCalculateTrend =  
 Units: years 
 
 
Description:  The extrapolation works on the fractional trend which is the output of a 
Trend Molecule.  The extrapolation is simply the current observation (the perceived 
quantity) multiplied by a factor representing how much it will grow by the end of the 
forecast horizon.  This factor is the fractional trend multiplied by the forecast horizon and 
by the time it takes to perceive current conditions.  Using the time to perceive current 
conditions extrapolates from the observation, which is necessarily lagged, to the current 
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time.  Then, using the forecast horizon extrapolates from the current time to the time of 
the forecast horizon.  However, this degree of exactness is unknown in the literature and 
unlikely to characterize actual trend extrapolations. 

Behavior:  The extrapolated forecast will be accurate for an exponentially growing 
quantity. 

Classic examples:  Extrapolations are often used to decide how much to order (or to 
begin construction of) in order to have the proper number of orders arriving (amount of 
construction coming on line) at the point in the future when we can expect our order to be 
filled. 

Caveats:  Extrapolation within an otherwise oscillatory system often will make the system 
more oscillatory.  Note: this may be realistic. 

Technical notes:  What is used in the molecule is a linear extrapolation.  It is roughly 
correct.  The precise forecast would use linear extrapolation to bring the perception lag 
“forward” and then use continuous compounding up to the forecast horizon. 



Molecules of Structure  Page 48 of 128 

 Copyright © 1996,1997,2004, 2005  Jim Hines 

Coflow 
There are two equivalent 
ways of representing a 
coflow.  The Traditional 
coflow and the Hines 
coflow 

Immediate parents:  
Smooth(first order) 
Ultimate parents:   
Close gap 
 
Used by:  Cascaded 
Coflow, Coflow with 
Experience 

Problem solved:  How to 
keep track of a 
characteristic of a stock. 

 

 

 

Equations:   

Traditional Coflow 
 
avg characteristic =Characteristic/ Fundamental quantity 
 Units: characteristic units/widget 
Fundamental quantity =  
                        INTEG(inflow of fundamental quantity-outflow of fundamental quantity, ___) 
 Units: widgets 
inflow of fundamental quantity = ___ 
 Units: widgets/Year 
outflow of fundamental quantity = ___ 
 Units: widgets/Year 
Characteristic = INTEG(addl characteristic-decrease of characteristic, 
                       Fundamental quantity*characteristic of new stuff) 
 Units: characteristic units 
addl characteristic = inflow of fundamental quantity*characteristic of new stuff 
 Units: characteristic units/Year 
characteristic of new stuff = ___ 
 Units: characteristic units/widget 
decrease of characteristic = outflow of fundamental quantity*avg characteristic 
 Units: characteristic units/Year 
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Hines Coflow 
 
Avg characteristic = INTEG(Change in characteristic,characteristic of new stuff,___) 
 Units: characteristic units/widget 
Change in characteristic = (characteristic of new stuff-Avg characteristic)/dilution time 
 Units: characteristic units/widget/Year 
characteristic of new stuff =___ 
 Units: characteristic units/widget 
dilution time = Fundamental quantity/inflow of fundamental quantity 
 Units: Year 
Fundamental quantity =  
                     INTEG(inflow of fundamental quantity-outflow of fundamental quantity, ___) 
 Units: widgets 
inflow of fundamental quantity = ___ 
 Units: widgets/Year 
outflow of fundamental quantity = ___ 
 Units: widgets/Year 
 
Description:  The Hines coflow makes clearer the relationship of coflow to smooth or 
Goal-Gap formulations.  The traditional coflow makes clearer why it is called a “coflow”.  
The Hines Coflow makes clear that the characteristic is a smooth with a variable time 
“constant”.  The dilution time determines how quickly the current characteristic will 
change to or be diluted by the new characteristic.  The traditional coflow shows that the 
flows of the characteristic are linked to the flows of the fundamental quantity. 

Behavior:  To anticipate the behavior think of how the smooth operates. 

Classic examples:  A firm continually borrows money at different interest rates.  The 
amount borrowed is the fundamental quantity.  The average interest rate is the average 
quantity.  A business continually hires people with different skill levels.  The number of 
people is the fundamental quantity.  Average amount of skill is the average characteristic. 

Caveats: The outflow of the fundamental quantity has the average characteristic.  In some 
situations this is accurate.  In many situations it is accurate enough.  For situations where 
it is not good enough, see the cascaded coflow.  In the Hines coflow be careful of having 
the dilution time be too small relative to DT.  This can happen if the fundamental quantity 
is (close to) zero.  Be careful of divide by zero errors:  In the Hines coflow a divide-by-
zero will occur if the inflow of the fundamental quantity equals zero; in the Traditional 
coflow the divide by zero problem will occur if the fundamental quantity equals zero. 

Technical notes:  None 
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Coflow with Experience 
There are two 
equivalent 
versions, the 
Traditional and the 
Hines. 

Immediate 
parents:  Coflow 
Ultimate parents: 
Close gap 
Used by:  None 

 

Problem solved:  
How to represent a 
workforce in which 
new people have 
less experience, 
and where 
everyone gains 
experience with 
time 

 

 

Equations:   

Traditional Coflow 
 
average experience = Total experience / Workforce  
 Units: Years/person 
Workforce = INTEG( hiring - attrition , Initial Workforce )  
 Units: People 
hiring = ___ 
 Units: People/Year 
attrition = Workforce / TimeToQuitOrRetire  
 Units: People/Year 
Initial Workforce = INITIAL( hiring * TimeToQuitOrRetire ) 
 Units: People 
TimeToQuitOrRetire = ___ 
 Units: Year 
Total experience = INTEG( Add'l experience from new hires + gaining experience 
                - experience loss , Workforce * ( average experience of new hire 
               + rate of experience gain * Workforce / attrition ) )  
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 Units: Year 
experience loss = attrition * average experience  
 Units: dmnl 
Add'l experience from new hires = average experience of new hire * hiring  
 Units: dmnl 
average experience of new hire = ___ 
 Units: Years/person 
gaining experience = Workforce * rate of experience gain  
 Units: dmnl 
rate of experience gain = 1 
 Units: Years/(Year*person) 
 

Hines Coflow 
 
Average experience =  
                  INTEG(Change in average experience + rate of experience gain,  
                     average experience of new hire + Workforce / attrition) 
 Units: Years 
rate of experience gain = 1 
 Units: Years/Year 
Change in average experience =  
                    (average experience on new hire - Average experience) / experience dilution time 
 Units: fraction 
average experience on new hire =  ___ 
 Units: Years 
experience dilution time = Workforce/hiring 
 Units: Year 
hiring =  ___ 
 Units: People/Year 
Workforce = INTEG(hiring-attrition,  hiring*TimeToQuitOrRetire) 
 Units: People 
attrition = Workforce/TimeToQuitOrRetire 
 Units: People/Year 
TimeToQuitOrRetire = ____ 
 Units: Year 

Description:  This formulation modifies the regular coflow by adding a steady 
accumulation of experience as time goes by.  Experience can be used as an input to an 
effect on productivity or quality. 

Behavior:  Left to the reader. 

Classic examples:  None 

Caveats:  None 

Technical notes:  None 
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Cascaded Coflow 
Hines Cascaded Coflow 
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Traditional Cascaded Coflow 
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Immediate parents  Aging chain  
Traditional:  Traditional coflow, Broken cascade, Cascaded levels 
Hines:  Hines coflow, Smooth (higher order) 
Ultimate parents:  Close gap, Bathtub, Go to zero 
 
Used by:  None 
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Problem solved:  How to represent a characteristic of a fundamental quantity where the 
outflow from the fundamental quantity is older than the average. 

Equations: 

Traditional Cascaded Coflow Equations 
 
Change in characteristic of old material =  
        ( Avg characteristic of Mature material- Avg Characteristic of Old Material ) /  
           old Material Dilution Time  
 Units: characteristic units/(widget*Year) 
Avg characteristic of Mature material = INTEG(  
         Change in characteristic of mature material, Avg characteristic new material )  
 Units: characteristic units/widget 
Avg Characteristic of Old Material = INTEG(  
         Change in characteristic of old material, Avg characteristic of Mature material )  
 Units: characteristic units/widget 
Change in characteristic of mature material =  
         ( Avg characteristic new material- Avg characteristic of Mature material ) / 
               Mature material dilution time 
 Units: characteristic units/(widget*Year) 
Old Material Dilution Time = Old material / Material aging  
 Units: Year 
dilution time of new Material = New material / Material flowing in  
 Units: Year 
Mature material dilution time = Mature material / Material maturing  
 Units: Year 
Avg characteristic new material = INTEG(  
          Change in characteristic of new material, characteristic of new stuff )  
Units: characteristic units/widget 
Change in characteristic of new material =  
          ( characteristic of new stuff - Avg characteristic new material ) / dilution time of new Material 
 Units: characteristic units/(widget*Year) 
characteristic of new stuff = ___ 
 Units: characteristic units/widget 
Material aging = Mature material / Time to age  
 Units: stuff/Year 
Material flowing in = ___ 
 Units: stuff/Year 
Material flowing out = Old material / Time to flow out  
 Units: stuff/Year 
Material maturing = New material / Time to mature  
 Units: stuff/Year 
Mature material = INTEG(Material maturing - Material aging , Material maturing * Time to age )  
 Units: stuff 
New material = INTEG( 
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          Material flowing in - Material maturing , Material flowing in * Time to mature )  
 Units: stuff 
Old material = INTEG( Material aging - Material flowing out , Material aging * Time to flow out )  
 Units: stuff 
Time to age = ___ 
 Units: Year 
Time to flow out = ___ 
 Units: years 
Time to mature = ___ 
 Units: Year 
 

Hines Cascaded Coflow Equations 
 
Avg characteristic new material = INTEG( 
         Change in characteristic of new material, characteristic of new stuff) 
 Units: characteristic units/widget 
Change in characteristic of new material = ( 
          characteristic of new stuff - Avg characteristic new material)/dilution time of new Material 
 Units: characteristic units/widget/Year  
characteristic of new stuff = ___ 
 Units: characteristic units/widget 
dilution time of new Material = New material/Material flowing in 
 Units: Year 
Avg characteristic of Mature material = INTEG( 
           Change in characteristic of mature material,Avg characteristic new material) 
 Units: characteristic units/widget 
Change in characteristic of mature material =  
            (Avg characteristic new material -Avg characteristic of Mature material)/ 
            Mature material dilution time 
 Units: characteristic units/widget/Year 
Mature material dilution time = Mature material/Material maturing 
 Units: Year 
Avg Characteristic of Old Material = INTEG( 
           Change in characteristic of old material,Avg characteristic of Mature material) 
 Units: characteristic units/widget 
Change in characteristic of old material =  
           (Avg characteristic of Mature material - Avg Characteristic of Old Material)/ 
           Old Material Dilution Time 
 Units: characteristic units/widget/Year 
Old Material Dilution Time = Old material/Material aging 
 Units: Year 
New material = INTEG(Material flowing in-Material maturing,Material flowing in*Time to mature) 
 Units: stuff 
Material flowing in = ___ 
 Units: stuff/Year 



Molecules of Structure  Page 55 of 128 

 Copyright © 1996,1997,2004, 2005  Jim Hines 

Material maturing = New material / Time to mature 
 Units: stuff/Year 
Time to mature = ___ 
 Units: Year 
Mature material =INTEG(Material maturing-Material aging,Material maturing*Time to age) 
 Units: stuff 
Material aging = Mature material/Time to age 
 Units: stuff/Year 
Time to age = ____ 
 Units: Year 
Old material = INTEG(Material aging-Material flowing out,Material aging*Time to flow out) 
 Units: stuff 
Material flowing out = Old material/Time to flow out 
 Units: stuff/Year 
Time to flow out = ___ 
 Units: years 
 
Description:  In the Hines coflow, each average characteristic is a “coflow-smooth” 
whose goal is the prior “coflow-smooth”.  In the traditional coflow, the outflow of one 
coflow-level flows into the next.  The two formulations are mathematically the same. 

Behavior:  Obvious. 

Classic examples:  None 

Caveats:  None 

Technical notes:  None 
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Dimensionless Input To Function 
Immediate parents:  None 
Ultimate parents:  None 
 
Used by:  Univariate anchoring and 
adjustment 

Problem solved:  How to create a 
table function (also known as lookup 
function) that is easy to 
parameterize. 

