
Molecules of Structure Page 1 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

Molecules of Structure
Building Blocks for System Dynamics Models

Version 2.02

Jim Hines
401-301-4141

jhines@sloan.mit.edu

Copyright © 1996,1997,2004, 2005 Jim Hines

mailto:jhines@sloan.mit.edu

Molecules of Structure Page 2 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

Acknowledgements

The molecules presented here were invented by many people – and no doubt many were
invented several times independently. Tracing the ancestry of each molecule would be a
large task in itself and is one that I haven’t undertaken. It would be odd though not to
mention at least some of the people who are most responsible for the molecules presented
here.

To some extent what follows is a personal list – molecules tend to get repeated in models
without attribution, so some of what I believe to be seminal work no doubt is based on yet
earlier work. Still, there’s no question that many of the molecules first appeared in Jay
Forrester’s writings beginning with the first published paper and the first published book in
system dynamics (Forrester, J. W. (1958). Industrial Dynamics: A Major Breakthrough for
Decision Makers. Harvard Business Review, 26(4), 37-66. and Forrester, J.W. (1961).
Industrial Dynamics. Cambridge, MA: MIT Press). Also important was the market
growth model created by Dave Packer working with Jay Forrester (Forrester, J. W.
(1968). Market Growth as Influenced by Capital Investment. Industrial Management Rev.
(MIT), 9(2), 83-105.). The project model, originally developed by Henry Weil, Ken
Cooper, and David Peterson around 1972 contributes a number of important molecules.
Jim Lyneis’ book contains important structures for corporate models (Lyneis, J. M.
(1980). Corporate Planning and Policy Design. Cambridge, MA: MIT Press). Very
important for me was the treasure-trove of good structures in the MIT National Model, a
to which many people contributed including Alan Graham, Peter Senge, John Sterman,
Nat Mass, Nathan Forrester, Bob Eberlein, and of course Jay Forrester.

Many people have contributed to identifying and collecting the molecules presented here.
George Richardson and Jack Pugh described a number of commonly occurring rate
equations in their excellent book Introduction to System Dynamics with Dynamo (1981,
MIT Press). Barry Richmond described a number of common rate structures in his 1985
paper describing STELLA, the first graphical system dynamics modeling environment
(“STELLA: Software for Bringing System Dynamics to the Other 98“ in Proceedings of
the 1985 International Conference of the System Dynamics Conference, Keystone
Colorado, 1985, pp 706-718). Barry Richmond and Steve Peterson continued to present
useful small structures in documentation for STELLA and its sister product ithink. Barry
used the term “Atoms of Structure in 1985”. Misremembering that paper, I used the term
“Molecules” in my own initial attempts to extend and categorize these structures in 1995.

This current version of the molecules represents an expansion of the molecules covered
and, most importantly, a new taxonomy for showing the connections between molecules.
A taxonomy, much like a system dynamics model, is geared toward on a purpose. The
purpose of the taxonomy presented here is to help people see the structural connections
between models. I believe that understanding these connections make them easier to learn
and makes it easier for people to create new molecules. I learned an incredible amount
about taxonomy from George Hermann of MIT’s Center for Coordination Science in the

Molecules of Structure Page 3 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

process of creating a rather different taxonomy geared toward a different purpose. Before
meeting George I didn’t realize that the term “world-class” could be applied to a
taxonomist. But, the term fits George Hermann exactly.

Bob Eberlein created a very flexible way of incorporating molecules into Vensim for the
1996 version of the collection. Bob also put the molecules up on the Vensim website
which has allowed many, many people to benefit from this common heritage of our field.
Gokhan Dogan spotted many, many typos in this document and then insisted that I correct
them all. Of course, I secretly went back over the document to introduce a slew of new
typos for you to find.

Molecules of Structure Page 4 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

Bathtub

Smooth (first
order)

Decay

Material
Delay

Aging
Chain

Aging
Chain

WithPDY

Hines
Coflow

Traditional
Cascaded
Coflow

Extrapolation

Present
Value

High-Visibility
PipelineCorrection

Sea
Anchor
Pricing

Multivariate
Anchoring and

Adjustment

Backlog
Shipping

Protected
ByLevel

Split
Flow

WorkAccom-
plishmentStructure

Desired
Workers

From
WorkFlow

Estimated
Completion

Date

Overtime

EffectOf
Fatigue

Ceiling

Level
Protected
ByFlow

Floor

T Coflow
Experience

H Coflow
Experience

Workforce

Scheduled
completion

date

Productivity

Trend.

Market
Share

Level
Protected
ByLevel

Hines
Cascaded
Coflow

Cascaded
Levels

Conversion

Diffusion

firstOrder
Stock

Adjustment

WeightedAverage

Trad
Coflow

Dmnl
Input
to f()

Close
Gap

Sea
Anchor and
Adjustment

Smooth
Pricing

Producing

ProtectedSea AnchorandAdjustment

Backlog
Shipping

Protected
ByFlow

Low-Visibility
PipelineCorrection

Residence
Time

Protected
Sea Anchor

Pricing

GoTo
Zero

Broken
Cascade

Smooth
(higher
order)

Capacity
Utilization

Univariate
Anchoring and

Adjustment
Quality

Level
Protected
ByPDY

Estimated
Remaining
Duration

Reducing
Backlog
ByDoing

Work Action
From

Resource

Financial
FlowFrom
ResourceWorkforce

From
Budget

Propor-
tional
Split

Weighted
Split

Non
Linear
Split

Multi-
dimensional

Split

Resources
FromAction

Ability
From
Action

Estimated
Productivity

Building
InventoryBy
DoingWorkDoingWork

Cascade

Population
Growth

Cascade
Protected
ByPDY

Molecules of Structure Page 5 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

Contents

ACKNOWLEDGEMENTS 2

BATHTUB 9

CASCADED LEVELS 11

CONVERSION 13

BROKEN CASCADE 14

SPLIT FLOW 16

WORK ACCOMPLISHMENT STRUCTURE 17

GO TO ZERO 19

DECAY 20

RESIDENCE TIME 22

PRESENT VALUE 23

MATERIAL DELAY 24

AGING CHAIN 25

AGING CHAIN WITH PDY 27

CLOSE GAP 29

SMOOTH (FIRST ORDER) 30

WORKFORCE 32

SCHEDULED COMPLETION DATE 33

SMOOTH (HIGHER-ORDER) 34

Molecules of Structure Page 6 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

FIRST-ORDER STOCK ADJUSTMENT 37

HIGH-VISIBILITY PIPELINE CORRECTION 39

LOW-VISIBILITY PIPELINE CORRECTION 42

TREND 45

EXTRAPOLATION 46

COFLOW 48

COFLOW WITH EXPERIENCE 50

CASCADED COFLOW 52

DIMENSIONLESS INPUT TO FUNCTION 56

UNIVARIATE ANCHORING AND ADJUSTMENT 57

LEVEL PROTECTED BY LEVEL 59

MULTIVARIATE ANCHORING AND ADJUSTMENT 61

PRODUCTIVITY (PDY) 64

QUALITY 66

SEA ANCHOR AND ADJUSTMENT 68

PROTECTED SEA ANCHORING AND ADJUSTMENT 70

SEA ANCHOR PRICING 73

PROTECTED SEA ANCHOR PRICING 76

SMOOTH PRICING 78

EFFECT OF FATIGUE 80

Molecules of Structure Page 7 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

PROPORTIONAL SPLIT 81

WEIGHTED SPLIT 83

MULTIDIMENSIONAL SPLIT 85

MARKET SHARE 88

NONLINEAR SPLIT 91

CEILING 93

CAPACITY UTILIZATION 96

FLOOR 97

LEVEL PROTECTED BY FLOW 99

BACKLOG SHIPPING PROTECTED BY FLOW 101

BACKLOG SHIPPING PROTECTED BY LEVEL 103

WEIGHTED AVERAGE 105

DIFFUSION 106

ACTION FROM RESOURCE 108

FINANCIAL FLOW FROM RESOURCE 109

RESOURCES FROM ACTION 110

WORKFORCE FROM BUDGET 111

ABILITY FROM ACTION 112

PRODUCING 113

ESTIMATED PRODUCTIVITY 114

Molecules of Structure Page 8 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

DESIRED WORKFORCE FROM WORKFLOW 115

REDUCING BACKLOG BY DOING WORK 116

LEVEL PROTECTED BY PDY 117

ESTIMATED REMAINING DURATION 119

ESTIMATED COMPLETION DATE 120

OVERTIME 121

BUILDING INVENTORY BY DOING WORK 122

POPULATION GROWTH 123

DOING WORK CASCADE 124

CASCADE PROTECTED BY PDY 126

Molecules of Structure Page 9 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

Level
Increasing Decreasing

Bathtub
Immediate Parents: None

Ultimate Parents: None

Used by: Cascaded levels

Problems solved: How to increase and decrease something incrementally.

Equations:

Level = INTEG(Increasing-Decreasing,___)
 Units: widgets
Decreasing = ___
 Units: widgets/year
Increasing = ___
 Units: widgets/year

Description: A bathtub accumulates the difference between its inflow and its outflow. A
physical example is an actual bathtub. The level of water is increased by the inflow from
the tap and decreased by the outflow at the drain.

Classic examples: A workforce might be represented as a bathtub whose inflow is hiring
and whose outflows is attrition. A final-goods inventory could be a bathtub whose inflow
is arrivals of product and whose outflow is unit sales. Factories could be represented as a
bathtub whose inflow is construction and whose outflow is physical depreciation.
Retained earnings could be represented as a bathtub with revenues as the inflow and
outflow of expenses.

Caveats: Often bathtubs represent physical accumulations which should not take on
negative values. To prevent negative values, the outflow must be influenced directly by
the level. This is termed “first order feedback” (i.e. a feedback loop is created that
includes only one level (a feedback loop with two levels would be “second order”).
Molecules employing first-order feedback include smooths, decays, and protected levels
(e.g. level protected by level and level protected by flow).

Technical notes:
A bathtub is simply an integration of one inflow and one outflow. System
dynamics takes an integral view of calculus, which is reflected in the form that
level equations take in all system dynamics languages (DYNAMO, Vensim, iThink,
Powersim, etc.)

∫ −+=
T

T
ttTT dtoutflowinflowLevelLevel

0
0

)(

or, in modified DYNAMO notation

Molecules of Structure Page 10 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

)(* dttdttdttt outflowinflowdtLevelLevel −−− −+=

The idea is expressed in the differential calculus as

tt
t outflowinflow

dt
Leveld −=

Molecules of Structure Page 11 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

Cascaded levels
(also known as “chain”)

Level 1 Level 2 Level 3
flowingIn movingTo

Level2
movingTo

Level3
flowingOut

Immediate Parents: Bathtub
Ultimate Patents: Bathtub

Used by: Conversion, Aging chain, Broken cascade, Smooth (higher order), Traditional
cascaded coflw, Doing work cascade

Problem solved: How to represent something that accumulates at a number of points
instead of just one.

Equations:
flowingIn = ____
 Units: material/Month
flowingOut = ____
 Units: material/Month
Level 1 = INTEG(flowingIn-movingToLevel2, ____)
 Units: material
Level 2 = INTEG(movingToLevel2-movingToLevel3, ____)
 Units: material
Level 3 = INTEG(movingToLevel3-flowingOut, ____)
 Units: material
movingToLevel2 = ____
 Units: material/Month
movingToLevel3 = ____
 Units: material/Month

Description: A cascade is a set of levels, where one level’s outflow is the inflow to a
second level, and the second level’s outflow is the inflow to a third, etc. A cascade can
be seen as a structure that divides up an accumulation into “sub-accumulations”. The
number of levels in a cascade can be any number greater than two.

Behavior: Because the rates are not defined, behavior is not defined.

Classic examples: Items being manufactured accumulate at many points in the system,
perhaps in front of each machine in a production line as well as in finished inventory.
Conceptually it is possible to have a chain with a level for each machine. Usually this is
too detailed for a system dynamics model; instead we represent material accumulating in a
smaller number of levels, perhaps three: manufacturing starts, work in process, and
finished inventory.

Molecules of Structure Page 12 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

A measles epidemic model might represent people in three stages (levels): susceptible,
infected, and recovered. (See Aging Chain molecule)

A workforce might be composed of three stocks: Rookies, Experienced, and Pros. As
they are hired, people flow into the rookies level from which they flow in the level of
experienced employees. Experienced employees flow into the stock of pros, which is
depleted by people retiring. (See Aging Chain molecule).

Caveats: Often the levels represent physical accumulations which should not go negative.
See caveats under Level.

Technical notes: In nature, there are phenomena which combine the characteristics of
both flows and stocks. A river, for example, is both a rate of flow and has volume. In
system dynamics modeling we represent the world as consisting of pure flows having no
volume; and pure levels having no flow. We view a river as being composed of a chain of
“lakes”, each having a volume, connected by flows each being a pure rate: The water
accumulates only in the “lakes” not in the flows. A river might be represented as a
cascade of two levels: an upstream stock and a downstream stock. This “lumped
parameter” view of the world permits the use of integral equations. To represent flows
that have volume would require the more complicated mathematics of partial integral
(partial differential) equations. Such a view of the world is more difficult to model and
more time consuming to simulate.

Molecules of Structure Page 13 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

Conversion
Immediate parents: Cascaded levels
Ultimate parents: Bathtub

Used by: Diffusion

Problem solved: How to represent people changing their status. E.g. from non-believer
to believer, from non-customer to customer, from non-infected to infected

Equations:

Source of converts = INTEG(-converting, ___)
 Units: people
converting = ___
 Units: people/Year
Converts = INTEG(cnverting, ___)
 Units: people

Description: People flow from one category to the other

Behavior: Converting is undefined, so behavior is undefined

Classic examples: Used in diffusion models

Caveats: None

Technical notes: None

ConvertsSource of
converts converting

Molecules of Structure Page 14 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

Broken Cascade

ordersIn
Process

inventory

ordering ordersBeing
Fulfilled

shippingreceiving
Inventory

avgOrder
Size

Level 1

Level 2

inflowTo
Level1

outflowFrom
Level1

outflowFrom
Level2

inflowTo
Level2

General Form

Example

Immediate Parents: Cascaded levels
Ultimate Parents: Bathtub

Used by: Split flow, Traditional cascaded coflow

Problem solved: How to represent a conceptual break in set of cascaded levels. (The
conceptual break often, but not always, involves a change of units).

Equations:

General Form Example
ordersInProcess ordersInProcess = INTEG(
 orderingrdersBeingFulfilled,__)

Units: orders
ordering = ___

Units: orders/Month
ordersBeingFulfilled = 100

Units: orders/Month
inventory= INTEG (receivingInventory-shipping,__)

Units: widgets
shipping = ___

Units: widgets/Month
receivingInventory=ordersBeingFulfilled*avgOrderSize

Units: widgets/Month

Level 1 = INTEG(
 inflowToLevel1-outflowFromLevel1,___)
 Units: material
inflowToLevel1 = ___
 Units: material/Month
inflowToLevel2=outflowFromLevel1
 Units: material/Month
Level 2= INTEG (
 inflowToLevel2-outflowFromLevel2,___)
 Units: material
outflowFromLevel1 = ___
 Units: material/Month
outflowFromLevel2 = 100

Molecules of Structure Page 15 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

avgOrderSize=_________
 Units: widgets/order

 Units: material/Month

Description: A broken cascade is a cascade where the outflow of one level, rather than
flowing directly into the next level, instead terminates in a cloud. The inflow to the next
level is then a function of the prior outflow. If the inflow to the next level is equal to the
outflow from the prior level (e.g. receivengInventory = ordersBeingFulfilled), then the
broken cascade is mathematically equivalent to the regular cascade. Often the inflow to
the next stock is the outflow from the stock multiplied by a constant that represents a
change of units (e.g. avgOrderSize in the example above.

Behavior: Behaves like a regular cascade

Classic examples: In modeling a supply chain, there is often a conceptual break from raw
materials inventory to work in process. The conceptual break often also involves a change
in units.

Caveats: None

Technical notes: None

Molecules of Structure Page 16 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

Split Flow

Immediate Parents: Broken
cascade
Ultimate Parents: Bathtub

Used by: Work accomplishment
structure, Low-visibility pipeline
correction

Problem solved: How to
disaggregate an outflow into sub-
flows

Equations:
Source Stock = INTEG(-Aggregate Outflow,____)
 Units: Widgets2
Aggregate Outflow = ____
 Units: Widgets/Month
First Subflow = Aggregate Outflow*Fractional Split to First Subflow
 Units: Widgets/Month
Fractional Split to First Subflow = ____
 Units: fraction
First Destination Stock = INTEG(First Subflow,0)
 Units: Widgets
Second Subflow = Aggregate Outflow*(1-Fractional Split to First Subflow)
 Units: Widgets/Month
Second Destination Stock = INTEG(Second Subflow, ____)
 Units: Widgets

Description: This structure splits an outflow into two (or more) subflows into other
levels (or into sinks)..

Behavior: Aggregate outflow is undefined, so behavior is undefined.

Classic examples: Work Accomplishment Structure

Caveats: None

Technical notes: Traditionally the split outflow is represented with the aggregate flow
going into a sink (cloud) and the two sub-flows coming out of sources (clouds). Although
not standard, it is possible to draw the pipe splitting in two. The equations remain the
same.

Source
Stock

Second
Destination

Stock

First
Destination

Stock

Aggregate
Outflow

First
Subflow

Second
Subflow

Fractional Split to
First Subflow

Molecules of Structure Page 17 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

Work Accomplishment Structure
Also known as Rework Cycle

Immediate Parents: Split Flow
Ultimate Parents: Bathtub

Used by: None

Problem solved: How to
represent rework

Equations:
WorkToDo = INTEG(DiscoveringRework – AccomplishingWork,___)
 Units: SquareFeet
DiscoveringRework = ___
 Units: SquareFeet/Week
AccomplishingWork = ___
 Units: SquareFeet/Week
CorrectWork = INTEG(AccomplishingCorrectly , 0)
 Units: SquareFeet
AccomplishingCorrectly = AccomplishingWork * Quality
 Units: SquareFeet/Week
Quality = ___
 Units: fraction
UndiscoveredRework = INTEG(
 AccomplishingIncorrectly - DiscoveringRework ,___)
 Units: SquareFeet
AccomplishingIncorrectly = AccomplishingWork * (1 - Quality)
 Units: SquareFeet/Week

Description: We begin with some work to do and begin to accomplish it by some
process (perhaps by the producing molecule). Some of the work is done correctly, but
some is not. Quality is the fractional split. Quality here has a very narrow definition: the
fraction of work that is being done correctly. The work that is not done correctly flows
into undiscovered rework, where it sits until it is discovered (again by a process not
shown). When it is discovered it flows into work to be (re) done.
Note that the stock of undiscovered rework is not knowable by decision makers “inside”
the model. The stock is really there, but no-one, except the modeler and god, know how
much it holds.
Behavior: Work can make many cycles.

WorkToDo

CorrectWork

Undiscovered
Rework

Accomplishing
Work

Accomplishing
Correctly

Accomplishing
Incorrectly

Discovering
Rework

Quality

Molecules of Structure Page 18 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

Classic examples: This is the classic project structure. It was originally developed by
Pugh-Roberts, which continues to use and develop the structure. The structure is at the
heart of Terek Abdel-Hamid’s work on software project management. Today it is used by
a number of consultants and consulting firms.
Caveats: none
Technical notes: The structure, as shown does not contain the definition of accomplishing
work or discovering rework. Typically these flows are formulated using the producing
molecule, although discovering rework is sometimes represented as a Go to Zero (i.e.
undiscovered rework is represented as a material delay). Quality is usually formulated as
an anchoring and adjustment molecule. Often the discovered rework flows into a level
that keeps it separate from the original work to do -- this permits one to model a
productivity and a quality on rework that are potentially different from productivity and
quality on original work.

Molecules of Structure Page 19 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

Go To Zero

Immediate Parents: None
Ultimate Parents: None

Used by: Decay, Backlog shipping protected by flow,
Level protected by flow

Problem solved: How to generate an action (i.e. a flow)
that will move a current value (of a stock) to zero over
time.

