

^1 SOFTWARE REFERENCE MANUAL

^2 PMAC / PMAC2

^3 Programmable Multi-Axis Controller

^4 3Ax-602204-xSxx

^5 September 12, 2006

Single Source Machine Control Power // Flexibility // Ease of Use
21314 Lassen Street Chatsworth, CA 91311 // Tel. (818) 998-2095 Fax. (818) 998-7807 // www.deltatau.com

Copyright Information
© 2003 Delta Tau Data Systems, Inc. All rights reserved.

This document is furnished for the customers of Delta Tau Data Systems, Inc. Other uses are
unauthorized without written permission of Delta Tau Data Systems, Inc. Information contained
in this manual may be updated from time-to-time due to product improvements, etc., and may not
conform in every respect to former issues.

To report errors or inconsistencies, call or email:

Delta Tau Data Systems, Inc. Technical Support
Phone: (818) 717-5656
Fax: (818) 998-7807
Email: support@deltatau.com
Website: http://www.deltatau.com

Operating Conditions
All Delta Tau Data Systems, Inc. motion controller products, accessories, and amplifiers contain
static sensitive components that can be damaged by incorrect handling. When installing or
handling Delta Tau Data Systems, Inc. products, avoid contact with highly insulated materials.
Only qualified personnel should be allowed to handle this equipment.

In the case of industrial applications, we expect our products to be protected from hazardous or
conductive materials and/or environments that could cause harm to the controller by damaging
components or causing electrical shorts. When our products are used in an industrial
environment, install them into an industrial electrical cabinet or industrial PC to protect them
from excessive or corrosive moisture, abnormal ambient temperatures, and conductive
materials. If Delta Tau Data Systems, Inc. products are exposed to hazardous or conductive
materials and/or environments, we cannot guarantee their operation.

REVISION HISTORY
REV. DESCRIPTION DATE CHG APPVD

1 INCORPORATED V1.17C FIRMWARE ADDENDUM 09/12/06 CP C. WILSON

PMAC/PMAC2 Software Reference Manual

Table of Contents i

Table of Contents
PMAC COMMAND AND VARIABLE SUMMARY ..1

Notes ...1
Definitions...1
On-Line Commands ..1

On-line Global Commands ...1
Addressing Mode Commands ..1
Communications Control Characters..1
General Global Commands ..2
Global Action Commands ..2
Global Status Commands ...2
Register Access Commands ...2
PLC Control Commands ..3
Global Variable Commands ...3
Buffer Control Commands ...3
MACRO Ring Commands ...4

On-line Coordinate System Commands ..4
Axis Definition Commands..4
General Coordinate-System Commands...4
Program Control Commands ..4
Coordinate-System Variable Commands ...4
Axis Attribute Commands..5
Buffer Control Commands ...5

On-Line Motor Commands ...5
General Motor Commands ...5
Jogging Commands ..5
Reporting Commands...6
Buffer Control Commands ...6

Motion Program Commands ...6
Move Commands ...6
Move Mode Commands ...6
Axis Attribute Commands..7
Move Attribute Commands ..7
Variable Assignment Commands ...7
Program Logic Control...7
Miscellaneous Commands..8

PLC Program Commands..9
Conditions...9
Actions ..9

PMAC I-Variable Summary..10
General Divisions ...10
Global I-Variables ..10

Motor I-Variables x = Motor Number (#x, x = 1 to 8} ...11
Motor Definition I-Variables ..11
Motor Safety I-Variables ..11
Motor Movement I-Variables..11
Motor Servo Control I-Variables {Standard PID Algorithm} ..12
Motor Servo Control I-Variables {Option 6 Extended Servo Algorithm only}...12
Motor Commutation I-Variables ..13
Further Motor I-Variables..13

Coordinate System I-Variables..13
PMAC(1) Servo Interface Setup I-Variables...14
PMAC2 Servo Interface Setup I-Variables ...14

Global Hardware Setup I-Variables...14

 PMAC/PMAC2 Software Reference Manual

ii Table of Contents

Channel n Hardware Setup I-Variables ...14
Ultra-Lite/Supplemental Channel Hardware Setup I-Variables...14

MACRO Support I-Variables..15
PMAC Error Code Summary ..16
PMAC Syntax Notes ...17

PMAC I-VARIABLE SPECIFICATION..19
Global I-Variables ...19

I0 Serial Addressing Card Number {PMAC(1) w/Flex CPU, PMAC2 only} ...19
I1 Serial Port Mode..20
I2 Control Panel Disable..21
I3 I/O Handshake Control ..21
I4 Communications Integrity Mode..23
I5 PLC Programs On/Off ...24
I6 Error Reporting Mode..25
I7 In-Position Number of Cycles ..26
I8 Real Time Interrupt Period ..26
I9 Full/Abbreviated Program Listing Form ...27
I10 Servo Interrupt Time..28
I11 Programmed Move Calculation Time..29
I12 Jog-to-Position Calculation Time..30
I13 Programmed Move Segmentation Time...30
I14 Auto Position Match on Run Enable..31
I15 Degree/Radian Control for User Trig Functions...31
I16 Rotary Buffer Request On Point ..31
I17 Rotary Buffer Request Off Point ..32
I18 Fixed Buffer Full Warning Point ...33

Data Gathering I-Variables ...33
I19 Data Gathering Period (in Servo Cycles)..33
I20 Data Gathering Selection Mask...34
I21 Data Gathering Source 1 Address ...34
I22–I44 Data Gathering Source 2 thru 24 Addresses..35
I45 Data Gathering Buffer Location and Mode...35
I46 CPU Frequency Control {PMAC w/Flex CPU only} ..36
I47 Address of Pointer for Control-W Command ..36
I48 DPRAM Servo Data Enable ..37
I49 DPRAM Background Data Enable ..37
I50 Rapid Move Mode Control ..38
I51 Compensation Table Enable..38
I52 \ Program Hold Slew Rate ...38
I53 Program Step Mode Control..39
I54 Serial Baud Rate {PMAC(1) w/Flex CPU or PMAC2 only}..39
I55 DPRAM Background Variable Buffers Enable..40
I56 DPRAM ASCII Communications Interrupt Enable..41
I57 DPRAM Binary Rotary Buffer Enable ...41
I58 DPRAM ASCII Communications Enable...42
I59 DPRAM Buffer Maximum Motor/C.S. Number ...42
I60 Auto-Converted ADC Register Address {PMAC(1) only} ...42
I61 Number of Auto-Converted ADC Registers {PMAC(1) only}..43
I62 Internal Message Carriage Return Control...44
I63 Control-X Echo Enable..44
I64 Internal Response Tag Enable ...45
I65 (Reserved for future use) ..46
I66 Servo-Channel ADC Auto-Copy Disable {PMAC2 only} ..46
I67—I80 (Reserved for Future Use) ..47
I8x Motor x Third-Resolver Gear Ratio...50

PMAC/PMAC2 Software Reference Manual

Table of Contents iii

I89 Cutter Comp Outside Corner Break Point...51
I90 Minimum Arc Angle ...52
I9x Motor x Second-Resolver Gear Ratio ..52
I99 Backlash Hysteresis ...54

Motor x I-Variables ...54
Motor Definition I-Variables ..54

Ix00 Motor x Activate ...54
Ix01 Motor x PMAC-Commutation Enable ..55
Ix02 Motor x Command Output Address ..55
Ix03 Motor x Position Loop Feedback Address ..58
Ix04 Motor x Velocity Loop Feedback Address..60
Ix05 Motor x Master (Handwheel) Position Address ..61
Ix06 Motor x Master (Handwheel) Following Enable...62
Ix07 Motor x Master (Handwheel) Scale Factor ...62
Ix08 Motor x Position Scale Factor ...62
Ix09 Motor x Velocity Loop Scale Factor ...63
Ix10 Motor x Power-Up Servo Position Address ..64

Motor Safety I-Variables ..69
Ix11 Motor x Fatal (Shutdown) Following Error Limit...69
Ix12 Motor x Warning Following Error Limit ..71
Ix13 Motor x Positive Software Position Limit ...72
Ix14 Motor x Negative Software Position Limit ...72
Ix15 Motor x Deceleration Rate on Position Limit or Abort ...73
Ix16 Motor x Maximum Permitted Motor Program ..73
Ix17 Motor x Maximum Permitted Motor Program Acceleration ...74
Ix19 Motor x Maximum Permitted Motor Jog/Home Acceleration ..75

Motor Movement I-Variables..76
Ix20 Motor x Jog/Home Acceleration Time..76
Ix21 Motor x Jog/Home S-Curve Time ...76
Ix22 Motor x Jog Speed...77
Ix23 Motor x Homing Speed and Direction ..77
Ix24 (Reserved for Future Use) ...77
Ix25 Motor x Limit/Home Flag ...78
Ix26 Motor x Home Offset ..82
Ix27 Motor x Position Rollover Range..82
Ix28 Motor x In-position Band ..84
Ix29 Motor x Output/First Phase Offset ..84

Servo Control I-Variables...86
Ix30 – Ix58 Motor x Extended Servo Algorithm Gains {Option 6 firmware only}86
Ix30 Motor x PID Proportional Gain ...86
Ix31 Motor x PID Derivative Gain ..87
Ix32 Motor x PID Velocity Feedforward Gain..88
Ix33 Motor x PID Integral Gain ..88
Ix34 Motor x PID Integration Mode..89
Ix35 Motor x PID Acceleration Feedforward Gain ...89
Ix36 Motor x PID Notch Filter Coefficient N1 ...89
Ix37 Motor x PID Notch Filter Coefficient N2 ...90
Ix38 Motor x PID Notch Filter Coefficient D1 ...90
Ix39 Motor x PID Notch Filter Coefficient D2 ...90
Ix40 - Ix56 Motor x Extended Servo Algorithm I-Variables ..91
Ix40 Motor x Net Desired Position Filter Gain {Option 6L Firmware Only}...91

Motor Servo Loop Modifiers...92
Ix57 Motor x Continuous Current Limit..92
Ix58 Motor x Integrated Current Limit ..93
Ix59 Motor x User-Written Servo/Phase Enable ...94
Ix60 Motor x Servo Cycle Period Extension ...95

 PMAC/PMAC2 Software Reference Manual

iv Table of Contents

Ix61 Motor x Current Loop Integral Gain {PMAC2 only} ...95
Ix62 Motor x Current Loop Proportional Gain (Forward Path) {PMAC2 only}.......................................96
Ix63 Motor x Integration Limit..96
Ix64 Motor x Deadband Gain Factor ...97
Ix65 Motor x Deadband Size ...98
Ix66 Motor x PWM Scale Factor {PMAC2 only}...98
Ix67 Motor x Linear Position Error Limit ...98
Ix68 Motor x Friction Feedforward ...99
Ix69 Motor x Output Command Limit...99

Commutation I-Variables ...102
Ix70 Motor x Number of Commutation Cycles (N) ..102
Ix71 Motor x Encoder Counts per N Commutation Cycles...102
Ix72 Motor x Commutation Phase Angle ..103
Ix73 Motor x Phase Finding Output Value..104
Ix74 Motor x Phase Finding Time...104
Ix75 Motor x Power-On Phase Position Offset ...105
Ix76 Motor x Velocity Phase Advance Gain {PMAC(1) Only}..107
Ix76 Motor x Current-Loop Proportional Gain (Back Path) {PMAC2 only}..107
Ix77 Motor x Induction Motor Magnetization Current..107
Ix78 Motor x Induction Motor Slip Gain...108
Ix79 Motor x Second Phase Offset ..109
Ix80 Motor x Power-Up Mode ..109
Ix81 Motor x Power-Up Phase Position Address ..111
Ix82 Current loop Feedback Address {PMAC2 only} ..116
Ix83 Motor x Ongoing Phasing Position Address ...117
Ix84 Current-Loop Feedback Mask Word {PMAC2 only}...118

Further Motor I-Variables..119
Ix85 Motor x Backlash Take-up Rate..119
Ix86 Motor x Backlash Size ..119

Coordinate System x I-Variables...120
Ix87 Coordinate System x Default Program Acceleration Time ...120
Ix88 Coordinate System x Default Program S-Curve Time ..121
Ix89 Coordinate System x Default Program Feedrate/Move Time..122
Ix90 Coordinate System x Feedrate Time Units..122
Ix91 Coordinate System x Default Working Program Number...123
Ix92 Coordinate System x Move Blend Disable..123
Ix93 Coordinate System x Time Base Control Register Address ..123
Ix94 Coordinate System x Time Base Slew Rate (and Limit ..124
Ix95 Coordinate System x Feed Hold Deceleration Rate ..125
Ix96 Coordinate System x Circle Error Limit..125
Ix97 (Reserved for Future Use) ...126
Ix98 Coordinate System x Maximum Feedrate ...126
Ix99 (Reserved for Future Use) ...126

PMAC(1) Encoder/Flag Setup I-Variables..126
I900, I905, ..., I975 Encoder n Decode Control “Encoder I-Variable 0” {PMAC(1) Only}126
I901, I906, ..., I976 Encoder n Filter Disable “Encoder I-Variable 1” {PMAC(1) Only}...........................128
I902, I907, ..., I977 Encoder n Position Capture Control “Encoder I-Variable 2” {PMAC(1) Only}.........128
I903, I908, ..., I978 Encoder n Flag Select Control Encoder I-Variable 3 {PMAC(1) only}......................130
I904, I909, .., I979 – (Reserved for Future Use) {PMAC(1) only}..130

PMAC2 Encoder/Flag/Output Setup I-Variables ..131
Global / Multi-Channel ASIC I-Variables ..131

I900 MaxPhase and PWM 1-4 Frequency Control {PMAC2 only}..131
I901 Phase Clock Frequency Control {PMAC2 only} ..132
I902 Servo Clock Frequency Control {PMAC2 only} ..133
I903 Hardware Clock Control Channels 1-4 {PMAC2 only} ...134
I904 PWM 1-4 Deadtime / PFM 1-4 Pulse Width Control {PMAC2 only}..136

PMAC/PMAC2 Software Reference Manual

Table of Contents v

I905 DAC 1-4 Strobe Word {PMAC2 only}...136
I906 PWM 5-8 Frequency Control {PMAC2 only} ...137
I907 Hardware Clock Control Channels 5-8 {PMAC2 only} ...137
I908 PWM 5-8 Deadtime / PFM 5-8 Pulse Width Control {PMAC2 only}..139
I909 DAC 5-8 Strobe Word {PMAC2 only}...139

Channel-Specific Gate Array I-Variables...140
I9n0 Encoder/Timer n Decode Control {PMAC2 only} ...140
I9n1 Position Compare n Channel Select {PMAC2 only} ..141
I9n2 Encoder n Capture Control {PMAC2 only}..142
I9n3 Capture n Flag Select Control {PMAC2 only} ...143
I9n4 Encoder n Gated Index Select {PMAC2 only} ...143
I9n5 Encoder n Index Gate State ...144
I9n6 Output n Mode Select {PMAC2 only}..144
I9n7 Output n Invert Control {PMAC2 only} ...145
I9n8 Output n PFM Direction Signal Invert Control {PMAC2 only} ...145

PMAC2 DSPGATE2 I-Variables..146
I990 Handwheel 1 Decode Control {PMAC2 only} ...146
I991 Handwheel 2 Decode Control {PMAC2 only} ...147
I992 MaxPhase and PWM 1*-2* Frequency Control {PMAC2 only}..148
I993 Hardware Clock Control Channels 1*-2* {PMAC2 only} ...149
I994 PWM 1*-2* Deadtime / PFM 1* Pulse Width Control {PMAC2 only}...151
I995 MACRO Ring Configuration/Status {PMAC2 only} ...152
I996 MACRO Node Activate Control {PMAC2 only} ...153
I997 Phase Clock Frequency Control {PMAC2 only} ..154
I998 Servo Clock Frequency Control {PMAC2 only} ..155
I999 (Reserved for Future Use) ...156

MACRO Software Setup I-Variables..156
I1000 MACRO Node Auxiliary Register Enable..156
I1001 MACRO Ring Check Period...157
I1002 MACRO Node Protocol Type Control..157
I1003 MACRO Type 1 Master/Slave Communications Timeout ...158
I1004 MACRO Ring Error Shutdown Count ..158
I1005 MACRO Ring Sync Packet Shutdown Count...159
I1020 Lookahead Length {Option 6L firmware only}...159
I1021 Lookahead State Control {Option 6L Firmware Only} ..165

PMAC ON-LINE COMMAND SPECIFICATION..166
<CONTROL-A> ...166
<CONTROL-B> ...166
<CONTROL-C>...167
<CONTROL-D>...167
<CONTROL-E> ... Error! Bookmark not defined.
<CONTROL-F> ...168
<CONTROL-G>...168
<CONTROL-H>...168
<CONTROL-I> ..168
<CONTROL-K>...169
<CONTROL-L> ...169
<CONTROL-M> ..171
<CONTROL-N>...171
<CONTROL-O>...172
<CONTROL-P> ...172
<CONTROL-Q>...173
<CONTROL-R> ...173
<CONTROL-S>..174
<CONTROL-T> ...174

 PMAC/PMAC2 Software Reference Manual

vi Table of Contents

<CONTROL-U>...174
<CONTROL-V> ...175
<CONTROL-W> .. Error! Bookmark not defined.
<CONTROL-X> ...175
<CONTROL-Y> ...176
<CONTROL-Z> ...176
..177
#{constant} ...177
#{constant}-> ...178
#{constant}->0..178
#{constant}->{axis definition}..179
$..181
$$$..181
$$$*** ..182
$* ..183
%...184
%{constant} ..185
&{constant} ..186
&...186
< {Option 6L firmware only}...187
> {Option 6L firmware only}...187
/ ...188
? ..189
?? ..192
??? ..196
@ ..199
@{card} ..199
\ ...200
A..201
ABS ...202
{axis}={constant} ...202
B..203
CHECKSUM...204
CLEAR..204
CLOSE..205
{constant} ...205
DATE ..206
DEFINE BLCOMP ...206
DEFINE COMP (one-dimensional)..207
DEFINE COMP (two-dimensional)..209
DEFINE GATHER..212
DEFINE LOOKAHEAD {Option 6L firmware only}..213
DEFINE ROTARY ..215
DEFINE TBUF ...217
DEFINE TCOMP..217
DEFINE UBUFFER ...218
DELETE BLCOMP...219
DELETE COMP ...220
DELETE GATHER ...220
DELETE LOOKAHEAD {Option 6L firmware only} ...221
DELETE PLCC...221
DELETE ROTARY..222
DELETE TBUF...222
DELETE TCOMP ...223
DELETE TRACE ..223
DISABLE PLC ..223

PMAC/PMAC2 Software Reference Manual

Table of Contents vii

DISABLE PLCC..224
EAVERSION ...225
ENABLE PLC ...225
ENABLE PLCC...226
ENDGATHER...227
F..227
FRAX ..228
GATHER...229
H ...229
HOME...230
HOMEZ ..231
I{constant} ..231
I{constant}={expression} ...232
I{constant}=* ...233
INC ...233
J! ...234
J+..234
J- ...235
J/ ...235
J:{constant} ..236
J:* ...236
J=..237
J={constant} ..237
J=*..238
J=={constant} ..239
J^{constant} ..239
J^*...240
{jog command}^{constant} ...240
K ...242
LEARN..242
LIST ..243
LIST BLCOMP ...244
LIST BLCOMP DEF...244
LIST COMP ..244
LIST COMP DEF ...245
LIST GATHER ..246
LIST LDS .. Error! Bookmark not defined.
LIST LINK...246
LIST PC ..247
LIST PE...247
LIST PLC ..248
LIST PROGRAM...249
LIST ROTARY...250
LIST TCOMP..251
LIST TCOMP DEF ...251
M{constant} ..252
M{constant}={expression} ...252
M{constant}-> ..253
M{constant} ->* ...253
M{constant}->D:{address} ..254
M{constant}->DP:{address} ..255
M{constant}->F:{address}...255
M{constant}->L:{address} ...256
M{constant}->TWB:{multiplex address}..257
M{constant}->TWD:{address} ...257
M{constant}->TWR:{address},{offset}...258

 PMAC/PMAC2 Software Reference Manual

viii Table of Contents

M{constant}->TWS:{address}..259
M{constant}->X/Y:{address}..262
MACROAUX...263
MACROAUXREAD...264
MACROAUXWRITE...265
MACROSLV{command} {node#} ...265
MACROSLV{node#},{slave variable} ..266
MACROSLV{node#},{slave variable}={constant} ...267
MACROSLVREAD..268
MACROSLVWRITE ..268
MFLUSH ..269
O{constant}...270
OPEN BINARY ROTARY..270
OPEN PLC ...271
OPEN PROGRAM..272
OPEN ROTARY ..273
P..273
P{constant} ...274
P{constant}={expression} ..274
PASSWORD={string}...275
PAUSE PLC..276
PC...277
PE ...277
PMATCH ..278
PR ...279
Q ...279
Q{constant}...280
Q{constant}={expression}..280
R..281
R[H]{address} ..281
RESUME PLC ..282
S ..283
SAVE...284
SETPHASE ...285
SIZE ..286
TYPE...286
UNDEFINE ..287
UNDEFINE ALL...287
V..288
VERSION..288
W{address} ...289
Z..289

PMAC PROGRAM COMMAND SPECIFICATION..292
{axis}{data}[{axis}{data}...] ..292
{axis}{data}:{data} [{axis}{data}:{data}...] ..292
{axis}{data}^{data}[{axis}{data}^{data}...]...293
{axis}{data} [{axis}{data}...] {vector}{data} [{vector}{data}...]...294
A{data} ...296
ABS ...296
ADDRESS ...297
ADIS{constant}...297
AND ({condition}) ..298
AROT{constant}..298
B{data} ...299
BLOCKSTART ..299

PMAC/PMAC2 Software Reference Manual

Table of Contents ix

BLOCKSTOP..300
C{data} ...300
CALL...301
CC0...302
CC1...302
CC2...303
CCR{data} ..303
CIRCLE1 ..303
CIRCLE2 ..303
COMMAND "{command}" ...305
COMMAND^{letter}...307
D{data} ...308
DELAY{data}..308
DISABLE PLC ..309
DISABLE PLCC {constant}[,{constant}...] ..310
DISPLAY [{constant}] "{message}" ...310
DISPLAY ... {variable} ...311
DWELL ...312
ELSE ...312
ENABLE PLC ...314
ENABLE PLCC...314
ENDIF ..315
ENDWHILE ..315
F{data} ...316
FRAX ..317
G{data} ...318
GOSUB ...319
GOTO ...319
HOME...320
HOMEZ ..321
I{data}...322
I{constant}={expression} ...322
IDIS{constant} ..323
IF ({condition})...323
INC ...324
IROT{constant}...325
J{data} ..326
K{data} ...326
LINEAR...327
M{constant}={expression} ...327
M{constant}=={expression}...328
M{constant}&={expression} ..329
M{constant}|={expression} ..329
M{constant}^={expression}..330
M{data}...331
MACROAUXREAD...331
MACROAUXWRITE...332
MACROSLVREAD..333
MACROSLVWRITE ..333
N{constant}...334
NORMAL ..335
O{constant}...335
OR({condition}) ..336
P{constant}={expression} ..337
PAUSE PLC..337
PRELUDE ..338

 PMAC/PMAC2 Software Reference Manual

x Table of Contents

PSET ...339
PVT{data}...340
Q{constant}={expression}..341
R{data} ...341
RAPID...342
READ..343
RESUME PLC ..344
RETURN ...345
S{data}..346
SEND ..346
SEND^{letter} ...348
SETPHASE ...349
SPLINE1 ...350
SPLINE2 ...350
STOP...351

T{data} 351
TA{data} ...352
TINIT ..353
TM{data} ..353
TS{data}..354
TSELECT{constant} ...355
U{data} ...355
V{data} ...356
W{data}...356
WAIT...356
WHILE({condition}) ...357
X{data} ...358
Y{data}..359
Z{data}..359

PMAC MATHEMATICAL FEATURES..360
Mathematical Operators ..360

+ ...360
-...360
* ..360
/ ...360
%...361
&...362
| ...362
^ ..363

Mathematical Functions ..363
ABS ...363
ACOS ..364
ASIN..364
ATAN ..364
ATAN2 ..365
COS...366
EXP...366
INT..366

LN...367
SIN ..367
SQRT...368
TAN...368

SAVED SETUP REGISTERS NOT REPRESENTED BY I-VARIABLES..370
Analog Data Table Setup Registers...370

X:$0708 – Y:$070F Analog Table Setup Lines ..370

PMAC/PMAC2 Software Reference Manual

Table of Contents xi

Encoder Conversion Table Setup Registers: Y:$0720 – Y:$073F ..372
Y:$0720 – Y:$073F Conversion Table Setup Lines ..372

VME/DPRAM Addressing Setup Registers: X:$0783 – X:$078C ...385
X:$0783 VME Address Modifier..389
X:$0784 VME Address Modifier Don’t Care Bits ...389
X:$0785 VME Base Address Bits A31-A24..389
X:$0786 VME Mailbox Base Address Bits A23-A16 ISA DPRAM Base Address Bits A23-A16390
X:$0787 VME Mailbox Base Address Bits A15-A08 ISA DPRAM Base Address Bits A15-A14 & Control
 390
X:$0788 VME Interrupt Level ...391
X:$0789 VME Interrupt Vector ...391
X:$078A VME DPRAM Base Address Bits A23-A20 ...391
X:$078B VME DPRAM Enable..392
X:$078C VME Address Width Control...392

PMAC2 Servo IC Setup Bits and Registers ..393
X:$C005 etc. Bit 18 Encoder n Hardware 1/T Enable {PMAC2 only}...393
X:$C005 etc. Bit 18 Encoder n Hardware 1/T Enable {PMAC2 only}...393
X:$C014, X:$C034 Servo IC m ADC Strobe Word {PMAC2 only} ..394

PMAC I/O AND MEMORY MAP...396
Global Servo Calculation Registers...397
Motor Calculation Registers: PMAC(1), PID Servo Algorithm..399
Motor Calculation Registers: PMAC(1), Extended Servo Algorithm (ESA)..401
Motor Calculation Registers: PMAC2, PID Servo Algorithm ..404
Motor Calculation Registers: PMAC2, Extended Servo Algorithm (ESA) ..407
Buffers...410
Encoder Conversion (Interpolation) Table ..410
General Global Registers...412
Motor and Coordinate System Status and Control Registers ..412
Buffer Management Registers...417
PMAC(1) DSPGATE Servo IC Registers ...418
PMAC2 DSPGATE1 Servo IC Registers..420
PMAC2 DSPGATE2 I/O and MACRO Registers ..425
Dual-Ported RAM (Option 2 Required) ..435

DPRAM Control Panel Registers ...435
Control Panel Request Words...435
Bit Format of Request Words..436
Control Panel Feedrate Override...436
Servo Fixed Data Reporting Buffer ..436
Motor-Specific Registers for Servo Fixed Data Reporting Buffer ..436
Background Fixed Data Reporting Buffer ..438
Motor/Coordinate System Specific Registers for Background Fixed Data Buffer..438

Background Variable Transfer Buffers ...442
PMAC to Host Transfer ..442
Variable Address Buffer Format (2x16-bit words) ...442
Background Variable Data Write Buffer -- Host to PMAC Transfer..442
Variable Address Buffer Format for each Data Structure (6x16-bit) ...443
Binary Rotary Motion Program Transfer Buffers...443
DPRAM Data Gathering Buffer ...444
Variable-Size Buffers, Open-Use Space ...444

VME-Bus Registers (PMAC(1)-VME, PMAC2-VME, PMAC2-VME Ultralite only) ..445
PMAC2 I/O Control Registers ..445

PCI/ISA Bus PMAC2 Versions (PMAC2-PCI, PMAC2-PC, PMAC2-Lite, PMAC2-PC UltraLite):445
VME Bus PMAC2 Versions (PMAC2-VME, PMAC2-VME UltraLite): ...446

Inputs and Outputs (PMAC-PC, PMAC-PCI, PMAC-VME, PMAC-Lite, PMAC-PCI Lite only)446
Inputs and Outputs (Mini-PMAC, Mini-PMAC-PCI Only)..448

 PMAC/PMAC2 Software Reference Manual

xii Table of Contents

Inputs and Outputs (PMAC1.5-STD Only)...449
PMAC2 Option 12/12A Analog-to-Digital Converters...455
PMAC(1)-PCI, PMAC(1)-PCI Lite Option 12/12A Analog-to-Digital Converters..455
Expansion Port (JEXP) I/O ...455

PMAC(1) SUGGESTED M-VARIABLE DEFINITIONS...458
PMAC2 SUGGESTED M-VARIABLE DEFINITIONS..472
PMAC FIRMWARE UPDATES..490

Battery-backed PMAC(1) boards ...490
Flash-backed PMAC(1), all PMAC2 boards ..490

Update Summary: From V1.15 to V1.16 (July 1996) ...491
Changes ..491
Additions...491

I-Variables ..491
Conversion Table Entries ...492
On-Line Commands ...492
Motion Program Commands ..492
DPRAM Structures...492
Refinements..493

Update Summary: From V1.16 to V1.16A (Sept 1996)...493
Update Summary: From V1.16A to V1.16B (Oct 1996)..493
Update Summary: From V1.16B to V1.16C (Apr 1997) ...493
Update Summary: From V1.16C to V1.16D (Nov 1997) ..494
Update Summary: From V1.16D to V1.16F (June 1999) ..495
Update Summary: From V1.16F to V1.16G (Sept 1999)...496
Update Summary: From V1.16G to V1.16H (Sept 2000) ..497
Update Summary: From V1.16H to V1.17 (Oct 2001, FLEX CPU only)..497
Update Summary: From V1.17 to V1.17A (Jan 2002, FLEX CPU only) ..498
Update Summary: From V1.17A to V1.17B (Sep 2002, FLEX CPU only)...498
Update Summary: From V1.17B to V1.17C (Apr 2003, FLEX CPU only)...498

PMAC/PMAC2 Software Reference Manual

Table of Contents xiii

PMAC/PMAC2 Software Reference Manual

PMAC Command and Variable Summary 1

PMAC COMMAND AND VARIABLE SUMMARY
Notes
PMAC syntax is not case sensitive.
Spaces are not important in PMAC syntax, except where noted
{} – item in {} can be replaced by anything fitting definition
[] – item in [] is optional to syntax
[{item}...] – indicates previous item may be repeated in syntax
[..{item}] – the periods are to be included in the syntax to specify a range
() – parentheses are to be included in syntax as they appear

Definitions
constant – numerically specified non-changing value
variable – entity that holds a changeable value
I-variable – variable of fixed meaning for card setup and personality (1 of 1024)
P-variable – global variable for programming use (1 of 1024)
Q-variable – local var. (in coord. sys.) for programming use (1 of 1024)
M-variable – variable assigned to memory location for user use (1 of 1024)
pre-defined variable – mnemonic that has fixed meaning in card
function – SIN,COS,TAN,ASIN,ACOS,ATAN,ATAN2,LN,EXP,SQRT,ABS,INT
operator – for arithmetic or bit-by-bit logical combination of two values:
 +, -, *, /, % (mod), & (and), | (or), ^ (xor)
expression – grouping of constants, variables, functions, and operators
data – constant w/out parentheses, or expression w/ parentheses
comparator – evaluates relationship between two values: =, !=, >, !>, <, !<, ~, !~
condition – evaluates as true or false based on comparator(s)
simple condition – {expression} {comparator} {expression}
compound condition – logical combination of simple conditions
motor – element of control for hardware setup; specified by number
coordinate system – collections of motors working synchronously
axis – element of a coordinate system; specified by letter chosen from X, Y, Z, A, B, C, U, V, W
buffer – space in user memory for program or list; contains up to 256 motion programs and 32

PLC blocks

On-Line Commands
(Executed immediately upon receipt by PMAC)

On-line Global Commands
Addressing Mode Commands
@n – Address card n (n is hex digit 0 to f); serial host only
@ – Report currently addressed card to host; serial host only
#n – Make Motor n currently addressed motor
– Report currently addressed motor number to host
&n – Make coord. sys. n the currently addressed coord. sys.
& – Report currently addressed coordinate system to host

Communications Control Characters
<CTRL-H> – Erase last character from host (backspace)
<CTRL-I> – Repeat last command from host (tab)
<CTRL-M> – End of command line (carriage return)

 PMAC/PMAC2 Software Reference Manual

2 PMAC Command and Variable Summary

<CTRL-N> – Report checksum of current command line
<CTRL-T> – Toggle serial communications full/half duplex
<CTRL-W> – Execute ASCII command from DPRAM buffer
<CTRL-X> – Abort current PMAC command and response strings
<CTRL-Y> – Report last command to host; ready to repeat to card
<CTRL-Z> – Make serial port the communications port

General Global Commands
$$$ – Global reset: including all motors and coord. systems
$$$*** – Reset and re-initialize entire card
PASSWORD={string} – Set/confirm password for PROG1000-32767,PLC0-15
SAVE – Save I-variables into non-volatile memory
UNDEFINE ALL – Erase definition of all coordinate systems
CLEARFAULT – Clear Geo PMAC fault display {Geo PMAC only}

Global Action Commands
<CTRL-A> – Abort all motion programs and moves
<CTRL-D> – Disable all PLC and PLCC programs
<CTRL-K> – Kill outputs for all motors
<CTRL-L> – Close rotary program buffer
<CTRL-O> – Do feed hold on all coordinate systems
<CTRL-Q> – Quit all programs at end of calculated moves
<CTRL-R> – Run working programs in all coordinate systems
<CTRL-S> – Step working programs in all coordinate systems
<CTRL-U> – Open rotary program buffer

Global Status Commands
<CTRL-B> – Report all motor status words to host
<CTRL-C> – Report all coordinate system status words to host
<CTRL-F> – Report all motor following errors (unscaled)
<CTRL-G> – Report global status words in binary form
<CTRL-P> – Report all motor positions (unscaled)
<CTRL-V> – Report all motor velocities (unscaled)
??? – Report global status words in hex ASCII
DATE – Report date of firmware version used
LIST [{buffer}] – Report contents of open [or specified] buffer
SIZE – Report size of open memory in words (sub-blocks)
TYPE – Report type of PMAC
VERSION – Report firmware revision level
EAVERSION – Report firmware revision level & information
CHECKSUM – Report firmware reference checksum value

Register Access Commands
R{address}[,{constant}] – Report contents of specified memory word address
 [or specified number of addresses] in decimal
RH{address}[,{constant}] – Report contents of specified memory word address
 [or specified number of addresses] in hex
W{address},{constant}[,{constant}..] – Write value to specified memory
 word address [or values to range]

PMAC/PMAC2 Software Reference Manual

PMAC Command and Variable Summary 3

PLC Control Commands
ENABLE PLC{constant}[,{constant}...] – Enable operation of specified
 interpreted PLC program[s]
DISABLE PLC{constant}[,{constant}...] – Disable operation of specified
 interpreted PLC program[s]
PAUSE PLC{constant}[,{constant}...] – Suspend operation of specified
 interpreted PLC program[s] at present point
RESUME PLC{constant}[,{constant}...] – Continue operation of specified
 interpreted PLC program[s] at paused point
ENABLE PLCC{constant}[,{constant}...] – Disable operation of specified
 compiled PLC program[s]
DISABLE PLCC{constant}[,{constant}...] – Disable operation of specified
 compiled PLC program[s]

Global Variable Commands
{constant} – Equivalent to P0={constant}
 if no unfilled table; otherwise value entered into table
I{constant}={expression} – Expression value assigned to I-variable
I{constant}[..{constant}]=* – Set I-variable[s] to default[s]
P{constant}[..{constant}]={expression} – Expression value assigned to
 P-variable(s)
M{constant}[..{constant}]={expression} – Expression value assigned to
 M-variable(s)
M{constant}->{definition} – M-variable defined as specified
M{constant}->* – M-variable defined as non-pointer variable
I{constant}[..{constant}] – Report I-variable value(s) to host
P{constant}[..{constant}] – Report P-variable value(s) to host
M{constant}[..{constant}] – Report M-variable value(s) to host
M{constant}[..{constant}]-> – Report M-variable definition(s) to host

Buffer Control Commands
OPEN PROG {constant} – Open specified motion program buffer for entering/editing
OPEN ROTARY – Open all defined rotary program buffer for entry
OPEN BINARY ROTARY – Open all defined rotary program buffers for binary entry thru
 DPRAM
OPEN PLC{constant} – Open specified PLC program buffer for entry
CLOSE – Close currently opened buffer
CLEAR – Erase contents of opened buffer
DEFINE GATHER [{constant}] – Set up a data gathering buffer using all open memory
 [or of specified size]
DELETE GATHER – erase the data gathering buffer
GATHER [TRIGGER] – Start data gathering [on external trigger]
ENDGATHER – Stop data gathering
DELETE PLCC{constant} – Erase specified compiled PLC program
DELETE TRACE – Erase the program trace buffer (no action taken; kept for backward
 compatibility)
DEFINE TBUF {constant} – Set up specified number of axis transformation matrices
DELETE TBUF – Erase all axis transformation matrices
DEFINE UBUFFER{constant} – Set up a user buffer of specified number of words

 PMAC/PMAC2 Software Reference Manual

4 PMAC Command and Variable Summary

MACRO Ring Commands
MACROAUX – Report Type 0 MACRO slave variable value to host
MACROAUXREAD – Copy Type 0 MACRO slave variable to PMAC variable
MACROAUXWRITE – Copy PMAC variable value to Type 0 MACRO slave variable
MACROSLV {command} {node#} – Send command to Type 1 MACRO slave
MACROSLV {node#},{slave variable} – Report Type 1 MACRO slave variable value
 to host
MACROSLV {node#},{slave variable}={constant} – Set Type 1 MACRO slave
 variable value
MACROSLVREAD – Copy Type 1 MACRO slave variable to PMAC variable
MACROSLVWRITE – Copy PMAC variable value to Type 1 MACRO slave variable

On-line Coordinate System Commands
(These act immediately on currently addressed coordinate system)

Axis Definition Commands
#n->[{constant}]{axis}[+{constant}] – Define axis in terms of motor #,
 scale factor, and offset.
 Examples: #1->X
 #4->2000A+500
#n->[{constant}]{axis}[+[{constant}]{axis}[+[{constant}]{axis}]]
[+{constant}] – Define 2 or 3 axes in terms of motor #, scale factors, and offset.
 Valid only within XYZ or UVW groupings.
 Examples: #1->8660X-5000Y
 #2->5000X+8660Y+5000
#n-> – Report axis definition of Motor n in this C. S.
UNDEFINE – Erase definition of all axes in this C. S.

General Coordinate-System Commands
?? – Report coordinate system status in hex ASCII form
%{constant} – Specify feedrate override value
% – Report current feedrate override value to host

Program Control Commands
R – Run current program
S – Do one step of current program
B[{constant}] – Set program counter to specified location
H – Feed hold for coordinate system
A – Abort present program or move starting immediately
Q – Halt program; stop moves at end of last calculated program command
/ – Halt program execution at end of currently executing move
\ – Do program hold that permits jogging while in hold mode
MFLUSH – Erase contents of synchronous M-variable stack without executing

Coordinate-System Variable Commands
Q{constant} [..{constant}]={expression} – Assign expression value to
 Q-variable(s)
Q{constant} [..{constant}] – Report Q-variable value(s) to host

PMAC/PMAC2 Software Reference Manual

PMAC Command and Variable Summary 5

Axis Attribute Commands
{axis}={expression} – Change value of commanded axis position
Z – Make present commanded position of all axes in coordinate system equal to zero.
INC[({axis}[,{axis}...])] – Make all [or specified] axes do their moves incrementally
ABS[({axis}[,{axis}...])] – Make all [or specified] axes do their moves absolute
FRAX({axis}[,{axis}...]) – Make specified axes to be used in vector feedrate calculations
PMATCH – Re-match coordinate system axis positions to motor commanded positions
 (used in case axis definition or motor position changed since last axis move)

Buffer Control Commands
PC – Report next program number and line (offset) to be executed to host
LIST PC[,[{constant}] – List next line of working program [and specified lines afterward]
 to be calculated
PE – Report working program number and line (offset) currently executing to host
LIST PE[,[{constant}] – List currently executing line of working program [and specified
 lines afterward]
DEFINE ROT {constant} – Establish rotary motion program buffer of specified word size
 for the addressed coordinate system
DELETE ROT – Erase rotary motion program buffer for addressed coordinate system
PR – Report number of lines between executing point and last loaded line in rotary program buffer.
LEARN – Read present commanded positions and add as axis commands to open program buffer

On-Line Motor Commands
(These act immediately on the currently-addressed motor. Except for the reporting commands, these
commands are rejected if the motor is in a coordinate system that is currently running a motion program.)

General Motor Commands
$ – Reset motor – feedback device(s) and phasing
$* – Read absolute position of motor according to Ix10
HM – Perform homing routine for motor
HMZ – Perform zero-move homing routine for motor
SETPHASE – Set commutation angle for present position to Ix75
K – Kill output for motor
O{constant} – Open-loop output of specified magnitude

Jogging Commands
J+ – Jog motor indefinitely in positive direction
J- – Jog motor indefinitely in negative direction
J/ – Stop jogging motor; also restore to position control
J= – Jog motor to last pre-jog or pre-handwheel position
J={constant} – Jog motor to specified position
J=* – Variable jog to position
J:{constant} – Jog motor specified distance from current commanded position
J:* – Variable incremental jog from current commanded position
J^{constant} – Jog motor specified distance from current actual position
J^* – Variable incremental jog from current actual position
{jog command}^{constant} – Jog until trigger, final value specifies distance from trigger
 position to stop

 PMAC/PMAC2 Software Reference Manual

6 PMAC Command and Variable Summary

Reporting Commands
P – Report position of motor
V – Report velocity of motor
F – Report following error of motor
? – Report status words for motor in hex ASCII form

Buffer Control Commands
DEFINE BLCOMP {entries},{count length} – Establish backlash compensation table
 for motor; to be filled by specified
 number of values
DELETE BLCOMP – Erase backlash compensation table for motor
DEFINE COMP {entries},[#{source},[#{target},]],{count length} –
 Establish leadscrew compensation table for motor; to be filled by specified number
 of values
DEFINE COMP{rows}.{columns},[#{source1},[#{source2},

[#{target},]]],{row count length},{column count length} – Establish
two dimensional leadscrew compensation table for motor; to be filled by specified number of
values

DELETE COMP – Erase leadscrew compensation table for motor.
DEFINE TCOMP {entries},{count length} – Establish torque compensation table for
 motor; to be filled by specified number
 of values .
DELETE TCOMP – Erase torque compensation table for motor.

Motion Program Commands
Move Commands
{axis}{data}[{axis}{data}...] – Simple movement statement; can be used in
 LINEAR, RAPID or SPLINE modes
 Example: X1000 Y(P1) Z(P2*P3)
{axis}{data}:{data}[{axis}{data}:{data}...] – Position:velocity move; to be
 used only in PVT mode
 Example: X5000:750 Y3500:(P3) A(P5+P6):100
{axis}{data}^{data}[{axis}{data}^{data}...] – Move until trigger, variant of
 RAPID mode
{axis}{data}[{axis}{data}...][{vector}{data}...] – Circle move;
 to be used only in circular mode; vector is to circle center
 Example: X2000 Y3000 Z1000 I500 J300 K500
DWELL{data} – Keep same commanded position; fixed time base
DELAY{data} – Keep same commanded position; variable time base
HOME{constant}[,{constant}...] – Home specified motor(s)
HOMEZ{constant}[,{constant}...] – Do zero-move homing of specified motor(s)

Move Mode Commands
LINEAR – Blended linear interpolation move mode
RAPID – Mode where all axes move a maximum velocity and accel.
CIRCLE1 – Clockwise circular interpolation move mode
CIRCLE2 – Counterclockwise circular interpolation move mode
PVT{data} – Position/velocity/time transition-point move mode (parabolic velocity profiles)
SPLINE1 – Uniform cubic spline move mode

PMAC/PMAC2 Software Reference Manual

PMAC Command and Variable Summary 7

SPLINE2 – Non-uniform cubic spline move mode
CC0 – Turns off cutter radius compensation
CC1 – Turns on cutter radius compensation left
CC2 – Turns on cutter radius compensation right

Axis Attribute Commands
ABS[({axis}[,{axis},...])] – Makes all [or specified] axes in absolute move mode
INC[({axis}[,{axis},...])] – Makes all [or specified] axes in incremental move mode
FRAX[({axis}[,{axis}...])] – Specifies feedrate axes
NORMAL{vector}{data}[{vector}{data}...] – Specifies normal vector to plane for
 circular moves and cutter compensation
PSET{axis}{data}[{axis}{data}...] – Sets axis position values
R{data} – Specifies circle radius; negative value is long arc
CCR{data} – Specifies cutter compensation radius value (modal)
TSEL{data} – Selects specified axis transformation matrix
TINIT – Initializes selected axis transformation matrix as identity matrix
ADIS{data} – Sets displacement vector of selected matrix to values starting with specified
 Q-variable
IDIS{data} – Increments displacement vector of selected matrix to values starting with
 specified Q-variable
AROT{data} – Sets rotation/scaling portion of selected matrix to values starting with specified
 Q-variable
IROT{data} – Incrementally changes rotation/scaling portion of selected matrix by multiplying
 it with values starting with specified Q-variable

Move Attribute Commands
TM{data} – Specifies move time (modal)
F{data} – Specifies move speed (modal)
TA{data} – Specifies move acceleration time (modal)
TS{data} – Specifies acceleration S-curve time (modal)

Variable Assignment Commands
I{constant}={expression} – Assigns expression value to specified I-variable
P{constant}={expression} – Assigns expression value to specified P-variable(s)
Q{constant}={expression} – Assigns expression value to specified Q-variable(s)
M{constant}={expression} – Assigns expression value to specified M-variable(s)
M{constant}=={expression} – Assigns expression synchronous with start of next move
M{constant}&={expression} – M-variable ANDed with expression synchronously
M{constant}|={expression} – M-variable ORed with expression synchronously
M{constant}^={expression} – M-variable XORed with expression synchronously

Program Logic Control
N{constant} – Line label
O{constant} – Alternate line label, stored as N{constant}
GOTO{data} – Jump to specified N-label; no return
GOSUB{data}[{letter}{axis}...] – Jump to specified N-label and return
 [with arguments]
CALL{data}[.{data}][{letter}{axis}...] – Jump to specified program
 [and label] [with arguments] and return.
RETURN – Return program operation to most recent GOSUB or CALL

 PMAC/PMAC2 Software Reference Manual

8 PMAC Command and Variable Summary

READ ({letter} [,{letter}...]) – Allows subprogram or subroutine to take arguments
G{data} – Gnn[.mmm] interpreted as CALL 1000.nnmmm
 (PROG 1000 provides subroutines for desired G-Code actions.)
M{data} – Mnn[.mmm] interpreted as CALL 1001.nnmmm
 (PROG 1001 provides subroutines for desired M-Code actions.)
T{data} – Tnn[.mmm] interpreted as CALL 1002.nnmmm
 (PROG 1002 provides subroutines for desired T-Code actions.)
D{data} – Dnn[.mmm] interpreted as CALL 1003.nnmmm
 (PROG 1003 provides subroutines for desired D-Code actions.)
S{data} – Sets Q127 to value of {data}
PRELUDE1{call command} – For modal execution of call cmd. before subsequent moves
PRELUDE0 – De-activates modal PRELUDE calls
IF({condition}){action} – Conditionally execute action
IF({condition}) – Conditionally execute following statements
ELSE {action} – Execute action on previous false condition
ELSE – Execute following statements on previous false condition
ENDIF – Follows last of conditionally executed statements
WHILE({condition}) {action} – Do action as long as condition true
WHILE({condition}) – Do following statements as long as true
ENDWHILE – Follows last of conditionally executed statements
BLOCKSTART – So all commands until BLOCKSTOP to execute on Step
BLOCKSTOP – End of stepped statements starting on BLOCKSTART
STOP – Halts program execution; ready to resume
WAIT – Used with WHILE to halt execution while condition true

Miscellaneous Commands
COMMAND "{command}" – Issue command as if it came from host
COMMAND^{letter} – Issue control character command
SEND"{message}" – Transmit message over host interface
SENDS"{message}" – Transmit message over serial interface
SENDP"{message}" – Transmit message over parallel interface
DISPLAY [{constant}] "{message}" – Send message to LCD display [starting
 at specified location]
DISPLAY {constant},{constant}.{constant},{variable} – Send variable
 value to LCD using specified location and format
ENABLE PLC{constant}[,{constant}...] – Enable operation of specified
 interpreted PLC program[s]
DISABLE PLC{constant}[,{constant}...] – Disable operation of specified
 interpreted PLC program[s]
PAUSE PLC{constant}[,{constant}...] – Suspend operation of specified
 interpreted PLC program[s] at present point
RESUME PLC{constant}[,{constant}...] – Continue operation of specified
 interpreted PLC program[s] at paused point
ENABLE PLCC{constant}[,{constant}...] – Enable operation of specified
 compiled PLC program[s]
DISABLE PLCC{constant}[,{constant}...] – Disable operation of specified
 compiled PLC program[s]

PMAC/PMAC2 Software Reference Manual

PMAC Command and Variable Summary 9

PLC Program Commands
Conditions
IF ({condition}) – Evaluates condition to determine which branch to enter
WHILE ({condition}) – Conditional loop start; if true, holds up operation of PLC in
 the WHILE loop
AND ({condition}) – Forms compound condition w/ IF or WHILE
OR ({condition}) – Forms compound condition w/ IF or WHILE
ELSE – Starts false branch of IF
ENDIF – Closes out the actions dependent on an IF statement; used after, not before,
 an ELSE statement.
ENDWHILE – Closes out the actions dependent on a WHILE statement

Actions
{variable}={expression} – Expression value given to variable
MACROSLVREAD – Copy Type 1 MACRO slave variable to PMAC variable
MACROSLVWRITE – Copy PMAC variable value to Type 1 MACRO slave variable
COMMAND "{command}" – Issue command as if from host
COMMAND^{letter} – Issue control character command
SEND"{message}" – Send message to active host interface (serial or parallel)
SENDS"{message}" – Send message to serial interface
SENDP "{message}" – Send message to parallel (bus) interface
DISPLAY [{constant}] "{message}" – Display message on LCD display, starting at
 specified character
DISPLAY {constant}, {constant}.{constant}, {variable} – Send variable
 value to LCD using specified location and format.
ENABLE PLC{constant}[,{constant}...] – Enable operation of specified
 PLC program[s]
DISABLE PLC{constant}[,{constant}...] – Disable operation of specified
 PLC program[s]
PAUSE PLC{constant}[,{constant}...] – Suspend operation of specified
 interpreted PLC program[s] at present point
RESUME PLC{constant}[,{constant}...] – Continue operation of specified
 interpreted PLC program[s] at paused point
ENABLE PLCC{constant}[,{constant}...] – Enable operation of specified
 compiled PLC program[s]
DISABLE PLCC{constant}[,{constant}...] – Disable operation of specified
 compiled PLC program[s]

 PMAC/PMAC2 Software Reference Manual

10 PMAC Command and Variable Summary

PMAC I-Variable Summary
General Divisions
I0 – I99General card setup (global)
I100 – I186Motor #1 setup
I187 – I199Coordinate System 1 setup
I200 – I286Motor #2 setup
I287 – I299Coordinate System 2 setup
...
I800 – I886Motor #8 setup
I887 – I899Coordinate System 8 setup
I900 – I979Encoder 1 - 16 setup (in groups of 5)
I980 – I1023 ...Reserved for future use

Global I-Variables
I0Serial Addressing Card Number {PMAC(1) w/Flex CPU, PMAC2 only}
I1Serial Port Communications Mode
I2Control Panel Disable
I3I/O Handshake Mode
I4Communications Checksum Enable
I5PLC Programs On/Off
I6Error Reporting Mode
I7In-Position Number of Cycles
I8Real Time Interrupt Period
I9Full/Abbreviated Program Listing Form
I10Servo Interrupt Time
I11Programmed Move Calculation Time
I12Jog-to-Position Calculation Time
I13Programmed Move Segmentation Time
I14Auto Position Match on Run
I15Degree/Radian Control For User Trig Functions
I16Rotary Buffer Request On Point
I17Rotary Buffer Request Off Point
I18Fixed Buffer Full Warning Point
I19Data Gathering Period (in Servo Cycles)
I20Data Gathering Selection Mask
I21–I44Data Gathering Source 1–24 Address
I45Data Gathering Buffer Location and Mode
I46CPU Frequency Control {Flex CPU only}
I47Address of Pointer to <CTRL-W> Command
I48DPRAM Servo Data Enable
I49DPRAM Background Data Enable
I50Rapid Move Velocity Mode
I51Compensation Table Enable
I52‘\’ Program Hold Slew Rate
I53Program Step Mode Control
I54Serial Baud Rate Control {PMAC(1) w/Flex CPU, PMAC2 only}
I55DPRAM Background Buffer Control
I56DPRAM ASCII Communications Interrupt Enable
I57DPRAM Binary Rotary Buffer Enable
I58DPRAM ASCII Communications Enable

PMAC/PMAC2 Software Reference Manual

PMAC Command and Variable Summary 11

I59DPRAM Buffer Maximum Motor/C.S. Number
I60Auto-Converted ADC Register Address {PMAC(1) only}
I61Number of Auto-Converted ADC Registers {PMAC(1) only}
I62Internal Message Carriage Return Control
I63Control-X Echo Enable
I64Internal Response Tag Enable
I65User Configuration Variable
I66Servo-Channel ADC Auto-Copy Disable {PMAC2 only}
I67Modbus TCP Buffer Start Address
I68Alternate TWS Input Format
I69Modbus TCP Software Control Panel Start Address
I70-I77Analog Table Setup Lines {PMAC2 Only}
I8xMotor x Third-Resolver Gear Ratio
I89Cutter Comp Outside Angle Break Point
I90Minimum Arc Angle
I9xMotor x Second-Resolver Gear Ratio
I99Backlash Hysteresis

Motor I-Variables x = Motor Number (#x, x = 1 to 8}
Motor Definition I-Variables
Ix00Motor x Activate
Ix01Motor x PMAC-Commutate Enable
Ix02Motor x Command Output (DAC) Address
Ix03Motor x Position-Loop Feedback Address
Ix04Motor x Velocity-Loop Feedback Address
Ix05Motor x Master (Handwheel) Position Address
Ix06Motor x Master (Handwheel) Following Enable
Ix07Motor x Master (Handwheel) Scale Factor
Ix08Motor x Position-Loop Scale Factor
Ix09Motor x Velocity-Loop Scale Factor
Ix10Motor x Power-On Servo Position Address

Motor Safety I-Variables
Ix11Motor x Fatal (Shutdown) Following Error Limit
Ix12Motor x Warning Following Error Limit
Ix13Motor x Positive Software Position Limit
Ix14Motor x Negative Software Position Limit
Ix15Motor x Deceleration Rate on Position Limit or Abort
Ix16Motor x Maximum Permitted Program Velocity
Ix17Motor x Maximum Permitted Programm Accel.
Ix19Motor x Maximum Permitted Jog Accel.

Motor Movement I-Variables
Ix20Motor x (Jogging and Homing) Acceleration Time
Ix21Motor x (Jogging and Homing) S-Curve Time
Ix22Motor x Jog Speed
Ix23Motor x Homing Speed and Direction
Ix25Motor x Limit/Home Flag/Amp Flag Address
Ix26Motor x Home Offset
Ix27Motor x Position Rollover Range
Ix28Motor x In-position Band

 PMAC/PMAC2 Software Reference Manual

12 PMAC Command and Variable Summary

Ix29Motor x Output - or First Phase – Bias

Motor Servo Control I-Variables {Standard PID Algorithm}
Ix30Motor x PID Proportional Gain
Ix31Motor x PID Derivative Gain
Ix32Motor x PID Velocity Feedforward Gain
Ix33Motor x PID Integral Gain
Ix34Motor x PID Integration Mode
Ix35Motor x PID Acceleration Feedforward Gain
Ix36Motor x Notch Filter Coefficient N1
Ix37Motor x Notch Filter Coefficient N2
Ix38Motor x Notch Filter Coefficient D1
Ix39Motor x Notch Filter Coefficient D2
Ix40Motor x Net Desired Position Filter Gain {Opt 6L Lookahead firmware only}
Ix57Motor x Continuous Current Limit
Ix58Motor x Integrated Current Fault Level
Ix59Motor x User-Written Servo Enable
Ix60Motor x Servo Cycle Extension Period
Ix61Motor x Current-Loop Integral Gain {PMAC2 only}
Ix62Motor x Forward-Path Current Loop Proportional Gain {PMAC2 only}
Ix63Motor x Integration Limit
Ix64Motor x “Deadband Gain Factor”
Ix65Motor x Deadband Size
Ix66Motor x PWM Scale Factor
Ix67Motor x Linear Position Error (“Big Step”) Limit
Ix68Motor x Friction Feedforward Gain
Ix69Motor x Output Command (DAC) Limit

Motor Servo Control I-Variables {Option 6 Extended Servo Algorithm only}
Ix30Motor x ESA s0 Gain
Ix31Motor x ESA s1 Gain
Ix32Motor x ESA f0 Gain
Ix33Motor x ESA f1 Gain
Ix34Motor x ESA h0 Gain
Ix35Motor x ESA h1 Gain
Ix36Motor x ESA r1 Gain
Ix37Motor x ESA r2 Gain
Ix38Motor x ESA r3 Gain
Ix39Motor x ESA r4 Gain
Ix40Motor x ESA t0 Gain
Ix41Motor x ESA t1 Gain
Ix42Motor x ESA t2 Gain
Ix43Motor x ESA t3 Gain
Ix44Motor x ESA t4 Gain
Ix45Motor x ESA TS Gain
Ix46Motor x ESA L1 Gain
Ix47Motor x ESA L2 Gain
Ix48Motor x ESA L3 Gain
Ix49Motor x ESA k0 Gain
Ix50Motor x ESA k1 Gain
Ix51Motor x ESA k2 Gain

PMAC/PMAC2 Software Reference Manual

PMAC Command and Variable Summary 13

Ix52Motor x ESA k3 Gain
Ix53Motor x ESA KS Gain
Ix54Motor x ESA d1 Gain
Ix55Motor x ESA d2 Gain
Ix56Motor x ESA g0 Gain
Ix57Motor x ESA g1 Gain
Ix58Motor x ESA GS Gain
Ix60Motor x Servo Cycle Extension Period
Ix61Motor x Current-Loop Integral Gain {PMAC2 only}
Ix62Motor x Forward-Path Current Loop Proportional Gain {PMAC2 only}
Ix68Motor x Friction Feedforward Gain
Ix69Motor x Output Command (DAC) Scale Factor

Motor Commutation I-Variables
Ix70Motor x Number of Commutation Cycles (N) for Cycle Size Definition
Ix71Motor x Encoder Counts per N Commutation Cycles
Ix72Motor x Commutation Phase Angle
Ix73Motor x Phase Finding Output (DAC) Value
Ix74Motor x Phase Finding Time
Ix75Motor x Phasing Offset
Ix76Motor x Velocity Phase Advance Gain {PMAC(1) only}
Ix76Motor x Current-Loop Back-Path Proportional Gain {PMAC2 only}
Ix77Motor x Induction Motor Magnetization Current
Ix78Motor x Induction Motor Slip Gain
Ix79Motor x Second Phase Bias
Ix80Motor x Power-Up Mode
Ix81Motor x Power-On Phase Position Address
Ix82Motor x Current Loop Feedback Address {PMAC2 only}
Ix83Motor x Ongoing Phasing Position Address
Ix84Motor x Current Loop Mask Word {PMAC2 only}

Further Motor I-Variables
Ix85Motor x Backlash Take-up Rate
Ix86Motor x Backlash Size

Coordinate System I-Variables
x = Coordinate System Number (&x, x = 1 to 8)
Ix87Coordinate System x Default Program Acceleration Time
Ix88Coordinate System x Default Program S-Curve Time
Ix89Coordinate System x Default Program Feedrate
Ix90Coordinate System x Feedrate Time Units
Ix91Coordinate System x Default Working Program Number
Ix92Coordinate System x Move Blend Disable
Ix93Coordinate System x Time Base Control Register Address
Ix94Coordinate System x Time Base Slew Rate
Ix95Coordinate System x Feed Hold Slew Rate
Ix96Coordinate System x Maximum Circle Error Limit
Ix98Coordinate System x Maximum Feedrate

 PMAC/PMAC2 Software Reference Manual

14 PMAC Command and Variable Summary

PMAC(1) Servo Interface Setup I-Variables
For Encoder n (n = 1 to 16)

I900 - I904 – Encoder 1
I905 - I909 – Encoder 2
I910 - I914 – Encoder 3
I915 - I919 – Encoder 4
 ...
I970 - I974 – Encoder 15
I975 - I979 – Encoder 16

I900, I905, I910, I915, I920, I925, I930, I935,
I940, I945, I950, I955, I960, I965, I970, I975 (Encoder I-Variable 0) Encoder n Decode Control

I901, I906, I911, I916, I921, I926, I931, I936,
I941, I946, I951, I956, I961, I966, I971, I976 (Encoder I-Variable 1) Encoder n Filter Disable

I902, I907, I912, I917, I922, I927, I932, I937,
I942, I947, I952, I957, I962, I967, I972, I977 (Encoder I-Variable 2) Encoder n Position Capture

Control

I903, I908, I913, I918, I923, I928, I933, I938,
I943, I948, I953, I958, I963, I968, I973, I978 (Encoder I-Variable 3) Encoder n Flag Select Control

PMAC2 Servo Interface Setup I-Variables
Global Hardware Setup I-Variables
I900MaxPhase and PWM 1-4 Frequency Control
I901Phase Clock Frequency Control
I902Servo Clock Frequency Control
I903Hardware Clock 1-4 Frequency Control
I904PWM 1-4 Deadtime/PFM 1-4 Pulse-Width Control
I905DAC 1-4 Strobe Word Control
I906PWM 5-8 Frequency Control
I907Hardware Clock 5-8 Frequency Control
I908PWM 5-8 / PFM 5-8 Pulse-Width Control
I909DAC 5-8 Strobe Word Control

Channel n Hardware Setup I-Variables
I9n0..................Encoder/Timer n Decode Control
I9n1..................Position Compare n Channel Select
I9n2..................Encoder n Capture Control
I9n3..................Flag n Capture Select
I9n4..................Encoder n Gated Index Select
I9n5..................Encoder n Index Gate State
I9n6..................Output n Mode Select
I9n7..................Output n Invert Control
I9n8..................PFM n Direction Invert Control
I9n9..................Encoder n Hardware 1/T Control

Ultra-Lite/Supplemental Channel Hardware Setup I-Variables
I990Handwheel 1 Decode Control
I991Handwheel 2 Decode Control
I992Ultralite MaxPhase Frequency Control

PMAC/PMAC2 Software Reference Manual

PMAC Command and Variable Summary 15

I993Supplemental Hardware Clock Control
I994Supplemental Deadtime/Pulse-Width Control
I995MACRO Ring Master/Slave Control
I996MACRO Node Activation Control
I997Ultralite Phase Clock Frequency Control
I998Ultralite Servo Clock Frequency Control

MACRO Support I-Variables
I1000MACRO Node Auxiliary Register Enable
I1001MACRO Ring Check Time Period
I1002MACRO Node Protocol Type Control
I1003MACRO Type 1 Master/Slave Communications Timeout
I1004MACRO Ring Error Shutdown Count
I1005MACRO Ring Sync Packet Shutdown Count
I1010Resolver Excitation Phase Offset
I1011Resolver Excitation Gain
I1012Resolver Excitation Frequency Divider
I1013Motor Temperature Check Enable
I1015SSI Clock Frequency Control
I1016SSI Channel 1 Mode Control
I1017SSI Channel 1 Word Length Control
I1018SSI Channel 2 Mode Control
I1019SSI Channel 2 Word Length Control
I1020Lookahead Length (Option 6L firmware only)
I1021Lookahead State Control (Option 6L firmware only)

 PMAC/PMAC2 Software Reference Manual

16 PMAC Command and Variable Summary

PMAC Error Code Summary
PMAC can report the following error messages in response to commands:

Error Problem Solution
ERR001 Command not allowed during program

execution
(should halt program execution before issuing
command)

ERR002 Password error (should enter the proper password)
ERR003 Data error or unrecognized command (should correct syntax of command)
ERR004 Illegal character: bad value (>127

ASCII) or serial parity/framing error
(should correct the character and or check for
noise on the serial cable)

ERR005 Command not allowed unless buffer is
open

(should open a buffer first)

ERR006 No room in buffer for command (should allow more room for buffer – DELETE or
CLEAR other buffers)

ERR007 Buffer already in use (should CLOSE currently open buffer first)
ERR008 MACRO auxiliary communications

error
(should check MACRO ring hardware and
software setup)

ERR009 Program structural error (e.g. ENDIF
without IF)

(should correct structure of program)

ERR010 Both overtravel limits set for a motor in
the C.S.