Equations:   

functionOfInput = functionOfInput f(Relative Input) 
 Units: output units 
functionOfInput f  = [table (or “lookup”) function] 
 Units: output units 
Relative Input = Input/Reference Input 
 Units: dimensionless 
Input = ___ 
 Units: Input units 
Reference Input = ___ 
 Units: Input units 
 
Description:  The key here is that the input to the table function is measured relative to a 
reference.  It is usually easier for people to judge what value the function should produce 
for an input that is some factor of a reference, than to judge the value of the function for a 
raw input.  The most important exception is a domain-expert who may find it easier to 
parameterize the function in terms of raw inputs. 

The reference input is often, but not always, a constant. 

Behavior:  No stocks, so no endogenous behavior. 

Classic examples:  Effect of inventory on sales. 

Caveats: Although this molecule makes it easier for a modeler who is not intimately 
familiar with the substantive area being modeled; this molecule can make it more difficult 
for the client who is extremely familiar with the subject.  People with tremendous 
experience in a subject area may find it easier to parameter a function when the input is a 
raw, dimensioned quantity. 

Technical notes:  An added benefit of this structure is that it can be reparameterized for 
tuning or sensitivity testing by changing the value of the reference input (if the reference 
input is a constant).  If the function takes raw values, the only way to reparameterize is to 
change (i.e. “redraw”) the function. 

 

Input
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function
OfInput<functionOfInput f>
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Univariate Anchoring and Adjustment 
 
Immediate parents:  Dimensionless 
input to function 
Ultimate parents:  Dimensionless input 
to function 
 
Used by:  Multivariate anchoring and 
adjustment, Nonlinear split, Level 
protected by level, Effect of fatigue, 
overtime, Level protected by pdy 

Problem solved:  How to model the 
human process of judging an 
“appropriate” value (e.g. actual value or 
ideal value) of some constant or 
variable. How to create a user-defined 
function whose equilibrium value is easy to change. 

Equations:    

value = Adjustment * anchor  
 Units: valueUnits 
anchor = ___ 
 Units: valueUnits 
Adjustment = Adjustment f ( PressureToAdjustAwayFromTheAnchor )  
 Units: dmnl 
Adjustment f ( ) = A user defined function that contains the point (1,1) 
 Units: dmnl 
PressureToAdjustAwayFromTheAnchor =  
                                             currentValueOfSomeVariable / normalValueOfSomeVariable 
 Units: fraction 
currentValueOfSomeVariable = ___ 
 Units: unitsOfSomeVariable 
normalValueOfSomeVariable = ___ 
 Units: unitsOfSomeVariable 

Description:  Anchoring and Adjustment is a common judgmental strategy (Hogarth).  
Rather than finding a new quantity by solving a problem from scratch, people often will 
simply take a known quantity (the anchor) and adjust it to account for new factors or 
pressures.  For example I don’t know the distance from London to Hamburg.  So, I might 
start with the distance from London to Berlin (the anchor), which I happen to know.  
Because I know that Hamburg is closer to London than Berlin, I’ll “adjust” the value 
downward by “ a bit” say 20%.  The structure above represents this process:  A normal 
(or maximum or minimum) value – the “anchor” --  is multiplied (“adjusted”) by the effect 
(or pressure) of some piece of information.  The effect has a neutral values of 1. 
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Behavior:  No stocks, so no dynamics. 

Classic examples:  Many 

Caveats:  None 

Technical notes:  People using anchoring and adjustment in the real world often fail to 
adjust enough. 
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Level Protected by Level 
 

Level to
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Immediate parents:  Univariate anchoring and adjustment 
Ultimate parents:  Dmnl input to function 

Used by:  Backlog shipping protected by level 

Problem solved:  How to ensure that a stock does not go negative 

Equations:   

Level to drain = INTEG(-draining,Desired Level, ___) 
 Units: Widgets 
draining = Desired draining * Effect of level on draining 
 Units: Widgets/Month 
Desired draining =  
 Units: Widgets/Month 
Effect of level on draining = Effect of level on draining f(Relative Level) 
 Units: dmnl 
Effect of level on draining f  = user defined funciton 
 Units: dmnl 
Relative Level = Level to drain / Desired Level 
 Units: dmnl 
Desired Level =  
 Units: Widgets 

Description:  The actual outflow is the product of the desired draining and a function that 
shuts off the outflow as the level approaches zero.  This formulation is considered much 
more desirable than an IF-THEN-ELSE statement both because it is less subject to 
integration error and, even more importantly, because it is appropriate for a stock that 
aggregates many items which are not identical (e.g. a finished goods inventory containing 
many different products and models). 

Behavior:  The level will not go below zero. 
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Classic examples:  Shipping out of an inventory.  The inventory must not go negative. 

Caveats:  Watch out for functions that drop suddenly to zero, which may introduce an 
integration error that lets the level go slightly negative before it shuts off. 

Technical notes:  The table function should go through (0,0).  A table function going 
through (1,1) will be easier to put into equilibrium.  To represent probabilistic stocking 
out, the function should lie above the 45 degree line in the region below the point (1,1).   
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Multivariate Anchoring and Adjustment 
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Immediate parents:  Univariate anchoring and adjustment 
Ultimate parents:  Dimensionless input To Function 
 
Used by:  Productivity, Quality, Sea anchor and adjustment, Multi-dimensional split 

Problem solved:  How to model the human process of judging the “appropriate” value 
(e.g. actual value or ideal value) of some constant or variable.  How to represent 
something that is a function of many things.  How to create a function whose equilibrium 
value is easy to change. 

Equations:   

value = Anchor * "Adjustment #1" * "Adjustment #2" * "Adjustment #3" 
 Units: cases 
Anchor = ___ 
 Units: cases 
"Adjustment #1" = "Adjustment f #1" ( "PressureToAdjustAwayFromTheAnchor #1") 
 Units: dmnl 
"Adjustment #2" = "Adjustment f #2" ( "PressureToAdjustAwayFromTheAnchor #2") 
Units: dmnl 
"Adjustment #3" = "Adjustment f #3" ( "PressureToAdjustAwayFromTheAnchor #3") 
Units: dmnl 
"Adjustment f #1" = user defined function 
 Units: dmnl 
"Adjustment f #2" = user defined function 
 Units: dmnl 
"Adjustment f #3" = user defined function 
 Units: dmnl 
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"PressureToAdjustAwayFromTheAnchor #1" =  
                  "currentValueOfSomeVariable #1" / "normalValueOfSomeVariable #1" 
Units: fraction 
"PressureToAdjustAwayFromTheAnchor #2" =  
                 "currentValueOfSomeVariable #2" / "normalValueOfSomeVariable #2" 
Units: fraction 
"PressureToAdjustAwayFromTheAnchor #3" =  
                 "currentValueOfSomeVariable #3" / "normalValueOfSomeVariable #3" 
Units: fraction 
"currentValueOfSomeVariable #1" = ___ 
 Units: unitsOfSomeVariable 
"currentValueOfSomeVariable #2" = ___ 
 Units: unitsOfSomeVariable 
"currentValueOfSomeVariable #3" = ___ 
 Units: unitsOfSomeVariable 
"normalValueOfSomeVariable #1" = ___ 
 Units: unitsOfSomeVariable 
"normalValueOfSomeVariable #2" = ___ 
 Units: unitsOfSomeVariable 
"normalValueOfSomeVariable #3" = ___ 
 Units: unitsOfSomeVariable 
 
Description:  Anchoring and Adjustment is a common judgmental strategy (Hogarth).  
Rather than finding a new quantity by solving a problem from scratch, people often will 
simply take a known quantity (the anchor) and adjust it to account for new factors.  For 
example to judge how long it will take me to write a paper, I might start with a usual or 
normal value, say one week.  Then, I’ll adjust that number for various factors that are 
currently different from normal – for example maybe I’m more fatigued than usual, so I’ll 
lengthen the estimate by ten percent; perhaps the subject is one that I’ve written about 
many times in the past and so I’ll lower my estimate by 15%; and so on to account for 
other factors like distractions, the number of figures in the paper, etc.  The structure above  
represents this process:  A normal (or maximum or minimum) value – the “anchor” --  is 
multiplied (“adjusted”) by a series of factors representing the effects of various other 
quantities.  The effects have neutral values of 1. 

Behavior:  None. 

Classic examples:  The birth rate and the death rate in Forrester’s World Dynamics. 

Caveats:  When modeling multivariate anchoring and adjustment, people often over-
estimate the strengths of the effects during initial parameterization.   

Technical notes:  Although the original system dynamics simulation modeling language 
(DYNAMO) allowed users to design their own single-input functions (Table Functions), it 
did not permit users to design multi-input functions.  Since then, this formulation has filled 
the need for multi-input functions.  Although limited in some ways, this formulation is easy 
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for the modeler to visualize (a general fourth-dimensional function would be difficult) and 
easy to explain. 



Molecules of Structure  Page 64 of 128 

 Copyright © 1996,1997,2004, 2005  Jim Hines 

Productivity (PDY) 
Immediate parents:  
Multivariate anchoring 
and adjustment 
Ultimate parents:  
Dmnl input to f() 
 
Used by:  None 

Problem solved:  How 
to determine productivity 

 

 

 

 

Equations:   

Productivity = NormalProductivity * EffectOfFatigueOnProductivity * 
EffectOfSchedulePressureOnProductivity * EffectOfWorkAdequacyOnProductivity * 
EffectAverageSkillOnProductivity 
 Units: widgets/(person*Month) 
AverageSkill = ___ 
 Units: fraction 
EffectAverageSkillOnProductivity = EffectAverageSkillOnProductivity f ( AverageSkill)  
 Units: dmnl 
EffectAverageSkillOnProductivity f = user defined function 
 Units: dmnl 
NormalProductivity = ___ 
 Units: widgets/(person*Month) 
EffectOfFatigueOnProductivity = EffectOfFatigueOnProductivity f ( Fatigue )  
 Units: dmnl 
EffectOfFatigueOnProductivity f  =  user defined function 
 Units: dmnl 
Fatigue = ___ 
 Units: fraction 
EffectOfSchedulePressureOnProductivity =  
                 EffectOfSchedulePressureOnProductivity f( SchedulePressure )  
 Units: dmnl 
EffectOfSchedulePressureOnProductivity f = user defined function 
 Units: dmnl 
SchedulePressure = ___ 
 Units: fraction 
EffectOfWorkAdequacyOnProductivity =  
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               EffectWorkAdequacyOnProductivity f ( WorkAdequacy )  
 Units: dmnl 
EffectWorkAdequacyOnProductivity f = user defined function) 
 Units: dmnl 
WorkAdequacy = ___ 
 Units: fraction 

Description:  The particular effects shown above are illustrative, though common in 
project models.  Productivity is usually defined to mean speed that a single worker (or 
single machine or other resource) produces.  Quality (the fraction of production that is 
actually done correctly) is modeled separately. 

Behavior:  No levels, so no endogenous dynamics 

Classic examples:  Project models  

Caveats:  None 

Technical notes:  The first project models were developed by the consulting company 
Pugh Roberts.  These early models used the abbreviation “PDY” for “productivity”.  The 
same structure can be used to represent quality.  Often in project models things that affect 
productivity also affect quality (though through different functions).  An interesting effect 
in these formulations is the effect of schedule pressure which is usually represented as a 
positively sloped function for productivity (meaning more schedule pressure makes people 
work faster) and a negatively sloped function for quality (meaning as people work faster 
they make more mistakes). 
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Quality 
 
Immediate parents:  
Multivariate anchoring and 
adjustment 
Ultimate parents:  Dmnl 
input to f() 
 
Used by:  None 

Problem solved:  How to 
determine quality 

 

 

 

Equations:   

Quality = min(1,NormalQuality * EffectOfFatigueOnQuality * EffectOfSchedulePressureOnQuality *   
EffectOfWorkAdequacyOnQuality * EffectAverageSkillOnQuality) 
 Units: widgets/(person*Month) 
AverageSkill = ___ 
 Units: fraction 
EffectAverageSkillOnQuality = EffectAverageSkillOnQuality f ( AverageSkill)  
 Units: dmnl 
EffectAverageSkillOnQuality f = user defined function 
 Units: dmnl 
NormalQuality = ___ 
 Units: widgets/(person*Month) 
EffectOfFatigueOnQuality = EffectOfFatigueOnQuality f ( Fatigue )  
 Units: dmnl 
EffectOfFatigueOnQuality f  =  user defined function 
 Units: dmnl 
Fatigue = ___ 
 Units: fraction 
EffectOfSchedulePressureOnQuality =  
                 EffectOfSchedulePressureOnQuality f( SchedulePressure )  
 Units: dmnl 
EffectOfSchedulePressureOnQuality f = user defined function 
 Units: dmnl 
SchedulePressure = ___ 
 Units: fraction 
EffectOfWorkAdequacyOnQuality =  
               EffectWorkAdequacyOnQuality f ( WorkAdequacy )  
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 Units: dmnl 
EffectWorkAdequacyOnQuality f = user defined function) 
 Units: dmnl 
WorkAdequacy = ___ 
 Units: fraction 
 
Description:  The particular effects shown above are illustrative, though common in 
project models.  Quality is defined as the fraction of work that is being done correctly.   In 
project models, productivity – meaning the speed with which work gets done (whether or 
not its correctly done -- is defined separately from quality.   