Equations:

ActionToGo to zero = CurrentValue/timeToGo to zero
 Units: widgets/Month
CurrentValue = ___
 Units: widgets
timeToGo to zero = ___
 Units: months
Description: The action (or rate of flow) that will take a quantity (a stock) to zero over a
given time is simply the quantity divided by the given time.

Behavior: No stocks, so no behavior

Classic examples: The outflow of a decay or material delay. The desired shipping in a
Backlog shipping protected by flow molecule.

Caveats: When time “constant” (timeToGo to zero) is formulated as a variable, care
should be taken to ensure its value can not become zero to avoid a divide-by-zero error.

Technical notes: The intuition behind this formulation is the following: Consider a
variable whose current value is CurrentValue. The variable will become zero in exactly
timeToGo to zero months if the variable declines at a constant rate equal to actionToGo to
zero. Usually, however, the actionToGo to zero will not remain constant, because the
action itself will change the currentValue and/or value of timeToGo to zero.
Consequently, the variable in question will typically not be zero after timeToGo to zero
months. Depending on the actual formulation, the timeToGo to zero often will have a real
world meaning. In the case of a decay, for example, the average time for an aggregate of
things (e.g. a group of depreciating machines) to decline to zero is equal to timeToGo to
zero.

Other molecules that can generate an action (or a flow) include close gap (and its
children) and flow from resource (and its children)

Current
Value

timeToGo
ToZero

ActionToGo
ToZero

Molecules of Structure Page 20 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

Decay
Immediate parents: Go to zero
Ultimate parents: Go to zero

Used by: Present value, Material delay, Residence
time

Problem solved: How to empty or drain a stock.

Equations:

Material = INTEG(-Material draining, ___)
 Units: stuff
Material draining = Material / time to drain
 Units: stuff/Year
time to drain = ___
 Units: Year
Description: The stock in the decay structure, drains gradually over a period of time
determined by the time to drain. The decay can be viewed as a smooth with a goal of
zero. As a rule of thumb the stock is emptied in three time constants. The time for the
stock to decline by half is termed the half life and is approximately equal to 70% of the
time to drain.

Behavior: The decay declines exponentially toward
zero. Because the outflow is simply a fraction of the
stock, the outflow also declines exponentially toward
zero.

Classic examples: Radioactive decay.

Caveats: Sometimes a decay process is better
represented more explicitly. For example, one could
represent the draining of a finished-goods inventory as
a decay. But, the real process involves people
purchasing the merchandise. The purpose of the model
will determine whether the decay representation is
“good enough” or whether a more accurate
representation is called for.

Technical notes: The equation for a decay is

 Material
t
 = Material

0
 * e-t/smoothingTime

BEHAVIOR
Material

20
15.03
10.06
5.093
.1244

Material draining
10

7.515
5.031
2.546
.0622

0 5 10
Time (Month)

Material
Material
draining

drainingTime

Molecules of Structure Page 21 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

The half life can be determined from this equation to be: ln(0.5)*timeToDrain. ln(0.5) is
approximately 0.7. The outflow from the decay is distributed exponentially. The average
residence time of material in the level is equal to the timeToDrain.

Molecules of Structure Page 22 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

Residence Time
Immediate Parents: Decay
Ultimate parents: Go to zero

Used by: None

Problem solved: How to determine the
average residence time of items flowing
through a stock.

Equations:

AverageResidenceTime = Material/Material draining
 Units: Year
Material = INTEG(-Material draining, ___)
 Units: items
Material draining = ___
 Units: items/Year

Description: This is based on the same understanding as that behind the decay; however
the inputs and outputs are switched. Here, we know the rate at which material is draining
(as well as the stock) and we calculate the average time to drain (i.e. the average residence
time).

Behavior: No feedback, so no endogenous dynamic behavior

Classic examples: None

Caveats: None

Technical notes: This is based on Little’s Law. In equilibrium the calculation for the
average residence time is correct, no matter what process is actually draining the level. To
derive the formula for the specific process of a decay provides the intuition. The equation
for a decay’s outflow is.

t

t
t decayTime

StockowdecayOutfl =

The above equation says that if we know the values of the Stock and the value of the
decayTime, we can figure out the value of the decayOutflow. Now if we already know the
value of the decayOutflow (as well as the Stock’s value) but we don’t know the
decayTime’s value, we can re-arrange the above equation to yield

t

t
t owdecayOutfl

StockdecayTime = .

Which is an equation that allows us to figure out the decayTime if we know the other two
quantities. The equation above is the Residence Time molecule.

Material
Material
draining

Average
ResidenceTime

Molecules of Structure Page 23 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

Present value
Immediate parents:
Decay
Ultimate parents: Go to
zero
Used by: None

Problem solved: How
to calculate the present
value of a cash stream.

Equations:

PresentValueOfProfits = INTEG(IncreasingPresentValue, ___)
 Units: $
IncreasingPresentValue = Profits * DiscountingFactor
 Units: $/Year
Profits =
 Units: $/Year
DiscountingFactor = INTEG(- ReducingDiscountingFactor, 1)
 Units: fraction
DiscountRate = ___
 Units: fraction / Year
ReducingDiscountingFactor = DiscountRate * DiscountingFactor
 Units: fraction / Year

Description: The present value of a cash stream (e.g. profits) is simply the accumulation
of profits, weighted at each instant by a discounting factor. The discounting factor decays
at a rate determined by the discounting factor.

Classic examples: Discounted profits.

Caveats: None.

Technical notes: A discount rate of 0.10 (10%) is equivalent to a time constant of 10
years on the decay structure that represents the discounting factor. (See note on decay
molecule).

PresentValue
OfProfits

Profits

Discount
Factor

Discount
Rate

Increasing
PresentValue

Reducing
Discounting

Factor

Molecules of Structure Page 24 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

Material Delay
Immediate parents: Decay
Ultimate parents: Go to zero

Used by: Aging chain

Problem solved: How to delay a
flow of material.

Equations:

Material flowing out = Material / Time to flow out
 Units: stuff/Year
Time to flow out = ___
 Units: Year
Material = INTEG(Material flowing in-Material flowing out, Material flowing in*Time to flow out)
 Units: stuff
Material flowing in = ___
 Units: stuff/Year

Description: The material delay creates a delayed version of a flow by accumulating the
flow into a level and then draining the level over some time constant (timeToFlowOut).
The outflow from the level is a delayed version of the inflow. The average time by which
material is delayed is equal to the time constant.

Classic examples: A flow of material is shipped and received after a delay. The stock in
this case is the material in transit.

Caveats: None.

Technical notes: The actual delay times for the items that comprise the flow are
distributed exponentially with a mean of the time constant. Instead of dividing by a time
constant, one can multiply by a fractional decay rate. For example, a 10 year time
constant would correspond to a decay rate of 0.10 (10%) per year.

Material
Material

flowing out

Time to
flow out

Material
flowing in

Molecules of Structure Page 25 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

Aging Chain
Also known as Cascaded Delay

Newmaterial Material
maturing

Time to
mature

Material
flowing in

Mature
material

Old
materialMaterial

aging
Material

flowing out

Time to age
Time to flow

out

Immediate parents: Material delay, Cascaded levels
Ultimate parents: Bathtub, Go to zero

Used by: Capacity Ordering, Aging Chain with PDY, Hines Cascaded Coflow,
Traditional Cascaded Coflow

Problem solved: How to drain a stock so that the outflow is hump shaped, that is more
“normally” distributed. How to create a chain of stocks.

Equations:

New material = INTEG(Material flowing in-Material maturing,Material flowing in*Time to mature)
 Units: stuff
Material flowing in = ___
 Units: stuff/Year
Material maturing = New material / Time to mature
 Units: stuff/Year
Time to mature =
 Units: Year
Mature material = INTEG(Material maturing-Material aging, Material maturing*Time to age)
 Units: stuff
Material aging = Mature material/Time to age
 Units: stuff/Year
Time to age = ___
 Units: Year
Old material = INTEG(Material aging-Material flowing out, Material aging*Time to flow out)
 Units: stuff
Material flowing out = Old material/Time to flow out
 Units: stuff/Year
Time to flow out = ___
 Units: years
Description: An aging chain is a cascade of material delays. Although, the example
above has three stocks (a third-order aging chain), an aging chain can have any number of

Molecules of Structure Page 26 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

stocks greater than two. Sometimes only the average time it takes an item to transit the
entire chain is known and the time constants associated with each individual flow are not
known. In this case, simply set each time constant equal to the overall transit time divided
by the number of stocks in the chain. That is the delay for stock i is defined as

nocksInChainumberOfSt
totalDelaydelayi =

Behavior: A pulse input into an aging chain will come out with a hump distribution. For
an aging chain whose individual-stage time constants are all equal, the more levels in the
chain, the more the
outflow will be
concentrated around
the chain’s total delay,
and the more central
the peak will become.
The output of an
infinite-order delay will
be identical to the
input, but offset by the
total delay time.

As a rule of thumb, a third-order aging chain is usually sufficient from a dynamic
perspective (i.e. more levels in an aging chain will not materially affect the behavior of the
system of which the aging chain is a component). An exception to this rule is the case of
an “echo”, which requires at least a sixth-order aging chain. For example if people buy a
large quantity of a hot new product with a five-year product-life, there may be a surge of
replacement purchases five years later – that is, there may be a purchasing “echo” with a
five-year period.

Classic examples: A production process from production starts to production finishes is
often represented as an aging chain. A workforce gaining experience is often represented
as an aging chain.

Caveats: None

Technical notes: The average residence time in an aging chain is equal to the total delay.

Molecules of Structure Page 27 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

Aging Chain with PDY
Parents: Aging
chain

Used by: None

Problem
solved: How to
represent a
workforce
where people
gain experience
they become
more
productive.

Equations:

Production = ExperiencedProduction+GrayHairProduction+RookieProduction
 Units: widgets/Year
RookieProduction = Rookies*RookieProductivity
 Units: widgets/Year
RookieProductivity = ___
 Units: widgets/person/Year
Rookies = INTEG(Hiring - Maturing, Hiring*TimeForRookiesToMature)
 Units: people
Hiring = ___
 Units: people/Year
Maturing = Rookies / TimeForRookiesToMature
 Units: people/Year
TimeForRookiesToMature = ___
 Units: years
ExperiencedProduction = Experienced*ExperiencedProductivity
 Units: widgets/Year
ExperiencedProductivity= ___
 Units: widgets/person/Year
Experienced = INTEG(Maturing - GainingWisdom, Maturing *TimeToGainWisdom)
 Units: people
GainingWisdom = Experienced / TimeToGainWisdom
 Units: people/Year
TimeToGainWisdom = ___
 Units: years
GrayHairProduction = GrayHairs*GrayHairProductivity
 Units: widgets/Year
GrayHairProductivity = ___
 Units: widgets/person/Year

Rookies Experienced GrayHairs
Hiring Maturing Gaining

Wisdom
Retiring

TimeFor
RookiesTo

Mature

TimeToGain
Wisdom

TimeForGray
HairToRetire

production

Rookie
Productivity

GrayHair
Productivity

Experienced
Productivity

Rookie
Production

Experienced
Production

GrayHair
Production

Molecules of Structure Page 28 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

GrayHairs = INTEG(GainingWisdom - Retiring, GainingWisdom*TimeForGrayHairToRetire)
 Units: people
Retiring = GrayHairs / TimeForGrayHairToRetire
 Units: people/Year
TimeForGrayHairToRetire = ___
 Units: Year

Description: This is an aging chain of people, where each level also has an (optional)
added decay structure to represent attrition. Each category of people has a different
productivity. Total production is simply the sum of each category working at its own
productivity.

Behavior: See notes for decay and for Cascaded delay or aging chain

Classic examples: A common structure for representing difficulties encountered when a
company must grow -- and, hence, expand employment - quickly.

Caveats: Gaining of experience is purely a function of time, rather than a function of
doing the work. The latter would be more accurate in most situations, but the structure as
formulated is simpler and often good enough. The rule of thumb for DT (see Caveats
under Smooth) must be amended because each level has two outflows -- DT should be
one fourth to one tenth of the effective time constant which may be quite short (see
technical note).

Technical notes: The outflow from any one level is

Outflow = Level/τ + Level * η
 where τ is the time it takes on average to move to the next category and
 η is the fractional attrition rate for people in the category
Or,
Outflow = Level / (τ/(1 + ητ))

So DT needs to be shorter than 1/4 to 1/10 of the effective time constant: (τ/(1 + ητ)

Molecules of Structure Page 29 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

Close gap
Immediate parents: None
Ultimate parents: None

Used by: Smooth

Problem solved: How to generate a flow or action
to close a gap between a quantity and its desired
value

Equations:

ActionToCloseGap = Gap/TimeToCloseGap
 Units: widgets/Month
Gap = Goal - Current Value
 Units: widgets
Goal = ___
 Units: widgets
Current Value = ___
 Units: widgets
TimeToCloseGap = ___
 Units: months

Description: The action, if it stayed constant, would close the gap in the
TimeToCloseGap. Because, the gap will usually be closing via the action (this feedback is
not contained in the structure), the gap will not stay constant. If the goal is zero; this
structure becomes the action to eliminate the current value (see the Decay).

Behavior: No levels, so no endogenous dynamics

Classic examples: Backlog Inventory and Ordering molecule

Caveats: None

Technical notes: Other molecules that can generate an action (or a flow) include go to
zero (and its children) and flow from resource (and its children).

Current
Value

Goal

Gap

ActionTo
CloseGap

TimeTo
CloseGap

Molecules of Structure Page 30 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

Smooth (first order)
Immediate parents: Close gap
Ultimate parents: Close gap

Used by: First-order stock adjustment, Hines
coflow, Traditional coflow, Trend, Effect of
fatigue, Workforce, Scheduled completion date,
Sea Anchor and Adjustment

Problem solved: How to have a quantity
gradually and smoothly move toward a goal.
How to delay information. How to represent a
perceived quantity. How to smooth information.
How to represent an expectation.

Equations:

smoothed quantity = INTEG(updating smoothed quantity, quantity)
 Units: stuff
updating smoothed quantity = Gap / smoothing time
 Units: stuff/Year
smoothing time = ___
 Units: Year
Gap = quantity - smoothed quantity
 Units: stuff
quantity = ___
 Units: stuff

Description: A smooth is a level with a specific inflow/outflow formulation. The inflow
is formulated as a net rate (i.e. negative values of the “inflow” decrease the level). The
rate of change is intended to “close the gap”. The gap is the difference between some goal
and the smooth itself.

Behavior: The stock adjusts
toward the goal exponentially. As
illustrated at the right for a step
increase in the goal.

The gap between the stock and the
goal is closed according to the
constant (the smoothing time).
Intuitively, the magnitude of the
gap would decline to zero over the
smoothing time if the net inflow
were held constant. In fact, the net
inflow changes continuously as the
level changes. The rule of thumb is that the gap is almost completely eliminated within

Step Increase
300

250

200

150

100
0 1 2 3 4 5 6 7 8 9 10

Time (Month)

smoothed quantity - BEHAVIOR stuff
quantity - BEHAVIOR stuff

smoothed
quantity updating smoothed

quantity

goal

Gap

smoothing time

Molecules of Structure Page 31 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

three time constants.

 If the goal is oscillating the smooth will also oscillate with a lag and with a reduced
amplitude. The lag gives rise to the use of a smooth a delay. The reduced amplitude gives
rise to using the smooth as means of “smoothing out” random ups and downs in the goal.

Classic examples: The smooth is used in virtually every system dynamics model. A
classic example is a cooling cup of coffee. The temperature of the coffee can be
represented as the stock; the goal is the temperature of the air surrounding around the
cup. The temperature of the coffee gradually adjusts to equal the air temperature. The
time constant is determined by the volume of coffee and the insulating properties of the
cup. Adaptive expectations are modeled with a smooth. Say one is forming a judgment of
how many projects a consultant can sell in a month. If sales have been roughly half a
project per month, but in September sales jump to two; we perhaps adjust our
expectations upward a bit, but not to two sales per month. If sales stay at around two per
month, though we gradually will come to expect that number of sales. A smooth is the
structure to capture this.

Caveats: When using Euler integration, a large DT (Time Step) can give rise to
integration error which will show up as very rapid oscillations of the stock. As a rule of
thumb DT should be no larger than 1/4 to 1/10 of the time constant.

Technical notes: If the goal is held constant, the smooth can be expressed
mathematically as

SmoothedQuantity
t
 =

 Goal - (Goal - SmoothedQuantity
0
)e-t/smoothingTime

The “three time constants to close the gap” comes from the above equation. For any

number n of time constants the original gap is multiplied by a e-n. In particular in three

time constants, the gap is reduced to e-3 ≈ 5% of its original size.

Molecules of Structure Page 32 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

Workforce
Immediate parents: Smooth (first order)
Ultimate parents: Close gap

Used by: Overtime

Problem solved: How to represent the number
of people working on a project

Equations:
Workforce = INTEG(Hiring and Firing ,
DesiredPeople)
 Units: people
Hiring and Firing = Worker Shortage / time to hire or fire
 Units: people/Year
time to hire or fire =
 Units: Year
Worker Shortage = DesiredPeople - Workforce
 Units: people
DesiredPeople =
 Units: people

Description: The workforce is just a smooth of the desired workforce. This means that
people will be hired or fired to (gradually) move the actual workforce to the desired level.

Behavior: Obvious

Classic examples: This is often used in models of projects

Caveats: None

Technical notes: Time to hire or fire aggregates a number of lags including: the time for
someone to realize that the workforce is not at the correct level, the time to communicate
this realization, the time to get authorization for a new workforce level, the time to
advertise for workers, the time to interview them, the time to actually bring them on
board, and the time to bring them up to speed as fully productive workers.

Note: The essence of this molecule is that the workforce is a smooth of DesiredPeople.
Although DesiredPeople is often formulated as a Desired workforce molecule; there is no
requirement that this be the case. Consequently, this molecule is not a child of Desired
workforce.

Workforce
Hiring and

Firing

Desired
People

Worker
Shortage

time to
hire or fire

Molecules of Structure Page 33 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

Scheduled
completion

dateSchedule
Updating

Time to change
schedule

Estimated
Completion

Date

Scheduled Completion Date

Immediate parents: Smooth (first order),
Ultimate parents: Close gap

Used by: None

Problem solved: How to represent the
process by which the scheduled completion
date is set.

Equations:

Scheduled completion date = INTEG(ScheduleUpdating , EstimatedCompletionDate)
 Units: week
ScheduleUpdating =
 (EstimatedCompletionDate - Scheduled completion date) / Time to change schedule

Units: weeks/week
Time to change schedule = ___
 Units: week
EstimatedCompletionDate = ___
 Units: week

Description: The scheduled completion date adjusts toward the estimated completion
date. The scheduled completion date is simply a smooth of the estimated.

Behavior: Obvious

Classic examples: Used in project models

Caveats: None

Technical notes: None

Molecules of Structure Page 34 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

Smooth (higher-order)
Also known as cascaded smooth.

Smooth1
updating
smooth1

goal

Gap1

smoothing time1

Smooth2
updating
smooth2

Gap2

smoothing time2

Smooth3.
updating
smooth3

Gap3

smoothing time3

Immediate Parents: Smooth (first order), Cascaded levels
Ultimate Parents: Close gap, Bathtub

Used by: Hines cascaded coflow

Problem solved: How to create a “smooth” where the adjustment toward the goal starts
out slowly, gains speed, and then slows for the final approach. How to model a situation
where people are slow to initially perceive a change, but ultimate do catch on completely.