(should correct or disable limits)

ERR011 Previous move not completed (should Abort it or allow it to complete)
ERR012 A motor in the coordinate system is

open-loop
(should close the loop on the motor)

ERR013 A motor in the coordinate system is not
activated

(should set Ix00 to 1 or remove motor from C.S.)

ERR014 No motors in the coordinate system (should define at least one motor in C.S.)
ERR015 Not pointing to valid program buffer (should use B command first, or clear out

scrambled buffers)
ERR016 Running improperly structured

program (e.g. missing ENDWHILE)
(should correct structure of program)

ERR017 Trying to resume after / or \ with
motors out of stopped position

(should use J= to return motor[s] to stopped
position)

.
Note

Variable I6 controls whether and how these error messages are sent

PMAC/PMAC2 Software Reference Manual

PMAC Command and Variable Summary 17

PMAC Syntax Notes
1. PMAC syntax is not case-sensitive. That is, it does not matter whether an upper-case or lower-case

letter is used in any command or statement. PMAC commands are shown in this document in all
upper-case letters to help distinguish them better from the explanatory text.

Example: X1000 and x1000 are identical statements to PMAC.

2. In syntax definitions, an item in squiggly brackets, such as {data}, means you can put what you
wish into that part of the syntax, subject to the defined limitations of that item.

Example: If the syntax is X{data}, you can put X1000, X(P1), or X(P2*P3+50), because
1000, (P1), and (P2*P3+50) all fit in the defined limitations for {data}.

3. In syntax definitions, items contained within square brackets are optional to the syntax. If there is an
ellipsis (...) within the square brackets, items contained within the square brackets can be repeated.

Example: If the syntax definition is {axis}{data} [{axis}{data} ...], you can put
X1000, X1000Y1000, or X1000Y1000Z1000.

4. Spaces are not important in PMAC syntax, except where specifically noted.

 PMAC 2 Software Reference

18 PMAC Command and Variable Summary

PMAC 2 Software Reference

PMAC I-Variable Specification 19

PMAC I-VARIABLE SPECIFICATION
On PMAC, I-variables (Initialization, or Set-up, Variables) determine the “personality” of the
controller for a given application. They are at fixed locations in memory and have pre-defined
meanings. Most are integer values, and their range varies depending on the particular variable.
There are 1024 I- variables, from I0 to I1023, and they are organized as follows:

I-Variable Function
I0 – I99 General card setup (global)

I100 – I186 Motor #1 setup
I187 – I199 Coordinate System 1 setup
I200 – I286 Motor #2 setup
I287 – I299 Coordinate System 2 setup

…
I800 – I886 Motor #8 setup
I887 – I899 Coordinate System 8 setup
I900 – I999 Hardware Channel setup

I1000 – I1023 MACRO and reserved

Global I-Variables
I0 Serial Addressing Card Number {PMAC(1) w/Flex CPU, PMAC2 only}
Range $0 to $F (0 to 15)

Units none

Default 0

Remarks I0 controls the card number for software addressing purposes on a multi-drop serial
communications cable for all PMAC2 boards and for PMAC(1) boards with an Option 5xF
“Flex” CPU. (On other PMAC(1) boards, the card number is determined by the settings of
jumpers E40 – E43.)

If I2 is set to 2, the PMAC must be addressed with the @n command, where n matches the
value of I0 on the board, before it will respond. If the PMAC receives the @n command,
where n does not match I0 on the board, it will stop responding to commands on the serial
port. No two boards on the same serial cable may have the same value of I0.

If the @@ command is sent over the serial port, all boards on the cable will respond to
action commands. However, only the board with I0 set to 0 will respond to the host with
handshake characters and/or data responses. All boards on the cable will respond to
control-character action commands such as <CTRL-R>, regardless of the current
addressing.

Note:

RS-422 serial interfaces must be used on all PMAC boards for
multi-drop serial communications; this will not work with RS-232
interfaces. If the RS-422 interface is not present as a standard
feature on the PMAC board, the Option 9L serial converter module
must be purchased. It is possible to use an RS-232 interface on the
host computer, connected to the RS-422 ports on the PMAC2
boards.

 PMAC 2 Software Reference

20 PMAC I-Variable Specifiation

Typically multiple PMAC2 boards on the same serial cable will share servo and phase
clock signals over the serial port cable for tight synchronization. If the servo and phase
clock lines are connected between multiple PMACs, only one of the PMAC boards can be
set up to output these clocks (E40 – E43 all ON for a PMAC(1), E1 jumper OFF for a
PMAC2). All of the other boards in the chain must be set up to input these clocks (one or
more of the jumpers E40 – E43 OFF for a PMAC(1), E1 jumper ON for a PMAC2).

Note:

Any PMAC(1) board with one or more of E40 – E43 OFF, or any
PMAC2 board with jumper E1 ON, is expecting its SERVO and
PHASE clock signals externally from a Card 0. If it does not
receive these clock signals, the watchdog timer will immediately
shut down the board and the red LED will light.

If the PMAC2 has E1 ON to receive external SERVO and PHASE clock signals for
synchronization purposes, but is not using multi-drop serial communications, I0 does not
need to be changed from 0.

To set up a board to communicate as Card 1 to Card 15 on a multi-drop serial cable, first
communicate with the board as Card 0. Set I0 to specify the card number (software
address) that the board will have on the multi-drop cable. Also, set I1 to 2 to enable the
serial software addressing. Store these values to the non-volatile flash memory with the
SAVE command. Then turn off power; if the board is to input its clocks, put a jumper on
E1; connect the multi-drop cable; restore power to the system.

I1 Serial Port Mode
Range 0 .. 3

Units none

Default 0

Remarks I1 controls two aspects of how PMAC uses its serial port. The first aspect is whether
PMAC uses the CS (CTS) handshake line to decide if it can send a character out the serial
port. The second aspect is whether PMAC will require software card addressing,
permitting multiple cards to be daisychained on a single serial line.

There are four possible values of I1, covering all the possible combinations:

Setting Meaning
0 CS handshake used; no software card address required
1 CS handshake not used; no software card address required
2 CS handshake used; software card address required
3 CS handshake not used; software card address required

When CS handshaking is used (I1 is 0 or 2), PMAC waits for CS to go true before it will
send a character. This is the normal setting for real serial communications to a host; it
allows the host to hold off PMAC messages until it is ready.

When CS handshaking is not used (I1 is 1 or 3), PMAC disregards the state of the CS input
and always sends the character immediately. This mode permits PMAC to “output”
messages, values, and acknowledgments over the serial port even when there is nothing
connected, which can be valuable in stand-alone and PLC-based applications where there
are SEND and CMD statements in the program. If these strings cannot be sent out the
serial port, they can “back up”, stopping program execution.

PMAC 2 Software Reference

PMAC I-Variable Specification 21

When software addressing is not used (I1 is 0 or 1), PMAC assumes that it is the only card
on the serial line, so it always acts on received commands, sending responses back over the
line as appropriate.

When software addressing is used (I1 is 2 or 3), PMAC assumes that there are other cards
on the line, so it requires that it be addressed (with the @{card command) before it
responds to commands. The {card} number in the command must match the card
number set up in hardware on the card with jumpers or DIP-switches.

See Also Serial Port, Multiple-Card Applications (Talking to PMAC)
I-variable I6
Program Commands SEND, CMD
Connectors J4 (PMAC-PC, -Lite, -VME), J1, J3 (PMAC-STD)
Jumpers E40-E43 (PMAC-PC, -Lite, -VME)
DIP-switches SW1-1 – SW1-4 (PMAC-STD)

I2 Control Panel Disable
Range 0 .. 3

Units none

Default 0

Remarks I2 allows the enabling and disabling of the control panel discrete inputs (on the JPAN
connector). I2=0 enables these control panel functions; I2=1 disables them. When
disabled, these inputs can be used as general purpose I/O. The reset, handwheel, and wiper
inputs on the JPAN connector are not affected by I2.
When I2=0, the IPOS, EROR and F1ER status lines to JPAN and the Programmable
Interrupt Controller (PIC), and the BREQ status line to the PIC, reflect the hardware-
selected coordinate system (by BCD-coded lines FPDn/ on JPAN); when I2=1, they reflect
the software-addressed coordinate system (&n).
When I2=3, the discrete inputs on the JPAN connector are disabled, and the dual-ported
RAM control panel functions are enabled. Refer to the descriptions of DPRAM functions
for more detail.

See Also Using Interrupts (Writing a Host Communications Program)
I-variables I16-I18
Custom Inputs Example (JOGSWTCH.PMC)
Connector JPAN (J2)
DPRAM Control Panel Functions

I3 I/O Handshake Control
Range 0 .. 3

Units none

Default 1

Remarks I3 controls what characters, if any, are used by PMAC to delimit a transmitted line, and
whether PMAC issues an acknowledgment (handshake) of a command.

Note:

With checksum enabled (I4=1), checksum bytes are added after the
handshake character bytes.

 PMAC 2 Software Reference

22 PMAC I-Variable Specifiation

Valid values of I3 and the modes they represent are:

0: PMAC does not acknowledge receipt of a valid command. It returns a <BELL>
character on receipt of an invalid command. Messages are sent without beginning or
terminating <LF> (line feed); simply as DATA <CR> (carriage return).

1: PMAC acknowledges receipt of a valid <CR>-terminated command with a <LF>; of an
invalid command with a <BELL> character. Messages are sent as <LF> DATA <CR>
[<LF> DATA <CR> ...] <LF>. (The final <LF> is the acknowledgment of the
host command; it does not get sent with a message initiated from a PMAC program [SEND
or CMD]). This setting is good for communicating with terminal display programs, such as
the PMAC Executive program.

2: PMAC acknowledges receipt of a valid <CR>-terminated command with an <ACK>; of
an invalid command with a <BELL> character. Messages are sent as DATA <CR> [
DATA <CR> ...] <ACK>. (The final <ACK> is the acknowledgment of the host
command; it does not get sent with a message initiated from a PMAC program [SEND or
CMD]). This is probably the best setting for fast communications with a host program
without terminal display.

3: PMAC acknowledges receipt of a valid <CR>-terminated command with an <ACK>; of
an invalid command with a <BELL> character. Messages are sent as <LF> DATA <CR>
[<LF> DATA <CR> ...] <ACK>. (The final <ACK> is the acknowledgment of
the host command; it does not get sent with a message initiated from a PMAC program
[SEND or CMD]).

Note:

When I58=1 to enable DPRAM ASCII communications, I3 is
forced to 0 or 2 from 1 or 3, respectively.

Example With I3=0:
#1J+<CR>......... ; Valid command not requiring data response
............................ ; No acknowledging character
UUU<CR> ; Invalid command
<BELL>.............. ; PMAC reports error
P1..3<CR> ; Valid command requiring data response
25<CR>50<CR>75<CR> ; PMAC responds with requested data

With I3=1:
#1J+<CR>......... ; Valid command not requiring data response
<LF> ; Acknowledging character
UUU<CR> ; Invalid command
<BELL>.............. ; PMAC reports error
P1..3<CR> ; Valid command requiring data response
<LF>25<CR><LF>50<CR><LF>75<CR><LF>
............................ ; PMAC responds with requested data

With I3=2:
#1J+<CR>......... ; Valid command not requiring data response
<ACK>...... ; Acknowledging character
UUU<CR> ; Invalid command
<BELL>.............. ; PMAC reports error
P1..3<CR> ; Valid command requiring data response
25<CR>50<CR>75<CR><ACK>

PMAC 2 Software Reference

PMAC I-Variable Specification 23

............................ ; PMAC responds with requested data
With I3=3:
#1J+<CR>......... ; Valid command not requiring data response
<ACK> ; Acknowledging character
UUU<CR> ; Invalid command
<BELL>.............. ; PMAC reports error
P1..3<CR> ; Valid command requiring data response
<LF>25<CR><LF>50<CR><LF>75<CR><ACK>
............................ ; PMAC responds with requested data

See Also Talking to PMAC
Writing a Host Communications Program
I-variables I4, I6, I58

I4 Communications Integrity Mode
Range 0 .. 3

Units none

Default 0

Remarks I4 permits PMAC to compute checksums of the communications bytes (characters) sent
either way between the host and PMAC, and also controls how PMAC reacts to serial
character errors (parity and framing), if found. Parity checking is only enabled if jumper
E49 is OFF for PMAC-PC, -Lite, -VME; or ON for PMAC-STD.
The possible settings of I4 are:

Setting Meaning
0 Checksum disabled, serial errors reported immediately
1 Checksum enabled, serial errors reported immediately
2 Checksum disabled, serial errors reported at end of line
3 Checksum enabled, serial errors reported at end of line

Communications Checksum: With I4=1 or 3, PMAC computes the checksum for
communications in either direction and sends the checksum to the host. It is up to the host
to do the comparison between PMAC’s checksum and the checksum it computed itself.
PMAC does not do this comparison. The host should never send a checksum byte to
PMAC.
Host-to-PMAC Checksum: PMAC will compute the checksum of a communications line
sent from the host to PMAC. The checksum does not include any control characters sent
(not even the final Carriage-Return). The checksum is sent to the host immediately
following the acknowledging handshake character (<LF> or <ACK>), if any. Note that
this acknowledging and handshake comes after any data response to the command (and its
checksum!). If PMAC detects an error in the line through its normal syntax checking, it
will respond with the <BELL> character, but will not follow this with a checksum byte.

Note:
The on-line command <CTRL-N> can be used to verify the
checksum of a command line before the <CR> has been sent. The
use of <CTRL-N> does not affect how I4 causes PMAC to report a
checksum after the <CR> has been sent.

 PMAC 2 Software Reference

24 PMAC I-Variable Specifiation

PMAC-to-Host Checksum: PMAC will compute the checksum of any communications
line it sends to the host. This checksum includes control characters sent with the line,
including the final <carriage-return>. The checksum is sent immediately following
this <carriage-return>. On a multiple-line response, one checksum is sent for each
line. Note that this checksum is sent before the checksum of the command line that caused
the response.

For more details on checksum, refer to the Writing a Host Communications Program
section of the manual.

Serial character errors: If PMAC detects a serial character error, it will set a flag so that
the entire command line will be rejected as having a syntax error after the <CR> is sent.
With I4=0 or 1, it will also send a <BELL> character to the host immediately on detecting
the character error. Note that this mode will catch a character error on the <CR> as well,
whereas in the I4=2 or 3 mode, the host would have to catch an error on the <CR>
character by the fact that PMAC would not respond (because it never saw a <CR>).

See Also Communications Checksum (Writing a Host Communications Program)
I-variables I3, I6
On-line command <CTRL-N>
Jumper E49

I5 PLC Programs On/Off
Range 0 .. 3

Units none

Default 0

Remarks I5 controls which PLC programs may be enabled. There are two types of PLC programs:
the foreground programs (interpreted PLC 0 and compiled PLCC 0), which operate at the
end of servo interrupt calculations, with a repetition rate determined by I8 (PLC 0 should
be used only for time-critical tasks and should be short); and the background programs
(interpreted PLC 1 to PLC 31 and compiled PLCC1 to PLCC 31) which cycle repeatedly
in background as time allows. I5 controls these as follows:

Setting Meaning
0 Foreground PLCs off; background PLCs off
1 Foreground PLCs on; background PLCs off
2 Foreground PLCs off; background PLCs on
3 Foreground PLCs on; background PLCs on

Note that an individual PLC program still needs to be enabled to run – a proper value of I5
merely permits it to be run. Any PLC program that exists at power-up or reset is
automatically enabled (even if the saved value of I5 does not permit it to run immediately);
also, the ENABLE PLC n or ENABLE PLCC n command enables the specified
program(s). A PLC program is disabled either by the DISABLE PLC n or DISABLE
PLCC n command, or by the OPEN PLC n command. A CLOSE command does not
automatically re-enable an interpreted PLC program – it must be done explicitly. When
the compiled code for PLCC programs is downloaded to the PMAC, they are automatically
enabled if permitted by I5.

See Also Running PLC Programs (Writing a PLC Program)
On line commands ENABLE PLC n, DISABLE PLC n, ENABLE PLCC n, DISABLE
PLCC n, OPEN PLC n, CLOSE, <CTRL-D>, $$$.

PMAC 2 Software Reference

PMAC I-Variable Specification 25

I6 Error Reporting Mode
Range 0 .. 3
Units none
Default 3
Remarks I6 controls how PMAC reports errors in command lines. When I6 is set to 0 or 2, PMAC

reports any error only with a <BELL> character. When I6 is 0, the <BELL> character is
given for invalid commands issued both from the host and from PMAC programs (using
CMD”{command}”). When I6 is 2, the <BELL> character is given only for invalid
commands from the host; there is no response to invalid commands issued from PMAC
programs. (In no mode is there a response to valid commands issued from PMAC
programs.)
When I6 is set to 1 or 3, an error number message can be reported along with the <BELL>
character. The message comes in the form of ERRnnn<CR>, where nnn represents the
three-digit error number. If I3 is set to 1 or 3, there is a <LF> character in front of the
message.
When I6 is set to 1, the form of the error message is <BELL>{error message}. This
setting is the best for interfacing with host-computer driver routines. When I6 is set to 3,
the form of the error message is <BELL><CR>{error message}. This setting is
appropriate for use with the PMAC Executive Program in terminal mode.
Currently, the following error messages can be reported:

Error Problem Solution
ERR001 Command not allowed during

program execution
(should halt program execution before
issuing command)

ERR002 Password error (should enter the proper password)
ERR003 Data error or unrecognized

command
(should correct syntax of command)

ERR004 Illegal character: bad value (>127
ASCII) or serial parity/framing
error

(should correct the character and or check
for noise on the serial cable)

ERR005 Command not allowed unless
buffer is open

(should open a buffer first)

ERR006 No room in buffer for command (should allow more room for buffer –
DELETE or CLEAR other buffers)

ERR007 Buffer already in use (should CLOSE currently open buffer first)
ERR008 MACRO ring auxiliary

communications error
(should correct MACRO communications
or connections)

ERR009 Program structural error (e.g.
ENDIF without IF)

(should correct structure of program)

ERR010 Both overtravel limits set for a
motor in the C.S.

(should correct or disable limits)

ERR011 Previous move not completed (should Abort it or allow it to complete)
ERR012 A motor in the coordinate system is

open-loop
(should close the loop on the motor)

ERR013 A motor in the coordinate system is
not activated

(should set Ix00 to 1 or remove motor
from C.S.)

ERR014 No motors in the coordinate system (should define at least one motor in C.S.)
ERR015 Not pointing to valid program

buffer
(should use B command first, or clear out
scrambled buffers)

ERR016 Running improperly structured
program (e.g. missing ENDWHILE)

(should correct structure of program)

 PMAC 2 Software Reference

26 PMAC I-Variable Specifiation

ERR017 Motor(s) in C.S. not at halted
position to restart after / or \
command

(should move motor(s) back to halted
position with J=)

See Also Talking to PMAC

Writing a Host Communications Program
I-variables I3, I4
On-line commands R, S

I7 In-Position Number of Cycles
Range 0 .. 255
Units Background computation cycles (minus one)
Default 0
Remarks I7 permits the user to define the number of consecutive scans that PMAC motors must

satisfy all “in-position” conditions before the motor in-position bit is set true. This permits
the user to ensure that the motor is truly settled in the end position before executing the
next operation, on or off PMAC. I7 + 1 consecutive scans are required.
PMAC scans for the in-position condition of each active motor during the “housekeeping”
part of every background cycle, which occurs between each scan of each enabled
uncompiled background PLC (PLC 1-31). All motors in a coordinate system must have
true in-position bits for the coordinate-system in-position bit to be set true.

See Also Control Panel Port (Connecting PMAC to the Machine)
Using Interrupts (Writing a Host Communications Program)
I-variable Ix28
On-line commands ?,??
Suggested M-variable definitions Mx40
Memory registers Y:$0814, Y:$08D4, etc., Y:$0817, Y:$08D7, etc.
DPRAM Control Panel Functions
JPAN connector

I8 Real Time Interrupt Period
Range 0 .. 255
Units Servo Interrupt Cycles
Default 2
Remarks I8 controls how often certain time-critical tasks, such as PLC 0 and checking for motion

program move planning, are performed. A value of 2 means that they are performed after
every third servo interrupt, 3 means every fourth interrupt, and so on. The vast majority of
users can leave this at the default value. In some advanced applications that push PMAC’s
speed capabilities, tradeoffs between performance of these tasks and the calculation time
they take may have to be evaluated in setting this parameter.

Note:
A large PLC 0 with a small value of I8 can cause severe problems,
because PMAC will attempt to execute the PLC program every I8
cycle. This can starve background tasks, including
communications, background PLCs, and even updating of the
watchdog timer, for time, leading to erratic performance or possibly
even shutdown.

PMAC 2 Software Reference

PMAC I-Variable Specification 27

In multiple-card PMAC applications where it is very important that motion programs on
the two cards start as closely together as possible, I8 should be set to 0. In this case, no
PLC 0 should be running when the cards are awaiting a Run command. At other times I8
may be set greater than 0 and PLC 0 re-enabled.

See Also How PMAC Executes a Motion Program (Writing a Motion Program)
PLC 0 (Writing a PLC Program)

I9 Full/Abbreviated Program Listing Form
Range 0 .. 3

Units none

Default 2

Remarks I9 controls aspects of how PMAC reports program listings and variable values. The
following table shows the values of I9 and what they represent:

Setting Meaning
0 Short form, decimal address I-variable return
1 Long form, decimal address I-variable return
2 Short form, hex address I-variable return
3 Long form, hex address I-variable return

When this parameter is 0 or 2, programs are sent back in abbreviated form for maximum
compactness, and when I-variable values or M-variable definitions are requested, only the
values or definitions are returned, not the full statements. When this parameter is 1 or 3,
programs are sent back in full form for maximum readability. Also, I-variable values and
M-variable definitions are returned as full command statements, which is useful for
archiving and later downloading.

When this parameter is 0 or 1, I-variable values that specify PMAC addresses are returned
in decimal form. When it is 2 or 3, these values are returned in hexadecimal form (with
the ‘$’ prefix). You are always free to send any I-variable values to PMAC either in hex
or decimal, regardless of the I9 setting. This does not affect how I-variable assignment
statements inside PMAC motion and PLC programs are reported when the program is
listed.

Example With I9=0:
I125 ; Request address I-variable value
49152 ; PMAC reports just value, in decimal
M101->.............. ; Request M-variable definition
X:$C001,24,S ; PMAC reports just definition
LIST PROG 1.. ; Request listing of program
LIN..................... ; PMAC reports program short form
X10
DWE1000
RET

With I9=1:
I125 ; Request address I-variable value
I125=49152 ; PMAC reports whole statement, in decimal
M101->.............. ; Request M-variable definition
M101->X:$C001,24,S ; PMAC reports whole statement
LIST PROG 1.. ; Request listing of program
LINEAR.............. ; PMAC reports program long form
X10

 PMAC 2 Software Reference

28 PMAC I-Variable Specifiation

DWELL1000
RETURN

With I9=2:
I125 ; Request address I-variable value
$C000 ; PMAC reports just value, in hexadecimal

With I9=3:
I125 ; Request address I-variable value
I125=$C000 ; PMAC reports whole statement, in hexadecimal

See Also Talking to PMAC
On-line commands I{constant}, M{constant}->, LIST
I-Variables I19-I44, I47, Ix02-Ix05, Ix25, Ix83, Ix93

I10 Servo Interrupt Time
Range 0 .. 8,388,607

Units 1 / 8,388,608 msec

Default 3,713,707

Remarks I10 tells PMAC how much time there is between servo interrupts (which is controlled by
hardware circuitry), so that the interpolation software knows how much time to increment
each servo interrupt.
The fundamental equation for I10 is:

sec)m(ServoTime*608,388,8
)kHz(encyServoFrequ

608,388,810I ==

On PMAC(1), the servo interrupt time is determined by the settings of hardware jumpers
E98, E29-E33, and E3-E6. The proper value of I10 can be determined from the settings of
these jumpers by the formula:

rFactorServoJumpe*rFactorPhaseJumpe*orJumperFact98E*107,23210I =

where the factors can be taken from the following:

E98 Setting 1-2 2-3
E98JumperFactor 1 2

Phase Jumper ON E29 E30 E31 E32 E33
PhaseJumperFactor 16 8 4 2 1

)6E*8()5E*4()4E*2(3E1rFactorServoJumpe ++++=

in which En = 0 if the jumper is ON, and En = 1 if the jumper is OFF.

On PMAC2, the servo interrupt time is determined on PMAC2 Ultralite boards by
MACRO IC I-variables I992, I997, and I998; on non-Ultralite boards by Servo IC I-
variables I900, I901, and I902; The proper setting of I10 can be determined from Servo IC
variables by the formula:

()()()1902I1901I3900I*2
9

64010I +++=

The proper setting of I10 can be determined from MACRO IC variables by the formula:

PMAC 2 Software Reference

PMAC I-Variable Specification 29

()()()1998I1997I3992I*2
9

64010I +++=

I10 is used to provide the “delta-time” value in the position update calculations, scaled
such that 223 – 8,388,608 – means one millisecond. Delta-time in these equations is
I10*(%value/100). The % (feedrate override) value can be controlled in any of several
ways: with the on-line ‘%’ command, with a direct write to the command ‘%’ register,
with an analog voltage input, or with a digital input frequency. The default % value is 100,
and many applications can always leave it at 100.

Note:

Even if Ix60 (servo cycle extension) has been changed from its
default value of 0 for any or all motors, the value of I10 should
reflect the time between servo interrupts, not between consecutive
servo cycle calculations.

See Also Setting the Servo Update Time (Servo Features)
Jumpers E3-E6, E29-E33, E98
Connector J4 Pins 21-24 (PMAC-PC, -VME), J4 Pins 1 & 8 (PMAC-Lite), J3 Pins 5-8
(PMAC-STD).

I11 Programmed Move Calculation Time
Range 0 .. 8,388,607

Units msec

Default 0

Remarks I11 controls the delay from when the run signal is taken (or the move sent if executing
immediately) and when the first programmed move starts. If several PMACs need to be
run synchronously, I11 should be set the same on all of the cards. If I11 is set to zero, the
first programmed move starts as soon as the calculation is complete.
This calculation time delay is also used after any break in the continuous motion of a
motion program: a DWELL, a PSET, a WAIT, or each move if Ix92=1 (a DELAY is
technically a zero-distance move, and so does not constitute a break).
The actual delay time varies with the time base (e.g. at a value of 50, the actual delay time
will be twice the number defined here), which keeps it as a fixed distance of the master in
an external time base application. If it is desired to have the slave coordinate system start
up immediately with the master, I11 should be set to zero, and the program commanded to
run before the master starts to move.

Note:
If I11 is greater than zero, defining a definite time for calculations,
and PMAC cannot complete the calculations for the first move of a
sequence by the end of the I11 time, PMAC will terminate the
running of the program with a run-time error.

See Also External Time Base (Synchronizing PMAC to External Events)
I-variables I12, I13
Program commands DWELL, DELAY

 PMAC 2 Software Reference

30 PMAC I-Variable Specifiation

I12 Jog-to-Position Calculation Time
Range 1 .. 8,388,607

Units msec

Default 10

Remarks I12 controls how much time is allotted to calculate an on-line jog or homing-search move
or a motion program RAPID move, including the “post-trigger” portions of triggered
moves (homing search, move until trigger). If a motor is currently moving, it will continue
on its present course during that time. If it is currently sitting still, it will continue to sit for
this time.

This parameter should rarely need to be changed from the default. It should not be set to 0
for any reason, or PMAC will not be able to perform any of these types of moves. The
minimum practical value for this parameter is 2 or 3.

See Also I-variables I11, I13
Program command RAPID
On-line commands J=, J={constant}, J/, J^{constant}, J:{constant}

I13 Programmed Move Segmentation Time
Range 0 .. 8,388,607

Units msec

Default 0

Remarks I13 controls how PMAC performs its interpolation calculations for LINEAR and CIRCLE
mode moves. If I13 is set to 0, PMAC interpolates directly from the starting point of the
programmed move to the ending point. This mode creates satisfactory linear interpolation
in Cartesian systems, but cannot generate circular paths.

When I13 is set greater than 0, this puts PMAC into a mode (“segmentation mode”) where
all LINEAR and CIRCLE moves are done as a continuous cubic spline in which the move
segments are of the time length specified by the parameter in this variable (this is not the
same thing as SPLINE mode moves). This mode is required for applications using
CIRCLE mode moves.

Segmentation mode (I13 greater than 0) is required to support any of the following PMAC
features:
• Circular interpolation
• Cutter radius compensation
• / Program stop command
• \ Program hold command
• Rotary buffer blend on-the-fly
• Special multiple-move lookahead (Option 6L firmware)
If none of these features is required, it is usually best to leave I13 at 0, for more efficient
computation.
Typical values of I13 for segmentation mode are 5 to 10 msec. The smaller the value, the
tighter the fit to the true curve, but the more computation is required for the moves, and the
less is available for background tasks. If I13 is set too low, PMAC will not be able to do
all of its move calculations in the time allotted, and it will stop the motion program with a
run-time error.

PMAC 2 Software Reference

PMAC I-Variable Specification 31

Note:
When I13=0, moves are done without this ongoing spline technique,
and CIRCLE mode moves are done as LINEAR mode moves.

See Also Circular Interpolation, Cutter Radius Compensation (Writing a Motion Program)
On-line commands /, \
Program commands {axis}{data}{vector}{data}, CIRCLE1, CIRCLE2,
CC0, CC1, CC2

I14 Auto Position Match on Run Enable
Range 0 .. 1

Units none

Default 1

Remarks I14, when set to 1, performs an automatic re-matching of motor and axis starting position
registers to current motor commanded positions whenever a motion program is started. A
mismatch can occur whenever a motor move (jog, open-loop, abort, or limit) changes the
motor’s target position without letting the axis position “know” of the change, or on
power-up when an absolute position sensor starts up with a position other than zero.

With I14=1, PMAC will execute the PMATCH function on any Run or Step command to
make sure that the axes in the motion program have the proper starting-position
information. The only users who would not want this function, setting I14 to 0, are those
who cannot afford the extra millisecond (approximately) of calculation time this requires.

With I14=0, PMAC uses the last motion program target position as the starting point for
the calculations of the next move, even if these do not match the positions currently
commanded for the motors assigned to the axes.

See Also Axis-Motor Position Re-Matching (Setting Up a Coordinate System)
On-line command PMATCH
Suggested M-variable definitions Mx61, Mx63, Mx64 Mx65

I15 Degree/Radian Control for User Trig Functions
Range 0 .. 1
Units none
Default 0 (degrees)
Remarks I15 controls whether the angle values for trigonometric functions in user programs (motion

and PLC) and on-line commands are expressed in degrees (I15=0) or radians (I15=1).
See Also SIN, COS, TAN, ASIN, ACOS, ATAN, ATAN2 (Computational Features)

I16 Rotary Buffer Request On Point
Range 0 .. 8,388,607
Units Command lines.
Default 5
Remarks I16 controls the point at which an executing rotary program will signal that it is ready to

take more command lines (BREQ line taken high, coordinate system Rotary Buffer Full
status bit – Y:$0817 bit 11 – taken low).
This occurs when the executing point in the program has caught up to within fewer lines
behind the last line sent to PMAC than the value in this parameter. This can be detected as
an interrupt to the host or be checked by the host on a polled basis.

 PMAC 2 Software Reference

32 PMAC I-Variable Specifiation

Note:
The BREQ line to the interrupt controller reflects the status of the
hardware-selected coordinate system (by JPAN pins FPDn/) if the
control-panel inputs are enabled (I2=0); it represents the status of
the software-host-addressed coordinate system if the control-panel
inputs are disabled (I2=1). In virtually all applications using this
feature, the user will want to set I2 to 1 so the BREQ line reflects
the status of the coordinate system to which he is currently talking.

Example With I17=10 and I16=5, as program lines are sent to PMAC, PMAC will keep requesting
more lines (BREQ goes high, Rotary Buffer Full bit stays 0) until there are 10 lines in the
buffer ahead of the executing line. BREQ will then be held low and Rotary Buffer Full bit
stays 1 until enough program lines have executed so that there are less than 5 lines in the
buffer ahead of the execution point. At this time, BREQ will be set high again, and Rotary
Buffer Full will become 0.

See Also Using Interrupts (Writing a Host Communications Program)
Rotary Motion Program Buffers (Writing a Motion Program)
Coordinate-system Rotary Buffer Full status bit (Y:$0817, etc., bit 16)
On-line commands PR, ??
I-variables I2, I17, I18

I17 Rotary Buffer Request Off Point
Range 0 .. 8,388,607
Units Program lines
Default 10
Remarks I17 controls how many lines ahead of the executing line the host can provide a PMAC

rotary motion program buffer before it signals that it is not ready for more lines (BREQ
line held low, coordinate system status bit Rotary Buffer Full becomes 1). This status
information can be detected either by polling (??or PR) or by using the interrupt line to
the host.
If you send a program line to the rotary buffer, the BREQ line will be taken low (at least
momentarily). If there are still fewer than I17 number of lines in the buffer ahead of the
executing line, the BREQ line will be taken high again (giving the ability to generate an
interrupt), and the Rotary Buffer Full status bit will stay 0. If there are greater than or
equal to I17 lines in the buffer ahead of the executing line, the BREQ line will be left low,
and the Rotary Buffer Full status bit will become 1.
Normally at this point, the host will stop sending program lines (although this is not
required) and wait for program execution to catch up to within I16 lines and take BREQ
high again.

Note:
The BREQ line to the interrupt controller reflects the status of the
hardware-selected coordinate system (by JPAN pins FPDn/) if the
control-panel inputs are enabled (I2=0); it represents the status of
the software-host-addressed coordinate system if the control-panel
inputs are disabled (I2=1). In virtually all applications using this
feature, the user will want to set I2 to 1 so the BREQ line reflects
the status of the coordinate system to which he is currently talking.

PMAC 2 Software Reference

PMAC I-Variable Specification 33

See Also Program Using Interrupts (Writing a Host Communications Program)
Rotary Motion Program Buffers (Writing a Motion Program)
Coordinate-system “buffer-full” status bit (Y:$0817, etc., bit 16)
On-line commands PR, ??
I-variables I2, I16, I18

I18 Fixed Buffer Full Warning Point
Range 0 .. 8,388,607

Units Long Memory Words

Default 10

Remarks I18 sets the level of open memory below which BREQ (Buffer Request) will not go true
(global status bit Fixed Buffer Full will become 0) during the entry of a fixed (non-rotary)
buffer.

Every time a command line is downloaded to an open fixed buffer (PROG or PLC), the
BREQ line will be taken low (at least momentarily). If there are more than I18 words of
open memory left, the BREQ line will be taken high again (giving the ability to generate
an interrupt), and Fixed Buffer Full will stay at 0. If there are I18 words or less, the BREQ
line will be left low, and Fixed Buffer Full will become 1.

The number of available words of memory can be found using the SIZE command.

See Also Using Interrupts (Writing a Host Communications Program)
Global Fixed Buffer Full status bit (Y:$0003 bit 11),
I-variables I16, I17.
On-line command SIZE

Data Gathering I-Variables
I19 Data Gathering Period (in Servo Cycles)
Range 0 .. 8,388,607

Units Servo Interrupt Cycles

Default 0

Remarks I19 controls how often data gathering is performed, in numbers of servo interrupt cycles.
If I19 is 0, data gathering is performed only once per command.

Note:

Normally this parameter is controlled automatically by the PMAC
Executive Program’s Gathering and Tuning routines.

See Also Data Gathering (Analysis Features)
I-variables; I20-I44.
On-line commands GATHER, ENDGATHER

 PMAC 2 Software Reference

34 PMAC I-Variable Specifiation

I20 Data Gathering Selection Mask
Range $000000 .. $FFFFFF (0 .. 16,777,215)

Units none

Default 0

Remarks I20 is a 24-bit variable that controls which of the 24 potential data sources (as specified by
I21 to I44) will be gathered when gathering is performed. If bit 0 (least significant bit) is
1, the 1st source (specified by I21) will be gathered; if it is 0, it will not be. Bit 1 controls
the 2nd source (I22), and so on, to bit 23, which controls the 24th source (I44).
With I9 at 2 or 3, the value of this variable will be reported back to the host in hexadecimal
form, which is the more convenient form for understanding the value.

Note:
Normally this parameter is controlled automatically by the PMAC
Executive Program’s Gathering and Tuning routines.

Example With I20=7, only the addresses specified by I21, I22, & I23 will be gathered
With I20=$FF (255), the addresses specified by I21-I28 will be gathered
With I20=$300 (768), the addresses specified by I29 and I30 will be gathered
With I20=$FFFFFF (8,388,607), the addresses specified by I21-I44 will be gathered

See Also Data Gathering (Analysis Features)
On-line commands GATHER, ENDGATHER, <CTRL-E>
I-variables; I19, I21-I44.

I21 Data Gathering Source 1 Address
Range $000000 .. $FFFFFF (0 .. 16,777,215)
Units Modified PMAC addresses
Default 0
Remarks I21 specifies the address of the first data item to be gathered. This address is usually given

in hexadecimal (i.e. preceded by a ‘$’).
The specification is twenty-four bits – six hex digits. The lowest 16 bits – 4 hex digits –
represent the actual word address in PMAC’s memory and I/O space.
The highest two bits specify which part of the double word at that address is to be gathered
(the Motorola DSP56000 has a double memory space – X and Y – to supply its dual data
buses). If both of these bits are 0 – first hex digit is 0 – the Y word will be gathered; if the
higher bit is 0 and the second bit is 1 – first hex digit is 4 – the X word will be gathered; if
the higher bit is 1 – first hex digit is 8 or greater – both the X and Y words will be gathered
as a long (double) word. In the case of a long word, it does not matter to PMAC what the
second bit is, but the PMAC PC-Executive Program uses this bit to note whether this word
is a fixed-point (0) or floating-point (1) value.
With I9 at 2 or 3, the value of this variable will be reported back to the host in hexadecimal
form, which is the more convenient form for understanding the value.

Note:
Normally this parameter is controlled automatically by the PMAC
Executive Program’s Gathering and Tuning routines.

PMAC 2 Software Reference

PMAC I-Variable Specification 35

Example If the word address were $0720 (1824 decimal), I21=$000720 would denote gathering of
the Y word; I21=$400720 would denote gathering of the X word; I21=$800720 or
I21=$C00720 would cause gathering of both words. (You may specify this parameter in
decimal form, but it is much more tricky.)

See Also Data Gathering (Analysis Features)
On-line commands GATHER, ENDGATHER, <CTRL-E>
I-variables I19, I21-I44.

I22–I44 Data Gathering Source 2 thru 24 Addresses
Range $000000 .. $FFFFFF (0 .. 16,777,215)

Units Modified PMAC addresses

Default 0

Remarks I22 – I44 control the addresses of the second thru twenty-fourth data items to be gathered.
See I21 for more details.

Note:

Normally these parameters are controlled automatically by the
PMAC Executive Program’s Gathering and Tuning routines.

See Also Data Gathering (Analysis Features)
On-line commands GATHER, ENDGATHER, <CTRL-E>
I-variables I19, I21-I44.

I45 Data Gathering Buffer Location and Mode
Range 0 .. 3
Units none
Default 0
Remarks I45 controls where the data gathering buffer will be located when it is defined, and whether

it will wrap around when it is filled. It can take the following values:
0:Locate buffer in regular RAM. Do not permit wrap-

 around (stop gathering when end of buffer is reached).
1:Locate buffer in regular RAM. Permit wraparound upon
..........................reaching end of buffer. Note: Wraparound feature not
..........................supported by PMAC Executive program data gathering and
..........................tuning routines.
2:Locate buffer in dual-ported RAM (PMAC Option 2
..........................required). Do not permit wraparound. Not very useful.
3........................Locate buffer in dual-ported RAM (PMAC Option 2
..........................required). Permit wraparound upon reaching end of
..........................buffer (usual mode for dual-ported RAM).
When I45 is set to 2 or 3, the gather buffer starts at PMAC address $D240 – host address
[base + $0900] – and occupies the number of PMAC addresses specified in the DEFINE
GATHER command.

 PMAC 2 Software Reference

36 PMAC I-Variable Specifiation

The DPRAM locations used by PMAC for gathering are as follows;

Address Description
0x08FC

(Y:$D23F)
Data Gather Buffer Size.

0x08FC
(X:$D23F)

PMAC Data Gather Buffer Storage Address. If I45 = 2 and the
buffer’s end has been reached (this index is greater
than or equal to the size), the DEFINE GATHER
command must be issued again to allow gathering
to restart.

0x0900
($D240)

Start of Data Gather Buffer (not changeable).

Note:
In firmware version 1.16B and older, these addresses were 0x0100
($0040) lower.

See Also Data Gathering (Analysis Features)
Option 2 Dual-Ported RAM
On-line commands DEFINE GATHER, GATHER, ENDGATHER, DELETE GATHER,
LIST GATHER

I46 CPU Frequency Control {PMAC w/Flex CPU only}
Range 0 .. 15
Units Multiplication Factor
Default 0 (jumper-set frequency)
Remarks I46 can control the operational clock frequency of the CPU in an Option 5xF “Flex” CPU

by controlling the multiplication factor of the phase-locked loop (PLL) inside the CPU.
The PLL circuit multiplies the input 10 MHz (actually 9.83 MHz) clock frequency by a
factor of (I46 + 1) to create the clock frequency for the CPU. Formally, this is expressed
in the equation:
 CPU Frequency (MHz) = 10 * (I46 + 1)
If I46 is set to 0, or an older style of CPU (not “Flex”) is used, the CPU frequency is set by
jumpers (E48 on a PMAC(1); E2 and E4 on a PMAC2).
I46 should usually be set to create the highest CPU frequency for which the CPU is rated.
For the Option 5AF 40 MHz CPU, it should be set to 3; for the Option 5CF 80 MHz CPU,
it should be set to 7; for the Option 5EF 160 MHz CPU, it should be set to 15. With any of
the Flex CPU options (5xF), the PMAC will not permit the CPU to run at higher than the
rated frequency, and it will reduce I46 to the matching value..
I46 is actually used at power-on/reset only, so to make a change in the CPU frequency
with I46, change the value of I46, store this new value to non-volatile flash memory with
the SAVE command, and reset the card with the $$$ command.

I47 Address of Pointer for Control-W Command
Range $0000 .. $FFFF (0 .. 65,535)
Units Legal PMAC ‘Y’ addresses
Default 0
Remarks I47 specifies the address of the register that tells the <CONTROL-W> command where to

pick up its command string.

PMAC 2 Software Reference

PMAC I-Variable Specification 37

The <CONTROL-W> command permits the host to load command strings into dual-ported
RAM (Option 2 required), instead of the normal command interface, then cause the
command to be accepted by sending a single byte (ASCII 23D is <CTRL-W>) to the
command interface.

Note:
The <CONTROL-W> function is now effectively obsolete. The
newer bidirectional DPRAM ASCII communications feature
enabled by I58 is superior and should be used instead.

Example For instance, if I47 is set to $D200, PMAC will look to its memory register Y:$D200
(wherever it sits in the host memory space) on receipt of a <CTRL-W> to see where to
look for the command string. If Y:$D200 holds a value of $D700, PMAC will take the
command string starting at register Y:$D700, incrementing addresses until it finds the null
character (value 0).

See Also Option 2 Dual-Ported RAM Manual
Memory-map registers $D000-$DFFF.
I-variables I56, I58
On-line command <CONTROL-W>

I48 DPRAM Servo Data Enable
Range 0 .. 1
Units none
Default 0
Remarks I48 enables or disables the dual-ported RAM (DPRAM) servo data reporting function.

When I48=1 and the GATHER command has been issued, PMAC copies key data from the
servo control registers to fixed registers in the DPRAM every I19 servo cycles for easy
access by the host computer. Servo data for motors up to the number specified by I59 are
reported.
When I48=0, the DPRAM servo data reporting function is disabled. Regular data
gathering can be enabled in this mode.
Refer to the description of DPRAM functions for more information.

See Also DPRAM Servo Data Reporting (Option 2 DPRAM Manual)
I-variables I19, I49, I59
On-line commands GATHER, ENDGATHER

I49 DPRAM Background Data Enable
Range 0 .. 1
Units none
Default 0
Remarks I49 enables or disables the dual-ported RAM (DPRAM) background data reporting

function. When I49=1, PMAC copies key data from the background information registers
to fixed registers in the DPRAM for easy access by the host computer. Each time the host
computer reads these registers and signals it is done, PMAC will copy the data again. Data
for motors and coordinate systems up to the number specified by I59 are reported.
When I49=0, the DPRAM background data reporting function is disabled.
Refer to the description of DPRAM functions for more information.

 PMAC 2 Software Reference

38 PMAC I-Variable Specifiation

See Also DPRAM Background Data Reporting (Option 2 DPRAM Manual)
I-variables I48, I59

I50 Rapid Move Mode Control
Range 0 .. 1
Units none
Default 1
Remarks I50 determines which variables are used for speed of RAPID mode moves. When I50 is

set to 0, the jog parameter for each motor (Ix22) is used. When I50 is set to 1, the
maximum velocity parameter for each motor (Ix16) is used instead. Regardless of the
setting of I50, the jog acceleration parameters Ix19-Ix21 control the acceleration.

See Also RAPID mode moves (Writing a Motion Program)
I-variables Ix16, Ix19-Ix22
Program command RAPID.

I51 Compensation Table Enable
Range 0 .. 1

Units none

Default 0

Remarks I51 permits the enabling and disabling of the PMAC’s compensationtables – leadscrew
(position) compensation tables, torque compensation tables, and backlash compensation
tables. When I51 is 0, all tables are disabled and there is no correction performed. When
I51 is 1, all existing tables are enabled and corrections are performed as specified in the
tables.

See Also Leadscrew Compensation (Setting Up a Motor)
On-line commands DEFINE COMP, DELETE COMP, LIST COMP DEF.
Position-compensation registers (D:$46, etc.)
Torque compensation registers (Y:$45, etc.)
Suggested M-variables Mx69

I52 \ Program Hold Slew Rate
Range 0 .. 8,388,607

Units I10 units / segmentation period

Default 37,137

Remarks I52 controls the slew rate to a stop on a \ program hold command, and the slew rate back
up to speed on a subsequent R command, for all coordinate systems, provided PMAC is in
a segmented move (LINEAR or CIRCLE mode with I13>0). If PMAC is not in a
segmented move (I13=0, or other move mode), the \ command acts just like an H feed
hold command, with Ix95 controlling the slew rate.

The units of I52 are the units of I10 (1/8,388,608 msec) per segmentation period (I13
msec). To calculate how long it takes to stop on a \ command, and to restart on the next R
command, use the formula

T (msec) = I10 * I13 / I52
To calculate the value of I52 for a given start/stop time, use the formula

I52 = I10 * I13 / T (msec).

PMAC 2 Software Reference

PMAC I-Variable Specification 39

Example To execute a full stop in one second with the default servo update time (I10 = 3,713,707)
and a move segmentation time of 10 msec, I52 should set to 3,713,707 * 10 / 1000 =
37,137.

See Also Stop Commands (Making Your Application Safe)
I-variables I13, Ix95
On-line commands \, H

I53 Program Step Mode Control
Range 0 .. 1

Units none

Default 0

Remarks I53 controls the action of a Step (S) command in any coordinate system on PMAC. At the
default I53 value of zero, a Step command causes program execution through the next
move, DELAY, or DWELL command in the program, even if this takes multiple program
lines.

When I53 is set to 1, a Step command causes program execution of only a single program
line, even if there is no move or DWELL command on that line. If there is more than one
DWELL or DELAY command on a program line, a single Step command will only execute
one of the DWELL or DELAY commands.

Regardless of the setting of I53, if program execution on a Step command encounters a
BLOCKSTART statement in the program, execution will continue until a BLOCKSTOP
statement is encountered.

See Also Control Panel Port STEP/ Input (Connecting PMAC to the Machine)
On-line commands <CTRL-R>, <CTRL-S>, Q, R, S
Program commands BLOCKSTART, BLOCKSTOP

I54 Serial Baud Rate {PMAC(1) w/Flex CPU or PMAC2 only}
Range 0 .. 15

Units none

Default 8 (9600 baud) PMAC(1)
12 (38400 baud) PMAC2

Remarks I54 controls the baud rate for communications on the serial port for all PMAC2 boards, and for
PMAC(1) boards with an ACC-5xF Flex CPU. PMAC2 uses I54 only at power-up/reset to set
up the frequency of the clocking circuit for the serial port.

To change the baud rate, it is necessary to change the value of I54, store this value to non-
volatile flash memory with the SAVE command, and reset the card. At this time, PMAC2 will
establish the new baud rate.

The possible settings of I54 and the baud rates they define are:

 PMAC 2 Software Reference

40 PMAC I-Variable Specifiation

I54 Baud
Rate

Error with
CPU at 40

MHz

Error with
CPU at 60

MHz

Error with
CPU

at 80 MHz

Error with
CPU

at 160 MHz
0 600 0 (Disabled) 0 0
1 900 -0.05% 0 -0.03% -0.01%
2 1200 0 0 0 0
3 1800 -0.1% 0 -0.05% -0.03%
4 2400 0 0 0 0
5 3600 -0.19% 0 -0.10% -0.05%
6 4800 0 0 0 0
7 7200 -0.38% 0 -0.19% -0.10%
8 9600 0 0 0 0
9 14,400 -0.75% 0 -0.38% -0.19%

10 19,200 0 0 0 0
11 28,800 -1.5% 0 -0.75% -0.38%
12 38,400 0 0 0 0
13 57,600 -3.0% 0 -1.5% -0.75%
14 76,800 0 0 0 0
15 115,200 (Disabled) 0 -3.0% -1.5%

CPUs run at 30 MHz, 90 MHz, 120 MHz, or 150 MHz, as well as 60 MHz, also have zero baud
rate errors at all of these baud rates. Some users may want to slow down their CPU frequencies
from the maximum rated frequency in order to get accurate high baud rates.

Because of the nature of the clock generation circuitry, odd values of I54 on a PMAC2 with a
CPU operating at 40 MHz (Jumper E2 OFF) produce non-exact baud rates. The error in baud
rate is small enough that communications should still be valid.

If your host computer baud rate cannot be made to match the PMAC2’s baud rate, either
PMAC2’s baud rate must be changed through the bus communications port, or the PMAC2
must be re-initialized by resetting or powering up with the E3 jumper ON. This forces the
PMAC2 to the default baud rate of 38,400.

I55 DPRAM Background Variable Buffers Enable
Range 0 .. 1

Units none

Default 0

Remarks I55 enables or disables the dual-ported RAM (DPRAM) background variable read and
write buffer function. When I55 is 0, this function is disabled. When I55 is 1, this
function is enabled. When enabled, the user can specify up to 128 PMAC registers to be
copied into DPRAM each background cycle to be read by the host (background variable
read) and up to 128 PMAC registers to be copied each background cycle from values
written into the DPRAM by the host (background variable write).

See Also DPRAM Background Variable Read Buffer (Option 2 DPRAM Manual)
DPRAM Background Variable Write Buffer (Option 2 DPRAM Manual)

PMAC 2 Software Reference

PMAC I-Variable Specification 41

I56 DPRAM ASCII Communications Interrupt Enable
Range 0 .. 1

Units none

Default 0

Remarks I56 enables or disables the interrupt feature for the dual-ported RAM (DPRAM) ASCII
communications function that is enabled with I58=1. When I56=1, PMAC will generate
an interrupt to the host computer each time it loads a line into the DPRAM ASCII buffer
for the host to read. When I56=0, it will not generate this interrupt.

For PMAC(1)-PC, PMAC(1)-Lite, PMAC(1)-PCI, and PMAC(1)-PCI-Lite, the interrupt
line used is the EQU4 interrupt. For this to reach the host, the E55 jumper must be ON,
and E54, E56, and E57 must be OFF (E54 and E56 do not exist on PMAC-Lite). When
using this feature, do not use the EQU4 line for any other purpose, including position
compare.

For the regular (non-Ultralite) ISA-bus and PCI-bus versions of PMAC2 (PMAC2-PC,
PMAC2-Lite, Mini-PMAC2, PMAC2-PCI, PMAC2-PCI-Lite), the interrupt line used is
the EQU1 interrupt. When using this feature, do not use the EQU1 line for any other
purpose, including position compare.

For the PMAC2-PC Ultralite and PMAC2-PCI Ultralite, the interrupt line used is the
CTRL0 line, which has no other functions.

For the VME-bus versions (PMAC(1)-VME, PMAC2-VME, PMAC2-VME Ultralite), the
interrupt line used is the normal communications interrupt (the only interrupt available).
This line – IRQn on the VME bus, is determined by the VME setup value in register
X:$0788. The interrupt vector provided to the host is one greater than the value in setup
register X:$0789. For example, if the value in X:$0789 is the default of $A1, this interrupt
will provide an interrupt vector of $A2.

See Also DPRAM ASCII Communications (Option 2 DPRAM Manual)
I-variables I48, I49, I55, I57, I58, I59

I57 DPRAM Binary Rotary Buffer Enable
Range 0 .. 1
Units none
Default 0
Remarks I57 enables or disables the dual-ported RAM (DPRAM) binary rotary buffer function.

When I57=1, this function is enabled and the host computer can download motion program
data to the PMAC through the DPRAM in binary form for maximum possible throughput.
When I57=0, this function is disabled.

See Also DPRAM Binary Rotary Buffer (Binary Rotary Buffer)
I-variables I48, I49, I55, I56, I58, I59

 PMAC 2 Software Reference

42 PMAC I-Variable Specifiation

I58 DPRAM ASCII Communications Enable
Range 0 .. 1
Units none
Default 0
Remarks I58 enables or disables the dual-ported RAM (DPRAM) ASCII communications function.

When I58=1, this function is enabled and the host computer can send ASCII command
lines to the PMAC through the DPRAM and receive ASCII responses from PMAC
through the DPRAM. When I58=0, this function is disabled.
With I58=1, PMAC’s response port on the bus will be whichever port (normal I/O-mapped
bus port, or DPRAM) has received the most recent command.
The <CTRL-Z> command, which causes PMAC’s response port to revert to the serial
port, automatically sets I58 to 0.
When I58 is set to 1, I3 is automatically forced to 0 or 2, if it has been at 1 or 3,
respectively.
If I56 is also equal to 1, PMAC will provide an interrupt to the host computer when it
provides a response string.

See Also DPRAM ASCII Communications (Option 2 DPRAM Manual)
I-variables I3, I48, I49, I55, I56, I57, I59
On-line command <CTRL-Z>

I59 DPRAM Buffer Maximum Motor/C.S. Number
Range 0 .. 8
Units none
Default 0
Remarks I59 determines the highest-numbered motor and/or coordinate system for which servo data

is reported in the DPRAM when servo data reporting is active (I48=1) and/or background
data reporting is active (I49=1). If I59=0, no data is reported even if one or both reporting
functions are active. If I59>0, data for both motor and coordinate system of numbers up to
the value of I59 are reported – there is not separate control of maximum motor and
coordinate system numbers.

See Also DPRAM Servo Data Reporting, DPRAM Background Data Reporting

I60 Auto-Converted ADC Register Address {PMAC(1) only}
Range 0, $FFD0 .. $FFFE
Units PMAC “Y” addresses
Default 0
Remarks I60 permits the user to specify the address of one ACC-36 analog-to-digital converter

(ADC) board (or on-board Option 12 ADCs on PCI-bus PMACs) whose values will
automatically be copied into PMAC(1)’s memory at a high rate so that they can be used as
servo feedback. This can also be used to make user program access to these ADCs more
convenient, but it is not required for this purpose.

On a PMAC2 board, this function is controlled by the more flexible structure of the analog
data table.

There are 24 legal addresses for an ACC-36 in PMAC’s memory and I/O space: even
values from $FFD0 to $FFFE. The Option 12 ADCs on a PCI-bus PMAC(1) are located at
address $FFC8. If you have more than one ACC-36 connected to PMAC, only one board
may be used in this manner. All other boards must be accessed in user programs.

PMAC 2 Software Reference

PMAC I-Variable Specification 43

For the ACC-36 board automatically converted using I60 and I61, the board must never be
accessed in user programs, but user programs may read the memory registers in PMAC to
which the ADC values are copied.

If I60 is set to 0, no automatic conversion will take place. If the first two hex digits of I60
are set to anything except $FF, PMAC will automatically change them to $FF.

ADCs 1 to 8 are copied into the low 12 bits of registers Y:$0708 to Y:$070F, respectively.
ADCs 9 to 16, if they exist on the addressed board, are copied into the low 12 bits of
registers X:$0708 to X:$070F. These registers should be treated as signed registers.

Note:
It is easier to specify this parameter in hexadecimal form ($ prefix).
If I9 is set to 2 or 3, the value of this variable will be reported back
to the host in hexadecimal form.

Example A PMAC system has an ACC-14D at address $FFD0, and an ACC-36 at address $FFD8.
It is desired to automatically convert all 8 registers on the ACC-36. I60 is set to $FFD8,
and I61 is set to 7.

See Also Parallel Position Feedback Conversion (Setting Up a Motor)
I-variables I61, Ix10
Memory and I/O Map registers $FFD0 to $FFFE
ACC-36 User’s Manual

I61 Number of Auto-Converted ADC Registers {PMAC(1) only}
Range 0 .. 7
Units Number of registers minus 1
Default 0
Remarks I61 permits the user to specify the number of analog-to-digital converter (ADC) registers

on the ACC-36 specified by I60 that will be automatically converted and copied into
PMAC(1) memory. There are two 12-bit converters per 24-bit register. The number of
registers converted automatically is equal to I61 + 1.

On a PMAC2 board, this function is controlled by the more flexible structure of the analog
data table.

Each phase cycle (9 kHz default), PMAC copies the contents of an ACC-36 register into
RAM, then selects the next register, so the conversion can start and the results will be
ready for the next phase cycle. PMAC will cycle through the first I61+1 registers on the
ACC-36 in this fashion. If I61 is set to 0, PMAC will cycle through all 8 registers on the
ACC-36 (equivalent to I61=7).

If you have more than one ACC-36 connected to PMAC, only one board may be used in
this manner. All other boards must be accessed in user programs. For the ACC-36 board
automatically converted using I60 and I61, the board must never be accessed in user
programs, but user programs may read the memory registers in PMAC to which the ADC
values are copied.

ADCs 1 to 8 are copied into the low 12 bits of registers Y:$0708 to Y:$070F, respectively.
ADCs 9 to 16 are copied into the low 12 bits of registers X:$0708 to X:$070F. These
registers should be treated as signed values.