Behavior:  No levels, so no endogenous dynamics 

Classic examples:  Project models  

Caveats:  Quality should not go above 1 or below 0.  Usually the table functions won’t go 
below zero, but they may go above one.  Consequently, the result of multiplying normal 
quality by all the table functions could be a number greater than one.  The use of the MIN 
function as shown in the equation for quality is a common solution to this risk.  

Technical notes:  The same structure can be used to represent productivity.  Often in 
project models things that affect quality also affect productivity (though through different 
functions).  An interesting item in these formulations is the effect of schedule pressure 
which is usually represented as a positively sloped function for productivity (meaning 
more schedule pressure makes people work faster) and as a negatively sloped function for 
quality (meaning as people work faster they make more mistakes). 
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Sea Anchor and Adjustment 
 

Anchor
ChangeIn
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Immediate parents:  Multivariate anchoring and adjustment, Smooth (first order) 
Ultimate parents:  Dimensionless input to function, Close gap 

Used by:  Protected sea anchoring and adjustment, Sea anchor pricing 

Problem solved:  How to represent a process by which people will “grope” toward a 
proper quantity.  How to form the anchor in an Anchoring and Adjustment process. 

Equations:   

value = Anchor * "Adjustment #1" * "Adjustment #2" * "Adjustment #3" 
 Units: cases 
Anchor = INTEG( ChangeInAnchor , InitialAnchor ) 
 Units: cases 
InitialAnchor = ___ 
 Units: cases 
ChangeInAnchor = ( value - Anchor ) / Time to change anchor 
 Units: cases/Month 
Time to change anchor = ___ 
 Units: Month 
"Adjustment #1" = "Adjustment f #1" ( "PressureToAdjustAwayFromTheAnchor #1") 
 Units: dmnl 
"Adjustment #2" = "Adjustment f #2" ( "PressureToAdjustAwayFromTheAnchor #2") 
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 Units: dmnl 
"Adjustment #3" = "Adjustment f #3" ( "PressureToAdjustAwayFromTheAnchor #3") 
 Units: dmnl 
"Adjustment f #1" = user defined function 
 Units: dmnl 
"Adjustment f #2" = user defined function 
 Units: dmnl 
"Adjustment f #3" = user defined function 
 Units: dmnl 
"PressureToAdjustAwayFromTheAnchor #1" =  
                  "currentValueOfSomeVariable #1" / "normalValueOfSomeVariable #1" 
Units: fraction 
"PressureToAdjustAwayFromTheAnchor #2" =  
                 "currentValueOfSomeVariable #2" / "normalValueOfSomeVariable #2" 
Units: fraction 
"PressureToAdjustAwayFromTheAnchor #3" =  
                 "currentValueOfSomeVariable #3" / "normalValueOfSomeVariable #3" 
Units: fraction 
"currentValueOfSomeVariable #1" = ___ 
 Units: unitsOfSomeVariable 
"currentValueOfSomeVariable #2" = ___ 
 Units: unitsOfSomeVariable 
"currentValueOfSomeVariable #3" = ___ 
 Units: unitsOfSomeVariable 
"normalValueOfSomeVariable #1" = ___ 
 Units: unitsOfSomeVariable 
"normalValueOfSomeVariable #2" = ___ 
 Units: unitsOfSomeVariable 
"normalValueOfSomeVariable #3" = ___ 
 Units: unitsOfSomeVariable 

Description:  This is an elaboration on the judgmental strategy known as anchoring and 
adjustment.  In anchoring and adjustment a judgment is made (or a quantity) by taking an 
underlying quantity (an anchor) and adjusting it on the basis of current information or 
pressures.  This formulation contains the added idea that the anchor is formed on the bases 
of the past judgments. 

Behavior:  A positive pressure will cause the quantity to immediately jump above the 
anchor.  In the pressure persists, the quantity will begin to rise as the anchor does.  If the 
pressure drops, the quantity will again respond immediately. 

Classic examples:  Anchor Pricing. 

Caveats:  This structure will get stuck at zero if the anchor becomes zero.  To solve this 
use the protected sea anchoring and adjustment molecule.  

Technical notes:  Note there are two kinds of “parameters” to set: the adjustment time 
and the user function (s).   
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Protected Sea Anchoring and Adjustment 
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Immediate parents:  Sea anchor and adjustment 
Ultimate parents:  Dimensionless input to function 

Used by:  Protected Anchor Pricing 

Problem solved:  Represent a judgmental strategy that will grope toward a solution, and 
which will not get “stuck” at zero. 

Equations:   

value = Anchor * "Adjustment #1" * "Adjustment #2" * "Adjustment #3" 
 Units: cases 
Anchor = INTEG( ChangeInAnchor , InitialAnchor ) 
 Units: cases 
InitialAnchor = ___ 
 Units: cases 
ChangeInAnchor = ( Target Anchor - Anchor ) / Time to change anchor 
 Units: cases/MonthTime to change anchor = ___ 
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 Units: Month 
Target Anchor = MAX ( value , minimum anchor ) 
 Units: cases 
minimum anchor = ___ 
 Units: cases 
"Adjustment #1" = "Adjustment f #1" ( "PressureToAdjustAwayFromTheAnchor #1") 
 Units: dmnl 
"Adjustment #2" = "Adjustment f #2" ( "PressureToAdjustAwayFromTheAnchor #2") 
 Units: dmnl 
"Adjustment #3" = "Adjustment f #3" ( "PressureToAdjustAwayFromTheAnchor #3") 
 Units: dmnl 
"Adjustment f #1" = user defined function 
 Units: dmnl 
"Adjustment f #2" = user defined function 
 Units: dmnl 
"Adjustment f #3" = user defined function 
 Units: dmnl 
"PressureToAdjustAwayFromTheAnchor #1" =  
                  "currentValueOfSomeVariable #1" / "normalValueOfSomeVariable #1" 
 Units: fraction 
"PressureToAdjustAwayFromTheAnchor #2" =  
                 "currentValueOfSomeVariable #2" / "normalValueOfSomeVariable #2" 
 Units: fraction 
"PressureToAdjustAwayFromTheAnchor #3" =  
                 "currentValueOfSomeVariable #3" / "normalValueOfSomeVariable #3" 
 Units: fraction 
"currentValueOfSomeVariable #1" = ___ 
 Units: unitsOfSomeVariable 
"currentValueOfSomeVariable #2" = ___ 
 Units: unitsOfSomeVariable 
"currentValueOfSomeVariable #3" = ___ 
 Units: unitsOfSomeVariable 
"normalValueOfSomeVariable #1" = ___ 
 Units: unitsOfSomeVariable 
"normalValueOfSomeVariable #2" = ___ 
 Units: unitsOfSomeVariable 
"normalValueOfSomeVariable #3" = ___ 
 Units: unitsOfSomeVariable 

Description:  This molecule adds to its parent, Anchoring and Adjustment, a Target 
Anchor.  The Target Anchor is the maximum of either the quantity itself or the smallest 
value that the anchor should take on.   

Behavior:  Similar to Anchoring and Adjustment, except it will not get stuck at zero (as 
long as the minimum anchor is greater than zero. 

Classic examples:  Protected sea anchor pricing 
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Caveats:  None 

Technical notes:  The minimum anchor should be set above zero to ensure that this 
formulation will not get stuck at zero.  There are two kinds of parameters that determine 
the dynamics the time constant and the user-defined functions. 
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Sea Anchor Pricing 
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Immediate parents:  Sea Anchoring and Adjustment 
Ultimate parents:  Dmnl input to function, Close gap 

Used by:  Protected sea anchor pricing, Smooth pricing 

Problem solved:  How to formulate price setting 

Equations:   
Equations for price form 
 
Price = UnderlyingPrice * pressureToChangePrice 
 Units: $/widget 
UnderlyingPrice = INTEG(ChangeInUnderlyingPrice, ___) 
 Units: $/widget 
ChangeInUnderlyingPrice =( Price - UnderlyingPrice) /Time to change underlying price 
 Units: $/widget/year 
Time to change underlying price = ___ 
Units: year 
pressureToChangePrice = EffectOfInventoryOnPrice * EffectOfMarketShareOnPrice 
 Units: dmnl 
EffectOfInventoryOnPrice = EffectOfInventoryOnPrice f(RelativeInventory) 
 Units: dmnl 



Molecules of Structure  Page 74 of 128 

 Copyright © 1996,1997,2004, 2005  Jim Hines 

EffectOfInventoryOnPrice f = user defined function 
 Units: dmnl 
EffectOfMarketShareOnPrice = EffectOfMarketShareOnPrice f(RelativeMarketShare) 
 Units: dmnl 
EffectOfMarketShareOnPrice f = user defined function 
 Units: dmnl 
 
Equations for margin form 
 
"Price." = cost * Margin 
 Units: $/widget 
cost = ___ 
 Units: $/widget 
Margin = UnderlyingMargin * pressureToChangeMargin 
 Units: fraction 
UnderlyingMargin = INTEG( ChangeInUnderlyingMargin , ___) 
 Units: fraction 
ChangeInUnderlyingMargin = ( Margin - UnderlyingMargin ) / TimeToChangeUnderlyingMargin 
 Units: fraction/year 
TimeToChangeUnderlyingMargin = ___ 
 Units: year 
pressureToChangeMargin = EffectOfInventoryOnMargin * EffectOfMarketShareOnMargin  
 Units: dmnl 
EffectOfInventoryOnMargin = EffectOfInventoryOnMargin f ( "RelativeInventory." ) 
 Units: dmnl 
EffectOfInventoryOnMargin f = user defined function 
 Units: dmnl 
EffectOfMarketShareOnMargin = EffectOfMarketShareOnMargin f ( "RelativeMarketShare." ) 
 Units: dmnl 
EffectOfMarketShareOnMargin f = user defined function 
 Units: dmnl 
 
Equations common to both the “price” and the “margin” forms 
 
RelativeInventory = Inventory / TargetInventory 
 Units: fraction 
TargetInventory = ___ 
 Units: widgets 
Inventory = ___ 
 Units: widgets 
RelativeMarketShare = MarketShare / targetMarketShare 
 Units: fraction 
targetMarketShare = ___ 
 Units: $/widget 
MarketShare = ___ 
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 Units: $/widget 

Description:  Usually the pressure to change price will be a function (often of relative 
inventory) or the product of several functions.  Price setters have a sense for a fair or 
underlying price.  Pressures that they face cause them to bump the price above or below 
the underlying price.  After bumping price, the price setter waits.  If the response is 
inadequate, she bumps again.  Alternatively, one can view this as a process in which the 
price setter bumps the price, and then -- if pressures cause her to keep the price high -- 
begins to incorporate the new price into her conception of a fair or underlying price. 
BEHAVIOR
Price

12.86
11.89
10.93
9.966

9
UnderlyingPrice

11.74
11.05
10.37
9.685

9
PressureToChangePrice

1.1
1.075

1.05
1.025

1
0 7.5 15

Time (year)  
Behavior:  If pressure is constant above 1, price and underlying price will rise 
exponentially.  If Pressure then returns to neutral value of one, price will drop to the 
underlying price.  

Classic examples:  The System Dynamics National Model uses such a formulation to 
represent interest rates (the price of money). 

Caveats:  The modeler will need to tune both the time constant and the effects 
representing pressure.  Very aggressive policies can lead price explosions. 

Note:  If underlying price gets to zero; there will be no further change -- underlying price 
and price will be stuck at zero.  This danger does not arise suddenly, rather in the 
underlying price is almost zero; the structure will be “almost” stuck.  To avoid this, one 
needs to use a strategy such as that in the Protected Anchor Pricing Molecule. 