Equations:

Smooth1 = INTEG(updating smooth1 , goal)
 Units: stuff
updating smooth1 = Gap1 / smoothing time1
 Units: stuff/Year
smoothing time1 = ___
 Units: Year
Gap1 = goal - Smooth1
 Units: stuff
goal = ___
 Units: stuff
Smooth2 = INTEG(updating smooth2 , Smooth1)
 Units: stuff
updating smooth2 = Gap2 / smoothing time2
 Units: stuff/Year
smoothing time2 = ___
 Units: Year
Gap2 = Smooth1 - Smooth2
 Units: stuff
"Smooth3." = INTEG(updating smooth3 , Smooth2)

Molecules of Structure Page 35 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

 Units: stuff
updating smooth3 = Gap3 / smoothing time3
 Units: stuff/Year
smoothing time3 = 2
 Units: Year
Gap3 = Smooth2 - "Smooth3."
 Units: stuff

Description: A higher order smooth is a cascade of two or more smooths where each
smooth becomes the goal of the immediately following smooth. The stock of final smooth
is often considered the “output” variable -- that is the variable that’s ultimately adjusting
toward the goal. The usual case is to have the same delay at each stage of the smooth.
That is if k is a constant

O
agaggregateLk

kOrderkagaggregateL

i
Order

Orderiklag

Orderi

i

i

=

==

=∀=

∑
=

=

 as defined isk elseor

*

as defined is lag) average (or the agaggregateL either the
 whereand

stage individual eachfor lag theisk
cascade thein stage particularany is

delay theoforder theis
where

...1

1

For example in the usual case where the individual lags are all the same, if the aggregate

lag is, say, thirty weeks, then the lag for each stage will be weeks10
3

 weeks30
= .

Behavior: In the case where the individual-stage lags are all the same, the adjustment will
become more sudden and more concentrated at the point of the aggregate lag. All of the
adjustment would happen at the aggregate lag in the case of an infinite-order smooth.
(Note in such a case the aggregate lag is a finite real number and each individual-stage lag

is an infinitesimal, intuitively
∞

=
Orderk which is an infinitesimal. The infinite-order

smooth’s response to a step is another step offset from the original by the overall (or
aggregate) lag.

Molecules of Structure Page 36 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

Classic examples: Third order smooths are fairly common. Second-order smooths very
rare, as are smooths with order higher than 3.

Caveats: If you create the delays by dividing an overall delay by the number of smooths
in the cascade, be watchful of integration error. Remember, the solution interval (“dt” or
“time step”) should be one-quarter to one-tenth as large as the smallest time constant.
The time constant on a higher-order smooth is not the overall delay, but rather the delays
on the individual smooths making up the cascade. This consideration holds even when
using the built in 3rd order smooth functions provided by most SD simulation modeling
environments. These built in functions typically take a parameter for the overall delay.
Keep in mind that internally the software converts this overall delay into three individual
delays, each one third the size of the time “constant” parameter.

Technical notes: If you take an aggregate view of the a higher-order smooth, the
“aggregate delay” is equal to the average delay. For example, if you use a third order
smooth with overall delay of 3 month (implying individual stage delays are each equal to
one month) to represent how buyers gradually adjust their perception of a price, the
average buyer will adjust his perceptions completely in 3 months – of course some buyers
will adjust more quickly and others less quickly than the average.

“aggregate”
delay time

3 X “aggregate”
delay time

Molecules of Structure Page 37 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

First-order
stock
adjustment
Immediate parents:
Smooth (first order)
Ultimate parents:
Close gap

Used by: Low-visibility
pipeline correction,
High-visibility pipeline
correction

Problem solved: How
to purchase in order to
maintain a stock at a
desired level

Equations:

Level = INTEG(Stocking - outFlow , DesiredLevel)
 Units: widgets
outFlow = ___
 Units: widgets/Year
DesiredLevel = ___
 Units: widgets
Stocking = StockingToAdjustLevelToDesired + StockingForReplacement
 Units: widgets/Year
StockingForReplacement = outFlow
 Units: widgets/Year
StockingToAdjustLevelToDesired = Gap / AdjustmentTime
 Units: widgets/Year
Gap = DesiredLevel - Level
 Units: widgets
AdjustmentTime = ___
 Units: years

Description: The key component of the first order stock adjustment molecule is the
stocking decision. The stocking decision can be thought of as having two parts. First, one

Gap
Desired

Level

Level
Stocking outFlow

StockingTo
AdjustLevel
ToDesired

StockingFor
Replacement

Adjustment
Time

Inventory
Gap

Desired
Inventory

Inventory
Purchasing Shipping

Purchasing
ToChange
Inventory

Replacement
Purchasing

Purchasing
Time

Generic
Structure

Example

Molecules of Structure Page 38 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

“orders” what ever is being used up (this is StockingForReplacement). This portion of the
decision will keep inventories at their current levels. The second component of the
decision is to “order” a bit more or a bit less to move the Level to its desired value. This
decision is done in a “goal-gap” way. Structurally this molecule is a smooth with a piece
added on to take care of an extra outflow from the level.

Behavior: This structure will smoothly move the actual inventory to the desired level. If
the outflow were zero, this structure would be equivalent to a smooth. If the replacement
part of the decision can be made immediately (as shown above) without a perception
delay, the structure will behave like a smooth no matter what the outflow is.

Classic examples: A very common structure.

Caveats: In many cases the stocking flow should not go negative (e.g. if the inflow is
actually a manufacturing process, one cannot “unmanufacture” what has already been
placed in the level). In this case, the modeler should modify the inflow so that it cannot go
negative.

This structure assumes that stocking can be made with no delay (i.e. the inflow is from off
the shelf, immediately available, products). If there is a delay (e.g. the things being
ordered need to be custom-made), then it may be important to consider the supply
pipeline. For this see the Capacity Ordering molecule.

In some situations one may want to recognize a perception lag between the outflow and
the knowledge of how much should be replaced. In this case, StockingForReplacement
will should be modeled as a smooth (or perhaps an extrapolation) of the outflow.

Technical notes: None

Molecules of Structure Page 39 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

High-Visibility Pipeline Correction

Construction
InProcess

Productive
CapacityFinishing

Construction

Construction
Time

Starting
Construction

Retiring
Capacity

<Construction
Time>

Productive
CapacityGap

AwarenessOf
InProcess

ConstructionAdjusting
Capacity

Replacing
Capacity

TimeToStart
Construction

Desired
Capacity

Target
ConstructionIn

Process

MaterialIn
Process Stock

Processing

Processi
ngtime

Starting outflow
<Processing

time>

Gap

AwarenessOf
MaterialIn
Process

StartsTo
AdjustStocks

Replacement
Starts

Stock
AdjustmentTime

Desired
Stock

Target
MaterialIn
Process

StockGap

MaterialIn
Process

Gap
Perceived
MaterialIn
Process

Gap

ConstructionIn
ProcessGap

perceived
Construction
InProcessCapacityGap

Generic

Example

Immediate parents: Aging chain, First-order stock adjustment
Ultimate parents: Close gap, Bathtub, Go to zero

Used by: None
Problem solved: How to adjust a stock to its desired value, items taking account of what
is in the pipeline
Equations:
PerceivedMaterialInProcessGap = MaterialInProcessGap * awarenessOfMaterialInProcess
 Units:
MaterialInProcessGap = TargetMaterialInProcess - MaterialInProcess
 Units: stuff
outflow = ___
 Units: stuff/Year
AwarenessOfMaterialInProcess = ___ {must be between zero and one}

Molecules of Structure Page 40 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

 Units: fraction
DesiredStock = ___
 Units: stuff
Stock = INTEG(Processing - outflow , DesiredStock)
 Units: stuff
StockGap = DesiredStock - Stock
 Units: stuff
Processing = MaterialInProcess / Processingtime
 Units: stuff/Year
Processingtime = ___
 Units: years
Gap = StockGap + PerceivedMaterialInProcessGap
 Units: stuff
MaterialInProcess = INTEG(Starting - Processing , TargetMaterialInProcess)
 Units: stuff
ReplacementStarts = outflow
 Units: stuff/Year
Starting = max (0, StartsToAdjustStocks + ReplacementStarts)
 Units: stuff/Year
StartsToAdjustStocks = Gap / StockAdjustmentTime
 Units: stuff/Year
StockAdjustmentTime = ___
 Units: Year
TargetMaterialInProcess = outflow * Processingtime
 Units: stuff

Description: Based on the First-order stock adjustment structure, this molecule adds the
idea that creating material is a time consuming process. As in the first-order molecule,
this one also represents the need to replace what is being used (or sold) and also adjusts
the stock toward a desired level. This molecule takes account not only of what is
ultimately needed in the final stock, but also what is needed in the “pipe line”. Put
differently, this molecule keeps track not only of what is on hand in the final stock, but
also of what it has been started but has not yet been completed. The representation shown
above provides a single level for in-process material, which – when combined with the
final stock – results in a second-order aging chain. However, the in-process stock can
easily be disaggregated simply by adding stocks to the aging chain – for example, for a
production-distribution system one could have stocks of raw materials, in-process
inventory, finished inventory, inventory-at-the-warehouse arranged in a fourth-order aging
chain.

Molecules of Structure Page 41 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

Behavior: Failing to keep track of what is in
process (i.e. failing to keep track of the
“pipeline”, means that the decision for starting
will over order -- it will keep ordering the same
item until it is received; rather than realizing the
order has been placed even though it hasn’t
shown up yet. This is the main mistake that
people make in playing the Beer Game. The
variable awarenessOfMaterialInProcess can be
set anywhere between zero and 1 to represent
partial awareness of the pipeline. Failing to
include replacement demand will result in
steady state error.

Classic examples: Structures like this are found in Forester’s Industrial Dynamics model
to represent a production-distribution system (supply chain) and in the System Dynamics
National Model to represent an economy-wide aggregate structure leading from raw-
materials to company’s final inventories and, ultimately, to consumer’s stocks. The
structure is also used to represent construction processes for, say, office buildings or
factories.

Caveats: The process of moving material from in-process to the final stage in this
molecule only takes time. It does not take productivity or people. In some instances this
is relatively accurate. In many instances, such as manufacturing, this is not accurate.
However, the structure is still used in many such situations by the best modelers in the
field, because it is simple and good enough in the sense that the dynamics of interest are
not obscured.

In cases where “capacity” represents final inventory, desired inventory (i.e. “desired
capacity” in the diagram) should respond to demand. If it doesn’t, the structure is at the
mercy of a positive loop involving the effect of stockouts on shipments (not shown),
shipments (i.e. “retiring capacity”) and ordering (i.e. “replacing capacity” and “adjusting
capacity”).

Technical notes: This molecule provides a more detailed (and more specific)
representation of the pipeline than the closely related Low-visibility pipeline correction
molecule. This molecule is more appropriate when the decision maker has visibility of the
process that “creates” the inflow into the final stock.

PIPE AWARE
PIPE UNAWARE
Capacity

1.818 M
1.614 M
1.409 M
1.204 M

1 M
0 25 50

Time (Year)

Molecules of Structure Page 42 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

Low-visibility Pipeline Correction

Orders Not
Received

Inventory
Receiving
Product

Ordering

Shipping
Order

Pipelineg
Gap

Awareness
OfPipeline

correction
ForOrders
InPipeline

Replacement
Ordering

Forecasted
Demand

TimeTo
CorrectOrder

Pipeline

Desired
Inventory

Required
OrdersIn
Pipeline

Orders being
fulfilled

inventory
Correction

timeToCorrect
Inventory

Calculated
DeliveryDelay

Immediate parents: First-order stock adjustment, Split flow, Residence time
Ultimate parents: Close gap, Bathtub

Used by: None

Problem solved: How to adjust a stock to its desired value, taking into account what is
in the pipeline in a situation where the decision maker does not have explicit visibility of
the pipeline itself.

Equations:

Ordering = max (0, correctionForOrdersInPipeline + ReplacementOrdering + inventoryCorrection
 Units: cases/quarter
ReplacementOrdering = Shipping
 Units: cases/quarter
Shipping = ___
 Units: cases/quarter
inventoryCorrection = (DesiredInventory - Inventory) / timeToCorrectInventory

Molecules of Structure Page 43 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

 Units: cases/quarter
timeToCorrectInventory = ___
 Units: quarter
DesiredInventory = ___
 Units: cases
Inventory = INTEG(Receiving Product - Shipping , DesiredInventory)
 Units: cases
Receiving Product = ___
 Units: cases/quarter
correctionForOrdersInPipeline = OrderPipelinegGap / TimeToCorrectOrderPipeline
 Units: cases/quarter
TimeToCorrectOrderPipeline = ___
 Units: quarter
OrderPipelinegGap = (RequiredOrdersInPipeline - Orders Not Received) * AwarenessOfPipeline
 Units: cases
AwarenessOfPipeline = ___ (usually a number between between 0 and 1)
 Units: fraction
Orders Not Received = INTEG(Ordering - Orders being fulfilled , ___)
 Units: cases
Orders being fulfilled = Receiving Product
 Units: cases/quarter
RequiredOrdersInPipeline = ForecastedDemand * CalculatedDeliveryDelay
 Units: cases
CalculatedDeliveryDelay = Orders Not Received / Orders being fulfilled
 Units: quarters
ForecastedDemand = ____
 Units: cases/quarter

Description: As in the First-order stock adjustment molecule, ordering has two
components: replacing whatever is (expected to be) sold, and adjusting inventory. This
formulation also recognizes a hidden component of inventory: Inventory that is on the
way (or has been ordered), but has not yet been received. In steady state, this inventory-
on-the-way will be non-zero. In fact, if the ordering rate is constant, this inventory-on-
the-way will be equal to the ordering rate multiplied by the time it takes to receive orders.
In other words, the inventory on the way will be the entire stream of orders that have been
placed, but not received.

This structure represents a great deal of what is present at each stage of the beer game.
The mistake that most beer-game players make is that they do not keep track of orders not
received - they do not take account of the pipeline. In this structure this is represented by
setting the Pipeline Recognition Factor to a small number. The result will be oscillations
caused by placing the “same” order more than once.

Behavior: No relevant behavior because the process of incoming orders (and shipping) is
not specified in this molecule.

Classic examples: This molecule is commonly used.

Molecules of Structure Page 44 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

Caveats: None

Technical notes: This molecule does not specify how an order is “processed” by a
supplier. The closely related High-visibility pipeline correction molecule may be more
appropriate if the decision maker has explicit knowledge of the process used to create the
material.

Molecules of Structure Page 45 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

Trend
Immediate parents: Smooth (first order)
Ultimate parents: Close gap

Used by: Extrapolation

Equations:

FractionalTrend = (PerceivedQuantity - HistoricalQuantity) /
 (HistoricalQuantity * DurationOverWhichToCalculateTrend)
 Units: fraction/year
PerceivedQuantity = SMOOTH(ActualQuantity, TimeToPerceiveQuantity)
 Units: Quantity units
ActualQuantity = ___
 Units: Quantity units
TimeToPerceiveQuantity = ___
 Units: year
HistoricalQuantity = INTEG(ChangeInHistoricalQuantity, PerceivedQuantity)
 Units: Quantity units
ChangeInHistoricalQuantity = (PerceivedQuantity - HistoricalQuantity) /
 DurationOverWhichToCalculateTrend
 Units: Quantity units / year
DurationOverWhichToCalculateTrend = ___
 Units: years

Description: The basic idea is very intuitive if one regards the historical quantity as an
observation made at a point in the past and the perceived quantity as the current
observation. The difference between the two is the absolute growth or decline. Dividing
this quantity by the past observation gives the fractional growth or decline over the period
separating the two observations. Dividing by the time between the two observations give
growth fraction per time unit. The perceived quantity is a smooth of the actual quantity
and the historical quantity is a further smooth of the perceived quantity; the time between
these two smooths is the time constant on the historical quantity.

Behavior: The structure will eventually converge to the actual fractional growth rate of
an exponentially growing quantity.

Classic examples: Often used to calculate the rate at which sales or demand is increasing.

Caveats: None

Technical notes: The perception lag on the perceived quantity is often conceptually
necessary. On a technical level, however, smoothing actual conditions prevents the
fractional trend from changing abruptly.

Historical
QuantityChangeIn

Historical
Quantity

Perceived
Quantity

TimeTo
Perceive
Quantity

DurationOver
WhichTo

CalculateTrend

Fractional
Trend

Actual
Quantity

Molecules of Structure Page 46 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

Extrapolation
Immediate parents: Trend
Ultimate parents: Close gap

Used by: None

Equations:

ExtrapolatedQuantity = PerceivedQuantity *
 (1 + FractionalTrend * (TimeToPerceiveQuantity + ForecastHorizon))
 Units: Quantity units
ForecastHorizon =
 Units: year
FractionalTrend = (PerceivedQuantity - HistoricalQuantity) /
 (HistoricalQuantity * DurationOverWhichToCalculateTrend)
 Units: fraction/year
PerceivedQuantity = SMOOTH(ActualQuantity, TimeToPerceiveQuantity)
 Units: Quantity units
ActualQuantity =
 Units: Quantity units
TimeToPerceiveQuantity =
 Units: year
HistoricalQuantity = INTEG(ChangeInHistoricalQuantity, PerceivedQuantity)
 Units: Quantity units
ChangeInHistoricalQuantity = (PerceivedQuantity - HistoricalQuantity) /
 DurationOverWhichToCalculateTrend
 Units: Quantity units / year
DurationOverWhichToCalculateTrend =
 Units: years

Description: The extrapolation works on the fractional trend which is the output of a
Trend Molecule. The extrapolation is simply the current observation (the perceived
quantity) multiplied by a factor representing how much it will grow by the end of the
forecast horizon. This factor is the fractional trend multiplied by the forecast horizon and
by the time it takes to perceive current conditions. Using the time to perceive current
conditions extrapolates from the observation, which is necessarily lagged, to the current

Historical
QuantityChangeIn

Historical
Quantity

Perceived
Quantity

TimeTo
Perceive
Quantity

DurationOver
WhichTo

CalculateTrend

Fractional
Trend

Extrapolated
Quantity

Forecast
Horizon

Actual
Quantity

Molecules of Structure Page 47 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

time. Then, using the forecast horizon extrapolates from the current time to the time of
the forecast horizon. However, this degree of exactness is unknown in the literature and
unlikely to characterize actual trend extrapolations.

Behavior: The extrapolated forecast will be accurate for an exponentially growing
quantity.

Classic examples: Extrapolations are often used to decide how much to order (or to
begin construction of) in order to have the proper number of orders arriving (amount of
construction coming on line) at the point in the future when we can expect our order to be
filled.

Caveats: Extrapolation within an otherwise oscillatory system often will make the system
more oscillatory. Note: this may be realistic.

Technical notes: What is used in the molecule is a linear extrapolation. It is roughly
correct. The precise forecast would use linear extrapolation to bring the perception lag
“forward” and then use continuous compounding up to the forecast horizon.

Molecules of Structure Page 48 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

Coflow
There are two equivalent
ways of representing a
coflow. The Traditional
coflow and the Hines
coflow

Immediate parents:
Smooth(first order)
Ultimate parents:
Close gap

Used by: Cascaded
Coflow, Coflow with
Experience

Problem solved: How to
keep track of a
characteristic of a stock.

Equations:

Traditional Coflow

avg characteristic =Characteristic/ Fundamental quantity
 Units: characteristic units/widget
Fundamental quantity =
 INTEG(inflow of fundamental quantity-outflow of fundamental quantity, ___)
 Units: widgets
inflow of fundamental quantity = ___
 Units: widgets/Year
outflow of fundamental quantity = ___
 Units: widgets/Year
Characteristic = INTEG(addl characteristic-decrease of characteristic,
 Fundamental quantity*characteristic of new stuff)
 Units: characteristic units
addl characteristic = inflow of fundamental quantity*characteristic of new stuff
 Units: characteristic units/Year
characteristic of new stuff = ___
 Units: characteristic units/widget
decrease of characteristic = outflow of fundamental quantity*avg characteristic
 Units: characteristic units/Year

Molecules of Structure Page 49 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

Hines Coflow

Avg characteristic = INTEG(Change in characteristic,characteristic of new stuff,___)
 Units: characteristic units/widget
Change in characteristic = (characteristic of new stuff-Avg characteristic)/dilution time
 Units: characteristic units/widget/Year
characteristic of new stuff =___
 Units: characteristic units/widget
dilution time = Fundamental quantity/inflow of fundamental quantity
 Units: Year
Fundamental quantity =
 INTEG(inflow of fundamental quantity-outflow of fundamental quantity, ___)
 Units: widgets
inflow of fundamental quantity = ___
 Units: widgets/Year
outflow of fundamental quantity = ___
 Units: widgets/Year

Description: The Hines coflow makes clearer the relationship of coflow to smooth or
Goal-Gap formulations. The traditional coflow makes clearer why it is called a “coflow”.
The Hines Coflow makes clear that the characteristic is a smooth with a variable time
“constant”. The dilution time determines how quickly the current characteristic will
change to or be diluted by the new characteristic. The traditional coflow shows that the
flows of the characteristic are linked to the flows of the fundamental quantity.