Example The system has 8 axes with analog feedback. There are 4 phase cycles per servo cycle,

 PMAC 2 Software Reference

44 PMAC I-Variable Specifiation

and it is important to have new feedback values every servo cycle. Therefore an ACC-36
with Option 1 is ordered, so there are 2 ADCs per register, and I61 is set to 3 to convert
the first 4 registers in a cyclic fashion. ADCs 1 to 4 are copied into Y:$0708 to Y:$070B,
respectively; ADCs 9 to 12 are copied into X:$0708 to X:$070B, respectively.

See Also Parallel Position Feedback Conversion (Setting Up a Motor)
I-variables I60, Ix10
Memory and I/O Map registers $FFD0 to $FFFE
ACC-36 User’s Manual

I62 Internal Message Carriage Return Control
Range 0 .. 1

Units none

Default 0

Remarks I62 permits the user to control whether internally generated messages sent from PMAC to
the host computer are terminated with the carriage return (<CR>) character or not. It
affects only those messages generated by a CMD, SEND, SENDP, or SENDS statement in a
PMAC motion or PLC program. The ability to suppress the <CR> provides more
flexibility in controlling the format display of a terminal window or printer.

If I62 is set to the default value of 0, these messages are terminated with a <CR>. If I62 is
set to 1, the <CR> is suppressed. With I62 set to 1, if it desired for a PMAC program to
cause a <CR> to be sent, the SEND^M command must be used (the carriage return
character is <CTRL-M>).

Note:
Do not set I62 to1 if using dual-ported RAM ASCII
communications (I58=1).

Example With program code:
I62=1.............. ; Suppress <CR> on SEND
SEND “THE VALUE OF P1 IS “ ; String sent with no <CR>
CMD “P1” ; Response string follows on same line, no <CR>
SEND^M ; Send a <CR>
PMAC responds with:
THE VALUE OF P1 IS 42

See Also Program Commands CMD, SEND, SENDS, SENDP

I63 Control-X Echo Enable
Range 0 .. 1

Units None

Default 0

Remarks I63 permits the PMAC to echo the <CONTROL-X> character back to the host computer
when it is received. If I63 is set to 1, PMAC will send a <CONTROL-X> character (ASCII
value 24 decimal) back to the host computer when it receives a <CONTROL-X> character.

If I63 is set to 0, PMAC will send nothing back to the host computer when it receives a
<CONTROL-X> character. This is equivalent to the action of older versions of PMAC
firmware without an I63 variable.

PMAC 2 Software Reference

PMAC I-Variable Specification 45

The host computer can use the <CONTROL-X> character to clear out PMAC’s
communications buffers and make sure that no unintended responses are received for the
next command. However, without an acknowledgement that the buffers have been
cleared, the host computer has to add a safe delay to ensure that the operation has been
done before the next command can be issued.

Setting I63 to 1 permits a more efficient clearing of the buffer, because the response
character lets the host computer know when the next command can safely be sent.

Versions of the PCOMM32 communications library 2.21 and higher (March 1999 and
newer) can take advantage of this feature for more efficient communications. I63 should
be set to 0 when using older versions of PCOMM32.

In battery-backed PMAC(1) boards with firmware versions 1.16F and 1.16G, the value of
I63 is maintained by the battery through a power cycling or reset; a SAVE command is not
required. In 1.16H and newer (and in all revisions on flash-backed boards), the value is
maintained by storing it to non-volatile memory with a SAVE command.

I64 Internal Response Tag Enable
Range 0 .. 1

Units None

Default 0

Remarks I64 permits PMAC to tag ASCII text lines that it sends to the host computer as a result of
internal commands, so these can easily be distinguished from responses to host commands.

If I64 is set to 1, a line of text sent to the host computer as a result of an internal SEND or
CMD statement is preceded by a <CONTROL-B> (“start-transmission”) character. In the
case of an error report, the <CONTROL-B> character replaces the leading <CONTROL-G>
(“bell”) character. The text line is always terminated by a <CR> (carriage return)
character, regardless of the setting of I62.

If I64 is set to 0, a text line sent in response to an internal PMAC command is not preceded
by any special character. Reported errors are preceded by the <CONTROL-G> (“bell”)
character. This is equivalent to the action of older versions of PMAC firmware, before I64
was implemented.

Regardless of the setting of I64, if I6 = 2, errors on internal commands are not reported to
the host computer.

In battery-backed PMAC(1) boards with firmware versions 1.16F and 1.16G, the value of
I64 is maintained by the battery through a power cycling or reset; a SAVE command is not
required. In 1.16H and newer (and in all revisions on flash-backed boards , the value is
maintained by storing it to non-volatile memory with a SAVE command.

Example With I64=0, lines sent from PMAC are:
Motion Stopped on Limit<CR>
<BELL>ERR003<CR>
With I64=1, the same lines from PMAC are:
<CTRL-B>Motion Stopped on Limit<CR>
<CTRL-B>ERR003<CR>

 PMAC 2 Software Reference

46 PMAC I-Variable Specifiation

I65 User-Configuration Variable
Range 0 – 16,777,215

Units None

Default 0

Remarks I65 is an I-variable that has no automatic use on PMAC. The purpose of this variable is to
provide an easy way for the user to confirm that the application configuration has been
loaded into the PMAC. Since the factory default value for I65 is 0, setting I65 to a non-
zero value as part of the configuration permits an easy way to verify that the configuration
file has been downloaded.

By providing many different possible non-zero values of I65, different machine
configurations can be identified with I65. It is even possible for the user to utilize I65 as
an electronic serial number.

I66 Servo-Channel ADC Auto-Copy Disable {PMAC2 only}
Range 0 .. 1

Units None

Default 0

Remarks I66 permits the disabling of the PMAC2 function that automatically copies the values in
the 16 A/D-converter registers (A and B registers of Channels 1 – 8) of the two
“DSPGATE1” Servo ICs into RAM every phase cycle. This auto-copying function was
implemented because in the early revisions of the DSPGATE1 IC, the ADC registers
themselves could only be read reliably during phase-interrupt tasks.

Note:
This function is not to be confused with de-multiplexing of Option
12 or ACC-36 ADCs controlled by I60 and I61 on a PMAC(1) or
the analog table on a PMAC2.

Recent revisions of the DSPGATE1 IC (“B” revision and newer), installed on virtually all
PMAC2 boards starting in the year 2000, double buffer these registers so that they may be
read properly at any time. Therefore, this auto-copying function is not necessary in most
cases on newer boards.
If I66 is set to the default value of 0, at the beginning of each phase cycle, PMAC2 copies
the values found at these 16 addresses (whether physically present or not) into RAM
registers at X/Y:$0710 – X/Y:$0717.
If I66 is set to 1, PMAC2 does not perform this copying function each phase cycle. The
user may want to disable the copying for two reasons. First, it saves significant amounts of
processor time. Second, the auto-copying process interferes with the operation of an ACC-
51P board that is mapped into Channels 1 – 4 or 5 – 8. (It does not interfere with an ACC-
51P board mapped into Channels 9 – 12 or 13 – 16.)
I66 is used at power-up/reset only. To enable or disable the auto-copying function, change
the value of I66, issue the SAVE command, then reset the card. If you wish to temporarily
enable or disable this function, change the internal control bit at X:$0003 bit 15.

Note:
The P2Setup PC program, when used to set up digital current loop
operation for on-board servo channels (not through MACRO),

PMAC 2 Software Reference

PMAC I-Variable Specification 47

requires that the auto-copying function be enabled.

I67 Modbus TCP Buffer Start Address
Range $0 – $9FFF

Units PMAC addresses

Default 0

Remarks I67 enables the Modbus TCP interface in PMAC software and reports the starting address
of the 256-word Modbus buffer in PMAC memory. To enable the Modbus TCP interface
on the PMAC’s Ethernet port, the following conditions must apply:

1. The Ethernet physical interface must be present
2. The Modbus TCP firmware for the Ethernet processor must be installed
3. V1.17C or newer PMAC firmware must be installed
4. A user buffer of 256 or more words must have been defined with the DEFINE

UBUFFER command
5. I67 must be set to a value greater than 0.

The user can set I67 to any value greater than 0 to enable the Modbus TCP buffer. When
this is done, PMAC will automatically set I67 to the address of the start of the 256-word
Modbus buffer. In most PMAC configurations, this address will be $9F00, so the buffer
will occupy the addresses $9F00 - $9FFF.

A SAVE command must be issued with I67 at a non-zero value in order for the Modbus
TCP buffer to be active after subsequent power-up or reset operations.

I68 Alternate TWS Input Format
Range 0 – 1

Units None

Default 0

Remarks I68 controls how the PMAC interprets incoming data on a TWS-format M-variable read
from an ACC-34 or similar serial-interface I/O board. If I68 is set to the default value of 0,
PMAC expects the serial input data on the DAT0 signal line. If I68 is set to 1, PMAC
expects the serial input data on the DAT7 signal line.

The DAT7 line is separated more from the output clock line on the same cable; the use of
DAT7 by setting I68 to 1 and making the appropriate jumper setting on the I/O board
makes it possible to use a longer cable without too much coupling interference between
signals.

On the ACC-34AA, jumper E23 must be connect pins 1 and 2 to support the default setting
of I68 = 0; it must connect pins 2 and 3 to support the setting of I68 = 1. On the ACC-76
and ACC-77 “P-Brain” boards, jumper E1 should be ON to support the default setting of
I68 = 0; jumper E8 should be ON to support the setting of I68 = 1. Older boards of this
class do not support settings of I68 = 1.

 PMAC 2 Software Reference

48 PMAC I-Variable Specifiation

I69 Modbus TCP Software Control Panel Start Address
Range $0 – $FFFF

Units PMAC addresses

Default 0

Remarks I69 enables and specifies the address of the start of the Modbus TCP software control
panel in PMAC. I69 permits a software control panel to be commanded over the Modbus
TCP link, typically from a PLC, using part of the user buffer created with the DEFINE
UBUFFER command and reserved for Modbus TCP use with I67. If I69 is set to a value
greater than 0, this software control panel is enabled. Typically, I69 is set to a value 128
($80) greater than the value of I67, so this control panel starts at an address 128 higher
than the beginning of the entire Modbus TCP buffer. For example, if the beginning of the
Modbus buffer were at $9F00, I69 could be set to $9F80.

The software control panel occupies 18 long words of PMAC memory. The structure
functions of the Modbus panel are equivalent to those for the DPRAM software control
panel, which are documented in the Memory and I/O Map chapter of the Software
Reference Manual at their default addresses of $D000 - $D011.

The operation of the Modbus control panel is independent of that for the DPRAM control
panel (which is controlled by I2). One, neither, or both of these control panels may be
active at one time.

I70 – I77 Analog Table Setup Lines
Range $000000 - $FFFFFF

Units none

Default $0

Remarks PMAC2 firmware automatically selects and reads the channels of Option 12 and 12A A/D
converters in a round-robin fashion. This function is controlled by a data table in variables
I70 – I77 which operates much like the encoder conversion table. The eight I-variables (X
registers) contain the channel-select information, and the eight Y-registers contain the A/D
results. Each X and Y word is split into two 12-bit halves, where the lower 12 bits work
with the first A/D converter set (Option 12), and the higher 12 bits work with the second
A/D converter set (Option 12A).

The data table looks like this:

Setup
I-Variable

I-Variable
Upper 12 Bits

I-Variable
Lower 12 Bits

Result
Address

Y Word
Upper 12 Bits

Y Word
Lower 12 Bits

I70 CONFIG_W2 CONFIG_W1 Y:$0708 DATA_W2 DATA_W1
I71 CONFIG_W2 CONFIG_W1 Y:$0709 DATA_W2 DATA_W1
I72 CONFIG_W2 CONFIG_W1 Y:$070A DATA_W2 DATA_W1
I73 CONFIG_W2 CONFIG_W1 Y:$070B DATA_W2 DATA_W1
I74 CONFIG_W2 CONFIG_W1 Y:$070C DATA_W2 DATA_W1
I75 CONFIG_W2 CONFIG_W1 Y:$070D DATA_W2 DATA_W1
I76 CONFIG_W2 CONFIG_W1 Y:$070E DATA_W2 DATA_W1
I77 CONFIG_W2 CONFIG_W1 Y:$070F DATA_W2 DATA_W1

where:

PMAC 2 Software Reference

PMAC I-Variable Specification 49

 CONFIG_W2 is the selection word for the second A/D converter set (Option 12A)

 CONFIG_W1 is the selection word for the first A/D converter set (Option 12)

 DATA_W2 is the matching A/D data from the second A/D converter set (Option
12A)

 DATA_W1 is the matching A/D data from the first A/D converter set (Option 12)

A value of 0-7 in CONFIG_W1 tells PMAC2 to read channel ANAI00-07, respectively, as
a 0 to+5V input, resulting in an unsigned value.

A value of 8-15 in CONFIG_W1 tells PMAC2 to read ANAI00-07, respectively, as a -2.5
to +2.5V input, resulting in a signed value.

A value of 0-7 in CONFIG_W2 tells PMAC2 to read channel ANAI08-15, respectively, as
a 0 to+5V input, resulting in an unsigned value.

A value of 8-15 in CONFIG_W1 tells PMAC2 to read ANAI08-15, respectively, as a -2.5
to +2.5V input, resulting in a signed value.

Each phase update (9 kHz default), PMAC2 increments through one line of the table. It
copies the ADC reading(s) selected in the previous cycle into RAM, then writes the next
configuration words to the ADC(s). Typically, this will be used to cycle through all 8
ADCs or pairs of ADCs. To cycle through all 8 pairs of ADCs in unsigned mode, the table
should look like this:

Setup
I-Variable

X Word
Upper 12 Bits

X Word
Lower 12 Bits

Result
Address

Y Word
Upper 12 Bits

Y Word
Lower 12 Bits

I70 0 0 Y:$0708 ANAI08 ANAI00
I71 1 1 Y:$0709 ANAI09 ANAI01
I72 2 2 Y:$070A ANAI10 ANAI02
I73 3 3 Y:$070B ANAI11 ANAI03
I74 4 4 Y:$070C ANAI12 ANAI04
I75 5 5 Y:$070D ANAI13 ANAI05
I76 6 6 Y:$070E ANAI14 ANAI06
I77 7 7 Y:$070F ANAI15 ANAI07

If you wanted to set up all ADCs for a unipolar (unsigned) conversion, the following
commands could be issued
I70=$000000 ; Select ANAI00 and ANAI08 (if present) unipolar
I71=$001001 ; Select ANAI01 and ANAI09 (if present) unipolar
I72=$002002 ; Select ANAI02 and ANAI10 (if present) unipolar
I73=$003003 ; Select ANAI03 and ANAI11 (if present) unipolar
I74=$004004 ; Select ANAI04 and ANAI12 (if present) unipolar
I75=$005005 ; Select ANAI05 and ANAI13 (if present) unipolar
I76=$006006 ; Select ANAI06 and ANAI14 (if present) unipolar
I77=$007007 ; Select ANAI07 and ANAI15 (if present) unipolar

To set up the configuration words for bipolar analog inputs, the commands could look like
this:
I70=$008008 ; Select ANAI00 and ANAI08 (if present) bipolar
I71=$009009 ; Select ANAI01 and ANAI09 (if present) bipolar
I72=$00A00A ; Select ANAI02 and ANAI10 (if present) bipolar
I73=$00B00B ; Select ANAI03 and ANAI08 (if present) bipolar
I74=$00C00C ; Select ANAI04 and ANAI08 (if present) bipolar

 PMAC 2 Software Reference

50 PMAC I-Variable Specifiation

I75=$00D00D ; Select ANAI05 and ANAI08 (if present) bipolar
I76=$00E00E ; Select ANAI06 and ANAI08 (if present) bipolar
I77=$00F00F ; Select ANAI07 and ANAI08 (if present) bipolar

Once this setup has been made, PMAC2 will automatically cycle through the analog
inputs, copying the converted digital values into RAM. These image registers can then be
read as if they were the actual A/D converters. For user program use, the image registers
would be accessed with M-variables. Suggested definitions for unipolar (unsigned) values
are:
M1000->Y:$0708,0,12,U ; ANAI00 image register; from J1 pin 1
M1001->Y:$0709,0,12,U ; ANAI01 image register; from J1 pin 2
M1002->Y:$070A,0,12,U ; ANAI02 image register; from J1 pin 3
M1003->Y:$070B,0,12,U ; ANAI03 image register; from J1 pin 4
M1004->Y:$070C,0,12,U ; ANAI04 image register; from J1 pin 5
M1005->Y:$070D,0,12,U ; ANAI05 image register; from J1 pin 6
M1006->Y:$070E,0,12,U ; ANAI06 image register; from J1 pin 7
M1007->Y:$070F,0,12,U ; ANAI07 image register; from J1 pin 8
M1008->Y:$0708,12,12,U ; ANAI08 image register; from J1 pin 9
M1009->Y:$0709,12,12,U ; ANAI09 image register; from J1 pin 10
M1010->Y:$070A,12,12,U ; ANAI10 image register; from J1 pin 11
M1011->Y:$070B,12,12,U ; ANAI11 image register; from J1 pin 12
M1012->Y:$070C,12,12,U ; ANAI12 image register; from J1 pin 13
M1013->Y:$070D,12,12,U ; ANAI13 image register; from J1 pin 14
M1014->Y:$070E,12,12,U ; ANAI14 image register; from J1 pin 15
M1015->Y:$070F,12,12,U ; ANAI15 image register; from J1 pin 16

For bipolar (signed), just change the U in each definition to S.

In firmware versions prior to V1.17C, the 8 setup registers did not have I-variables
assigned to them, but operated in the same way, accessed directly at addresses X:$0708 –
X:$070F.

I8x Motor x Third-Resolver Gear Ratio
Range 0 .. 4095

Units Second-resolver turns per third-resolver turn

Default 0

Remarks I8x tells PMAC the gear ratio between the second (medium) and third (coarse) resolvers
for a triple-resolver setup for Motor x. It is expressed as the number of turns (electrical
cycles) the second resolver makes in one full turn (electrical cycle) of the third resolver.

This parameter is used only during PMAC’s power-up/reset cycle to establish absolute
power-on servo position. Therefore, the parameter must be set, the value stored in
EAROM with the SAVE command, and the card reset before it takes effect.

If there is no geared third resolver on Motor x, or if absolute power-on position is not
desired, I8x should be set to zero. If either Ix10 (for the primary resolver) or I9x (for the
secondary resolver) is set to zero, I8x is not used.

The third resolver must be connected to the next higher numbered R/D converter at the
same multiplexer address than the second resolver, which must be connected to the next
higher numbered converter at the same multiplexer address than the primary resolver.

PMAC 2 Software Reference

PMAC I-Variable Specification 51

There can be up to eight R/D converters on two ACC-8D Option 7 boards at one
multiplexer address.

Example Motor 3 has a triple resolver, with each resolver geared down by a ratio of 16:1 from the
resolver before it. The fine resolver is connected to R/D converter 4 at multiplexer address
0 (the first R/D converter on the second ACC-8D Option 7 at address 0). The medium
resolver is connected to R/D converter 5 at this address, and the coarse resolver is
connected to R/D converter 6. The following I-variable values should be used:
I310=$040100 ; The 0100 in the low 16 bits specifies
............................ ; multiplexer address 0; the 4 in the high 8 bits
............................ ; specifies R/D converter 4 at this address.
I93=16 ; Specifies 16:1 ratio between medium and fine
I83=16 ; Specifies 16:1 ratio between coarse and medium

See Also Selecting the Position Loop Feedback (Setting Up a Motor)
I-Variables I9x, Ix03, Ix10, Ix81
ACC-8D Option 7 (R/D Converter) Manual

I89 Cutter Comp Outside Corner Break Point
Range -1.0 – 0.99999

Units cos ∆θ

Default 0.99848 (cos 1o)

Remarks I89 controls the threshold between outside corner angles for which an extra arc move is
added in cutter compensation, and those for which the incoming and outgoing moves are
directly blended together.

I89 is expressed as the cosine of the change in directed angle between the incoming and
outgoing moves. As such, it can take a value between -1.0 and +1.0. If the two moves
have the same directed angle at the move boundary (i.e. they are moving in the same
direction), the change in directed angle is 0, and the cosine is 1.0. As the change in
directed angle increases, the corner gets sharper, and the cosine of the change in directed
angle decreases. For a total reversal, the change in directed angle is 180o, and the cosine is
-1.0.

If the cosine of the change in directed angle of an outside corner is less than I89 (a large
change in directed angle; a sharp corner), PMAC will automatically add an arc move with
a radius equal to the cutter radius to join the incoming and outgoing moves. This prevents
the cutter from moving too far out when going around the outside of a sharp corner.

If the cosine of the change in directed angle of an outside corner is greater than I89 (a
small change in directed angle; a gradual corner), PMAC will directly blend the incoming
and outgoing moves with its normal blending algorithms. This can provide increased
speed on small angle changes, because an extra segment of minimum TA or 2*TS time is
not added.

Note:

Do not set I89 to +1.0 (or greater). Otherwise, PMAC will try to
add an arc to every blend (even straight lines).

I89 does not affect the behavior at inside corners, where the incoming and outgoing moves
are always blended directly together, regardless of the change in directed angle.

 PMAC 2 Software Reference

52 PMAC I-Variable Specifiation

Before V1.16 firmware, an arc was added to an outside corner if the change in directed
angle were greater than 1o.

Example If it is desired that an arc only be added if the change in directed angle is greater than 45 o,
then I89 should be set to 0.707, because cos ∆θ = cos 45o = 0.707

See Also Cutter Radius Compensation (Writing a Motion Program)

I90 Minimum Arc Angle
Range Non-negative floating point

Units Semi-circles (π radians; 180 degrees)

Default 0 (sets 2-20)

Remarks I90 sets the threshold between a short arc and a full circle for CIRCLE mode moves in
PMAC in all coordinate systems. I90 is expressed as an angle, with units that represent a
fraction of a half-circle. It represents the smallest angle that can be covered by a
programmed arc move.

Any programmed CIRCLE-mode move with an IJK-vector representation of the center
which covers an angle smaller than I90 is executed as a full circle plus the programmed
angle change. Any such move which covers an angle greater than I90 is executed as an arc
smaller than a full circle.

The purpose of I90 is to support the circle programming standard that permits a full-circle
move to be commanded simply by making the end point equal to the starting point (0
degree arc), yet allow for round-off errors.

Most users will be able to leave I90 at the default value of one-millionth of a semi-circle.
This was formerly the fixed threshold value. However, some users may want to enlarge
the threshold to compensate for round-off errors, particularly when using cutter-radius
compensation in conjunction with full-circle moves. Remember that no arc covering an
angle less than I90 can be executed.

If a full-circle move is commanded with cutter compensation on, and the blending from the
previous move or into the next move creates a compensated outside corner without adding
an arc (see I89), PMAC will extend the compensated move past a full circle. If I90 is too
small, it may execute this as a very short arc, appearing to miss the move completely. I90
may have to be increased from its effective default value to cover this case.

For backward compatibility reasons, if I90 is set to 0, a threshold value of 2-20 (about one-
millionth) of a semi-circle will be used.

See Also Cutter Radius Compensation
I-variable I89

I9x Motor x Second-Resolver Gear Ratio
Range 0 .. 4095

Units Primary-resolver turns per second-resolver turn

Default 0

Remarks I9x tells PMAC the gear ratio between the first (fine, or primary) and second (coarse or
medium) resolvers for a double- or triple-resolver setup for Motor x. It is expressed as the

PMAC 2 Software Reference

PMAC I-Variable Specification 53

number of turns (electrical cycles) the first resolver makes in one full turn (electrical cycle)
of the second resolver.

This parameter is used only during PMAC’s power-up/reset cycle to establish absolute
power-on servo position. Therefore, the parameter must be set, the value stored in
EAROM with the SAVE command, and the card reset before it takes effect.

If there is no geared second resolver on Motor x, or if absolute power-on position is not
desired, I9x should be set to zero. If Ix10 (for the primary resolver) is set to zero, I9x is
not used. In a triple-resolver system, I9x must be set greater than zero in order for I8x
(third-resolver gear ratio) to be used.

The second resolver must be connected to the next higher numbered R/D converter at the
same multiplexer address than the first resolver. If there is a third resolver, it must be
connected to the next higher numbered converter at the same multiplexer address than the
second resolver. There can be up to eight R/D converters on two ACC-8D Option 7
boards at one multiplexer address.

If Ix10 is set up for an ACC-8D Option 9 Yaskawa encoder converter, I9x represents the
counts per revolution (including x2 or x4 quadrature decode, if used) of the encoder;
effectively it is the “gear ratio” between the encoder and the revolution counter.

Example Motor 1 has a double resolver with the fine resolver connected to the R/D converter at
location 2 on an ACC-8D Option 7 board set to multiplexer address 4, and the coarse
resolver, geared down at a 36:1 ratio from the fine resolver, connected to the R/D
converter at location 3 on the same board. The following I-variable settings should be
used:
I110=$020004 ; Value of $0004 in low 16 bits specifies
............................ ; multiplexer address 4; $02 in high 8 bits
............................ ; specifies R/D at location 2 of this address
I91=36 ; Specify 36 turns of fine resolver per turn of
............................ ; coarse resolver; R/D must be at location 3
............................ ; of multiplexer address 4
I81=0 ; No third resolver

See Also Selecting the Position Loop Feedback (Setting Up a Motor)
I-Variables I8x, Ix03, Ix10, Ix81
ACC-8D Option 7 (R/D Converter) Manual

 PMAC 2 Software Reference

54 PMAC I-Variable Specifiation

I99 Backlash Hysteresis
Range 0 .. 8,388,607

Units 1/16 count

Default 64 (= 4 counts)

Remarks This parameter controls the size of the direction reversal in motor commanded position
that must occur on any motor before PMAC starts to add the programmed backlash (Ix86)
in the direction of motion. The purpose of this variable is to allow the customer to ensure
that a very small direction reversal (e.g. from the dithering of a master encoder) does not
cause the backlash to “kick in”. I99 thus provides a hysteresis in the backlash function.

The units of I99 are 1/16 of a count. Therefore this parameter must hold a value 16 times
larger than the number of counts reversal at which backlash is introduced. For example, if
backlash is to be introduced after 5 counts of reversal, I99 should be set to 80.

Before I99 was implemented, the backlash hysteresis was fixed at 4 counts, equivalent to
the default I99 value of 64.

Example With a system in which one count of the master encoder creates 10 counts of movement in
the slave motor, it is desired that a single count reversal of the master not trigger backlash
reversal. Therefore the backlash hysteresis is set to 15 counts, and I99 is set to
15*16=240.

See Also Backlash Compensation (Setting Up a Motor)
I-Variables Ix85, Ix86

Motor x I-Variables
x = Motor Number (#x, x = 1 to 8)

Motor Definition I-Variables
Ix00 Motor x Activate
Range 0 .. 1

Units none

Default I100=1; I200 .. I800=0

Remarks Ix00 determines whether the Motor x is de-activated (=0) or activated (=1). If activated,
position, servo, and trajectory calculations are done for the motor. An activated motor
may be enabled – either in open or closed loop – or disabled (killed), depending on
commands or events.

If Ix00 is 0, not even the position calculations for that motor are done, so a P command
would not reflect position changes. Any PMAC motor not used should be de-activated, so
PMAC does not waste time doing calculations for that motor. The fewer motors are
activated, the faster the servo update time can be.

Note:

Do not use Ix00 to kill a motor. Changing Ix00 from 1 to 0 leaves
the motor outputs in whatever state they happened to be in at that
moment.

See Also On-line commands K, <CTRL-K>, A, <CTRL-A>, J/

PMAC 2 Software Reference

PMAC I-Variable Specification 55

Ix01 Motor x PMAC-Commutation Enable
Range 0 .. 1
Units none
Default 0
Remarks Ix01 determines whether PMAC will perform commutation calculations for Motor x. If

Ix01 is set to 0, PMAC will not perform commutation calculations for the motor, and it
will compute only one output value for that motor (usually analog or pulse-and-direction).
If a multi-phase motor is used, but is commutated in the amplifier, Ix01 should be set to 0.
If Ix01 is set to 1, PMAC will perform commutation calculations for Motor x. In this case,
it will either compute two phase-current command outputs for the motor (if Ix82 = 0,
disabling the current loop), usually analog outputs, or three phase-voltage command
outputs (if Ix82 > 0, enabling the current loops), usually as PWM signals

See Also Setting Up PMAC Commutation
I-variables Ix70-Ix83.

Ix02 Motor x Command Output Address
Range Extended legal PMAC X and Y addresses
Units Extended legal PMAC X and Y addresses
Default

Motor I-variable PMAC(1) PMAC2 PMAC2 Ultralite
Motor #1 I102 $C003 $C002 $C0A0
Motor #2 I202 $C002 $C00A $C0A4
Motor #3 I302 $C00B $C012 $C0A8
Motor #4 I402 $C00A $C01A $C0AC
Motor #5 I502 $C013 $C022 $C0B0
Motor #6 I602 $C012 $C02A $C0B4
Motor #7 I702 $C01B $C032 $C0B8
Motor #8 I802 $C01A $C03A $C0BC

Remarks Ix02 tells Motor x which register or registers to which it writes its command output values. It
contains the address of this register or the first (lowest addresses) of these multiple registers.
This determines which output lines transmit the command output signals. If bit 19 of Ix02 is
set to 0 (default), this register is a Y-register; if bit 19 of Ix02 is set to 1, this register is an X-
register. Almost all output registers on PMAC are Y-registers; the only common use of X-
register outputs is in the Type 0 MACRO protocol. The exact function of Ix02 is dependent
on the motor’s mode of operation, as explained in the following sections.

 No Commutation: If PMAC is not commutating Motor x (Ix01 = 0), only one command
output value is calculated, which is written to the register at the address specified in Ix02.

 For PMAC(1) systems, this output register is almost always a DAC analog output. The
addresses of each DAC are shown in the following table.

Channel Address Channel Address
DAC1 $C003 DAC9 $C023
DAC2 $C002 DAC10 $C022
DAC3 $C00B DAC11 $C02B
DAC4 $C00A DAC12 $C02A
DAC5 $C013 DAC13 $C033
DAC6 $C012 DAC14 $C032
DAC7 $C01B DAC15 $C03B
DAC8 $C01A DAC16 $C03A

Channels 9 – 16 are on an ACC-24P/V board.

 PMAC 2 Software Reference

56 PMAC I-Variable Specifiation

On PMAC(1) boards, if Ix01 is set to 0 and bit 16 of Ix02 is set to 1, then only the
magnitude of the command is written to the register specified by Ix02 (e.g. I103=$1C003
to use DAC1 in this mode); the sign of the command is written to bit 14 of the flag register
specified by Ix25, which is usually the AENA/DIR output. If this sign-and-magnitude
mode is used, bit 16 of Ix25 should be set to 1 so this bit is not used for the amplifier-
enable function. This mode is usually used with the ACC-8D Opt 2 voltage-to-frequency
converter to generate pulse-and-direction signals for stepper-motor drives. Sign-and-
magnitude mode is not available on PMAC2; for stepper applications it uses a fully
digitally generated pulse train as described below.

In PMAC2 systems, if a single analog output is desired for the servo, it is usually the A
DAC for the channel. The following table shows these addresses:

Channel Address Channel Address
DAC1A $C002 DAC9A $C042
DAC2A $C00A DAC10A $C04A
DAC3A $C012 DAC11A $C052
DAC4A $C01A DAC12A $C05A
DAC5A $C022 DAC13A $C062
DAC6A $C02A DAC14A $C06A
DAC7A $C032 DAC15A $C072
DAC8A $C03A DAC16A $C07A

Channels 9 – 16 are on an ACC-24P/V2 board. For B-channel DAC
registers, add 1 to the matching A-channel address

When using a PMAC2 Ultralite board to command the servo over the MACRO ring, the
command output is typically written to the MACRO node register 0. For the MACRO
Type 1 protocol used with Delta Tau MACRO Stations, the addresses are shown in the
following table:

Channel Address Channel Address
Node 0 Reg. 0 $C0A0 Node 8 Reg. 0 $C0B0
Node 1 Reg. 0 $C0A4 Node 9 Reg. 0 $C0B4
Node 4 Reg. 0 $C0A8 Node 12 Reg. 0 $C0B8
Node 5 Reg. 0 $C0AC Node 13 Reg. 0 $C0BC

One common application type for which the default value of Ix02 cannot be used is the
direct pulse-and-direction output for stepper motor drives (PMAC2 only). This mode uses
the C output register alone for each channel, and I9n6 for Channel n must be set to 2 or 3
to get pulse frequency output.

In this case, the following values should be used:
Channel Address Channel Address
PWM1A $C002 PWM9A $C042
PWM2A $C00A PWM10A $C04A
PWM3A $C012 PWM11A $C052
PWM4A $C01A PWM12A $C05A
PWM5A $C022 PWM13A $C062
PWM6A $C02A PWM14A $C06A
PWM7A $C032 PWM15A $C072
PWM8A $C03A PWM16A $C07A

Channels 9 – 16 are on an ACC-24P/V2 board.

PMAC 2 Software Reference

PMAC I-Variable Specification 57

Channel Address Channel Address
PFM1 $C004 PFM9 $C044
PFM2 $C00C PFM10 $C04C
PFM3 $C014 PFM11 $C054
PFM4 $C01C PFM12 $C05C
PFM5 $C024 PFM13 $C064
PFM6 $C02C PFM14 $C06C
PFM7 $C034 PFM15 $C074
PFM8 $C03C PFM16 $C07C

Channels 9 – 16 are on an ACC-24P/V2 board

When commanding pulse-and-direction from a PMAC Ultralite through a MACRO ring,
use the address of Register 2 for the MACRO node, as shown in the following table:

Channel Address Channel Address
Node 0 Reg. 0 $C0A2 Node 8 Reg. 0 $C0B2
Node 1 Reg. 0 $C0A6 Node 9 Reg. 0 $C0B6
Node 4 Reg. 0 $C0AA Node 12 Reg. 0 $C0BA
Node 5 Reg. 0 $C0AE Node 13 Reg. 0 $C0BE

Commutation, No Current Loop: If PMAC is commutating Motor x (Ix01 = 1), but not
closing its current loop (Ix82 = 0), two command output values are calculated, which are
written to the Y-register at the address specified in Ix02, plus the Y-register at the next
higher address. Typically, these are two DAC output registers.
To use a pair of DACs on a PMAC(1), the address of the even-numbered DAC of the pair
is used:

Channel Address Channel Address
DAC1 & 2 $C002 DAC9 & 10 $C022
DAC3 & 4 $C00A DAC11 & 12 $C02A
DAC5 & 6 $C012 DAC13 & 14 $C032
DAC7 & 8 $C01A DAC15 & 16 $C03A

Channels 9 – 16 are on an ACC-24P/V board.

To use a pair of DACs on a PMAC2, the address of the A-channel DAC is used to specify
the use of both the A and B-channel DACs. The addresses used are the same as those for
the case when the PMAC2 is not commutating the motor, whether directly or over
MACRO.
In this mode, if bit 16 of Ix02 is set to 1 (e.g. I102=$1C002), then the PMAC will execute
an open-loop commutation known as “direct microstepping” instead of the standard
closed-loop commutation.
Commutation and Current Loop: If PMAC2 is commutating Motor x (Ix01 = 1) and
closing its current loop (Ixx82 > 0), three command output values are calculated, which are
written to the Y-register at the address specified in Ix02, plus the Y-registers at the next
two higher addresses. This mode of operation is not supported on a PMAC(1).
In this mode, Ix02 typically specifies the A-channel output for the channel, which has been
set up for PWM outputs (I9n6 = 0 for Channel n). The following table shows these
addresses:

 PMAC 2 Software Reference

58 PMAC I-Variable Specifiation

When commanding in this mode over the MACRO ring, the address specified is that of
Register 0 for the MACRO node. The following table shows these addresses:

Channel Address Channel Address
Node 0 Reg. 0 $C0A0 Node 8 Reg. 0 $C0B0
Node 1 Reg. 0 $C0A4 Node 9 Reg. 0 $C0B4
Node 4 Reg. 0 $C0A8 Node 12 Reg. 0 $C0B8
Node 5 Reg. 0 $C0AC Node 13 Reg. 0 $C0BC

See Also Selecting the Output (Setting Up a Motor)
 I-variables Ix01, Ix25, Ix70-Ix83
 Memory-I/O registers Y:$C000-Y:$C03F
Ix03 Motor x Position Loop Feedback Address
Range Extended legal PMAC “X” addresses
Units Extended legal PMAC “X” addresses
Default Variable PMAC(1),

PMAC2
Source with

Default Table
PMAC2
Ultralite

Source with
Default Table

I103 $0720 Converted ENC1 $0721 Converted Node 0
I203 $0721 Converted ENC2 $0723 Converted Node 1
I303 $0722 Converted ENC3 $0725 Converted Node 4
I403 $0723 Converted ENC4 $0727 Converted Node 5
I503 $0724 Converted ENC5 $0729 Converted Node 8
I603 $0725 Converted ENC6 $072B Converted Node 9
I703 $0726 Converted ENC7 $072D Converted Node 12
I803 $0727 Converted ENC8 $072F Converted Node 13

Remarks Ix03 tells the PMAC where to look for its feedback to close the position loop for Motor x.
Usually it points to an entry in the Encoder Conversion Table, where the values from the
encoder counter registers have been processed at the beginning of each servo cycle
(possibly to include sub-count data). This table starts at address $0720 and continues until
address $073F. It is shipped from the factory configured as shown in the default table
above.
For a motor with dual feedback (motor and load), use Ix03 to point to the encoder on the
load, and Ix04 to point to the encoder on the motor.
If the position loop feedback device is the same device as is used for commutation (with
PMAC doing the commutation), then it must also be specified for commutation with Ix83.
However, Ix83 should specify the address of the encoder counter itself, not the converted
data of the table.
Hardware Home Position Capture: The source address of the position information occupies
bits 0 to 15 of Ix03 (range $0000 to $FFFF, or 0 to 65535). With bit 16 equal to zero – the
normal case – position capture on homing is done with the hardware capture register
associated with the flag inputs pointed to by Ix25. In this case, it is important to match the
encoder number, the address pointed to with Ix03, with the flag number, the address
pointed to with Ix03 (e.g. ENC1 – CHA1 & CHB1 – with HMFL1 and LIM1).
Software Home Position Capture: If bit 16 (value 65536) is set to one, the position capture
on homing is done through software, and the position source does not have to match the
input flag source. This is particularly important for parallel-data position feedback, such
as from a laser interferometer (which is incremental data and requires homing). For
example, if motor #1 used parallel feedback from a laser interferometer processed as the
first (triple) entry in the conversion table, the key I-variables would be:

PMAC 2 Software Reference

PMAC I-Variable Specification 59

 I103=$10722 I125=$C000
This would permit homing on interferometer data with HMFL1 triggering.

Note:
In the extended version, it is obviously easier to specify this
parameter in hexadecimal form. With I9 at 2 or 3, the value of this
variable will be reported back to the host in hexadecimal form.

Capture on following error: If bit 17 of Ix03 is set to 1, then the trigger for position capture
of this motor is a true state on the warning following error status bit for the motor. If bit
17 is at the default of 0, the trigger for position capture is the capture flag of the flag
registers as set by Ix25. The trigger is used in two types of moves: homing search moves
and programmed move-until-triggers. If bit 17 is set to 1, the triggered position must be
software captured, so bit 16 must also be set to 1 to specify software captured bit position.

Hardware Capture with Normal-Resolution Feedback: If bit 18 of Ix03 is set to its default
value of 0 when hardware position capture is used in a triggered move such as a homing-
search move, the captured data (whether whole-count only or including sub-count data) is
processed to match servo feedback of “normal” resolution (5 bits of fractional count data
per hardware whole count). This setting is appropriate for digital quadrature feedback or
for “low-resolution” interpolation of a sinusoidal encoder.

Hardware Capture with High-Resolution Interpolated Feedback: If bit 18 (value $40000, or
262,144) is set to 1 when hardware position capture is used in a triggered move, the
captured data (whether whole-count only or including sub-count data) is processed to
match servo feedback of “high” resolution (10 bits of fractional count data per hardware
whole count). This setting is appropriate for “high-resolution” interpolation of a sinusoidal
encoder through an ACC-51x interpolator.

Whole-Count Capture: If bit 19 of Ix03 is set to 0 when hardware position capture is used
in a triggered move such as a homing-search move, only the whole-count captured position
register is used to establish the trigger position. This setting must be used on PMAC(1)
controllers, and on PMAC2 controllers with Servo ICs older than Revision “D” (Revision
“D” ICs started shipping in early 2002).

Sub-Count Capture: If bit 19 (value $80000, or 524,288) is set to 1 when hardware
position capture is used in a triggered move, both the whole-count captured position
register and the estimated sub-count position register are used to establish the trigger
position. This setting can only be used on PMAC2 controllers with Servo ICs of Revision
“D” or newer. I9n9 for the Channel “n” used for the capture must be set to 1 to enable the
hardware sub-count estimation. This setting is typically used for registration or probing
triggered moves with interpolated sinusoidal encoder feedback. (Even with interpolated
sinusoidal encoder feedback, homing-search moves will probably be done without sub-
count captured data, to force a home position referenced to one of the four “zero-crossing”
positions of the sine/cosine signals.)

See Also Selecting the Position Loop Feedback (Setting Up a Motor)
Encoder Conversion Table (Setting Up a Motor)
I-variables Ix04, Ix05, Ix25, Ix83.

 PMAC 2 Software Reference

60 PMAC I-Variable Specifiation

Ix04 Motor x Velocity Loop Feedback Address
Range Legal PMAC X addresses
Units Legal PMAC X addresses
Default Same as Ix03
Remarks Ix04 holds the address of the position feedback device that PMAC uses for its velocity-

loop feedback information. For a motor with only a single feedback device (the usual
case), this must be the same as Ix03. For a motor with dual feedback (motor and load), use
Ix04 to point to the encoder on the motor, and Ix03 to point to the encoder on the load.

If the velocity-loop feedback device is the same device as is used for commutation (if
PMAC is doing the commutation), then both Ix04 and Ix83 (commutation feedback
address) must reference the same device. However, Ix04 typically points to the converted
data – a register in the Encoder Conversion table – while Ix83 must point directly to the
DSPGATE encoder register.

The instructions for setting this parameter are identical to those for Ix03, except that there
are no address extension bits.

Note:

When planning which channels to use when connecting the position
and velocity encoders, remember that the channel pointed to by
Ix25 is used for the Overtravel, Amplifier Fault, and Home Flag
inputs.

See Also Selecting the Velocity-Loop Feedback (Setting Up a Motor)
Encoder Conversion Table (Setting Up a Motor)
I-variables Ix03, Ix05, Ix25, Ix83.

PMAC 2 Software Reference

PMAC I-Variable Specification 61

Ix05 Motor x Master (Handwheel) Position Address
Range Legal PMAC X addresses
Units Legal PMAC X addresses
Default $073F (1855) (= zero register at end of conversion table)
Remarks Ix05 tells the PMAC where to look for the position of the master, or handwheel, encoder

for Motor x. Usually this is an entry in the Encoder Conversion Table that holds processed
information from an encoder channel. The instructions for setting this parameter are
identical to those for Ix03, except the extended bits mean different things. The default
value permits handwheel input from the JPAN connector (jumpered into the ENC2 counter
with E22 and E23).

Following Modes: The source address of the position information occupies bits 0 to 15 of
Ix05 (range $0000 to $FFFF, or 0 to 65535). With bit 16 equal to zero – the normal case –
position following is done with the actual position reported for the motor reflecting the
change due to the following. With bit 16 – value 65536 – equal to one, the actual position
reported for the motor does not reflect the change due to the following (“offset” mode).
This mode can be useful for part offsets, and for superimposing programmed and
following moves. For example, to have motor #1 following encoder 2 in offset mode, I105
should be set to $10721.

Note:
In the extended version, it is easier to specify this parameter in
hexadecimal form. With I9 at 2 or 3, the value of this variable will
be reported back to the host in hexadecimal form.

Note:
It is important not to have the same source be both the master and
the feedback for an individual motor. If this is the case, with
Ix06=1 to enable following, the motor will run away (it is like a
puppy chasing its tail – it cannot catch up to its desired position,
because its desired position keeps moving ahead of it).

If you want to ensure that following cannot occur by accident, you may want to change
Ix05 so it points to a register that cannot change. This way, even if the following function
gets turned on, for instance by the motor selector inputs on the JPAN connector, no
following can occur. The best registers to use for this purpose are the unused ones at the
end of the conversion table. With the default table setup, you can choose any register
between $072A and $073F (1834 to 1855 decimal). If you extend the table, choose a
register between the end of the table and $073F.

See Also Selecting the Master Position Source (Setting Up a Motor)
Encoder Conversion Table (Setting Up a Motor)
Position Following (Synchronizing PMAC to External Events)
I-variables Ix03, Ix04, Ix06, Ix08, Ix09.

 PMAC 2 Software Reference

62 PMAC I-Variable Specifiation

Ix06 Motor x Master (Handwheel) Following Enable
Range 0 .. 1
Units none
Default 0
Remarks Ix06 disables or enables Motor x’s position following function. A value of 0 means

disabled; a value of 1 means enabled. Following mode is specified by high bits of Ix05.
Note:

This parameter can be changed on-line in a PMAC(1) through
hardware inputs on the JPAN connector. The FPDn/
motor/coordinate-system select lines (low-true BCD-coded) can
turn Ix06 on and off. On power-up or reset, if I2 was saved as zero,
Ix06 for the selected motor is set to one and Ix06 for all other
motors is set to zero regardless of the values that were saved. When
the select switch is changed, Ix06 for the de-selected motor is set to
zero and Ix06 for the selected motor is set to 1.

See Also Position Following (Synchronizing PMAC to External Events)
I-variables I2, Ix05, Ix07, Ix08
Control Panel Inputs (Connecting PMAC to the Machine)

Ix07 Motor x Master (Handwheel) Scale Factor
Range -8,388,608 .. 8,388,607
Units none
Default 96
Remarks Ix08 controls with what scaling the master (handwheel) encoder gets extended into the

full-length register. In combination with Ix08, it also controls the following ratio of Motor
x (delta-motor-x = [Ix07/Ix08] * delta-handwheel-x) for position following (electronic
gearing). For following, Ix07 and Ix08 can be thought of as the number of teeth on
meshing gears in a mechanical coupling.
Ix07 can be changed on the fly to permit real-time changing of the following ratio, but
Ix08 may not.

See Also I-variables Ix05, Ix06, Ix08
Position Following (Synchronizing PMAC to External Events)

Ix08 Motor x Position Scale Factor
Range 0 .. 8,388,607
Units none
Default 96
Remarks Ix08 controls how the position encoder counter gets extended into the full-length register.

For most purposes, this is transparent to the user and does not need to be changed from the
default.
There are two reasons that the user might want to change this from the default value. First,
because it is involved in the “gear ratio” of the position following function – the ratio is
Ix07/Ix08 – this might be changed (usually raised) to get a more precise ratio.
The second reason to change this parameter (usually lowering it) is to prevent internal
saturation at very high gains or count rates (velocity). PMAC’s filter will saturate when
the velocity in counts/sec multiplied by Ix08 exceeds 768M (805,306,368). This happens
only in very rare applications – the count rate must exceed 8.3 million counts per second
before the default value of Ix08 gives a problem.

PMAC 2 Software Reference

PMAC I-Variable Specification 63

Note:
When changing this parameter, make sure the motor is killed
(disabled). Otherwise, a sudden jump will occur, because the
internal position registers will have changed. This means that this
parameter should not be changed in the middle of an application. If
a real-time change in the position-following “gear ratio” is desired,
Ix07 should be changed.

In most practical cases, Ix08 should not be set above 1000 because higher values can make
the servo filter saturate too easily. If Ix08 is changed, Ix30 should be changed inversely to
keep the same servo performance (e.g. if Ix08 is doubled, Ix30 should be halved).

See Also Position Following (Synchronizing PMAC to External Events)
I-variables Ix05, Ix06, Ix07, Ix09, Ix30

Ix09 Motor x Velocity Loop Scale Factor
Range 0 .. 8,388,607

Units none

Default 96

Remarks Ix09 controls how the encoder counter used to close the velocity servo loop gets extended
into the full-length register. For most purposes, this is transparent to the user and does not
need to be changed from the default. This parameter should not be changed in the middle
of an application, because it scales many internal values. If the same sensor is used to
close both the position and velocity loops (Ix03), Ix09 should be set equal to Ix08.

If different sensors are used, Ix09 should be set such that the ratio of Ix09 to Ix08 is
inversely proportional to the ratio of the velocity sensor resolution (at the load) to the
position sensor resolution.

Example If a 5000 line/inch (20,000 cts/in) linear encoder is used for position feedback, and a 500
line/rev (2000 cts/rev) rotary encoder is used for velocity loop feedback, and there is a 5-
pitch screw, the effective resolution of the velocity encoder is 10,000 cts/in (2000x5), half
of the position sensor resolution, so Ix09 should be set to twice Ix08.

If the value computed this way for Ix09 does not come to an integer, use the nearest integer
value.

See Also I-variables Ix03, Ix04, Ix08, Ix31
Dual-Feedback Systems (Setting Up a Motor)

 PMAC 2 Software Reference

64 PMAC I-Variable Specifiation

Ix10 Motor x Power-Up Servo Position Address
Range $000000 - $FFFFFF
Units Extended PMAC Addresses
Default 0
Remarks Ix10 controls whether PMAC reads an absolute position sensor for Motor x on power-up/reset

and/or with the $* command. If an absolute position read is to be done, Ix10 specifies what
register is read for that absolute position data and how the data in this register is interpreted.

If Ix10 is set to 0, no absolute power-on/reset position read is performed. The power-on/reset
position is considered to be zero, even if an absolute sensor reporting a non-zero value is used.
Ix10 should be set to 0 when an incremental position sensor is used; typically a homing search
move is then executed to establish a position reference.

If Ix10 is set to a non-zero value, an absolute position read is performed for Motor x at power-
on/reset (unless Bit 2 of Ix80 is set to 1), or on the $* command, from the register whose
address is specified in Ix10. The motor’s position is set to the value read from the sensor
minus the Ix26 “home” offset value.

Ix10 consists of two parts. The low 16 bits, represented by four hex digits, contain the address
of the register containing the power-on position information, either a PMAC memory-I/O
address, an address on the multiplexer (“thumbwheel”) port, or the number of the MACRO
node on the PMAC, depending on the setting of the high 8 bits. The high 8 bits, represented
by two hex digits, specify how to read the information at this address.

Note:
It is easier to specify this parameter in hexadecimal form ($ prefix). If
I9 is set to 2 or 3, the value of this variable will be reported back to the
host in hexadecimal form.

The possible values of Bits 16 – 23 of Ix10 and the absolute position feedback devices they
reference are summarized in the following table:

Ix10 Value
Range

Absolute Position Source Ix10 Address Type Format

$00xxxx - $07xxxx ACC-8D Opt 7 R/D Converter Multiplexer Port Unsigned
$08xxxx - $30xxxx Parallel Data Y-Register PMAC Memory-I/O Unsigned
$31xxxx ACC-28 A/D Converter PMAC Memory-I/O Unsigned
$32xxxx ACC-49 Sanyo Abs. Encoder PMAC Memory-I/O Unsigned
$48xxxx - $70xxxx Parallel Data X-Register PMAC Memory-I/O Unsigned
$71xxxx ACC-8D Opt 9 Yaskawa Abs. Enc. Multiplexer Port Unsigned
$72xxxx MACRO Station Yaskawa Abs. Enc. MACRO Node Number Unsigned
$73xxxx MACRO Station R/D Converter MACRO Node Number Unsigned
$74xxxx MACRO Station Parallel Read MACRO Node Number Unsigned
$75xxxx EnDat Data Read (Geo PMAC) Geo PMAC Unsigned
$80xxxx - $87xxxx ACC-8D Opt 7 R/D Converter Multiplexer Port Signed
$88xxxx - $B0xxxx Parallel Data Y-Register PMAC Memory-I/O Signed
$B1xxxx ACC-28 A/D Converter PMAC Memory-I/O Signed
$B2xxxx ACC-49 Sanyo Abs. Encoder PMAC Memory-I/O Signed
$C8xxxx - $F0xxxx Parallel Data X-Register PMAC Memory-I/O Signed
$F1xxxx ACC-8D Opt 9 Yaskawa Abs. Enc. Multiplexer Port Signed
$F2xxxx MACRO Station Yaskawa Abs. Enc. MACRO Node Number Signed

PMAC 2 Software Reference

PMAC I-Variable Specification 65

$F3xxxx MACRO Station R/D Converter MACRO Node Number Signed
$F4xxxx MACRO Station Parallel Read MACRO Node Number Signed
$F4xxxx EnDat Data Read (Geo PMAC) Geo PMAC Signed

The following section provides details for each type of position feedback.
R/D Converter: If Ix10 contains a value from $0000xx to $0700xx, or from $8000xx to
$8700xx, Motor x will expect its absolute power-on position from an ACC-8D Opt. 7 R/D
converter board. The low 8 bits (last 2 hex digits) of Ix10 should contain the address of the
board on the multiplexer port, as set by the DIP switches on the board.
The first hex digit of Ix10, which can take a value of 0 or 8 in this mode, specifies whether the
position is interpreted as an unsigned value (1st digit = 0) or as a signed value (1st digit = 8).
The second hex digit of Ix10, which can take a value from 0 to 7 in this mode, specifies the
number of the individual R/D converter at that multiplexer port address. The following table
shows the Ix10 values for this mode and the R/D converter each specifies at the ‘xx’
multiplexer-port address:

Ix10 Value for
Unsigned
Position

Ix10 Value for
Signed Position

ACC-8D Opt. 7
SW1-1 Setting

of R/D
Converter on

ACC-8D Opt. 7
$0000xx* $8000xx CLOSED (0) 1
$0100xx $8100xx CLOSED (0) 2
$0200xx $8200xx CLOSED (0) 3
$0300xx $8300xx CLOSED (0) 4
$0400xx $8400xx OPEN (1) 1
$0500xx $8500xx OPEN (1) 2
$0600xx $8600xx OPEN (1) 3
$0700xx $8700xx OPEN (1) 4

*If ‘xx’ is ‘00’, the fourth hex digit should be set to 1(making Ix10=$000100);
otherwise no absolute position will be read because Ix10=0.

If I9x is set greater than 0, the next higher numbered R/D converter at the same multiplexer
port address is also read and treated as a geared-down resolver, with I9x specifying the gear
ratio. I8x is also set greater than 0, the following R/D converter at the same multiplexer port
address is read and treated as a third resolver geared down from the second, with I8x
specifying that gear ratio.

The following table shows the values of Ix10 for the multiplexer port addresses for the ACC-
8D Opt. 7 that can be used:

Board
Mux.
Addr.

Ix10 Board
Mux.
Addr

Ix10 Board
Mux.
Addr

Ix10 Board
Mux.
Addr

Ix10

0 $0n0000 64 $0n0040 128 $0n0080 192 $0n00C0
8 $0n0008 72 $0n0048 136 $0n0088 200 $0n00C8

16 $0n0010 80 $0n0050 144 $0n0090 208 $0n00D0
24 $0n0018 88 $0n0058 152 $0n0098 216 $0n00D8
32 $0n0020 96 $0n0060 160 $0n00A0 224 $0n00E0
40 $0n0028 104 $0n0068 168 $0n00A8 232 $0n00E8
48 $0n0030 112 $0n0070 176 $0n00B0 240 $0n00F0
56 $0n0038 120 $0n0078 184 $0n00B8 248 $0n00F8

‘n’ is a digit from 0 to 7 specifying the converter number at that address
* If ‘n’ is 0 and the multiplexer address is 0, the 4th hex digit should be set to 1, making
Ix10=$000100; otherwise with Ix10=0, no absolute position would be read.

 PMAC 2 Software Reference

66 PMAC I-Variable Specifiation

Parallel Data Read: If Ix10 contains a value from $08xxxx to $30xxxx, from $48xxxx to
$70xxxx, from $88xxxx to $B0xxxx, or from $C8xxxx to $F0xxxx, Motor x will do a parallel
data read of the PMAC memory or I/O register at address ‘xxxx’.

In this mode, bits 16 to 21 of Ix10 specify the number of bits to be read, starting with bit 0 at
the specified address. In this mode, they can take a value from $08 to $30 (8 to 48). If the
number of bits is greater than 24, the high bits are read from the register at the next higher-
numbered address.

In this mode, bit 22 of Ix10 specifies whether a Y-register is to be read, or an X-register. A
value of 0 in this bit specifies a Y-register; a value of 1 specifies an X-register. Almost all
common sources of absolute position information are located in Y-registers, so this digit is
almost always 0.

Bit 23 of Ix10 specifies whether the position is interpreted as an unsigned or a signed value. If
the bit is set to 0, it is interpreted as an unsigned value, if the bit is 1, it is interpreted as a
signed value.

Combining these components, Ix10 values in this mode can be summarized as:
• $08xxxx - $30xxxx: Parallel Y-register read, unsigned value, 8 to 48 bits
• $48xxxx - $70xxxx: Parallel X-register read, unsigned value, 8 to 48 bits
• $88xxxx - $B0xxxx: Parallel Y-register read, signed value, 8 to 48 bits
• $C8xxxx - $F0xxxx: Parallel X-register read, signed value, 8 to 48 bits

The following table shows Ix10 values for parallel data read through an ACC-14 board.

Register Ix10 Register Ix10
1st ACC-14D/V Port A $xxFFD0 4th ACC-14D/V Port A $xxFFE8
1st ACC-14D/V Port B $xxFFD1 4th ACC-14D/V Port B $xxFFE9
2nd ACC-14D/V Port A $xxFFD8 5th ACC-14D/V Port A $xxFFF0
2nd ACC-14D/V Port B $xxFFD9 5th ACC-14D/V Port B $xxFFF1
3rd ACC-14D/V Port A $xxFFE0 6th ACC-14D/V Port A $xxFFF8
3rd ACC-14D/V Port B $xxFFE1 6th ACC-14D/V Port B $xxFFF9

‘xx’ represent the first two digits, which control bit width, and signed vs.
unsigned data. ACC-14 boards are always Y-addresses

For reading MLDT absolute position from a PMAC timer register, the first two hex digits of
Ix10 are set to $58. Bits 16 – 21 are set to $18 to specify a 24-bit register; bit 22 is set to 1
($40) to specify an X-register, and bit 23 is set to 0 to specify an unsigned value.

The following table shows Ix10 values for reading ACC-29 MLDT timer registers on a
PMAC(1) as parallel data:

Channel Ix10 Channel Ix10
9 $58C020 13 $58C030

10 $58C024 14 $58C034
11 $58C028 15 $58C038
12 $58C02C 16 $58C03C

The following table shows Ix10 values for reading PMAC2 built-in MLDT timer registers:

Channel Ix10 Channel Ix10
1 $58C000 5 $58C020
2 $58C008 6 $58C028
3 $58C010 7 $58C030
4 $58C018 8 $58C038

PMAC 2 Software Reference

PMAC I-Variable Specification 67

ACC-28 A/D Converter Read: If Ix10 is set to $31xxxx or $B1xxxx, Motor x will expect its
power-on position in the upper 16 bits of the PMAC Y-memory or I/O register specified by
‘xxxx’. This format is intended for ACC-28 A/D converters.

Bit 23 of Ix10 specifies whether the position is interpreted as an unsigned or a signed value. If
the bit is set to 0, it is interpreted as an unsigned value, if the bit is 1, it is interpreted as a
signed value. Because ACC-28A produces signed values, Ix10 should be set to $B1xxxx
when using ACC-28A. ACC-28B produces unsigned values, so Ix10 should be set to $31xxxx
when using ACC-28B.
The following tables show Ix10 values for ACC-28A/B on PMAC(1) and Ix10 values for
ACC-28B through PMAC2, respectively.

Channel Ix10 for
ACC-28A

Ix10 for
ACC-28B

Channel Ix10 for
ACC-28A

Ix10 for
ACC-28B

1 $B1C006 $31C006 9 $B1C026 $31C026
2 $B1C007 $31C007 10 $B1C027 $31C027
3 $B1C00E $31C00E 11 $B1C02E $31C02E
4 $B1C00F $31C00F 12 $B1C02F $31C02F
5 $B1C016 $31C016 13 $B1C036 $31C036
6 $B1C017 $31C017 14 $B1C037 $31C037
7 $B1C01E $31C01E 15 $B1C03E $31C03E
8 $B1C01F $31C01F 16 $B1C03F $31C03F

Channels 9 through 16 are brought in through an ACC-24 board

Channel Ix10 for
ADC A

Ix10 for
ADC B

Channel Ix10 for
ADC A

Ix10 for
ADC B

1 $31C005 $31C006 9 $31C045 $31C046
2 $31C00D $31C00E 10 $31C04D $31C04E
3 $31C015 $31C016 11 $31C055 $31C056
4 $31C01D $31C01E 12 $31C05D $31C05E
5 $31C025 $31C026 13 $31C065 $31C066
6 $31C02D $31C02E 14 $31C06D $31C06E
7 $31C035 $31C036 15 $31C075 $31C076
8 $31C03D $31C03E 16 $31C07D $31C07E

Channels 9 through 16 are brought in through an ACC-24P/V2 board.

Sanyo Absolute Encoder Read: If Ix10 is set to $32xxxx or $B2xxxx, Motor x will expect its
power-on position from the ACC-49 Sanyo Absolute Encoder converter board at the PMAC
Y-address specified by ‘xxxx’.

Bit 23 of Ix10 specifies whether the position is interpreted as an unsigned value (Bit 23 = 0,
making the first hex digit a 3) or as a signed value (Bit 23 = 1, making the first hex digit a B).
Set Ix10 to $32xxxx for unsigned, or to $B2xxxx for signed.