Technical notes:  To represent an aggressive policy use a short time constant and a steep 
effect. 
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Protected Sea Anchor Pricing 
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Immediate parents:  Protected sea anchoring and adjustment, Sea anchor pricing 
Ultimate parents:  Dmnl input to function, Close gap 

Used by:  None 

Problem solved:  How to represent pricing when the price can take on a value of (or 
close to) zero. 

Equations:   

Price = UnderlyingPrice * pressureToChangePrice 
 Units: $/widget 
UnderlyingPrice = INTEG(ChangeInUnderlyingPrice, ___) 
 Units: $/widget 
ChangeInUnderlyingPrice = 
                  ( IndicatedUnderlyingPrice - UnderlyingPrice) /Time to change underlying price 
 Units: $/widget/year 
Time to change underlying price = ___ 
 Units: year 
IndicatedUnderlyingPrice = MAX(Price, MinimumUnderlyingPrice) 
 Units: $/widget 
MinimuUnderlyingPrice = ___ 
 Units:  $/widget 
pressureToChangePrice = EffectOfInventoryOnPrice * EffectOfMarketShareOnPrice 
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 Units: dmnl 
EffectOfInventoryOnPrice = EffectOfInventoryOnPrice f(RelativeInventory) 
 Units: dmnl 
EffectOfInventoryOnPrice f = user defined function 
 Units: dmnl 
EffectOfMarketShareOnPrice = EffectOfMarketShareOnPrice f(RelativeMarketShare) 
 Units: dmnl 
EffectOfMarketShareOnPrice f = user defined function 
 Units: dmnl 
RelativeInventory = Inventory / TargetInventory 
 Units: fraction 
TargetInventory = ___ 
 Units: widgets 
Inventory = ___ 
 Units: widgets 
RelativeMarketShare = MarketShare / targetMarketShare 
 Units: fraction 
targetMarketShare = ___ 
 Units: $/widget 
MarketShare = ___ 
 Units: $/widget 

Description:  This molecule adds to the Sea Anchor Pricing Molecule the idea of a 
minimum underlying price.  The minimum underlying price represents what pricers regard 
as the lowest fair or sustainable price.  This might be the cost of the product. 

Behavior:  Same as Anchor Pricing, but the underlying price will not go below the 
minimum. 

Classic examples:  National Model uses this formulation for the interest rate, the price of 
money 

Caveats:  See Protected sea anchor and adjustment and Sea anchor pricing 

Technical notes:  See Protected sea anchor and adjustment and Sea anchor pricing 
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Smooth Pricing 
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Immediate parents:  Sea anchor pricing 
Ultimate parents:  Dmnl input to function, Close gap 

Used by:  None 

Problem solved:  How to represent price setting behavior where price does not change 
suddenly. 

Equations:   

Price = INTEG(changingPrice, InitialPrice) 
 Units: $/widget 
InitialPrice = ___ 
 Units: $/widget 
changingPrice =( IndicatedPrice - UnderlyingPrice) /Time to change underlying price 
 Units: $/widget/year 
Time to change underlying price = ___ 
Units: year 
IndicatedPrice = UnderlyingPrice * pressureToChangePrice 
 Units: $/widget 
pressureToChangePrice = EffectOfInventoryOnPrice * EffectOfMarketShareOnPrice 
 Units: dmnl 
EffectOfInventoryOnPrice = EffectOfInventoryOnPrice f(RelativeInventory) 
Units: dmnl 
EffectOfInventoryOnPrice f = user defined function 
Units: dmnl 
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EffectOfMarketShareOnPrice = EffectOfMarketShareOnPrice f(RelativeMarketShare) 
Units: dmnl 
EffectOfMarketShareOnPrice f = user defined function 
 Units: dmnl 
RelativeInventory = Inventory / TargetInventory 
 Units: fraction 
TargetInventory = ___ 
 Units: widgets 
Inventory = ___ 
 Units: widgets 
RelativeMarketShare = MarketShare / targetMarketShare 
 Units: fraction 
targetMarketShare = ___ 
 Units: $/widget 
MarketShare = ___ 
 Units: $/widget 

Description:  In this version of price setting, the anchor is price itself which smooths to 
the indicated price. 

Behavior:  Price rises exponentially as long as the pressure to adjust is greater than one.  
It stops adjusting when pressure returns to 1.  Note that price is “sluggish” in that it 
cannot react immediately to changes in pressure, unlike the case for the otherwise similar 
Anchor Pricing Molecule. 

Classic examples:  None 

Caveats:  At a price of zero, the structure gets “stuck”.  Further at a price of almost zero, 
the structure will almost be stuck. 

Technical notes:  The speed with which price changes depends on both the functions and 
on the adjustment time. 
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Effect of Fatigue 
Immediate parents:  
Smooth ( first order), 
Univariate anchoring and 
adjustment 

Ultimate parents:  Close 
gap, Dmnl input to function 

Used by:  None 

Problem solved:  How to 
represent the effect of 
fatigue (for example the 
effect of fatigue on 
productivity or on quality) 

Equations:   

Effect of fatigue on PDY = Effect of fatigue on PDY f(Fatigue) 
 Units: dmnl 
Effect of fatigue on PDY f  = user defined function 
 Units: dmnl 
Fatigue = INTEG(GettingFatigued, 1) 
 Units: Fraction 
GettingFatigued = (Overtime - Fatigue) / TimeToGetFatigued 
 Units: Fraction / Month 
TimeToGetFatigued = ___ 
 Units: Month 
Overtime = ____ 
 Units: Fraction 

Description:  Fatigue is a smooth of overtime.  The time to get fatigued is the lag 
between beginning to work at some overtime level and feeling its full effect on 
productivity (or quality).  A nice feature of this formulation is that fatigue is measured in 
the same units a overtime.  Consequently, in parameterizing the function one asks what the 
impact on productivity would be of working at each level of overtime for a very long time. 

Behavior:  Obvious 

Classic examples:  Used in project models 

Caveats:  None 

Technical notes:  This formulation neatly solves the problem of (1) coming up with a 
representation of the abstract idea of fatigue, and (2) representing the fact that working 
hard accumulates slowly over time. 
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Proportional split 
Immediate parents:   None 
Ultimate parents:  None 
 
Used by:  Weighted split, Mulidimensional split, Nonlinear split 

Problem solved:  How to allocate a resource between two or more claims on the 
resource. 

Equations:   

ResourcesForA = Resources * RelativeStrengthOfA'sClaim  
 Units: people 
ResourcesForB = Resources * RelativeStrengthOfB'sClaim  
 Units: people 
ResourcesForC = Resources * RelativeStrengthOfC'sClaim  
 Units: people 
Resources = ___ 
 Units: people 
RelativeStrengthOfA'sClaim = StrengthOfA'sClaim / TotalClaimStrength  
 Units: fraction 
RelativeStrengthOfB'sClaim = StrengthOfB'sClaim / TotalClaimStrength  
 Units: fraction 
RelativeStrengthOfC'sClaim = StrengthOfC'sClaim / TotalClaimStrength  
 Units: fraction 
TotalClaimStrength = StrengthOfA'sClaim + StrengthOfB'sClaim + StrengthOfC'sClaim 
 Units: Widgets 
StrengthOfC'sClaim = ___ 
 Units: Widgets 
StrengthOfA'sClaim = ___ 
 Units: Widgets 
StrengthOfB'sClaim = ___ 
 Units: Widgets 
 
Description:  Each “claim” on the resource is represented by its strength.  The resource is 
then split up according to the strength of each claim, relative to the total “strength” of all 
claims.   

Behavior:   

Classic examples:  The decision could involve how to split up a flexible resource among 
competing kinds of task.  If each kind of task is represented as a stock of those tasks (e.g. 
working on new R&D ideas (or basic research), working on developing those ideas, and 
working on commercializing the ideas) and if the different kinds of tasks are measured in 
the same units, then the quantity in each task could represent the claim on the workforce.  
In this case the total strength of claim would equal the total amount of work waiting to be 
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done.  Alternatively, each claim could be the amount of workers that each area in the 
R&D chain requests.  In this case the total strength of claim would also be the total 
number of people requested. 

Caveats:  This formulation will allocate all of the resource even if that means that more 
resources are allocated to a particular area than are needed.  Additional structure and 
careful thought is required to re-allocate any excesses from one claim to another. 

Technical notes:  None 
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Weighted Split 
Immediate parents:  Proportional split 
Ultimate parents:  Proportional split 
 
Used by:  None 

Problem solved:  How to represent 
managerial preferences (or bias) in an 
allocation decision 

 

 

 

 

 

Equations:   

resourcesForA = Resources * RelativeStrengthOfA'sClaim  
 Units: people 
ResourcesForB = Resources * RelativeStrengthOfB'sClaim  
 Units: people 
ResourcesForC = Resources * RelativeStrengthOfC'sClaim  
 Units: people 
Resources = ___ 
 Units: people 
RelativeStrengthOfA'sClaim = WeightedStrengthOfA'sClaim / TotalClaimStrength  
 Units: fraction 
RelativeStrengthOfB'sClaim = WeightedStrengthOfB'sClaim / TotalClaimStrength  
 Units: fraction 
RelativeStrengthOfC'sClaim = WeightedStrengthOfC'sClaim / TotalClaimStrength  
 Units: fraction 
TotalClaimStrength = WeightedStrengthOfA'sClaim + WeightedStrengthOfB'sClaim +  
                                         WeightedStrengthOfC'sClaim 
 Units: Widgets 
WeightedStrengthOfA'sClaim = StrengthOfA'sClaim * WeightForA  
 Units: Widgets 
WeightedStrengthOfB'sClaim = StrengthOfB'sClaim * WeightForB  
 Units: Widgtets 
WeightedStrengthOfC'sClaim = StrengthOfC'sClaim * WeightForC  
 Units: Widgets 
StrengthOfA'sClaim = ___ 
 Units: Widgets 
StrengthOfB'sClaim = ___ 
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 Units: Widgets 
StrengthOfC'sClaim = ___ 
 Units: Widgets 
WeightForA = ___2 
 Units: dmnl 
WeightForB = ___ 
 Units: dmnl 
WeightForC = ___ 
 Units: dmnl 

Description:  This molecule adds to the proportional split a “managerial weight”.  The 
weight can represent managerial preferences (conscious or unconscious, logical or 
illogical) for the allocation of resources.  The weights can be constants or can respond to 
other conditions in the model.   

Behavior:  No stocks, so no behavior 

Classic examples:  For example, if the allocation decision involves dividing a flexible 
workforce amongh different tasks in an R&D effort, it may be that managers will weight 
commercialization more heavily as unit-sales decline. 

Caveats:  As in the case of proportional allocation, this structure allocates all of the 
resource even if that means over-allocating to one or more of the claims. 

Technical notes:  None 
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Multidimensional Split 
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Quantity
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Immediate parents:  Multivariate anchoring and adjustment, Proportional split 
Ultimate parents:  Dmnl input to function, Proportional split 
 
Used by:  Market share 

Problem solved:  How to allocate a resource when the strength of each claim is 
determined by a number of factors. 