Behavior: To anticipate the behavior think of how the smooth operates.

Classic examples: A firm continually borrows money at different interest rates. The
amount borrowed is the fundamental quantity. The average interest rate is the average
quantity. A business continually hires people with different skill levels. The number of
people is the fundamental quantity. Average amount of skill is the average characteristic.

Caveats: The outflow of the fundamental quantity has the average characteristic. In some
situations this is accurate. In many situations it is accurate enough. For situations where
it is not good enough, see the cascaded coflow. In the Hines coflow be careful of having
the dilution time be too small relative to DT. This can happen if the fundamental quantity
is (close to) zero. Be careful of divide by zero errors: In the Hines coflow a divide-by-
zero will occur if the inflow of the fundamental quantity equals zero; in the Traditional
coflow the divide by zero problem will occur if the fundamental quantity equals zero.

Technical notes: None

Molecules of Structure Page 50 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

Coflow with Experience
There are two
equivalent
versions, the
Traditional and the
Hines.

Immediate
parents: Coflow
Ultimate parents:
Close gap
Used by: None

Problem solved:
How to represent a
workforce in which
new people have
less experience,
and where
everyone gains
experience with
time

Equations:

Traditional Coflow

average experience = Total experience / Workforce
 Units: Years/person
Workforce = INTEG(hiring - attrition , Initial Workforce)
 Units: People
hiring = ___
 Units: People/Year
attrition = Workforce / TimeToQuitOrRetire
 Units: People/Year
Initial Workforce = INITIAL(hiring * TimeToQuitOrRetire)
 Units: People
TimeToQuitOrRetire = ___
 Units: Year
Total experience = INTEG(Add'l experience from new hires + gaining experience
 - experience loss , Workforce * (average experience of new hire
 + rate of experience gain * Workforce / attrition))

Molecules of Structure Page 51 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

 Units: Year
experience loss = attrition * average experience
 Units: dmnl
Add'l experience from new hires = average experience of new hire * hiring
 Units: dmnl
average experience of new hire = ___
 Units: Years/person
gaining experience = Workforce * rate of experience gain
 Units: dmnl
rate of experience gain = 1
 Units: Years/(Year*person)

Hines Coflow

Average experience =
 INTEG(Change in average experience + rate of experience gain,
 average experience of new hire + Workforce / attrition)
 Units: Years
rate of experience gain = 1
 Units: Years/Year
Change in average experience =
 (average experience on new hire - Average experience) / experience dilution time
 Units: fraction
average experience on new hire = ___
 Units: Years
experience dilution time = Workforce/hiring
 Units: Year
hiring = ___
 Units: People/Year
Workforce = INTEG(hiring-attrition, hiring*TimeToQuitOrRetire)
 Units: People
attrition = Workforce/TimeToQuitOrRetire
 Units: People/Year
TimeToQuitOrRetire = ____
 Units: Year

Description: This formulation modifies the regular coflow by adding a steady
accumulation of experience as time goes by. Experience can be used as an input to an
effect on productivity or quality.

Behavior: Left to the reader.

Classic examples: None

Caveats: None

Technical notes: None

Molecules of Structure Page 52 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

Cascaded Coflow
Hines Cascaded Coflow

Old Material
Dilution Time

Change in
characteristic
of old material Avg Characteristic

of Old Material

Mature
material

dilution time

Change in
characteristic of
mature material Avg

characteristic of
Mature material

Time to flow
out

Time to age

Material
flowing out

Material
aging

Old materialMature
materialMaterial

flowing in

Time to
mature

Material
maturing

New material

dilution time of
new Material

Change in
characteristic

of new materialAvg characteris
tic new material

characteristic
of new stuff

Traditional Cascaded Coflow

Old Material
Avg

characteristic

decrease of
old material

characteristic

Old Material
Characteristic

Mature
Material Avg
characteristic

characteristic
tranfering from
mature to old

Mature Materia
lCharacteristic

Time to flow
out

Time to age

Material
flowing out

Material
aging

Old material
Mature
materialMaterial

flowing in

Time to
mature

Material
maturing

New material

characteristic
of new stuff

New Material
Avg

characteristic

characteristic
transfering from
new to mature

addl new
Material

characteristic

New Material
Characteristic

Immediate parents Aging chain
Traditional: Traditional coflow, Broken cascade, Cascaded levels
Hines: Hines coflow, Smooth (higher order)
Ultimate parents: Close gap, Bathtub, Go to zero

Used by: None

Molecules of Structure Page 53 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

Problem solved: How to represent a characteristic of a fundamental quantity where the
outflow from the fundamental quantity is older than the average.

Equations:

Traditional Cascaded Coflow Equations

Change in characteristic of old material =
 (Avg characteristic of Mature material- Avg Characteristic of Old Material) /
 old Material Dilution Time
 Units: characteristic units/(widget*Year)
Avg characteristic of Mature material = INTEG(
 Change in characteristic of mature material, Avg characteristic new material)
 Units: characteristic units/widget
Avg Characteristic of Old Material = INTEG(
 Change in characteristic of old material, Avg characteristic of Mature material)
 Units: characteristic units/widget
Change in characteristic of mature material =
 (Avg characteristic new material- Avg characteristic of Mature material) /
 Mature material dilution time
 Units: characteristic units/(widget*Year)
Old Material Dilution Time = Old material / Material aging
 Units: Year
dilution time of new Material = New material / Material flowing in
 Units: Year
Mature material dilution time = Mature material / Material maturing
 Units: Year
Avg characteristic new material = INTEG(
 Change in characteristic of new material, characteristic of new stuff)
Units: characteristic units/widget
Change in characteristic of new material =
 (characteristic of new stuff - Avg characteristic new material) / dilution time of new Material
 Units: characteristic units/(widget*Year)
characteristic of new stuff = ___
 Units: characteristic units/widget
Material aging = Mature material / Time to age
 Units: stuff/Year
Material flowing in = ___
 Units: stuff/Year
Material flowing out = Old material / Time to flow out
 Units: stuff/Year
Material maturing = New material / Time to mature
 Units: stuff/Year
Mature material = INTEG(Material maturing - Material aging , Material maturing * Time to age)
 Units: stuff
New material = INTEG(

Molecules of Structure Page 54 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

 Material flowing in - Material maturing , Material flowing in * Time to mature)
 Units: stuff
Old material = INTEG(Material aging - Material flowing out , Material aging * Time to flow out)
 Units: stuff
Time to age = ___
 Units: Year
Time to flow out = ___
 Units: years
Time to mature = ___
 Units: Year

Hines Cascaded Coflow Equations

Avg characteristic new material = INTEG(
 Change in characteristic of new material, characteristic of new stuff)
 Units: characteristic units/widget
Change in characteristic of new material = (
 characteristic of new stuff - Avg characteristic new material)/dilution time of new Material
 Units: characteristic units/widget/Year
characteristic of new stuff = ___
 Units: characteristic units/widget
dilution time of new Material = New material/Material flowing in
 Units: Year
Avg characteristic of Mature material = INTEG(
 Change in characteristic of mature material,Avg characteristic new material)
 Units: characteristic units/widget
Change in characteristic of mature material =
 (Avg characteristic new material -Avg characteristic of Mature material)/
 Mature material dilution time
 Units: characteristic units/widget/Year
Mature material dilution time = Mature material/Material maturing
 Units: Year
Avg Characteristic of Old Material = INTEG(
 Change in characteristic of old material,Avg characteristic of Mature material)
 Units: characteristic units/widget
Change in characteristic of old material =
 (Avg characteristic of Mature material - Avg Characteristic of Old Material)/
 Old Material Dilution Time
 Units: characteristic units/widget/Year
Old Material Dilution Time = Old material/Material aging
 Units: Year
New material = INTEG(Material flowing in-Material maturing,Material flowing in*Time to mature)
 Units: stuff
Material flowing in = ___
 Units: stuff/Year

Molecules of Structure Page 55 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

Material maturing = New material / Time to mature
 Units: stuff/Year
Time to mature = ___
 Units: Year
Mature material =INTEG(Material maturing-Material aging,Material maturing*Time to age)
 Units: stuff
Material aging = Mature material/Time to age
 Units: stuff/Year
Time to age = ____
 Units: Year
Old material = INTEG(Material aging-Material flowing out,Material aging*Time to flow out)
 Units: stuff
Material flowing out = Old material/Time to flow out
 Units: stuff/Year
Time to flow out = ___
 Units: years

Description: In the Hines coflow, each average characteristic is a “coflow-smooth”
whose goal is the prior “coflow-smooth”. In the traditional coflow, the outflow of one
coflow-level flows into the next. The two formulations are mathematically the same.

Behavior: Obvious.

Classic examples: None

Caveats: None

Technical notes: None

Molecules of Structure Page 56 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

Dimensionless Input To Function
Immediate parents: None
Ultimate parents: None

Used by: Univariate anchoring and
adjustment

Problem solved: How to create a
table function (also known as lookup
function) that is easy to
parameterize.

Equations:

functionOfInput = functionOfInput f(Relative Input)
 Units: output units
functionOfInput f = [table (or “lookup”) function]
 Units: output units
Relative Input = Input/Reference Input
 Units: dimensionless
Input = ___
 Units: Input units
Reference Input = ___
 Units: Input units

Description: The key here is that the input to the table function is measured relative to a
reference. It is usually easier for people to judge what value the function should produce
for an input that is some factor of a reference, than to judge the value of the function for a
raw input. The most important exception is a domain-expert who may find it easier to
parameterize the function in terms of raw inputs.

The reference input is often, but not always, a constant.

Behavior: No stocks, so no endogenous behavior.

Classic examples: Effect of inventory on sales.

Caveats: Although this molecule makes it easier for a modeler who is not intimately
familiar with the substantive area being modeled; this molecule can make it more difficult
for the client who is extremely familiar with the subject. People with tremendous
experience in a subject area may find it easier to parameter a function when the input is a
raw, dimensioned quantity.

Technical notes: An added benefit of this structure is that it can be reparameterized for
tuning or sensitivity testing by changing the value of the reference input (if the reference
input is a constant). If the function takes raw values, the only way to reparameterize is to
change (i.e. “redraw”) the function.

Input

Reference
Input

Relative
Input

function
OfInput<functionOfInput f>

Molecules of Structure Page 57 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

Univariate Anchoring and Adjustment

Immediate parents: Dimensionless
input to function
Ultimate parents: Dimensionless input
to function

Used by: Multivariate anchoring and
adjustment, Nonlinear split, Level
protected by level, Effect of fatigue,
overtime, Level protected by pdy

Problem solved: How to model the
human process of judging an
“appropriate” value (e.g. actual value or
ideal value) of some constant or
variable. How to create a user-defined
function whose equilibrium value is easy to change.

Equations:

value = Adjustment * anchor
 Units: valueUnits
anchor = ___
 Units: valueUnits
Adjustment = Adjustment f (PressureToAdjustAwayFromTheAnchor)
 Units: dmnl
Adjustment f () = A user defined function that contains the point (1,1)
 Units: dmnl
PressureToAdjustAwayFromTheAnchor =
 currentValueOfSomeVariable / normalValueOfSomeVariable
 Units: fraction
currentValueOfSomeVariable = ___
 Units: unitsOfSomeVariable
normalValueOfSomeVariable = ___
 Units: unitsOfSomeVariable

Description: Anchoring and Adjustment is a common judgmental strategy (Hogarth).
Rather than finding a new quantity by solving a problem from scratch, people often will
simply take a known quantity (the anchor) and adjust it to account for new factors or
pressures. For example I don’t know the distance from London to Hamburg. So, I might
start with the distance from London to Berlin (the anchor), which I happen to know.
Because I know that Hamburg is closer to London than Berlin, I’ll “adjust” the value
downward by “ a bit” say 20%. The structure above represents this process: A normal
(or maximum or minimum) value – the “anchor” -- is multiplied (“adjusted”) by the effect
(or pressure) of some piece of information. The effect has a neutral values of 1.

value

Adjustment

anchor

currentValueOf
SomeVariable

normalValueOf
SomeVariable

PressureTo
AdjustAwayFrom

TheAnchor

Adjustment f

Molecules of Structure Page 58 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

Behavior: No stocks, so no dynamics.

Classic examples: Many

Caveats: None

Technical notes: People using anchoring and adjustment in the real world often fail to
adjust enough.

Molecules of Structure Page 59 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

Level Protected by Level

Level to
drain

draining

Effect of level on
draining

Desired
Level

Relative
Level

Effect of level on
draining f

Desired
draining

Immediate parents: Univariate anchoring and adjustment
Ultimate parents: Dmnl input to function

Used by: Backlog shipping protected by level

Problem solved: How to ensure that a stock does not go negative

Equations:

Level to drain = INTEG(-draining,Desired Level, ___)
 Units: Widgets
draining = Desired draining * Effect of level on draining
 Units: Widgets/Month
Desired draining =
 Units: Widgets/Month
Effect of level on draining = Effect of level on draining f(Relative Level)
 Units: dmnl
Effect of level on draining f = user defined funciton
 Units: dmnl
Relative Level = Level to drain / Desired Level
 Units: dmnl
Desired Level =
 Units: Widgets

Description: The actual outflow is the product of the desired draining and a function that
shuts off the outflow as the level approaches zero. This formulation is considered much
more desirable than an IF-THEN-ELSE statement both because it is less subject to
integration error and, even more importantly, because it is appropriate for a stock that
aggregates many items which are not identical (e.g. a finished goods inventory containing
many different products and models).

Behavior: The level will not go below zero.

Molecules of Structure Page 60 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

Classic examples: Shipping out of an inventory. The inventory must not go negative.

Caveats: Watch out for functions that drop suddenly to zero, which may introduce an
integration error that lets the level go slightly negative before it shuts off.

Technical notes: The table function should go through (0,0). A table function going
through (1,1) will be easier to put into equilibrium. To represent probabilistic stocking
out, the function should lie above the 45 degree line in the region below the point (1,1).

Molecules of Structure Page 61 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

Multivariate Anchoring and Adjustment

valueanchor

Adjustment #1

currentValueOf
SomeVariable #1

normalValueOf
SomeVariable #1

PressureToAdjust
AwayFromThe

Anchor #1Adjustment f #1

Adjustment #2

currentValueOf
SomeVariable #2

normalValueOf
SomeVariable #2

PressureToAdjust
AwayFromThe

Anchor #2
Adjustment f #2

Adjustment #3

currentValueOf
SomeVariable #3

normalValueOf
SomeVariable #3PressureTo

AdjustAwayFrom
TheAnchor #3

Adjustment f #3

Immediate parents: Univariate anchoring and adjustment
Ultimate parents: Dimensionless input To Function

Used by: Productivity, Quality, Sea anchor and adjustment, Multi-dimensional split

Problem solved: How to model the human process of judging the “appropriate” value
(e.g. actual value or ideal value) of some constant or variable. How to represent
something that is a function of many things. How to create a function whose equilibrium
value is easy to change.

Equations:

value = Anchor * "Adjustment #1" * "Adjustment #2" * "Adjustment #3"
 Units: cases
Anchor = ___
 Units: cases
"Adjustment #1" = "Adjustment f #1" ("PressureToAdjustAwayFromTheAnchor #1")
 Units: dmnl
"Adjustment #2" = "Adjustment f #2" ("PressureToAdjustAwayFromTheAnchor #2")
Units: dmnl
"Adjustment #3" = "Adjustment f #3" ("PressureToAdjustAwayFromTheAnchor #3")
Units: dmnl
"Adjustment f #1" = user defined function
 Units: dmnl
"Adjustment f #2" = user defined function
 Units: dmnl
"Adjustment f #3" = user defined function
 Units: dmnl

Molecules of Structure Page 62 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

"PressureToAdjustAwayFromTheAnchor #1" =
 "currentValueOfSomeVariable #1" / "normalValueOfSomeVariable #1"
Units: fraction
"PressureToAdjustAwayFromTheAnchor #2" =
 "currentValueOfSomeVariable #2" / "normalValueOfSomeVariable #2"
Units: fraction
"PressureToAdjustAwayFromTheAnchor #3" =
 "currentValueOfSomeVariable #3" / "normalValueOfSomeVariable #3"
Units: fraction
"currentValueOfSomeVariable #1" = ___
 Units: unitsOfSomeVariable
"currentValueOfSomeVariable #2" = ___
 Units: unitsOfSomeVariable
"currentValueOfSomeVariable #3" = ___
 Units: unitsOfSomeVariable
"normalValueOfSomeVariable #1" = ___
 Units: unitsOfSomeVariable
"normalValueOfSomeVariable #2" = ___
 Units: unitsOfSomeVariable
"normalValueOfSomeVariable #3" = ___
 Units: unitsOfSomeVariable

Description: Anchoring and Adjustment is a common judgmental strategy (Hogarth).
Rather than finding a new quantity by solving a problem from scratch, people often will
simply take a known quantity (the anchor) and adjust it to account for new factors. For
example to judge how long it will take me to write a paper, I might start with a usual or
normal value, say one week. Then, I’ll adjust that number for various factors that are
currently different from normal – for example maybe I’m more fatigued than usual, so I’ll
lengthen the estimate by ten percent; perhaps the subject is one that I’ve written about
many times in the past and so I’ll lower my estimate by 15%; and so on to account for
other factors like distractions, the number of figures in the paper, etc. The structure above
represents this process: A normal (or maximum or minimum) value – the “anchor” -- is
multiplied (“adjusted”) by a series of factors representing the effects of various other
quantities. The effects have neutral values of 1.

Behavior: None.

Classic examples: The birth rate and the death rate in Forrester’s World Dynamics.

Caveats: When modeling multivariate anchoring and adjustment, people often over-
estimate the strengths of the effects during initial parameterization.

Technical notes: Although the original system dynamics simulation modeling language
(DYNAMO) allowed users to design their own single-input functions (Table Functions), it
did not permit users to design multi-input functions. Since then, this formulation has filled
the need for multi-input functions. Although limited in some ways, this formulation is easy

Molecules of Structure Page 63 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

for the modeler to visualize (a general fourth-dimensional function would be difficult) and
easy to explain.

Molecules of Structure Page 64 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

Productivity (PDY)
Immediate parents:
Multivariate anchoring
and adjustment
Ultimate parents:
Dmnl input to f()

Used by: None

Problem solved: How
to determine productivity

Equations:

Productivity = NormalProductivity * EffectOfFatigueOnProductivity *
EffectOfSchedulePressureOnProductivity * EffectOfWorkAdequacyOnProductivity *
EffectAverageSkillOnProductivity
 Units: widgets/(person*Month)
AverageSkill = ___
 Units: fraction
EffectAverageSkillOnProductivity = EffectAverageSkillOnProductivity f (AverageSkill)
 Units: dmnl
EffectAverageSkillOnProductivity f = user defined function
 Units: dmnl
NormalProductivity = ___
 Units: widgets/(person*Month)
EffectOfFatigueOnProductivity = EffectOfFatigueOnProductivity f (Fatigue)
 Units: dmnl
EffectOfFatigueOnProductivity f = user defined function
 Units: dmnl
Fatigue = ___
 Units: fraction
EffectOfSchedulePressureOnProductivity =
 EffectOfSchedulePressureOnProductivity f(SchedulePressure)
 Units: dmnl
EffectOfSchedulePressureOnProductivity f = user defined function
 Units: dmnl
SchedulePressure = ___
 Units: fraction
EffectOfWorkAdequacyOnProductivity =

Productivity

Normal
Productivity

EffectOfFatigue
OnProductivity

EffectOfSchedule
PressureOn
Productivity

EffectOfWork
AdequacyOn
Productivity

Fatigue Schedule
Pressure

Work
Adequacy

<EffectOf
FatigueOn

Productivity f>

<EffectOfSchedule
PressureOn

Productivity f>

<EffectWork
AdequacyOn

Productivity f>

EffectAverage
SkillOn

Productivity

AverageSkill

EffectAverage
SkillOn

Productivity f

Molecules of Structure Page 65 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

 EffectWorkAdequacyOnProductivity f (WorkAdequacy)
 Units: dmnl
EffectWorkAdequacyOnProductivity f = user defined function)
 Units: dmnl
WorkAdequacy = ___
 Units: fraction

Description: The particular effects shown above are illustrative, though common in
project models. Productivity is usually defined to mean speed that a single worker (or
single machine or other resource) produces. Quality (the fraction of production that is
actually done correctly) is modeled separately.