The following table lists the possible values of Ix10 for the ACC-49:

Enc. # on Board Ix10 for E1 ON Ix10 for E2 ON Ix10 for E3 ON
Enc. 1 $m2FFD0 $m2FFD8 $m2FFE0
Enc. 2 $m2FFD4 $m2FFDC $m2FFE4

Enc. # on Board Ix10 for E4 ON Ix10 for E5 ON Ix10 for E6 ON
Enc. 3 $m2FFE8 $m2FFF0 $m2FFF8
Enc. 4 $m2FFEC $m2FFF4 $m2FFFC

m is 3 or B depending on whether the data is to be interpreted as an unsigned or signed quantity.

Yaskawa Absolute Encoder Read: If Ix10 is set to $7100xx or $F100xx, Motor x will expect

 PMAC 2 Software Reference

68 PMAC I-Variable Specifiation

its power-on position from the Yaskawa Absolute Encoder converter board at the multiplexer
port address specified by ‘xx’.

Bit 23 of Ix10 specifies whether the position is interpreted as an unsigned value (Bit 23 = 0,
making the first hex digit a 7) or as a signed value (Bit 23 = 1, making the first hex digit an F).
Set Ix10 to $7100xx for unsigned, or to $F100xx for signed.

In this mode, I9x specifies the number of bits per revolution for a single turn of the Yaskawa
absolute encoder. (For example, with 8192 counts per revolution, there are 13 bits per
revolution.) It must be set greater than 0 to use the multi-turn absolute capability of this
encoder.
The following table shows the values of Ix10 for the ACC-8D Option 9:

Board
Mux.
Addr.

Ix10 for
Enc. 1

Ix10 for
 Enc. 2

Ix10 for
Enc. 3

Ix10 for
Enc. 4

Board
Mux.
Addr.

Ix10 for
Enc. 1

Ix10 for
Enc. 2

Ix10 for
Enc. 3

Ix10 for
Enc. 4

0 $m10000 $m10002 $m10004 $m10006 128 $m10080 $m10082 $m10084 $m10086
8 $m10008 $m1000A $m1000C $m1000E 136 $m10088 $m1008A $m1008C $m1008E
16 $m10010 $m10012 $m10014 $m10016 144 $m10090 $m10092 $m10094 $m10096
24 $m10018 $m1001A $m1001C $m1001E 152 $m10098 $m1009A $m1009C $m1009E
32 $m10020 $m10022 $m10024 $m10026 160 $m100A0 $m100A2 $m100A4 $m100A6
40 $m10028 $m1002A $m1002C $m1002E 168 $m100A8 $m100AA $m100AC $m100AE
48 $m10030 $m10032 $m10034 $m10036 176 $m100B0 $m100B2 $m100B4 $m100B6
56 $m10038 $m1003A $m1003C $m1003E 184 $m100B8 $m100BA $m100BC $m100BE
64 $m10040 $m10042 $m10044 $m10046 192 $m100C0 $m100C2 $m100C4 $m100C6
72 $m10048 $m1004A $m1004C $m1004E 200 $m100C8 $m100CA $m100CC $m100CE
80 $m10050 $m10052 $m10054 $m10056 208 $m100D0 $m100D2 $m100D4 $m100D6
88 $m10058 $m1005A $m1005C $m1005E 216 $m100D8 $m100DA $m100DC $m100DE
96 $m10060 $m10062 $m10064 $m10066 224 $m100E0 $m100E2 $m100E4 $m100E6
104 $m10068 $m1006A $m1006C $m1006E 232 $m100E8 $m100EA $m100EC $m100EE
112 $m10070 $m10072 $m10074 $m10076 240 $m100F0 $m100F2 $m100F4 $m100F6
120 $m10078 $m1007A $m1007C $m1007E 248 $m100F8 $m100FA $m100FC $m100FE
m is 7 or F, depending on whether the data is to be interpreted as an unsigned or signed quantity.

MACRO Station Yaskawa Absolute Encoder Read: If Ix10 is set to $72000n or $F2000n,
Motor x will expect its power-on position from a Yaskawa Absolute Encoder through a
MACRO Station. In this mode, ‘n’ specifies the MACRO node number at which the position
value will be read by PMAC itself. Set-up variable MI11x for the MACRO Station tells the
Station how to read the Yaskawa Encoder converter connected to its own multiplexer port or
serial port.
Bit 23 of Ix10 specifies whether the position is interpreted as an unsigned value (Bit 23 = 0,
making the first hex digit a 7) or as a signed value (Bit 23 = 1, making the first hex digit an F).
Set Ix10 to $72000n for unsigned, or to $F2000n for signed.
In this mode, I9x specifies the number of bits per revolution for a single turn of the Yaskawa
absolute encoder. (For example, with 8192 counts per revolution, there are 13 bits per
revolution.) It must be set greater than 0 to use the multi-turn absolute capability of this
encoder.
MACRO Station R/D Converter Read: If Ix10 is set to $73000n or $F3000n, Motor x will
expect its power-on position from an ACC-8D Opt 7 R/D converter through a MACRO Station
or compatible device. In this mode, ‘n’ specifies the MACRO node number at which PMAC
will read the position value itself. Set-up variable MI11x for the matching node on the
MACRO Station tells the Station how to read the R/D converter connected to its own
multiplexer port.
Bit 23 of Ix10 specifies whether the position is interpreted as an unsigned value (Bit 23 = 0,
making the first hex digit a 7) or as a signed value (Bit 23 = 1, making the first hex digit an F).
Set Ix10 to $73000n for unsigned, or to $F3000n for signed.
If I9x is set greater than 0, the next higher numbered R/D converter at the same multiplexer

PMAC 2 Software Reference

PMAC I-Variable Specification 69

port address is also read and treated as a geared-down resolver, with I9x specifying the gear
ratio. If I8x is also set greater than 0, the following R/D converter at the same multiplexer port
address is read and treated as a third resolver geared down from the second, with I8x
specifying that gear ratio.
MACRO Station Parallel Data Read: If Ix10 is set to $74000n or $F4000n, Motor x will
expect its power-on position from a parallel data source through a MACRO Station or
compatible device. In this mode, ‘n’ specifies the MACRO node number at which PMAC will
read the position value itself. Set-up variable MI11x for the matching node on the MACRO
Station tells the Station how to read the parallel data source connected to it.
Bit 23 of Ix10 specifies whether the position is interpreted as an unsigned value (Bit 23 = 0,
making the first hex digit a 7) or as a signed value (Bit 23 = 1, making the first hex digit an F).
Set Ix10 to $74000n for unsigned, or to $F4000n for signed.
EnDat Data Read (Geo PMAC only): If Ix10 is set to $75wxyz or $F5wxyz on a Geo
PMAC, Motor x will expect its power-on servo position from the optional EnDat interface that
can be built in to the Geo PMAC.

Bit 23 of Ix10 specifies whether the position is interpreted as an unsigned value (Bit 23 = 0,
making the first hex digit a 7) or as a signed value (Bit 23 = 1, making the first hex digit an F).
Set Ix10 to $75wxyz for unsigned, or to $F5wxyz for signed.

The third and fourth hex digits (wx) specify the number of bits of EnDat absolute position to
be read, as a hex value. For example, if 20 bits were to be read, these two hex digits would be
set to 14.

The fifth hex digit (y) specifies the shift of the data read, permitting the user to match the
resolution properly with that of the ongoing position. The data is first shifted left 10 bits, then
shifted right by “y” bits, so “y” should be set to (NetRightShift + 10). The object is to end up
with data whose LSB is equal to one quadrature count (1/4-line) of the encoder. Most
commonly, the data comes in with the LSB equal to 1/4 of a quadrature count (1/16-line),
requiring a net right shift of 2 bits, so “y” should be a hex digit of “C” (12 decimal).

The sixth hex digit (z) specifies the channel number used, whether the data is negated, and
whether it should be matched to ongoing digital quadrature or analog sinusoidal feedback.
Bits 1 and 0 together express the channel number minus one as a value from 0 to 3 (so Channel
1 to 4). Bit 2 is set to 0 if the ongoing feedback is analog sinusoidal processed through the
high-resolution conversion (format $F) in the conversion table, or to 1 if the ongoing feedback
is digital quadrature. Bit 3 is set to 0 to use the data without negation, or to 1 to negate the
data before using. Negating the data reverses the direction sense; this control is used to match
the direction sense of the ongoing feedback as set by I9n0.

Presently, Channels 1 and 2 are supported, and EnDat is almost always used with interpolated
sinusoidal ongoing feedback, so “z” is set to 0 or 8 for Channel 1 (regular or negated,
respectively), or to 1 or 9 for Channel 2 (regular or negated, respectively).

Motor Safety I-Variables
Ix11 Motor x Fatal (Shutdown) Following Error Limit
Range 0 .. 8,388,607

Units 1/16 Count

Default 32000 (2000 counts)

Remarks Ix11 sets the magnitude of the following error for Motor x at which operation will shut
down. When the magnitude of the following error exceeds Ix11, Motor x is disabled

 PMAC 2 Software Reference

70 PMAC I-Variable Specifiation

(killed). If the motor’s coordinate system is executing a program at the time, the program
is aborted. It is optional whether other PMAC motors are disabled when this motor
exceeds its following error limit; bits 21 and 22 of Ix25 control what happens to the other
motor (the default is that all PMAC motors are disabled).
A status bit for the motor, and one for the coordinate system (if the motor is in one) are set.
If this coordinate system is hardware-selected on JPAN (with I2=0), or software-addressed
by the host (with I2=1), the ERLD/ output on JPAN, and the EROR input to the interrupt
controller (except for PMAC-VME) are triggered.
Setting Ix11 to zero disables the fatal following error limit for the motor. This may be
desirable during initial development work, but it is strongly discouraged in an actual
application. A fatal following error limit is a very important protection against various
types of faults, such as loss of feedback, that cannot be detected directly, and that can
cause severe damage to people and equipment.

Note:
The units of Ix11 are 1/16 of a count. Therefore this parameter
must hold a value 16 times larger than the number of counts at
which the limit will occur. For example, if the limit is to be 1000
counts, Ix11 should be set to 16,000.

See Also I-variables I2, Ix12, Ix25
Following Error Limits, Amplifier Fault (Making Your Application Safe)
Control Panel Outputs (Connecting PMAC to the Machine)
Using Interrupts (Writing a Host Communications Program)
Memory registers Y:$0814, Y:08D4, etc., Y:$0817, Y:$08D7, etc.
On-line commands ?, ??.

PMAC 2 Software Reference

PMAC I-Variable Specification 71

Ix12 Motor x Warning Following Error Limit
Range 0 .. 8,388,607
Units 1/16 Counts
Default 16000 (1000 counts)
Remarks Ix12 sets the magnitude of the following error for Motor x at which a warning flag goes

true. If this limit is exceeded, status bits are set for the motor and the motor’s coordinate
system (if any). The coordinate system status bit is the logical OR of the status bits of all
the motors in the coordinate system.
Setting this parameter to zero disables the warning following error limit function. If this
parameter is set greater than the fatal following error limit, the warning status bit will
never go true, because the fatal limit will disable the motor first.

If bit 17 of Ix03 is set to 1, the motor can be triggered for homing search moves, jog-until-
trigger moves, and motion program move-until-trigger moves when the following error
exceeds Ix12. This is known as torque-mode triggering, because the trigger will occur at a
torque level corresponding to the Ix12 limit.

At any given time, one coordinate system’s status bit can be output to several places;
which system depends on what coordinate system is hardware-selected on the panel input
port if I2=0, or what coordinate system is software-addressed from the host (&n) if I2=1.
The outputs that work in this way are F1LD/ (pin 23 on connector J2), F1ER (line IR3 into
the programmable interrupt controller (PIC) on PMAC-PC, line IR6 into the PIC on
PMAC-STD) and, if E28 connects pins 1 and 2, FEFCO/ (on the JMACH connectors).

Note:

The units of Ix12 are 1/16 of a count. Therefore this parameter
must hold a value 16 times larger than the number of counts at
which the limit will occur. For example, if the limit is to be 1000
counts, Ix12 should be set to 16,000.

See Also Control-panel (JPAN) output F1LD/, Interrupt line F1ER/
Following Error Limits (Making Your Application Safe)
Control Panel Outputs (Connecting PMAC to the Machine)
Torque-Mode Triggering (Basic Motor Moves)
Using Interrupts (Writing a Host Communications Program)
Memory registers Y:$0814, Y:08D4, etc., Y:$0817, Y:$08D7, etc.
I-variables I2, Ix11, Ix25;
On-line commands ?, ??, HOME, {jog}^{constant}.
Motion Program commands {axis}{data}^{data}

 PMAC 2 Software Reference

72 PMAC I-Variable Specifiation

Ix13 Motor x Positive Software Position Limit
Range +/- 235

Units Encoder Counts

Default 0

Remarks Ix13 sets the position for Motor x which if exceeded in the positive direction causes a
deceleration to a stop (controlled by Ix15) and allows no further positive position incre-
ments or positive output commands as long as the limit is exceeded. If this value is set to
zero, there is no positive software limit (if you want 0 as a limit, use 1). This limit is
automatically de-activated during homing search moves, until the home trigger is found. It
is active during the post-trigger move.

Starting in firmware 1.15, bit 17 of Ix25 does not de-activate the software limits.
Permanent de-activation is done by setting the value of the software limit to zero.

This limit is referenced to the most recent power-up zero position or homing move zero
position. The physical position at which this limit occurs is not affected by axis offset
commands (e.g. PSET, X=), although these commands will change the reported position
value at which the limit occurs.

See Also Hardware Overtravel Limits, Software Overtravel Limits (Making Your Application Safe)
I-variables Ix14, Ix15.

Ix14 Motor x Negative Software Position Limit
Range +/- 235

Units Encoder Counts

Default 0 (Disabled)

Remarks Ix14 sets the position for Motor x which if exceeded in the negative direction causes a
deceleration to a stop (controlled by Ix15) and allows no further negative position
increments or negative output commands as long as the limit is exceeded. If this value is
set to zero, there is no negative software limit (if you want 0 as a limit, use -1). This limit
is automatically de-activated during homing search moves, until the trigger is found. It is
active during the post-trigger move.

Starting in firmware 1.15, bit 17 of Ix25 does not de-activate the software limits.
Permanent de-activation is done by setting the value of the software limit to zero.

This limit is referenced to the most recent power-up zero position or homing move zero
position. The physical position at which this limit occurs is not affected by axis offset
commands (e.g. PSET, X=), although these commands will change the reported position
value at which the limit occurs.

See Also Hardware Overtravel Limits, Software Overtravel Limits (Making Your Application Safe)
I-variables Ix13, Ix15.

PMAC 2 Software Reference

PMAC I-Variable Specification 73

Ix15 Motor x Deceleration Rate on Position Limit or Abort
Range positive floating point

Units Counts/msec2

Default 0.25

Remarks WARNING:
Do not set this parameter to zero, or the motor will continue
indefinitely after an abort or limit.

Ix15 sets the rate of deceleration that Motor x will use if it exceeds a hardware or software
limit, or has its motion aborted by command (A or <CONTROL-A). This value should
usually be set to a value near the maximum physical capability of the motor. It is not a
good idea to set this value past the capability of the motor, because doing so increases the
likelihood of exceeding the following error limit, which stops the braking action, and could
allow the axis to coast into a hard stop.

Example Suppose your motor had 125 encoder lines (500 counts) per millimeter, and you wished it
to decelerate at 4000 mm/sec2. You would set Ix15 to 4000 mm/sec2 *500 cts/mm *
sec2/1,000,000 msec2 = 2 cts/msec2.

See Also On-line commands A, <CONTROL-A>
Hardware Overtravel Limits, Software Overtravel Limits (Making Your Application Safe)

Ix16 Motor x Maximum Permitted Motor Program
Range positive floating point

Units Counts/msec

Default 32.0

Remarks Ix16 sets a limit to the allowed velocity for LINEAR mode programmed moves for Motor
x, provided I13 equals zero (no move segmentation). If a blended move command in a
motion program requests a higher velocity of this motor, all motors in the coordinate
system are slowed down proportionately so that Motor x will not exceed this parameter,
yet the path will not be changed. This limit does not affect transition-point, circular, or
splined moves. The calculation does not take into account any feedrate override value
other than 100).

Note:

If PMAC’s circular interpolation function is used at all, then I13
must be greater than zero, and Ix16 will not be active as a velocity
limit.

This parameter also sets the speed of a programmed RAPID mode move for the motor,
provided that variable I50 is set to 1 (if I50 is set to 0, jog speed parameter Ix22 is used
instead). This happens regardless of the setting of I13.

With the Option 6L special lookahead firmware, Ix16 sets the limit for velocity of
LINEAR and CIRCLE mode moves with segmentation active (I13 > 0).

See Also I-variables I13, I50, Ix17, Ix22
Velocity Limits (Making Your Application Safe)
LINEAR, RAPID-mode moves (Writing a Motion Program)

 PMAC 2 Software Reference

74 PMAC I-Variable Specifiation

Ix17 Motor x Maximum Permitted Motor Program Acceleration
Range positive floating point

Units counts/msec2

Default 0.5

Remarks Ix17 sets a limit to the allowed acceleration in LINEAR-mode blended programmed moves
for Motor x, provided I13 equals zero (no move segmentation). If a LINEAR move
command in a motion program requests a higher acceleration of this motor given its TA
and TS time settings, the acceleration for all motors in the coordinate system is stretched
out proportionately so that Motor x will not exceed this parameter, yet the path will not be
changed.

Because PMAC cannot look ahead through an entire move sequence, it sometimes cannot
anticipate enough to keep acceleration within this limit. Refer to LINEAR-mode
trajectories in Writing a Motion Program.

It is possible to have this limit govern the acceleration for all LINEAR-mode moves by
setting very low TA and TS times. Do not set both the TA and TS times to zero, or a
division-by-zero error will occur in the move calculations, possibly causing erratic
movement. The minimum acceleration time settings that should be used are TA1 with
TS0.

Note:

When moves are broken into small pieces and blended together, this
limit can affect the velocity, because it limits the calculated
deceleration for each piece, even if that deceleration is never
executed, because it blends into the next piece.

This limit does not affect PVT, CIRCLE, RAPID, or SPLINE moves. The calculation
does not take into account any feedrate override value other than 100).

Note:

If PMAC’s circular interpolation function is used at all, then I13
must be greater than zero, and Ix17 will not be active as an
acceleration limit.

With the Option 6L special lookahead firmware, Ix17 sets the limit for acceleration of
LINEAR and CIRCLE mode moves with segmentation active (I13 > 0). This mode of
operation permits robust acceleration control by looking ahead far enough to ensure that
these motor acceleration limits can always be obeyed.

Example Given axis definitions of #1->10000X, #2->10000Y, an Ix17 for each motor of 0.25,
and the following motion program segment:
INC F10 TA200 TS0
X20
Y20

the rate of acceleration from the program at the corner for motor #2 (X) is ((0-10)units/sec
* 10000 cts/unit * sec/1000msec) / 200 msec = -0.5 cts/msec

2
. The acceleration of motor

#2 (Y) is +0.5 cts/msec
2
. Since this is twice the limit, the acceleration will be slowed so

that it takes 400 msec.

PMAC 2 Software Reference

PMAC I-Variable Specification 75

With the same setup parameters, and the following program segment:
INC F10 TA200 TS0
X20 Y20
X-20 Y20

The rate of acceleration from the program at the corner for motor #1 (X) is ((-7.07-
7.07)units/sec * 10000 cts/unit * sec/1000msec) / 200 msec = -0.707 cts/msec2. The
acceleration of motor #2 (Y) is 0.0. Since motor #1 exceeds its limit the acceleration time
will be lengthened to 200 * 0.707/0.25 = 707 msec.

Note that in the second case, the acceleration time is made longer (the corner is made
larger) for what is an identically shaped corner (90o). In a contouring XY application, this
parameter should not be relied upon to produce consistently sized corners.

See Also Acceleration Limits (Making Your Application Safe)
LINEAR-mode moves (Writing a Motion Program)
I-variables I13, I50, Ix16, Ix19, Ix22

Ix19 Motor x Maximum Permitted Motor Jog/Home Acceleration
Range positive floating point

Units counts/msec2
Default 0.015625

Remarks Ix19 sets a limit to the commanded acceleration magnitude for jog and home moves, and
for RAPID-mode programmed moves, of Motor x. If the acceleration times in force at the
time (Ix20 and Ix21) request a higher rate of acceleration, this rate of acceleration will be
used instead. The calculation does not take into account any feedrate override
Since jogging moves are usually not coordinated between motors, many people prefer to
specify jog acceleration by rate, not time. To do this, simply set Ix20 and Ix21 low enough
that the Ix19 limit is always used. Do not set both Ix20 and Ix21 to 0, or a division-by-
zero error will result in the move calculations, possibly causing erratic operations. The
minimum acceleration time settings that should be used are Ix20=1 and Ix21=0.
The default limit of 0.015625 counts/msec2 is quite low and will probably limit
acceleration to a lower value than is desired in most systems; most users will eventually
raise this limit. This low default was used for safety reasons.

Example With Ix20 (accel time) at 100 msec, Ix21 (S-curve time) at 0, and Ix22 (jog speed) at 50
counts/msec, a jog command from stop would request an acceleration of (50 cts/msec) /
100 msec, or 0.5 cts/msec2. If Ix19 were set to 0.25, the acceleration would be done in 200
msec, not 100 msec.
With the same parameters in force, an on-the-fly reversal from positive to negative jog
would request an acceleration of (50-(-50) cts/msec) / 100 msec, or 1.0 cts/msec2. The
limit would extend this acceleration period by a factor of 4, to 400 msec.

See Also Jogging and Homing Moves (Basic Motor Moves)
RAPID-mode moves (Writing a Motion Program)
I-variables I50, Ix16, Ix20, Ix21, Ix22
On-line commands HM, J+, J-, J=, J^, J:, J/
Motion program commands HOME, RAPID

 PMAC 2 Software Reference

76 PMAC I-Variable Specifiation

Motor Movement I-Variables
Ix20 Motor x Jog/Home Acceleration Time
Range 0 .. 8,388,607

Units msec

Default 0 (so Ix21 controls)

Remarks Ix20 establishes the time spent in acceleration in a jogging, homing, or programmed
RAPID-mode move (starting, stopping, and changing speeds). However, if Ix21
(jog/home S-curve time) is greater than half this parameter, the total time spent in
acceleration will be 2 times Ix21. Therefore, if Ix20 is set to 0, Ix21 alone controls the
acceleration time in “pure” S-curve form. In addition, if the maximum acceleration rate set
by these times exceeds what is permitted for the motor (Ix19), the time will be increased so
that Ix19 is not exceeded.

Note:
Do not set both Ix20 and Ix21 to 0 simultaneously, even if you are
relying on Ix19 to limit your acceleration, or a division-by-zero
error will occur in the jog move calculations, possibly resulting in
erratic motion.

A change in this parameter will not take effect until the next move command. For
instance, if you wanted a different deceleration time from acceleration time in a jog move,
you would specify the acceleration time, command the jog, change the deceleration time,
then command the jog move again (e.g. J), or at least the end of the jog (J).

See Also I-variables I50, Ix16, Ix19, Ix21, Ix22, Ix23, Ix87, Ix88
Jogging and Homing Moves (Basic Motor Moves)
RAPID-mode moves (Writing a Motion Program)
On-line commands HM, J+, J-, J=, J^, J:, J/
Motion program command HOME, RAPID

Ix21 Motor x Jog/Home S-Curve Time
Range 0 .. 8,388,607
Units msec
Default 50
Remarks Ix21 establishes the time spent in each half of the S for S-curve acceleration in a jogging,

homing, or RAPID-mode move (starting, stopping, and changing speeds). If this
parameter is more than half of Ix20, the total acceleration time will be two times Ix21, and
the acceleration time will be “pure” S-curve (no constant acceleration portion). If the
maximum acceleration rate set by Ix20 and Ix21 exceeds what is permitted for the motor
(Ix19), the time will be increased so that Ix19 is not exceeded.

Note:

Do not set both Ix20 and Ix21 to 0 simultaneously, even if you are
relying on Ix19 to limit your acceleration, or a division-by-zero
error will occur in the jog move calculations, possibly resulting in
erratic motion.

PMAC 2 Software Reference

PMAC I-Variable Specification 77

A change in this parameter will not take effect until the next move command. For
instance, if you wanted a different deceleration time from acceleration time in a jog move,
you would specify the acceleration time, command the jog, change the deceleration time,
then command the jog move again (e.g. J=), or at least the end of the jog (J/).

See Also I-variables I50, Ix16, Ix19, Ix20, Ix22, Ix23, Ix87, Ix88
Jogging and Homing Moves (Basic Motor Moves)
RAPID-mode moves (Writing a Motion Program)
On-line commands HM, J+, J-, J=, J^, J:, J/
Motion program commands HOME, RAPID

Ix22 Motor x Jog Speed
Range positive floating point
Units Counts / msec
Default 32.0
Remarks Ix22 establishes the commanded speed of a jog move, or a programmed RAPID-mode

move (if I50=0) for Motor x. Direction of the jog move is controlled by the jog command.
A change in this parameter will not take effect until the next move command. For
instance, if you wanted to change the jog speed on the fly, you would start the jog move,
change this parameter, then issue a new jog command.

See Also I-variables I50, Ix19-Ix21
Jogging Moves (Basic Motor Moves)
RAPID-Mode Moves (Writing a Motion Program)
On-line commands J+, J-, J=, J^, J:, J/
Program command RAPID

Ix23 Motor x Homing Speed and Direction
Range floating point
Units Counts / msec
Default 32.0
Remarks Ix23 establishes the commanded speed and direction of a homing-search move for Motor

x. Changing the sign reverses the direction of the homing move – a negative value
specifies a home search in the negative direction; a positive value specifies the positive
direction.

See Also Homing Moves (Basic Motor Moves)
I-variables Ix19, Ix20 Ix21, Ix22, Ix25, Ix26
Encoder/Flag I-Variables 2 and 3
On-line command HM
Motion program command HOME.

Ix24 (Reserved for Future Use)

 PMAC 2 Software Reference

78 PMAC I-Variable Specifiation

Ix25 Motor x Limit/Home Flag
Range Extended legal PMAC X addresses

Units Extended legal PMAC X addresses

Default Variable PMAC(1) PMAC2 PMAC2 Ultralite
I125 $C000 $C000 $40F70
I225 $C004 $C008 $40F71
I325 $C008 $C010 $40F74
I425 $C00C $C018 $40F75
I525 $C010 $C020 $40F78
I625 $C014 $C028 $40F79
I725 $C018 $C030 $40F7C
I825 $C01C $C038 $40F7D

Remarks This parameter tells PMAC what set of flags it will look to for Motor x’s overtravel limit
switches, home flag, amplifier-fault flag, amplifier-enable output, and index channel.
Typically, these are the flags associated with an encoder input; specifically, those of the
position feedback encoder for the motor. If dual-loop feedback is used (Ix03 and Ix04 are
different) Ix25 should be set to match the position-loop encoder, not the velocity-loop.

Note:
To use PMAC’s Hardware Position Capture for homing search
moves, the channel number of the flags specified by Ix25 must
match the channel number of the encoder specified by Ix03 for
position-loop feedback.

The addresses for the flag sets in PMAC(1) and PMAC2 systems are given in the tables
below. Channel3s 9 – 16 are present on ACC-24 axis-expansion boards, not on the
PMACs themselves.

PMAC(1)
Channel Address Channel Address

1 $C000 9 $C020
2 $C004 10 $C024
3 $C008 11 $C028
4 $C00C 12 $C02C
5 $C010 13 $C030
6 $C014 14 $C034
7 $C018 15 $C038
8 $C01C 16 $C03C

PMAC2
Channel Address Channel Address

1 $C000 9 $C040
2 $C008 10 $C048
3 $C010 11 $C050
4 $C018 12 $C058
5 $C020 13 $C060
6 $C028 14 $C068
7 $C030 15 $C070
8 $C038 16 $C078

PMAC 2 Software Reference

PMAC I-Variable Specification 79

The overtravel-limit inputs specified by this parameter must be held low in order for Motor
x to be able to command movement. The polarity of the amplifier-fault input is
determined by a high-order bit of this parameter (see below). The polarity of the home-
flag input is determined by the Encoder/Flag I-Variables 2 and 3 for the specified encoder.
The polarity of the amplifier-enable output is determined by Jumper E17.

Extended Addressing: The source address of the flag information occupies bits 0 to 15 of
Ix25 (range $0000 to $FFFF, or 0 to 65535). If this is all that is specified – that is, all
higher bits are zero – then all of the flags are used, and used in the “normal” mode (low-
true FAULT, disabling all motors). If higher bits are set to one, some of the flags are not
used, or used in an alternate manner, as documented below.

Note:

In the extended versions, it is easier to specify this parameter in
hexadecimal form. With I9 at 2 or 3, the value of this variable will
be reported back to the host in hexadecimal form.

5
0 1 0 1

2
0 0 01

C
01 01

0
0 0

0
0 0

4
0 00 0 0

Hex($)

Bin

Modes PMAC address of flags

=0 Use amplifier enable function
=1 Do not use amplifier enable function
=0 Enable position limits
=1 Disable position limits

=0 Enable amplifier fault input
=1 Disable amplifier fault input

=00 Kill all PMAC motors on fault or F.E.
=01 Kill all C.S. motors on fault or F.E.
=1x Kill this motor only on fault or F.E.

=0 Low true fault input
=1 High true fault input

Ix25 - Motor x Flag Address and Modes

0 0 1

Amplifier Enable Use Bit: With bit 16 equal to zero – the normal case – the AENAn/DIRn
output is used as an amplifier-enable line: off when the motor is killed, on when it is
enabled. Voltage polarity is determined by jumper(s) E17.

If bit 16 (value $10000, or 65536) is set to one (e.g. I125=$1C000), this output is not used
as an amplifier-enable line. This permits use of the line as a direction bit for applications
requiring magnitude-and direction outputs, such as driving steppers through voltage-to-
frequency converters. (Setting bit 16 of Ix02 to 1 enables use of this output as a direction
bit.) General-purpose use of this output is also possible by assigning an M-variable to it.

 PMAC 2 Software Reference

80 PMAC I-Variable Specifiation

Overtravel Limit Use Bit: With bit 17 equal to zero – the normal case – the +/-LIMn inputs
must be held low to permit commanded motion in the appropriate direction. If there are
not actual (normally closed or normally conducting) limit switches, the inputs must be
hardwired to ground.

Note:

The direction sense of the limit inputs is the opposite of what many
people consider intuitive. That is, the +LIMn input, when taken
high (opened), stops commanded motion in the negative direction;
the -LIMn input, when taken high, stops commanded motion in the
positive direction. It is important to confirm the direction sense of
your limit inputs in actual operation.

If bit 17 (value $20000, or 131072) is set to one (e.g. I125=$2C000), Motor x does not use
these inputs as overtravel limits. This can be done temporarily, as when using a limit as a
homing flag. If the limit function is not used at all, these inputs can be used as general-
purpose inputs by assigning M-variables to them.

Starting in firmware 1.15, bit 17 of Ix25 does not effect the software overtravel limits.
Activation of the software overtravel limits is done by setting the value of Ix13 and or Ix14
to a non-zero value. De-activation is done by setting their values to zero.

MACRO Flag Bit: If bit 18 of Ix25 is 0, the flag set is wired directly into the PMAC
controller. If bit 18 (value $40000, or 262,144) is 1 (e.g. I125=$4070), PMAC looks for
these flags to come through the MAXCRO ring.

Amplifier Fault Use Bit: If bit 20 of Ix25 is 0, the amplifier-fault input function through
the FAULTn input is enabled. If bit 20 (value $100000, or 1, 048,576) is 1 (e.g.
1125=$10C000), this function is disabled. General-purpose use of this input is then
possible by assigning an M-variable to the input.

Action-on-Fault Bits: Bits 21 (value $200000, or 2,097,152) and 22 (value $400000, or
4,194,344) of Ix25 control what action is taken on an amplifier fault for the motor, or on
exceeding the fatal following err limit (Ix11) for the motor:

Bit 22 Bit 21 Function
Bit 22=0 Bit 21=0: Kill all PMAC motors
Bit 22=0 Bit 21=1: Kill all motors in same coordinate system
Bit 22=1 Bit 21=0: Kill only this motor
Bit 22=1 Bit 21=1: Kill only this motor

Regardless of the setting of these bits, a program running in the coordinate system of the
offending motor will be halted on an amplifier fault of the exceeding of a fatal following
error limit.

Amplifier-Fault Polarity Bit: Bit 23 (value 8,388,608) of Ix25 controls the polarity of the
amplifier fault input. A zero in this bit means a low-true input (low means fault); a one
means high-true (high means fault). The input is pulled high internally, so if no line is
attached to the input, and bit 20 of Ix25 is zero (enabling the fault function), bit 23 of Ix25
must be zero to permit operation of the motor.

First Hex Digit: In the hexadecimal form, bits 20 to 23 combine to form a single
hexadecimal digit.

PMAC 2 Software Reference

PMAC I-Variable Specification 81

For reference, the possible values and their meanings are:
Hex Digit Function

$0: Low-true amp fault enabled; all motors killed on fault or excess following error
(default)

$1: Amp fault disabled; all motors killed on excess following error
$2: Low-true amp fault enabled: coordinate system motors killed on fault or excess

following error
$3 Amp fault disabled; coordinate system motors killed on excess following error
$4 Low-true amp fault enabled; only this motor k8illed on fault or excess following

error
$5: Amp fault disabled; only this motor killed on excess following error
$6: Low-true amp fault enabled; only this motor killed on fault or excess following

error
$7: Amp fault disabled; only this motor killed on excess following error
$8 High-true amp fault enabled; all motors killed on fault or excess following error

(default)
$9: Amp fault disabled; all motors killed on excess following error
$A: High-true amp fault enabled; coordinate system motors killed on excess

following error
$B: Amp fault disabled; coordinate system motors killed on excess following error
$C: High-true amp fault enabled; only this motor killed on fault or excess following

error
$D: Amp fault disabled; only this motor killed on excess following error
$E: High-true amp fault enabled; only this motor killed on fault or excess following

error
$F: Amp fault disabled; only this motor killed on excess following error

Example 1. Motor 1 using flags 1 with amp-enable output, and low-true amp fault disabling all
motors: I125=$00C000 or I125=$C000

2. Motor 1 using flags 1 with direction output, and low-true amp fault disabling all
motors:
I125=$01C000

3. Motor 1 using flags 1 with amp-enable output, and low-true amp fault disabling only
coordinate system motors: I125=20C000

4. Motor 1 using flags 1 with direction output, and amp-fault disabled, with excess F.E.
disabling off C.S motors: I125=$31C000

5. Motor 1 using flags 5 with amp-enable output, and high-true amp fault disabling only
this motor: I125=$C0C010

See Also Selecting the Flag Register (Setting up a Motor)
Homing Moves (Basic Motor Moves)
I-variables Ix02, Ix03 Ix11
Encoder/Flag I-Variables 2 and 3
Jumper(s) E17; JMACH connector flag I/O pins

 PMAC 2 Software Reference

82 PMAC I-Variable Specifiation

Ix26 Motor x Home Offset
Range -8,388,608 .. 8,388,607
Units 1/16 Count
Default 0
Remarks Ix26 specifies the relative distance of the Motor x zero position to either the trigger position

of a homing search move, or the zero position of an absolute sensor.

If Ix10 is set to 0, PMAC presumes the motor uses an incremental sensor and sets motor
position to 0 on power-up/reset. A homing search move is then required to establish the true
machine zero position.

In the homing search move, PMAC moves the motor until it sees a pre-defined trigger
condition, either an input trigger defined by Encoder I-variables 2 and 3 for the servo
interface channel addressed by Ix25, or the exceeding of the warning following error as set
by Ix12.

In the post-trigger part of the homing search move, the motor will stop a distance of Ix26
from the position at which it found the trigger, and call this commanded location as motor
position zero.

This permits the motor zero position to be at a different location from the home trigger
position, particularly useful when using an overtravel limit as a home flag (offsetting out of
the limit before re-enabling the limit input as a limit). If large enough (greater than 1/2 times
home speed times accel time) it permits a homing move without any reversal of direction.

If Ix10 is greater than 0, PMAC reads the sensor specified by Ix10 for the motor’s absolute
position. In this case, it subtracts Ix26 from the sensor position to calculate absolute motor
position. This is especially desirable if the zero position of the sensor is outside the region of
travel, as it is for an MLDT.

The units of this parameter are 1/16 of a count, so the value should be 16 times the number of
counts between the trigger position and the home zero position.

Example If you wish your motor zero position to be 500 counts in the negative direction from the
home trigger position, you would set Ix26 to -500 * 16 = -8000.

See Also Homing Moves (Basic Motor Moves)
Absolute Power-Up Position (Setting Up a Motor)
I-variables Ix10, Ix23, Ix25
Encoder I-Variables 2 and 3
On-line command HM
Program command HOME

Ix27 Motor x Position Rollover Range
Range +/-235

Units Counts

Default 0

Remarks This parameter permits special position rollover modes on a PMAC rotary axis assigned to
Motor x by telling PMAC how many encoder counts are in one revolution of the rotary
axis. This lets PMAC compute the rollover function properly. If Ix27 is set to a non-zero
value, and Motor x is assigned to a rotary axis (A, B, or C), rollover is active.

PMAC 2 Software Reference

PMAC I-Variable Specification 83

If Ix27 is set to a value greater than zero, for a programmed axis move in Absolute (ABS)
mode, the motor will take the shortest path around the circular range defined by Ix27 to get
to the destination point. No absolute move will be greater than half a revolution in this
mode.

If Ix27 is set to a negative number, an alternate rollover mode for the rotary axis assigned
to the motor is activated that uses the sign of the commanded destination in absolute mode
to specify the direction of motion to that destination. In this mode, all absolute-mode
moves are less than one revolution (with the size of the revolution specified by the
magnitude of Ix27), but can be greater than one-half revolution.

The sign of the commanded absolute destination in this mode is also part of the destination
value. So a command of A-90 in this mode is a command to move to –90 degrees (=
+270 degrees) in the negative direction. For commands to move in the positive direction,
the + sign is not required, but it is permitted (e.g. to command a move to 90 degrees in the
positive direction, either A90 or A+90 can be used).
PMAC cannot store the difference between a +0 and a –0 destination command, so a
command with a tiny non-zero magnitude must be used (e.g. A+0.0000001 and A-
0.0000001). This increment can be small enough not to have any effect on the final
destination.
If using commands from a similar mode in which only the magnitude, and not the sign, of
the value specifies the destination position, then the destination values for negative-
direction moves must be modified so that the magnitude is 360 degrees minus the
magnitude in the other mode. For example, if the command were C-120, specifying a
move to (+)120 degrees in the negative direction, the command would have to be modified
for PMAC to C-240, which specifies a move to –240 degrees (= +120 degrees) in the
negative direction. Commands for positive-direction moves do not have to be modified.
Axis moves in Incremental (INC) mode are not affected by rollover. When Ix27 is set to
0, there is no rollover. Rollover should not be attempted for axes other than A, B, or C.
Jog moves are not affected by rollover. Reported motor position is not affected by
rollover. (To obtain motor position information “rolled over” to within one motor
revolution, use the modulo (remainder) operator, either in PMAC or in the host computer:
e.g. P4=(M462/(I408*32))%I427).

Example Motor #4 drives a rotary table with 36,000 counts per revolution. It is defined to the A-
axis with #4->100A (A is in units of degrees). I427 is set to 36000. With motor #4 at
zero counts (A-axis at zero degrees), an A270 move in a program is executed in Absolute
mode. Instead of moving the motor from 0 to 27,000 counts, which it would have done
with I427=0, PMAC moves the motor from 0 to -9,000 counts, or -90 degrees, which is
equivalent to +270 degrees on the rotary table.

Motor #5 drives a positioning spindle with an 8192-line-per-rev (32,768-count-per-rev)
encoder on the motor and a 10-to-1 gear reduction to the load. It is defined to the C-axis
with #5->910.222222222C (C is in units of degrees). I527 is set to 327,680. An
absolute-mode move of C-355 is commanded. PMAC moves Motor 5 in the negative
direction less than one revolution to +5 degrees (= -355 degrees).

See Also On-line commands INC, ABS
Program commands INC, ABS, A{data}, B{data}, C{data}
Axis Types (Setting Up a Coordinate System)

 PMAC 2 Software Reference

84 PMAC I-Variable Specifiation

Ix28 Motor x In-position Band
Range 0 .. 8,388,607

Units 1/16 Count

Default 160 (10 counts)

Remarks Ix28 determines the magnitude of the maximum following error at which Motor x will be
considered “in position” when not performing a move. Several things happen when the
motor is “in-position”. First, a status bit in the motor status word is set. Second, if all other
motors in the same coordinate system are also “in-position”, a status bit in the coordinate
system status word is set. Third, for the hardware-selected (FPD0/-FPD3/) coordinate
system – if I2=0 – or for the software addressed (&n) coordinate system – if I2=1 – outputs
to the control panel port and to the interrupt controller are set.
Technically, five conditions must be met for a motor to be considered “in-position”:
1. The motor must be in closed-loop control
2. The desired velocity must be zero;
3. The magnitude of the following error must be less than this parameter;
4. The move timer must not be active;
5. The above four conditions must all be true for (I7+1) consecutive scans

The move timer is active during any programmed or non-programmed move, including
DWELLs and DELAYs in a program – if you wish this bit to come true during a program,
you must do an indefinite wait between some moves by keeping the program trapped in a
WHILE loop that has no moves or DWELLs. More sophisticated in-position functions (for
instance, ones that require several consecutive scans within the band) can be implemented
using PLC programs. See the program examples section.

Note:
The units of this parameter are 1/16 of a count, so the value should
be 16 times the number of counts in the in-position band.

Example M140->Y:$0814,0 ; Motor 1 in-position bit
...
WHILE (M140=0) WAIT ; Delay indefinitely until in-position is true
M1=1 ; Set output once in-position

See Also Control Panel Port (Connecting PMAC to the Machine)
Using Interrupts (Writing a Host Communications Program)
I-variable I7
On-line commands ?, ??
Suggested M-variable definitions Mx40, Mx87
Memory Registers Y:$0814, Y:$08D4, etc., Y:$0817, Y:$08D7, etc.
JPAN connector

Ix29 Motor x Output/First Phase Offset
Range -32,768 .. 32,767
Units 16-bit DAC/ADC bit equivalent
Default 0
Remarks Ix29 serves as an output or feedback offset for Motor x; its exact use depends on the mode

of operation as described below. In any of the modes, it effectively serves as the digital
equivalent of an offset pot.

PMAC 2 Software Reference

PMAC I-Variable Specification 85

Mode 1: When PMAC is not commutating Motor x (Ix01 = 0), Ix29 serves as the offset
for the single command output value, usually a DAC command. Ix29 is added to the
output command value before it is written to the command output register.
Mode 2: When PMAC (PMAC(1) only) is not commutating Motor x (Ix01 = 0) but is in
sign-and-magnitude output mode (Ix02 bit 16 = 1), Ix29 is the offset of the command
output value before the absolute value is taken (Ix79 is the offset after the absolute value is
taken). Ix29 is typically left at zero in this mode, because it cannot compensate for real
circuitry offsets.
Mode 3: When PMAC is commutating Motor x (Ix01 Bit 0 = 1) but not closing the current
loop (Ix82 = 0), Ix29 serves as the offset for the first of two phase command output values
(Phase A), for the address specified by Ix02; Ix79 serves the same purpose for the second
phase (Phase B). Ix29 is added to the output command value before it is written to the
command output register.
When commutating from a PMAC(1), Phase A is output on the higher-numbered of the
two DACs (e.g. DAC2), Phase B on the lower-numbered (e.g. DAC1). When
commutating from a PMAC2, Phase A is output on the A-channel DAC (e.g. DAC1A),
Phase B on the B-channel DAC (e.g. DAC1B).
As an output command offset, Ix29 is always in units of a 16-bit register, even if the actual
output device is of a different resolution. For example, if a value of 60 had to be written
into an 18-bit DAC to create a true zero command, this would be equivalent to a value of
60/4=15 in a 16-bit DAC, so Ix29 would be set to 15 to cancel the offset.
Mode 4: When PMAC (PMAC2 only) is commutating (Ix01 Bit 0 = 1) and closing the
current loop for Motor x (Ix82 > 0), Ix29 serves as an offset that is added to the phase
current reading from the ADC for the first phase (Phase A), at the address specified by
Ix82 minus 1. Ix79 performs the same function for the second phase. The sum of the
ADC reading and Ix29 is used in the digital current loop algorithms.
As an input feedback offset, Ix29 is always in units of a 16-bit ADC, even if the actual
ADC is of a different resolution. For example, if a 12-bit ADC reported a value of -5
when no current was flowing in the phase, this would be equivalent to a value of -5*16=-
80 in a 16-bit ADC, so Ix29 would be set to 80 to compensate for this offset.

See Also Setting Up PMAC Commutation
I-variables Ix01, Ix02, Ix79.

 PMAC 2 Software Reference

86 PMAC I-Variable Specifiation

Servo Control I-Variables
Ix30 – Ix58 Motor x Extended Servo Algorithm Gains {Option 6 firmware only}
Range 0.0 – 0.999999

Units none

Default 0.0

Remarks When the Option 6 Extended Servo Algorithm (ESA) special firmware is ordered,
variables Ix30 through Ix58 for each Motor x have different meanings from those in the
standard firmware with the PID servo filter. The following table shows the meanings of
these variables for the ESA algorithm. Please refer to the block diagram of the ESA in the
User’s Manual to understand the function of each of these variables.

I-Variable Gain
Name

Range I-Variable Gain
Name

Range

Ix30 s0 -1.0≤Var<+1.0 Ix45 TS -223≤Var<223
Ix31 s1 -1.0≤Var<+1.0 Ix46 L1 -1.0≤Var<+1.0
Ix32 f0 -1.0≤Var<+1.0 Ix47 L2 -1.0≤Var<+1.0
Ix33 f1 -1.0≤Var<+1.0 Ix48 L3 -1.0≤Var<+1.0
Ix34 h0 -1.0≤Var<+1.0 Ix49 k0 -1.0≤Var<+1.0
Ix35 h1 -1.0≤Var<+1.0 Ix50 k1 -1.0≤Var<+1.0
Ix36 r1 -1.0≤Var<+1.0 Ix51 k2 -1.0≤Var<+1.0
Ix37 r2 -1.0≤Var<+1.0 Ix52 k3 -1.0≤Var<+1.0
Ix38 r3 -1.0≤Var<+1.0 Ix53 KS -223≤Var<223
Ix39 r4 -1.0≤Var<+1.0 Ix54 d1 -1.0≤Var<+1.0
Ix40 t0 -1.0≤Var<+1.0 Ix55 d2 -1.0≤Var<+1.0
Ix41 t1 -1.0≤Var<+1.0 Ix56 g0 -1.0≤Var<+1.0
Ix42 t2 -1.0≤Var<+1.0 Ix57 g1 -1.0≤Var<+1.0
Ix43 t3 -1.0≤Var<+1.0 Ix58 GS -223≤Var<223
Ix44 t4 -1.0≤Var<+1.0 (Ix68) Kfff 0≤Var<216

Variables Ix59, Ix63, Ix64, Ix65, Ix66, and Ix67 for the standard PID algorithm have no
function for the Option 6 ESA.

Ix30 Motor x PID Proportional Gain
Range -8,388,608 .. 8,388,607

Units (Ix08/219) DAC bits/Encoder count

Default 2000

Remarks WARNING:
Changing the sign of Ix30 on a motor that has been closing a stable
servo loop will cause an unstable servo loop, leading to a probable
runaway condition.

Ix30 provides a control output proportional to the position error (commanded position
minus actual position) of Motor x. It acts effectively as an electronic spring. The higher
Ix30 is, the stiffer the “spring” is. Too low a value will result in sluggish performance.
Too high a value can cause a “buzz” from constant over-reaction to errors.

PMAC 2 Software Reference

PMAC I-Variable Specification 87

If Ix30 is set to a negative value, this has the effect of inverting the command output
polarity for motors not commutated by PMAC, when compared to a positive value of the
same magnitude. This can eliminate the need to exchange wires to get the desired polarity.
On a motor that is commutated by PMAC, changing the sign of Ix30 has the effect of
changing the commutation phase angle by 180o. Negative values of Ix30 cannot be used
with the auto-tuning programs in the PMAC Executive program.
This parameter is usually set initially using the Tuning utility in the PMAC Executive
Program. It may be changed on the fly at any time to create types of adaptive control.

Note:
The default value of 2000 for this parameter is exceedingly weak
for most systems (all but the highest resolution velocity-loop
systems), causing sluggish motion and/or following error failure.
Most users will immediately want to raise this parameter
significantly even before starting serious tuning.

If the servo update time is changed, Ix30 will have the same effect for the same numerical
value. However, smaller update times (faster update rates) should permit higher values of
Ix30 (stiffer systems) without instability problems.

See Also PID Servo Filter (Closing the Servo Loop)
I-variables Ix31-Ix39
Tuning Instructions (PMAC Executive Program manual)

Ix31 Motor x PID Derivative Gain
Range -8,388,608 .. 8,388,607
Units (Ix30*Ix09)/226 DAC bits/(Counts/cycle)
Default 1280
Remarks Ix31 subtracts an amount from the control output proportional to the measured velocity of

Motor x. It acts effectively as an electronic damper. The higher Ix31 is, the heavier the
damping effect is.
If the motor is driving a properly tuned tachometer-loop (velocity) amplifier, the amplifier
will provide sufficient damping, and Ix31 should be set to zero. If the motor is driving a
current-loop (torque) amplifier, or if PMAC is commutating the motor, the amplifier will
provide no damping, and Ix31 must be greater than zero to provide damping for stability.
On a typical system with a current-loop amplifier and PMAC’s default servo update time
(~440 µsec), an Ix31 value of 2000 to 3000 will provide a critically damped step response.
If the servo update time is changed, Ix31 must be changed proportionately in the opposite
direction to keep the same damping effect. For instance, if the servo update time is cut in
half, from 440 µsec to 220 µsec, Ix31 must be doubled to keep the same effect.
This parameter is usually set initially using the Tuning utility in the PMAC Executive
Program. It may be changed on the fly at any time to create types of adaptive control.

See Also I-variables Ix30, Ix32-Ix39
PID Servo Filter (Closing the Servo Loop)
Tuning Instructions (PMAC Executive Program manual)

 PMAC 2 Software Reference

88 PMAC I-Variable Specifiation

Ix32 Motor x PID Velocity Feedforward Gain
Range 0 .. 8,388,607
Units (Ix30*Ix08)/226 DAC bits/(counts/cycle)
Default 1280
Remarks Ix32 adds an amount to the control output proportional to the desired velocity of Motor x.

It is intended to reduce tracking error due to the damping introduced by Ix31, analog
tachometer feedback, or physical damping effects.
If the motor is driving a current-loop (torque) amplifier, Ix32 will usually be equal to (or
slightly greater than) Ix31 to minimize tracking error. If the motor is driving a tachometer-
loop (velocity) amplifier, Ix32 will typically be substantially greater than Ix31 to minimize
tracking error.
If the servo update time is changed, Ix32 must be changed proportionately in the opposite
direction to keep the same effect. For instance, if the servo update time is cut in half, from
440 µsec to 220 µsec, Ix32 must be doubled to keep the same effect.
This parameter is usually set initially using the Tuning utility in the PMAC Executive
Program. It may be changed on the fly at any time to create types of adaptive control.

See Also PID Servo Filter (Closing the Servo Loop)
I-variables Ix30-Ix31, Ix32-Ix39
Tuning Instructions (PMAC Executive Program manual)

Ix33 Motor x PID Integral Gain
Range 0 .. 8,388,607
Units (Ix30*Ix08)/242 DAC bits/(counts*cycles)
Default 0
Remarks Ix33 adds an amount to the control output proportional to the time integral of the position

error for Motor x. The magnitude of this integrated error is limited by Ix63. With Ix63 at
a value of zero, the contribution of the integrator to the output is zero, regardless of the
value of Ix33.
No further errors are added to the integrator if the output saturates (if output equals Ix69),
and, if Ix34=1, when a move is being commanded (when desired velocity is not zero). In
both of these cases, the contribution of the integrator to the output remains constant.
If the servo update time is changed, Ix33 must be changed proportionately in the same
direction to keep the same effect. For instance, if the servo update time is cut in half, from
440 µsec to 220 µsec, Ix33 must be cut in half to keep the same effect.
This parameter is usually set initially using the Tuning utility in the PMAC Executive
Program. It may be changed on the fly at any time to create types of adaptive control.

See Also PID Servo Filter (Closing the Servo Loop)
I-variables Ix30-Ix32, Ix34-Ix39, Ix63, Ix69
Tuning Instructions (PMAC Executive Program manual)

PMAC 2 Software Reference

PMAC I-Variable Specification 89

Ix34 Motor x PID Integration Mode
Range 0 .. 1

Units none

Default 1

Remarks Ix34 controls when the position-error integrator is turned on. If it is 1, position error
integration is is the input to the integrator that is turned off during a commanded move,
which means performed only when PMAC is not commanding a move (when desired
velocity is zero). If it is 0, position error integration is performed all the time.

If Ix34 is 1, it the output control effort of the integrator is kept constant during this period
(but is generally not zero). This same action takes place whenever the total control output
saturates at the Ix69 value.

This parameter is usually set initially using the Tuning utility in the PMAC Executive
Program. When performing the feedforward tuning part of that utility, it is important to set
Ix34 to 1 so the dynamic behavior of the system may be observed without integrator
action. Ix34 may be changed on the fly at any time to create types of adaptive control.

See Also PID Servo Filter (Closing the Servo Loop)
I-variables Ix30-Ix33, Ix35-Ix39, Ix63, Ix69
Tuning Instructions (PMAC Executive Program manual)

Ix35 Motor x PID Acceleration Feedforward Gain
Range 0 .. 8,388,607

Units (Ix30*Ix08)/226 DAC bits/(counts/cycle2)

Default 0

Remarks Ix35 adds an amount to the control output proportional to the desired acceleration for
Motor x. It is intended to reduce tracking error due to inertial lag.

If the servo update time is changed, Ix35 must be changed by the inverse square to keep
the same effect. For instance, if the servo update time is cut in half, from 440 µsec to 220
µsec, Ix35 must be quadrupled to keep the same effect.

This parameter is usually set initially using the Tuning utility in the PMAC Executive
Program. It may be changed on the fly at any time to create types of adaptive control.

See Also PID Servo Filter (Closing the Servo Loop)
I-variables Ix30-Ix34, Ix36-Ix39
Tuning Instructions (PMAC Executive Program manual)

Ix36 Motor x PID Notch Filter Coefficient N1
Range -2.0 .. +2.0

Units none (actual z-transform coefficient)

Default 0

Remarks Ix36, along with Ix37 – Ix39, is part of the notch filter for Motor x, whose purpose is to
damp out a resonant mode in the system. This parameter can be set according to
instructions in the Servo Loop Features section of the manual.

The notch filter parameters Ix36-Ix39 are 24-bit variables, with 1 sign bit, 1 integer bit,
and 22 fractional bits, providing a range of -2.0 to +2.0.

 PMAC 2 Software Reference

90 PMAC I-Variable Specifiation

The equation for the notch filter is:

2z2D1z1D1

2z2N1z1N1)z(F −+−+

−+−+
=

This parameter is usually set initially using the Tuning utility in the PMAC Executive
Program. It may be changed on the fly at any time to create types of adaptive control.

See Also Notch Filter (Closing the Servo Loop)
I-variables Ix30-Ix35, Ix37-Ix39
Tuning Instructions (PMAC Executive Program manual)

Ix37 Motor x PID Notch Filter Coefficient N2
Range -2.0 .. +2.0

Units none (actual z-transform coefficient)

Default 0

Remarks Ix37 is part of the notch filter for Motor x. See Ix36 and the Servo Loop Features section
of the manual for details.
This parameter is usually set initially using the Tuning utility in the PMAC Executive
Program. It may be changed on the fly at any time to create types of adaptive control.

See Also Notch Filter (Closing the Servo Loop)
I-variables Ix30-Ix36, Ix38-Ix39
Tuning Instructions (PMAC Executive Program manual)

Ix38 Motor x PID Notch Filter Coefficient D1
Range -2.0 .. +2.0

Units none (actual z-transform coefficient)

Default 0

Remarks Ix38 is part of the notch filter for Motor x. See Ix36 and the Servo Loop Features section
of the manual for details.
This parameter is usually set initially using the Tuning utility in the PMAC Executive
Program. It may be changed on the fly at any time to create types of adaptive control.

See Also Notch Filter (Closing the Servo Loop)
I-variables Ix30-Ix37, Ix39
Tuning Instructions (PMAC Executive Program manual)

Ix39 Motor x PID Notch Filter Coefficient D2
Range -2.0 .. +2.0

Units none (actual z-transform coefficient)

Default 0

Example Ix39 is part of the notch filter for Motor x. See Ix36 and the Servo Loop Features section
of the manual for details.

This parameter is usually set initially using the Tuning utility in the PMAC Executive
Program. It may be changed on the fly at any time to create types of adaptive control.

See Also Notch Filter (Closing the Servo Loop)
I-variables Ix30-Ix38
Tuning Instructions (PMAC Executive Program manual)

PMAC 2 Software Reference

PMAC I-Variable Specification 91

Ix40 - Ix56 Motor x Extended Servo Algorithm I-Variables
(These variables are used only with the Option 6 Extended Servo Algorithm. Refer to the manual for the
Extended Servo Algorithm and the ACC-25 Servo Evaluation Program for details.)

Ix40 Motor x Net Desired Position Filter Gain {Option 6L Firmware Only}
Range 0.0 – 0.999999

Units none

Default 0.0

Remarks Ix40 permits the introduction of a first-order low-pass filter on the net desired position for
Motor x. This can be useful to smooth motion that comes from a “rough” source, such as
master following from a noisy sensor, or quantization error in very closely spaced
programmed points that are commonly found in lookahead applications.

If Ix40 is set to its default value of .0, this filter function is disabled. If Ix40 is set to any
value greater than 0.0, the filter is enabled.

Ix40 can be expressed in terms of the filter time constant by the following equation:

fTsT
fT

40Ix
+

=

where Tf is the filter time constant, and Ts is the servo update time.
The filter time constant can be expressed in terms of Ix40 by the following equation:

40Ix1
sT*40IxTf

−
=

Filter time constants can range from a fraction of a servo cycle (when Ix40 ~ 0) to infinite
(when Ix40 ~ 1). As with any low-pass filter, there is a fundamental trade-off between
smoothness and delay. Generally when the filter is used, filter time constants of a few
milliseconds are set. In an application where multiple motors are executing a path, the
same time constant should be sued for all of the motors.

Ix40 is available only with the special Lookahead option. If the Extended Servo
Algorithm option is selected along with the Lookahead option, this Ix40 filter is not
available. (In the ESA, Ix40 is used for another purpose.)

Example To set a filter time constant of 2 msec on a system with the default servo update time of
442 µsec, Ix40 can be computed as:

819.0
2442.0

240Ix =
+

=

 PMAC 2 Software Reference

92 PMAC I-Variable Specifiation

Motor Servo Loop Modifiers
These I-variables modify the action of the basic PID servo algorithm. They are not available with the
Option 6 Extended Servo Algorithm firmware.
Ix57 Motor x Continuous Current Limit
Range 0 .. 32,767

Units 16-bit DAC/ADC bit equivalent

Default 0

Remarks Ix57 sets the maximum continuous current limit for PMAC’s I2T integrated current
limiting function, when that function is active (Ix58 must be greater than 0 for I2T to be
active). If PMAC is closing a digital current loop for the motor, it uses actual current
measurements for this function; otherwise it uses commanded current values. If the actual
or commanded current level from PMAC is above Ix57 for a significant period of time, as
set by Ix58, PMAC will trip this motor on an I2T amplifier fault condition.
Ix57 is in units of a 16-bit DAC or ADC (maximum possible value of 32,767), even if the
actual output or input device has a different resolution. Typically Ix57 will be set to
between 1/3 and 1/2 of the Ix69 (instantaneous) output limit. Consult your amplifier and
motor documentation for their specifications on instantaneous and continuous current
limits.
Technically, Ix57 is the continuous limit of the vector sum of the quadrature and direct
currents. The quadrature (torque-producing) current is the output of the position/velocity-
loop servo. The direct (magnetization) current is set by Ix77.
In sine-wave output mode (Ix01 = 1, Ix82 = 0), amplifier gains are typically given in
amperes of phase current per volt of PMAC output, but motor and amplifier limits are
typically given in RMS amperage values. In this case, it is important to realize that peak
phase current values are √2 (1.414) times greater than the RMS values.
In direct-PWM mode (Ix01 = 1, Ix82 > 0) of 3-phase motors (Ix72 = 85 or 171), the
corresponding top values of the sinusoidal phase-current ADC readings will be 1/cos(30o),
or 1.15, times greater than the vector sum of quadrature and direct current. Therefore,
once you have established the top values you want to see in the A/D converters your phase
currents on a continuous basis, this value should be multiplied by cos(30o), or 0.866, to get
your value for Ix57. Remember that if current limits are given as RMS values, you should
multiply these by √2 (1.414) to get peak phase current values.

Example 1. PMAC Motor 1 is driving a torque-mode DC brush-motor amplifier that has a gain of
3 amps/volt with a single analog output voltage. The amplifier has a continuous
current rating of 10 amps; the motor has a continuous current rating of 12 amps.
• PMAC’s maximum output of 32,768, or 10 volts, corresponds to 30 amps.
• The amplifier has the lower continuous current rating, so we use its limit of 10

amps.
• I157 is set to 32,768 * 10 / 30 = 10,589.