Equations:   

QuantityFor 1 = Quantity * FractionFor 1  
 Units: stuff 
QuantityFor 2 = Quantity * FractionFor 2  
 Units: stuff 
QuantityFor 3 = Quantity * FractionFor 3  
 Units: stuff 
Quantity = ____ 
 Units: stuff 
FractionFor 1 = "StrengthOfClaim-1" / TotalStrengthOfClaim  
 Units: fraction 
FractionFor 2 = "StrengthOfClaim-2" / TotalStrengthOfClaim  
 Units: fraction 
FractionFor 3 = "StrengthOfClaim-3" / TotalStrengthOfClaim  
 Units: fraction 
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TotalStrengthOfClaim =  
                "StrengthOfClaim-1" + "StrengthOfClaim-2" + "StrengthOfClaim-3" 
 Units: dmnl 
"StrengthOfClaim-1" =  
                  "EffectOffactorAOnStrengthOfClaim-1" * “EffectOfFactorBOnStrengthOfClaim-1" 
 Units: dmnl 
"StrengthOfClaim-2" =   
                 "EffectOfFactorAOnStrengthOfClaim-2" * "EffectOfFactorBOnStrengthOfClaim-2" 
 Units: dmnl 
"StrengthOfClaim-3" =  
                 "EffectOfFactorAOnStrengthOfClaim-3" * "EffectOfFactorBOnStrengthOfClaim-3" 
 Units: dmnl 
"EffectOffactorAOnStrengthOfClaim-1" =  
                    EffectOfFactorAOnStrengthOfClaim f ( "RelativeFactorA-1" )  

Units: dmnl 
EffectOfFactorAOnStrengthOfClaim f = user defined function 
 Units: dmnl 
"RelativeFactorA-1" = "FactorA-1" / normalFactorA  
 Units: fraction 
normalFactorA = ___ 
 Units: FactorAUnits 
"FactorA-1" = ___ 
 Units: FactorAUnits 
"EffectOfFactorBOnStrengthOfClaim-1" =  
                   EffectOfFactorBOnStrengthOfClaim f ( "RelativeFactorB-1")  
 Units: dmnl 
"RelativeFactorB-1" = "FactorB-1" / NormalFactorB  
 Units: fraction 
NormalFactorB = ___ 
 Units: FactorBUnits 
"FactorB-1" = ___ 
 Units: FactorBUnits 
EffectOfFactorBOnStrengthOfClaim f = user defnined function 
 Units: dmnl 
"EffectOfFactorAOnStrengthOfClaim-2" =  
                   EffectOfFactorAOnStrengthOfClaim f ( "RelativeFactorA-2")  
 Units: dmnl 
"RelativeFactorA-2" = "factorA-2" / normalFactorA  
 Units: fraction 
"factorA-2" = ___ 
 Units: FactorAUnits 
"EffectOfFactorBOnStrengthOfClaim-2" =  
                  EffectOfFactorBOnStrengthOfClaim f ( "RelativeFactorB-2")  
 Units: dmnl 
"RelativeFactorB-2" = "FactorB-2" / NormalFactorB  
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 Units: fraction 
"FactorB-2" = ___ 
 Units: FactorBUnits 
"EffectOfFactorAOnStrengthOfClaim-3" =  
                  EffectOfFactorAOnStrengthOfClaim f ( "RelativeFactorA-3")  
 Units: dmnl 
"RelativeFactorA-3" = "factorA-3" / normalFactorA 
 Units: fraction 
"factorA-3" = ___ 
 Units: FactorAUnits 
"EffectOfFactorBOnStrengthOfClaim-3" =  
                   EffectOfFactorBOnStrengthOfClaim f ( "RelativeFactorB-3")  
 Units: dmnl 
"RelativeFactorB-3" = "FactorB-3" / NormalFactorB  
 Units: fraction 
"FactorB-3" = ___ 
 Units: FactorBUnits 
  

Description:  This molecule adds to the proportional split molecule a definition for claims 
based on the multivariate anchoring and adjustment molecule.  The resource is split 
proproationally between the claims, but each claim is a nonlinear function of a one (and 
usually two) or more factors. 

Behavior:  No stocks, so no dynamics. 

Classic examples:  Market share 

Caveats:  The resource is allocated completely, so one needs to be careful of over-
allocating. 

Technical notes:  None 
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Market Share  
 

EffectOfDelivery
DelayOn

Attractiveness f

EffectOfPriceOn
Attractiveness f

MarketShareFor
Product 2

Total
Attractiveness

MarketShareFor
Product 1

MarketShareFor
Product 3

ProductAttractiv
eness#1

EffectOfPriceOn
Attractiveness#1

EffectOfDelivery
DelayOn

Attractiveness#1

Delivery
Delay#1

Relative
Price#1

Price#1

Normal
Price

ProductAttractiv
eness#2

EffectOfPriceOn
Attractiveness#2

EffectOfDelivery
DelayOn

Attractiveness#2

Delivery
Delay#2

Relative
Price#2

Price#2

ProductAttractiv
eness#3

EffectOfPriceOn
Attractiveness#3

EffectOfDelivery
DelayOn

Attractiveness#3

Delivery
Delay#3

Relative
Price#3

Price#3

<EffectOfDelivery
DelayOn

Attractiveness f>

<EffectOfPriceOn
Attractiveness f>

<EffectOfDelivery
DelayOn

Attractiveness f>

<EffectOfPriceOn
Attractiveness f> <Normal

Price>

<Normal
Price>

RelativeDelivery
Delay#1

RelativeDelivery
Delay#2

RelativeDelivery
Delay#3

normal
DeliveryDelay

<normalDelivery
Delay>

<normalDelivery
Delay>

 
 
Immediate parents:  Multidimensional split 
Ultimate parents:  Dmnl input to function, Proportional split  

Used by:  None 

Problem solved:  How to calculate market shares based on product attractiveness 

Equations:   

MarketShareForProduct 1 = "ProductAttractiveness#1" / TotalAttractiveness 
 Units: fraction 
MarketShareForProduct 2 = "ProductAttractiveness#2" / TotalAttractiveness 
 Units: fraction 
MarketShareForProduct 3 = "ProductAttractiveness#3" / TotalAttractiveness 
 Units: fraction 
TotalAttractiveness =  
   "ProductAttractiveness#1" + "ProductAttractiveness#2" + "ProductAttractiveness#3" 

Units: dmnl 
"ProductAttractiveness#1" =  
   "EffectOfDeliveryDelayOnAttractiveness#1" * "EffectOfPriceOnAttractiveness#1" 

Units: dmnl 
"ProductAttractiveness#2" =  
   "EffectOfDeliveryDelayOnAttractiveness#2" * "EffectOfPriceOnAttractiveness#2" 
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Units: dmnl 
"ProductAttractiveness#3" =  
   "EffectOfDeliveryDelayOnAttractiveness#3" * "EffectOfPriceOnAttractiveness#3" 

Units: dmnl 
"EffectOfDeliveryDelayOnAttractiveness#1" =  
                 EffectOfDeliveryDelayOnAttractiveness f ( "RelativeDeliveryDelay#1" ) 

Units: dmnl 
"EffectOfDeliveryDelayOnAttractiveness#2" =  
                  EffectOfDeliveryDelayOnAttractiveness f ( "RelativeDeliveryDelay#2" ) 

Units: dmnl 
"EffectOfDeliveryDelayOnAttractiveness#3" =  
                 EffectOfDeliveryDelayOnAttractiveness f ( "RelativeDeliveryDelay#3" ) 

Units: dmnl 
EffectOfDeliveryDelayOnAttractiveness f = user defined function 
 Units: dmnl 
""RelativeDeliveryDelay#1" = "DeliveryDelay#1" / normalDeliveryDelay 
 Units: fraction 
"RelativeDeliveryDelay#2" = "DeliveryDelay#2" / normalDeliveryDelay 
 Units: fraction 
"RelativeDeliveryDelay#3" = normalDeliveryDelay / "DeliveryDelay#3" 
 Units: fraction 
normalDeliveryDelay = ___ 
 Units: weeks 
DeliveryDelay#1" = ___ 
 Units: weeks 
"DeliveryDelay#2" = ___ 
 Units: weeks 
"DeliveryDelay#3" = ___ 
 Units: weeks 
"EffectOfPriceOnAttractiveness#1" = EffectOfPriceOnAttractiveness f ( "RelativePrice#1" ) 
 Units: dmnl 
"EffectOfPriceOnAttractiveness#2" = EffectOfPriceOnAttractiveness f ( "RelativePrice#2" ) 
  Units: dmnl 
EffectOfPriceOnAttractiveness#3" = EffectOfPriceOnAttractiveness f ( "RelativePrice#3") 
 Units: dmnl 
EffectOfPriceOnAttractiveness f  = user defined function 
 Units: dmnl 
"RelativePrice#1" = "Price#1" / NormalPrice 
 Units: fraction 
"RelativePrice#2" = "Price#2" / NormalPrice 
 Units: fraction 
"RelativePrice#3" = "Price#3" / NormalPrice 
 Units: fraction 
NormalPrice = ___ 
 Units: $/widget 
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"Price#1" = ___ 
 Units: $/widget 
"Price#2" = ___ 
 Units: $/widget 
"Price#3" = ___ 
 Units: $/widget 

Description:  Market share for each product is attractiveness relative to the “total” 
amount of attractiveness in the market.  Attractiveness is formulated as a normal 
attractiveness (or perhaps a maximum attractiveness) multiplied by a series of effects.  The 
Effects shown in the diagram and the equations are illustrative only.  A key aspect of this 
formulation is that attractiveness is in absolute terms, not relative to a competitor:  For 
any given factor, each relative factors the same constant (or variable) in the denominator 
in the denominator.  The attractiveness of competitors enters only in the calculating the 
Market Share.   

Behavior:  No levels, so no endogenous dynamics. 

Classic examples:  This formulation is very common in models of competitive dynamics 

Caveats:  The quantity TotalAttractiveness has no obvious real-world counterpart. 

Technical notes:  The reason to define the relative quantities (e.g. relative price) in terms 
of an absolute (in fact usually a constant) quantity (e.g. accepatable price) i9s to permit 
saturation effects.  For example if the price of a Ford automobile were two cents and the 
price from General Motors competitor were one cent, consumers probably wouldn’t 
distinguish between the two – the price of either one is “completely” inexpensive.  That is, 
when prices are this low it doesn’t matter that Ford’s price is twice GM’s.  On the other 
hand if the price of a Ford was $20,000 and the price of a GM was $10,000, this would 
make a big difference.  Hence, we want to normalize prices by an absolute number, run the 
result through a table function and only then compare attractiveness. 
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Nonlinear split 
 
Immediate parents:  , Univariate 
anchoring and adjustment, 
Proportional split 
Ultimate parents:  Proportional 
split, Dmnl input to funciton 
 
Used by:  Weighted average, 
Ceiling, Floor 

Problem solved:  Allocate a quantity between two parties, each with a claim on it.   

Equations:   

QuantityToA = TotalQuantity * FractionToA  
 Units: people 
QuantityToB = TotalQuantity - QuantityToA  
 Units: people 
TotalQuantity = ___ 
 Units: people 
FractionToA = FractionToA f ( IndicatedFractionToA )  
 Units: dmnl 
FractionToA f = user defined function 
 Units: **undefined** 
IndicatedFractionToA = StrengthOfA'sClaim / totalClaim  
 Units: fraction 
StrengthOfA'sClaim = ___ 
 Units: widgets/week 
totalClaim = StrengthOfA'sClaim + StrengthOfB'sClaim  
 Units: widgets/week 
StrengthOfB'sClaim = ___ 
 Units: widgets/week 
 
Description:  This formulation uses the indicated split (to one of the claims) which is 
based on the proportional split molecule.  However this indicated split is then run through 
a lookup function in order to capture nonlinear effects such as the idea that each claim 
must get a certain minimum fraction. 

Behavior:  No stocks so no behavior 

Classic examples:   

Caveats:  All of the quantity is allocated, so in a situation where each “claim” is a request 
for the quantity, its possible to allocate more than is requested.  Avoiding this problem 
takes careful thought and modeling. 

Technical notes:  None 
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Ceiling 
Also known as Soft Min 

Immediate parents:  Nonlinear split 
Ultimate parents:  Dmnl input to 
function, Proportional split  

Used by:  Capacity utilization, Level 
protected by flow 

Problem solved:  How to represent a 
situation where a quantity can approach, but can exceed, a ceiling value 

Equations:   

Quantity = Ceiling * Fraction of Ceiling  
 Units: Output units 
Ceiling = ___ 
 Units: Output units 
Fraction of Ceiling = Fraction of Ceiling f ( IndicatedFractionOfCeiling)  
 Units: dmnl 
IndicatedFractionOfCeiling = Indicated Quantity / Ceiling  
 Units: fraction 
Indicated Quantity = ___ 
 Units: Output units 
Fraction of Ceiling f =  (See notes under technical) 
 Units: dmnl 
 
Description:  This formulation creates a ceiling which is approached gradually.  The 
molecule is basically a nonlinear split where the “other half” is not shown.  Implicitly, the 
“other half” is the part “unused portion” of the ceiling.   

Behavior:  No levels so no endogenous behavior. 

Classic examples:  Say we have a labor force which can produce an indicated quantity.  
We also have a fixed amount of machinery.  The output that the machinery can potentially 
produce is the ceiling.  As we add more labor, indicated output increases; until it is 
constrained by machinery (the ceiling).  The constraint is not suddenly felt the instant 
IndicatedOutputFromLabor = CeilingOutputFromMachinery, instead the machinery 
constraint begins to be felt before the ceiling is reached.  Why?  There are many kinds of 
machines.  As indicated output approaches the ceiling, there is an increasing likelihood 
that the particular machine that some person needs to operate is already taken, even 
though there are still other machines (not the right ones, though) that are idle 

Caveats:  This formulation can make it difficult to calculate an equilibrium for a model, 
unless the function goes through (1,1) or the equilibrium is below the ceiling. See 
description. 
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Technical notes:  This formulation is a continuous version of the discrete MIN function.  
Unlike the MIN function -- where the output quantity is either the indicated quantity or 
the ceiling, whichever is less – in this formulation the output does not suddenly equal the 
ceiling, rather there is a gradual approach.  Depending on how the Fraction of Ceiling f is 
parameterized, the ceiling can be reached either before or after the IndicatedQuantity 
equals the ceiling.  (see technical notes).  It is also possible to let the Quantity rise above 
the ceiling.   