Behavior: No levels, so no endogenous dynamics

Classic examples: Project models

Caveats: None

Technical notes: The first project models were developed by the consulting company
Pugh Roberts. These early models used the abbreviation “PDY” for “productivity”. The
same structure can be used to represent quality. Often in project models things that affect
productivity also affect quality (though through different functions). An interesting effect
in these formulations is the effect of schedule pressure which is usually represented as a
positively sloped function for productivity (meaning more schedule pressure makes people
work faster) and a negatively sloped function for quality (meaning as people work faster
they make more mistakes).

Molecules of Structure Page 66 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

Quality

Immediate parents:
Multivariate anchoring and
adjustment
Ultimate parents: Dmnl
input to f()

Used by: None

Problem solved: How to
determine quality

Equations:

Quality = min(1,NormalQuality * EffectOfFatigueOnQuality * EffectOfSchedulePressureOnQuality *
EffectOfWorkAdequacyOnQuality * EffectAverageSkillOnQuality)
 Units: widgets/(person*Month)
AverageSkill = ___
 Units: fraction
EffectAverageSkillOnQuality = EffectAverageSkillOnQuality f (AverageSkill)
 Units: dmnl
EffectAverageSkillOnQuality f = user defined function
 Units: dmnl
NormalQuality = ___
 Units: widgets/(person*Month)
EffectOfFatigueOnQuality = EffectOfFatigueOnQuality f (Fatigue)
 Units: dmnl
EffectOfFatigueOnQuality f = user defined function
 Units: dmnl
Fatigue = ___
 Units: fraction
EffectOfSchedulePressureOnQuality =
 EffectOfSchedulePressureOnQuality f(SchedulePressure)
 Units: dmnl
EffectOfSchedulePressureOnQuality f = user defined function
 Units: dmnl
SchedulePressure = ___
 Units: fraction
EffectOfWorkAdequacyOnQuality =
 EffectWorkAdequacyOnQuality f (WorkAdequacy)

Quality

Normal
Quality

EffectOfFatigue
OnQuality

EffectOfSchedule
PressureOn

Quality

EffectOfWork
AdequacyOn

Quality

Fatigue Schedule
Pressure

Work
Adequacy

EffectOf
FatigueOn
Quality f

EffectOfSchedule
PressureOn

Quality f

EffectWork
AdequacyOn

Quality f

EffectAverage
SkillOnQuality

AverageSkill

EffectAverage
SkillOnQuality f

Molecules of Structure Page 67 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

 Units: dmnl
EffectWorkAdequacyOnQuality f = user defined function)
 Units: dmnl
WorkAdequacy = ___
 Units: fraction

Description: The particular effects shown above are illustrative, though common in
project models. Quality is defined as the fraction of work that is being done correctly. In
project models, productivity – meaning the speed with which work gets done (whether or
not its correctly done -- is defined separately from quality.

Behavior: No levels, so no endogenous dynamics

Classic examples: Project models

Caveats: Quality should not go above 1 or below 0. Usually the table functions won’t go
below zero, but they may go above one. Consequently, the result of multiplying normal
quality by all the table functions could be a number greater than one. The use of the MIN
function as shown in the equation for quality is a common solution to this risk.

Technical notes: The same structure can be used to represent productivity. Often in
project models things that affect quality also affect productivity (though through different
functions). An interesting item in these formulations is the effect of schedule pressure
which is usually represented as a positively sloped function for productivity (meaning
more schedule pressure makes people work faster) and as a negatively sloped function for
quality (meaning as people work faster they make more mistakes).

Molecules of Structure Page 68 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

Sea Anchor and Adjustment

Anchor
ChangeIn
Anchor

Time to change
anchor

InitialAnchor value

Adjustment
#1

currentValueOf
SomeVariable #1

normalValueOf
SomeVariable #1

PressureToAdjustAway
FromTheAnchor #1

Adjustment f
#1

Adjustment
#2

currentValueOf
SomeVariable #2

normalValueOf
SomeVariable #2

PressureToAdjustAway
FromTheAnchor #2

Adjustment f
#2

Adjustment
#3

currentValueOf
SomeVariable #3

normalValueOf
SomeVariable #3

PressureToAdjustAway
FromTheAnchor #3

Adjustment f #3

Immediate parents: Multivariate anchoring and adjustment, Smooth (first order)
Ultimate parents: Dimensionless input to function, Close gap

Used by: Protected sea anchoring and adjustment, Sea anchor pricing

Problem solved: How to represent a process by which people will “grope” toward a
proper quantity. How to form the anchor in an Anchoring and Adjustment process.

Equations:

value = Anchor * "Adjustment #1" * "Adjustment #2" * "Adjustment #3"
 Units: cases
Anchor = INTEG(ChangeInAnchor , InitialAnchor)
 Units: cases
InitialAnchor = ___
 Units: cases
ChangeInAnchor = (value - Anchor) / Time to change anchor
 Units: cases/Month
Time to change anchor = ___
 Units: Month
"Adjustment #1" = "Adjustment f #1" ("PressureToAdjustAwayFromTheAnchor #1")
 Units: dmnl
"Adjustment #2" = "Adjustment f #2" ("PressureToAdjustAwayFromTheAnchor #2")

Molecules of Structure Page 69 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

 Units: dmnl
"Adjustment #3" = "Adjustment f #3" ("PressureToAdjustAwayFromTheAnchor #3")
 Units: dmnl
"Adjustment f #1" = user defined function
 Units: dmnl
"Adjustment f #2" = user defined function
 Units: dmnl
"Adjustment f #3" = user defined function
 Units: dmnl
"PressureToAdjustAwayFromTheAnchor #1" =
 "currentValueOfSomeVariable #1" / "normalValueOfSomeVariable #1"
Units: fraction
"PressureToAdjustAwayFromTheAnchor #2" =
 "currentValueOfSomeVariable #2" / "normalValueOfSomeVariable #2"
Units: fraction
"PressureToAdjustAwayFromTheAnchor #3" =
 "currentValueOfSomeVariable #3" / "normalValueOfSomeVariable #3"
Units: fraction
"currentValueOfSomeVariable #1" = ___
 Units: unitsOfSomeVariable
"currentValueOfSomeVariable #2" = ___
 Units: unitsOfSomeVariable
"currentValueOfSomeVariable #3" = ___
 Units: unitsOfSomeVariable
"normalValueOfSomeVariable #1" = ___
 Units: unitsOfSomeVariable
"normalValueOfSomeVariable #2" = ___
 Units: unitsOfSomeVariable
"normalValueOfSomeVariable #3" = ___
 Units: unitsOfSomeVariable

Description: This is an elaboration on the judgmental strategy known as anchoring and
adjustment. In anchoring and adjustment a judgment is made (or a quantity) by taking an
underlying quantity (an anchor) and adjusting it on the basis of current information or
pressures. This formulation contains the added idea that the anchor is formed on the bases
of the past judgments.

Behavior: A positive pressure will cause the quantity to immediately jump above the
anchor. In the pressure persists, the quantity will begin to rise as the anchor does. If the
pressure drops, the quantity will again respond immediately.

Classic examples: Anchor Pricing.

Caveats: This structure will get stuck at zero if the anchor becomes zero. To solve this
use the protected sea anchoring and adjustment molecule.

Technical notes: Note there are two kinds of “parameters” to set: the adjustment time
and the user function (s).

Molecules of Structure Page 70 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

Protected Sea Anchoring and Adjustment

Anchor
ChangeIn
AnchorTime to change

anchor

InitialAnchor

minimum
anchorTarget

Anchor

value

Adjustment #1

currentValueOfS
omeVariable #1

normalValueOfSome
Variable #1 PressureToAdjustAway

FromTheAnchor #1

Adjustment f #1
Adjustment #2

currentValueOf
SomeVariable #2

normalValueOf
SomeVariable #2

PressureToAdjustAway
FromTheAnchor #2

Adjustment f #2
Adjustment #3

currentValueOf
SomeVariable #3

normalValueOf
SomeVariable #3

PressureToAdjustAway
FromTheAnchor #3

Adjustment f #3

Immediate parents: Sea anchor and adjustment
Ultimate parents: Dimensionless input to function

Used by: Protected Anchor Pricing

Problem solved: Represent a judgmental strategy that will grope toward a solution, and
which will not get “stuck” at zero.

Equations:

value = Anchor * "Adjustment #1" * "Adjustment #2" * "Adjustment #3"
 Units: cases
Anchor = INTEG(ChangeInAnchor , InitialAnchor)
 Units: cases
InitialAnchor = ___
 Units: cases
ChangeInAnchor = (Target Anchor - Anchor) / Time to change anchor
 Units: cases/MonthTime to change anchor = ___

Molecules of Structure Page 71 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

 Units: Month
Target Anchor = MAX (value , minimum anchor)
 Units: cases
minimum anchor = ___
 Units: cases
"Adjustment #1" = "Adjustment f #1" ("PressureToAdjustAwayFromTheAnchor #1")
 Units: dmnl
"Adjustment #2" = "Adjustment f #2" ("PressureToAdjustAwayFromTheAnchor #2")
 Units: dmnl
"Adjustment #3" = "Adjustment f #3" ("PressureToAdjustAwayFromTheAnchor #3")
 Units: dmnl
"Adjustment f #1" = user defined function
 Units: dmnl
"Adjustment f #2" = user defined function
 Units: dmnl
"Adjustment f #3" = user defined function
 Units: dmnl
"PressureToAdjustAwayFromTheAnchor #1" =
 "currentValueOfSomeVariable #1" / "normalValueOfSomeVariable #1"
 Units: fraction
"PressureToAdjustAwayFromTheAnchor #2" =
 "currentValueOfSomeVariable #2" / "normalValueOfSomeVariable #2"
 Units: fraction
"PressureToAdjustAwayFromTheAnchor #3" =
 "currentValueOfSomeVariable #3" / "normalValueOfSomeVariable #3"
 Units: fraction
"currentValueOfSomeVariable #1" = ___
 Units: unitsOfSomeVariable
"currentValueOfSomeVariable #2" = ___
 Units: unitsOfSomeVariable
"currentValueOfSomeVariable #3" = ___
 Units: unitsOfSomeVariable
"normalValueOfSomeVariable #1" = ___
 Units: unitsOfSomeVariable
"normalValueOfSomeVariable #2" = ___
 Units: unitsOfSomeVariable
"normalValueOfSomeVariable #3" = ___
 Units: unitsOfSomeVariable

Description: This molecule adds to its parent, Anchoring and Adjustment, a Target
Anchor. The Target Anchor is the maximum of either the quantity itself or the smallest
value that the anchor should take on.

Behavior: Similar to Anchoring and Adjustment, except it will not get stuck at zero (as
long as the minimum anchor is greater than zero.

Classic examples: Protected sea anchor pricing

Molecules of Structure Page 72 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

Caveats: None

Technical notes: The minimum anchor should be set above zero to ensure that this
formulation will not get stuck at zero. There are two kinds of parameters that determine
the dynamics the time constant and the user-defined functions.

Molecules of Structure Page 73 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

Sea Anchor Pricing

Underlying
Price

ChangeIn
UnderlyingPrice

Price

Time to change
underlying price

TimeToChange
UnderlyingMargin

Underlying
Margin

ChangeIn
Underlying

Margin

Margin
Price.

cost

Relative
Inventory

EffectOf
InventoryOn

Price

Inventory

Target
Inventory

Relative
MarketShare

EffectOfMarket
ShareOnPrice

MarketShare

targetMarket
Share

EffectOf
InventoryOn

Price f

EffectOfMarket
ShareOnPrice f

Relative
Inventory.

EffectOfInventory
OnMargin

Inventory.

Target
Inventory.

Relative
MarketShare.

EffectOfMarket
ShareOnMargin

Market
Share.

targetMarket
Share.

EffectOf
InventoryOn

Margin f

EffectOfMarket
ShareOnMargin f

pressureTo
ChangePrice

pressureTo
ChangeMargin

Immediate parents: Sea Anchoring and Adjustment
Ultimate parents: Dmnl input to function, Close gap

Used by: Protected sea anchor pricing, Smooth pricing

Problem solved: How to formulate price setting

Equations:
Equations for price form

Price = UnderlyingPrice * pressureToChangePrice
 Units: $/widget
UnderlyingPrice = INTEG(ChangeInUnderlyingPrice, ___)
 Units: $/widget
ChangeInUnderlyingPrice =(Price - UnderlyingPrice) /Time to change underlying price
 Units: $/widget/year
Time to change underlying price = ___
Units: year
pressureToChangePrice = EffectOfInventoryOnPrice * EffectOfMarketShareOnPrice
 Units: dmnl
EffectOfInventoryOnPrice = EffectOfInventoryOnPrice f(RelativeInventory)
 Units: dmnl

Molecules of Structure Page 74 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

EffectOfInventoryOnPrice f = user defined function
 Units: dmnl
EffectOfMarketShareOnPrice = EffectOfMarketShareOnPrice f(RelativeMarketShare)
 Units: dmnl
EffectOfMarketShareOnPrice f = user defined function
 Units: dmnl

Equations for margin form

"Price." = cost * Margin
 Units: $/widget
cost = ___
 Units: $/widget
Margin = UnderlyingMargin * pressureToChangeMargin
 Units: fraction
UnderlyingMargin = INTEG(ChangeInUnderlyingMargin , ___)
 Units: fraction
ChangeInUnderlyingMargin = (Margin - UnderlyingMargin) / TimeToChangeUnderlyingMargin
 Units: fraction/year
TimeToChangeUnderlyingMargin = ___
 Units: year
pressureToChangeMargin = EffectOfInventoryOnMargin * EffectOfMarketShareOnMargin
 Units: dmnl
EffectOfInventoryOnMargin = EffectOfInventoryOnMargin f ("RelativeInventory.")
 Units: dmnl
EffectOfInventoryOnMargin f = user defined function
 Units: dmnl
EffectOfMarketShareOnMargin = EffectOfMarketShareOnMargin f ("RelativeMarketShare.")
 Units: dmnl
EffectOfMarketShareOnMargin f = user defined function
 Units: dmnl

Equations common to both the “price” and the “margin” forms

RelativeInventory = Inventory / TargetInventory
 Units: fraction
TargetInventory = ___
 Units: widgets
Inventory = ___
 Units: widgets
RelativeMarketShare = MarketShare / targetMarketShare
 Units: fraction
targetMarketShare = ___
 Units: $/widget
MarketShare = ___

Molecules of Structure Page 75 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

 Units: $/widget

Description: Usually the pressure to change price will be a function (often of relative
inventory) or the product of several functions. Price setters have a sense for a fair or
underlying price. Pressures that they face cause them to bump the price above or below
the underlying price. After bumping price, the price setter waits. If the response is
inadequate, she bumps again. Alternatively, one can view this as a process in which the
price setter bumps the price, and then -- if pressures cause her to keep the price high --
begins to incorporate the new price into her conception of a fair or underlying price.
BEHAVIOR
Price

12.86
11.89
10.93
9.966

9
UnderlyingPrice

11.74
11.05
10.37
9.685

9
PressureToChangePrice

1.1
1.075

1.05
1.025

1
0 7.5 15

Time (year)
Behavior: If pressure is constant above 1, price and underlying price will rise
exponentially. If Pressure then returns to neutral value of one, price will drop to the
underlying price.

Classic examples: The System Dynamics National Model uses such a formulation to
represent interest rates (the price of money).

Caveats: The modeler will need to tune both the time constant and the effects
representing pressure. Very aggressive policies can lead price explosions.

Note: If underlying price gets to zero; there will be no further change -- underlying price
and price will be stuck at zero. This danger does not arise suddenly, rather in the
underlying price is almost zero; the structure will be “almost” stuck. To avoid this, one
needs to use a strategy such as that in the Protected Anchor Pricing Molecule.

Technical notes: To represent an aggressive policy use a short time constant and a steep
effect.

Molecules of Structure Page 76 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

Protected Sea Anchor Pricing

Minimum
UnderlyingPrice

Indicated
Underlying

Price

Underlying
Price

ChangeIn
Underlying

Price

Price

Time to change
underlying

price

Relative
Inventory

EffectOf
InventoryOn

Price

Inventory

Target
Inventory

Relative
Market
Share

EffectOf
MarketShare

OnPrice

Market
Share

target
Market
Share

EffectOf
InventoryOn

Price f

EffectOf
MarketShare

OnPrice fpressureTo
ChangePrice

Immediate parents: Protected sea anchoring and adjustment, Sea anchor pricing
Ultimate parents: Dmnl input to function, Close gap

Used by: None

Problem solved: How to represent pricing when the price can take on a value of (or
close to) zero.

Equations:

Price = UnderlyingPrice * pressureToChangePrice
 Units: $/widget
UnderlyingPrice = INTEG(ChangeInUnderlyingPrice, ___)
 Units: $/widget
ChangeInUnderlyingPrice =
 (IndicatedUnderlyingPrice - UnderlyingPrice) /Time to change underlying price
 Units: $/widget/year
Time to change underlying price = ___
 Units: year
IndicatedUnderlyingPrice = MAX(Price, MinimumUnderlyingPrice)
 Units: $/widget
MinimuUnderlyingPrice = ___
 Units: $/widget
pressureToChangePrice = EffectOfInventoryOnPrice * EffectOfMarketShareOnPrice

Molecules of Structure Page 77 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

 Units: dmnl
EffectOfInventoryOnPrice = EffectOfInventoryOnPrice f(RelativeInventory)
 Units: dmnl
EffectOfInventoryOnPrice f = user defined function
 Units: dmnl
EffectOfMarketShareOnPrice = EffectOfMarketShareOnPrice f(RelativeMarketShare)
 Units: dmnl
EffectOfMarketShareOnPrice f = user defined function
 Units: dmnl
RelativeInventory = Inventory / TargetInventory
 Units: fraction
TargetInventory = ___
 Units: widgets
Inventory = ___
 Units: widgets
RelativeMarketShare = MarketShare / targetMarketShare
 Units: fraction
targetMarketShare = ___
 Units: $/widget
MarketShare = ___
 Units: $/widget

Description: This molecule adds to the Sea Anchor Pricing Molecule the idea of a
minimum underlying price. The minimum underlying price represents what pricers regard
as the lowest fair or sustainable price. This might be the cost of the product.

Behavior: Same as Anchor Pricing, but the underlying price will not go below the
minimum.

Classic examples: National Model uses this formulation for the interest rate, the price of
money

Caveats: See Protected sea anchor and adjustment and Sea anchor pricing

Technical notes: See Protected sea anchor and adjustment and Sea anchor pricing

Molecules of Structure Page 78 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

Smooth Pricing

Price
changing

Price

Indicated
Price

Time to change
price

Initial Price

Relative
Inventory

EffectOfInventory
OnPrice

Inventory

Target
Inventory

Relative
MarketShare

EffectOf
Market

ShareOn
Price

Market
Share

targetMarke
tShare

EffectOf
InventoryOn

Price f

EffectOf
MarketShare

OnPrice fpressureTo
ChangePrice

Immediate parents: Sea anchor pricing
Ultimate parents: Dmnl input to function, Close gap

Used by: None

Problem solved: How to represent price setting behavior where price does not change
suddenly.

Equations:

Price = INTEG(changingPrice, InitialPrice)
 Units: $/widget
InitialPrice = ___
 Units: $/widget
changingPrice =(IndicatedPrice - UnderlyingPrice) /Time to change underlying price
 Units: $/widget/year
Time to change underlying price = ___
Units: year
IndicatedPrice = UnderlyingPrice * pressureToChangePrice
 Units: $/widget
pressureToChangePrice = EffectOfInventoryOnPrice * EffectOfMarketShareOnPrice
 Units: dmnl
EffectOfInventoryOnPrice = EffectOfInventoryOnPrice f(RelativeInventory)
Units: dmnl
EffectOfInventoryOnPrice f = user defined function
Units: dmnl

Molecules of Structure Page 79 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

EffectOfMarketShareOnPrice = EffectOfMarketShareOnPrice f(RelativeMarketShare)
Units: dmnl
EffectOfMarketShareOnPrice f = user defined function
 Units: dmnl
RelativeInventory = Inventory / TargetInventory
 Units: fraction
TargetInventory = ___
 Units: widgets
Inventory = ___
 Units: widgets
RelativeMarketShare = MarketShare / targetMarketShare
 Units: fraction
targetMarketShare = ___
 Units: $/widget
MarketShare = ___
 Units: $/widget

Description: In this version of price setting, the anchor is price itself which smooths to
the indicated price.