2. Motor 3 is driving a self-commutating brushless-motor amplifier in current (torque)
mode with a single analog output. The amplifier has a gain of 5 amps(RMS)/volt and
an continuous current limit of 20 amps (RMS). The motor has an continuous current
limit of 25 amps (RMS).
• PMAC’s maximum output of 32,768, or 10 volts, corresponds to 50 amps (RMS).
• The amplifier has the lower continuous current rating, so we use its limit of 20

amps (RMS).

PMAC 2 Software Reference

PMAC I-Variable Specification 93

• I357 is set to 32,768 * 20/50 = 13,107.
3. PMAC Motor 4 is driving a sine-wave mode amplifier that has a gain for each phase

input of 5 amps/volt. The amplifier has a continuous rating of 20 amps (RMS); the
motor has a continuous rating of 22 amps (RMS).
• PMAC’s maximum output of 32,768, or 10 volts, corresponds to 50 amps peak in a

phase.
• The amplifier has the lower continuous current rating, so we use its limit of 20

amps (RMS).
• 20 amps (RMS) corresponds to peak phase currents of 20*1.414 = 28.28 amps.
• I457 is set to 32,768 * 28.28 / 50 = 18,534.

4. PMAC Motor 6 is driving a direct-PWM power block amplifier for an AC motor. The
A/D converters in the amplifier are scaled so that a maximum reading corresponds to
50 amps of current in the phase. The amplifier has a continuous current rating of 20
amps (RMS), and the motor has a continuous rating of 15 amps (RMS).
• PMAC’s maximum ADC phase reading of 32,768 corresponds to 50 amps.
• The motor has the lower continuous current rating, so we use its limit of 15 amps

(RMS).
• 15 amps (RMS) corresponds to peak phase currents of 15*1.414 = 21.21 amps.
• 21.21 amps corresponds to an ADC reading of 32,768 * 21.21/50 = 13,900.
• I657 should be set to 13,900 * 0.866 = 12,037.

See Also Integrated Current Protection (Making Your Application Safe)
I-Variables Ix58, Ix69

Ix58 Motor x Integrated Current Limit
Range 0 .. 8,388,607

Units 230 (DAC bits)2 • servo cycles
 {bits of a 16-bit DAC}

Default 0

Remarks Ix58 sets the maximum integrated current limit for PMAC’s I2T integrated current limiting
function. If Ix58 is 0, the I2T limiting function is disabled. If Ix58 is greater than 0,
PMAC will compared the time-integrated difference between the squares of commanded
current and the Ix57 continuous current limit to Ix58. If the integrated value exceeds Ix58,
then PMAC faults the motor just as it would for receiving an amplifier fault signal, setting
both the amplifier-fault and the I2T-fault motor status bits.

The Ix58 limit is typically set by taking the relationship between the instantaneous current
limit (Ix69 on PMAC, in units of a 16-bit DAC), the magnetization current (Ix77; typically
0 except for vector control of induction motors) and the continuous current limit (Ix57 on
PMAC, in units of a 16-bit DAC) and multiplying by the time permitted at the
instantaneous limit. The formula is:

(sec)imePermittedT)Hz(eRateServoUpdat232768

257Ix277Ix269Ix58Ix ∗∗
−+

=

Refer to the section Making Your Application Safe in the User’s Guide for a more detailed
explanation of I2T protection.

 PMAC 2 Software Reference

94 PMAC I-Variable Specifiation

Example With the instantaneous current limit Ix69 at 32,767, the magnetization current Ix77 at 0,
the continuous current limit Ix57 at 10,589 (1/3 of max), the time permitted with maximum
current is at 1 minute, and the servo update rate at the default of 2.25 kHz, Ix58 would be
set as:

120000602250)233.020.020.1(58Ix =∗∗−+=

See Also Integrated Current Protection (Making Your Application Safe)

Ix59 Motor x User-Written Servo/Phase Enable
Range 0 .. 3

Units none

Default 0

Remarks Ix59 controls whether the built-in servo and commutation routines, or user-written servo
and commutation routines, are used for Motor x.

Ix59 Servo Algorithm Commutation Algorithm
0 Built-in Built-in
1 User-written Built-in
2 Built-in User-written
3 User-written User-written

Any user-written servo or commutation (phase) algorithms will have been coded and
cross-assembled in a host computer, and downloaded into PMAC’s program memory.
These algorithms are retained by the battery on battery-backed RAM versions, or saved
into flash memory on flash-backed versions.

Ix00 must be 1 in order for the user-written servo to execute. Ix01 must be 1 in order for
the user-written commutation to execute. The servo algorithm can be changed
immediately between the built-in algorithm and a user-written algorithm by changing Ix59.
PMAC only selects the phasing algorithm to be used at power-on reset, so in order to
change the commutation algorithm, Ix59 must be changed, this new value stored to non-
volatile memory with the SAVE command, and the board reset.

It is possible to use the user-written algorithms for purposes other than servo or
commutation, making them essentially very fast and efficient PLC programs. This is very
useful for fast, position-based outputs. Simply load the code, activate an extra “motor”
with Ix00 and/or Ix01, and set Ix59 for this pseudo-motor to use this algorithm.

See Also User-Written Servo Instructions (Closing the Servo Loop)
User-Written Commutation Instructions (Setting Up PMAC Commutation)
I-Variables Ix00, Ix01

PMAC 2 Software Reference

PMAC I-Variable Specification 95

Ix60 Motor x Servo Cycle Period Extension
Range 0 .. 8,388,607

Units Servo Interrupt Periods

Default 0

Remarks Ix60 permits an extension of the servo update time for Motor x beyond the servo interrupt
period, which is controlled by hardware (E3-E6, E29-E33, E98, and master clock). The
servo loop will be closed every (Ix60 + 1) servo interrupts. With the default value of zero,
the loop will be closed every servo interrupt. For the standard PID servo algorithm, Ix60
must be set to a value that can be expressed as (2n – 1), where “n” is a non-negative
integer.

Other update times, including trajectory update and phase update are not affected by Ix60.
I10 does not need to be changed with Ix60.

The velocity values reported for a motor with the V or <CTRL-V> command, and the
actual velocity registers in regular memory or DPRAM, are affected by Ix60. They are
reported in counts per servo loop closure, not counts per servo interrupt.

See Also Servo Update Rate (Closing the Servo Loop)
On-line commands <CTRL-V>, V
M-Variable Mx66
Jumpers E3-E6, E29-E33, E98; I10.

Ix61 Motor x Current Loop Integral Gain {PMAC2 only}
Range 0.0 .. 1.0 (24-bit resolution)

Units Output = 8 * Ix61 * Sum [i=0 to n] (Icmd[i]-Iact[i])

Default 0

Remarks Ix61 is the integral gain term of the digital current loops, multiplying the difference
between the commanded and actual current levels and adding the result into a running
integrator that adds into the command output. It is only used if Ix82>0 to activate digital
current loop execution.
Ix61 can be used with either Ix62 forward-path proportional gain, or Ix76 back-path
proportional gain. If used with Ix62, the value can be quite low, because Ix62 provides the
quick response, and Ix61 just needs to correct for biases. If used with Ix76, Ix61 is the
only gain that responds directly to command changes, and it must be significantly higher to
respond quickly.
Ix61 is typically set using the current loop auto-tuner or interactive tuner in the PMAC
Executive Program. Typical values of Ix61 are 0.02.

See Also Setting Up PMAC Commutation
I-variables Ix62, Ix66, Ix76, Ix82

 PMAC 2 Software Reference

96 PMAC I-Variable Specifiation

Ix62 Motor x Current Loop Proportional Gain (Forward Path) {PMAC2 only}
Range 0.0 .. 1.0 (24-bit resolution)

Units Output = 4 * Ix62 * (Icmd - Iact)

Default 0

Remarks Ix62 is the proportional gain term of the digital current loops that is in the “forward path”
of the loop, multiplying the difference between the commanded and actual current levels.
Either Ix62 or Ix76 (back path proportional gain) must be used to close the current loop.
Generally, only one of these proportional gain terms is used, although both can be. Ix62 is
only used if Ix82>0 to activate digital current loop execution.
Ix62 can provide more responsiveness to command changes from the position/velocity
loop servo, and therefore a higher current loop bandwidth, than Ix76. However, if the
command value is very noisy, which can be the case with a low-resolution position sensor,
using Ix76 instead can provide better filtering of the noise.
Ix62 is typically set using the current loop auto-tuner or interactive tuner in the PMAC
Executive Program. . Typical values of Ix62, when used, are around 0.5.

See Also Setting Up PMAC Commutation
I-variables Ix61, Ix66, Ix76, Ix82

Ix63 Motor x Integration Limit
Range -8,388,608 .. 8,388,607

Units (Ix33/219) counts * servo-cycles

Default 4,194,304

Remarks Ix63 limits the magnitude of the integrated position error (the output of the integrator), which
can be useful for “anti-windup” protection. The default value of Ix63 provides essentially no
limitation. (The integral gain Ix33 controls how fast the error is integrated.)
A value of zero here forces a zero output of the integrator, effectively disabling the integration
function in the PID filter. This can be useful during periods when you are applying a constant
force and are expecting a steady-state position error. (In contrast, setting Ix33 to 0 prevents
further inputs to the integrator, but maintains the output.)
The Ix63 integration limit can also be used to create a fault condition for the motor. If Ix63 is
set to a negative number, then PMAC will also check as part of its following error safety
check whether the magnitude of integrated following error has saturated at the magnitude of
Ix63. With Ix63 negative, if the integrator has saturated, PMAC will trip (kill) the motor with
a following error fault. Both the normal fatal following error motor status bit and the
integrated following error status bit are set when this fault occurs. If Ix63 is 0 or positive, the
motor cannot trip on integrated following error fault.
To set Ix63 to a value such that the integrator saturates at the same point that its contribution
to the command output causes saturation at the Ix69 level, use the following formula:

∗
∗

±=
30Ix08Ix
23269Ix63Ix

To cause trips, the magnitude of Ix63 must be set to less than this value due to other potential
contributions to the output. Remember that the integrator stops increasing when the output
saturates at Ix69.

See Also PID Servo Filter (Closing the Servo Loop)
I-variables Ix33, Ix67, Ix69

PMAC 2 Software Reference

PMAC I-Variable Specification 97

Ix64 Motor x Deadband Gain Factor
Range -32,768 .. 32,767
Units none
Default 0 (no deadband)
Remarks Ix64 is part of the PMAC feature known as deadband compensation, which can be used to

create or cancel deadband. It controls the effective gain within the deadband zone (see Ix65).
When the following error is less than the value of Ix65, the proportional gain (Ix30) is
multiplied by (Ix64+16)/16. At a value of -16, Ix64 provides true deadband. Values between
-16 and 0 yield reduced gain within the deadband. Ix64 = 0 disables any deadband effect.

PMAC DEAD BAND

Values of Ix64 greater than 0 yield increased gain within the deadband; a value of 16
provides double gain in the “deadband”. A small band of increased gain can be used to
reduce errors while holding position, without as much of a threat to make the system
unstable. It is also useful in compensating for physical deadband in the system.

Note:
Values of Ix64 less than -16 will cause negative gain inside the
deadband, making it impossible for the system to settle inside the
band. These settings have no known useful function.

Outside the deadband, gain asymptotically approaches Ix30 as the following error increases.

 PMAC 2 Software Reference

98 PMAC I-Variable Specifiation

See Also I-variables Ix30, Ix65
Closing The Servo Loop

Ix65 Motor x Deadband Size
Range 0 .. 32,767
Units 1/16 count
Default 16 (=1 count)
Remarks Ix65 defines the size of the position error band, measured from zero error, within which

there will be changed or no control effort, for the PMAC feature known as deadband
compensation. Ix64 controls the effective gain relative to Ix30 within the deadband.

Note:
The units of this parameter are 1/16 of a count, so the value should
be 16 times the number of counts in the deadband. For example, if
modified gain is desired in the range of +/-5 counts of following
error, Ix65 should be set to 80.

See Also Deadband (Closing the Servo Loop)
I-variables Ix30, Ix64

Ix66 Motor x PWM Scale Factor {PMAC2 only}
Range 0 .. 32,767

Units PWM_CLK cycles

Default 0

Remarks Ix66 multiplies the output of the digital current loops for Motor x (which are values
between -1.0 and 1.0) before they are written to the PWM output registers. As such, it
determines the maximum value that can be written to the PWM output register. Ix66 is
only used if Ix82>0 to activate digital current loop execution.

The PWM output value for each phase is compared digitally to the PWM up-down
counter, which increments or decrements once per PWM_CLK cycle to determine whether
the outputs are on or off. The limits of the up-down counter are I900+1 and -I900-2 for
channels 1 to 4; I906+1 and -I906-2 for channels 5 to 8.

Generally, Ix66 is set to about 10% above I900 (or I906) for motors commutated by
PMAC2. This permits a full-on command of the phase for a substantial fraction of the
commutation cycle, providing maximum possible utilization of the power devices at
maximum command. If Ix66 is set to a smaller value than I900 or I906, it serves as a
voltage limit for the motor (Vmax = I900/Ix66*VDC). Ix69 serves as the current limit.

Ix67 Motor x Linear Position Error Limit
Range 0 .. 8,388,607

Units 1/16 count

Default 4,194,304 (=262,144 counts)

Remarks Ix67 defines the biggest position error that will be allowed into the servo filter. This is
intended to keep extreme conditions from upsetting the stability of the filter. However, if
it is set too low, it can limit the response of the system to legitimate commands (this
situation can particularly be noticed on very fine resolution systems).

This parameter is not to be confused with Ix11 or Ix12, the following error limits. Those
parameters take action outside the servo loop based on the real (before limiting) following
error.

PMAC 2 Software Reference

PMAC I-Variable Specification 99

Note:
The units of this parameter are 1/16 of a count, so the value should
be 16 times the number of counts in the limit.

See Also I-variables Ix11, Ix12, Ix68
Ix68 Motor x Friction Feedforward
Range -32,768 .. 32,767
Units DAC bits
Default 0
Remarks Ix68 adds a bias term to the servo loop output of Motor x that is proportional to the sign of

the commanded velocity. That is, if the commanded velocity is positive, Ix68 is added to
the output. If the commanded velocity is negative, Ix68 is subtracted from the output. If
the commanded velocity is zero, no value is added to or subtracted from the output.
This parameter is intended primarily to help overcome errors due to mechanical friction. It
can be thought of as a “friction feedforward” term. Because it is a feedforward term that
does not utilize any feedback information, it has no direct effect on system stability. It can
be used to correct the error resulting from friction, especially on turnaround, without the
time constant and potential stability problems of integral gain.
If PMAC is commutating this motor, this correction is applied before the commutation
algorithm, and so will affect the magnitude of both analog outputs.

Note:
This direction-sensitive bias term is independent of the constant
bias introduced by Ix29 and/or Ix79.

Example Starting with a motor at rest, if Ix68 = 1600, then as soon as a commanded move in the
positive direction is started, a value of +1600 (~0.5V) is added to the servo loop output.
As soon as the commanded velocity goes negative, a value of -1600 is added to the output.
When the commanded velocity becomes zero again, no bias is added to the servo output as
a result of this term.

See Also Closing the Servo Loop
I-Variables Ix01, Ix29, Ix32, Ix35, Ix79

Ix69 Motor x Output Command Limit
Range 0 .. 32,767 (0 to 10V or equivalent)

Units 16-bit DAC bits

Default 20,480 (6.25V or equivalent)

Remarks Ix69 defines the magnitude of the largest output that can be sent from PMAC’s PID
position/velocity servo loop. If the servo loop computes a larger value, PMAC clips it to
this value. When the PID output has saturated at the Ix69 limit, the integrated error value
will not increase, providing anti-windup protection.
For the Extended Servo Algorithm (ESA) that with the Option 6 firmware version, Ix69 is
used to multiply a normalized command (-1.0 <= Normalized Command < +1.0) before
outputting it or using it for commutation. As such, it acts as both a scale factor and an
output command limit for the ESA.

Ix69 is always in units of a 16-bit DAC, even if the actual output device is of a different
resolution, or the command value is used for PMAC’s own internal current loop
commands.

 PMAC 2 Software Reference

100 PMAC I-Variable Specifiation

If you are using differential analog outputs (DAC+ and DAC-), the voltage between the
two outputs is twice the voltage between an output and AGND, so the Ix69 value should
be set to half of what it would be for a single-ended analog output.

This parameter provides a torque (current) limit in systems with current-loop amplifiers, or
when using PMAC’s internal commutation; it provides a velocity limit with velocity-mode
amplifiers. Note that if this limit “kicks in” for any amount of time, the following error
will start increasing.

Use when Commutating: When PMAC is commutating Motor x (Ix01 = 1) but not
closing the current loops (Ix82 = 0), Ix69 corresponds to peak values of the sinusoidal
phase currents. Motor and amplifier current limits are usually given as RMS values. Peak
phase values are √2, or 1.414, times greater than RMS values. For instance, if an amplifier
has a 10 amp (RMS) instantaneous current limit, the instantaneous limit for the peak of the
phase currents is 14.14 amps.

Use with Magnetization Current: When commutating, Ix69 is technically the limit of only
the quadrature, or torque-producing, current. Ix77 sets the magnitude of the direct, or
magnetization current, and the total current limit is the vector sum of these two variables.
If the Ix77 magnetization current for the motor is set to a value other than 0, Ix69 should
be set such that:

767,32maxI277Ix269Ix ≤≤+

Use in Direct-PWM Mode: When commutating (Ix01 = 1) and closing the current loop
(Ix82 > 0) of a 3-phase motor (Ix72 = 85 or 171), it is important to understand the
relationship between the quadrature current limited by Ix69 and the phase currents
measured by the A/D converters. This difference is due to the nature of the conversion
between direct and quadrature current components, which are 90o apart, and the phase
currents, which are 120o apart. This difference introduces a factor of cos(30o) into the
calculations.

For a given level of DC quadrature current with zero direct (magnetization) current, the
peak value of AC sinusoidal current measured in the phases will be 1/cos(30o), or 1.15
times, greater. When quadrature current is commanded at its limit of Ix69, the peak phase
currents can be 15% higher that this value. For instance, with Ix69 at 10,000, and Ix77 at
0, the A/D converters can provide readings (normalized to 16-bit resolution) up to 11,547.

Use with Magnetization Current: With non-zero direct current, the peak value of AC
sinusoidal current measured in the phases will be 1.15 times greater than the vector sum of
the direct and quadrature currents. Therefore, in order not to saturate the current in the
phases, Ix69 should be set such that:

() 377,28866.0*767,32o30cosmaxI277Ix269Ix ≤≤≤+

Example 1. Motor 1 is driving a velocity-mode amplifier with differential analog inputs that are
limited to +/-10V between the inputs. This means that the PMAC outputs should each
be limited to +/-5V with respect to the AGND reference. I169 should therefore be
limited to 32,768/2 = 16,384.

2. Motor 3 is driving a DC brush motor amplifier in current (torque) mode with an analog
output. The amplifier has a gain of 2 amps/volt and an instantaneous current limit of
20 amps. The motor has an instantaneous current limit of 15 amps.

PMAC 2 Software Reference

PMAC I-Variable Specification 101

• PMAC’s maximum output of 32,768, or 10 volts, corresponds to 20 amps.
• The motor has the lower instantaneous current rating, so we use its limit of 15

amps.
• I369 is set to 32,768 * 15/20 = 24,576.

3. Motor 5 is driving a self-commutating brushless-motor amplifier in current (torque)
mode with a single analog output. The amplifier has a gain of 5 amps(RMS)/volt and
an instantaneous current limit of 50 amps (RMS). The motor has an instantaneous
current limit of 60 amps (RMS).
• PMAC’s maximum output of 32,768, or 10 volts, corresponds to 50 amps (RMS).
• The amplifier has the lower instantaneous current rating, so we use its limit of 50

amps (RMS).
• I569 is set to 32,768 * 50/50 = 32,767 (note that the maximum value is 32,767).

4. Motor 7 is driving a “sine-wave” amplifier for a brushless servo motor with two analog
outputs. The Ix77 magnetization current limit is set to 0. The amplifier has a gain on
each phase of 4 amps/volt. The amplifier has an instantaneous current limit of 25 amps
(RMS). The motor has an instantaneous current limit of 30 amps (RMS).
• PMAC’s maximum output of 32,768, or 10 volts, corresponds to 40 amps peak in

the phase.
• The amplifier has the lower instantaneous current rating, so we use its limit of 25

amps (RMS).
• 25 amps (RMS) corresponds to peak phase currents of 25*1.414 = 35.35 amps.
• I769 is set to 32,768 * 35.35/40 = 28,958.

5. Motor 8 is driving a direct-PWM “power-block” amplifier and an AC induction motor.
The Ix77 magnetization current parameter is set to 3000. The A/D converters in the
amplifier are scaled so that a maximum reading corresponds to 100 amps of current in
the phase. The amplifier has an instantaneous current limit of 60 amps (RMS), and the
motor has an instantaneous current limit of 75 amps (RMS).
• PMAC’s maximum ADC phase reading of 32,768 corresponds to 100 amps in the

phase.
• The amplifier has the lower instantaneous current rating, so we use its limit of 60

amps (RMS).
• 60 amps (RMS) correspond to peak phase currents of 60*1.414 = 84.84 amps.
• 84.84 amps correspond to an ADC reading of 32,768 * 84.84/100 = 27,800.
• The vector sum of Ix69 and Ix77 should equal 27,800 * 0.866 = 24,075.
• I869 should be set to sqrt(24,0752-3,0002) = 23,887.

 PMAC 2 Software Reference

102 PMAC I-Variable Specifiation

Commutation I-Variables
Ix70 Motor x Number of Commutation Cycles (N)
Range 0 .. 255
Units Commutation cycles
Default 1
Remarks For a PMAC-commutated motor (Ix01=1), this parameter is used in combination with Ix71

to define the size of the commutation cycle, in encoder counts, as Ix71/Ix70. Usually, this
is set to one, and Ix71 represents the number of counts in a single commutation cycle.
Ix70 only needs to be set greater than one if the number of counts in a single cycle is not
an integer.
A commutation cycle, or electrical cycle, consists of two poles (one pole pair) of a
multiphase motor.

Example A 6-pole brushless motor has three commutation cycles per mechanical revolution. If a
feedback device is used with 4096 counts per mechanical revolution (a number not
divisible by three), Ix70 should be set to 3, and Ix71 to 4096.

See Also I-variables Ix01, Ix71-Ix83
Setting Up PMAC Commutation

Ix71 Motor x Encoder Counts per N Commutation Cycles
Range 0 .. 8,388,607

Units Counts

Default 1000

Remarks For a PMAC-commutated motor, Ix71 defines the size of a commutation cycle in
conjunction with Ix70 (counts/cycle = Ix71/Ix70). The meaning of a “count” used in this
parameter is defined by the encoder-decode variable for the commutation feedback device
(Encoder I-Variable 0; I900, I905, etc. on a PMAC(1); I9n0 on a PMAC2). If a “times-4”
decode is used, a count is one-fourth of an encoder line.
If a highly interpolated encoder is used (e.g. from an ACC-51P or ACC-8D Opt 8) for
servo loop closure, the digital hardware quadrature counter is usually still used for
commutation, with a resolution of 4 counts per encoder line.
If the commutation feedback comes from a MACRO-node position feedback register, the
position value is usually in units of 1/32 of a count, so Ix71 should be 32 times larger than
it would be for reading a hardware encoder counter directly.
A commutation cycle, or electrical cycle, consists of two poles (one pole pair) of a
multiphase motor.

Example A four-pole brushless motor with a 1000-line-per-revolution encoder and “times-4” decode
read directly on the PMAC has 2 commutation cycles per revolution and 4000 counts per
revolution. Therefore, either Ix70=2 and Ix71=4000 could be used, or Ix70=1 and
Ix71=2000.
For the same motor and encoder read through a MACRO Station, the units of the position
register read for commutation would be 1/32-count, so there would appear to be 4000*32,
or 128,000 counts per revolution. Therefore, either Ix70=2 and Ix71=128000 could be use,
or Ix70=1 and Ix71=64000.

See Also I-variables Ix01, Ix70, Ix72-Ix83
Setting Up PMAC Commutation

PMAC 2 Software Reference

PMAC I-Variable Specification 103

Ix72 Motor x Commutation Phase Angle
Range 0 .. 255

Units 360/256 elec. deg. (1/256 commutation cycle)

Default 85 (=120o e)

Remarks For a PMAC-commutated motor (Ix01 = 1), Ix72 set the angular distance between the
phases of a multiphase motor. The usual values to be used are:
 3-phase: 85 or 171 (+/- 120oe)
 2- or 4-phase: 64 or 192 (+/- 90oe)
For a given number of phases, determining which of the two possible settings is to be used
depends on whether the PMAC is also closing the current loop for the motor.

1. PMAC performing commutation, but not current loop
When PMAC is not performing digital current loop closure for Motor x (Ix82 = 0), the
output direction sense determined by this parameter and the motor and amplifier phase
wiring must match the feedback direction sense as determined by the encoder-decode
variable 0 (I900, I905, etc. on a PMAC(1); I9n0 on a PMAC2) and the encoder wiring. If
the direction senses do not match proper commutation and servo control will be
impossible; the motor will lock into a given position.

For these systems, changing between the two values for a given number of phases has the
same effect as exchanging motor leads, which changes the motor’s direction of rotation for
a given sign of a PMAC2 torque command.

Refer to the section Setting Up PMAC Commutation for tests to determine the proper Ix72
setting. For systems without PMAC2 digital current loop closure, once this
commutation/feedback polarity has been properly matched, the servo/feedback polarity
will automatically be properly matched.

2. PMAC performing commutation and current loop
When PMAC is performing digital current loop closure for Motor x (Ix82 > 0; PMAC2
only), the output direction sense determined by this parameter must match the polarity of
the phase current sensors and the analog-to-digital conversion (ADC) circuitry that brings
this data into PMAC2. It is independent of motor or amplifier phase wiring, encoder
wiring, and PMAC2 encoder-decode direction sense.

CAUTION:
Do not attempt to close the digital current loops on PMAC2 (O
commands or closing the position loop) until you are sure of the
proper sense of the Ix72 setting. An Ix72 setting of the wrong sense
will cause positive feedback in the current loop, leading to
saturation of the PMAC outputs and possible damage to the motor
and or amplifier.

For these systems with a PMAC2 digital current loop, if the phase-current ADC registers
report a positive value for current flowing into the phase (i.e. the PWM voltage command
value and the current feedback value have the same sign), Ix72 must be set to a value
greater than 128 (usually 171 for a 3-phase motor, or 192 for a 2- or 4-phase motor). If the
phase-current ADC registers report a positive value for current flowing out of the phase
(i.e. the PWM voltage command value and the current feedback value have opposite
signs), Ix72 must be set to a value less than 128 (usually 85 for a 3-phase motor, or 64 for
a 2- or 4-phase motor).

 PMAC 2 Software Reference

104 PMAC I-Variable Specifiation

For systems with PMAC2 digital current loop closure, the commutation/feedback polarity
match is independent of the servo/feedback polarity. Once Ix72 has been set for proper
commutation/feedback polarity, the proper position-loop servo/feedback polarity must still
be established.

See Also I-variables Ix70, Ix71
Encoder I-Variable 0
Setting Up PMAC Commutation
Getting Started Section, Setting Up A PMAC-Commutated Motor

Ix73 Motor x Phase Finding Output Value
Range -32,768 .. 32,767
Units Bits of 16-bit DAC
Default 0
Remarks WARNING:

An unreliable phasing search method can lead to a runaway
condition. Test your phasing search method carefully to make sure
it works properly under all conceivable conditions. Make sure your
Ix11 fatal following error limit is active and as tight as possible so
the motor will be killed quickly in the event of a serious phasing
search error.

Ix73 defines the magnitude of the open-loop output to be used if a power-on phasing
search is done for a PMAC-commutated motor (Ix01=1). A phasing search is required for
a synchronous motor (Ix78=0) such as a permanent-magnet brushless motor with no
absolute position sensor (Ix81=0). The phasing search is done automatically as part of the
power-on phasing search if Ix80 is 1 or 3; if Ix80 is 0 or 2, the on-line $ command must be
used must be used to initiate the phasing search.
If Ix80 is 0 or 1, the two-guess phasing search is used, and Ix73 controls the “vector”
magnitude of the open-loop output that is distributed among the phases according to the
guessed phasing angle.
If Ix80 is 2 or 3, the stepper-motor phasing search is used, and Ix73 controls the magnitude
of current forced into individual phase(s) to lock the motor to a position like a stepper
motor. In this method, if the PMAC2 is not performing current loop closure for the motor
(Ix82 = 0) and Ix72 > 128, then Ix73 should be set to a negative number of the desired
magnitude. In all other cases it should be set to a positive number. If the sign of Ix73 is
wrong for your setup, the motor will run away when the loop is closed.
Values of 2000 to 6000 are typically used for Ix73 in either method.

See Also Power-Up Phasing Search (Setting Up PMAC Commutation)
I-Variables Ix01, Ix74, Ix78, Ix80, Ix81

Ix74 Motor x Phase Finding Time
Range 0 .. 255
Units Servo Interrupt Cycles (for Ix80 = 0 or 1)

or
Servo Interrupt Cycles * 256 (for Ix80 = 2 or 3)

Default 0

PMAC 2 Software Reference

PMAC I-Variable Specification 105

Remarks WARNING:

An unreliable phasing search method can lead to a runaway
condition. Test your phasing search method carefully to make sure
it works properly under all conceivable conditions. Make sure your
Ix11 fatal following error limit is active and as tight as possible so
the motor will be killed quickly in the event of a serious phasing
search error.

Ix74 defines the time that an open-loop output is to be used if a power-on phasing search is
done for a PMAC-commutated motor (Ix01=1). A phasing search is required for a
synchronous motor (Ix78=0) such as a permanent-magnet brushless motor with no
absolute position sensor (Ix81=0). The phasing search is done automatically as part of the
power-on phasing search if Ix80 is 1 or 3; if Ix80 is 0 or 2, the on-line $ command must be
used must be used to initiate the phasing search.
If Ix80 is 0 or 1, the “two-guess” phasing search is used; Ix74 has units of servo cycles and
controls the time for the open-loop command at each “guess” of the phase angle. Typical
values are 3 to 10 servo cycles; 5 is a good starting point.
If Ix80 is 2 or 3, the “stepper-motor” phasing search is used; Ix74 has units of (servo
cycles*256) and controls the time current is forced into each phase and PMAC waits for
the motor to settle into the “step” position. With the default servo cycle rate of 2.25 kHz,
each unit of Ix74 represents about 0.1 seconds in this mode; typical values are 10 to 20.

See Also Power-Up Phasing Search (Setting Up PMAC Commutation)
I-Variables Ix01, Ix73, Ix78, Ix80, Ix81

Ix75 Motor x Power-On Phase Position Offset
Range -8,388,608 .. 8,388,607
Units Encoder counts * Ix70
Default 0
Remarks Ix75 tells PMAC the distance between the zero position of an absolute sensor used for

power-on phase position (specified by Ix81) and the zero position of PMAC’s
commutation cycle. It is used to reference the phasing algorithm for a PMAC-commutated
motor with an absolute sensor (Ix81 > 0). If Ix80 is 1, this is done automatically during
the power-up/reset cycle. It will also be done in response to a $ command to the motor.
The SETPHASE command also uses Ix75, copying the Ix75 value directly into the phase
position register. This mode is typically used to correct the phasing at a known position
(usually at the index pulse of the encoder) after a rough phasing (hall-sensor read or
phasing search) gives you enough torque for basic motion to the known position.
The proper value for this parameter can be found with a simple procedure that should be
done with an unloaded motor, after satisfactory operation has been achieved using a
power-on phasing search.
For use with the Ix81 absolute read, define an M-variable to the absolute sensor (TWR
form for a resolver, Y form for an absolute encoder). Next, drive the motor to the zero
position in the commutation cycle, either by issuing a $ command with the motor set up for
the “stepper motor” phasing search (Ix80 = 1 or 3), or by manually setting the phase
offsets for the motor.

 PMAC 2 Software Reference

106 PMAC I-Variable Specifiation

In the manual technique, give the motor an O0 command. Put a bias on the A phase
(higher-numbered DAC of a PMAC1 pair) by setting Ix29; use a positive bias if Ix72=171
or 192 (2000 is usually a good value); use a negative bias if Ix72=85 or 64. Also put a bias
in the opposite direction of the same magnitude on the B phase by setting Ix79. The motor
should lock in on a position like a stepper motor.
Now remove the A-phase bias by setting Ix29 back to zero, or at least to the value you
have found to force zero current in the phase, and the motor should lock in on another
position. This position is the zero position of the phasing cycle.
In either technique for forcing the motor to its zero commutation position, after you are
sure the motor has settled, read the position of the absolute sensor by querying its M-
variable value.
Take the negative of this value, multiply it by Ix70, and put the resulting value in Ix75.
Now, with Ix79 returned to zero or the proper bias, and Ix81 pointing to the absolute
sensor, give the motor a $ command. The motor should be properly phased. Remember to
save these variable values before doing a full reset on the card.
For use with the SETPHASE command, define an M-variable to the the phase position
register. The suggested M-variable is Mx71 (e.g. M171->X:$0041, 0,24,S).
Execute the above sequence with Ix29 and Ix79 to force the motor to the zero-point in its
phase cycle. Set the M-variable to zero (e.g. M171=0). Now move the motor to the
known position in its cycle (usually with a homing search move), let it settle, and read the
M-variable value. This value will be put in Ix75.

Example On a brushless motor #1 commutated from PMAC with Ix70 =1 and Ix72 = 171, using an

R/D converter at location 0 of a board at multiplexer address 0, the following on-line
commands can be used to set Ix75:
M171->TWR:0,0 ;Resolver position
#1O0 ;Open-loop zero command
I129=2000 ;Pos bias on first phase output (Neg if Ix72=85 or 64)
I179=-2000 ;Neg bias on second phase output (Pos if Ix72=85 or 64)
I129=0 ;Remove bias from first phase output
M171 ;Query sensor position
223 ;PMAC responds
I175=-223 ;Set phasing position offset (223*-1*Ix70)
I179=0 ;Remove bias from second phase
I181=$000100 ;Set power-on position address
I173=0 ;Make sure no phasing search move is done
I174=0 ;Make sure no phasing search move is done
SAVE ;Store I-variables in non-volatile memory
$;Try phasing from absolute position sensor

See Also Phasing Referenced to Absolute Sensor (Setting Up PMAC Commutation)
I-Variables I8x, I9x, Ix03, Ix10, Ix81, Ix83
ACC-8D Option 7 (R/D Converter) Manual

PMAC 2 Software Reference

PMAC I-Variable Specification 107

Ix76 Motor x Velocity Phase Advance Gain {PMAC(1) Only}
Range 0 .. 8,388,607
Units (Ix09*32) / (Ix70*223) counts / (counts per servo update)
Default 0
Remarks Ix76 advances the phasing angles on a motor commutated by PMAC(1) by an amount

proportional to the measured velocity of the motor. This compensates for the lag in the
electrical circuits of the phases, and for calculation delays. It should be set to zero for
induction motors.
This parameter is best set experimentally by running the motor at high speeds, and finding
the setting that minimizes the current draw of the motor.

See Also Setting Up PMAC Commutation
I-variables Ix70-Ix75

Ix76 Motor x Current-Loop Proportional Gain (Back Path) {PMAC2 only}
Range 0.0 .. 1.0 (24-bit resolution)

Units PWMout = -4 * Ix76 * (Iact)

Default 0.0

Remarks Ix76 is the proportional gain term of the digital current loop that is in the back path of the
loop, multiplying the actual current level, and subtracting the result from the command
output. Either Ix76 or Ix62 (forward path proportional gain) must be used to close the
current loop. Generally, only one of these proportional gain terms is used, although both
can be.
If Ix76 is used as the only proportional gain term, only the Ix61 integral gain term reacts
directly to command changes. The act of integration acts as a low-pass filter on the
command, which eliminates a lot of noise, but lowers the responsiveness to real changes.
Generally Ix76 is only used when the command value from the position/velocity loop
servo have high noise levels (usually due to low position resolution), and the actual current
measurements have low noise levels.
Typically, Ix76 is set using the current loop auto-tuner or interactive tuner in the PMAC
Executive Program. Typical values of Ix76, when used, are around 0.5.
Ix76 is only used if Ix82>0 to activate digital current loop execution.

See Also Setting Up PMAC Commutation
I-variables Ix61, Ix62, Ix66, Ix82

Ix77 Motor x Induction Motor Magnetization Current
Range -32,768 .. 32,767
Units DAC bits
Default 0
Remarks Ix77 is used in induction motors to provide a stator current component parallel to the

estimated rotor magnetic field (the “direct” current – the control loop determines the
magnitude of the “quadrature” current perpendicular to this component). This should be
set to zero for non-induction motors. The proper value for an induction motor is system
dependent, but 2500 is a good starting value for most motors. Refer to the Setting Up
PMAC Commutation section of the manual for instructions in optimizing the setting of this
parameter.

See Also Setting Induction Motor Parameters (Setting Up PMAC Commutation)
I-variables Ix01, Ix70-Ix72, Ix78

 PMAC 2 Software Reference

108 PMAC I-Variable Specifiation

Ix78 Motor x Induction Motor Slip Gain
Range 0 .. 8,388,607 {PMAC(1)}

0.0.. 1.0 (24-bit resolution) {PMAC2}
Units 238 (electrical cycles/update)/DAC bit {PMAC(1)}

Unitless (ratio of times) {PMAC2}
Default 0
Remarks Ix78 controls the relationship between the torque command and the slip frequency of

magnetic field on the rotor of an AC asynchronous (induction) motor. While it is usually
set experimentally, it can be calculated as the ratio between the phase update period and
the rotor (not stator) L/R electrical time constant.

Ix78 is only active if Ix01 is set to 1 to specify PMAC2 commutation of Motor x. It should
be set to 0 for AC synchronous motors such as permanent-magnet brushless motors and
switched (variable) reluctance motors.
Ix78 operates slightly differently on PMAC(1) and PMAC2 boards.
PMAC(1) computes the slip frequency each phase update by multiplying the torque
command from the position/velocity-loop servo (or O-command magnitude) by Ix78. The
optimum value of Ix78 is dependent of the value of the Ix77 magnetization current, so if
Ix77 is changed (e.g. for field weakening), Ix78 should be changed in opposite proportion
so that the product of Ix77 and Ix78 stays constant.
PMAC2 computes the slip frequency each phase update by multiplying the torque
command from the position/velocity-loop servo (or O-command magnitude) by Ix78 and
then dividing by the magnetization current value controlled by Ix77. This makes the
optimum value of Ix78 independent of the value of Ix77, so changing the value of Ix77 for
field control does not require changes in Ix78.
Ix78 is typically set on a PMAC2 through use of the P2SETUP expert system program
running on a PC. P2SETUP excites the motor and analyzes its response to derive an
optimum Ix78 value.
Ix78 can also be set experimentally by giving the motor an O-command and watching the
velocity response, probably with the data gathering feature. As the velocity saturates
because the back EMF reaches the supply voltage, the velocity should fall back about 5%
to reach a steady-state value. If it falls back more than this, the slip time constant is too
high; if it falls back less than this, or not at all, the slip time constant is too low.
On a PMAC(1), 1200 is a typical value of Ix78 for an standard induction motor at a phase
update rate of about 9 kHz.
On a PMAC2, 0.00015 is a typical value of Ix78 for an standard induction motor at a phase
update rate of about 9 kHz.
If Ix78 is greater than zero, no power-on phasing search will be done (because the rotor
field is not fixed to the rotor).

See Also Setting Induction Motor Parameters (Setting Up PMAC Commutation)
I-Variables Ix01, Ix70-Ix72, Ix77

PMAC 2 Software Reference

PMAC I-Variable Specification 109

Ix79 Motor x Second Phase Offset
Range -32,768 .. 32,767

Units 16-bit DAC/ADC bit equivalent

Default 0

Remarks Ix79 serves as an output or feedback offset for Motor x; its exact use depends on the mode of
operation as described below:
Mode 1: When PMAC is not commutating Motor x (Ix01 = 0) and the output is bipolar (Ix02
bit 16 = 1, the default), Ix79 is not used. Ix29 is the offset for this mode.
Mode 2: When PMAC is not commutating Motor x (Ix01 bit 0 = 0) but is in sign-and-
magnitude output mode (Ix02 bit 16 = 1 – PMAC(1) only), Ix79 is the offset of the command
output value after the absolute value is taken (Ix29 is the offset before the absolute value is
taken). Ix79 is typically used in this mode to compensate for analog offsets in interface
circuitry, either in DACs or in voltage-to-frequency converters.
Mode 3: When PMAC is commutating Motor x (Ix01 = 1) but not closing the current loop
(Ix82 = 0), Ix79 serves as the offset for the second of two phase command output values (Phase
B), for the address specified by Ix02 plus 1; Ix29 serves the same purpose for the first phase.
Ix79 is added to the output command value before it is written to the command output register.
When commutating from a PMAC(1), Phase A is output on the higher-numbered of the two
DACs (e.g. DAC2), Phase B on the lower-numbered (e.g. DAC1). When commutating from a
PMAC2, Phase A is output on the A-channel DAC (e.g. DAC1A), Phase B on the B-channel
DAC (e.g. DAC1B).
As an output command offset, Ix79 is always in units of a 16-bit register, even if the actual
output device is of a different resolution. For example, if a value of 60 had to be written into an
18-bit DAC to create a true zero command, this would be equivalent to a value of 60/4=15 in a
16-bit DAC, so Ix79 would be set to 15 to cancel the offset.
Mode 4: When PMAC is commutating (Ix01 = 1) and closing the current loop for Motor x
(Ix82 > 0), Ix79 serves as an offset that is added to the phase current reading from the ADC for
the second phase (Phase B), at the address specified by Ix82. Ix29 performs the same function
for the first phase. The sum of the ADC reading and Ix79 is used in the digital current loop
algorithms.
As an input feedback offset, Ix79 is always in units of a 16-bit ADC, even if the actual ADC is
of a different resolution. For example, if a 12-bit ADC reported a value of -5 when no current
was flowing in the phase, this would be equivalent to a value of -5*16=-80 in a 16-bit ADC, so
Ix79 would be set to 80 to compensate for this offset.

Ix80 Motor x Power-Up Mode
Range 0 .. 7
Units None
Default 0
Remarks Ix80 controls the power-up mode, including the phasing search method (if used), for Motor x.

It consists of 3 independent control bits, each determining one aspect of the state of the motor at
power-up or full board reset:
• Bit 0 controls whether the motor is enabled at power-up/reset or not. If bit 0 is set to 0, the

motor is left in the “killed” (disabled) state at power-up/reset, and a command must be
issued to the motor to enable it. If bit 0 is set to 1, the motor is automatically enabled at
power-up/reset, and if a phasing search move is required to establish the commutation
position reference, this is automatically done.

 PMAC 2 Software Reference

110 PMAC I-Variable Specifiation

• Bit 1 controls what type of phasing search move is performed, if one is required (Ix74 > 0),
either during power-up/reset, or on a subsequent $ motor reset command. If bit 1 is 0 and a
phasing search move is required, PMAC will use the two-guess phasing search method. If
bit 1 is 1 and a phasing search move is required, PMAC will use the “stepper-motor”
phasing search method. The state of bit 1 does not matter unless a phasing search move is
to be done.

• Bit 2 controls whether an absolute position read for the motor is done at power-up/reset or
not, if one is required (Ix10 > 0). If bit 2 is set to 0 and an absolute position read is
specified, this read operation will be performed automatically at the board power-up/reset.
If bit 2 is set to 1 and an absolute position read is specified, this read operation will not be
done automatically at power-up/reset, and the $* command must be issued to perform the
absolute position read. The state of bit 2 does not matter unless an absolute position read is
to be done.

The possible values of Ix80 and the function of each are described in the following table:
Ix80 Absolute Position Read at

Power-up/Reset?
Phasing Search

Method
Power-up/Reset

Enable State
0 Yes Two-Guess Disabled
1 Yes Two-Guess Enabled
2 Yes Stepper-Motor Disabled
3 Yes Stepper-Motor Enabled
4 No Two-Guess Disabled
5 No Two-Guess Enabled
6 No Stepper-Motor Disabled
7 No Stepper-Motor Enabled

Power-up/reset enable state: If the motor is not automatically enabled at power-up/reset, a
command must be used subsequently to enable the motor. If PMAC is commutating the motor
(Ix01 = 1) and it is a synchronous motor (Ix78 = 0), a phase reference must be established with
the $ or $$ command as part of the enabling process. The motor cannot be enabled before a
successful phase reference is established, because the motor “phase reference error” status bit
that is automatically set on power-up/reset will not have been cleared.
If the motor is either not commutated by PMAC (Ix01 =0) or it is not a synchronous motor
(Ix78 > 0), a simple enabling command can be used. The J/ command enables a single motor;
the A command enables all of the motors in a coordinate system; the <CTRL-A> command
enables all of the motors on PMAC.
The phase reference, whether executed at power-up/reset or on the $ command, can be done
either by reading an absolute position sensor (Ix81 > 0) or by a phasing search move (Ix74 > 0)
if only an incremental sensor is used.

WARNING:
An unreliable phasing search method can lead to a runaway condition.
Test your phasing search method carefully to make sure it works
properly under all conceivable conditions. Make sure your Ix11 fatal
following error limit is active and as tight as possible so the motor will
be killed quickly in the event of a serious phasing search error.

Phasing search move method: The two-guess phasing search is very quick and requires little
movement, but can be adversely affected if there are significant external loads such as friction
and gravity. The stepper-motor phasing search takes more time and causes more movement,
but it is more reliable in the presence of significant external loads.

PMAC 2 Software Reference

PMAC I-Variable Specification 111

Absolute motor position read: If Ix10 is set to 0, the position reference for a motor comes
from a homing search move. If Ix10 is greater than 0, the position reference comes from
reading an absolute position sensor at the address and with the format specified by Ix10. In this
case, Ix80 bit 2 specifies whether or not this read is done automatically at power-up/reset.
If the absolute position read is not done automatically at power-up/reset, the motor position will
be set to 0 at this time. This does not prevent full operation of the motor. The $* command
must be used later to read the sensor and establish absolute position. Even if the absolute
position is read automatically at power-up/reset, it may be read again later with the $*
command.

See Also Power-Up Phasing Search (Setting Up PMAC Commutation)
On-line commands $, $$, $*, $$$
I-Variables Ix01, Ix73, Ix74, Ix78, Ix81

Ix81 Motor x Power-Up Phase Position Address
Range $000000 .. $FFFFFF

Units Extended PMAC Addresses

Default 0

Remarks Ix81 tells PMAC what address to read for absolute power-on phase-position information
for Motor x, and how to read it, if such information is present. This can be a different
address from that of the ongoing phase position information, which is specified by Ix83.
Ix81 is set to zero if no special power-on phase position reading is desired, as is the case
for an incremental encoder.
If Ix81 is set to zero, a power-on phasing search routine is required for synchronous fixed-
field brushless motors (permanent magnet, and switched reluctance); those that have a slip
gain (Ix78) of zero. PMAC’s automatic phasing search routines based on Ix73 and Ix74
can be used, or a custom power-on PLC routine can be written.

Note:
Ix81 is used for PMAC’s commutation algorithms alone, to locate
position within one electrical cycle of the motor. It is not used for
any servo loop position information, even for power-up. Ix10 is
used for that purpose.

Ix81 consists of two parts. The low 16 bits contain the address of the register containing
the power-on position information, either a PMAC memory-I/O address, or an address on
the multiplexer (“thumbwheel”) port. The high 8 bits specify how to read the information
at this address.

Note:
It is easier to specify this parameter in hexadecimal form ($ prefix).
If I9 is set to 2 or 3, the value of this variable will be reported back
to the host in hexadecimal form.

 PMAC 2 Software Reference

112 PMAC I-Variable Specifiation

The possible value ranges of Ix81 and the position sources they specify are summarized in
the following table:

Ix81 Value Range Absolute Position Source Ix81 Address Type
$00xxxx - $07xxxx ACC-8D Opt 7 R/D Converter Multiplexer Port
$08xxxx - $18xxxx Parallel Data Y-Register PMAC Memory-I/O
$48xxxx - $58xxxx Parallel Data X-Register PMAC Memory-I/O

$73xxxx MACRO Station R/D Converter MACRO Node Number
$74xxxx MACRO Station Parallel Read MACRO Node Number

$80xxxx - $FFxxxx Hall Sensor Read PMAC Memory-I/O

The following section provides detail for each type of position feedback.

R/D Converter: If Ix81 contains a value from $0000xx to $0700xx, Motor x will expect
its absolute power-on phase position from an ACC-8D Opt. 7 R/D converter board. The
low 8 bits(last 2 hex digits) of Ix81 should contain the address of the board on the
multiplexer port, as set by the DIP switches on the board.

The second hex digit of Ix81, which can take a value from 0 to 7 in this mode, specifies the
number of the individual R/D converter at that multiplexer port address. This is a function
of the DIP switch setting on the board and the location of the converter on the board, as
specified in the following table:

Ix81 Value ACC-8D Opt. 7
SW1-1 Setting

of R/D Converter
on ACC-8D Opt. 7

$0000xx CLOSED (0) 1
$0100xx CLOSED (0) 2
$0200xx CLOSED (0) 3
$0300xx CLOSED (0) 4
$0400xx OPEN (1) 1
$0500xx OPEN (1) 2
$0600xx OPEN (1) 3
$0700xx OPEN (1) 4

The following table shows the value of Ix81 for the multiplexer port addresses for the
ACC-8D Opt. 7 that can be used:

Board
 Mux.
Addr.

Ix81 Board
Mux.
Addr.

Ix81 Board
 Mux.
Addr.

Ix81 Board
Mux.
Addr.

Ix81

0 $0n0000* 64 $0n0040 128 $0n0080 192 $0n00C0
8 $0n0008 72 $0n0048 136 $0n0088 200 $0n00C8

16 $0n0010 80 $0n0050 144 $0n0090 208 $0n00D0
24 $0n0018 88 $0n0058 152 $0n0098 216 $0n00D8
32 $0n0020 96 $0n0060 160 $0n00A0 224 $0n00E0
40 $0n0028 104 $0n0068 168 $0n00A8 232 $0n00E8
48 $0n0030 112 $0n0070 176 $0n00B0 240 $0n00F0
56 $0n0038 120 $0n0078 184 $0n00B8 248 $0n00F8

‘n’ is a digit from 0 to 7 specifying the converter number at that address
* If ‘n’ is 0 and the multiplexer address is 0, the 4th hex digit should be set to 1, making
Ix81=$000100; otherwise with Ix10=0, no absolute position would be read.

Parallel Data Read: If Ix81 contains a value from $08xxxx to $18xxxx, or from $48xxxx
to $58xxxx, Motor x will do a parallel data read of the PMAC memory or I/O register at
the address specified by the low 16 bits of Ix81.

PMAC 2 Software Reference

PMAC I-Variable Specification 113

In this mode, bits 16 to 21 of Ix81 specify the number of bits to be read, starting with bit 0
at the specified address. In this mode, they can take a value from $08 to $18 (8 to 24).

In this mode, bit 22 of Ix81 specifies whether a Y-register is to be read, or an X-register.
A value of 0 in this bit, yielding Ix81 values from $08xxxx to $18xxxx, specifies a Y-
register; a value of 1, yielding Ix81 values from $48xxxx to $58xxxx, specifies an X-
register.

The following table shows Ix81 values for parallel data read through an ACC-14 board.
All ACC-14 registers are a Y-addresses.

Register Ix81 Register Ix81
1st ACC-14D/V Port A $xxFFD0 4th ACC-14D/V Port A $xxFFE8
1st ACC-14D/V Port B $xxFFD1 4th ACC-14D/V Port B $xxFFE9
2nd ACC-14D/V Port A $xxFFD8 5th ACC-14D/V Port A $xxFFF0
2nd ACC-14D/V Port B $xxFFD9 5th ACC-14D/V Port B $xxFFF1
3rd ACC-14D/V Port A $xxFFE0 6th ACC-14D/V Port A $xxFFF8
3rd ACC-14D/V Port B $xxFFE1 6th ACC-14D/V Port B $xxFFF9

xx’ represent the first two digits, which control bit width. They can take values
from $08 to $18.

For the ACC-8D Opt. 9 Yaskawa Absolute Encoder Converter, PMAC’s 24-bit encoder
phase position register, an X-register, is read, so Ix81 is set to $58xxxx ($180000 +
$400000).

The following table shows Ix81 values for a Yaskawa absolute encoder connected through
an ACC-8D Option 9 to each PMAC(1) encoder channel:

Channel Ix81 Channel Ix81
1 $58C001 9 $58C021
2 $58C005 10 $58C025
3 $58C009 11 $58C029
4 $58C00D 12 $58C02D
5 $58C011 13 $58C031
6 $58C015 14 $58C035
7 $58C019 15 $58C039
8 $58C01D 16 $58C03D

Channels 9 – 16 are on an ACC-24P/V board

The following table shows Ix81 values for a Yaskawa absolute encoder connected through
an ACC-8D Option 9 to each PMAC2 encoder channel:

Channel Ix81 Channel Ix81
1 $58C001 9 $58C041
2 $58C009 10 $58C049
3 $58C011 11 $58C051
4 $58C019 12 $58C059
5 $58C021 13 $58C061
6 $58C029 14 $58C069
7 $58C031 15 $58C071
8 $58C039 16 $58C079

Channels 9 – 16 are on an ACC-24P/V2 board

For the ACC-49 Sanyo Absolute Encoder Converter, the encoder provides a 13-bit value
within one motor revolution, and the data is read from a Y-register, so Ix81 is set to
$0Dxxxx.

 PMAC 2 Software Reference

114 PMAC I-Variable Specifiation

The following table lists the possible values of Ix81 for the ACC-49:

Enc. #
on

Board

Ix81 for
E1 ON

Ix81 for
E2 ON

Ix81 for
 E3 ON

Enc. #
on

Board

Ix81 for
E4 ON

Ix81 for
E5 ON

Ix81 for
E6 ON

Enc. 1 $0DFFD0 $0DFFD8 $0DFFE0 Enc. 3 $0DFFE8 $0DFFF0 $0DFFF8
Enc. 2 $0DFFD4 $0DFFDC $0DFFE4 Enc. 4 $0DFFEC $0DFFF4 $0DFFFC

MACRO R/D Read: If Ix81 contains a value of $73000n, Motor x will read the absolute
phase position from an ACC-8D Opt. 7 Resolver-to-Digital Converter through a MACRO
Station or compatible device.

In this mode, the last hex digit ‘n’ of Ix81 specifies the MACRO node number. MACRO
Station setup variable MI11x for the matching node must be set to read the R/D converter.

MACRO Parallel Read: If Ix81 contains a value of $74000n, Motor x will read the
absolute phase position from a parallel data source through a MACRO Station or
compatible device.

In this mode, the last hex digit ‘n’ of Ix81 specifies the MACRO node number. MACRO
Station setup variable MI11x for the matching node must be set to read the parallel data
source.

Hall Sensor Read: If Ix81 contains a value from $80xxxx to $FFxxxx (bit 23 if Ix81 set to
1), Motor x will read bits 20 through 22 of the PMAC memory or I/O register at the
address specified by the low sixteen bits (last 4 hex digits ‘xxxx’) of Ix81. It will expect
these three bits to be encoded as the U, V, and W “hall-effect” commutation signals with
120oe spacing for the absolute power-on phase position. In this mode, the address
specified in Ix81 is usually that of a flag register.

If the flag register is in a PMAC(1) or PMAC(1)-style ACC-24P, the flag inputs for bits
20, 21, and 22, representing W, V, and U, are +LIMn, -LIMn, and HMFLn, respectively.
In a typical application, Ix81 specifies that these inputs are used from the “spare” flag
register matching the second DAC channel used for commutation.

The following table shows the Ix81 settings for the flag registers in even-numbered
channels of a PMAC(1) and a PMAC(1)-style ACC-24P that are typically used for hall
commutation sensor inputs:

Channel Ix81 Channel Ix81
2 $xxC004 10 $xxC024
4 $xxC00C 12 $xxC02C
6 $xxC014 14 $xxC034
8 $xxC01C 16 $xxC03C

The proper value of ‘xx’ depends on the offset and direction sense of
the hall sensors.

If the flag register is in a PMAC2-style Servo IC, the input flags for bits 20, 21, and 22,
representing W, V, and U, are CHWn, CHVn, and CHUn, respectively. In a typical
application, these inputs are used from the same flag register addressed by Ix25 for the
main flags.

PMAC 2 Software Reference

PMAC I-Variable Specification 115

The following table shows the Ix81 settings for the flag registers in channels of a PMAC2
that are typically used for hall commutation sensor inputs:

Channel Ix81 Channel Ix81
1 $xxC000 5 $xxC020
2 $xxC008 6 $xxC028
3 $xxC010 7 $xxC030
4 $xxC018 8 $xxC038

The proper value of ‘xx’ depends on the offset and direction sense of
the hall sensors.

In this mode, bit 22 of Ix81 allows for reversal of the sense of the hall-effect sensors. If W
(bit 20 of the register; HMFLn or CHWn) leads V (bit 21; -LIMn or CHVn), and V leads
U (bit 22; +LIMn or CHUn) as the commutation cycle counts up, then bit 22 of Ix81
should be set to 0. If U leads V and V leads W as the commutation cycle counts up, then
bit 22 of Ix81 should be set to 1.

In this mode, bits 16 to 21 of Ix81 together form an offset value from 0 to 63 representing
the difference between PMAC’s commutation cycle zero and the hall-effect sensor zero
position, which is defined as the transition of the V signal when U is low. This offset has
units of 1/64 of a commutation cycle, or 5.625oe. Typically, one of the transitions will be
at PMAC’s commutation zero point, so the desired offset values will be 0o, 60o, 120o, 180o,
240o, and 300o, approximated by values of 0, 11($0B), 21($15), 32($20), 43($2B), and
53($35).

This operation can handle hall-effect sensors separated by 120oe. The following table
gives the Ix81 settings for bits 16 to 23 for the most common cases of hall-effect settings
as they relate to the PMAC commutation cycle.

0 to
60 deg

60 to
120deg

120 to
180 deg

180 to
-120 deg

-120 to
-60 deg

-60 to
0 deg

Ix81

011 010 110 100 101 001 $80xxxx
001 011 010 110 100 101 $8Bxxxx
101 001 011 010 110 100 $95xxxx
100 101 001 011 010 110 $A0xxxx
110 100 101 001 011 010 $ABxxxx
010 110 100 101 001 011 $B5xxxx
001 101 100 110 010 011 $C0xxxx
011 001 101 100 110 010 $CBxxxx
010 011 001 101 100 110 $D5xxxx
110 010 011 001 101 100 $E0xxxx
100 110 010 011 001 101 $EBxxxx
101 100 110 010 011 001 $F5xxxx

Note that ‘000’ and ‘111’ are invalid readings.

Example

Motor 1 has a single resolver at location 0 of an ACC-8D Opt.7 R/D converter board at
multiplex address 0; no phasing search is permitted, but a homing search is required:
I181=$000100 ($100=256dec, representing multiplex address 0), I110=0.

Motor 2 has a single resolver at location 6 of an ACC-8D Opt 7 board at multiplex address
4; no phasing search is permitted, but a homing search is required: I281=$060004; I210=0.

Motor 3 has a double geared resolver at locations 2 and 3 of an ACC-8D Opt 7 board at
multiplex address 6, with a 10:1 gear ratio between them; no phasing search or homing
search is permitted: I381=$020006; I310=$020006; I93=10

 PMAC 2 Software Reference

116 PMAC I-Variable Specifiation

Motor 4 has a 20-bit single-turn absolute encoder at Port A of the first ACC-14 (address
Y:$FFD0): I481=$14FFD0 ($14=20dec)

Motor 5 is a brush motor with a double geared resolver at locations 0 and 1 of an ACC-8D
Opt 7 board at multiplex address 2; no homing search is permitted: I581=0 (no phasing
required); I510=$000002

Motor 6 uses hall-effect sensors wired into the flags on Channel 12 for power-up phase
referencing. The zero point of the hall effect is at 60oe, and the direction is “standard”, not
reversed. I610= $8BC034.