The following shows the behavior of the Quantity for various shapes of the function 
Fraction of Ceiling f.  The shape of the first function gives the behavior described in 
classic examples, above.  The shape of the middle function yields behavior that is identical 
to the discrete MIN function.  The shape of the third function might be appropriate in a 
situation where the indicated quantity represents indicated output and the ceiling 
represents fixed capacity in a homogeneous-machine situation.  When indicated output 
falls, managers may feel pressured to produce above indicated output in order to use as 
much of the capacity as possible. 

    

    

 Fraction of Ceiling f 

 Fraction of Ceiling f 



Molecules of Structure  Page 95 of 128 

 Copyright © 1996,1997,2004, 2005  Jim Hines 
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Capacity Utilization 
Immediate parents:  Ceiling 
Ultimate parents: Dmnl input to 
function, Proportional split 
 
Used by:  None 

Problem solved:  How to determine 
production when desired production 
can exceed capacity. 

 

 

Equations:   

Production = Capacity * Utilization  
 Units: Widgets/Week 
Capacity = ___ 
 Units: Widgets/Week 
Utilization = Utilization f ( IndicatedUtilization )  
 Units: fraction 
ndicatedUtilization = DesiredProduction / Capacity  
 Units: fraction 
DesiredProduction = ___ 
 Units: Widgets/Week 
Utilization f ( ) = [User defined function] 
 Units: dmnl 
 
Description:  Production is determined by the fraction of capacity actually used (i.e. 
utilization).  As desired production increases, utilization increases, but only until the 
capacity is maxed out.  Often, modelers allow utilization to go above 1, representing a 
situation where output can exceed “rated” capacity through skipping routine maintenance 
shut downs, eliminating the use of the facilities for testing, or other measures. 

Behavior:  no stocks, so no dynamics. 

Classic examples:  Common 

Caveats:  If the function does not go through the point (1,1) calculating an analytical 
equilibrium for the model will be a bit more difficult. 

Technical notes: none 
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Floor 
Also known as SoftMax 
 
Immediate parents:  Univariate 
anchoring and adjustment 
Ultimate parents:  Dmnl input to 
function 
 
Used by:  None 

Problem solved:  How to represent 
a variable that cannot decline lower 
than a certain point. 

 

Equations: 

Quantity = Floor * Floor Multiple  
 Units: Output units 
Floor = ___ 
 Units: Output units 
Floor Multiple = Floor Multiple f ( Indicated Floor Multiple )  
 Units: dmnl 
Floor Multiple f = see technical notes 
Units: dmnl 
Indicated Floor Multiple = Indicated Quantity / Floor  
 Units: dimensionless 
Indicated Quantity = ___ 
 Units: Output units 

Description:  This formulation is a continuous version of the discrete MAX function.  
Unlike the MAX function -- where the output quantity is either the indicated quantity or 
the ceiling, whichever is greater – in this formulation the output does not suddenly equal 
the floor, rather there is a gradual approach.  Depending on how the Floor Multiple  f is 
parameterized, the floor can be reached either before or after the IndicatedQuantity equals 
the floor.  (see technical notes).  It is also possible to let the Quantity fall below the floor.   

Behavior: No levels so no endogenous behavior. 

Classic examples:  This formulation formed is much rarer than its counterpart, the 
Ceiling.   

Caveats:  Make sure that the table function rises high enough to cover the possible range 
of the indicated floor multiple. 

Technical notes:  The following shows the behavior of the Quantity for various shapes of 
the function Floor Multiple  f.  The shape of the middle function yields behavior that is 
identical to the discrete MAX function.   
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Level Protected by Flow 
 

Immediate parents:  Ceiling,  
Go to zero 
Ultimate parents:  Dmnl input to 
function, Go to zero, Proportional 
split 
 
Used by:  BacklogShipping 
Protected By Flow 

Problem solved:  How to ensure 
that a stock does not go negative 

 

Equations:   

draining = Maximum outflow * fractionOfMaxOutflow  
 Units: Widgets/Month 
Maximum outflow = Level to drain / Fastest draining time  
 Units: Widgets/Month 
Fastest draining time = ___ 
 Units: Month 
Level to drain = INTEG( - draining , ___)  
 Units: Widgets 
fractionOfMaxOutflow = Fraction of Max f ( IndicatedFractionOfMax )  
 Units: dmnl 
Fraction of Max f = see technical notes 
 Units: dmnl 
IndicatedFractionOfMax = xidz ( Desired draining , Maximum outflow , reallyBigNumber)  
 Units: dmnl 
reallyBigNumber=10e9 
 Units: dmnl 
Desired draining = ___ 
 Units: Widgets/Month 
 

Description:  This formulation ensures that the actual outflow 
from a stock is between the desired outflow and the maximum 
outflow.  This formulation is considered more desirable than 
an IF-THEN-ELSE statement both because it is less subject to 
integration error and, even more importantly, because it is 
appropriate for a stock that represents an aggregation of non-
identical items - like a finished goods inventory containing 
many different models or products. 
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Behavior:  The level will not go below 
zero.  

Classic examples:  Shipping out of an 
inventory.  The inventory must not go 
negative. 

Caveats:  none 

Technical notes:  The proper function is 
usually one that causes the actual 
draining to drop below desired before 
the point at which desired draining = 
maximum outflow.   

Protecting against a divide-by-zero error is important in the definition of 
IndicatedFractionOfMax.  The LevelProtectedByFlow molecule is designed to work when 
the level, and hence maximumOutflow, are zero.   The IndicatedFractionOfMax should 
equal infinity when MaximumOutflow equals zero.  If your system dynamics modeling 
environment does not contain infinity, then set IndicatedFractionOfMax to a really big 
number (as shown in the above equations) when maximumOutflow is zero. 
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Backlog Shipping Protected by Flow  
 
Immediate parents:  Level 
protected by flow 
Ultimate parents: Dmnl input 
to function, Go to zero, 
Proportional split 

Problem solved:  How to 
coordinate the shipping of 
product with the filling of 
backlogged orders, taking into 
account that product cannot be 
shipped without an order and an 
order cannot be filled if there is 
no inventory 

 

Equations:   

Shipping = Maximum shipping * fractionOfMaxShipping  
 Units: Widgets/Month 
Maximum shipping = Inventory / minimum time to ship  
 Units: Widgets/Month 
minimum time to ship = ___ 
 Units: Month 
Inventory = INTEG( Producing - Shipping , ___)  
 Units: Widgets 
Producing = ___ 
 Units: Widgets/Month 
fractionOfMaxShipping = Fraction of Max f ( IndicatedFractionOfMax )  
 Units: dmnl 
Fraction of Max f  = user defined function 
 Units: dmnl 
IndicatedFractionOfMax = Indicated shipping from backlog , Maximum shipping 
 Units: dmnl 
Indicated shipping from backlog = Backlog / TimeToProcessAndShipOrder  
 Units: Widgets/Month 
TimeToProcessAndShipOrder = ___ 
 Units: Month  
Backlog = INTEG( Orders - Fulfilling orders , Orders * TimeToProcessAndShipOrder)  
 Units: Widgets 
Fulfilling orders = Shipping  
 Units: Widgets/Month 
Orders = ___ 
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ProcessAnd
ShipOrder

minimum time
to ship

Maximum
shipping

Indicated
FractionOfMax

fractionOf
MaxShipping

Fraction of
Max f
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 Units: Widgets/Month 
 
Description:  In this formulation, desired shipping is intended to drain inventory 
formulated as a protected level.  Actual shipping is approximately the minimum of desired 
and the maximum shipping rate.   

Behavior:  The stock will not go below zero.   

Classic examples:  This formulation (or one like it) is common in manufacturing models 

Caveats:  The minimum time to ship is usually a small number.  Make sure that dt is set 
appropriately. 

Technical notes:  The maximum shipping rate should probably represent the “ideal” 
maximum the fastest shipping that can be achieved if the orders correspond exactly to 
what is left in 
stock.  Because 
there is some 
probability 
distribution around 
what will be 
ordered, on average 
orders will not 
exactly match what 
remains in stock, 
and hence actual 
shipments fall 
below desired 
shipments of orders 
exactly matching 
what remains in 
stock, however actual shipping drops below desired shipments except when desired 
shipments are a relatively low fraction of maximum.  This means that the function 
Fraction of Max f() lies below (1,1).  A function that goes above the 45 degree line as it 
approaches (0, 0) would represent a situation in which a company ships faster than normal 
when it can.  A closely related alternative to this formulation is the Inventory Backlog 
Shipping Protected by Level molecule 

Fraction of Maximum 
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Backlog Shipping Protected By Level  
 
Immediate parents:  Go to 
zero, Level protected by level 
Ultimate parents:  Go to zero, 
Dmnl input to function 
 
Used by:  None 

Problem solved:  How to 
coordinate the shipping of 
product with the filling of 
backlogged orders, taking into 
account that product cannot be 
shipped without an order and an 
order cannot be filled if there is 
no inventory 
 
Equations:   

Backlog = INTEG( Orders - Fulfilling orders , Orders * Desired shipping time)  
 Units: Widgets 
Desired inventory = ___ 
 Units: Widgets 
Desired shipping = Backlog / Desired shipping time  
 Units: Widgets/Month 
Desired shipping time = ___ 
 Units: Month 
Fulfilling orders = Shipping  
 Units: Widgets/Month 
Inventory = INTEG( Producing - Shipping , Desired inventory )  
 Units: Widgets 
Inventory effect on shipping = Inventory effect on shipping f ( Relative inventory)  
 Units: dmnl 
Inventory effect on shipping f = user defined function 
 Units: dmnl 
Orders = ___ 
 Units: Widgets/Month 
Producing = ___ 
 Units: Widgets/Month 
Relative inventory = Inventory / Desired inventory  
 Units: dmnl 
Shipping = Desired shipping * Inventory effect on shipping  
 Units: Widgets/Month 
 

Inventory

Backlog

Producing

Orders Fulfilling
orders

Shipping

Desired
shipping

Desired
shipping time

Inventory effect
on shipping

Inventory effect
on shipping f

Desired
inventory

Relative
inventory
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Description:  In this formulation, desired shipping is intended to drain inventory 
formulated as a protected level.  Actual shipping however also obeys the physical law that 
we can’t ship what we don’t have.  The backlog is depleted by actual shipping. 

Behavior:  Obvious 

Classic examples:  This formulation is common in manufacturing models 

Caveats:  None 

Technical notes:  The Inventory Effect on Shipping represents the impact of stockouts as 
the inventory gets lower and lower.  A closely related alternative to this formulation is the 
Inventory Backlog and Shipping Protected by Flow molecule.   
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Weighted Average 
Also known as Soft If Then 
Parents:  None 

Used by:  Activity split 

Problem solved:  How to represent a blend of two 
“pure” choices. 

 

Equations:   

Resulting quantity = WeightOnA * OptionA + (1-WeightOnA) * OptionB 
 Units: people 
OptionA = ___ 
 Units: people 
Option B = ___ 
 Units: people 
WeightOnA = weight on A f(RelativeX) 
 Units: dmnl 
weightOnA f   =  user defined function 
 Units: dmnl 
RelativeX = X / totalXandY 
 Units: fraction 
totalXAndY= X + Y 
 Units: widgets/week 
X = ___ 
 Units: widgets/week 
Y = ___ 
 Units: widgets/week 
Description:  As X increases relative to Y, the blend favors A relative to B. 

Behavior:  No internal dynamics because no levels. 