Behavior: Price rises exponentially as long as the pressure to adjust is greater than one.
It stops adjusting when pressure returns to 1. Note that price is “sluggish” in that it
cannot react immediately to changes in pressure, unlike the case for the otherwise similar
Anchor Pricing Molecule.

Classic examples: None

Caveats: At a price of zero, the structure gets “stuck”. Further at a price of almost zero,
the structure will almost be stuck.

Technical notes: The speed with which price changes depends on both the functions and
on the adjustment time.

Molecules of Structure Page 80 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

Effect of Fatigue
Immediate parents:
Smooth (first order),
Univariate anchoring and
adjustment

Ultimate parents: Close
gap, Dmnl input to function

Used by: None

Problem solved: How to
represent the effect of
fatigue (for example the
effect of fatigue on
productivity or on quality)

Equations:

Effect of fatigue on PDY = Effect of fatigue on PDY f(Fatigue)
 Units: dmnl
Effect of fatigue on PDY f = user defined function
 Units: dmnl
Fatigue = INTEG(GettingFatigued, 1)
 Units: Fraction
GettingFatigued = (Overtime - Fatigue) / TimeToGetFatigued
 Units: Fraction / Month
TimeToGetFatigued = ___
 Units: Month
Overtime = ____
 Units: Fraction

Description: Fatigue is a smooth of overtime. The time to get fatigued is the lag
between beginning to work at some overtime level and feeling its full effect on
productivity (or quality). A nice feature of this formulation is that fatigue is measured in
the same units a overtime. Consequently, in parameterizing the function one asks what the
impact on productivity would be of working at each level of overtime for a very long time.

Behavior: Obvious

Classic examples: Used in project models

Caveats: None

Technical notes: This formulation neatly solves the problem of (1) coming up with a
representation of the abstract idea of fatigue, and (2) representing the fact that working
hard accumulates slowly over time.

Fatigue
Getting

Fatigued

TimeToGet
Fatigued

Overtime

Effect of
fatigue on

PDY

Effect of
fatigue on

PDY f

Molecules of Structure Page 81 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

Proportional split
Immediate parents: None
Ultimate parents: None

Used by: Weighted split, Mulidimensional split, Nonlinear split

Problem solved: How to allocate a resource between two or more claims on the
resource.

Equations:

ResourcesForA = Resources * RelativeStrengthOfA'sClaim
 Units: people
ResourcesForB = Resources * RelativeStrengthOfB'sClaim
 Units: people
ResourcesForC = Resources * RelativeStrengthOfC'sClaim
 Units: people
Resources = ___
 Units: people
RelativeStrengthOfA'sClaim = StrengthOfA'sClaim / TotalClaimStrength
 Units: fraction
RelativeStrengthOfB'sClaim = StrengthOfB'sClaim / TotalClaimStrength
 Units: fraction
RelativeStrengthOfC'sClaim = StrengthOfC'sClaim / TotalClaimStrength
 Units: fraction
TotalClaimStrength = StrengthOfA'sClaim + StrengthOfB'sClaim + StrengthOfC'sClaim
 Units: Widgets
StrengthOfC'sClaim = ___
 Units: Widgets
StrengthOfA'sClaim = ___
 Units: Widgets
StrengthOfB'sClaim = ___
 Units: Widgets

Description: Each “claim” on the resource is represented by its strength. The resource is
then split up according to the strength of each claim, relative to the total “strength” of all
claims.

Behavior:

Classic examples: The decision could involve how to split up a flexible resource among
competing kinds of task. If each kind of task is represented as a stock of those tasks (e.g.
working on new R&D ideas (or basic research), working on developing those ideas, and
working on commercializing the ideas) and if the different kinds of tasks are measured in
the same units, then the quantity in each task could represent the claim on the workforce.
In this case the total strength of claim would equal the total amount of work waiting to be

Molecules of Structure Page 82 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

done. Alternatively, each claim could be the amount of workers that each area in the
R&D chain requests. In this case the total strength of claim would also be the total
number of people requested.

Caveats: This formulation will allocate all of the resource even if that means that more
resources are allocated to a particular area than are needed. Additional structure and
careful thought is required to re-allocate any excesses from one claim to another.

Technical notes: None

Molecules of Structure Page 83 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

Weighted Split
Immediate parents: Proportional split
Ultimate parents: Proportional split

Used by: None

Problem solved: How to represent
managerial preferences (or bias) in an
allocation decision

Equations:

resourcesForA = Resources * RelativeStrengthOfA'sClaim
 Units: people
ResourcesForB = Resources * RelativeStrengthOfB'sClaim
 Units: people
ResourcesForC = Resources * RelativeStrengthOfC'sClaim
 Units: people
Resources = ___
 Units: people
RelativeStrengthOfA'sClaim = WeightedStrengthOfA'sClaim / TotalClaimStrength
 Units: fraction
RelativeStrengthOfB'sClaim = WeightedStrengthOfB'sClaim / TotalClaimStrength
 Units: fraction
RelativeStrengthOfC'sClaim = WeightedStrengthOfC'sClaim / TotalClaimStrength
 Units: fraction
TotalClaimStrength = WeightedStrengthOfA'sClaim + WeightedStrengthOfB'sClaim +
 WeightedStrengthOfC'sClaim
 Units: Widgets
WeightedStrengthOfA'sClaim = StrengthOfA'sClaim * WeightForA
 Units: Widgets
WeightedStrengthOfB'sClaim = StrengthOfB'sClaim * WeightForB
 Units: Widgtets
WeightedStrengthOfC'sClaim = StrengthOfC'sClaim * WeightForC
 Units: Widgets
StrengthOfA'sClaim = ___
 Units: Widgets
StrengthOfB'sClaim = ___

Resources

Relative
StrengthOf
A'sClaim

resources
ForA

Strength
OfA's
Claim

Strength
OfB's
Claim

TotalClaim
Strength

Resources
ForB

Strength
OfC's
Claim

Relative
StrengthOf
B'sClaim

Relative
StrengthOf
C'sClaim

Resources
ForC

Weighted
StrengthOf
A'sClaim

Weighted
StrengthOf
B'sClaim

Weighted
StrengthOf
C'sClaim

Weight
ForA Weight

ForB

Weight
ForC

Molecules of Structure Page 84 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

 Units: Widgets
StrengthOfC'sClaim = ___
 Units: Widgets
WeightForA = ___2
 Units: dmnl
WeightForB = ___
 Units: dmnl
WeightForC = ___
 Units: dmnl

Description: This molecule adds to the proportional split a “managerial weight”. The
weight can represent managerial preferences (conscious or unconscious, logical or
illogical) for the allocation of resources. The weights can be constants or can respond to
other conditions in the model.

Behavior: No stocks, so no behavior

Classic examples: For example, if the allocation decision involves dividing a flexible
workforce amongh different tasks in an R&D effort, it may be that managers will weight
commercialization more heavily as unit-sales decline.

Caveats: As in the case of proportional allocation, this structure allocates all of the
resource even if that means over-allocating to one or more of the claims.

Technical notes: None

Molecules of Structure Page 85 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

Multidimensional Split

EffectOfFactorA
OnStrengthOf

Claim f

EffectOfFactorB
OnStrengthOf

Claim f

Fraction
For 2

TotalStrength
OfClaim

Fraction
For 1 Fraction

For 3

Strength
OfClaim-1

EffectOfFactorB
OnStrengthOf

Claim-1

EffectOffactorA
OnStrengthOf

Claim-1

FactorA-1

RelativeF
actorB-1

FactorB-1

Normal
FactorB

Strength
OfClaim-2

EffectOfFactorB
OnStrengthOf

Claim-2

EffectOfFactorA
OnStrengthOf

Claim-2

factor
A-2

Relative
FactorB-2

FactorB-2

Strength
OfClaim-3

EffectOfFactorB
OnStrengthOf

Claim-3

EffectOfFactorA
OnStrengthOf

Claim-3

factor
A-3

Relative
FactorB-3 Factor

B-3

<EffectOfFactorA
OnStrengthOf

Claim f>

<EffectOfFactorB
OnStrengthOf

Claim f>

<EffectOfFactorA
OnStrengthOf

Claim f>

<EffectOfFactorB
OnStrengthOf

Claim f>

<Normal
FactorB>

<Normal
FactorB>

Relative
FactorA-1

Relative
FactorA-2

Relative
FactorA-3

normal
FactorA

<normal
FactorA>

<normal
FactorA>

Quantity

Quantity
For 1

Quantity
For 2 Quantity

For 3

Immediate parents: Multivariate anchoring and adjustment, Proportional split
Ultimate parents: Dmnl input to function, Proportional split

Used by: Market share

Problem solved: How to allocate a resource when the strength of each claim is
determined by a number of factors.

Equations:

QuantityFor 1 = Quantity * FractionFor 1
 Units: stuff
QuantityFor 2 = Quantity * FractionFor 2
 Units: stuff
QuantityFor 3 = Quantity * FractionFor 3
 Units: stuff
Quantity = ____
 Units: stuff
FractionFor 1 = "StrengthOfClaim-1" / TotalStrengthOfClaim
 Units: fraction
FractionFor 2 = "StrengthOfClaim-2" / TotalStrengthOfClaim
 Units: fraction
FractionFor 3 = "StrengthOfClaim-3" / TotalStrengthOfClaim
 Units: fraction

Molecules of Structure Page 86 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

TotalStrengthOfClaim =
 "StrengthOfClaim-1" + "StrengthOfClaim-2" + "StrengthOfClaim-3"
 Units: dmnl
"StrengthOfClaim-1" =
 "EffectOffactorAOnStrengthOfClaim-1" * “EffectOfFactorBOnStrengthOfClaim-1"
 Units: dmnl
"StrengthOfClaim-2" =
 "EffectOfFactorAOnStrengthOfClaim-2" * "EffectOfFactorBOnStrengthOfClaim-2"
 Units: dmnl
"StrengthOfClaim-3" =
 "EffectOfFactorAOnStrengthOfClaim-3" * "EffectOfFactorBOnStrengthOfClaim-3"
 Units: dmnl
"EffectOffactorAOnStrengthOfClaim-1" =
 EffectOfFactorAOnStrengthOfClaim f ("RelativeFactorA-1")

Units: dmnl
EffectOfFactorAOnStrengthOfClaim f = user defined function
 Units: dmnl
"RelativeFactorA-1" = "FactorA-1" / normalFactorA
 Units: fraction
normalFactorA = ___
 Units: FactorAUnits
"FactorA-1" = ___
 Units: FactorAUnits
"EffectOfFactorBOnStrengthOfClaim-1" =
 EffectOfFactorBOnStrengthOfClaim f ("RelativeFactorB-1")
 Units: dmnl
"RelativeFactorB-1" = "FactorB-1" / NormalFactorB
 Units: fraction
NormalFactorB = ___
 Units: FactorBUnits
"FactorB-1" = ___
 Units: FactorBUnits
EffectOfFactorBOnStrengthOfClaim f = user defnined function
 Units: dmnl
"EffectOfFactorAOnStrengthOfClaim-2" =
 EffectOfFactorAOnStrengthOfClaim f ("RelativeFactorA-2")
 Units: dmnl
"RelativeFactorA-2" = "factorA-2" / normalFactorA
 Units: fraction
"factorA-2" = ___
 Units: FactorAUnits
"EffectOfFactorBOnStrengthOfClaim-2" =
 EffectOfFactorBOnStrengthOfClaim f ("RelativeFactorB-2")
 Units: dmnl
"RelativeFactorB-2" = "FactorB-2" / NormalFactorB

Molecules of Structure Page 87 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

 Units: fraction
"FactorB-2" = ___
 Units: FactorBUnits
"EffectOfFactorAOnStrengthOfClaim-3" =
 EffectOfFactorAOnStrengthOfClaim f ("RelativeFactorA-3")
 Units: dmnl
"RelativeFactorA-3" = "factorA-3" / normalFactorA
 Units: fraction
"factorA-3" = ___
 Units: FactorAUnits
"EffectOfFactorBOnStrengthOfClaim-3" =
 EffectOfFactorBOnStrengthOfClaim f ("RelativeFactorB-3")
 Units: dmnl
"RelativeFactorB-3" = "FactorB-3" / NormalFactorB
 Units: fraction
"FactorB-3" = ___
 Units: FactorBUnits

Description: This molecule adds to the proportional split molecule a definition for claims
based on the multivariate anchoring and adjustment molecule. The resource is split
proproationally between the claims, but each claim is a nonlinear function of a one (and
usually two) or more factors.

Behavior: No stocks, so no dynamics.

Classic examples: Market share

Caveats: The resource is allocated completely, so one needs to be careful of over-
allocating.

Technical notes: None

Molecules of Structure Page 88 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

Market Share

EffectOfDelivery
DelayOn

Attractiveness f

EffectOfPriceOn
Attractiveness f

MarketShareFor
Product 2

Total
Attractiveness

MarketShareFor
Product 1

MarketShareFor
Product 3

ProductAttractiv
eness#1

EffectOfPriceOn
Attractiveness#1

EffectOfDelivery
DelayOn

Attractiveness#1

Delivery
Delay#1

Relative
Price#1

Price#1

Normal
Price

ProductAttractiv
eness#2

EffectOfPriceOn
Attractiveness#2

EffectOfDelivery
DelayOn

Attractiveness#2

Delivery
Delay#2

Relative
Price#2

Price#2

ProductAttractiv
eness#3

EffectOfPriceOn
Attractiveness#3

EffectOfDelivery
DelayOn

Attractiveness#3

Delivery
Delay#3

Relative
Price#3

Price#3

<EffectOfDelivery
DelayOn

Attractiveness f>

<EffectOfPriceOn
Attractiveness f>

<EffectOfDelivery
DelayOn

Attractiveness f>

<EffectOfPriceOn
Attractiveness f> <Normal

Price>

<Normal
Price>

RelativeDelivery
Delay#1

RelativeDelivery
Delay#2

RelativeDelivery
Delay#3

normal
DeliveryDelay

<normalDelivery
Delay>

<normalDelivery
Delay>

Immediate parents: Multidimensional split
Ultimate parents: Dmnl input to function, Proportional split

Used by: None

Problem solved: How to calculate market shares based on product attractiveness

Equations:

MarketShareForProduct 1 = "ProductAttractiveness#1" / TotalAttractiveness
 Units: fraction
MarketShareForProduct 2 = "ProductAttractiveness#2" / TotalAttractiveness
 Units: fraction
MarketShareForProduct 3 = "ProductAttractiveness#3" / TotalAttractiveness
 Units: fraction
TotalAttractiveness =
 "ProductAttractiveness#1" + "ProductAttractiveness#2" + "ProductAttractiveness#3"

Units: dmnl
"ProductAttractiveness#1" =
 "EffectOfDeliveryDelayOnAttractiveness#1" * "EffectOfPriceOnAttractiveness#1"

Units: dmnl
"ProductAttractiveness#2" =
 "EffectOfDeliveryDelayOnAttractiveness#2" * "EffectOfPriceOnAttractiveness#2"

Molecules of Structure Page 89 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

Units: dmnl
"ProductAttractiveness#3" =
 "EffectOfDeliveryDelayOnAttractiveness#3" * "EffectOfPriceOnAttractiveness#3"

Units: dmnl
"EffectOfDeliveryDelayOnAttractiveness#1" =
 EffectOfDeliveryDelayOnAttractiveness f ("RelativeDeliveryDelay#1")

Units: dmnl
"EffectOfDeliveryDelayOnAttractiveness#2" =
 EffectOfDeliveryDelayOnAttractiveness f ("RelativeDeliveryDelay#2")

Units: dmnl
"EffectOfDeliveryDelayOnAttractiveness#3" =
 EffectOfDeliveryDelayOnAttractiveness f ("RelativeDeliveryDelay#3")

Units: dmnl
EffectOfDeliveryDelayOnAttractiveness f = user defined function
 Units: dmnl
""RelativeDeliveryDelay#1" = "DeliveryDelay#1" / normalDeliveryDelay
 Units: fraction
"RelativeDeliveryDelay#2" = "DeliveryDelay#2" / normalDeliveryDelay
 Units: fraction
"RelativeDeliveryDelay#3" = normalDeliveryDelay / "DeliveryDelay#3"
 Units: fraction
normalDeliveryDelay = ___
 Units: weeks
DeliveryDelay#1" = ___
 Units: weeks
"DeliveryDelay#2" = ___
 Units: weeks
"DeliveryDelay#3" = ___
 Units: weeks
"EffectOfPriceOnAttractiveness#1" = EffectOfPriceOnAttractiveness f ("RelativePrice#1")
 Units: dmnl
"EffectOfPriceOnAttractiveness#2" = EffectOfPriceOnAttractiveness f ("RelativePrice#2")
 Units: dmnl
EffectOfPriceOnAttractiveness#3" = EffectOfPriceOnAttractiveness f ("RelativePrice#3")
 Units: dmnl
EffectOfPriceOnAttractiveness f = user defined function
 Units: dmnl
"RelativePrice#1" = "Price#1" / NormalPrice
 Units: fraction
"RelativePrice#2" = "Price#2" / NormalPrice
 Units: fraction
"RelativePrice#3" = "Price#3" / NormalPrice
 Units: fraction
NormalPrice = ___
 Units: $/widget

Molecules of Structure Page 90 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

"Price#1" = ___
 Units: $/widget
"Price#2" = ___
 Units: $/widget
"Price#3" = ___
 Units: $/widget

Description: Market share for each product is attractiveness relative to the “total”
amount of attractiveness in the market. Attractiveness is formulated as a normal
attractiveness (or perhaps a maximum attractiveness) multiplied by a series of effects. The
Effects shown in the diagram and the equations are illustrative only. A key aspect of this
formulation is that attractiveness is in absolute terms, not relative to a competitor: For
any given factor, each relative factors the same constant (or variable) in the denominator
in the denominator. The attractiveness of competitors enters only in the calculating the
Market Share.

Behavior: No levels, so no endogenous dynamics.

Classic examples: This formulation is very common in models of competitive dynamics

Caveats: The quantity TotalAttractiveness has no obvious real-world counterpart.

Technical notes: The reason to define the relative quantities (e.g. relative price) in terms
of an absolute (in fact usually a constant) quantity (e.g. accepatable price) i9s to permit
saturation effects. For example if the price of a Ford automobile were two cents and the
price from General Motors competitor were one cent, consumers probably wouldn’t
distinguish between the two – the price of either one is “completely” inexpensive. That is,
when prices are this low it doesn’t matter that Ford’s price is twice GM’s. On the other
hand if the price of a Ford was $20,000 and the price of a GM was $10,000, this would
make a big difference. Hence, we want to normalize prices by an absolute number, run the
result through a table function and only then compare attractiveness.

Molecules of Structure Page 91 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

Nonlinear split

Immediate parents: , Univariate
anchoring and adjustment,
Proportional split
Ultimate parents: Proportional
split, Dmnl input to funciton

Used by: Weighted average,
Ceiling, Floor

Problem solved: Allocate a quantity between two parties, each with a claim on it.

Equations:

QuantityToA = TotalQuantity * FractionToA
 Units: people
QuantityToB = TotalQuantity - QuantityToA
 Units: people
TotalQuantity = ___
 Units: people
FractionToA = FractionToA f (IndicatedFractionToA)
 Units: dmnl
FractionToA f = user defined function
 Units: **undefined**
IndicatedFractionToA = StrengthOfA'sClaim / totalClaim
 Units: fraction
StrengthOfA'sClaim = ___
 Units: widgets/week
totalClaim = StrengthOfA'sClaim + StrengthOfB'sClaim
 Units: widgets/week
StrengthOfB'sClaim = ___
 Units: widgets/week

Description: This formulation uses the indicated split (to one of the claims) which is
based on the proportional split molecule. However this indicated split is then run through
a lookup function in order to capture nonlinear effects such as the idea that each claim
must get a certain minimum fraction.