See Also Phasing Referenced to Absolute Sensor (Setting Up PMAC Commutation)
I-Variables I8x, I9x, Ix03, Ix10, Ix75, Ix83
ACC-8D Option 7 (R/D Converter) Manual

Ix82 Current loop Feedback Address {PMAC2 only}
Range Legal PMAC Y addresses
Units Legal PMAC Y addresses
Default 0
Remarks Ix82 tells PMAC2 which addresses to read to get its current feedback values for Motor x if

PMAC2 is closing the current loop for this motor. PMAC must be performing the
commutation for the motor (Ix01=1) if it is to close the current loop as well.
A zero value for Ix82 tells PMAC2 not to close the current loop for this motor. In this
case, PMAC either outputs one velocity or torque command value (Ix01=0), or two phase-
current command values (Ix01=1), usually represented as analog voltages.
A non-zero value for Ix82 automatically triggers current loop execution in the phase
interrupt, using the current value(s) found in the register(s) specified by Ix82. Typically
these registers are analog-to-digital converter (ADC) registers in the PMAC2 ASIC, or
MACRO feedback registers containing copies of ADC registers in a MACRO Station
When Ix01 is set to 1, PMAC2 performs the phase commutation for this motor, computing
two phase current commands based on the position/velocity servo command and the
magnetization current value. If Ix82>0, these commands are compared to the two actual
current values read from the address specified by Ix82, and the next lower address. It
executes a PI filter on the current loops and outputs three voltage command values to the
address specified by Ix02 and the next two higher addresses. These are typically the PWM
commands for the three half-bridges of a brushless motor power stage.
When the digital current loop is used for drives connected directly to the PMAC2, the
typical values for Ix82 are:

Channel Ix82 Channel Ix82
ADC1A & B $C006 ACDC9A & B $C046
ADC2A & B $C00E ACDC10A & B $C04E
ADC3A & B $C016 ACDC11A & B $C056
ADC4A & B $C01E ACDC12A & B $C05E
ADC5A & B $C026 ACDC13A & B $C066
ADC6A & B $C02E ACDC14A & B $C06E
ADC7A & B $C036 ACDC15A & B $C076
ADC8A & B $C03E ACDC16A & B $C07E

Channels 9 – 16 are present on an ACC-24P/V2 board

PMAC 2 Software Reference

PMAC I-Variable Specification 117

When the digital current loop is used for drives connected to the PMAC2 through a
MACRO station, the typical values for Ix82 are:

Node/Register Ix82 Node/Register Ix82
Node 0/Reg 1 & 2 $C0A2 Node 8/Reg 1 & 2 $C0B2
Node 1/Reg 1 & 2 $C0A6 Node 9/Reg 1 & 2 $C0B6
Node 4/Reg 1 & 2 $C0AA Node 12/Reg 1 & 2 $C0BA
Node 5/Reg 1 & 2 $C0AE Node 13/Reg 1 & 2 $C0BE

If Ix82>0, the following variables must be set properly for correct operation of the digital
current loop:

Ix61: Current-Loop Integral Gain
Ix62: Current-Loop Forward-Path Proportional Gain
Ix66: PWM Scale Factor
Ix72: Commutation Phase Angle
Ix76: Current-Loop Back-Path Proportional Gain
Ix84: Current-Loop Feedback Mask Word

Ix83 Motor x Ongoing Phasing Position Address
Range Legal PMAC X and Y addresses

Units Legal PMAC X and Y addresses

Default Variable PMAC(1) PMAC2 PMAC2
Ultralite

I183 $C001 $C001 $8C0A0
I283 $C009 $C009 $8C0A4
I383 $C011 $C011 $8C0A8
I483 $C019 $C019 $8C0AC
I583 $C021 $C021 $8C0B0
I683 $C029 $C029 $8C0B4
I783 $C031 $C031 $8C0B8
I883 $C039 $C039 $8C0BC

Remarks For a motor commutated by PMAC2, this parameter tells PMAC2 where to read its
commutation (phasing) position information for Motor x every commutation cycle. This
can be a different address from that used for power-on/reset phasing position, which is
determined by Ix81.
Bits 0 to 15 of Ix83 contain the 16-bit address of the register to be read. Bit 19 of Ix83
tells whether the register has a X address or a Y address; a 0 value specifies X, and a 1
value (which makes the hexadecimal digit have an 8 value) specifies Y.
For PMAC(1) and PMAC2 boards with on-board encoder circuitry, Ix83 typically contains
the address of the phase position encoder register for encoder x; this is the default. Since
these registers have X addresses, bit 19 is 0.
On PMAC(1) boards, because two channels are required for commutation output, usually
only the odd-numbered channels are used for commutation feedback. This is reflected in
the defaults.

 PMAC 2 Software Reference

118 PMAC I-Variable Specifiation

The following table provides the Ix83 values for all of the possible phase-position registers
in PMAC(1) system:

Channel Ix83 Channel Ix83
1 $C001 9 $C021
2 $C005 10 $C025
3 $C009 11 $C029
4 $C00D 12 $C02D
5 $C011 13 $C031
6 $C015 14 $C035
7 $C019 15 $C039
8 $C01D 16 $C03D

Channels 9 – 16 are present on an ACC-24P/V board

On PMAC2 boards, commutation requires only one channel, so any channel can be used
for commutation feedback. The following table provides the Ix83 values for all of the
phase-position registers in a PMAC2 system:

Channel Ix83 Channel Ix83
1 $C001 9 $C041
2 $C009 10 $C049
3 $C011 11 $C051
4 $C019 12 $C059
5 $C021 13 $C061
6 $C029 14 $C069
7 $C031 15 $C071
8 $C039 16 $C079

Channels 9 – 16 are present on an ACC-24P/V2 board

For PMAC2 Ultralite boards, Ix83 typically contains the address of a MACRO node’s
position feedback register; this is the default. Since PMAC2 can only commutate over
MACRO using nodes with ‘Y’ addresses, bit 19 must be set to 1 in these cases. The
following table shows Ix83 values for all of the MACRO servo nodes:

Node Ix83 Channel Ix83
0 $8C0A0 8 $8C0B0
1 $8C0A4 9 $8C0B4
4 $8C0A8 12 $8C0B8
5 $8C0AC 13 $8C0BC

If the motor is performing open-loop microstepping control inside PMAC (Ix01=1, bit 16
of Ix02=1), this parameter must contain the address of the motor’s “phase advance “
register (X:$0042, X:$007E, etc.) instead of an encoder register.

See Also I-variables Ix01, Ix02, Ix03, Ix04, Ix81
Setting Up PMAC Commutation
I/O-Memory Map registers X:$C001, X:$C005, etc., X:$0042, X:$007E, etc.

Ix84 Current-Loop Feedback Mask Word {PMAC2 only}
Range $000000 .. $FFFFFF
Units Bit mask
Default $FFF000 (12-bit ADCs)
Remarks Ix84 tells PMAC2 what bits of the 24-bit current feedback word(s) to use as actual the

actual current value in the current loop equations when it is closing the current loops for a
direct-PWM “power-block” amplifier. It is only used if Ix82>0, enabling current loop
closure in the PMAC2.

PMAC 2 Software Reference

PMAC I-Variable Specification 119

PMAC2 supports interface to serial analog-to-digital converters of many resolutions
through its “DSPGATE1” ASIC. The data is received in 18-bit shift registers in the ASIC,
which are read as the high end of a 24-bit word, with the number “left-justified” to the
most significant bit.

Ix84 specifies a 24-bit mask word that is combined with the feedback word through a
logical AND operation to produce the value that is used in the current loop equations.
There should be a 1 in every bit that is used, and a 0 in every bit that is not. Since the data
is left justified, Ix84 should start with 1s and end with 0s. Usually Ix84 is represented as a
hexadecimal number, with 4 bits per digit, and a total of six digits
Some direct-PWM amplifiers will transmit status and fault information on the end of the
serial data stream for the ADC, and it is important to mask out these values from the
current loop equations.

Example For a 10-bit ADC: Ix84=$FFC000
For a 12-bit ADC: Ix84=$FFF000
For a 16-bit ADC: Ix84=$FFFF00

Further Motor I-Variables
Ix85 Motor x Backlash Take-up Rate
Range 0 .. 8,388,607

Units (1/16 Counts) / Background Cycle

Default 0

Remarks Ix85 determines how fast backlash is “taken up” on direction reversal. The size of the
backlash is determined by Ix86, and possibly the backlash compensation table for the
motor. PMAC will “take up” the backlash at the Ix85 rate whenever the commanded or
Master Handwheel position for the motor reverses more than 4 encoder counts. If Ix85 is
zero, backlash is effectively disabled. Ix85 is usually set as high as possible without
creating dynamic problems.

Variable I99, Backlash Hysteresis, determines the amount of reversal in desired position
that is required before backlash will start to be introduced or removed.

See Also I-variables I99, Ix64, Ix65, Ix68, Ix86
On-line commands DEFINE BLCOMP, DELETE BLCOMP
Backlash Compensation (Setting Up a Motor)

Ix86 Motor x Backlash Size
Range -8,388,608 .. 8,388,607

Units 1/16 Count

Default 0

Remarks Ix86 allows PMAC to compensate for backlash in the motor’s coupling by adding or
subtracting (depending on the new direction) the amount specified in the parameter to the
commanded position on direction reversals (this offset will not appear when position is
queried or displayed). A value of zero means no backlash. Negative values of Ix86 can be
useful if the motor is slaved to another motor that has more backlash than the slave.

The rate at which this backlash is added or subtracted (taken up) is determined by Ix85.
Variable I99, Backlash Hysteresis, determines the amount of reversal in desired position
that is required before backlash will start to be introduced or removed.

 PMAC 2 Software Reference

120 PMAC I-Variable Specifiation

If backlash tables are used, Ix86 represents the backlash at motor zero position; values in
the table should represent the difference between the backlash at a given position and Ix86.

Note:

The units of this parameter are 1/16 of a count so the value should
be 16 times the number of counts of backlash compensation desired.

Example If you find that you have a backlash on reversal of motor direction of 7.5 encoder counts,
you would set Ix86 to 7.5 * 16 = 120.

See Also I-variables I99, Ix64, Ix65, Ix68, Ix85
On-line commands DEFINE BLCOMP, DELETE BLCOMP
Backlash Compensation (Setting Up a Motor)

Coordinate System x I-Variables
x = Coordinate System Number (&x, x = 1 to 8)

Ix87 Coordinate System x Default Program Acceleration Time
Range 0 .. 8,388,607

Units msec

Default 0 (so Ix88 controls)

Remarks Ix87 sets the default time for commanded acceleration for programmed blended LINEAR
and CIRCLE mode moves in Coordinate System x. It also provides the default segment
time for SPLINE mode moves. The first use of a TA statement in a program overrides this
value.

Note:

Even though this parameter makes is possible not to specify
acceleration time in the motion program, you are strongly
encouraged to use TA in the program and not rely on this parameter,
unless you must keep to a syntax standard that does not support this
(e.g. RS-274 “G-Codes “). Specifying acceleration time in the
program along with speed and move modes makes it much easier
for later debugging.

If the specified S-curve time (see Ix88, below) is greater than half the specified
acceleration time, the time used for commanded acceleration in blended moves will be
twice the specified S-curve time.

The acceleration time is also the minimum time for a blended move; if the distance on a
feedrate-specified (F) move is so short that the calculated move time is less than the
acceleration time, or the time of a time-specified (TM) move is less than the acceleration
time, the move will be done in the acceleration time instead. This will slow down the
move.

Note:

The acceleration time will be extended automatically when any
motor in the coordinate system is asked to exceed its maximum
acceleration rate (Ix17) for a programmed LINEAR-mode move
with I13=0 (no move segmentation).

PMAC 2 Software Reference

PMAC I-Variable Specification 121

Note:

Make sure that the specified acceleration time (Ix87 or 2*Ix88) is
greater than zero, even if you are planning to rely on the maximum
acceleration rate parameters. A specified acceleration time of zero
will cause a divide-by-zero error. The minimum specified time
should be Ix87=1, Ix88=0.

See Also Acceleration Limits (Making Your Application Safe)
I-variables I13, Ix17, Ix88
Program Commands TA, TS

Ix88 Coordinate System x Default Program S-Curve Time
Range 0 .. 8,388,607

Units msec

Default 50

Remarks Ix88 set the default time in each half of the S in S-curve acceleration for programmed
blended LINEAR and CIRCLE mode moves in Coordinate System x. It does not affect
SPLINE, PVT, or RAPID mode moves. The first use of a TS statement in a program
overrides this value.

Note:
Even though this parameter makes is possible not to specify
acceleration time in the motion program, you are strongly
encouraged to use TS in the program and not rely on this parameter,
unless you must keep to a syntax standard that does not support this
(e.g. RS-274 G-Codes). Specifying acceleration time in the
program along with speed and move modes makes it much easier
for later debugging.

If Ix88 is zero, the acceleration is constant throughout the Ix87 time and the velocity
profile is trapezoidal. If Ix88 is greater than zero, the acceleration will start at zero and
linearly increase through Ix88 time, then stay constant (for time TC) until Ix87-Ix88 time,
and linearly decrease to zero at Ix87 time (that is Ix87=2*Ix88 - TC). If Ix88 is equal to
Ix87/2, the entire acceleration will be spec in S-curve form (Ix88 values greater than
Ix87/2 override the Ix87 value; total acceleration time will be 2*Ix88).

Note:
The acceleration time will be extended automatically when any
motor in the coordinate system is asked to exceed its maximum
acceleration rate (Ix17) for a programmed LINEAR-mode move
with I13=0 (no move segmentation).
Make sure the specified acceleration time (TA or 2*TS) is greater
than zero, even if you are planning to rely on the maximum
acceleration rate parameters (Ix17). A specified acceleration time
of zero will cause a divide-by-zero error. The minimum specified
time should be TA1 TS0.

See Also Acceleration Limits (Making Your Application Safe)
I-variables I13, Ix17, Ix87
Program Commands TA, TS

 PMAC 2 Software Reference

122 PMAC I-Variable Specifiation

Ix89 Coordinate System x Default Program Feedrate/Move Time
Range Positive floating point

Units (user position units)/(feedrate time units) for feedrate
msec for move time

Default 1000.0

Remarks Ix89 sets the default feedrate (commanded speed) for programmed LINEAR and CIRCLE
mode moves in Coordinate System x. The first use of an F or TM statement in a motion
program overrides this value. The velocity units are defined by the position and time units,
as defined by axis definition statements and Ix90. After power-up/reset, the coordinate
system is in feedrate mode, not move time mode.

Note:

You are strongly encouraged not to rely on this parameter and to
declare your feedrate in the program. This will keep your move
parameters with your move commands, lessening the chances of
future errors, and making debugging easier.

When polled, Ix89 will report the value from the most recently executed F or TM command
in that coordinate system.

See Also Axis Definition Statements (Setting Up a Coordinate System)
LINEAR and CIRCLE mode blended moves (Writing a Motion Program)
I-variables Ix87, Ix88, Ix90
Program commands F, TM

Ix90 Coordinate System x Feedrate Time Units
Range positive floating point

Units msec

Default 1000.0 (velocity time units are seconds)

Remarks Ix90 defines the time units used in commanded velocities (feedrates) in motion programs
executed by Coordinate System x. Velocity units are comprised of length units divided by
time units. The length units are determined in the axis definition statements for the
coordinate system. Ix90 sets the time units. Ix90 itself has units of milliseconds, so if
Ix90 is 60,000, the time units are 60,000 milliseconds, or minutes. The default value of
Ix90 is 1000 msec, specifying velocity time units of seconds.
This affects two types of motion program values: F values (feedrate) for LINEAR- and
CIRCLE-mode moves; and the velocities in the actual move commands for PVT-mode
moves.

Example If position units have been set as centimeters by the axis definition statements, and it is
desired that feedrate values be specified in cm/sec, this parameter would be set to 1000.0
(time units = sec).
If position units have been set as degrees by the axis definition statements, and it is desired
that feedrate values be specified in deg/min, this parameter would be set to 60,000.0 (time
units = minutes).
If a spindle is rotating at 4800 rpm, with a linear axis specified in inches, and it is desired
that linear speed be specified in inches per spindle revolution, Ix90 would be set to 12.5 ([1
min/4800 rev] * [60,000 msec/ min] = 12.5 msec/rev).

PMAC 2 Software Reference

PMAC I-Variable Specification 123

See Also Axis Definition Statements (Setting Up a Coordinate System)
Velocity-Specified Moves, PVT-Mode Moves (Writing a Motion Program)
Motion program commands F{data}, {axis}{data}:{data}.

Ix91 Coordinate System x Default Working Program Number
Range 0 .. 32,767

Units Motion Program Numbers

Default 0

Remarks Ix91 tells PMAC which motion program to run in this coordinate system when
commanded to run from the control-panel input (START/ or STEP/ line taken low). It
performs the same function for a hardware run command as the B command does for a
software run command (R). It is intended primarily for stand-alone PMAC applications.
The first use of a B command from a host computer for this coordinate system overrides
this parameter.

See Also Control-Panel Port Inputs (Connecting PMAC to the Machine)
On-line commands B{constant}, R, S.

Ix92 Coordinate System x Move Blend Disable
Range 0 .. 1

Units None

Default 0

Remarks Ix92 controls whether Coordinate System x automatically blends moves together or not. If
Ix92 set to 0, programmed blended moves – LINEAR, SPLINE, and CIRCLE-mode – are
blended together with no intervening stop. Upcoming moves are calculated during the
current moves.
If Ix92 is set to 1, there is a brief stop in between each programmed move (it effectively
adds a DWELL 0 command), during which the next move is calculated. The calculation
time for the next move is determined by I11.
This parameter is only acted upon when the R or S command is given to start program
execution. To change the mode of operation while the program is running the “continuous
motion request” coordinate system status bit (bit 4 of X:$0818 etc.) must be changed. The
polarity of this bit is opposite that of Ix92.

See Also LINEAR- and CIRCLE-Mode Blended Moves (Writing a Motion Program)
How PMAC Executes a Motion Program (Writing a Motion Program)
I-variable I11

Ix93 Coordinate System x Time Base Control Register Address
Range Legal PMAC X addresses

Units Legal PMAC addresses

Default Variable Hex Decimal Register
I193 $0806 2054 C.S.1 ‘%’ cmd reg
I293 $08C6 2246 C.S.2 ‘%’ cmd reg
I393 $0986 2438 C.S.3 ‘%’ cmd reg
I493 $0A46 2630 C.S.4 ‘%’ cmd reg
I593 $0B06 2822 C.S.5 ‘%’ cmd reg
I693 $0BC6 3014 C.S.6 ‘%’ cmd reg
I793 $0C86 3206 C.S.7 ‘%’ cmd reg
I893 $0D46 3398 C.S.8 ‘%’ cmd reg

 PMAC 2 Software Reference

124 PMAC I-Variable Specifiation

Remarks Ix93 tells Coordinate System x where to look for its time base control (feedrate override)
information by specifying the address of the register that will be used. The default value
of this parameter for each coordinate system (see above) specifies the register that
responds to on-line commands. If the time base is left alone, or is under host or
programmatic control, this parameter should be left at the default.
Alternatively, if the time base is controlled externally from a frequency or voltage, the
register containing the time-base information will almost always be in the conversion table
(which starts at address $720 [1824 decimal]). With the default conversion table, there is a
time-base register at $0729 (1833) related to the frequency into the Encoder 4 counter.
This frequency can be controlled by an input voltage on the WIPER pin of the Control
Panel Port if jumpers E72 and E73 are ON. If another register is to be used for the time
base, it must have the units of I10 so that 8388608 (223) indicates 1 msec between servo
interrupts. See instructions for using an external time base, under Synchronizing PMAC to
External Events.

Note:
Ix93 contains the address of the register that holds the time-base
value (it is a pointer to that register). Ix93 does not contain the
time-base value itself.

See Also Time-Base Control (Synchronizing PMAC to External Events)
Control Panel Port Inputs (Connecting PMAC to the Machine)
I-variables I10, Ix93, Ix95
On-line commands %, %{constant}.
Jumpers E72, E73

Ix94 Coordinate System x Time Base Slew Rate
Range 0 .. 8,388,607
Units 2-23msec/ servo cycle
Default 1644
Remarks Ix94 controls the rate of change of the coordinate system’s time base. It effectively works

in two slightly different ways, depending on the source of the time base information. If
the source of the time base is the “%” command register, then Ix94 defines the rate at
which the “ (actual time base) value will slew to a newly commanded value. If the rate is
too high, and the % value is changed while axes in the coordinate system are moving, there
will be a virtual step change in velocity. For these type of applications, Ix94 is set
relatively low (often 1000 to 5000) to provide smooth changes.

Note:

The default Ix94 value of 1644, when used on a card set up with the
default servo cycle time of 442 µsec, provides a transition time
between %0 and %100 of one second.

If there is a hardware source (as defined by Ix93), the commanded time-base value
changes every servo cycle, and the rate of change of the commanded value is typically
limited by hardware considerations (e.g. inertia). In this case, Ix94 effectively defines the
maximum rate at which the % value can slew to the new hardware-determined value, and
the actual rate of change is determined by the hardware. If you wish to keep synchronous
to a hardware input frequency, as in a position-lock cam, Ix94 should be set high enough
that the limit is never activated. However, following motion can be smoothed significantly
with a lower limit if total synchronicity is not required.

PMAC 2 Software Reference

PMAC I-Variable Specification 125

See Also Time-Base Control (Synchronizing PMAC to External Events)
I-variables I10, Ix93, Ix95
On-line commands %{constant}, %

Ix95 Coordinate System x Feed Hold Slew Rate
Range 0 .. 8,388,607
Units 2-23msec/servo cycle
Default 1644
Remarks Ix95 controls the rate at which the axes of the coordinate system stop if a feed hold

command (H) is given, and the rate at which they start up again on a succeeding run
command (R or S). A feed hold command is equivalent to a %0 command except that it
uses Ix95 for its slew rate instead of Ix94. Having separate slew parameters for normal
time-base control and for feed hold commands allows both responsive ongoing time-base
control (Ix94 relatively high) and well-controlled holds (Ix95 relatively low).

Note:
The default Ix95 value of 1644, when used on a card set up with the
default servo cycle time of 442 µsec, provides a transition time
between %100 and %0 (feed hold) of one second.

See Also Stop Commands (Making Your Application Safe)
Time-Base Control (Synchronizing PMAC to External Events)
I-variables I10, Ix93, Ix94
On-line commands H, <CONTROL-O>, R, <CONTROL-R>, S, <CONTROL-S>, %.

Ix96 Coordinate System x Circle Error Limit
Range positive floating point
Units User length units
Default 0 (function disabled)
Remarks In a circular arc move, a move distance that is more than twice the specified radius will

cause a computation error because a proper path cannot be found. Sometimes, due to
round-off errors, a distance slightly larger than twice the radius is given (for a half-circle
move), and it is desired that this not create an error condition.
Ix96 allows the user to set an error limit on the amount the arc move distance is greater
than twice the specified radius. If the move distance is greater than 2R, but by less than
this limit, the move is done in a spiral fashion to the endpoint, and no error condition is
generated. If the distance error is greater than this limit, a run-time error will be generated,
and the program will stop. If this variable is set to 0 the error generation is disabled and
any move distance greater than 2R is done in a spiral fashion to the endpoint.
If the circular move is specified with an IJK center-vector instead of an R radius, Ix96 is
not used.

Example Given the program segment
INC CIRCLE1 F2
X7.072 Y7.072 R5

technically no circular arc path can be found, because the distance is SQRT(7.0722+7.0722)
= 10.003, which is greater than twice the radius of 5. However as long as Ix96 is greater
than 0.003, PMAC will create a near-circular path to the end point.

See Also Circular Blended Moves (Writing a Motion Program)
Program commands CIRCLE1, CIRCLE2, {axis}{data}{vector}{data}

 PMAC 2 Software Reference

126 PMAC I-Variable Specifiation

Ix97 (Reserved for Future Use)
Ix98 Coordinate System x Maximum Feedrate
Range Non-negative floating-point

Units User axis length/angle units per Ix90 milliseconds

Default 0

Remarks Ix98 permits a maximum feedrate to be set for a coordinate system, preventing a program
from accidentally exceeding a specified value. If Ix98 is greater than 0, PMAC will
compare each commanded vector feedrate value from an F command in a motion program
to Ix98. If the commanded feedrate is greater than Ix98, it will use Ix98 instead.

If Ix98 is set to 0, PMAC will not check the programmed feedrate value against a limit.

Ix99 (Reserved for Future Use)

PMAC(1) Encoder/Flag Setup I-Variables
One PMAC can have up to 16 incremental encoder channels – four per gate array IC. Each encoder and
its related flags and registers are set up using (up to) 5 I-variables. The encoders and their flags are
numbered 1 to 16, matching the numbers of their pinouts (e.g. CHA1, CHB1, and CHC1 belong to
encoder 1.) The encoder I-variables are assigned to the different encoders as follows:

I900 - I904 – Encoder 1
I905 - I909 – Encoder 2
I910 - I914 – Encoder 3
I915 - I919 – Encoder 4
 ...
I970 - I974 – Encoder 15
I975 - I979 – Encoder 16

An encoder is assigned to a motor for position, velocity (feedback), handwheel (master), or feedpot
(frequency control) by using the appropriate motor I-variables (see above).

I900, I905, ..., I975 Encoder n Decode Control “Encoder I-Variable 0” {PMAC(1) Only}
Range 0 .. 15
Units none
Default 7
Remarks WARNING:

Changing the direction sense of the encoder decode for a motor that
is servoing properly will result in unstable positive feedback and a
dangerous runaway condition in the absence of other changes (for
motors not commutated by PMAC from the same encoder). The
output polarity must be changed as well to re-establish polarity
match for stable negative feedback.

This parameter controls how the input signal for Encoder n is decoded into counts. As
such, this defines the sign and magnitude of a count.

PMAC 2 Software Reference

PMAC I-Variable Specification 127

The following settings may be used to decode an input signal.

Setting Meaning
0 pulse and direction CW
1 x1 quadrature decode CW
2 x2 quadrature decode CW
3 x4 quadrature decode CW
4 pulse and direction CCW
5 x1 quadrature decode CCW
6 x2 quadrature decode CCW
7 x4 quadrature decode CCW

In any of the quadrature decode modes, PMAC is expecting two input waveforms on
CHAn and CHBn, each with approximately 50% duty cycle, and approximately one-
quarter of a cycle out of phase with each other. “Times-one” (x1) decode provides one
count per cycle; x2 provides two counts per cycle; and x4 provides four counts per cycle.
The vast majority of users select x4 decode to get maximum resolution.

The “clockwise” (CW) and “counterclockwise” (CCW) options simply control which
direction counts up. If you get the wrong direction sense, simply change to the other
option (e.g. from 7 to 3 or vice versa).

In the pulse-and-direction decode modes, PMAC is expecting the pulse train on CHAn,
and the direction (sign) signal on CHBn. If the signal is unidirectional, the CHBn input
can be tied high (to +5V) or low (to GND), or, if set up by E18-E21, E24-E27 for single-
ended (non-differential) input, left to float high.

Any spare encoder counters may be used as fast and accurate timers by setting this
parameter in the 8 to 15 range. In this range, any input signal is ignored. The following
settings may be used in timer mode:

Setting Meaning
8 Timer counting up at SCLK/10
9 Timer counting up at SCLK/10

10 Timer counting up at SCLK/5
11 Timer counting up at SCLK/2.5
12 Timer counting down at SCLK/10
13 Timer counting down at SCLK/10
14 Timer counting down at SCLK/5
15 Timer counting down at SCLK/2.5

These timers are particularly useful when the related capture and compare registers are
utilized for precise event marking and control, including triggered time base. The SLCK
frequency is determined by the crystal clock frequency and E34-E38.

See Also Triggered Time Base (Synchronizing PMAC to External Events)
I-variables Ix03-Ix05, Ix93
Jumpers E18-E21, E24-E27, E34-E38.

 PMAC 2 Software Reference

128 PMAC I-Variable Specifiation

I901, I906, ..., I976 Encoder n Filter Disable “Encoder I-Variable 1” {PMAC(1) Only}
Range 0 .. 1

Units none

Default 0

Remarks This parameter controls whether the encoder channel enables or disables its digital delay
filter. The options are:
0 = Encoder n digital delay filter enabled
1 = Encoder n digital delay filter disabled (bypassed)
The filter is a 3-stage digital delay filter with best-2-of-3 voting to help suppress noise
spikes on the input lines. It does introduce a small delay into the signal, which can be
unacceptable if the motor is using interpolated sub-count parallel data input, because of
loss of synchronization between the quadrature and parallel data signals.

Note:
Generally, the only people to disable this filter are those using the
special interpolated parallel data format. These people should
disable the filters both on the encoder for their quadrature signals
and the encoder matching their parallel data input.

The sampling frequency for the filter is that of the SCLK signal, which is set by the master
clock frequency and jumpers E34-E38. The higher the frequency of SCLK, the higher the
possible count rate, but the narrower the pulse that can be filtered out. SCLK should be set
to allow the maximum expected encoder frequency, but no faster, in order to provide the
maximum noise protection.

See Also Digital Delay Filter (Connecting PMAC to the Machine)
Parallel Sub-Count Interpolation (Setting Up a Motor)
Jumpers E34-E38

I902, I907, ..., I977 Encoder n Position Capture Control “Encoder I-Variable 2”
{PMAC(1) Only}
Range 0 .. 15

Units none

Default 1

Remarks This parameter determines which signal or combination of signals (and which polarity)
triggers a position capture of the counter for encoder n. If a flag input (home, limit, or
fault) is used, I903 (etc.) determines which flag. Proper setup of this variable is essential
for a successful home search, which depends on the position-capture function.

PMAC 2 Software Reference

PMAC I-Variable Specification 129

The following settings may be used:

Setting Meaning
0 Software Control (armed)
1 Rising edge of CHCn (third channel)
2 Rising edge of Flag n (as set by Flag Select)
3 Rising edge of [CHCn AND Flag n] – Low true index, high true Flag
4 Software Control (triggered)
5 Falling edge of CHCn (third channel)
6 Rising edge of Flag n (as set by Flag Select)
7 Rising edge of [CHCn/ AND Flag n] – Low true index, high true Flag
8 Software Control (armed)
9 Rising edge of CHCn (third channel)
10 Falling edge of Flag n (as set by Flag Select)
11 Rising edge of [CHCn AND Flag n/] – High true index, low true Flag
12 Software Control (triggered)
13 Falling edge of CHCn (third channel)
14 Falling edge of Flag n (as set by Flag Select)
15 Rising edge of [CHCn/ AND Flag n/] – Low true index, low true Flag

Note that several of these values are redundant. To do a software-controlled position
capture, preset this parameter to 0 or 8; when the parameter is then changed to 4 or 12, the
capture is triggered (this is not of much practical use, but can be valuable for testing the
capture function).

See Also Position Capture (Synchronizing PMAC to External Events)
Homing Moves (Basic Motor Moves)
I-variables Ix25, Encoder I-Variable 3

 PMAC 2 Software Reference

130 PMAC I-Variable Specifiation

I903, I908, ..., I978 Encoder n Flag Select Control Encoder I-Variable 3 {PMAC(1) only}
Range 0 .. 3

Units None

Default 0

Remarks This parameter determines which of the Flag inputs will be used for position capture (if
one is used – see I902 etc.):

Setting Meaning

0 HMFLn (Home Flag n)
1 -LIMn (Positive Limit Signal n)
2 +LIMn (Negative Limit Signal n)
3 FAULTn (Amplifier Fault Signal n)

This parameter is typically set to zero, because in actual use, the +/-LIMn and FAULTn
flags create other effects that usually interfere with what is trying to be accomplished by
the position capture. If you wish to capture on the +/-LIMn or FAULTn flags, you must
either disable their normal functions with Ix25, or use a channel n where none of the flags
is used for the normal axis functions.

Note:

The direction sense of the limit inputs is the opposite of what many
people consider intuitive. That is, the +LIMn input, when taken
high (opened), stops commanded motion in the negative direction;
the -LIMn input, when taken high, stops commanded motion in the
positive direction. It is important to confirm the direction sense of
your limit inputs in actual operation.

See Also I-variables Ix25, I902
Position Capture (Synchronizing PMAC to External Events)
Homing Moves (Basic Motor Moves)

I904, I909, .., I979 – (Reserved for Future Use) {PMAC(1) only}

PMAC 2 Software Reference

PMAC I-Variable Specification 131

PMAC2 Encoder/Flag/Output Setup I-Variables
The DSPGATE1 Servo ICs of PMAC2 controllers have several setup variables. PMAC2 has I-variables
for the important setup registers of 2 Servo ASICs comprising eight servo interface channels. It is
possible to use two additional Servo ASICs on ACC-24P2 or ACC-51P boards, but these do not have I-
variables assigned to their setup registers.

Global / Multi-Channel ASIC I-Variables
The I-variables I900 – I909 on a PMAC2 controller control the global setup registers of the two possible
on-board Servo ASICs of the PMAC2. Several of these registers on the first Servo ASIC control
important parameters for the whole PMAC2 system.

I900 MaxPhase and PWM 1-4 Frequency Control {PMAC2 only}
Range 0 .. 32767

Units MaxPhase Frequency = 117,964.8 kHz / [2*I900+3]
PWM Frequency = 117,964.8 kHz / [4*I900+6]

Default 6527
MaxPhase Frequency = 117,964.8 / 13057 = 9.0346 kHz
PWM Frequency = 117,964.8 / 26114 = 4.5173 kHz

Remarks I900 controls the maximum phase clock frequency for the PMAC2, and the PWM
frequency for machine interface channels 1-4. It does this by setting the limits of the
PWM up-down counter, which increments and decrements at the PWMCLK frequency of
117,964.8 kHz (117.9648 MHz).

The actual phase clock frequency is divided down from the maximum phase clock
according to the setting of I901. On the falling edge of the phase clock, PMAC2 samples
any serial analog-to-digital converters connected to its ASICs (as for phase current
measurement), and interrupts the processor to start any necessary phase commutation and
digital current-loop algorithms. Even if phasing and current-loop algorithms are not used,
the MaxPhase and PhaseClock frequencies are important because the servo clock is
derived from the phase clock.

The PWM frequency determines the actual switching frequency of amplifiers connected to
any of PMAC2’s first four machine interface channels with the direct PWM command. It
is only important if the direct PWM command signal format is used.

The maximum value that can be written into the PWM command register without full
saturation is I900+1 on the positive end, and -I900-2 on the negative end. Generally, the
PWM scale factor Ix66 for Motor, which determines the maximum PWM command
magnitude, is set to I900 + 10%.

To set I900 for a desired PWM frequency, the following formula can be used:

1
)kHz(Freq_PWM*4

)kHz(8.964,117900I −= (rounded down)

To set I900 for a desired “maximum phase” clock frequency, the following formula can be
used:

1
)kHz(eqMaxPhaseFr*2

)kHz(8.964,117900I −= (rounded down)

To set a PWM frequency of 10 kHz and therefore a MaxPhase clock frequency of 20 kHz:
I900 = (117,964.8 kHz / [4*10 kHz]) - 1 = 2948

 PMAC 2 Software Reference

132 PMAC I-Variable Specifiation

Example To set a PWM frequency of 7.5 kHz and therefore a MaxPhase clock frequency of 15 kHz:

I900 = (117,964.8 kHz / [4*7.5 kHz]) - 1 = 3931

See Also I901, I902, I905, I906, I992

I901 Phase Clock Frequency Control {PMAC2 only}
Range 0 .. 15

Units PHASE Clock Frequency = MaxPhase Frequency / (I901+1)

Default 0
PHASE Clock Frequency = 9.0346 kHz / 1 = 9.0346 kHz
(with default value of I900)

Remarks I901, in conjunction with I900, determines the frequency of the PHASE clock on PMAC2
(except for PMAC2 Ultralites, which use I992 and I997 for this). Each cycle of the
PHASE clock, motor phase commutation and digital current-loop algorithms are
performed for specified motors.

Specifically, I901 controls how many times the PHASE clock frequency is divided down
from the “maximum phase” clock, whose frequency is set by I900. The PHASE clock
frequency is equal to the “maximum phase” clock frequency divided by (I901+1). I901
has a range of 0 to 15, so the frequency division can be by a factor of 1 to 16. The
equation for I901 is:

1
)kHz(PhaseFreq

)kHz(eqMaxPhaseFr901I −=

The ratio of MaxPhase Freq. to PHASE Clock Freq. must be an integer.

Note:

If jumper E1 is ON, PMAC2 gets its PHASE clock signal externally
from a serial-port input, and I901 is not used.

Note:

If the phase clock frequency is set too high, lower priority tasks
such as communications can be starved for time. If the background
tasks are completely starved, the watchdog timer will trip, shutting
down the board. If a normal reset of the board does not re-establish
a state where the watchdog timer has not tripped and
communications works well, it will be necessary to re-initialize the
board by powering up with the E3 re-initialization jumper on. This
restores default settings, so communication is possible, and I900
and I901 can be set to supportable values.

Example With a 20 kHz MaxPhase Clock frequency established by I900, and a desired 6.67 kHz
PHASE clock frequency, the ratio between MaxPhase and PHASE is 3:
I901 = (20 / 6.67) - 1 = 3 -1 = 2

See Also I900, I902, I997

PMAC 2 Software Reference

PMAC I-Variable Specification 133

I902 Servo Clock Frequency Control {PMAC2 only}
Range 0 .. 15

Units Servo Clock Frequency = PHASE Clock Frequency / (I902+1)

Default 3 — SERVO Clock Frequency = 9.0346 kHz / (3+1) = 2.2587 kHz
(with default values of I900 and I901)

Remarks I902, in conjunction with I901 and I900, determines the frequency of the SERVO clock on
PMAC2 (except for PMAC2 Ultralites, which use I992, I997, and I998 for this). Each
cycle of the SERVO clock, PMAC2 updates the commanded position for each activated
motor, and executes the servo algorithm to compute the command output to the amplifier.

Specifically, I902 controls how many times the SERVO clock frequency is divided down
from the PHASE clock, whose frequency is set by I900 and I901. The SERVO clock
frequency is equal to the PHASE clock frequency divided by (I902+1). I902 has a range
of 0 to 15, so the frequency division can be by a factor of 1 to 16. The equation for I902
is:

1
)kHz(ServoFreq
)kHz(PhaseFreq902I −=

The ratio of PHASE Clock Freq. to SERVO Clock Freq. must be an integer.

Note: If jumper E1 is ON, PMAC2 gets its SERVO clock signal externally from a serial-
port input, and I902 is not used.

For execution of trajectories at the proper speed, I10 must be set properly to tell the
trajectory generation software what the SERVO clock cycle time is. The formula for I10
is:

)kHz(ServoFreq
608,388,810I =

In terms of the variables that determine the SERVO clock frequency on a (non-Ultralite)
PMAC2 board, the formula for I10 is:

()()()1902I1901I3900I*2
9

64010I +++=

At the default servo clock frequency, I10 should be set to 3,713,707 in order that PMAC’s
interpolation routines use the proper servo update time.

Note:
If the servo clock frequency is set too high, lower priority tasks
such as communications can be starved for time. If the background
tasks are completely starved, the watchdog timer will trip, shutting
down the board. If a normal reset of the board does not re-establish
a state where the watchdog timer has not tripped and
communications works well, it will be necessary to re-initialize the
board by powering up with the E3 re-initialization jumper on. This
restores default settings, so communication is possible, and I900
and I901 can be set to supportable values.

Example With a 6.67 kHz PHASE Clock frequency established by I900 and I901, and a desired 3.33
kHz SERVO Clock frequency:
I902 = (6.67 / 3.33) - 1 = 2 - 1 = 1

See Also I10, I900, I901, I998

 PMAC 2 Software Reference

134 PMAC I-Variable Specifiation

I903 Hardware Clock Control Channels 1-4 {PMAC2 only}
Range 0 .. 4095

Units I903 = Encoder SCLK Divider
.......................... + 8 * PFM_CLK Divider
.......................... + 64 * DAC_CLK Divider
.......................... + 512 * ADC_CLK Divider
..........................where:
Encoder SCLK Frequency = 39.3216 MHz / (2 ^ Encoder SCLK Divider)
PFM_CLK Frequency = 39.3216 MHz / (2 ^ PFM_CLK Divider)
DAC_CLK Frequency = 39.3216 MHz / (2 ^ DAC_CLK Divider)
ADC_CLK Frequency = 39.3216 MHz / (2 ^ ADC_CLK Divider)

Default 2258 = 2 + (8 * 2) + (64 * 3) + (512 * 4)
Encoder SCLK Frequency = 39.3216 MHz / (2 ^ 2) = 9.8304 MHz
PFM_CLK Frequency = 39.3216 MHz / (2 ^ 2) = 9.8304 MHz
DAC_CLK Frequency = 39.3216 MHz / (2 ^ 3) = 4.9152 MHz
ADC_CLK Frequency = 39.3216 MHz / (2 ^ 4) = 2.4576 MHz

Remarks I903 controls the frequency of four hardware clock frequencies – SCLK, PFM_CLK,
DAC_CLK, and ADC_CLK – for the first four machine interface channels on PMAC2. It
is a 12-bit variable consisting of four independent 3-bit controls, one for each of the
clocks. Each of these clock frequencies can be divided down from a starting 39.3216 MHz
frequency by powers of 2, 2N, from 1 to 128 times (N=0 to 7). This means that the
possible frequency settings for each of these clocks are:

Frequency Divide by Divider N in
1/2N

39.3216 MHz 1 0
19.6608 MHz 2 1
9.8304 MHz 4 2
4.9152 MHz 8 3
2.4576 MHz 16 4
1.2288 MHz 32 5
614.4 kHz 64 6
307.2 kHz 128 7

Very few PMAC2 users will be required to change the setting of I903 from the default
value.
The encoder sample clock signal SCLK controls how often PMAC2’s digital hardware
looks at the encoder and flag inputs. PMAC2 can take at most one count per SCLK cycle,
so the SCLK frequency is the absolute maximum encoder count frequency. SCLK also
controls the signal propagation through the digital delay filters for the encoders and flags;
the lower the SCLK frequency, the greater the noise pulse that can be filtered out. The
SCLK frequency should optimally be set to the lowest value that can accept encoder
counts at the maximum possible rate.

Note:
If jumper E13 is ON in either setting, PMAC2 uses an external
SCLK signal for encoder sampling and digital delay filter clocking;
in this case, this part of I903 is not used.

PMAC 2 Software Reference

PMAC I-Variable Specification 135

The pulse-frequency-modulation clock PFM_CLK controls the PFM circuitry that is
commonly used for stepper drives. The maximum pulse frequency possible is 1/4 of the
PFM_CLK frequency. The PFM_CLK frequency should optimally be set to the lowest
value that can generate pulses at the maximum frequency required.

The DAC_CLK controls the serial data frequency into D/A converters. If these converters
are on Delta Tau-provided accessories, the DAC_CLK setting should be left at the default
value.

The ADC_CLK controls the serial data frequency from A/D converters. If these
converters are on Delta Tau-provided accessories, the ADC_CLK setting should be left at
the default value.

To determine the clock frequencies set by a given value of I903, use the following
procedure:

1. Divide I903 by 512 and round down to the nearest integer. This value N1 is the
ADC_CLK divider.

2. Multiply N1 by 512 and subtract the product from I903 to get I903’. Divide I903’ by
64 and round down to the nearest integer. This value N2 is the DAC_CLK divider.

3. Multiply N2 by 64 and subtract the product from I903’ to get I903’’. Divide I903’’ by
8 and round down to the nearest integer. This value N3 is the PFM_CLK divider.

Multiply N3 by 8 and subtract the product from I903’’. The resulting value N4 is the
SCLK divider.

Example The maximum encoder count frequency in the application is 800 kHz, so the 1.2288 MHz
SCLK frequency is chosen. A pulse train up to 500 kHz needs to be generated, so the
2.4576 MHz PFM_CLK frequency is chosen. The default serial DACs and ADCs
provided by Delta Tau are used, so the default DAC_CLK frequency of 4.9152 MHz and
the default ADC_CLK frequency of 2.4576 MHz are chosen. From the table:

..........................SCLK Divider N: 5

..........................PFM_CLK Divider N: 4

..........................DAC_CLK Divider N: 3

..........................ADC_CLK Divider N: 4

..........................I903 = 5 + (8 * 4) + (64 * 3) + (512 * 4) = 5 + 32 + 192 + 2048 = 2277

I903 has been set to 3429. What clock frequencies does this set?

..........................N1 = INT (3429/512) = 6 ADC_CLK = 611.44 kHz

..........................I903’ = 3429 - (512*6) = 357

..........................N2 = INT (357/64) = 5 DAC_CLK = 1.2288 MHz

..........................I903’’ = 357 - (64*5) = 37

..........................N3 = INT (37/8) = 4 PFM_CLK = 2.4576 MHz

..........................N4 = 37 - (8*4) = 5 SCLK = 1.2288 MHz
See Also I907, I993

 PMAC 2 Software Reference

136 PMAC I-Variable Specifiation

I904 PWM 1-4 Deadtime / PFM 1-4 Pulse Width Control {PMAC2 only}
Range 0 .. 255
Units PWM Deadtime = [16 / PWM_CLK (MHz)] * I904 = 0.135 usec * I904

PFM Pulse Width = [1 / PFM_CLK (MHz)] * I904
 = PFM_CLK_period (usec) * I904

Default 15
PWM Deadtime = 0.135 usec * 15 = 2.03 usec
PFM Pulse Width = [1 / 9.8304 MHz] * 15 = 1.526 usec (with default I903)

Remarks I904 controls the deadtime period between top and bottom on-times in PMAC2’s
automatic PWM generation for machine interface channels 1-4. In conjunction with I903,
it also controls the pulse width for PMAC2’s automatic pulse-frequency modulation
generation for machine interface channels 1-4.
The PWM deadtime, which is the delay between the top signal turning off and the bottom
signal turning on, and vice versa, is specified in units of 16 PWM_CLK cycles. This
means that the deadtime can be specified in increments of 0.135 usec. The equation for
I904 as a function of PWM deadtime is:

sec135.0
sec)(DeadTime904I

µ
µ

=

The PFM pulse width is specified in PFM_CLK cycles, as defined by I903. The equation
for I904 as a function of PFM pulse width and PFM_CLK frequency is:

sec)(Width_Pulse_PFM*)MHz(Freq_CLK_PFM904I µ=

In PFM pulse generation, the minimum off time between pulses is equal to the pulse width.
This means that the maximum PFM output frequency is

904I*2
)MHz(Freq_CLK_PFM

)MHz(Freq_Max_PFM =

Example A PWM deadtime of approximately 1 microsecond is desired:
I904 ≅ 1 usec / 0.135 usec ≅ 7

With a 2.4576 MHz PFM_CLK frequency, a pulse width of 0.4 usec is desired:
I904 ≅ 2.4576 MHz * 0.4 usec ≅ 1

See Also I908, I994
I905 DAC 1-4 Strobe Word {PMAC2 only}
Range $000000 .. $FFFFFF
Units Serial Data Stream (MSB first, starting on rising edge of phase clock)
Default $7FFFC0
Remarks I905 controls the DAC strobe signal for machine interface channels 1-4. The 24-bit word

set by I905 is shifted out serially on lines DAC_STROB1-4, MSB first, one bit per
DAC_CLK cycle starting on the rising edge of the phase clock. The value in the LSB is
held until the next phase clock cycle.
The default I905 value of $7FFFC0 is suitable for the 18-bit DACs on the ACC-8E Analog
Interface Board. I905 should not be changed from the default unless different DACs are
used.
For a 16-bit DAC, I905 should be set to $7FFF00. For a 12-bit DAC, I905 should be set to
$7FF000.

See Also I909

PMAC 2 Software Reference

PMAC I-Variable Specification 137

I906 PWM 5-8 Frequency Control {PMAC2 only}
Range 0 .. 32767

Units PWM Frequency = 117,964.8 kHz / [4*I906+6]

Default 6257
PWM Frequency = 117,964.8 / 26114 = 4.5163 kHz

Remarks I906 controls the PWM frequency for machine interface channels 5-8. It does this by
setting the limits of the PWM up-down counter, which increments and decrements at the
PWMCLK frequency of 117,964.8 kHz (117.9648 MHz).

The PWM frequency determines the actual switching frequency of amplifiers connected to
any of PMAC2’s first four machine interface channels with the direct PWM command.
The value of I906 is only important if the direct PWM command signal format is used on
channels 5 to 8.

Generally, I906 is set to the same value as I900, which controls the frequency of channels
1 to 4. If a different PWM frequency is desired for channels 5 to 8, I906 should be set so
that

}Integer{
PhaseFreq

)kHz(Freq]85[PWM*2
=

−

This will keep the PWM hardware on channels 5-8 in synchronization with the software
algorithms driven by the PHASE clock, which is set by I900, I901, and I902. For example
if the phase frequency is 10 kHz, the PWM frequency for channels 5 to 8 can be 5, 10, 15,
20, (etc.) kHz.

To set I906 for a desired PWM frequency, the following formula can be used:

1
)kHz(Freq_PWM*4

)kHz(8.964,117906I −= (rounded down)

Example A 30 kHz PWM frequency is desired for Channels 5-8:
I906 = (117,964.8 / [4 * 30]) - 1 = 982

See Also I900, I992

I907 Hardware Clock Control Channels 5-8 {PMAC2 only}
Range 0 .. 4095

Units I907 = Encoder SCLK Divider
..........................+ 8 * PFM_CLK Divider
..........................+ 64 * DAC_CLK Divider
..........................+ 512 * ADC_CLK Divider
where:...............
Encoder SCLK Frequency = 39.3216 MHz / (2 ^ Encoder SCLK Divider)
PFM_CLK Frequency = 39.3216 MHz / (2 ^ PFM_CLK Divider)
DAC_CLK Frequency = 39.3216 MHz / (2 ^ DAC_CLK Divider)
ADC_CLK Frequency = 39.3216 MHz / (2 ^ ADC_CLK Divider)

Default 2258 = 2 + (8 * 2) + (64 * 3) + (512 * 4)
Encoder SCLK Frequency = 39.3216 MHz / (2 ^ 2) = 9.8304 MHz
PFM_CLK Frequency = 39.3216 MHz / (2 ^ 2) = 9.8304 MHz
DAC_CLK Frequency = 39.3216 MHz / (2 ^ 3) = 4.9152 MHz
ADC_CLK Frequency = 39.3216 MHz / (2 ^ 4) = 2.4576 MHz

 PMAC 2 Software Reference

138 PMAC I-Variable Specifiation

Remarks I907 controls the frequency of four hardware clock frequencies for the second group of
four machine interface channels on PMAC2 (channels 5-8). It is a 12-bit variable
consisting of four independent 3-bit controls, one for each of the clocks. Each of these
clock frequencies can be divided down from a starting 39.3216 MHz frequency by powers
of 2, from 1 to 128 times.
This means that the possible frequency settings for each of these clocks are:

Frequency Divide by Divider N in
1/2^N

39.3216 MHz 1 0
19.6608 MHz 2 1
9.8304 MHz 4 2
4.9152 MHz 8 3
2.4576 MHz 16 4
1.2288 MHz 32 5
614.4 kHz 64 6
307.2 kHz 128 7

Very few PMAC2 users will be required to change the setting of I907 from the default
value.

The encoder sample clock signal SCLK controls how often PMAC2’s digital hardware
looks at the encoder and flag inputs. PMAC2 can take at most one count per SCLK cycle,
so the SCLK frequency is the absolute maximum encoder count frequency. SCLK also
controls the signal propagation through the digital delay filters for the encoders and flags;
the lower the SCLK frequency, the greater the noise pulse that can be filtered out. The
SCLK frequency should optimally be set to the lowest value that can accept encoder
counts at the maximum possible rate.

The pulse-frequency-modulation clock PFM_CLK controls the PFM circuitry that is
commonly used for stepper drives. The maximum pulse frequency possible is 1/4 of the
PFM_CLK frequency. The PFM_CLK frequency should optimally be set to the lowest
value that can generate pulses at the maximum frequency required.

The DAC_CLK controls the serial data frequency into D/A converters. If these converters
are on Delta Tau-provided accessories, the DAC_CLK setting should be left at the default
value.

The ADC_CLK controls the serial data frequency from A/D converters. If these
converters are on Delta Tau-provided accessories, the ADC_CLK setting should be left at
the default value.

Example See I903 Example

See Also I903, I993

PMAC 2 Software Reference

PMAC I-Variable Specification 139

I908 PWM 5-8 Deadtime / PFM 5-8 Pulse Width Control {PMAC2 only}
Range 0 .. 255

Units PWM Deadtime = 0.135 usec * I908
PFM Pulse Width = [1 / PFM_CLK (MHz)] * I908
 = PFM_CLK_period (usec) * I908

Default 15
PWM Deadtime = 0.135 usec * 15 = 2.03 usec
PFM Pulse Width = [1 / 9.8304 MHz] * 15 = 1.526 usec (with default I907)

Remarks I908 controls the deadtime period between top and bottom on-times in PMAC2’s
automatic PWM generation for machine interface channels 5-8. In conjunction with I907,
it also controls the pulse width for PMAC2’s automatic pulse-frequency modulation
generation for machine interface channels 5-8.

The PWM deadtime, which is the delay between the top signal turning off and the bottom
signal turning on, and vice versa, is specified in units of 16 PWM_CLK cycles. This
means that the deadtime can be specified in increments of 0.135 usec. The equation for
I908 as a function of PWM deadtime is:

sec135.0
sec)(DeadTime904I

µ
µ

=

The PFM pulse width is specified in PFM_CLK cycles, as defined by I907. The equation
for I908 as a function of PFM pulse width and PFM_CLK frequency is:

sec)(Width_Pulse_PFM*)MHz(Freq_CLK_PFM908I µ=

In PFM pulse generation, the minimum off time between pulses is equal to the pulse width.
This means that the maximum PFM output frequency is

904I*2
)MHz(Freq_CLK_PFM

)MHz(Freq_Max_PFM =

Example See I904 Example.

See Also I904, I994

I909 DAC 5-8 Strobe Word {PMAC2 only}
Range $000000 .. $FFFFFF

Units Serial Data Stream (MSB first, starting on rising edge of phase clock)

Default $7FFFC0

Remarks I909 controls the DAC strobe signal for machine interface channels 5-8. The 24-bit word
set by I909 is shifted out serially on lines DAC_STROB1-4, MSB first, one bit per
DAC_CLK cycle starting on the rising edge of the phase clock. The value in the LSB is
held until the next phase clock cycle.

The default I909 value of $7FFFC0 is suitable for the 18-bit DACs on the ACC-8E Analog
Interface Board. I909 should not be changed from the default unless different DACs are
used.

For a 16-bit DAC, I909 should be set to $7FFF00. For a 12-bit DAC, I909 should be set to
$7FF000.

See Also I905

 PMAC 2 Software Reference

140 PMAC I-Variable Specifiation

Channel-Specific Gate Array I-Variables
(For Channel n, where n = 1 to 8)

I-Variables in the I910s through I980s control the hardware aspects of the “DSPGATE1” ASICs that
provide the machine interface for channels 1 through 8. Each DSPGATE1 ASIC controls four channels.
On an 8-channel PMAC2 (one that includes Option 1), I-variables for all 8 channels can be used. On a 4-
channel PMAC2 (PMAC2-Lite or other PMAC2 without Option 1), only the I-variables for the first 4
channels can be used. On a PMAC2 Ultralite, there are no local machine interface channels, so none of
the I-variables in this range may be used.

Note:
In almost all cases, the machine interface channel n used for Motor x will be of the
same number as the motor number (that is, n = x). However, this does not
necessarily have to be the case, so it is a good idea to keep a clear distinction
between the software motor functions and the hardware channel functions.

There are no I-variables for the Channels 9 – 16 that come on an ACC-24P/V2 board. Setup of these
channels must be done with M-variables assigned to the appropriate control registers of these channels,
and values assigned to these M-variables after every board power-up.

I9n0 Encoder/Timer n Decode Control {PMAC2 only}
Range 0 .. 15

Units None

Default 7

Remarks I9n0 controls how the input signal for Encoder n is decoded into counts. As such, this
defines the sign and magnitude of a “count”. The following settings may be used to
decode an input signal.

Setting Meaning
0 Pulse and direction CW
1 x1 quadrature decode CW
2 x2 quadrature decode CW
3 x4 quadrature decode CW
4 Pulse and direction CCW
5 x1 quadrature decode CCW
6 x2 quadrature decode CCW
7 x4 quadrature decode CCW
8 Internal pulse and direction
9 (reserved for future use)

10 (reserved for future use)
11 x6 hall decode CW
12 MLDT pulse timer control
13 (reserved for future use)
14 (reserved for future use)
15 x6 hall decode CCW

In any of the quadrature decode modes, PMAC2 is expecting two input waveforms on
CHAn and CHBn, each with approximately 50% duty cycle, and approximately one-
quarter of a cycle out of phase with each other. Times-one (x1) decode provides one count
per cycle; x2 provides two counts per cycle; and x4 provides four counts per cycle. The
vast majority of users select x4 decode to get maximum resolution.

PMAC 2 Software Reference

PMAC I-Variable Specification 141

The clockwise (CW) and counterclockwise (CCW) options simply control which direction
counts up. If you get the wrong direction sense, simply change to the other option (e.g.
from 7 to 3 or vice versa).

Note:
Changing the direction sense of the decode for the feedback encoder
of a motor that is operating properly will result in unstable positive
feedback and a dangerous runaway condition in the absence of other
changes. The output polarity must be changed as well to re-
establish polarity match for stable negative feedback.

In the pulse-and-direction decode modes, PMAC2 is expecting the pulse train on CHAn,
and the direction (sign) signal on CHBn. If the signal is unidirectional, the CHBn line can
be allowed to pull up to a high state, or it can be hardwired to a high or low state.
If I9n0 is set to 8, the decoder inputs the pulse and direction signal generated by Channel
n’s pulse frequency modulator (PFM) output circuitry. This permits the PMAC2 to create
a phantom closed loop when driving an open-loop stepper system. No jumpers or cables
are needed to do this; the connection is entirely within the ASIC. The counter polarity
automatically matches the PFM output polarity.
If I9n0 is set to 11 or 15, the decoder looks at the 3-phase inputs on CHAn, CHBn, and
CHCn, and decodes 6 states per cycle. This permits the use of hall-style commutation
sensors for feedback. Each signal should be about 50% duty cycle, and 1/3-cycle offset
from the other signals. The direction sense of the decode changes between I9n0 = 11 and
I9n0 = 15. This mode is only supported on “B” and newer revisions of the DSPGATE1
IC.
If I9n0 is set to 12, the timer circuitry is set up to read magnetostrictive linear displacement
transducers (MLDTs) such as TemposonicsTM. In this mode, the timer is cleared when the
PFM circuitry sends out the excitation pulse to the sensor on PULSEn, and it is latched
into the memory-mapped register when the excitation pulse is received on CHAn.

I9n1 Position Compare n Channel Select {PMAC2 only}
Range 0 .. 1

Units None

Default 0

Remarks I9n1 controls which encoder counter that Channel n’s position compare circuitry operates
with. When I9n1 is set to 0, the channel’s position compare register is tied to the channel’s
own encoder counter, and the position compare signal appears only on the EQUn output.

When I9n1 is set to 1, the channel’s position compare register is tied to the first encoder
counter on the ASIC – Encoder 1 for channels 1-4, or Encoder 5 for channels 5-8 – and the
position compare signal appears both on EQUn, and combined into the EQU output for the
first channel on the IC (EQU1 or EQU5); executed as a logical OR.

I911 and I951 perform no effective function, so are always 1. They cannot be set to 0.

 PMAC 2 Software Reference

142 PMAC I-Variable Specifiation

I9n2 Encoder n Capture Control {PMAC2 only}
Range 0 .. 15

Units none

Default 1

Remarks This parameter determines which input signal or combination of signals for channel n, and
which polarity, triggers a hardware position capture of the counter for encoder n. If a flag
input (home, limit, or user) is used, I9n3 determines which flag. Proper setup of this
variable is essential for a successful home search, which depends on the position-capture
function. The following settings may be used:

Setting Meaning
0 Software Control (immediate capture)
1 Rising edge of CHCn (third channel)
2 Rising edge of Flag n (as set by Flag Select)
3 Rising edge of [CHCn AND Flag n] – Low true index, high true Flag
4 Software Control (immediate capture)
5 Falling edge of CHCn (third channel)
6 Rising edge of Flag n (as set by Flag Select)
7 Rising edge of [CHCn/ AND Flag n] – Low true index, high true Flag
8 Software Control (immediate capture)
9 Rising edge of CHCn (third channel)

10 Falling edge of Flag n (as set by Flag Select)
11 Rising edge of [CHCn AND Flag n/] – High true index, low true Flag
12 Software Control (immediate capture)
13 Falling edge of CHCn (third channel)
14 Falling edge of Flag n (as set by Flag Select)
15 Rising edge of [CHCn/ AND Flag n/] – Low true index, low true Flag

Note that only flags and index inputs of the same channel number as the encoder may be
used for hardware capture of that encoder’s position. This means that to use the hardware
capture feature for the homing search move, Ix25 must use flags of the same channel
number as the encoder that Ix03 uses for position-loop feedback.

To do a software-controlled position capture, preset this parameter to 0 or 8; when the
parameter is then changed to 4 or 12, the capture is triggered (this is not of much practical
use).

The trigger is armed when the position capture register is read. After this, as soon as
PMAC2 sees that the specified input lines are in the specified states, the trigger will occur
– it is level-triggered, not edge-triggered.

PMAC 2 Software Reference

PMAC I-Variable Specification 143

I9n3 Capture n Flag Select Control {PMAC2 only}
Range 0 .. 3

Units none

Default 0

Remarks This parameter determines which of the “Flag” inputs will be used for position capture (if
one is used – see I902 etc.):

..........................0: HMFLn (Home Flag n)

..........................1: PLIMn (Positive End Limit Flag n)

..........................2: MLIMn (Negative End Limit Flag n)

..........................3: USERn (User Flag n)

Typically, this parameter is set to zero, because in actual use the LIMn flags create other
effects that usually interfere with what is trying to be accomplished by the position
capture. If you wish to capture on the PLIMn or MLIMn flags, you probably will want to
disable their normal functions with Ix25, or use a channel n where none of the flags is used
for the normal axis functions.

I9n4 Encoder n Gated Index Select {PMAC2 only}
Range 0 .. 1

Units none

Default 0

Remarks I9n4 controls whether the “raw” encoder index signal is used for the position capture of the
channels’ encoder counter, or whether the quadrature signals of the encoder are first used
to create a pulse that is a single quadrature state wide. When I9n4 is set to 0, the encoder
index channel input (CHCn) is passed directly into the position capture circuitry.

When I9n4 is set to 1, the encoder index channel input (CHCn) is logically combined with
(“gated by”) the quadrature signals of Encoder n before going to the position capture
circuitry. The intent is to get a “gated index” signal exactly one quadrature state wide.
This provides a more accurate and repeatable capture, and makes the use of the capture
function to confirm the proper number of counts per revolution very straightforward.

In order for the gated index capture to work reliably, the index pulse must reliably span
one, but only one, “high-high” or “low-low” AB quadrature state of the encoder. I9n5
allows you to select which of these two possibilities is used.