Classic examples:   

Caveats:  None 

Technical notes:  The structure is a generalization of the common if-then logic in 
computer programming.  For example the statement  
 IF X < Y THEN A ELSE B 

is represented by a one weighting function.  In particular, the “weight on A function” for 
this example would be  

   1 when X/Y<1 
 f(X/Y) =   
 0 when X/Y ≥ 1 

 
1 

0 

1  

{ 

Option A Option B

RelativeX

Weight on A

Resulting
quantity

X
Y

weight on A f

totalXAndY
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Diffusion 
Immediate parents:  
Proportional split, 
Conversion 
Ultimate parents: 
Proportional split, 
Bathtub 

Used by:  None 

Problem solved:  
How to represent 
growth by word of 
mouth 

Equations:   

customers = INTEG(converting, ___) 
 Units: people 
converting = wom Conversions 
 Units: people/Year 
wom Conversions = contacts of noncust with cust*fruitfulness 
 Units: people/Year 
fruitfulness = ___ 
 Units: people/contact 
contacts of noncust with cust = contacts with customers*PotCust concentration 
 Units: contacts/Year 
contacts with customers = customers*sociability 
 Units: contacts/Year 
sociability = ___ 
 Units: contacts/person/Year 
PotCust concentration = potential customers/total market 
 Units: dmnl 
total market = customers+potential customers 
 Units: people 
potential customers = INTEG(-converting, ___) 
 Units: people 

Description:  Non Customers become customers through a process that involves 
customers having contacts with people, some fraction of which are non-customers.  Some 
proportion of contacts that customers have with non-customers results in conversion of 
non-customers to customers. 

wom
Conversions

customerspotential
customers

contacts of
noncust with cust

converting

fruitfulness

contacts with
customers

PotCust
concentration

total market

sociability
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Behavior:  Produces S-shaped growth in 
customers.  

Classic examples:  This is the structure that 
underlies B&B Enterprises. 

Caveats:  If customers are initialized to zero this 
structure will not move because there will be no 
customers to have contacts. 

Technical notes:  This structure produces 
logistic growth.  The Bass diffusion model 
includes an addition flow, formulated as a decay 
from potential customers into customers.  This 
additional flow is often interpreted as being an 
effect of advertising.  With this additional flow, 
the initial value of customers can be set to zero. 

BEHAVIOR
customers

100 M
75.00 M
50.00 M
25.00 M

1,000
converting

31.24 M
23.43 M
15.62 M
7.812 M

166.49
0 10 20

Time (Year)  
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Action From Resource 
 
Immediate parents:  None 
Ultimate parents:  None 
 
Used by:  Producing, Resource from flow, Ability 
from flow, Financial flow from resource 

Problem solved:  How to create an action (a flow) from a resource or aggregate of 
resources. 

Equations:   

flow = resources * resourceAbilityToCreateFlow  
 Units: gallons/Month 
resourceAbilityToCreateFlow = ___ 
 Units: gallons/(Month*resource) 
resources = ___ 
 Units: resources 
 

Description:  The action (flow) is created by multiplying a resource by its ability to create 
an action (i.e. its productivity).  Often the activity will be conceptualized as a flow, as 
shown in the structure above.   

Behavior:  No stocks, so no loops so no behavior. 

Classic examples:  Producing, Financial flow from resource 

Caveats:  None 

Technical notes:  This is one of three general ways to create an action.  The other two 
are Close gap and Go to zero 

resources resourceAbilityTo
CreateFlow

flow
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Financial Flow From Resource 
 
Immediate parents:  Action from resource 
Ultimate parents:  Action from resource 
 
Used by:  Workforce from budget 

Problem solved:  How to figure out the continuing rent (income or expense) of a 
resource.   

Equations:   

spending = workers * wage  
 Units: $/Month 
wage = ___ 
 Units: $/(Month*person) 
workers = ___ 
 Units: people 

Description:  The financial flow is the resources multiplied by the rent, which will have 
units of money-unit/resource-unit/time-unit (e.g. dollars/person/month).  The flow is 
usually conceptualized as either an expense or a income stream, depending on whether the 
viewpoint is that of the owner of the resource (income) or the user of  the resource 
(expense).  The rent of a worker is her wage or salary and the financial flow is an expense 
to the employer and income to the employee.  The rent of a building or machine is usually 
termed “lease payments” and the financial flow is expense to the person occupying the 
building and income to the building owner.  The rent of money is usually called “interest 
rate” and the financial flow is and expense to the borrower and income to the lender. 

Behavior:  No stocks so no behavior. 

Classic examples:  Common 

Caveats:  None 

Technical notes:  None 

workers wage

spending



Molecules of Structure  Page 110 of 128 

 Copyright © 1996,1997,2004, 2005  Jim Hines 

Resources From Action 
Immediate parents:  Action from resource 
Ultimate parents:  Action from resource 
 
Used by:  Workforce from budget 

Problem solved:  How to determine the resources 
we have (or need) based on the (desired) action (or 
flow) and the resources’ ability to create the action 
(i.e. the resources’ productivity) 

Equations: 

esources = DesiredFlow / resourceAbilityToCreateFlow  
 Units: resources 
 resourcesDesiredFlow = -___ 
 Units: gallons/Month 
resourceAbilityToCreateFlow = ___ 
 Units: gallons/(Month*resource) 
r 
 
Description:  Given the action (flow), dividing by the resource’s creative ability 
(productivity) yields the necessary resources. 

Behavior:  No stocks so no behavior 

Classic examples:  Workorce from budget in Jay Forrester’s Market Growth as 
Influenced by Capital Investment. 

Caveats:  None 

Technical notes:  None 

resources

resourceAbilityTo
CreateFlow

DesiredFlow
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Workforce From Budget 
 
Immediate parents:  Resources from action, Financial 
flow from resource 
Ultimate parents:  Action from resource 
 
Used by:  None 

Problem solved:  How to find the desired (or affordable) workforce, given a budget and 
an average wage. 

Equations:   

"DesiredPeople." = WorkforceBudget / averageWage 
Units: people 

averageWage = ___ 
 Units: $/(person*year) 
WorkforceBudget = ___ 

Units: $/year 

Description:  Dividing the available budget by the average wage gives the number of 
people we can afford. 

Behavior:  No stocks, so no behavior 

Classic examples:  Market Growth as Influenced by Capital Investment 

Caveats:  If the average wage can go to zero, protect against divide by zero errors. 

Technical notes:  None 

 

Desired
People.

average
Wage

Workforce
Budget
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Ability From Action 
Immediate parents: Action from resource 
Ultimate parents:  Action from resource 
 
Used by:  Estimated productivity 

Problem solved:  How to figure out what the creative 
ability (e.g. productivity) is a resource if we know the activity (or flow) that it causes. 

Equations:   

Ability = Flow / Resource  
 Units: gallons/(resource*Month) 
Flow = ___ 
 Units: gallons/Month 
Resource = ___ 
 Units: resources 

Description:  The creative ability of a resource is simply the action (or flow) devided by 
the resource that generates that activity.  This molecule is simply a rearrangement of the 
elements of the action from resource molecule 

Behavior:  No stocks so no behavior 

Classic examples:  Sometimes used to figure out productivity in project models (see 
Estimated productivity). 

Caveats:  If  the resource can go to zero, protect against a of divide-by-zero error.  

Technical notes:  None. 

 

Resource

Ability

Flow
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Producing 
Immediate parents:  Action from resource 
Ultimate parents:  Action from resource 

Used by:  Reducing backlog by doing work, Desired 
workers from workflow, Estimated productivity 

Problem solved:  How to produce or accomplish work 

Equations:   

producing = workers*productivity 
 Units: drawings/Month 
productivity =  ___ 
 Units: drawings/person/Month 
workers =  ___ 
 Units: people 

Description:  Workers times their productivity yields what they accomplish or produce. 

Behavior:  No levels, so no endogenous behavior 

Classic examples:  Project models, workforce inventory oscillator, Forrester’s Market 
Growth as Influenced by Capital Investment 

Caveats:  None 

Technical notes:  None 

 

workers productivity

producing
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Estimated Productivity 
Immediate parents:  Ability from action, 
Producing 
Ultimate parents:  Action from resource 
 
Used by:  None 

Problem solved:  Estimating productivity 

Equations:   

EstimatedPDY = WorkBeingAccomplished / Workforce  
 Units: widgets/(person*Month) 
WorkBeingAccomplished = ___ 
 Units: widgets/Month 
Workforce = ___ 
 Units: people 

Description:  Given a flow of work and the number of workers doing it, the implied 
productivity has to be the flow divided the number of workers. 

Behavior:  No stocks, so no behavior. 

Classic examples:  None 

Caveats:  None 

Technical notes:  Work being accomplished wouldn’t actually be known by real world 
managers if  it is an actual flow.  In this case the modeler may wish to either use a 
knowable estimate of Work being accomplished (e.g. a smooth of it) or use the estimated 
PDY from this formulation as an input into a formulation (e.g. a smooth) for perceived 
productivity. 

 

Workforce

Estimated
PDY

WorkBeing
Accomplished



Molecules of Structure  Page 115 of 128 

 Copyright © 1996,1997,2004, 2005  Jim Hines 

Desired Workforce From Workflow 
Immediate parents:  Resource from action, 
Producing 
Used by:  Overtime 

Problem solved: How to determine the number of 
workers we need 

Equations: 

DesiredPeople =  DesiredAccomplishingRate / productivity 
 Units: people 
productivity = ___ 
 Units: SquareFeet/person/Week 
DesiredAccomplishingRate = ___ 

Description:  The key here is the rate at which we need to accomplish work in order to 
finish on time.  Once we know this, we can figure out how many people it takes to 
produce such a work flow. 

Behavior:  No levels so no endogenous behavior. 

Classic examples:  Most project models make use of a formulation like this one. 

Caveats:  None 

Technical notes:  This formulation uses the same understanding as that used in the 
Producing molecule.  Outputs and inputs, though, are different.  Here we know the 
(desired) production rate and we calculate the (desired) workforce.  In the Producing 
molecule we know the workforce and calculate the production rate.  In this formulation, 
we could use a perceived productivity.   

Desired
People

productivity

Desired
Accomplishing

Rate
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Reducing Backlog by Doing Work 
 
Immediate parents:  Producing 
Ultimate parents:  Action from resource 
 
Used by:  Estimated remaining duration, Level protected 
by PDY 

Problem solved:  Draining a stock of work to do via 
workers accomplishing the work. 

Equations:   

WorkToDo = INTEG( - producing , ___)  
 Units: tasks 
producing = workers * productivity  
 Units: tasks/Month 
productivity = ___ 
 Units: tasks/(Month*person) 
workers = ___ 
 Units: people 

Description:  The stock is drained by a producing molecule. 

Behavior:  Work to do will decline.  If Workers and productivity are constant, work to do 
will decline linearly. 

Classic examples:  Project models. 

Caveats:  Nothing in this molecule prevents work to do from going negative.  (See Level 
protected by PDY for a solution) 

Technical notes:  The “inverse” of this molecule – filling a stock with a producing 
molecule is also common, as is a cascade of levels where the outflow of one (defined by a 
producing molecule) is the input to the next. 

 

workers productivity

WorkTo
Do producing
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Level Protected by PDY 
 

workers

productivity

Remaining
Work producing

RequiredWork
ForFull

Productivity

Relative
RemainingWork

EffectOfRemaining
WorkOnPDY

normalPDY

EffectOf
RemainingWork

OnPDY f

workers.

productivity.

Remaining
Work. producing.

RequiredWorkFor
FullProductivity.

requiredWorkTo
KeepAWorker

Occuppied.

Relative
RemainingWork.

EffectOfRemaining
WorkOnPDY.

normalPDY.

EffectOfRemaining
WorkOnPDY f.

 
 
Immediate parents:  Reducing backlog by doing work, Univariate anchoring and 
adjustment 
Ultimate parents:  Action From Resource, Dmnl input to function 
Used by:  None 

Problem solved:  How to prevent the level of remaining work going below zero when 
workers are producing from a backlog. 

Equations:   

RemainingWork = INTEG( - producing , RequiredWorkForFullProductivity )  
 Units: tasks 
producing = workers * productivity  
 Units: tasks/Month 
workers = ___ 
 Units: people 
productivity = normalPDY * EffectOfRemainingWorkOnPDY  
 Units: tasks/(person*Month) 
normalPDY = 5 
 Units: tasks/(person*Month) 
EffectOfRemainingWorkOnPDY = EffectOfRemainingWorkOnPDY f ( RelativeRemainingWork )  
 Units: dmnl 
EffectOfRemainingWorkOnPDY f = user defined function 
 Units: dmnl 
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RelativeRemainingWork = RemainingWork / RequiredWorkForFullProductivity  
 Units: fraction 
RequiredWorkForFullProductivity = ___   
 Units: tasks 
 
Additional equations for second version 
 
"RequiredWorkForFullProductivity." = "workers." * "requiredWorkToKeepAWorkerOccuppied." 
  Units: tasks 
"requiredWorkToKeepAWorkerOccuppied." = ___ 
 Units: tasks/person 

Description:  This molecule solves the problem of the stock in the reducing backlog by 
doing work molecule going negative as workers continue to drain the stock after it hits 
zero.  The solution is to recognize that productivity must become zero when there are no 
longer any tasks to do.  As the level of tasks falls below an amount of tasks required for 
full productivity, the resource’s productivity falls.  This could be because there is a time 
consuming step (e.g. having to bake clay pots in a kiln for two days) and to reach full 
productivity a worker needs enough other tasks to occupy him during the time that other 
tasks are in the time-consuming phase.  In a formulation where the single workforce is an 
aggregate of a number of different skills, the reduction of productivity could be caused by 
workers having to take on tasks for which they are not in their “specialty” and hence on 
which they are less productive. 