Behavior: No stocks so no behavior

Classic examples:

Caveats: All of the quantity is allocated, so in a situation where each “claim” is a request
for the quantity, its possible to allocate more than is requested. Avoiding this problem
takes careful thought and modeling.

Technical notes: None

StrengthOf
A'sClaim

totalClaim

QuantityToA
Indicated

FractionToA
FractionToA

FractionToA
f

StrengthOf
B'sClaim

QuantityToBTotal
Quantity

Molecules of Structure Page 92 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

Molecules of Structure Page 93 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

Ceiling
Also known as Soft Min

Immediate parents: Nonlinear split
Ultimate parents: Dmnl input to
function, Proportional split

Used by: Capacity utilization, Level
protected by flow

Problem solved: How to represent a
situation where a quantity can approach, but can exceed, a ceiling value

Equations:

Quantity = Ceiling * Fraction of Ceiling
 Units: Output units
Ceiling = ___
 Units: Output units
Fraction of Ceiling = Fraction of Ceiling f (IndicatedFractionOfCeiling)
 Units: dmnl
IndicatedFractionOfCeiling = Indicated Quantity / Ceiling
 Units: fraction
Indicated Quantity = ___
 Units: Output units
Fraction of Ceiling f = (See notes under technical)
 Units: dmnl

Description: This formulation creates a ceiling which is approached gradually. The
molecule is basically a nonlinear split where the “other half” is not shown. Implicitly, the
“other half” is the part “unused portion” of the ceiling.

Behavior: No levels so no endogenous behavior.

Classic examples: Say we have a labor force which can produce an indicated quantity.
We also have a fixed amount of machinery. The output that the machinery can potentially
produce is the ceiling. As we add more labor, indicated output increases; until it is
constrained by machinery (the ceiling). The constraint is not suddenly felt the instant
IndicatedOutputFromLabor = CeilingOutputFromMachinery, instead the machinery
constraint begins to be felt before the ceiling is reached. Why? There are many kinds of
machines. As indicated output approaches the ceiling, there is an increasing likelihood
that the particular machine that some person needs to operate is already taken, even
though there are still other machines (not the right ones, though) that are idle

Caveats: This formulation can make it difficult to calculate an equilibrium for a model,
unless the function goes through (1,1) or the equilibrium is below the ceiling. See
description.

Indicated
Quantity

Ceiling

QuantityIndicated
FractionOf

Ceiling Fraction of
Ceiling

Fraction of
Ceiling f

Molecules of Structure Page 94 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

Technical notes: This formulation is a continuous version of the discrete MIN function.
Unlike the MIN function -- where the output quantity is either the indicated quantity or
the ceiling, whichever is less – in this formulation the output does not suddenly equal the
ceiling, rather there is a gradual approach. Depending on how the Fraction of Ceiling f is
parameterized, the ceiling can be reached either before or after the IndicatedQuantity
equals the ceiling. (see technical notes). It is also possible to let the Quantity rise above
the ceiling.

The following shows the behavior of the Quantity for various shapes of the function
Fraction of Ceiling f. The shape of the first function gives the behavior described in
classic examples, above. The shape of the middle function yields behavior that is identical
to the discrete MIN function. The shape of the third function might be appropriate in a
situation where the indicated quantity represents indicated output and the ceiling
represents fixed capacity in a homogeneous-machine situation. When indicated output
falls, managers may feel pressured to produce above indicated output in order to use as
much of the capacity as possible.

 Fraction of Ceiling f

 Fraction of Ceiling f

Molecules of Structure Page 95 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

 Fraction of Ceiling f

Molecules of Structure Page 96 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

Capacity Utilization
Immediate parents: Ceiling
Ultimate parents: Dmnl input to
function, Proportional split

Used by: None

Problem solved: How to determine
production when desired production
can exceed capacity.

Equations:

Production = Capacity * Utilization
 Units: Widgets/Week
Capacity = ___
 Units: Widgets/Week
Utilization = Utilization f (IndicatedUtilization)
 Units: fraction
ndicatedUtilization = DesiredProduction / Capacity
 Units: fraction
DesiredProduction = ___
 Units: Widgets/Week
Utilization f () = [User defined function]
 Units: dmnl

Description: Production is determined by the fraction of capacity actually used (i.e.
utilization). As desired production increases, utilization increases, but only until the
capacity is maxed out. Often, modelers allow utilization to go above 1, representing a
situation where output can exceed “rated” capacity through skipping routine maintenance
shut downs, eliminating the use of the facilities for testing, or other measures.

Behavior: no stocks, so no dynamics.

Classic examples: Common

Caveats: If the function does not go through the point (1,1) calculating an analytical
equilibrium for the model will be a bit more difficult.

Technical notes: none

Desired
Production

Capacity

ProductionIndicated
Utilization

Utilization
<Utilization

f>

Molecules of Structure Page 97 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

Floor
Also known as SoftMax

Immediate parents: Univariate
anchoring and adjustment
Ultimate parents: Dmnl input to
function

Used by: None

Problem solved: How to represent
a variable that cannot decline lower
than a certain point.

Equations:

Quantity = Floor * Floor Multiple
 Units: Output units
Floor = ___
 Units: Output units
Floor Multiple = Floor Multiple f (Indicated Floor Multiple)
 Units: dmnl
Floor Multiple f = see technical notes
Units: dmnl
Indicated Floor Multiple = Indicated Quantity / Floor
 Units: dimensionless
Indicated Quantity = ___
 Units: Output units

Description: This formulation is a continuous version of the discrete MAX function.
Unlike the MAX function -- where the output quantity is either the indicated quantity or
the ceiling, whichever is greater – in this formulation the output does not suddenly equal
the floor, rather there is a gradual approach. Depending on how the Floor Multiple f is
parameterized, the floor can be reached either before or after the IndicatedQuantity equals
the floor. (see technical notes). It is also possible to let the Quantity fall below the floor.

Behavior: No levels so no endogenous behavior.

Classic examples: This formulation formed is much rarer than its counterpart, the
Ceiling.

Caveats: Make sure that the table function rises high enough to cover the possible range
of the indicated floor multiple.

Technical notes: The following shows the behavior of the Quantity for various shapes of
the function Floor Multiple f. The shape of the middle function yields behavior that is
identical to the discrete MAX function.

Indicated
Quantity

Floor

QuantityIndicated
Floor

Multiple

Floor
Multiple

<Floor
Multiple f>

Molecules of Structure Page 98 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

Molecules of Structure Page 99 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

Level Protected by Flow

Immediate parents: Ceiling,
Go to zero
Ultimate parents: Dmnl input to
function, Go to zero, Proportional
split

Used by: BacklogShipping
Protected By Flow

Problem solved: How to ensure
that a stock does not go negative

Equations:

draining = Maximum outflow * fractionOfMaxOutflow
 Units: Widgets/Month
Maximum outflow = Level to drain / Fastest draining time
 Units: Widgets/Month
Fastest draining time = ___
 Units: Month
Level to drain = INTEG(- draining , ___)
 Units: Widgets
fractionOfMaxOutflow = Fraction of Max f (IndicatedFractionOfMax)
 Units: dmnl
Fraction of Max f = see technical notes
 Units: dmnl
IndicatedFractionOfMax = xidz (Desired draining , Maximum outflow , reallyBigNumber)
 Units: dmnl
reallyBigNumber=10e9
 Units: dmnl
Desired draining = ___
 Units: Widgets/Month

Description: This formulation ensures that the actual outflow
from a stock is between the desired outflow and the maximum
outflow. This formulation is considered more desirable than
an IF-THEN-ELSE statement both because it is less subject to
integration error and, even more importantly, because it is
appropriate for a stock that represents an aggregation of non-
identical items - like a finished goods inventory containing
many different models or products.

Level to
drain draining

Fastestdrainingtime
Maximum
outflow Desired

draining

Indicated
FractionOfMax

fractionOf
MaxOutflow

Fraction of
Max f

Current
Level to drain

50
37.50
25.00
12.50

0.0014
draining

20
15.00
10.00
5.002

0.0028
2.5 5.4 8.4

Time (Month)

Molecules of Structure Page 100 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

Behavior: The level will not go below
zero.

Classic examples: Shipping out of an
inventory. The inventory must not go
negative.

Caveats: none

Technical notes: The proper function is
usually one that causes the actual
draining to drop below desired before
the point at which desired draining =
maximum outflow.

Protecting against a divide-by-zero error is important in the definition of
IndicatedFractionOfMax. The LevelProtectedByFlow molecule is designed to work when
the level, and hence maximumOutflow, are zero. The IndicatedFractionOfMax should
equal infinity when MaximumOutflow equals zero. If your system dynamics modeling
environment does not contain infinity, then set IndicatedFractionOfMax to a really big
number (as shown in the above equations) when maximumOutflow is zero.

Molecules of Structure Page 101 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

Backlog Shipping Protected by Flow

Immediate parents: Level
protected by flow
Ultimate parents: Dmnl input
to function, Go to zero,
Proportional split

Problem solved: How to
coordinate the shipping of
product with the filling of
backlogged orders, taking into
account that product cannot be
shipped without an order and an
order cannot be filled if there is
no inventory

Equations:

Shipping = Maximum shipping * fractionOfMaxShipping
 Units: Widgets/Month
Maximum shipping = Inventory / minimum time to ship
 Units: Widgets/Month
minimum time to ship = ___
 Units: Month
Inventory = INTEG(Producing - Shipping , ___)
 Units: Widgets
Producing = ___
 Units: Widgets/Month
fractionOfMaxShipping = Fraction of Max f (IndicatedFractionOfMax)
 Units: dmnl
Fraction of Max f = user defined function
 Units: dmnl
IndicatedFractionOfMax = Indicated shipping from backlog , Maximum shipping
 Units: dmnl
Indicated shipping from backlog = Backlog / TimeToProcessAndShipOrder
 Units: Widgets/Month
TimeToProcessAndShipOrder = ___
 Units: Month
Backlog = INTEG(Orders - Fulfilling orders , Orders * TimeToProcessAndShipOrder)
 Units: Widgets
Fulfilling orders = Shipping
 Units: Widgets/Month
Orders = ___

Inventory

Backlog

Producing

Orders Fulfilling
orders

Shipping
Indicated

shipping from
backlog

TimeTo
ProcessAnd
ShipOrder

minimum time
to ship

Maximum
shipping

Indicated
FractionOfMax

fractionOf
MaxShipping

Fraction of
Max f

Molecules of Structure Page 102 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

 Units: Widgets/Month

Description: In this formulation, desired shipping is intended to drain inventory
formulated as a protected level. Actual shipping is approximately the minimum of desired
and the maximum shipping rate.

Behavior: The stock will not go below zero.

Classic examples: This formulation (or one like it) is common in manufacturing models

Caveats: The minimum time to ship is usually a small number. Make sure that dt is set
appropriately.

Technical notes: The maximum shipping rate should probably represent the “ideal”
maximum the fastest shipping that can be achieved if the orders correspond exactly to
what is left in
stock. Because
there is some
probability
distribution around
what will be
ordered, on average
orders will not
exactly match what
remains in stock,
and hence actual
shipments fall
below desired
shipments of orders
exactly matching
what remains in
stock, however actual shipping drops below desired shipments except when desired
shipments are a relatively low fraction of maximum. This means that the function
Fraction of Max f() lies below (1,1). A function that goes above the 45 degree line as it
approaches (0, 0) would represent a situation in which a company ships faster than normal
when it can. A closely related alternative to this formulation is the Inventory Backlog
Shipping Protected by Level molecule

Fraction of Maximum

Molecules of Structure Page 103 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

Backlog Shipping Protected By Level

Immediate parents: Go to
zero, Level protected by level
Ultimate parents: Go to zero,
Dmnl input to function

Used by: None

Problem solved: How to
coordinate the shipping of
product with the filling of
backlogged orders, taking into
account that product cannot be
shipped without an order and an
order cannot be filled if there is
no inventory

Equations:

Backlog = INTEG(Orders - Fulfilling orders , Orders * Desired shipping time)
 Units: Widgets
Desired inventory = ___
 Units: Widgets
Desired shipping = Backlog / Desired shipping time
 Units: Widgets/Month
Desired shipping time = ___
 Units: Month
Fulfilling orders = Shipping
 Units: Widgets/Month
Inventory = INTEG(Producing - Shipping , Desired inventory)
 Units: Widgets
Inventory effect on shipping = Inventory effect on shipping f (Relative inventory)
 Units: dmnl
Inventory effect on shipping f = user defined function
 Units: dmnl
Orders = ___
 Units: Widgets/Month
Producing = ___
 Units: Widgets/Month
Relative inventory = Inventory / Desired inventory
 Units: dmnl
Shipping = Desired shipping * Inventory effect on shipping
 Units: Widgets/Month

Inventory

Backlog

Producing

Orders Fulfilling
orders

Shipping

Desired
shipping

Desired
shipping time

Inventory effect
on shipping

Inventory effect
on shipping f

Desired
inventory

Relative
inventory

Molecules of Structure Page 104 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

Description: In this formulation, desired shipping is intended to drain inventory
formulated as a protected level. Actual shipping however also obeys the physical law that
we can’t ship what we don’t have. The backlog is depleted by actual shipping.

Behavior: Obvious

Classic examples: This formulation is common in manufacturing models

Caveats: None

Technical notes: The Inventory Effect on Shipping represents the impact of stockouts as
the inventory gets lower and lower. A closely related alternative to this formulation is the
Inventory Backlog and Shipping Protected by Flow molecule.

Molecules of Structure Page 105 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

Weighted Average
Also known as Soft If Then
Parents: None

Used by: Activity split

Problem solved: How to represent a blend of two
“pure” choices.

Equations:

Resulting quantity = WeightOnA * OptionA + (1-WeightOnA) * OptionB
 Units: people
OptionA = ___
 Units: people
Option B = ___
 Units: people
WeightOnA = weight on A f(RelativeX)
 Units: dmnl
weightOnA f = user defined function
 Units: dmnl
RelativeX = X / totalXandY
 Units: fraction
totalXAndY= X + Y
 Units: widgets/week
X = ___
 Units: widgets/week
Y = ___
 Units: widgets/week
Description: As X increases relative to Y, the blend favors A relative to B.

Behavior: No internal dynamics because no levels.

Classic examples:

Caveats: None

Technical notes: The structure is a generalization of the common if-then logic in
computer programming. For example the statement
 IF X < Y THEN A ELSE B

is represented by a one weighting function. In particular, the “weight on A function” for
this example would be

 1 when X/Y<1
 f(X/Y) =
 0 when X/Y ≥ 1

1

0

1

{

Option A Option B

RelativeX

Weight on A

Resulting
quantity

X
Y

weight on A f

totalXAndY

Molecules of Structure Page 106 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

Diffusion
Immediate parents:
Proportional split,
Conversion
Ultimate parents:
Proportional split,
Bathtub

Used by: None

Problem solved:
How to represent
growth by word of
mouth

Equations:

customers = INTEG(converting, ___)
 Units: people
converting = wom Conversions
 Units: people/Year
wom Conversions = contacts of noncust with cust*fruitfulness
 Units: people/Year
fruitfulness = ___
 Units: people/contact
contacts of noncust with cust = contacts with customers*PotCust concentration
 Units: contacts/Year
contacts with customers = customers*sociability
 Units: contacts/Year
sociability = ___
 Units: contacts/person/Year
PotCust concentration = potential customers/total market
 Units: dmnl
total market = customers+potential customers
 Units: people
potential customers = INTEG(-converting, ___)
 Units: people

Description: Non Customers become customers through a process that involves
customers having contacts with people, some fraction of which are non-customers. Some
proportion of contacts that customers have with non-customers results in conversion of
non-customers to customers.

wom
Conversions

customerspotential
customers

contacts of
noncust with cust

converting

fruitfulness

contacts with
customers

PotCust
concentration

total market

sociability

Molecules of Structure Page 107 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

Behavior: Produces S-shaped growth in
customers.

Classic examples: This is the structure that
underlies B&B Enterprises.

Caveats: If customers are initialized to zero this
structure will not move because there will be no
customers to have contacts.

Technical notes: This structure produces
logistic growth. The Bass diffusion model
includes an addition flow, formulated as a decay
from potential customers into customers. This
additional flow is often interpreted as being an
effect of advertising. With this additional flow,
the initial value of customers can be set to zero.

BEHAVIOR
customers

100 M
75.00 M
50.00 M
25.00 M

1,000
converting

31.24 M
23.43 M
15.62 M
7.812 M

166.49
0 10 20

Time (Year)

Molecules of Structure Page 108 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

Action From Resource

Immediate parents: None
Ultimate parents: None

Used by: Producing, Resource from flow, Ability
from flow, Financial flow from resource

Problem solved: How to create an action (a flow) from a resource or aggregate of
resources.

Equations:

flow = resources * resourceAbilityToCreateFlow
 Units: gallons/Month
resourceAbilityToCreateFlow = ___
 Units: gallons/(Month*resource)
resources = ___
 Units: resources

Description: The action (flow) is created by multiplying a resource by its ability to create
an action (i.e. its productivity). Often the activity will be conceptualized as a flow, as
shown in the structure above.

Behavior: No stocks, so no loops so no behavior.

Classic examples: Producing, Financial flow from resource

Caveats: None

Technical notes: This is one of three general ways to create an action. The other two
are Close gap and Go to zero

resources resourceAbilityTo
CreateFlow

flow

Molecules of Structure Page 109 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

Financial Flow From Resource

Immediate parents: Action from resource
Ultimate parents: Action from resource

Used by: Workforce from budget

Problem solved: How to figure out the continuing rent (income or expense) of a
resource.

Equations:

spending = workers * wage
 Units: $/Month
wage = ___
 Units: $/(Month*person)
workers = ___
 Units: people

Description: The financial flow is the resources multiplied by the rent, which will have
units of money-unit/resource-unit/time-unit (e.g. dollars/person/month). The flow is
usually conceptualized as either an expense or a income stream, depending on whether the
viewpoint is that of the owner of the resource (income) or the user of the resource
(expense). The rent of a worker is her wage or salary and the financial flow is an expense
to the employer and income to the employee. The rent of a building or machine is usually
termed “lease payments” and the financial flow is expense to the person occupying the
building and income to the building owner. The rent of money is usually called “interest
rate” and the financial flow is and expense to the borrower and income to the lender.

Behavior: No stocks so no behavior.

Classic examples: Common

Caveats: None

Technical notes: None

workers wage

spending

Molecules of Structure Page 110 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

Resources From Action
Immediate parents: Action from resource
Ultimate parents: Action from resource

Used by: Workforce from budget

Problem solved: How to determine the resources
we have (or need) based on the (desired) action (or
flow) and the resources’ ability to create the action
(i.e. the resources’ productivity)

Equations:

esources = DesiredFlow / resourceAbilityToCreateFlow
 Units: resources
 resourcesDesiredFlow = -___
 Units: gallons/Month
resourceAbilityToCreateFlow = ___
 Units: gallons/(Month*resource)
r

Description: Given the action (flow), dividing by the resource’s creative ability
(productivity) yields the necessary resources.

Behavior: No stocks so no behavior

Classic examples: Workorce from budget in Jay Forrester’s Market Growth as
Influenced by Capital Investment.

Caveats: None

Technical notes: None

resources

resourceAbilityTo
CreateFlow

DesiredFlow

Molecules of Structure Page 111 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

Workforce From Budget

Immediate parents: Resources from action, Financial
flow from resource
Ultimate parents: Action from resource

Used by: None

Problem solved: How to find the desired (or affordable) workforce, given a budget and
an average wage.

Equations:

"DesiredPeople." = WorkforceBudget / averageWage
Units: people

averageWage = ___
 Units: $/(person*year)
WorkforceBudget = ___

Units: $/year

Description: Dividing the available budget by the average wage gives the number of
people we can afford.

Behavior: No stocks, so no behavior

Classic examples: Market Growth as Influenced by Capital Investment

Caveats: If the average wage can go to zero, protect against divide by zero errors.