Note:

If I9n4 is set to 1, but I9n2 bit 0 is set to 0, so the index is not used
in the position capture, then the encoder position is captured on the
first edge of any of the U, V, or W flag inputs for the channel. In
this case, bits 0, 1, and 2 of the channel status word tell what hall-
state edge caused the capture.

 PMAC 2 Software Reference

144 PMAC I-Variable Specifiation

I9n5 Channel n Encoder Index Gate State/Demux Control {PMAC2 only}
Range 0 - 3
Units none
Default 0
Remarks I9n5 is a 2-bit variable that controls two functions for the index channel of the encoder.

When using the “gated index” feature of a PMAC2 Servo IC for more accurate position
capture (I9n4=1), bit 0 of I9n5 specifies whether the raw index-channel signal fed into
Encoder n is passed through to the position capture signal only on the “high-high”
quadrature state (bit 0 = 0), or only on the “low-low” quadrature state (bit 0 = 1).

Bit 1 of I9n5 controls whether the Servo IC “de-multiplexes” the index pulse and the 3
hall-style commutation states from the third channel based on the quadrature state, as with
Yaskawa incremental encoders. If bit 1 is set to 0, this de-multiplexing function is not
performed, and the signal on the “C” channel of the encoder is used as the index only. If
bit 1 is set to 1, the Servo IC breaks out the third-channel signal into four separate values,
one for each of the four possible AB-quadrature states. The de-multiplexed hall
commutation states can be used to provide power-on phase position using Ix81.

Note: The “B” revision or newer of the DSPGATE1 Servo IC is required to support this
hall de-multiplexing feature.

Note: Immediately after power-up, the Yaskawa encoder automatically cycles its AB
outputs forward and back through a full quadrature cycle to ensure that all of the hall
commutation states are available to the controller before any movement is started.
However, if the encoder is powered up at the same time as the PMAC2, this will happen
before the Servo IC is ready to accept these signals. Bit 2 of the channel’s status word,
“Invalid De-multiplex”, will be set to 1 if the Servo IC has not seen all of these states when
it was ready for them. To use this feature, it is recommended that the power to the encoder
be provided through a software-controlled relay to ensure that valid readings of all states
have been read before using these signals for power-on phasing.

I9n5 has the following possible settings:

• I9n5 = 0: Gate index with “high-high” quadrature state (GI = A & B & C), no demux
• I9n5 = 1: Gate index with “low-low” quadrature state (GI = A/ & B/ & C), no demux
• I9n5 = 2 or 3: De-multiplex hall and index from third channel, gating irrelevant

Note: Prior to firmware revision V1.17C, I9n5 was a single-bit I-variable controlling the
gating state only. The control bit for the de-multiplexing function had to be accessed
directly with an M-variable (it was stored to flash on a SAVE command and restored on
power-up/reset).

I9n6 Output n Mode Select {PMAC2 only}
Range 0 .. 3
Units none
Default 0
Remarks 0 = Outputs A & B are PWM; Output C is PWM

1 = Outputs A & B are DAC; Output C is PWM
2 = Outputs A & B are PWM; Output C is PFM
3 = Outputs A & B are DAC; Output C is PFM

I9n6 controls what output formats are used on the command output signal lines for

PMAC 2 Software Reference

PMAC I-Variable Specification 145

machine interface channel n. If a three-phase direct PWM command format is desired,
I9n6 should be set to 0. If signal outputs for (external) digital-to-analog converters are
desired, I9n6 should be set to 1 or 3. In this case, the C output can be used as a
supplemental (non-servo) output in either PWM or PFM form. For example, it can be used
to excite an MLDT sensor (e.g. TemposonicsTM) in PFM form.

I9n7 Output n Invert Control {PMAC2 only}
Range 0 .. 3
Units none
Default 0
Remarks I9n7 controls the high/low polarity of the command output signals for Channel n. The

default non-inverted outputs are high true.
For PWM signals on Outputs A, B, and C, this means that the transistor-on signal is high.
Delta Tau PWM-input amplifiers, and most other PWM-input amplifiers, expect this non-
inverted output format. For such a 3-phase motor drive, I9n7 should be set to 0.

Note:
If the high/low polarity of the PWM signals is wrong for a
particular amplifier, what was intended to be deadtime between top
and bottom on-states as set by I904 and I908 becomes overlap. If
the amplifier input circuitry does not lock this out properly, this
causes an effective momentary short circuit between bus power and
ground. This would destroy the power transistors very quickly.

For PFM signals on Output C, non-inverted means that the pulse-on signal is high
(direction polarity is controlled by I9n8). During a change of direction, the direction bit
will change synchronously with the leading edge of the pulse, which in the non-inverted
form is the rising edge.
If the drive requires a set-up time on the direction line before the rising edge of the pulse,
the pulse output can be inverted so that the rising edge is the trailing edge, and the pulse
width (established by I904 or I908) is the set-up time.
For DAC signals on Outputs A and B, non-inverted means that a 1 value to the DAC is
high. DACs used on Delta Tau accessory boards, as well as all other known DACs always
expect non-inverted inputs, so I9n7 should always be set to 0 or 2 when using DACs on
Channel n.

Note:
Changing the high/low polarity of the digital data to the DACs has
the effect of inverting the voltage sense of the DACs’ analog
outputs. This changes the polarity match between output and
feedback. If the feedback loop had been stable with negative
feedback, this change would create destabilizing positive feedback,
resulting in a dangerous runaway condition that would only be
stopped when the motor exceeded Ix11 fatal following error.

I9n8 Output n PFM Direction Signal Invert Control {PMAC2 only}
Range 0 .. 1
Units none
Default 0
Remarks 0 = Do not invert direction signal (+ = low; - = high)

 PMAC 2 Software Reference

146 PMAC I-Variable Specifiation

1 = Invert direction signal (- = low; + = high)
I9n8 controls the polarity of the direction output signal in the pulse-and-direction format
for Channel n. It is active only if I9n6 has been set to 2 or 3 to use Output C as a pulse-
frequency-modulated (PFM) output.
If I9n8 is set to the default value of 0, a positive direction command provides a low output;
if I9n8 is set to 1, a positive direction command provides a high output.

I9n9 Channel n Hardware-1/T Control {PMAC2 only}
Range 0 – 1
Units none
Default 0
Remarks I9n9 controls whether the “hardware-1/T” functionality is enabled for a PMAC2 Servo IC

on Channel n. If I9n9 is set to the default value of 0, the hardware-1/T functionality is
disabled, permitting the use of the “software-1/T” position extension that is calculated by
default with encoder conversion method $0. If I9n9 is set to 1, the hardware-1/T
functionality is enabled (if present on the IC), and the software-1/T cannot be used.

The hardware-1/T functionality is present only on Revision D and newer of the PMAC2-
style DSPGATE1 IC, released at the beginning of the year 2002. Setting I9n9 to 1 on an
older revision IC does nothing – software-1/T functions can still be used.

When the hardware-1/T functionality is enabled, the IC computes a new fractional-count
position estimate based on timers every SCLK (encoder sample clock) cycle. This permits
the fractional count data to be used for hardware capture and compare functions, enhancing
their resolution. This is particularly useful when the IC is used on an ACC-51 high-
resolution analog-encoder interpolator board. However, it replaces the timer registers at
the first two “Y” addresses for the channel with fractional count position data, so the
traditional software-1/T method of the conversion table cannot work if this is enabled.

If you enable the hardware-1/T functionality, and want to be able to use 1/T interpolation
in your servo loop, you must use the hardware-1/T extension method ($C method digit
with the mode switch bit set to 1) in the encoder conversion table.

PMAC2 DSPGATE2 I-Variables
I-Variables numbered in the I990s control hardware aspects of the “DSPGATE2” ASIC. This IC controls
operation of the MACRO ring on all PMAC2 boards. On the Ultralite versions of the PMAC2, this IC
also controls the frequency of the clock signals on the board, because the “DSPGATE1” ICs are not
present. On all of these boards, I990 and I991 control the decode of the handwheel encoder inputs on the
JHW port.

I990 Handwheel 1 Decode Control {PMAC2 only}
Range 0 .. 15

Units none

Default 7

Remarks I990 controls how the input signal for Handwheel 1 on the JHW port is decoded into
counts. As such, this defines the sign and magnitude of a “count”. The following settings
may be used to decode an input signal.

0:Pulse and direction CW
1:x1 quadrature decode CW
2:x2 quadrature decode CW

PMAC 2 Software Reference

PMAC I-Variable Specification 147

3:x4 quadrature decode CW
4:Pulse and direction CCW
5:x1 quadrature decode CCW
6:x2 quadrature decode CCW
7:x4 quadrature decode CCW
8:Internal pulse and direction
9-11:Not used
12:MLDT pulse timer control
13-15:Not used

In any of the quadrature decode modes, PMAC2 is expecting two input waveforms on
HWA1 and HWB1, each with approximately 50% duty cycle, and approximately one-
quarter of a cycle out of phase with each other. “Times-one” (x1) decode provides one
count per cycle; x2 provides two counts per cycle; and x4 provides four counts per cycle.
The vast majority of users select x4 decode to get maximum resolution.
The “clockwise” (CW) and “counterclockwise” (CCW) options simply control which
direction counts up. If you get the wrong direction sense, simply change to the other
option (e.g. from 7 to 3 or vice versa)

Note:
Changing the direction sense of the decode for the feedback encoder
of a motor that is operating properly will result in unstable positive
feedback and a dangerous runaway condition in the absence of other
changes. The output polarity must be changed as well to re-
establish polarity match for stable negative feedback.

In the pulse-and-direction decode modes, PMAC2 is expecting the pulse train on HWA1,
and the direction (sign) signal on HWB1. If the signal is unidirectional, the HWB1 line
can be allowed to pull up to a high state, or it can be hardwired to a high or low state.

If I990 is set to 8, the decoder inputs the pulse and direction signal generated by Channel
1*’s pulse frequency modulator (PFM) output circuitry. This permits the PMAC2 to create
a phantom closed loop when driving an open-loop stepper system. No jumpers or cables
are needed to do this; the connection is entirely within the ASIC. The counter polarity
automatically matches the PFM output polarity. This mode is only supported on “B” and
newer revisions of the DSPGATE2 IC.

If I990 is set to 12, the timer circuitry is set up to read magnetostrictive linear displacement
transducers (MLDTs) such as TemposonicsTM. In this mode, the timer is cleared when the
PFM circuitry sends out the excitation pulse to the sensor on PULSEn, and it is latched
into the memory-mapped register when the excitation pulse is received on HWA1. This
mode is only supported on “B” and newer revisions of the DSPGATE2 IC.

See Also I9n0, I991

I991 Handwheel 2 Decode Control {PMAC2 only}
Range 0 .. 15
Units none
Default 7
Remarks I991 controls how the input signal for Handwheel 2 is decoded into counts. As such, this

defines the sign and magnitude of a “count”. The following settings may be used to
decode an input signal.
0:Pulse and direction CW

 PMAC 2 Software Reference

148 PMAC I-Variable Specifiation

1:x1 quadrature decode CW
2:x2 quadrature decode CW
3:x4 quadrature decode CW
4:Pulse and direction CCW
5:x1 quadrature decode CCW
6:x2 quadrature decode CCW
7:x4 quadrature decode CCW
8:Internal pulse and direction
9-11:Not used
12:MLDT pulse timer control
13-15:Not used
In any of the quadrature decode modes, PMAC2 is expecting two input waveforms on
HWA2 and HWB2, each with approximately 50% duty cycle, and approximately one-
quarter of a cycle out of phase with each other. “Times-one” (x1) decode provides one
count per cycle; x2 provides two counts per cycle; and x4 provides four counts per cycle.
The vast majority of users select x4 decode to get maximum resolution.
The “clockwise” (CW) and “counterclockwise” (CCW) options simply control which
direction counts up. If you get the wrong direction sense, simply change to the other
option (e.g. from 7 to 3 or vice versa)

Note:
Changing the direction sense of the decode for the feedback encoder
of a motor that is operating properly will result in unstable positive
feedback and a dangerous runaway condition in the absence of other
changes. The output polarity must be changed as well to re-
establish polarity match for stable negative feedback.

In the pulse-and-direction decode modes, PMAC2 is expecting the pulse train on HWA2,
and the direction (sign) signal on HWB2. If the signal is unidirectional, the HWB2 line
can be allowed to pull up to a high state, or it can be hardwired to a high or low state.
If I991 is set to 8, the decoder inputs the pulse and direction signal generated by Channel
2*’s pulse frequency modulator (PFM) output circuitry. This permits the PMAC2 to create
a phantom closed loop when driving an open-loop stepper system. No jumpers or cables
are needed to do this; the connection is entirely within the ASIC. The counter polarity
automatically matches the PFM output polarity. This mode is only supported on “B” and
newer revisions of the DSPGATE2 IC.

If I991 is set to 12, the timer circuitry is set up to read magnetostrictive linear displacement
transducers (MLDTs) such as TemposonicsTM. In this mode, the timer is cleared when the
PFM circuitry sends out the excitation pulse to the sensor on PULSEn, and it is latched
into the memory-mapped register when the excitation pulse is received on HWA2. This
mode is only supported on “B” and newer revisions of the DSPGATE2 IC.

See Also I9n0, I990

I992 MaxPhase and PWM 1*-2* Frequency Control {PMAC2 only}
Range 0 .. 32767

Units MaxPhase Frequency = 117,964.8 kHz / [2*I992+3]
PWM Frequency = 117,964.8 kHz / [4*I992+6]

Default 6527
MaxPhase Frequency = 117,964.8 / 13057 = 9.0346 kHz

PMAC 2 Software Reference

PMAC I-Variable Specification 149

PWM Frequency = 117,964.8 / 26114 = 4.5173 kHz

Note:
On PMAC2 boards that are not “Ultralite”, I992 does not control
the MaxPhase frequency; I900 does. On all PMAC2 boards, the
PWM 1*-2* frequency is only important if you are using
supplemental PWM channels.

Remarks I992 controls the maximum phase clock frequency for the PMAC2 Ultralite, and the PWM
frequency for supplementary machine interface channels 1* and 2*. It does this by setting
the limits of the PWM up-down counter, which increments and decrements at the
PWMCLK frequency of 117,964.8 kHz (117.9648 MHz).

The actual phase clock frequency is divided down from the maximum phase clock
according to the setting of I997. On the falling edge of the phase clock, PMAC2 Ultralite
starts transmission of a set of MACRO ring data and interrupts the processor to start any
necessary phase commutation and digital current-loop algorithms. Even if phasing and
current-loop algorithms are not used, the MaxPhase and Phase clock frequencies are
important because the servo clock is derived from the phase clock.

To set I992 for a desired “maximum phase” clock frequency, the following formula can be
used:

I992 = (117,964.8 kHz / [2*MaxPhase (kHz)]) - 1 (rounded down)

On PMAC2 boards that are not “Ultralite”, I992 is generally set to the same value as I900,
which controls the maximum phase frequency, and the PWM frequency of channels 1 to 4.
If a different PWM frequency is desired for channels 1* and 2*, I992 should be set so that

}Integer{
PhaseFreq

)kHz(Freq*]2*1[PWM*2
=

−

Example To set a PWM frequency of 10 kHz and therefore a MaxPhase clock frequency of 20 kHz:
I992 = (117,964.8 kHz / [4*10 kHz]) - 1 = 2948

To set a PWM frequency of 7.5 kHz and therefore a MaxPhase clock frequency of 15 kHz:
I992 = (117,964.8 kHz / [4*7.5 kHz]) - 1 = 3931

I993 Hardware Clock Control Channels 1*-2* {PMAC2 only}
Range 0 .. 4095

Units I993 = Encoder SCLK Divider
..........................+ 8 * PFM_CLK Divider
..........................+ 64 * DAC_CLK Divider
..........................+ 512 * ADC_CLK Divider
..........................where:
Encoder SCLK Frequency = 39.3216 MHz / (2 ^ Encoder SCLK Divider)
PFM_CLK Frequency = 39.3216 MHz / (2 ^ PFM_CLK Divider)
DAC_CLK Frequency = 39.3216 MHz / (2 ^ DAC_CLK Divider)
ADC_CLK Frequency = 39.3216 MHz / (2 ^ ADC_CLK Divider)

Default 2258 = 2 + (8 * 2) + (64 * 3) + (512 * 4)
Encoder SCLK Frequency = 39.3216 MHz / (2 ^ 2) = 9.8304 MHz
PFM_CLK Frequency = 39.3216 MHz / (2 ^ 2) = 9.8304 MHz
DAC_CLK Frequency = 39.3216 MHz / (2 ^ 3) = 4.9152 MHz

 PMAC 2 Software Reference

150 PMAC I-Variable Specifiation

ADC_CLK Frequency = 39.3216 MHz / (2 ^ 4) = 2.4576 MHz

Remarks I993 controls the frequency of three hardware clock frequencies – SCLK, PFM_CLK, and
ADC_CLK – for the supplemental machine interface channels 1* and 2* on PMAC2 or
PMAC2 Ultralite (there is no DAC_CLK on the supplemental channels, but it is referred to
here for consistency with I903 and I907). It is a 12-bit variable consisting of four
independent 3-bit controls (the 3 bits for DAC_CLK are “don’t care”), one for each of the
clocks. Each of these clock frequencies can be divided down from a starting 39.3216 MHz
frequency by powers of 2, 2N, from 1 to 128 times (N=0 to 7). This means that the
possible frequency settings for each of these clocks are:

Frequency Divide by Divider N
in 1/2N

39.3216 MHz 1 0
19.6608 MHz 2 1
9.8304 MHz 4 2
4.9152 MHz 8 3
2.4576 MHz 16 4
1.2288 MHz 32 5
614.4 kHz 64 6
307.2 kHz 128 7

Very few PMAC2 users will be required to change the setting of I993 from the default
value.

The encoder sample clock signal SCLK controls how often PMAC2’s digital hardware
looks at the handwheel encoder inputs. PMAC2 can take at most one count per SCLK
cycle, so the SCLK frequency is the absolute maximum encoder count frequency. SCLK
also controls the signal propagation through the digital delay filters for the encoders and
flags; the lower the SCLK frequency, the greater the noise pulse that can be filtered out.
The SCLK frequency should optimally be set to the lowest value that can accept encoder
counts at the maximum possible rate.

The pulse-frequency-modulation clock PFM_CLK controls the PFM circuitry that can
create pulse and direction outputs on the JHW connector. The maximum pulse frequency
possible is 1/4 of the PFM_CLK frequency. The PFM_CLK frequency should optimally
be set to the lowest value that can generate pulses at the maximum frequency required.

The ADC_CLK controls the serial data frequency from A/D converters. These can only be
accessed as the alternate use of general-purpose I/O pins.

To determine the clock frequencies set by a given value of I993, use the following
procedure:

1. Divide I993 by 512 and round down to the nearest integer. This value N1 is the
ADC_CLK divider.

2. Multiply N1 by 512 and subtract the product from I993 to get I993’. Divide I993’ by
64 and round down to the nearest integer. This value N2 is the DAC_CLK divider
(not relevant here).

3. Multiply N2 by 64 and subtract the product from I993’ to get I993’’. Divide I993’’ by
8 and round down to the nearest integer. This value N3 is the PFM_CLK divider.

4. Multiply N3 by 8 and subtract the product from I993’’. The resulting value N4 is the

PMAC 2 Software Reference

PMAC I-Variable Specification 151

SCLK divider.

Example The maximum encoder count frequency in the application is 800 kHz, so the 1.2288 MHz
SCLK frequency is chosen. A pulse train up to 500 kHz needs to be generated, so the
2.4576 MHz PFM_CLK frequency is chosen. ADCs and DACs are not used, so the
default DAC_CLK frequency of 4.9152 MHz and the default ADC_CLK frequency of
2.4576 MHz are chosen. From the table:
..........................SCLK Divider N: 5
..........................PFM_CLK Divider N: 4
..........................DAC_CLK Divider N: 3
..........................ADC_CLK Divider N: 4
..........................I993 = 5 + (8 * 4) + (64 * 3) + (512 * 4) = 5 + 32 + 192 + 2048 = 2277

I993 has been set to 3429. What clock frequencies does this set?
..........................N1 = INT (3429/512) = 6 ADC_CLK = 611.44 kHz
..........................I993’ = 3429 - (512*6) = 357
..........................N2 = INT (357/64) = 5 DAC_CLK = 1.2288 MHz
..........................I993’’ = 357 - (64*5) = 37
..........................N3 = INT (37/8) = 4 PFM_CLK = 2.4576 MHz
 N4 = 37 - (8*4) = 5 SCLK = 1.2288 MHz

I994 PWM 1*-2* Deadtime / PFM 1* Pulse Width Control {PMAC2 only}
Range 0 .. 255

Units PWM Deadtime = [16 / PWM_CLK (MHz)] * I994 = 0.135 usec * I994
PFM Pulse Width = [1 / PFM_CLK (MHz)] * I994
 = PFM_CLK_period (usec) * I994

Default 15
PWM Deadtime = 0.135 usec * 15 = 2.03 usec
PFM Pulse Width = [1 / 9.8304 MHz] * 15 = 1.526 usec (with default I993)

Remarks I994 controls the deadtime period between top and bottom on-times in PMAC2’s
automatic PWM generation for supplemental machine interface channels 1* and 2*. In
conjunction with I993, it also controls the pulse width for PMAC2’s automatic pulse-
frequency modulation generation for supplemental machine interface channel 1*.
The PWM deadtime, which is the delay between the top signal turning off and the bottom
signal turning on, and vice versa, is specified in units of 16 PWM_CLK cycles. This
means that the deadtime can be specified in increments of 0.135 usec. The equation for
I994 as a function of PWM deadtime is:

sec135.0
sec)(DeadTime994I

µ
µ

=

The PFM pulse width is specified in PFM_CLK cycles, as defined by I993. The equation
for I994 as a function of PFM pulse width and PFM_CLK frequency is:

sec)(Width_Pulse_PFM*)MHz(Freq_CLK_PFM994I µ=

In PFM pulse generation, the minimum off time between pulses is equal to the pulse width.
This means that the maximum PFM output frequency is:

994I*2
)MHz(Freq_CLK_PFM

)MHz(Freq_Max_PFM =

Example A PWM deadtime of approximately 1 microsecond is desired:

 PMAC 2 Software Reference

152 PMAC I-Variable Specifiation

I994 ≅ 1 usec / 0.135 usec ≅ 7
With a 2.4576 MHz PFM_CLK frequency, a pulse width of 0.4 usec is desired:
 I994 ≅ 2.4576 MHz * 0.4 usec ≅ 1

I995 MACRO Ring Configuration/Status {PMAC2 only}
Range $0000 .. $FFFF (0 - 65,535)

Units none

Default 0

Remarks I995 contains configuration and status bits for MACRO ring operation of the PMAC2.
There are 11 configuration bits and 5 status bits, as follows:

Bit # Value Type Function
0 1($1) Status Data Overrun Error (cleared when read)
1 2($2) Status Byte Violation Error (cleared when read)
2 4($4) Status Packet Parity Error (cleared when read)
3 8($8) Status Packet Underrun Error (cleared when read)
4 16($10) Config Master Station Enable
5 32($20) Config Synchronizing Master Station Enable
6 64($40) Status Sync Node Packet Received (cleared when read)
7 128($80) Config Sync Node Phase Lock Enable
8 256($100) Config Node 8 Master Address Check Disable
9 512($200) Config Node 9 Master Address Check Disable
10 1024($400) Config Node 10 Master Address Check Disable
11 2048($800) Config Node 11 Master Address Check Disable
12 4096($1000) Config Node 12 Master Address Check Disable
13 8192($2000) Config Node 13 Master Address Check Disable
14 16384($4000) Config Node 14 Master Address Check Disable
15 32768($8000) Config Node 15 Master Address Check Disable

In most applications, the only important configuration bits are bits 4, 5, and 7. In every
MACRO ring, there must be one and only one synchronizing master. On this card, bits 4
and 5 should be set (1), but bit 7 should be clear (0). On this card, I995 should be set to
$30, or $xx30 if any of the high bits are to be set.

If there are more that one PMAC2 acting as a masters on the ring, these should not be
synchronizing masters, but they should enable “sync node phase lock” to stay
synchronized with the synchronizing master. One these cards, bit 4 should be set, bit 5
should be clear, and bit 7 should be set, so I995 should be set to $90, or $xx90 if any of the
high bits are to be set.

Bits 8-15 can be set individually to disable the “master address check” for their
corresponding node numbers. This capability is for multi-master broadcast and
synchronization. If the master address check is disabled, only the slave node number part
of the packet address must match for a packet to be latched in. In this way, the
synchronizing master can send the same data packet to multiple other master and slave
stations. This common packet can be used to keep multiple stations synchronized using
the sync lock function enabled with bit 7 of I995; the packet number is specified in I996
(packet 15 is suggested for this purpose).

PMAC 2 Software Reference

PMAC I-Variable Specification 153

I996 MACRO Node Activate Control {PMAC2 only}
Range $000000 .. $FFFFFF (0 to 8,388,607)

Units none

Default $0 (all nodes de-activated)

Remarks I996 controls which of the 16 MACRO nodes on the card are activated. It also controls the
master station number, and the node number of the packet that creates a synchronization
signal. The bits of I996 are arranged as follows:

Bit # Value Type Function
0 1($1) Config Node 0 Activate
1 2($2) Config Node 1 Activate
2 4($4) Config Node 2 Activate
3 8($8) Config Node 3 Activate
4 16($10) Config Node 4 Activate
5 32($20) Config Node 5 Activate
6 64($40) Config Node 6 Activate
7 128($80) Config Node 7 Activate
8 256($100) Config Node 8 Activate
9 512($200) Config Node 9 Activate
10 1024($400) Config Node 10 Activate
11 2048($800) Config Node 11 Activate
12 4096($1000) Config Node 12 Activate
13 8192($2000) Config Node 13 Activate
14 16384($4000) Config Node 14 Activate
15 32768($8000) Config Node 15 Activate
16-19 $X0000 Config Packet Sync Node Slave Address (0 - 15)
20-23 $X00000 Config Master Station Number (0-15)

Bits 0 to 15 are individual control bits for the matching node number 0 to 15. If the bit is
set to 1, the node is activated; if the bit is set to 0, the node is de-activated.

Note:
If the use of an activated node n includes auxiliary register
functions, including servo flags, bit n of I1000 must also be set to 1.

If the PMAC2 is a master station (likely) as determined by I995, it will send out a packet
for each activated node every ring cycle (every phase cycle). When it receives a packet for
an activated node, it will latch in that packet and not pass anything on.

If the PMAC2 is a slave station (unlikely but possible) as determined by I995, when it
receives a packet for an activated node, it will latch in the contents of that packet into its
read registers for that node address, and automatically substitute the contents of its write
registers into the packet.

If a node is disabled, the PMAC2, whether master or slave, will still latch in the contents of
a packet it receives, but it will also pass on the packet unchanged. This feature is
particularly useful for the MACRO broadcast feature, in which multiple stations need to
receive the same packet.

 PMAC 2 Software Reference

154 PMAC I-Variable Specifiation

Bits 16-19 together specify the slave number part of the packet address (0-15) that will
cause a sync lock pulse on the card, if this function is enabled by I995. This function is
useful for a PMAC2 that is a slave or non-synchronizing master on the ring, to keep it
locked to the synchronizing master. If the master address check for this node is disabled
with I995, only the slave number must match to create the sync lock pulse. If the master
address check is left enabled, the master number part of the packet address must match the
master number for the card, as set in bits 20-23 of I996.

If this card is the synchronizing master, this function is not enabled, so the value of these
bits does not matter; they can be left at the default of 0.

Bits 20-23 specify the master number for the card (0-15). The number must be specified
whether the card is a master station or a slave station.

B i t

H e x ($) 0 0 0 0 0 0

S l a v e n o d e E n a b l e s

S y n c n o d e A d d r e s s

M a s t e r A d d r e s s (0 - 1 5)

 (0 - 1 5)

Note:

On prototype PMAC2 boards that did not support multi-master
MACRO rings, I996 contained only bits 0-15.

Example Master number 0; Sync node address 0
Activated nodes 0-5; De-activated nodes 6-15:

I996 =0000 0000 0000 0000 0011 1111 (binary) = $00003F
Master number 1; Sync node address 15 ($F)
Activated nodes 0, 2, 4, 6, 8, 10, 12; other nodes de-activated:

I996 = 0001 1111 0001 0101 0101 0101 (binary) = $1F1555

I997 Phase Clock Frequency Control {PMAC2 only}
Range 0 .. 15

Units PHASE Clock Frequency = MaxPhase Frequency / (I997+1)

Default 0
PHASE Clock Frequency = 9.0346 kHz / 1 = 9.0346 kHz

 (with default value of I992)

Remarks I997, in conjunction with I992, determines the frequency of the PHASE clock on PMAC2
Ultralite. Each cycle of the PHASE clock, a set of MACRO ring information is
transmitted, and any required motor phase commutation and digital current-loop
algorithms are performed for specified motors.

PMAC 2 Software Reference

PMAC I-Variable Specification 155

Note:
On PMAC2 boards that are not “Ultralite”, I997 does not control
the Phase Clock frequency; I901 does. I997 has no effect on non-
Ultralite versions of the PMAC2.

Specifically, I997 controls how many times the PHASE clock frequency is divided down
from the maximum phase clock, whose frequency is set by I992. The PHASE clock
frequency is equal to the maximum phase clock frequency divided by (I997+1). I997 has a
range of 0 to 15, so the frequency division can be by a factor of 1 to 16. The equation for
I997 is:

1
)kHz(PhaseFreq

)kHz(eqMaxPhaseFr997I −=

The ratio of MaxPhase Freq. to PHASE Clock Freq. must be an integer.

Note:
If jumper E1 is ON, PMAC2 Ultralite gets its PHASE clock signal
externally from a serial-port input, and I997 is not used.

Note:
If the phase clock frequency is set too high, lower priority tasks
such as communications can be starved for time. If the background
tasks are completely starved, the watchdog timer will trip, shutting
down the board. If a normal reset of the board does not re-establish
a state where the watchdog timer has not tripped and
communications works well, it will be necessary to re-initialize the
board by powering up with the E3 re-initialization jumper on. This
restores default settings, so communication is possible, and I992
and I997 can be set to supportable values.

Example With a 20 kHz MaxPhase Clock frequency established by I992, and a desired 6.67 kHz
PHASE clock frequency, the ratio between MaxPhase and PHASE is 3:

I997 = (20 / 6.67) - 1 = 3 -1 = 2

I998 Servo Clock Frequency Control {PMAC2 only}
Range 0 .. 15

Units Servo Clock Frequency = PHASE Clock Frequency / (I998+1)

Default 3
SERVOClock Frequency = 9.0346 kHz / (3+1) = 2.2587 kHz
(with default values of I992 and I997)

Remarks I998, in conjunction with I997 and I992, determines the frequency of the SERVO clock on
PMAC2 Ultralite. Each cycle of the SERVO clock, PMAC2 Ultralite updates the
commanded position for each activated motor, and executes the servo algorithm to
compute the command output to the amplifier.

Note:
On PMAC2 boards that are not “Ultralite”, I998 does not control
the Servo Clock frequency; I902 does. I998 has no effect on non-
Ultralite versions of the PMAC2.

 PMAC 2 Software Reference

156 PMAC I-Variable Specifiation

Specifically, I998 controls how many times the SERVO clock frequency is divided down
from the PHASE clock, whose frequency is set by I992 and I997. The SERVO clock
frequency is equal to the PHASE clock frequency divided by (I998+1). I998 has a range
of 0 to 15, so the frequency division can be by a factor of 1 to 16. The equation for I998
is:

1
)kHz(ServoFreq
)kHz(PhaseFreq998I −=

The ratio of PHASE Clock Freq. to SERVO Clock Freq. must be an integer.
Note:

If jumper E1 is ON, PMAC2 Ultralite gets its SERVO clock signal
externally from a serial-port input, and I998 is not used.

For execution of trajectories at the proper speed, I10 must be set properly to tell the
trajectory generation software what the SERVO clock cycle time is. The formula for I10
is:

)kHz(ServoFreq
608,388,810I =

In terms of the variables that determine the SERVO clock frequency on a PMAC2 Ultralite
board, the formula for I10 is:

()()()1998I1997I3992I*2
9

64010I +++=

Example With a 6.67 kHz PHASE Clock frequency established by I900 and I997, and a desired 3.33
kHz SERVO Clock frequency:

I998 = (6.67 / 3.33) - 1 = 2 - 1 = 1
I999 (Reserved for Future Use)

MACRO Software Setup I-Variables

I1000 MACRO Node Auxiliary Register Enable
Range 0 .. $FFFF (0 .. 65,535)

Units none

Default 0

Remarks This parameter controls which MACRO nodes PMAC performs automatic copying into
and out of the auxiliary registers. Enabling this function for a node is required to use the
auxiliary register as the flag register for a motor.
I1000 is a 16-bit variable. Bits 0 to 15 control the enabling of this copying function for
MACRO nodes 0 to 15, respectively. A bit value of 1 means the copying function is
enabled; a bit value of 0 means the copying function is disabled.
If the copying function is enabled for Node n (where n = 0 to F hex or 0 to 15 decimal),
during each background “housekeeping” software cycle, PMAC copies the contents of
Y:$0F7n to the Node n auxiliary write register, and copies the contents of the Node n
auxiliary read register into X:$0F7n.
The copying function enabled by I1000 permits PLC and on-line-command auxiliary read
and write functions plus use of the auxiliary registers for command and status flags.

See Also MACRO Setup
I-Variables Ix25, I995, I996
On-line commands

PMAC 2 Software Reference

PMAC I-Variable Specification 157

I1001 MACRO Ring Check Period
Range 0 .. 255

Units servo cycles

Default 0

Remarks I1001 determines the period for PMAC to evaluate whether there has been a MACRO ring
failure. If I1001 is greater than 0, PMAC must receive a sufficient number of “sync node”
packets (the packet is specified by I996), and not detect too many ring communications
errors, in I1001 servo cycles. If either of these conditions is not met, PMAC will consider
there to be a ring fault, and it will disable all of its slave MACRO nodes.

If I1001 is 0 at power-up/reset, PMAC does not perform these checks, even if the MACRO
ring is active. To start performing these checks, set I1001 to a value greater than 0, issue a
SAVE command, then reset the card with a $$$ command.
If I1001 is greater than 0 at power-up/reset, the check period can be changed immediately
by changing the value of I1001; there is no need to SAVE the new value and reset the card
to get the new value to take effect.
In PMAC firmware versions V1.16D and older, PMAC performs these checks during its
background “housekeeping” cycle, executed once between each scan of each background
uncompiled PLC (all compiled background PLCs execute a scan each between each
housekeeping cycle). Each cycle, it can detect at most one sync node packet and one
communications error. In these firmware versions, the number of sync node packets
required in an I1001 check period to continue operation is fixed at 2, and the number of
communications errors in an I1001 check period that will cause disabling of operations
over the ring is fixed at 2.
In PMAC firmware versions V1.16E and newer, PMAC performs these checks during its
“real-time” interrupt (RTI) tasks, every (I8 + 1) servo cycles. Each RTI, it can detect at
most one sync node packet and one communications error. In these firmware versions the
number of sync node packets required in an I1001 check period to continue operation is set
by I1005, and the number of communications errors in an I1001 check period that will
cause disabling of operations over the ring is set by I1004.
In all firmware, it is vital that I1001 be set large enough that enough checks of the ring can
be executed in the allotted I1001 check period.
With the default servo update of 2.25 kHz (440 usec), an I1001 value of 10 sets the check
period at 4.4 msec. An I1001 value of 20 sets the check period at 8.8 msec.

See Also I-variables I996, I1004, I1005

I1002 MACRO Node Protocol Type Control
Range 0 .. $FFFF (0 .. 65,535)

Units none

Default 0

Remarks I1002 controls for each MACRO node (0 – 15) whether the Type 0 or Type 1 MACRO
protocol is used on that node. I1002 is a 16-bit value; each bit 0 – 15 controls the protocol
type for the MACRO node of the same number. A value of 0 in the bit selects the Type 0
protocol for the matching MACRO node; a value of 1 in the bit selects the Type 1 protocol
for the node.

 PMAC 2 Software Reference

158 PMAC I-Variable Specifiation

The key difference between Type 0 and Type 1 protocols is in which node register is used
for control and status flags. In the Type 0 protocol, the 1st register (24 bits) is used for the
flags; in the Type 1 protocol, the 4th registers (16 bits) is used for the flags. The bits of
I1002 must be set properly for any node whose auxiliary flag function is enabled by I1000.

The Type 0 protocol is generally used for older single-node MACRO devices, such as the
Performance Controls FLX Drive. The Type 1 protocol is generally used for multi-node
MACRO devices, such as Delta Tau’s MACRO Station (MACRO Stack or UMAC
MACRO). With the Delta Tau MACRO Station, I1002 is generally set to the same value
as I1000.

See Also I-variables Ix25, I1000

I1003 MACRO Type 1 Master/Slave Communications Timeout
Range 0 .. 255

Units servo cycles

Default 0

Remarks I1003 permits the enabling of MACRO Type 1 master-slave auxiliary communications
using Node 15, which are executed with the MS, MSR, and MSW commands. If I1003 is set
to 0, these communications are disabled. If I1003 is set to a value greater than 0, these
communications are enabled, and the value of I1003 sets the “timeout” value for the
auxiliary response, in PMAC servo cycles.

If PMAC has not received a response to the MACRO auxiliary communications command
within I1003 servo cycles, it will stop waiting and register a “MACRO Auxiliary
Communications Error”, setting Bit 5 of global status register X:$000006. A value of 32
for I1003 is suggested.

Bit 15 of I1000 must be set to 0 to disable Node 15’s Type 0 (node-specific) auxiliary
communications if II1003 is greater than 0. If a value of I1003 greater than 0 has been
saved into PMAC’s non-volatile memory, then at subsequent power-up/resets, bit 15 of
I1000 is automatically forced to 0 by PMAC firmware, regardless of the value saved for
I1000.

See Also I-Variable I1000
On-line commands MACROSLV, MACROSLVREAD, MACROSLVWRITE
Program commands MACROSLVREAD, MACROSLVWRITE

I1004 MACRO Ring Error Shutdown Count
Range 0 .. 255

Units MACRO ring errors

Default 2

Remarks I1004 determines the number of MACRO communications errors detected in one ring
check period that will cause the PMAC to conclude that the ring operation is defective.
This check is only performed if the I1001 MACRO ring check period parameter is set
greater than 0 at power-up/reset. In this case, if PMAC detects I1004 or greater MACRO
communications errors in I1001 servo cycles, it will kill all of its motors.

PMAC 2 Software Reference

PMAC I-Variable Specification 159

PMAC can detect one ring communications error per real-time interrupt (I8+1 servo
cycles) even if more than one error has occurred. Valid settings of I1004 are less than
I1001/(I8+1). Regardless of the setting of I1004, if a ring error is detected on every check
during the period, a “ring fault” is declared.

PMAC can detect four types of MACRO communications errors: byte “violation” errors,
packet checksum errors, packet overrun errors, and packet underrun errors.

If I1004 is set to 0 at power-on/reset, the PMAC will automatically set it to 2.

Before I1004 was implemented, a fixed value of 2 ring errors was used.

See Also I-Variables I8, I995, I1001, I1004

I1005 MACRO Ring Sync Packet Shutdown Count
Range 0 .. 65,535

Units MACRO sync packets

Default 4

Remarks I1005 determines the minimum number of MACRO “sync node” communications packets
(“sync packets”) that must be detected in one ring check period for PMAC to conclude the
the ring is operating properly and permit normal machine operation to continue. This
check is only performed if the I1001 MACRO ring check period parameter is set greater
than 0. In this case, if PMAC detects fewer than I1005 MACRO sync packets in I1001
servo cycles, it will cause the PMAC to “kill” all of its motors.

PMAC can detect one MACRO sync packet per real-time interrupt (I8+1 servo cycles)
even if more than one sync packet has been received in that period. Valid settings of I1005
are less than or equal to I1001/(I8+1). Setting I1005 to a value greater than I1001/(I8+1)
means that PMAC will never receive enough sync packets and will always disable its slave
stations on the ring.

The node number n, 0 to 15, of the sync packet is determined by bits 16 to 19 (the second
hex digit) of I996. This node n must be activated by setting bit n of I996 to 1; otherwise,
PMAC will immediately detect a ring communications error.

If I1005 is set to 0 at power-on/reset, the PMAC will automatically set it to 2.

Before I1005 was implemented, a fixed value of 2 sync packets was used.

See Also I-Variables I8, I995, I996 I1001, I1005

I1010 Resolver Excitation Phase Offset {Geo PMAC only}
Range 0 – 255

Units 1/256 cycle

Default 0

Remarks I1010 specifies the phase (time) offset for the AC excitation created by the Geo PMAC for
resolvers. The optimum setting of I1010 depends on the L/R time constant of the resolver
circuit. I1010 should be set interactively so as to maximize the magnitudes of the feedback
ADC values (Y:$FF00 and Y:$FF01 for Resolver 1; Y:$FF20 and Y:$FF21 for Resolver
2).

I1010 is only used if the Geo PMAC’s Feedback Option 1 for analog position feedback is
ordered.

 PMAC 2 Software Reference

160 PMAC I-Variable Specifiation

I1011 Resolver Excitation Gain {Geo PMAC only}
Range 0 – 3

Units Gain-1

Default 0

Remarks I1011 specifies the gain of the AC excitation output created by the Geo PMAC for
resolvers, with the gain equal to (I1011 + 1). With a gain of 1, the nominal AC output has
peak voltages of +/-2.5V. The following table lists the possible values of I1011 and the
nominal output magnitudes they produce:

I1011 Excitation Mag.
0 +/-2.5V
1 +/-5.0V
2 +/-7.5V
3 +/-10.0V

I1011 is only used if the Geo PMAC’s Feedback Option 1 for analog position feedback is
ordered.

I1012 Resolver Excitation Frequency Divider {Geo PMAC only}
Range 0 – 3

Units none

Default 0

Remarks I1012 specifies the frequency of the AC excitation output created by the Geo PMAC for
resolvers as a function of the phase clock frequency set by I900 and I901. The following
table lists the possible values of I1012 and the excitation frequencies they produce:

I1012 Excitation Freq.
0 PhaseFreq
1 PhaseFreq/2
2 PhaseFreq/4
3 PhaseFreq/6

I1012 is only used if the Geo PMAC’s Feedback Option 1 for analog position feedback is
ordered.

I1013 Motor Temperature Check Enable {Geo PMAC only}
Range 0 – 3

Units none

Default 0

Remarks I1013 controls whether the motor temperature check function is enabled for the motor(s)
connected to the Geo PMAC. I1013 is a 2-bit value: bit 0 controls whether the
temperature check function is enabled for Motor 1, and bit 1 controls whether the
temperature check function is enabled for Motor 2. The following table shows the four
possible values of I1013 and the functions they produce:

PMAC 2 Software Reference

PMAC I-Variable Specification 161

I1013 Motors to Check
Temperature

0 Neither
1 Motor 1 only
2 Motor 2 only
3 Motors 1 & 2

If the Geo PMAC is checking temperature for the motor, the motor thermal sensor must be
connected to pin 23 of the main encoder connector for the motor.

I1015 SSI Clock Frequency Control {New, Geo PMAC only}
Range 0 – 3

Units none

Default 0

Remarks I1015 specifies the frequency of the digital clock output for the SSI-encoder interfaces on
the Geop PMAC. The following table lists the possible values of I1015 and the clock
frequencies they produce:

I1015 SSI Clock Freq.
0 153.6 kHz
1 307.2 kHz
2 614.4 kHz
3 1.2288 MHz

I1015 is only used if the Geo PMAC’s Feedback Option 2 for absolute position feedback is
ordered.

I1016 SSI Channel 1 Mode Control {Geo PMAC only}
Range 0 – 3

Units None

Default 3

Remarks I1016 specifies the mode for interpreting data from the first SSI-encoder interface on a
Geo PMAC. The following table lists the possible values of I1016 and the data formats
they cause the Geo PMAC to expect:

I1016 SSI Clock Freq.
0 (Reserved)
1 (Reserved)
2 Numeric binary
3 Gray code

I1016 is only used if the Geo PMAC’s Feedback Option 2 for absolute position feedback is
ordered.

 PMAC 2 Software Reference

162 PMAC I-Variable Specifiation

I1017 SSI Channel 1 Word Length Control {Geo PMAC only}
Range 0 – 3

Units none

Default 3

Remarks I1017 specifies the word length in bits from the first SSI-encoder interface on a Geo
PMAC. The following table lists the possible values of I1017 and the word lengths they
cause the Geo PMAC to request:

I1017 Word Length
0 12 bits
1 16 bits
2 20 bits
3 24 bits

I1017 is only used if the Geo PMAC’s Feedback Option 2 for absolute position feedback is
ordered.

I1018 SSI Channel 2 Mode Control {Geo PMAC only}
Range 0 – 3

Units None

Default 3

Remarks I1018 specifies the mode for interpreting data from the second SSI-encoder interface on a
Geo PMAC. The following table lists the possible values of I1018 and the data formats
they cause the Geo PMAC to expect:

I1018 SSI Clock Freq.
0 (Reserved)
1 (Reserved)
2 Numeric binary
3 Gray code

I1018 is only used if the Geo PMAC’s Feedback Option 2 for absolute position feedback is
ordered.

PMAC 2 Software Reference

PMAC I-Variable Specification 163

I1019 SSI Channel 2 Word Length Control {Geo PMAC only}
Range 0 – 3

Units None

Default 3

Remarks I1019 specifies the word length in bits from the second SSI-encoder interface on a Geo
PMAC. The following table lists the possible values of I1019 and the word lengths they
cause the Geo PMAC to request:

I1019 Word Length
0 12 bits
1 16 bits
2 20 bits
3 24 bits

I1019 is only used if the Geo PMAC’s Feedback Option 2 for absolute position feedback is
ordered.

I1020 Lookahead Length {Option 6L firmware only}
Range 0 – 65,535

Units I13 segmentation periods

Default 0

Remarks I1020 controls the enabling of the lookahead buffering function for the coordinate system
that has a defined lookahead buffer, and if enabled, determines how far ahead the buffer
will look ahead.

If I1020 is set to 0 (the default), the buffered lookahead function is not used, even if a
lookahead buffer has been defined.

If I1020 is set to 1, points are stored in the lookahead buffer as they are calculated, but no
lookahead velocity or acceleration-limiting calculations are done. The stored points can
then be used to back up along the path as necessary.

If I1020 is set to a value greater than 1, PMAC will look I1020 segments ahead on
LINEAR and CIRCLE mode moves, provided that the PMAC is in segmentation mode
(I13 > 0) and a lookahead buffer has been defined. The lookahead algorithm can extend
the time for each segment in the buffer as needed to keep velocities under the Ix16 limits
and the accelerations under the Ix17 limits.

For proper lookahead control, I1020 must be set to a value large enough so that PMAC
looks ahead far enough that it can create a controlled stop from the maximum speed within
the acceleration limit. This required stopping time for a motor can be expressed as:

17Ix
16Ix

maxA
maxVStopTime ==

All motors in the coordinate system should be evaluated to see which motor has the
longest stopping time. This motor’s stopping time will be used to compute I1020.

The average speed during this stopping time is Vmax/2, so as the moves enter the lookahead
algorithm at Vmax (the worst case), the required time to look ahead is StopTime/2.
Therefore, the required number of segments always corrected in the lookahead buffer can

 PMAC 2 Software Reference

164 PMAC I-Variable Specifiation

be expressed as:

13I*17Ix*2
16Ix

)segsec/m(SegTime
2/sec)m(StopTimeeadSegmentsAh ==

Because PMAC does not completely correct the lookahead buffer as each segment is
added, the lookahead distance specified by I1020 must be slightly larger than this. The
formula for the minimum value of I1020 that guarantees sufficient lookahead for the
stopping distance is:

eadSegmentsAh*
3
41020I =

If a fractional value results, round up to the next integer. A value of I1020 less than this
amount will not result in velocity or acceleration limits being violated; however, the
algorithm will not permit maximum velocity to be reached, even if programmed.

I1020 should not be set greater than the number of segments reserved in the DEFINE
LOOKAHEAD command. If the lookahead algorithm runs out of buffer space, PMAC will
automatically reduce I1020 to reflect the amount of space that is available.

Example The axes in a system have a maximum speed of 24,000 mm/min, or 400 mm/sec (900
in/min or 15 in/sec). They have a maximum acceleration of 0.1g or 1000 mm/sec2 (40
in/sec2), and a count resolution of 1µm. A maximum block rate of 200 blocks/sec is
desired, so I13 is set to 5 msec. The parameters can be computed as:

• Ix16 = 400 mm/sec * 0.001 sec/msec * 1000 cts/mm = 400 cts/msec
• Ix17 = 1000 mm/sec2 * 0.0012 sec2/msec2 * 1000 cts/mm = 1.0 cts/msec2
• I1020 = [4/3] * [400 cts/msec / (2 * 1.0 cts/msec2 *5 msec/seg)] = 54 segments

PMAC 2 Software Reference

PMAC I-Variable Specification 165

I1021 Lookahead State Control {Option 6L Firmware Only}
Range 0 – 15

Units none

Default 0

Remarks I1021 permits direct control of the state of lookahead execution, without going through
PMAC’s background command interpreter. This is useful for applications such as wire
EDM, which can require very quick stops and reversals.
• Setting I1021 to 4 is the equivalent of issuing the \ quick-stop command
• Setting I1021 to 7 is the equivalent of issuing the < back-up command
• Setting I1021 to 6 is the equivalent of resuming forward motion with the > resume

forward command.
If you are monitoring I1021 at other times, you will see that the “4’s” bit is cleared after
the command has been processed. Therefore, you will see the following values:
• I1021 = 0 when stopped with a quick-stop command
• I1021 = 3 when running reversed in lookahead
• I1021 = 2 when running forward in lookahead

Note:
In preliminary versions of the special PMAC lookahead firmware,
I1021 served a different function. That variable value is now a
constant value (3) set by the firmware.

 PMAC 2 Software Reference

166 PMAC On-Line Command Specification

PMAC ON-LINE COMMAND SPECIFICATION
<CONTROL-A>
Function Abort all programs and moves.

Scope Global

Syntax ASCII Value 1D; $01

Remarks This command aborts all motion programs and stops all non-program moves on the card. It
also brings any disabled or open-loop motors to an enabled zero-velocity closed-loop state.
Each motor will decelerate at a rate defined by its own motor I-variable Ix15. However, a
multi-axis system may not stay on its programmed path during this deceleration.
A <CTRL-A> stop to a program is not meant to be recovered from gracefully, because the
axes will in general not stop at a programmed point. The next programmed move will not
behave properly unless a PMATCH command is given or I14 is set to 1 (these cause PMAC to
use the aborted position as the move start position). Alternately, an on-line J command may
be issued to each motor to cause it to move to the end point that was programmed when the
abort occurred. Then the program(s) can be resumed with an R (run) command.
To stop a motion sequence in a manner that can be recovered from easily, use instead the
Quit (Q or <CTRL-Q>) or the Hold (H or <CTRL-O>) command.
When PMAC is set up to power on with all motors killed (Ix80 = 0), this command can be
used to enable all of the motors (provided that they are not commutated by PMAC – in that
case, each motor should be enabled with the $ command).
For multiple cards on a single serial daisy-chain, this command affects all cards on the chain,
regardless of the current software addressing.

See Also Stop Commands (Making Your Application Safe)
On-line commands A, $, J=, PMATCH, H, <CTRL-O>, Q, <CTRL-Q>
I-variables I14, Ix15, Ix80.

<CONTROL-B>
Function Report status word for all motors.

Scope Global

Syntax ASCII Value 2D; $02

Remarks This command causes PMAC to report the status words for all of the motors to the host in
hexadecimal ASCII form, 12 characters per motor starting with motor #1, with the characters
for each motor separated by spaces. The characters reported for each motor are the same as if
the ? command had been issued for that motor.
The detailed meanings of the individual status bits are shown under the ? command
description.
For multiple cards on a single serial daisy-chain, this command affects only the card
currently addressed in software (@n).

Example <CTRL-B>
812000804001 812000804001 812000A04001 812000B04001 050000000000
050000000000 050000000000 050000000000<CR>

See Also On-line commands <CTRL-C>, <CTRL-G>, ?, @n
Memory-map registers X:$003D, X:$0079, etc., Y:$0814, Y:$08D4;
Suggested M-Variable definitions Mx30-Mx45.

PMAC 2 Software Reference

PMAC On-Line Command Specification 167

<CONTROL-C>
Function Report all coordinate system status words

Scope Global

Syntax ASCII Value 3D, $03

Remarks This command causes PMAC to report the status words for all of the coordinate systems to
the host in hexadecimal ASCII form, 12 characters per coordinate system starting with
coordinate system 1, with the characters for each coordinate system separated by spaces. The
characters reported for each coordinate system are the same as if the ?? command had been
issued for that coordinate system.

The detailed meanings of the individual status bits are shown under the ?? command
description.

For multiple cards on a single serial daisy-chain, this command affects only the card
currently addressed in software (by the @n command).

Example <CTRL-C>
A80020020000 A80020020000 A80020020000 A80020020000 A80020000000
A80020000000 A80020000000 A80020000000<CR>

See Also On-line commands <CTRL-B>, <CTRL-G>, ??;
Memory-map registers Y:$0817, Y:$08D7, etc., X:$0818, X:$08D8, etc.;
Suggested M-variable definitions Mx80-Mx90.

<CONTROL-D>
Function Disable all PLC programs.

Scope Global

Syntax ASCII Value 4D; $04

Remarks This command causes all PLC programs to be disabled (i.e. stop executing). This is the
equivalent of DISABLE PLC 0..31 and DISABLE PLCC 0..31. It is especially
useful if a CMD or SEND statement in a PLC has run amok.

For multiple cards on a single serial daisy-chain, this command affects all cards on the chain,
regardless of the current software addressing.

Example TRIGGER FOUND
TRIGTRIGER FOTRIGGER FOUND
TRTRIGTRIGGER FOUND (Out-of-control SEND message from PLC)
<CTRL-D> (Command to disable the PLCs)

 (No more messages; can now edit PLC)
See Also On-line commands DISABLE PLC, ENABLE PLC, DISABLE PLCC, ENABLE PLCC,

OPEN PLC
Program commands DISABLE PLC, ENABLE PLC, DISABLE PLCC, ENABLE PLCC,
COMMAND, SEND

 PMAC 2 Software Reference

168 PMAC On-Line Command Specification

<CONTROL-F>
Function Report following errors for all motors.

Scope Global

Syntax ASCII Value 6D; $06

Remarks This command causes PMAC to report the following errors of all motors to the host. The
errors are reported in an ASCII string, each error scaled in counts, rounded to the nearest
tenth of a count. A space character is returned between the reported error for each motor.
Refer to the on-line F command for more detail as to how the following error is calculated.
For multiple cards on a single serial daisy-chain, this command affects only the card
currently addressed in software (by the @n command).

Example <CTRL-F>
0.5 7.2 -38.3 1.7 0 0 0 0<CR>

See Also I-variables Ix11, Ix12
On-line commands F, <CTRL-P>, <CTRL-V>

<CONTROL-G>
Function Report global status word.

Scope Global

Syntax ASCII Value 7D; $07

Remarks This command causes PMAC to report the global status words to the host in hexadecimal
ASCII form, using 12 characters. The characters sent are the same as if the ??? command
had been sent, although no command acknowledgement character (<ACK> or <LF>,
depending on I3) is sent at the end of the response.

The detailed meanings of the individual status bits are shown under the ??? command
description.

For multiple cards on a single serial daisy-chain, this command affects only the card
currently addressed in software (by the @n command).

Example <CTRL-G>
003000400000<CR>

See Also On-line commands <CTRL-B>, <CTRL-C>, ???
Memory-map registers X:$0003, Y:$0003.

<CONTROL-H>
Function Erase last character.

Scope Global

Syntax ASCII Value 8D; $08 (<BACKSPACE>).

Remarks This character, usually entered by typing the <BACKSPACE> key when talking to PMAC in
terminal mode, causes the most recently entered character in PMAC’s command-line-receive
buffer to be erased.

See Also Talking to PMAC
On-line command <CTRL-O> (Feed Hold All)

<CONTROL-I>
Function Repeat last command line.

PMAC 2 Software Reference

PMAC On-Line Command Specification 169

Scope Global

Syntax ASCII Value 9D; $09 (<TAB>).

Remarks This character, sometimes entered by typing the <TAB> key, causes the most recently sent
alphanumeric command line to PMAC to be re-commanded. It provides a convenient way to
quicken a repetitive task, particularly when working interactively with PMAC in terminal
mode. Other control-character commands cannot be repeated with this command.

Note:
Internally generated commands from CMD "{command}"
statements in motion and PLC programs overwrite the last executed
command from the host, and so can alter the action of this character.

Note:
Most versions of the PMAC Executive Program “trap” a <CTRL-I>
or <TAB> for their own purposes, and do not send it on to PMAC,
even when in terminal mode

Example This example shows how the tab key can be used to look for some event:
PC<CR>
P1:10<CR>
<TAB>
P1:10<CR>
<TAB>
P1:10<CR>
<TAB>
P1:11<CR>

See Also On-line command <CONTROL-Y>.

<CONTROL-K>
Function Kill all motors.

Scope Global

Syntax ASCII Value 11D; $0B

Remarks This command kills all motor outputs by opening the servo loop, commanding zero output,
and taking the amplifier enable signal (AENAn) false (polarity is determined by jumper E17)
for all motors on the card. If any motion programs are running, they will automatically be
aborted. (For the motor-specific K (kill) command, if the motor is in a coordinate system that
is executing a motion program, the program execution must be stopped with either an A
(abort) or Q (quit) command before PMAC will accept the K command.)

For multiple cards on a single serial daisy-chain, this command affects all cards on the chain,
regardless of the current software addressing.

See Also On-line commands K, A, <CONTROL-A>.

<CONTROL-L>
Function Close open rotary buffer.

Scope Global

Syntax ASCII Value 12D; $0C

Remarks This character causes PMAC to close the open rotary program buffer on PMAC. It is exactly
equivalent in effect to the CLOSE command, but it is faster to send. The primary use of

 PMAC 2 Software Reference

170 PMAC On-Line Command Specification

<CTRL-L> is when the rotary buffer needs to be opened and closed repeatedly. After
closing the rotary buffer, there is no chance that an on-line command can be mistaken for a
buffer command.

Example <CTRL-U> ; Open rotary buffer
X10 Y20 F5 M3 ; Put program line in buffer
X30 Y40 F5 ; Put program line in buffer
<CTRL-L> ; Close rotary buffer
M1 ; On-line command for value of M1
1 ; PMAC responds

See Also Rotary Motion Program Buffers (Writing a Motion Program)

On-line commands <CTRL-U>, OPEN ROT, CLOSE

PMAC 2 Software Reference

PMAC On-Line Command Specification 171

<CONTROL-M>
Function Enter command line.

Scope Global

Syntax ASCII Value 13D; $0D (<CR>)

Remarks This character, commonly known as <CR> (carriage return), causes the alphanumeric
characters in the PMAC’s command-line-receive buffer to be interpreted and acted upon.
(Control-character commands do not require a <CR> character to execute.)

Note:
For multiple PMACs daisy-chained together on a serial interface, this
will act on all cards simultaneously, not just the software-addressed
card. For simultaneous action on multiple cards, it is best to load up
the command-line-receive buffers on all cards before issuing the
<CR> character.

Example #1J+<CR>
P1<CR>
@0&1B1R@1&1B7R<CR> (This causes card 0 on the serial daisy-chain to have its CS 1
 execute PROG 1 and card 1 to have its CS 1 execute
 PROG 7 simultaneously.)

See Also Talking to PMAC

<CONTROL-N>
Function Report command line checksum.

Scope Global

Syntax ASCII Value 14D; $0E

Remarks This character causes PMAC to calculate and report the checksum of the alphanumeric
characters of the present command lines (i.e. since the most recent carriage-return character).

As typically used, the host computer would send the entire command line up to, but not
including, the carriage return. It would then send the <CTRL-N> character, and PMAC
would return the checksum value. If this value agreed with the host’s internally calculated
checksum value, the host would then send the <CR> and PMAC would execute the command
line. If the values did not agree, the host would send a <CTRL-X> command to erase the
command line, then resend the line, repeating the process.

Note:
The PMAC Executive Program terminal mode will not display the
checksum values resulting from a <CTRL-N> command.

Example With I4=1 and I3=2:
Host sends:......... J+<CTRL-N>
PMAC sends: <117dec> (117=74[J] + 43[+]; correct)
Host sends:......... <CR>
PMAC sends: <ACK><117dec> (handshake and checksum again)
Host sends:......... J/<CTRL-N>
PMAC sends: <122dec> (122 != 74[J] +47[/]; incorrect)
Host sends:......... <CTRL-X> (Erase the incorrect command)
........................... J/<CTRL-N> (Send the command again)

 PMAC 2 Software Reference

172 PMAC On-Line Command Specification

PMAC sends: <121dec> (121 = 74[J] + 47[/]; correct)
Host sends:......... <CR>
PMAC sends: <ACK><121dec> (handshake and checksum again)

See Also Communications Checksum (Writing a Host Communications Program)
I-variables I3, I4
On-line commands <CTRL-M> (<CR>), <CTRL-X>

<CONTROL-O>
Function Feed hold on all coordinate systems.

Scope Global

Syntax ASCII Value 15D; $0F

Remarks This command causes all coordinate systems in PMAC to undergo a feed hold. A feed hold
is much like a %0 command where the coordinate system is brought to a stop without
deviating from the path it was following, even around curves. However, with a feed hold, the
coordinate system slows down at a slew rate determined by Ix95, and can be started up again
with an R (run)command. The system then speeds up at the rate determined by Ix95, until it
reaches the desired value (from internal or external timebase). From then on, any timebase
changes occur at a rate determined by Ix94.