The second version of the molecule includes a formulation for the number of tasks 
required for full productivity.  This formulation says that each worker needs (on average) 
a certain number of tasks in the backlog in order to work at full productivity.   

Behavior:  The stock will not fall below 
zero.    

Classic examples:  The balancing R&D 
chain model 

Caveats:  None 

Technical notes:  None 

RemainingWork
15

11.25

7.502

3.754

0.0056
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Estimated remaining duration 
 
Immediate parents:  Reducing backlog by doing 
work 
Ultimate parents:  Action from resource 

Used by:  Estimated completion date 

Problem solved:  How to estimate the remaining 
time to completion of an amount of work to do.  
How to estimate the average time to complete a task in a stock of work to do (see 
technical note). 

Equations:   

DurationTillComplete = WorkToDo / AnticipatedRateOfAccomplishingWork 
 Units: week 
WorkToDo = ___ 
 Units: square feet 
AnticipatedRateOfAccomplishingWork = ___ 
 Units: square feet / week 

Description: The estimated duration to completion is simply the amount of work left 
divided by the rate at which we can do the work. 

Behavior:  No levels, so no endogenous behavior. 

Classic examples:  Used in project models 

Caveats:  If people or productivity can be zero, you will need to protect against a divide 
by zero error in the equation for durationTillComplete. 

Technical notes:  This formulation is related to the residence time molecule.  
Consequently, the variable durationUntilComplete can also be interpreted as the estimated 
average time to complete an individual task in the stock of work to do.  Under this 
interpretation  the variable’s name should be changed to something more appropriate (e.g. 
estimatedTaskResidenceTime). 
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Estimated Completion Date 
Immediate parents:  Estimated remaining 
duration 
Ultimate parents:  Action from resource 

Used by:  None 

Problem solved:  How to represent the estimate 
of a completion date 

 

Equations:   

EstimatedCompletionDate =DurationTillComplete + Time 
 Units: week 
DurationTillComplete = WorkToDo / AnticipatedRateOfAccomplishingWork 
 Units: week 
WorkToDo = ___ 
 Units: square feet 
AnticipatedRateOfAccomplishingWork = ___ 
 Units: square feet / week 
 
Description: The estimated time until completion is simple the estimate duration until 
completion plus the simulation’s current Time.  

Behavior:  No levels, so no endogenous behavior. 

Classic examples:  Used in project models 

Caveats:  If people or productivity can be zero, you will need to protect against a divide 
by zero error in the equation for durationTillComplete. 

Technical notes:  None 
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Overtime 
Immediate parents:  
Workforce,  Univariate 
anchoring and adjustment, 
Desired workers from 
workflow 
Ultimate parents:  Smooth 
(first order), Flow from 
resource, Dmnl input to 
function 

Used by:  none 

Problem solved:  How to calculate the required amount of overtime. 

Equations:   

Overtime = Overtime f ( IndicatedOvertime )  
 Units: Fraction 
Overtime f =  user defined function 
 Units: Fraction 
IndicatedOvertime = DesiredPeople / Workers  
 Units: Fraction 
Workers = 10 
 Units: people 
DesiredPeople = DesiredAccomplishingRate / productivity  
 Units: people 
DesiredAccomplishingRate = ___ 
 Units: tasks/week 
productivity = ___ 
 Units: tasks/(week*person) 
 
Description:  Overtime might be measured as a fraction of a normal day.  If possible 
overtime would simply be the number of workers we wished we had divided by the 
number of workers we actually have.  In practice, of course, the amount of overtime is 
limited by the number of hours in a day, by management policy, and by what workers are 
willing to do.  The overtime function represents this practical limitation. 

Behavior:  No levels so no endogenous behavior. 

Classic examples:  Formulation like this are used in many project models. 

Caveats:  If the workforce can be zero, the modeler needs to protect against a divide by 
zero error in the calculation of IndicatedOvertime. 

Technical notes:  DesiredPeople here means “people needed to get the work done”.  Any 
formulation that yields such a definition of desired people is fine.  Although we use the 
desired workers from workflow molecule, other formulation are possible. 

Overtime
Indicated
Overtime

Workers

Overtime f
Desired
People

productivity
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Building Inventory by Doing Work 
 
Immediate parents:  Producing 
Ultimate parents:  Action from resource 
 
Used by:  Population growth, Doing work cascade 

Problem solved:  How to create an inventory inflow 
from people working. 

Equations:   

Inventory = INTEG( producing , ___ 
 Units: widgets 
producing = workers * productivity  
 Units: widgets/Month 
productivity = ___ 
 Units: widgets/(Month*person) 
workers = ___ 
 Units: people 
Description:  The inflow to the stock is a producing molecule. 

Behavior:  If workers and productivity are constant, the stock will rise linearly. 

Classic examples:  Workforce Inventory Oscillator 

Caveats:  None 

Technical notes:  None 

workers productivity

producing
Inventory
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Population Growth 
Immediate parents:  Building inventory by doing work 
Ultimate parents:  Action from resource 
 
Used by:  None 

Problem solved:   

Equations:   

Population = INTEG( birthing , ___ 
 Units: people 
birthing = Population * fertility  
 Units: people/Month 
fetility = ___ 
 Units: people/(Month*person) 

Description:  The inflow to population is the population 
multiplied by the average fertility of the population.   

Behavior:  Exponential growth (if fertility is a constant).   

Classic examples:  Common 

Caveats:  With a large enough growth rate or a long enough 
simulation length, this formulation can produce a population 
size that exceeds the largest number the computer can 
represent.  In this case, the machine will throw a floating 
point overflow error and the simulation will stop. 

Technical notes:  Fertility is the productivity of the 
population in producing babies.  This is simply a Building 
Inventory by Doing Work molecule where the “inventory” is 
the workforce itself. 

fertility

birthing
Population
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Doing Work Cascade 
 

workersB
productivityB

producingB
InventoryB

workersC
productivityC

producingC
InventoryC

workersA
productivityA

producingA
InventoryA

producingD

productivityD
workersD

 
 
Immediate parents:  Cascaded levels, Building inventory by doing work, Reducing 
backlog by doing work 
Ultimate parents:  Bathtub, Action from resource 
 
Used by:  Cascade protected by PDY 

Problem solved:  How to represent something that accumulates at a number of points 
where the “something” is moved from accumulation to accumulation by people working. 

Equations:   

InventoryA = INTEG( producingA - producingB , ___)  
 Units: widgets 
InventoryB = INTEG( producingB - producingC , ___)  
 Units: widgets 
InventoryC = INTEG( producingC - producingD , ___)  
 Units: widgets 
producingA = workersA * productivityA  
 Units: widgets/Month 
producingB = workersB * productivityB  
 Units: widgets/Month 
producingC = workersC * productivityC  
 Units: widgets/Month 
producingD = workersD * productivityD  
 Units: widgets/Month 
productivityA = ___ 
 Units: widgets/(Month*person) 
productivityB = ___ 
 Units: widgets/(Month*person) 
productivityC = ___ 
 Units: widgets/(Month*person) 
productivityD = ___ 
 Units: widgets/(Month*person) 
workersA = ___ 
 Units: people 
workersB = ___ 
 Units: people 
workersC = ___ 
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 Units: people 
workersD = ___ 
 Units: people 

Description:  A cascade of levels in which the flows are all caused by workers working at 
some productivity and where the outflow from one level is the inflow into the next. 

Behavior:  If the workers and their productivities are all constant, the stocks will rise or 
fall linearly. 

Classic examples:  R&D Chain 

Caveats:  There’s nothing to prevent any of these levels from going negative.  (See 
Cascade protected by pdy). 

Technical notes:  None 
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Cascade Protected By PDY 
 

workersB

producingB
InventoryC

workersC

producingC
InventoryD

workersA

productivityA

producingA
InventoryB producingD

workersD

productivityB

Required
WorkForFull
ProductivityB

Relative
Remaining

WorkB

EffectOfRe
mainingWork

OnPDYB normal
PDYB

EffectOf
RemainingWork

OnPDYB f

productivityC

Required
WorkForFull
ProductivityC

Relative
Remaining

WorkC

EffectOfRe
mainingWork

OnPDYC

normal
PDYC

EffectOfRe
mainingWork
OnPDYC f

productivityD

RequiredWork
ForFull

ProductivityD

Relative
Remaining

WorkD

EffectOfRe
mainingWork

OnPDYD

normalPDYD

EffectOf
RemainingWork

OnPDYD f  
 
Immediate parents:  Level protected by PDY, Doing work cascade 
Ultimate parents:  Close gap, Action from resource, Dmnl input to function, Bathtub 
 
Used by:  None 

Problem solved:  How to prevent workers from drawing down cascaded levels below 
zero.  

Equations:   

InventoryB = INTEG( producingA - producingB , RequiredWorkForFullProductivityB )  
 Units: widgets 
InventoryC = INTEG( producingB - producingC , RequiredWorkForFullProductivityC )  
 Units: widgets 
InventoryD = INTEG( producingC - producingD , RequiredWorkForFullProductivityD )  
 Units: widgets 
producingA = workersA * productivityA  
 Units: widgets/Month 
producingB = workersB * productivityB  
 Units: widgets/Month 
producingC = workersC * productivityC  
 Units: widgets/Month 
producingD = workersD * productivityD  
 Units: widgets/Month 
workersA = 5 
 Units: people 
workersB = 5 
 Units: people 
workersC = 5 



Molecules of Structure  Page 127 of 128 

 Copyright © 1996,1997,2004, 2005  Jim Hines 

 Units: people 
workersD = 12 
 Units: people 
productivityA = 5 
 Units: widgets/(Month*person) 
productivityB = normalPDYB * EffectOfRemainingWorkOnPDYB  
 Units: widgets/(Month*person) 
productivityC = normalPDYC * EffectOfRemainingWorkOnPDYC  
 Units: widgets/(Month*person) 
productivityD = normalPDYD * EffectOfRemainingWorkOnPDYD  
 Units: widgets/(Month*person) 
normalPDYB = 5 
 Units: widgets/(Month*person) 
normalPDYC = 5 
 Units: widgets/(Month*person) 
normalPDYD = 5 
 Units: widgets/(Month*person) 
EffectOfRemainingWorkOnPDYB= EffectOfRemainingWorkOnPDYB f( RelativeRemainingWorkB ) 
 Units: dmnl 
EffectOfRemainingWorkOnPDYB f = user defined function 
 Units: dmnl 
EffectOfRemainingWorkOnPDYC= EffectOfRemainingWorkOnPDYC f( RelativeRemainingWorkC ) 
 Units: dmnl 
EffectOfRemainingWorkOnPDYC f = user defined function 
 Units: dmnl 
EffectOfRemainingWorkOnPDYD= EffectOfRemainingWorkOnPDYD f (RelativeRemainingWorkD )  
 Units: dmnl 
EffectOfRemainingWorkOnPDYD f = user defined function 
 Units: dmnl 
RelativeRemainingWorkB = InventoryB / RequiredWorkForFullProductivityB  
 Units: fraction 
RelativeRemainingWorkC = InventoryC / RequiredWorkForFullProductivityC  
 Units: fraction 
RelativeRemainingWorkD = InventoryD / RequiredWorkForFullProductivityD  
 Units: fraction 
RequiredWorkForFullProductivityB = 15 
 Units: widgets 
RequiredWorkForFullProductivityC = 15 
 Units: widgets 
RequiredWorkForFullProductivityD = 15 
 Units: widgets 

Description:  People working (at some productivity) cause material to flow through a 
chain of accumulations.  The productivity of the people working on any one flow is a 
function of the amount of material in stock that is being drained (i.e. a function of the 
amount of material in the source). 
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Behavior:  The levels will not go negative.   

Classic examples:  R&D Balance Chain 

Caveats:  None 

Technical notes:  None 
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