Technical notes: None

Desired
People.

average
Wage

Workforce
Budget

Molecules of Structure Page 112 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

Ability From Action
Immediate parents: Action from resource
Ultimate parents: Action from resource

Used by: Estimated productivity

Problem solved: How to figure out what the creative
ability (e.g. productivity) is a resource if we know the activity (or flow) that it causes.

Equations:

Ability = Flow / Resource
 Units: gallons/(resource*Month)
Flow = ___
 Units: gallons/Month
Resource = ___
 Units: resources

Description: The creative ability of a resource is simply the action (or flow) devided by
the resource that generates that activity. This molecule is simply a rearrangement of the
elements of the action from resource molecule

Behavior: No stocks so no behavior

Classic examples: Sometimes used to figure out productivity in project models (see
Estimated productivity).

Caveats: If the resource can go to zero, protect against a of divide-by-zero error.

Technical notes: None.

Resource

Ability

Flow

Molecules of Structure Page 113 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

Producing
Immediate parents: Action from resource
Ultimate parents: Action from resource

Used by: Reducing backlog by doing work, Desired
workers from workflow, Estimated productivity

Problem solved: How to produce or accomplish work

Equations:

producing = workers*productivity
 Units: drawings/Month
productivity = ___
 Units: drawings/person/Month
workers = ___
 Units: people

Description: Workers times their productivity yields what they accomplish or produce.

Behavior: No levels, so no endogenous behavior

Classic examples: Project models, workforce inventory oscillator, Forrester’s Market
Growth as Influenced by Capital Investment

Caveats: None

Technical notes: None

workers productivity

producing

Molecules of Structure Page 114 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

Estimated Productivity
Immediate parents: Ability from action,
Producing
Ultimate parents: Action from resource

Used by: None

Problem solved: Estimating productivity

Equations:

EstimatedPDY = WorkBeingAccomplished / Workforce
 Units: widgets/(person*Month)
WorkBeingAccomplished = ___
 Units: widgets/Month
Workforce = ___
 Units: people

Description: Given a flow of work and the number of workers doing it, the implied
productivity has to be the flow divided the number of workers.

Behavior: No stocks, so no behavior.

Classic examples: None

Caveats: None

Technical notes: Work being accomplished wouldn’t actually be known by real world
managers if it is an actual flow. In this case the modeler may wish to either use a
knowable estimate of Work being accomplished (e.g. a smooth of it) or use the estimated
PDY from this formulation as an input into a formulation (e.g. a smooth) for perceived
productivity.

Workforce

Estimated
PDY

WorkBeing
Accomplished

Molecules of Structure Page 115 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

Desired Workforce From Workflow
Immediate parents: Resource from action,
Producing
Used by: Overtime

Problem solved: How to determine the number of
workers we need

Equations:

DesiredPeople = DesiredAccomplishingRate / productivity
 Units: people
productivity = ___
 Units: SquareFeet/person/Week
DesiredAccomplishingRate = ___

Description: The key here is the rate at which we need to accomplish work in order to
finish on time. Once we know this, we can figure out how many people it takes to
produce such a work flow.

Behavior: No levels so no endogenous behavior.

Classic examples: Most project models make use of a formulation like this one.

Caveats: None

Technical notes: This formulation uses the same understanding as that used in the
Producing molecule. Outputs and inputs, though, are different. Here we know the
(desired) production rate and we calculate the (desired) workforce. In the Producing
molecule we know the workforce and calculate the production rate. In this formulation,
we could use a perceived productivity.

Desired
People

productivity

Desired
Accomplishing

Rate

Molecules of Structure Page 116 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

Reducing Backlog by Doing Work

Immediate parents: Producing
Ultimate parents: Action from resource

Used by: Estimated remaining duration, Level protected
by PDY

Problem solved: Draining a stock of work to do via
workers accomplishing the work.

Equations:

WorkToDo = INTEG(- producing , ___)
 Units: tasks
producing = workers * productivity
 Units: tasks/Month
productivity = ___
 Units: tasks/(Month*person)
workers = ___
 Units: people

Description: The stock is drained by a producing molecule.

Behavior: Work to do will decline. If Workers and productivity are constant, work to do
will decline linearly.

Classic examples: Project models.

Caveats: Nothing in this molecule prevents work to do from going negative. (See Level
protected by PDY for a solution)

Technical notes: The “inverse” of this molecule – filling a stock with a producing
molecule is also common, as is a cascade of levels where the outflow of one (defined by a
producing molecule) is the input to the next.

workers productivity

WorkTo
Do producing

Molecules of Structure Page 117 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

Level Protected by PDY

workers

productivity

Remaining
Work producing

RequiredWork
ForFull

Productivity

Relative
RemainingWork

EffectOfRemaining
WorkOnPDY

normalPDY

EffectOf
RemainingWork

OnPDY f

workers.

productivity.

Remaining
Work. producing.

RequiredWorkFor
FullProductivity.

requiredWorkTo
KeepAWorker

Occuppied.

Relative
RemainingWork.

EffectOfRemaining
WorkOnPDY.

normalPDY.

EffectOfRemaining
WorkOnPDY f.

Immediate parents: Reducing backlog by doing work, Univariate anchoring and
adjustment
Ultimate parents: Action From Resource, Dmnl input to function
Used by: None

Problem solved: How to prevent the level of remaining work going below zero when
workers are producing from a backlog.

Equations:

RemainingWork = INTEG(- producing , RequiredWorkForFullProductivity)
 Units: tasks
producing = workers * productivity
 Units: tasks/Month
workers = ___
 Units: people
productivity = normalPDY * EffectOfRemainingWorkOnPDY
 Units: tasks/(person*Month)
normalPDY = 5
 Units: tasks/(person*Month)
EffectOfRemainingWorkOnPDY = EffectOfRemainingWorkOnPDY f (RelativeRemainingWork)
 Units: dmnl
EffectOfRemainingWorkOnPDY f = user defined function
 Units: dmnl

Molecules of Structure Page 118 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

RelativeRemainingWork = RemainingWork / RequiredWorkForFullProductivity
 Units: fraction
RequiredWorkForFullProductivity = ___
 Units: tasks

Additional equations for second version

"RequiredWorkForFullProductivity." = "workers." * "requiredWorkToKeepAWorkerOccuppied."
 Units: tasks
"requiredWorkToKeepAWorkerOccuppied." = ___
 Units: tasks/person

Description: This molecule solves the problem of the stock in the reducing backlog by
doing work molecule going negative as workers continue to drain the stock after it hits
zero. The solution is to recognize that productivity must become zero when there are no
longer any tasks to do. As the level of tasks falls below an amount of tasks required for
full productivity, the resource’s productivity falls. This could be because there is a time
consuming step (e.g. having to bake clay pots in a kiln for two days) and to reach full
productivity a worker needs enough other tasks to occupy him during the time that other
tasks are in the time-consuming phase. In a formulation where the single workforce is an
aggregate of a number of different skills, the reduction of productivity could be caused by
workers having to take on tasks for which they are not in their “specialty” and hence on
which they are less productive.

The second version of the molecule includes a formulation for the number of tasks
required for full productivity. This formulation says that each worker needs (on average)
a certain number of tasks in the backlog in order to work at full productivity.

Behavior: The stock will not fall below
zero.

Classic examples: The balancing R&D
chain model

Caveats: None

Technical notes: None

RemainingWork
15

11.25

7.502

3.754

0.0056
0 0.20 0.40 0.60 0.80 1 1.20 1.40 1.60 1.80 2

Time (Month)

Molecules of Structure Page 119 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

Estimated remaining duration

Immediate parents: Reducing backlog by doing
work
Ultimate parents: Action from resource

Used by: Estimated completion date

Problem solved: How to estimate the remaining
time to completion of an amount of work to do.
How to estimate the average time to complete a task in a stock of work to do (see
technical note).

Equations:

DurationTillComplete = WorkToDo / AnticipatedRateOfAccomplishingWork
 Units: week
WorkToDo = ___
 Units: square feet
AnticipatedRateOfAccomplishingWork = ___
 Units: square feet / week

Description: The estimated duration to completion is simply the amount of work left
divided by the rate at which we can do the work.

Behavior: No levels, so no endogenous behavior.

Classic examples: Used in project models

Caveats: If people or productivity can be zero, you will need to protect against a divide
by zero error in the equation for durationTillComplete.

Technical notes: This formulation is related to the residence time molecule.
Consequently, the variable durationUntilComplete can also be interpreted as the estimated
average time to complete an individual task in the stock of work to do. Under this
interpretation the variable’s name should be changed to something more appropriate (e.g.
estimatedTaskResidenceTime).

WorkToDo

DurationTill
Complete

AnticipatedRateOf
Accomplishing

Work

Molecules of Structure Page 120 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

Estimated Completion Date
Immediate parents: Estimated remaining
duration
Ultimate parents: Action from resource

Used by: None

Problem solved: How to represent the estimate
of a completion date

Equations:

EstimatedCompletionDate =DurationTillComplete + Time
 Units: week
DurationTillComplete = WorkToDo / AnticipatedRateOfAccomplishingWork
 Units: week
WorkToDo = ___
 Units: square feet
AnticipatedRateOfAccomplishingWork = ___
 Units: square feet / week

Description: The estimated time until completion is simple the estimate duration until
completion plus the simulation’s current Time.

Behavior: No levels, so no endogenous behavior.

Classic examples: Used in project models

Caveats: If people or productivity can be zero, you will need to protect against a divide
by zero error in the equation for durationTillComplete.

Technical notes: None

Estimated
CompletionDate

WorkToDo

EstimatedDuration
TillComplete

<Time>

AnticipatedRateOf
Accomplishing

Work

Molecules of Structure Page 121 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

Overtime
Immediate parents:
Workforce, Univariate
anchoring and adjustment,
Desired workers from
workflow
Ultimate parents: Smooth
(first order), Flow from
resource, Dmnl input to
function

Used by: none

Problem solved: How to calculate the required amount of overtime.

Equations:

Overtime = Overtime f (IndicatedOvertime)
 Units: Fraction
Overtime f = user defined function
 Units: Fraction
IndicatedOvertime = DesiredPeople / Workers
 Units: Fraction
Workers = 10
 Units: people
DesiredPeople = DesiredAccomplishingRate / productivity
 Units: people
DesiredAccomplishingRate = ___
 Units: tasks/week
productivity = ___
 Units: tasks/(week*person)

Description: Overtime might be measured as a fraction of a normal day. If possible
overtime would simply be the number of workers we wished we had divided by the
number of workers we actually have. In practice, of course, the amount of overtime is
limited by the number of hours in a day, by management policy, and by what workers are
willing to do. The overtime function represents this practical limitation.

Behavior: No levels so no endogenous behavior.

Classic examples: Formulation like this are used in many project models.

Caveats: If the workforce can be zero, the modeler needs to protect against a divide by
zero error in the calculation of IndicatedOvertime.

Technical notes: DesiredPeople here means “people needed to get the work done”. Any
formulation that yields such a definition of desired people is fine. Although we use the
desired workers from workflow molecule, other formulation are possible.

Overtime
Indicated
Overtime

Workers

Overtime f
Desired
People

productivity

Desired
AccomplishingRate

Molecules of Structure Page 122 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

Building Inventory by Doing Work

Immediate parents: Producing
Ultimate parents: Action from resource

Used by: Population growth, Doing work cascade

Problem solved: How to create an inventory inflow
from people working.

Equations:

Inventory = INTEG(producing , ___
 Units: widgets
producing = workers * productivity
 Units: widgets/Month
productivity = ___
 Units: widgets/(Month*person)
workers = ___
 Units: people
Description: The inflow to the stock is a producing molecule.

Behavior: If workers and productivity are constant, the stock will rise linearly.

Classic examples: Workforce Inventory Oscillator

Caveats: None

Technical notes: None

workers productivity

producing
Inventory

Molecules of Structure Page 123 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

Population Growth
Immediate parents: Building inventory by doing work
Ultimate parents: Action from resource

Used by: None

Problem solved:

Equations:

Population = INTEG(birthing , ___
 Units: people
birthing = Population * fertility
 Units: people/Month
fetility = ___
 Units: people/(Month*person)

Description: The inflow to population is the population
multiplied by the average fertility of the population.

Behavior: Exponential growth (if fertility is a constant).

Classic examples: Common

Caveats: With a large enough growth rate or a long enough
simulation length, this formulation can produce a population
size that exceeds the largest number the computer can
represent. In this case, the machine will throw a floating
point overflow error and the simulation will stop.

Technical notes: Fertility is the productivity of the
population in producing babies. This is simply a Building
Inventory by Doing Work molecule where the “inventory” is
the workforce itself.

fertility

birthing
Population

Current
Population
54.32
40.99
27.66
14.33

1
birthing
2.173
1.639
1.106

0.5732
0.04

0 50 100
Time (Month)

Molecules of Structure Page 124 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

Doing Work Cascade

workersB
productivityB

producingB
InventoryB

workersC
productivityC

producingC
InventoryC

workersA
productivityA

producingA
InventoryA

producingD

productivityD
workersD

Immediate parents: Cascaded levels, Building inventory by doing work, Reducing
backlog by doing work
Ultimate parents: Bathtub, Action from resource

Used by: Cascade protected by PDY

Problem solved: How to represent something that accumulates at a number of points
where the “something” is moved from accumulation to accumulation by people working.

Equations:

InventoryA = INTEG(producingA - producingB , ___)
 Units: widgets
InventoryB = INTEG(producingB - producingC , ___)
 Units: widgets
InventoryC = INTEG(producingC - producingD , ___)
 Units: widgets
producingA = workersA * productivityA
 Units: widgets/Month
producingB = workersB * productivityB
 Units: widgets/Month
producingC = workersC * productivityC
 Units: widgets/Month
producingD = workersD * productivityD
 Units: widgets/Month
productivityA = ___
 Units: widgets/(Month*person)
productivityB = ___
 Units: widgets/(Month*person)
productivityC = ___
 Units: widgets/(Month*person)
productivityD = ___
 Units: widgets/(Month*person)
workersA = ___
 Units: people
workersB = ___
 Units: people
workersC = ___

Molecules of Structure Page 125 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

 Units: people
workersD = ___
 Units: people

Description: A cascade of levels in which the flows are all caused by workers working at
some productivity and where the outflow from one level is the inflow into the next.

Behavior: If the workers and their productivities are all constant, the stocks will rise or
fall linearly.

Classic examples: R&D Chain

Caveats: There’s nothing to prevent any of these levels from going negative. (See
Cascade protected by pdy).

Technical notes: None

Molecules of Structure Page 126 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

Cascade Protected By PDY

workersB

producingB
InventoryC

workersC

producingC
InventoryD

workersA

productivityA

producingA
InventoryB producingD

workersD

productivityB

Required
WorkForFull
ProductivityB

Relative
Remaining

WorkB

EffectOfRe
mainingWork

OnPDYB normal
PDYB

EffectOf
RemainingWork

OnPDYB f

productivityC

Required
WorkForFull
ProductivityC

Relative
Remaining

WorkC

EffectOfRe
mainingWork

OnPDYC

normal
PDYC

EffectOfRe
mainingWork
OnPDYC f

productivityD

RequiredWork
ForFull

ProductivityD

Relative
Remaining

WorkD

EffectOfRe
mainingWork

OnPDYD

normalPDYD

EffectOf
RemainingWork

OnPDYD f

Immediate parents: Level protected by PDY, Doing work cascade
Ultimate parents: Close gap, Action from resource, Dmnl input to function, Bathtub

Used by: None

Problem solved: How to prevent workers from drawing down cascaded levels below
zero.

Equations:

InventoryB = INTEG(producingA - producingB , RequiredWorkForFullProductivityB)
 Units: widgets
InventoryC = INTEG(producingB - producingC , RequiredWorkForFullProductivityC)
 Units: widgets
InventoryD = INTEG(producingC - producingD , RequiredWorkForFullProductivityD)
 Units: widgets
producingA = workersA * productivityA
 Units: widgets/Month
producingB = workersB * productivityB
 Units: widgets/Month
producingC = workersC * productivityC
 Units: widgets/Month
producingD = workersD * productivityD
 Units: widgets/Month
workersA = 5
 Units: people
workersB = 5
 Units: people
workersC = 5

Molecules of Structure Page 127 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

 Units: people
workersD = 12
 Units: people
productivityA = 5
 Units: widgets/(Month*person)
productivityB = normalPDYB * EffectOfRemainingWorkOnPDYB
 Units: widgets/(Month*person)
productivityC = normalPDYC * EffectOfRemainingWorkOnPDYC
 Units: widgets/(Month*person)
productivityD = normalPDYD * EffectOfRemainingWorkOnPDYD
 Units: widgets/(Month*person)
normalPDYB = 5
 Units: widgets/(Month*person)
normalPDYC = 5
 Units: widgets/(Month*person)
normalPDYD = 5
 Units: widgets/(Month*person)
EffectOfRemainingWorkOnPDYB= EffectOfRemainingWorkOnPDYB f(RelativeRemainingWorkB)
 Units: dmnl
EffectOfRemainingWorkOnPDYB f = user defined function
 Units: dmnl
EffectOfRemainingWorkOnPDYC= EffectOfRemainingWorkOnPDYC f(RelativeRemainingWorkC)
 Units: dmnl
EffectOfRemainingWorkOnPDYC f = user defined function
 Units: dmnl
EffectOfRemainingWorkOnPDYD= EffectOfRemainingWorkOnPDYD f (RelativeRemainingWorkD)
 Units: dmnl
EffectOfRemainingWorkOnPDYD f = user defined function
 Units: dmnl
RelativeRemainingWorkB = InventoryB / RequiredWorkForFullProductivityB
 Units: fraction
RelativeRemainingWorkC = InventoryC / RequiredWorkForFullProductivityC
 Units: fraction
RelativeRemainingWorkD = InventoryD / RequiredWorkForFullProductivityD
 Units: fraction
RequiredWorkForFullProductivityB = 15
 Units: widgets
RequiredWorkForFullProductivityC = 15
 Units: widgets
RequiredWorkForFullProductivityD = 15
 Units: widgets

Description: People working (at some productivity) cause material to flow through a
chain of accumulations. The productivity of the people working on any one flow is a
function of the amount of material in stock that is being drained (i.e. a function of the
amount of material in the source).

Molecules of Structure Page 128 of 128

 Copyright © 1996,1997,2004, 2005 Jim Hines

Behavior: The levels will not go negative.

Classic examples: R&D Balance Chain

Caveats: None

Technical notes: None

	Acknowledgements
	Bathtub
	Cascaded levels
	Conversion
	Broken Cascade
	Split Flow
	Work Accomplishment Structure
	Go To Zero
	Decay
	Residence Time
	Present value
	Material Delay
	Aging Chain
	Aging Chain with PDY
	Close gap
	Smooth (first order)
	Workforce
	Scheduled Completion Date
	Smooth (higher-order)
	First-order stock adjustment
	High-Visibility Pipeline Correction
	Low-visibility Pipeline Correction
	Trend
	Extrapolation
	Coflow
	Coflow with Experience
	Cascaded Coflow
	Dimensionless Input To Function
	Univariate Anchoring and Adjustment
	Level Protected by Level
	Multivariate Anchoring and Adjustment
	Productivity (PDY)
	Quality
	Sea Anchor and Adjustment
	Protected Sea Anchoring and Adjustment
	Sea Anchor Pricing
	Protected Sea Anchor Pricing
	Smooth Pricing
	Effect of Fatigue
	Proportional split
	Weighted Split
	Multidimensional Split
	Market Share
	Nonlinear split
	Ceiling
	Capacity Utilization
	Floor
	Level Protected by Flow
	Backlog Shipping Protected by Flow
	Backlog Shipping Protected By Level
	Weighted Average
	Diffusion
	Action From Resource
	Financial Flow From Resource
	Resources From Action
	Workforce From Budget
	Ability From Action
	Producing
	Estimated Productivity
	Desired Workforce From Workflow
	Reducing Backlog by Doing Work
	Level Protected by PDY
	Estimated remaining duration
	Estimated Completion Date
	Overtime
	Building Inventory by Doing Work
	Population Growth
	Doing Work Cascade
	Cascade Protected By PDY