For multiple cards on a single serial daisy-chain, this command affects all cards on the chain,
regardless of the current software addressing.

On a flash memory PMAC that is in bootstrap mode (powered up with E51 ON), the
<CTRL-O> command puts PMAC into its firmware reload command. All subsequent
characters sent to PMAC are interpreted as bytes of machine code for PMAC’s operational
firmware, overwriting the existing operational firmware in flash memory.

See Also Resetting PMAC (Talking to PMAC)
I-variables I52, Ix94, Ix95
On-line commands <CTRL-H> (backspace) H (feedhold), R (run), % (feedrate override), \

(program hold).
Jumper E51

<CONTROL-P>
Function Report positions of all motors.

Scope Global

Syntax ASCII Value 16D; $10

Remarks This command causes the positions of all motors to be reported to the host. The positions are
reported as an ASCII string, scaled in counts, rounded to the nearest tenth of a count, with a
space character in between each motor’s position.

The position window in the PMAC Executive program works by repeatedly sending the
<CTRL-P> command and rearranging the response into the window.

PMAC reports the value of the actual position register plus the position bias register plus the
compensation correction register, and if bit 16 of Ix05 is 1 (handwheel offset mode), minus
the master position register.

For multiple cards on a single serial daisy-chain, this command affects only the card
currently addressed in software (by the @n command).

PMAC 2 Software Reference

PMAC On-Line Command Specification 173

Example <CTRL-P>
9999.5 10001.2 5.7 -2.1 0 0 0 0<CR>

See Also On-line commands P, <CTRL-V>, <CTRL-F>.

<CONTROL-Q>
Function Quit all executing motion programs.

Scope Global

Syntax ASCII Value 17D; $11

Remarks This command causes any and all motion programs running in any coordinate system to stop
executing after the moves that have already been calculated are finished. Program execution
may be resumed from this point with the R (run) or S (step) commands.

For multiple cards on a single serial daisy-chain, this command affects all cards on the chain,
regardless of the current software addressing.

See Also On-line commands <CTRL-A>, <CTRL-K>, <CTRL-O>, <CTRL-R>, <CTRL-S>, Q
Motion-program command STOP.

<CONTROL-R>
Function Begin execution of motion programs in all coordinate systems.

Scope Global

Syntax ASCII Value 18D; $12

Remarks This command is the equivalent of issuing the R (run) command to all coordinate systems in
PMAC. Each active coordinate system (i.e. one that has at least one motor assigned to it) that
is to run a program must already be pointing to a motion program (initially this is done with a
B{prog num} command).

For multiple cards on a single serial daisy-chain, this command affects all cards on the chain,
regardless of the current software addressing.

For a flash memory PMAC that is in bootstrap mode (powered up with E51 ON), the
<CTRL-R> command puts PMAC into normal operational mode, but with factory default I-
variables, conversion table settings, and VME/DPRAM addresses.

Example &1B1&2B500<CR>
<CTRL-R>

See Also Executing a Motion Program (Writing a Motion Program)
Resetting PMAC (Talking to PMAC)
On-line commands R, B.
Jumper E51

 PMAC 2 Software Reference

174 PMAC On-Line Command Specification

<CONTROL-S>
Function Step working motion programs in all coordinate systems.

Scope Global

Syntax ASCII Value 19D; $13

Remarks This command is the equivalent of issuing an S (step) command to all of the coordinate
systems in PMAC. Each active coordinate system (i.e. one that has at least one motor
assigned to it) that is to run a program must already be pointing to a motion program (initially
this is done with a B{prog num} command).

A program that is not running will execute all lines down to and including the next motion
command (move or dwell), or if it encounters a BLOCKSTART command first, all lines down
to and including the next BLOCKSTOP command.

If a program is already running in continuous execution mode (from an R (run) command), an
S command will put the program in single-step mode, stopping execution after the next
motion command). In this situation, it has exactly the same effect as a Q (quit) command.

For multiple cards on a single serial daisy-chain, this command affects all cards on the chain,
regardless of the current software addressing.

See Also On-line commands <CTRL-A>, <CTRL-O>, <CTRL-Q>, <CTRL-R>, A, H, O, Q, R, S;
Motion-program commands BLOCKSTART, BLOCKSTOP, STOP.
Control-panel port (JPAN) input STEP/.

<CONTROL-T>
Function Toggle serial port half/full duplex mode.

Scope Global

Syntax ASCII Value 20D; $14

Remarks This causes serial port communications to toggle between half duplex (PMAC will not echo
character back to host) and full duplex (PMAC will echo character back to host). The power-
up default is half duplex.

This command is invalid when multiple PMACs are daisy-chained on a single serial
interface.

See Also Data Integrity Checks (Writing a Host Communications Program)
On-line command <CTRL-Z>.

<CONTROL-U>
Function Open rotary program buffer(s).

Scope Global

Syntax ASCII Value 21D; $15

Remarks This character causes PMAC to open all existing rotary motion program buffers for entry. It
is exactly equivalent in effect to the OPEN ROTARY command, but it is faster to send.
Along with the <CTRL-L> command, it permits rapid opening and closing of the rotary
buffer, so that on-line commands can be sent with the buffer closed without chance that they
will be mistaken for buffer commands.

Example <CTRL-L> ; Close rotary buffer
M1 ; On-line command for value of M1

PMAC 2 Software Reference

PMAC On-Line Command Specification 175

1......................... ; PMAC responds
<CTRL-U> ; Open rotary buffer
X10 Y20 F5 M3 ; Put program line in buffer
X30 Y40 F5 ; Put program line in buffer

See Also Rotary Motion Program Buffers (Writing a Motion Program)
On-line commands <CTRL-L>, OPEN ROT, CLOSE

<CONTROL-V>
Function Report velocity of all motors.

Scope Global

Syntax ASCII Value 22D; $16

Remarks This command causes PMAC to report the velocities of all motors to the host. The velocity
units are in encoder counts per servo cycle, rounded to the nearest tenth. The <F7> velocity
window in the PMAC Executive program works by repeatedly issuing the <CTRL-V>
command and displaying the response on the screen.

To scale these values into counts/msec, multiply the response by 8,388,608*(Ix60+1)/I10
(servo cycles/msec).

Note:
The velocity values reported here are obtained by subtracting positions
of consecutive servo cycles. As such, they can be very noisy. For
purposes of display, it is probably better to use averaged velocity
values held in registers Y:$082A, Y:$08EA, etc., accessed with M-
variables

For multiple cards on a single serial daisy-chain, this command affects only the card
currently addressed in software (@n).

See Also I-variable I10, Ix60
On-line commands <CTRL-F>, <CTRL-P>, V
Memory registers X:$0033, X:$006F, etc.
Suggested M-variable definitions Mx66

<CONTROL-X>
Function Cancel in-process communications.
Scope Global
Syntax ASCII Value 24D; $18
Remarks This command causes the PMAC to stop sending any messages that it had started to send,

even multi-line messages. This also causes PMAC to empty the command queue from the
host, so it will erase any partially sent commands.
It can be useful to send this before sending a query command for which you are expecting an
exact response format, if you are not sure what PMAC has been doing before, because it
makes sure nothing else comes through before the expected response. As such, it is often the
first character sent to PMAC from the host when trying to establish initial communications.
In addition, many Delta Tau communications routines start by sending a <CTRL-X>
command to ensure that there is no previously pending response that could confuse the host
software.

 PMAC 2 Software Reference

176 PMAC On-Line Command Specification

If I63 is set to 0, there is no acknowledgment of the completion of the <CTRL-X>
command. If I63 is set to 1, PMAC acknowledges the completion of the command with a
<CTRL-X> to the host, permitting the host to know that it is safe to send the next command.
PCOMM32 versions 10.21 and newer can take advantage of this feature to improve the speed
of communications.

Note:
This command empties the command queue in PMAC RAM, but it
cannot erase the 1 or 2 characters already in the response port. A
robust algorithm for clearing responses would include 2 character-read
commands that can time-out if necessary.

For multiple cards on a single serial daisy-chain, this command affects all cards on the chain,
regardless of the current software addressing.

See Also On-line commands <CTRL-H>, <CTRL-Z>

<CONTROL-Y>
Function Report last command line.

Scope Global

Syntax ASCII Value 25D; $19

Remarks This causes PMAC to report the last command line to the host (with no trailing <CR>) and to
re-enter the line into the command queue ready to execute upon the next receipt of <CR>.
This allows a user communicating with PMAC in terminal mode to recall the last command
and to be able to edit it with the backspace and typing in desired changes. The command will
be re-executed when the host sends a <CR>.

Note:
Internally generated commands from CMD "{command}"
statements in motion and PLC programs overwrite the last executed
command from the host, and so can alter the action of this character.

Example P123=5<CR> . ;Set the first value
P124=7<CR> ... ;Set the second value
P123<CR> ;Query the first value
5......................... ;PMAC responds with value
<CTRL-Y> ;Tell PMAC to report last command
P123.................. ;PMAC reports last command
<BACKSPACE>4<CR> ;Modify to P124 and send
7 ;PMAC tells value of P124

See Also On-line command <CONTROL-I>.

<CONTROL-Z>
Function Set PMAC in serial port communications mode.

Scope Global

Syntax ASCII Value 26D; $1A

Remarks This command causes PMAC’s serial port to become the active communications output port.
All PMAC responses directed to the host will be sent over the serial port. This mode will
continue until a command is received over the bus (parallel) port, which will make the bus
port the active communications output port. PMAC powers up/resets with the serial port the

PMAC 2 Software Reference

PMAC On-Line Command Specification 177

active port.

If you are trying to establish communications with PMAC over the serial port, it is a good
idea to send this character before any query commands to make sure PMAC will try to
respond over the serial port.

Regardless of which is the active output port, PMAC can accept commands over either port.
It is the user’s responsibility not to garble commands by simultaneously commanding over
both ports.

Example Serial host sends: P1
PMAC responds to serial port: 12
Bus host sends: .. P1=P1+1
Serial host sends: P1
PMAC responds to bus port: 13
(Serial host gets no response)
Serial host sends: <CTRL-Z>P1
PMAC responds to serial port: 13

See Also On-line commands <CTRL-T>, <CTRL-X>;
Jumpers E44-E47.

Function Report currently addressed motor
Scope Global
Syntax # Ask PMAC which motor is addressed

Remarks This causes PMAC to return the number of the motor currently addressed by the host – the
one that acts upon motor-specific commands from the host.

Note:
A different motor may be hardware selected from the control panel
port for motor-specific control panel inputs, and that different motors
may be addressed from programs within PMAC for COMMAND
statements.

Example #
2 PMAC reports that motor 2 is addressed

See Also Control-Panel Port Inputs (Connecting PMAC to the Machine)
On-line commands #{constant}, &, &{constant}, @{constant}
Program commands ADDRESS, COMMAND

#{constant}
Function Address a motor.

Scope Global

Syntax #{constant)
where:
• {constant} is an integer from 1 to 8, representing the number of the motor to be

addressed
Remarks This command makes the motor specified by {constant} the addressed motor (the one on

which on-line motor commands will act). The addressing is modal, so all further motor-
specific commands will affect this motor until a different motor is addressed. At power-

 PMAC 2 Software Reference

178 PMAC On-Line Command Specification

up/reset, Motor 1 is addressed.
Note:

A different motor may simultaneously be hardware selected from the
control panel port for motor-specific control panel inputs, and that
different motors may be addressed from programs within PMAC for
COMMAND statements.

Example #1J+.................. ;Command Motor 1 to jog positive
J- ;Command Motor 1 to jog negative
#2J+.................. ;Command Motor 2 to jog positive
J/ ;Command Motor 2 to stop jogging

See Also Control-Panel Port Inputs (Connecting PMAC to the Machine)
Addressing commands (Talking to PMAC)
Program commands COMMAND, ADDRESS
On-line commands #, &, &{constant}, @{constant}

#{constant}->
Function Report the specified motor’s coordinate system axis definition.

Scope Coordinate-system specific

Syntax #{constant

where:
• {constant} is an integer from 1 to 8 representing the number of the motor whose axis

definition is requested
Remarks This command causes PMAC to report the current axis definition of the specified motor in

the currently addressed coordinate system. If the motor has not been defined to an axis in the
currently addressed system, PMAC will return a 0 (even if the motor has been assigned to an
axis in another coordinate system). A motor can have an axis definition in only one
coordinate system at a time.

Example &1 ; Address Coordinate System 1
#1->.................. ; Request Motor 1 axis definition in C.S. 1
10000X ; PMAC responds with axis definition
&2 ; Address Coordinate System 2
#1->.................. ; Request Motor 1 axis definition in C.S. 2
0 ; PMAC shows no definition in this C.S.

See Also Axes, Coordinate Systems (Setting Up a Coordinate System)
On-line commands #{constant}->0, #{constant}->{axis definition},
UNDEFINE, UNDEFINE ALL.

#{constant}->0
Function Clear axis definition for specified motor.

Scope

Syntax #{constant}->0
where:
• {constant} is an integer from 1 to 8 representing the number of the motor whose axis

definition is to be cleared

Remarks This command clears the axis definition for the specified motor if the motor has been defined
to an axis in the currently addressed coordinate system. If the motor is defined to an axis in
another coordinate system, this command will not be effective. This allows the motor to be

PMAC 2 Software Reference

PMAC On-Line Command Specification 179

redefined to another axis in this coordinate system or a different coordinate system.

Compare this command to UNDEFINE, which erases all the axis definitions in the addressed
coordinate system, and to UNDEFINE ALL, which erases all the axis definitions in all
coordinate systems.

Example This example shows how the command can be used to move a motor from one coordinate
system to another:
&1 ; Address C.S. 1
#4->.................. ; Request definition of #4
5000A ; PMAC responds
#4->0 ; Clear definition
&2 ; Address C.S. 2
#4->5000A...... ; Make new definition in C.S. 2

See Also Axes, Coordinate Systems (Setting Up a Coordinate System)
On-line commands UNDEFINE, UNDEFINE ALL, #{constant}->{axis
definition}.

#{constant}->{axis definition}
Function Assign an axis definition for the specified motor.

Scope Coordinate-system specific

Syntax #{constant}->{axis definition}

where:
• {constant} is an integer from 1 to 8 representing the number of the motor whose axis

definition is to be made;
• {axis definition} consists of:

• 1 to 3 sets of [{scale factor}]{axis}, separated by the + character, in
which:
 the optional {scale factor} is a floating-point constant representing the

number of motor counts per axis unit (engineering unit); if none is specified,
PMAC assumes a value of 1.0;

 {axis} is a letter (X, Y, Z, A, B, C, U, V, W) representing the axis to which
the motor is to be matched;

• [+{offset}] (optional) is a floating-point constant representing the difference
between axis zero position and motor zero (home) position, in motor counts; if
none is specified, PMAC assumes a value of 0.0

Note:
No space is allowed between the motor number and the arrow double
character.

Remarks This command assigns the specified motor to a set of axes in the addressed coordinate
system. It also defines the scaling and starting offset for the axis or axes.
In the vast majority of cases, there is a one-to-one matching between PMAC motors and
axes, so this axis definition statement only uses one axis name for the motor.
A scale factor is typically used with the axis character, so that axis moves can be specified in
standard units (e.g. millimeters, inches, degrees). This number is what defines what the user
units will be for the axis. If no scale factor is specified, a user unit for the axis is one motor
count. Occasionally an offset parameter is used to allow the axis zero position to be different

 PMAC 2 Software Reference

180 PMAC On-Line Command Specification

from the motor home position. (This is the starting offset; it can later be changed in several
ways, including the PSET, {axis}=, ADIS, and IDIS commands).
If the specified motor is currently assigned to an axis in a different coordinate system, PMAC
will reject this command (reporting an ERR003 if I6=1 or 3). If the specified motor is
currently assigned to an axis in the addressed coordinate system, the old definition will be
overwritten by this new one.
To undo a motor’s axis definition, address the coordinate system in which it has been
defined, and use the command #{constant}->0. To clear all of the axis definitions
within a coordinate system, address the coordinate system and use the UNDEFINE command.
To clear all axis definitions in all coordinate systems, use UNDEFINE ALL.
For more sophisticated systems, two or three cartesian axes may be defined as a linear
combination of the same number of motors. This allows coordinate system rotations and
orthogonality corrections, among other things. One to three axes may be specified (if only
one, it amounts to the simpler definition above). All axes specified in one definition must be
from the same triplet set of cartesian axes: XYZ or UVW. If this multi-axis definition is
used, a command to move an axis will result in multiple motors moving.

Example #1->X ; User units = counts
#4->2000 A . ; 2000 counts/user unit
#8->3333.333Z-666.667 ; Non-integers OK
#3->Y ; 2 motors may be assigned to the same axis;
#2->Y ; both motors move when a Y move is given
#1->8660X-5000Y ;This provides a 30o rotation of X and Y...
#2->5000X+8660Y ;with 10000 cts/unit – this rotation does
#3->2000Z-6000 ;not involve Z, but it could have
This example corrects for a Y axis 1 arc minute out of square:
#5->100000X ;100000 cts/in
#6->-29.1X+100000Y ;sin and cos of 1/60

See Also Axes, Coordinate Systems (Setting Up a Coordinate System)
On-line commands #{constant}->, #{constant}->0, UNDEFINE, UNDEFINE
ALL.

PMAC 2 Software Reference

PMAC On-Line Command Specification 181

$
Function Reset motor

Scope Motor specific

Syntax $

Remarks This command causes PMAC to initialize the addressed motor, performing any required
commutation phasing and full reading of an absolute position sensor, leaving the motor in a
closed-loop zero-velocity state. (For a non-commutated motor with an incremental encoder,
the J/ command may also be used.)

This command is necessary to initialize a PMAC-commutated motor after power-up/reset if
Ix80 for the motor is set to 0. If Ix80 is 1, the initialization will be done automatically during
the power-up/reset cycle.

This command will not be accepted if the motor is executing a move.

Example I180.................. ; Request value of #1 power-on mode variable
0......................... ; PMAC responds with 0; powers on unphased and killed
$$$; Reset card; motor is left in killed state
#1$; Initialize motor, phasing and reading as necessary

See Also Absolute Sensors (Setting Up a Motor)
Power-on Phasing (Setting Up PMAC Commutation)
I-variables Ix10, Ix73, Ix74, Ix75, Ix80, Ix81
On-line commands $$$, J/

$$$
Function Full card reset.

Scope Global

Syntax $$$

Remarks This command causes PMAC to do a full card reset. The effect of $$$ is equivalent to that
of cycling power on PMAC, or taking the INIT/ line low, then high.

With jumper E51 in its default state (OFF for PMAC-PC, -Lite, -VME, ON for PMAC-STD),
this command does a standard reset of the PMAC. On PMACs without the Option CPU
section (not option 4A, 5A, or 5B), I-variable values, conversion-table settings, and DPRAM
and VMEbus addresses stored in permanent memory (EAROM) by the last SAVE command
are reloaded into active memory (RAM). All information stored in battery backed RAM
such as P-variable and Q-variable values, M-variable definitions, and motion and PLC
programs are not changed by this command.

On PMACs with the Option CPU section (option 4A, 5A, or 5B), PMAC copies the contents
of the flash memory into active memory during a normal reset cycle, overwriting any current
contents. This means that anything changed in PMAC’s active memory that was not saved to
flash memory will be lost. Even the last saved P-variable and Q-variable values, M-variable
definitions, and motion and PLC programs are copied from flash to RAM during the reset
cycle.

 PMAC 2 Software Reference

182 PMAC On-Line Command Specification

With jumper E51 in non-default state (ON for PMAC-PC, -Lite, -VME, OFF for PMAC-
STD), this command does a reset and re-initialization of the PMAC. On PMACs without the
Option CPU section (not option 4A, 5A, or 5B), factory default I-variable values, conversion-
table settings, and DPRAM and VMEbus addresses stored in the firmware (EPROM) are
copied into active memory (RAM). (Values stored in EAROM are not lost; they are simply
not used.)

On PMACs with the Option CPU section (option 4A, 5A, or 5B), PMAC enters a special re-
initialization mode called “bootstrap mode” that permits the downloading of new firmware
(see PMAC PROM SOFTWARE UPDATE LISTING for details of this mode). In this
bootstrap mode, there are very few command options. To bypass the download operation in
this mode, send a <CONTROL-R> character to PMAC. This puts PMAC in the normal
operational mode with the existing firmware. Factory default values for I-variables,
conversion table settings, and bus addresses for DPRAM and VME are copied from the
firmware section of flash memory into active memory. The saved values of these values are
not used, but they are still kept in the user section of flash memory.

Because this command immediately causes PMAC to enter its power-up/rest cycle, there is
no acknowledging character (<ACK> or <LF>) returned to the host.

Example I130=60000 ... ; Change #1 proportional gain
SAVE.................. ; SAVE I-variables to EAROM
I130=80000 ... ; Change gain again
$$$; Reset card
I130.................. ; Request value of parameter
60000 ; PMAC reports current value, which is SAVEd value
(Put E51 on)
$$$; Reset card
I130.................. ; Request value of parameter
2000 ; PMAC reports current value, which is default

See Also Resetting PMAC (Talking to PMAC)
PMAC PROM SOFTWARE UPDATE LISTING
Control-Panel Port INIT/ Input (Connecting PMAC to the Machine)
On-line command $$$***
I-variables I5, Ix80
JPAN Connector Pin 15
Jumper E51.

$$$***
Function Global card reset and re-initialization.

Scope Global

Syntax $$$***

Remarks This command performs a full reset of the card and reinitializes the memory. All programs
and other buffers are erased. All I-variables, encoder conversion table entries, and VME and
DPRAM addressing parameters are returned to their factory defaults. (Previously SAVEd
values for these parameters are still held in EAROM, and can be brought into active memory
with a subsequent $$$ command). It will also recalculate the firmware checksum reference
value and eliminate any PASSWORD that might have been entered.

PMAC 2 Software Reference

PMAC On-Line Command Specification 183

M-variable definitions, P-variable values, Q-variable values, and axis definitions are not
affected by this command. They can be cleared by separate commands (e.g. M0..1023-
>*, P0..1023=0, Q0..1023=0, UNDEFINE ALL).

This command is particularly useful if the program buffers have become corrupted. It clears
the buffers and buffer pointers so the files can be re-sent to PMAC. Regular backup of
parameters and programs to the disk of a host computer is strongly encouraged so this type of
recovery is possible. The PMAC Executive program has Save Full PMAC Configuration and
Restore Full PMAC Configuration functions to make this process easy.

With jumper E51 in non-default state (ON for PMAC-PC, -Lite, -VME, OFF for PMAC-
STD), a PMAC with the Option CPU section (option 4A, 5A, or 5B) enters a special re-
initialization mode called “bootstrap mode” when this command is given. This mode permits
the downloading of new firmware (see PMAC PROM SOFTWARE UPDATE LISTING for
details of this mode). In this mode, there are very few command options. To bypass the
download operation in this mode, send a <CONTROL-R> character to PMAC. This puts
PMAC in the normal operational mode with the existing firmware. Factory default values for
I-variables, conversion table settings, and bus addresses for DPRAM and VME are copied
from the firmware section of flash memory into active memory. The saved values of these
values are not used, but they are still kept in the user section of flash memory.

Example I130=60000 ... ; Set #1 proportional gain
SAVE.................. ; Save to non-volatile memory
$$$*** ; Reset and re-initialize card
I130.................. ; Request value of I130
2000.................. ; PMAC reports current value, which is default
$$$; Normal reset of card
I130.................. ; Request value of I130
60000 ; PMAC reports current value, which is SAVEd value

See Also On-line command $$$;
PMAC PROM Software Update Listing
Jumper E51
PMAC Executive Program Save/Restore Full Configuration.

$*
Function Read motor absolute position

Scope Motor specific

Syntax $*

Remarks The $* command causes PMAC to perform a read of the absolute position for the addressed
motor, as defined by Ix10 for the motor. It performs the same actions that are normally
performed during the board’s power-up/reset cycle.

The $* command performs the following actions on the addressed motor:
• The motor is killed (servo loop open, zero command, amplifier disabled).
• If the motor is set up for local hardware encoder position capture by input flags, with bit

16 of Ix03 set to 0 to specify hardware capture, and bit 18 of Ix25 set to 0 to specify local,
not MACRO, flag operation (these are default values), the hardware encoder counter for
the same channel as the flag register specified by Ix25 is set to 0 (e.g. if Ix25 specifies
flags from channel 3, then encoder counter 3 is cleared).

• The motor home complete status bit is cleared.

 PMAC 2 Software Reference

184 PMAC On-Line Command Specification

• The motor position bias register, which contains the difference between motor and axis
zero positions, is set to 0.

• If Ix10 for the motor is greater than 0, specifying an absolute position read, the sensor is
read as specified by Ix10 to set the motor actual position. The actual position value is set
to the sensor value minus the Ix26 “home offset” parameter. Unless the read is
determined to be unsuccessful, the motor “home complete” status bit is set to 1.

• If Ix10 for the motor is set to 0, specifying no absolute position read, the motor actual
position register is set to 0.

• Because the motor is “killed” the actual position value is automatically copied into the
command position register for the motor.

• There are several things to note with regard to this command:
• The motor is left in the “killed” state at the end of execution of this command. To enable

the motor, a $ command should be used if this is a PMAC-commutated motor and a
phase reference must be established; otherwise a J/, A, or <CTRL-A> command should
be used to enable the motor and close the loop.

• If bit 2 of Ix80 is set to 1, PMAC will not attempt an absolute position read at the board
power-on/reset; in this case, the $* command must be used to establish the absolute
sensor. If bit 2 of Ix80 is set to 0 (the default), PMAC will attempt an absolute position
read at the board power-on/reset.

• With Ix10 set to 0, the action of $* is very similar to that of the HOMEZ command. There
are a few significant differences, however:
• $* always kills the motor; HOMEZ leaves the servo in its existing state.
• $* sets the present actual position to be zero; HOMEZ sets the present commanded

position to be zero.
• $* zeros the hardware encoder counter in most cases; HOMEZ does not change the

hardware encoder counter.

See Also I-variables Ix03, Ix10, Ix25, Ix80, Ix81
On-line commands $, $$$, HOMEZ

%
Function Report the addressed coordinate system’s feedrate override value.

Scope Coordinate-system specific

Syntax %

Remarks This command causes PMAC to report the present feedrate-override (time-base) value for the
currently addressed coordinate system. A value of 100 indicates “‘real time”‘; i.e. move
speeds and times occur as specified.
PMAC will report the value in response to this command, regardless of the source of the
value (even if the source is not the %{constant} command)

Example %......................... Request feedrate-override value
100 ; PMAC responds: 100 means real time
H......................... ; Command a feed hold

%......................... ; Request feedrate-override value
0 ; PMAC responds: 0 means all movement frozen

PMAC 2 Software Reference

PMAC On-Line Command Specification 185

See Also Time-Base Control (Synchronizing PMAC to External Events)
I-Variables I10, Ix93, Ix94, Ix95
On-line commands %{constant}, H
Memory map registers X:$0808, X:$08C8, etc.

%{constant}
Function Set the addressed coordinate system’s feedrate override value.

Scope Coordinate-system specific

Syntax %{constant}
where:
• {constant} is a non-negative floating point value specifying the desired feedrate

override (time-base) value (100 represents real-time)

Remarks This command specifies the feedrate override value for the currently addressed coordinate
system. The rate of change to this newly specified value is determined by coordinate system
I-variable Ix94.

I-variable Ix93 for this coordinate system must be set to its default value (which tells to
coordinate system to take its time-base value from the % -command register) in order for this
command to have any effect.

The maximum % value that PMAC can implement is equal to (223/I10)*100 or the (servo
update rate in kHz)*100. If you specify a value greater than this, PMAC will saturate at this
value instead.

To control the time base based on a variable value, assign an M-variable (suggested M197) to
the commanded time base register (X:$0806, X:$08C6, etc.), then assign a variable value to
the M-variable. The value assigned here should be equal to the desired % value times
(I10/100).

Example %0 ; Command value of 0, stopping motion
%33.333 ; Command 1/3 of real-time speed
%100.................. ; Command real-time speed
%500.................. ; Command too high a value
%......................... ; Request current value
225.88230574 ; PMAC responds; this is max allowed value
M197->X:$0806,24 ; Assign variable to C.S. 1 % command reg.
M197=P1*I10/100 ; Equivalent to &1%(P1)

See Also Time-Base Control (Synchronizing PMAC to External Events)
I-Variables I10, Ix93, Ix94, Ix95
On-line commands %, H
Memory map registers X:$0806, X:$08C6, etc.

 PMAC 2 Software Reference

186 PMAC On-Line Command Specification

&{constant}
Function Address a coordinate system.

Scope Global

Syntax &{constant}
where:
• {constant} is an integer from 1 to 8, representing the number of the coordinate

system to be addressed

Remarks This command makes the coordinate system specified by {constant} the addressed
coordinate system (the one on which on-line coordinate-system commands will act). The
addressing is modal, so all further coordinate-system-specific commands will affect this
coordinate system until a different coordinate system is addressed. At power-up/reset,
Coordinate System 1 is addressed.

Note:
A different coordinate system may simultaneously be hardware
selected from the control panel port for coordinate-system-specific
control panel inputs, and that different coordinate systems may be
addressed from programs within PMAC for COMMAND statements.

If the control-panel inputs are disabled by I2=1, the host-addressed coordinate system also
controls the indicator lines for the in-position, warning-following-error, and fatal-following-
error functions. These indicator lines connect to both control-panel port outputs (all PMAC
versions), and to the interrupt controller (PMAC-PC, PMAC-Lite, PMAC-STD). (If I2=0,
the hardware-selected coordinate system controls these lines.)

Example &1B4R ; C.S.1 point to Beginning of Prog 4 and Run
Q......................... ; C.S.1 Quit running program
&3B6R ; C.S.3 point to Beginning of Prog 5 and Run
A......................... ; C.S.3 Abort program

See Also I-variable I2
On-line commands #, #{motor number}, &
Program commands ADDRESS, COMMAND

&
Function Report currently addressed coordinate system.

Scope Global

Syntax &

Remarks This command causes PMAC to return the number of the coordinate system currently
addressed by the host.

Note that a different coordinate system may be hardware selected from the control panel port
for coordinate-system-specific control panel inputs, and that different coordinate systems
may be addressed from programs within PMAC for COMMAND statements.

Example &......................... ; Ask PMAC which C.S. is addressed
4 ; PMAC reports that C.S. 4 is addressed

See Also I-variable I2
On-line commands #, #{motor number},&{C.S. number};
Program commands ADDRESS, COMMAND;

PMAC 2 Software Reference

PMAC On-Line Command Specification 187

< {Option 6L firmware only}
Function Back-up through Lookahead Buffer
Scope Coordinate-system specific
Syntax <

Remarks This command causes the PMAC to start reverse execution in the lookahead buffer for the
addressed coordinate system. If the program is currently executing in the forward direction, it
will be brought to a quick stop (the equivalent of the \ command) first.
Execution proceeds backward through points buffered in the lookahead buffer, observing
velocity and acceleration constraints just as in the forward direction. This execution continues
until one of the following occurs:
• Reverse execution reaches the beginning of the lookahead buffer – the oldest stored point

still remaining in the lookahead buffer – and it comes to a controlled stop at this point,
observing acceleration limits in decelerating to a stop.

• The \ quick-stop command is given, which causes PMAC to come to the quickest possible
stop in the lookahead buffer.

• The > resume-forward, R run, or S step command is given, which causes PMAC to resume
normal forward execution of the program, adding to the lookahead buffer as necessary.

• An error condition occurs, or a non-recoverable stopping command is given.
If any motor has been jogged away from the quick-stop point, and not returned with a J=
command, PMAC will reject the < back-up command, reporting ERR017 if I6 is set to 1 or 3.
This same functionality can be obtained from within a PMAC program by setting I1021 to 7,
which executes more quickly than CMD &n<.
If the coordinate system is not currently in the middle of a lookahead sequence, PMAC will
treat this command as an H feed-hold command.

> {Option 6L firmware only}
Function Resume Forward Execution in Lookahead Buffer
Scope Coordinate-system specific
Syntax >

Remarks This command causes the PMAC to resume forward execution in the lookahead buffer for the
addressed coordinate system. It is typically used to resume normal operation after a \ quick-
stop command, or a < back-up command. If the program is currently executing in the
backward direction, it will be brought to a quick stop (the equivalent of the \ command) first.
If previous forward execution had been in continuous mode (started with the R command),
the > command will resume it in continuous mode. If previous forward execution had been
in single-step mode (started with the S command), the > command will resume it in single-
step mode. The R and S commands can also be used to resume forward execution, but they
may change the continuous/single-step mode.
Deceleration from a backward move (if any) and acceleration in the forward direction
observe the Ix17 acceleration limits.
If any motor has been jogged away from the quick-stop point, and not returned with a J=
command, PMAC will reject the > resume command, reporting ERR017 if I6 is set to 1 or 3.
This same functionality can be obtained from within a PMAC program by setting I1021 to 6,
which executes more quickly than CMD &n>.
If the coordinate system is not currently in the middle of a lookahead sequence, PMAC will
treat this command as an R run command.

 PMAC 2 Software Reference

188 PMAC On-Line Command Specification

/
Function Halt program execution at end of currently executing move

Scope Coordinate-system specific

Syntax /

Remarks This command causes PMAC to halt the execution of the motion program running in the
currently addressed coordinate system at the end of the currently executing move, provided
PMAC is in segmentation mode (I13>0). If PMAC is not in segmentation mode (I13=0), the
/ command has the same effect as the Q command, halting execution at the end of the latest
calculated move, which can be 1 or 2 moves past the currently executing move.

If the coordinate system is currently executing moves with the special lookahead function
(Option 6L firmware only), motion will stop at the end of the move currently being added to
the lookahead buffer. This is not necessarily the move that is currently executing from the
lookahead buffer, and there can be a significant delay before motion is halted. Acceleration
limits will be observed while ramping down to a stop at the programmed point.

Once halted at the end of the move, program execution can be resumed with the R command.
In the meantime, the individual motors may be jogged way from this point, but they must all
be returned to this point using the J= command before program execution may be resumed.
An attempt to resume program execution from a different point will result in an error
(ERR017 reported if I6 = 1 or 3). If resumption of this program from this point is not
desired, the A (abort) command should be issued before other programs are run.

Example &1B5R ; Command C.S. 1 to start PROG 5
/......................... ; Halt execution of program
#1J+.................. ; Jog Motor 1 positive
J/ ; Stop jogging
J= ; Return to prejog position
R......................... ; Resume execution of PROG 5
/......................... ; Halt program execution
#2J-.................. ; Jog Motor 2 negative
J/ ; Stop jogging
R......................... ; Try to resume execution of PROG 5
<BELL>ERR017 ; PMAC reports error; not at position to resume
J= ; Return to prejog position
R ; Resume execution of PROG 5

See Also I-variables I6, I13
On-line commands R, J=, Q, A, \, H

PMAC 2 Software Reference

PMAC On-Line Command Specification 189

?
Function Report motor status

Scope Motor specific

Syntax ?

Remarks This command causes PMAC to report the motor status bits as an ASCII hexadecimal word.
PMAC returns twelve characters, representing two status words. Each character represents
four status bits. The first character represents Bits 20-23 of the first word; the second shows
Bits 16-19; and so on, to the sixth character representing Bits 0-3. The seventh character
represents Bits 20-23 of the second word; the twelfth character represents Bits 0-3.

The value of a bit is 1 when the condition is true; 0 when it is false. The meaning of the
individual bits is:

FIRST WORD RETURNED (X:$003D, X:$0079, etc.):

First character returned:

 Bit 23 Motor Activated: This bit is 1 when Ix00 is 1 and the motor calculations are
active; it is 0 when Ix00 is 0 and motor calculations are deactivated.

 Bit 22 Negative End Limit Set: This bit is 1 when motor actual position is less than
the software negative position limit (Ix14), or when the hardware limit on this end (+LIMn –
note!) has been tripped; it is 0 otherwise. If the motor is deactivated (bit 23 of the first motor
status word set to zero) or killed (bit 14 of the second motor status word set to zero) this bit is
not updated.

 Bit 21 Positive End Limit Set: This bit is 1 when motor actual position is greater
than the software positive position limit (Ix13), or when the hardware limit on this end (-
LIMn – note!) has been tripped; it is 0 otherwise. If the motor is deactivated (bit 23 of the
first motor status word set to zero) or killed (bit 14 of the second motor status word set to
zero) this bit is not updated.

 Bit 20 Handwheel Enabled: This bit is 1 when Ix06 is 1 and position following for
this axis is enabled; it is 0 when Ix06 is 0 and position following is disabled.

Second character returned:

 Bit 19 Phased Motor: This bit is 1 when Ix01 is 1 and this motor is being
commutated by PMAC; it is 0 when Ix01 is 0 and this motor is not being commutated by
PMAC.

 Bit 18 Open Loop Mode: This bit is 1 when the servo loop for the motor is open,
either with outputs enabled or disabled (killed). (Refer to Amplifier Enabled status bit to
distinguish between the two cases.) It is 0 when the servo loop is closed (under position
control, always with outputs enabled).

 Bit 17 Running Definite-Time Move: This bit is 1 when the motor is executing any
move with a predefined end-point and end-time. This includes any motion program move
dwell or delay, any jog-to-position move, and the portion of a homing search move after the
trigger has been found. It is 0 otherwise. It changes from 1 to 0 when execution of the
commanded move finishes.

 Bit 16 Integration Mode: This bit is 1 when Ix34 is 1 and the servo loop integrator
is only active when desired velocity is zero. It is 0 when Ix34 is 0 and the servo loop
integrator is always active.

 PMAC 2 Software Reference

190 PMAC On-Line Command Specification

Third character returned:

 Bit 15 Dwell in Progress: This bit is 1 when the motor’s coordinate system is
executing a DWELL instruction. It is 0 otherwise.

 Bit 14 Data Block Error: This bit is 1 when move execution has been aborted
because the data for the next move section was not ready in time. This is due to insufficient
calculation time. It is 0 otherwise. It changes from 1 to 0 when another move sequence is
started. This is related to the Run Time Error Coordinate System status bit.

 Bit 13 Desired Velocity Zero: This bit is 1 if the motor is in closed-loop control and
the commanded velocity is zero (i.e. it is trying to hold position). It is zero either if the motor
is in closed-loop mode with non-zero commanded velocity, or if it is in open-loop mode.

 Bit 12 Abort Deceleration: This bit is 1 if the motor is decelerating due to an Abort
command, or due to hitting hardware or software position (overtravel) limits. It is 0
otherwise. It changes from 1 to 0 when the commanded deceleration to zero velocity
finishes.

Fourth character returned:

 Bit 11 Block Request: This bit is 1 when the motor has just entered a new move
section, and is requesting that the upcoming section be calculated. It is 0 otherwise. It is
primarily for internal use.

 Bit 10 Home Search in Progress: This bit is set to 1 when the motor is in a move
searching for a trigger: a homing search move, a jog-until trigger, or a motion program move-
until-trigger. It becomes 1 as soon as the calculations for the move have started, and
becomes zero again as soon as the trigger has been found, or if the move is stopped by some
other means. This is not a good bit to observe to see if the full move is complete, because it
will be 0 during the post-trigger portion of the move. Use the Home Complete and Desired
Velocity Zero bits instead.

 Bits 8-9 These bits are used to store a pointer to the next data block for motor
calculations. They are primarily for internal use.

Fifth and sixth characters returned:

 Bits 0-7 These bits are used to store a pointer to the next data block for motor
calculations. They are primarily for internal use.

SECOND WORD RETURNED (Y:$0814, Y:$08D4, etc.):

Seventh character returned:

 Bit 23 Assigned to C.S.: This bit is 1 when the motor has been assigned to an axis in
any coordinate system through an axis definition statement. It is 0 when the motor is not
assigned to an axis in any coordinate system.

 Bits 20-22 (C.S. - 1) Number: These three bits together hold a value equal to the
(Coordinate System number minus one) to which the motor is assigned. Bit 22 is the MSB,
and bit 20 is the LSB. For instance, if the motor is assigned to an axis in C. S. 6, these bits
would hold a value of 5: bit 22 =1, bit 21 = 0, and bit 20 = 1.
Eighth character returned:
 Bits 16-19 (Reserved for future use)
Ninth Character Returned:

PMAC 2 Software Reference

PMAC On-Line Command Specification 191

 Bit 15 (Reserved for future use)

 Bit 14 Amplifier Enabled: This bit is 1 when the outputs for this motor’s amplifier
are enabled, either in open-loop or closed-loop mode (refer to Open-Loop Mode status bit to
distinguish between the two cases). It is 0 when the outputs are disabled (killed).

 Bits 12-13 (Reserved for future use)

Tenth Character Returned:

 Bit 11 Stopped on Position Limit: This bit is 1 if this motor has stopped because of
either a software or a hardware position (overtravel) limit, even if the condition that caused
the stop has gone away. It is 0 at all other times, even when into a limit but moving out of it.
 Bit 10 Home Complete: This bit, set to 0 on power-up or reset, becomes 1 when the
homing move successfully locates the home trigger. At this point in time the motor is usually
decelerating to a stop or moving to an offset from the trigger determined by Ix26. If a second
homing move is done, this bit is set to 0 at the beginning of the move, and only becomes 1
again if that homing move successfully locates the home trigger. Use the Desired Velocity
Zero bit and/or the In Position bit to monitor for the end of motor motion.
 Bit 9 (Reserved for future use)
 Bit 8 Phasing Search Error: This bit is set to 1 if the phasing search move for a
PMAC-commutated motor has failed due to amplifier fault, overtravel limit, or lack of
detected motion. It is set to 0 if the phasing search move did not fail by any of these
conditions (not an absolute guarantee of a successful phasing search).
Eleventh Character Returned:
 Bit 7 Trigger Move: This bit is set to 1 at the beginning of a jog-until-trigger or
motion program move-until-trigger. It is set to 0 at the end of the move if the trigger has
been found, but remains at 1 if the move ends with no trigger found. This bit is useful to
determine whether the move was successful in finding the trigger.
 Bit 6 Integrated Fatal Following Error: This bit is 1 if this motor has been
disabled due to an integrated following error fault, as set by Ix11 and Ix63. The fatal
following error bit (bit 2) will also be set in this case. Bit 6 is zero at all other times,
becoming 0 again when the motor is re-enabled.

 Bit 5 I2T Amplifier Fault Error: This bit is 1 if this motor has been disabled by an
integrated current fault. The amplifier fault bit (bit 3) will also be set in this case. Bit 5 is 0
at all other times, becoming 0 again when the motor is re-enabled.
 Bit 4 Backlash Direction Flag: This bit is 1 if backlash has been activated in the
negative direction. It is 0 otherwise.
Twelfth Character Returned:
 Bit 3 Amplifier Fault Error: This bit is 1 if this motor has been disabled because of
an amplifier fault signal, even if the amplifier fault signal has gone away, or if this motor has
been disabled due to an I2T integrated current fault (in which case bit 5 is also set). It is 0 at
all other times, becoming 0 again when the motor is re-enabled.
 Bit 2 Fatal Following Error: This bit is 1 if this motor has been disabled because
it exceeded its fatal following error limit (Ix11) or because it exceeded its integrated
following error limit (Ix63; in which case bit 6 is also set). It is 0 at all other times, becoming
0 again when the motor is re-enabled.

 PMAC 2 Software Reference

192 PMAC On-Line Command Specification

 Bit 1 Warning Following Error: This bit is 1 if the following error for the motor
exceeds its warning following error limit (Ix12). It stays at 1 if the motor is killed due to
fatal following error. It is 0 at all other times, changing from 1 to 0 when the motor’s
following error reduces to under the limit, or if killed, is re-enabled.
 Bit 0 In Position: This bit is 1 when five conditions are satisfied: the loop is
closed, the desired velocity zero bit is 1 (which requires closed-loop control and no
commanded move); the program timer is off (not currently executing any move, DWELL, or
DELAY), the magnitude of the following error is smaller than Ix28.and the first four
conditions have been satisfied for (I7+1) consecutive scans.

Example #1? ; Request status of Motor 1
812000804401 ... ; PMAC responds with 12 hex digits representing 48 bits
........................... ; The following bits are true (all others are false)
........................... ; Word 1 Bit 23: Motor Activated
........................... ; Bit 16: Integration Mode
........................... ; Bit 13: Desired Velocity Zero
........................... ; Word 2 Bit 23: Assigned to Coordinate System
........................... ; (Bits 20-22 all 0 – assigned to C.S.1)
........................... ; Bit 14: Amplifier Enabled
........................... ; Bit 10: Home Complete
 ; Bit 0: In Position

See Also On-line commands <CTRL-B>, ??, ???
Memory map registers X:$003D, X:$0079, etc. Y:$0814, Y:$08D4, etc.
Suggested M-variable definitions Mx30-Mx45

??
Function Report the status words of the addressed coordinate system.

Scope Coordinate-system specific

Syntax ??

Remarks This causes PMAC to report status bits of the addressed coordinate system as an ASCII
hexadecimal word. PMAC returns twelve characters, representing two status words. Each
character represents four status bits. The first character represents bits 20-23 of the first
word; the second shows bits 16-19; and so on, to the sixth character representing bits 0-3.
The seventh character represents bits 20-23 of the second word; the twelfth character
represents its 0-3.

The value of a bit is 1 when the condition is true; 0 when it is false. The meanings of the
individual bits are:

FIRST WORD RETURNED (X:$0818, X:$08D8, etc.)

First character returned:

 Bit 23 Z-Axis Used in Feedrate Calculations: This bit is 1 if this axis is used in the
vector feedrate calculations for F-based moves in the coordinate system; it is 0 if this axis is
not used. See the FRAX command.

 Bit 22 Z-Axis Incremental Mode: This bit is 1 if this axis is in incremental mode –
moves specified by distance from the last programmed point. It is 0 if this axis is in absolute
mode – moves specified by end position, not distance. See the INC and ABS commands.

 Bit 21 Y-Axis Used in Feedrate Calculations: (See bit 23 description.)

PMAC 2 Software Reference

PMAC On-Line Command Specification 193

 Bit 20 Y-Axis Incremental Mode: (See bit 22 description.)

Second character returned:
 Bit 19 X-Axis Used in Feedrate Calculations: (See bit 23 description.)
 Bit 18 X-Axis Incremental Mode: (See bit 22 description.)
 Bit 17 W-Axis Used in Feedrate Calculations: (See bit 23 description.)
 Bit 16 W-Axis Incremental Mode: (See bit 22 description.)
Third character returned:
 Bit 15 V-Axis Used in Feedrate Calculations: (See bit 23 description.)
 Bit 14 V-Axis Incremental Mode: (See bit 22 description.)
 Bit 13 U-Axis Used in Feedrate Calculations: (See bit 23 description.)
 Bit 12 U-Axis Incremental Mode: (See bit 22 description.)
Fourth character returned:
 Bit 11 C-Axis Used in Feedrate Calculations: (See bit 23 description.)
 Bit 10 C-Axis Incremental Mode: (See bit 22 description.)
 Bit 9 B-Axis Used in Feedrate Calculations: (See bit 23 description.)
 Bit 8 B-Axis Incremental Mode: (See bit 22 description.)
Fifth character returned:
 Bit 7 A-Axis Used in Feedrate Calculations: (See bit 23 description.)
 Bit 6 A-Axis Incremental Mode: (See bit 22 description.)
 Bit 5 Radius Vector Incremental Mode: This bit is 1 if circle move radius vectors
are specified incrementally (i.e. from the move start point to the arc center). It is 0 if circle
move radius vectors are specified absolutely (i.e. from the XYZ origin to the arc center). See
the INC(R) and ABS(R) commands.

 Bit 4 Continuous Motion Request: This bit is 1 if the coordinate system has
requested of it a continuous set of moves (e.g. with an R command). It is 0 if this is not the
case (e.g. not running program, Ix92=1, or running under an S command).

Sixth character returned:

 Bit 3 Move-Specified-by-Time Mode: This bit is 1 if programmed moves in this
coordinate system are currently specified by time (TM or TA), and the move speed is
derived. It is 0 if programmed moves in this coordinate system are currently specified by
feedrate (speed; F) and the move time is derived.

 Bit 2 Continuous Motion Mode: This bit is 1 if the coordinate system is in a
sequence of moves that it is blending together without stops in between. It is 0 if it is not
currently in such a sequence, for whatever reason.

 Bit 1 Single-Step Mode: This bit is 1 if the motion program currently executing in
this coordinate system has been told to “step” one move or block of moves, or if it has been
given a Q (Quit) command. It is 0 if the motion program is executing a program by an R
(run) command, or if it is not executing a motion program at all.

 Bit 0 Running Program: This bit is 1 if the coordinate system is currently
executing a motion program. It is 0 if the C.S. is not currently executing a motion program.
Note that it becomes 0 as soon as it has calculated the last move and reached the final
RETURN statement in the program, even if the motors are still executing the last move or two

 PMAC 2 Software Reference

194 PMAC On-Line Command Specification

that have been calculated. Compare to the motor Running Program status bit.

SECOND WORD RETURNED (Y:$0817, Y:$08D7, etc.)

Seventh character returned:

 Bit 23 Program Hold Stop: This bit is 1 when a motion program running in the
currently addressed Coordinate System is stopped using the ‘ \ ‘ command from a segmented
move (LINEAR or CIRCLE mode with I13 > 0).

 Bit 22 Run-Time Error: This bit is 1 when the coordinate system has stopped a
motion program due to an error encountered while executing the program (e.g. jump to non-
existent label, insufficient calculation time, etc.)

 Bit 21 Circle Radius Error: This bit is 1 when a motion program has been stopped
because it was asked to do an arc move whose distance was more than twice the radius (by an
amount greater than Ix96).

 Bit 20 Amplifier Fault Error: This bit is 1 when any motor in the coordinate system
has been killed due to receiving an amplifier fault signal. It is 0 at other times, changing
from 1 to 0 when the offending motor is re-enabled.

Eighth character returned:

 Bit 19 Fatal Following Error: This bit is 1 when any motor in the coordinate
system has been killed due to exceeding its fatal following error limit (Ix11). It is 0 at other
times. The change from 1 to 0 occurs when the offending motor is re-enabled.

 Bit 18 Warning Following Error: This bit is 1 when any motor in the coordinate
system has exceeded its warning following error limit (Ix12). It stays at 1 if a motor has been
killed due to fatal following error limit. It is 0 at all other times. The change from 1 to 0
occurs when the offending motor’s following error is reduced to under the limit, or if killed
on fatal following error as well, when it is re-enabled.

 Bit 17 In Position: This bit is 1 when all motors in the coordinate system are “in
position”. Five conditions must apply for all of these motors for this to be true:, the loops
must be closed, the desired velocity must be zero for all motors, the coordinate system cannot
be in any timed move (even zero distance) or DWELL, all motors must have a following
error smaller than their respective Ix28 in-position bands, and the above conditions must have
been satisfied for (I7+1) consecutive scans.

 Bit 16 Rotary Buffer Request: This bit is 1 when a rotary buffer exists for the
coordinate system and enough program lines have been sent to it so that the buffer contains at
least I17 lines ahead of what has been calculated. Once this bit has been set to 1 it will not be
set to 0 until there are less than I16 program lines ahead of what has been calculated. The
‘PR’ command may be used to find the current number of program lines ahead of what has
been calculated.

Ninth character returned:

 Bit 15 Delayed Calculation Flag: (for internal use)

 Bit 14 End of Block Stop: This bit is 1 when a motion program running in the
currently addressed Coordinate System is stopped using the ‘ / ‘ command from a segmented
move (Linear or Circular mode with I13 > 0).

 Bit 13 Synchronous M-variable One-Shot: (for internal use)

PMAC 2 Software Reference

PMAC On-Line Command Specification 195

 Bit 12 Dwell Move Buffered: (for internal use)

Tenth character returned:

 Bit 11 Cutter Comp Outside Corner: This bit is 1 when the coordinate system is
executing an added outside corner move with cutter compensation on. It is 0 otherwise.

 Bit 10 Cutter Comp Move Stop Request: This bit is 1 when the coordinate system is
executing moves with cutter compensation enabled, and has been asked to stop move
execution. This is primarily for internal use.

 Bit 9 Cutter Comp Move Buffered: This bit is 1 when the coordinate system is
executing moves with cutter compensation enabled, and the next move has been calculated
and buffered. This is primarily for internal use.

 Bit 8 Pre-jog Move Flag: This bit is 1 when any motor in the coordinate system is
executing a jog move to “pre-jog” position (J= command). It is 0 otherwise.

Eleventh character returned:

 Bit 7 Segmented Move in Progress: This bit is 1 when the coordinate system is
executing motion program moves in segmentation mode (I13>0). It is 0 otherwise. This is
primarily for internal use.

 Bit 6 Segmented Move Acceleration: This bit is 1 when the coordinate system is
executing motion program moves in segmentation mode (I13>0) and accelerating from a
stop. It is 0 otherwise. This is primarily for internal use.

 Bit 5 Segmented Move Stop Request: This bit is 1 when the coordinate system is
executing motion program move in segmentation mode (I13>0) and it is decelerating to a
stop. It is 0 otherwise. This is primarily for internal use.

 Bit 4 PVT/SPLINE Move Mode: This bit is 1 if this coordinate system is in either
PVT move mode or SPLINE move mode. (If bit 0 of this word is 0, this means PVT mode; if
bit 0 is 1, this means SPLINE mode.) This bit is 0 if the coordinate system is in a different
move mode (LINEAR, CIRCLE, or RAPID). See the table below.

Twelfth character returned:

 Bit 3 Cutter Compensation Left: This bit is 1 if the coordinate system has cutter
compensation on, and the compensation is to the left when looking in the direction of motion.
It is 0 if compensation is to the right, or if cutter compensation is off.

 Bit 2 Cutter Compensation On: This bit is 1 if the coordinate system has cutter
compensation on. It is 0 if cutter compensation if off.

 Bit 1 CCW Circle\Rapid Mode: When bit 0 is 1 and bit 4 is 0, this bit is set to 0 if
the coordinate system is in CIRCLE1 (clockwise arc) move mode and 1 if the coordinate
system is in CIRCLE2 (counterclockwise arc) move mode. If both bits 0 and 4 are 0, this bit
is set to 1 if the coordinate system is in RAPID move mode. Otherwise, this bit is 0. See the
table below.

 Bit 0 CIRCLE/SPLINE Move Mode: This bit is 1 if the coordinate system is in
either CIRCLE or SPLINE move mode. (If bit 4 of this word is 0, this means CIRCLE
mode; if bit 4 is 1, this means SPLINE mode.) This bit is 0 if the coordinate system is in a
different move mode (LINEAR, PVT, or RAPID.). See the table below.

 PMAC 2 Software Reference

196 PMAC On-Line Command Specification

The states of bits 4, 1, and 0 in the different move modes are summarized in the following
table:

Mode Bit 4 Bit 1 Bit 0
Linear 0 0 0
Rapid 0 1 0
Spline 1 0 1
Circle1 0 0 1
Circle2 0 1 1

PVT 1 1 0
Example ?? ; Request coordinate system status words

A8002A020010 ; PMAC responds; the following bits are true:
........................... ; Word 1 Bit 23: Z-axis used in feedrate calcs
........................... ; Bit 21: Y-axis used in feedrate calcs
........................... ; Bit 19: X-axis used in feedrate calcs
........................... ; Bit 5: Radius vector incremental mode
........................... ; Bit 3: Move specified by time
........................... ; Bit 1: Single-step mode
........................... ; Word 2 Bit 17: In-position
 ; Bit 4: PVT/Spline mode

See Also On-line commands <CONTROL-C>, ?, ???
Memory-map registers X:$0818, X:$08D8, etc.; Y:$0817, Y:$08D7, etc.
Suggested M-variable definitions Mx80-Mx90

???
Function Report global status words.

Scope Global

Syntax ???

Remarks This command causes PMAC to return the global status bits in ASCII hexadecimal form.
PMAC returns twelve characters, representing two status words. Each character represents
four status bits. The first character represents Bits 20-23 of the first word, the second shows
Bits 16-19; and so on, to the sixth character representing Bits 0-3. The seventh character
represents Bits 20-23 of the second word; the twelfth character represents Bits 0-3 of the
second word.

A bit has a value of 1 when the condition is true; 0 when false. The meaning of the
individual status bits is:

FIRST WORD RETURNED (X:$0003):

First character returned:

 Bit 23 Real-Time Interrupt Active: This bit is 1 if PMAC is currently executing a
real-time interrupt task (PLC 0 or motion program move planning). It is 0 if PMAC is
executing some other task. Note: Communications can only happen outside of the real-time
interrupt, so polling this bit will always return a value of 0. This bit is for internal use.

 Bit 22 Real-Time Interrupt Re-entry: This bit is 1 if a real-time interrupt task has

PMAC 2 Software Reference

PMAC On-Line Command Specification 197

taken long enough so that it was still executing when the next real-time interrupt came (I8+1
servo cycles later). It stays at 1 until the card is reset, or until this bit is manually changed to
0. If motion program calculations cause this, it is not a serious problem. If PLC 0 causes this
(no motion programs running), it could be serious.

 Bit 21 Servo Active: This bit is 1 if PMAC is currently executing servo update
operations. It is 0 if PMAC is executing other operations. Note that communications can
only happen outside of the servo update, so polling this bit will always return a value of 0.
This bit is for internal use.

 Bit 20 Servo Error: This bit is 1 if PMAC could not properly complete its servo
routines. This is a serious error condition. It is 0 if the servo operations have been
completing properly.

Second character returned:

 Bit 19 Data Gathering Function On: This bit is 1 when the data gathering function
is active; it is 0 when the function is not active.

 Bit 18 Data Gather to Start on Servo: This bit is 1 when the data gathering
function is set up to start on the next servo cycle. It is 0 otherwise. It changes from 1 to 0 as
soon as the gathering function actually starts.

 Bit 17 Data Gather to Start on Trigger: This bit is 1 when the data gathering
function is set up to start on the rising edge of Machine Input 2. It is 0 otherwise. It changes
from 1 to 0 as soon as the gathering function actually starts.

 Bit 16 (Reserved for future use)

Third character returned:

 Bit 15 (Reserved for future use)

 Bit 14 Leadscrew Compensation On: This bit is 1 if leadscrew compensation is
currently active in PMAC. It is 0 if the compensation is not active

 Bit13 Any Memory Checksum Error: This bit is 1 if a checksum error has been
detected for either the PMAC firmware or the user program buffer space. Bit 12 of this word
distinguishes between the two cases.

 Bit12 PROM Checksum Error: This bit is 1 if a firmware checksum error has been
detected in PMAC’s memory. It is 0 if a user program checksum error has been detected, or
if no memory checksum error has been detected. Bit 13 distinguishes between these two
cases.

Fourth character returned:

 Bit 11 DPRAM Error: This bit is 1 if PMAC has detected an error in DPRAM
communications. It is 0 otherwise.

 Bit 10 EAROM Error: This bit is 1 if PMAC detected a checksum error in reading
saved data from the EAROM (in which case it replaces this with factory defaults). It is 0
otherwise.

 Bits 8-9 (for internal use)

fifth character returned:

 Bit 7 (for internal use)

 Bit 6 TWS Variable Parity Error: This bit is 1 if the most recent TWS-format M-

 PMAC 2 Software Reference

198 PMAC On-Line Command Specification

variable read or write operation with a device supporting parity had a parity error; it is 0 if the
operation with such a device had no parity error. The bit status is indeterminate if the
operation was with a device that does not support parity.

 Bit 5 MACRO Auxiliary Communications Error: This bit is 1 if the most recent
MACRO auxiliary read or write command has failed. It is set to 0 at the beginning of each
MACRO auxiliary read or write command.

 Bit 4 MACRO Ring Check Error: This bit is 1 if the MACRO ring check function
is enabled (I1001 > 0) and PMAC has either detected I1004 ring communication errors in an
I1001 servo-cycle period, or has failed to detect the receipt of I1005 ring sync packet.

Sixth character returned:

 Bits 2-3 (Reserved for future use)

 Bit 1 All Cards Addressed: This bit is set to 1 if all cards on a serial daisychain
have been addressed simultaneously with the @@ command. It is 0 otherwise.

 Bit 0 This Card Addressed: This bit is set to 1 if this card is on a serial daisychain
and has been addressed with the @n command. It is 0 otherwise.

SECOND WORD RETURNED (Y:$0003)

Seventh character returned:

 Bit 23 (For internal use)

 Bit 22 Host Communication Mode: This bit is 1 when PMAC is prepared to send its
communications over the “host port” (PC bus or STD bus). It is 0 when PMAC is prepared
to send its communications over the VMEbus or the serial port. It changes from 0 to 1 when
it receives an alphanumeric command over the host port. It changes from 1 to 0 when it
receives a <CTRL-Z> over the serial port.

 Bits 20-21 (For Internal Use)

Eighth character returned:

 Bit 19 Motion Buffer Open: This bit is 1 if any motion program buffer (PROG or
ROT) is open for entry. It is 0 if none of these buffers is open.

 Bit 18 Rotary Buffer Open: This bit is 1 if the rotary motion program buffer(s)
(ROT) is (are) open for entry. It is 0 if this is (these are) closed.

 Bit 17 PLC Buffer Open: This bit is 1 if a PLC program buffer is open for entry. It
is 0 if none of these buffers is open.

 Bit 16 PLC Command: This bit is 1 if PMAC is processing a command issued from
a PLC or motion program through a CMD” “ statement. It is 0 otherwise. It is primarily for
internal use.

Ninth character returned:

 Bit 15 VME Communication Mode: This bit is 1 when PMAC is prepared to send its
communications over the VME bus “mailbox” port. It is 0 when PMAC is prepared to send
its communications over the “host port” (PC bus or STD bus) or the serial port. It changes
from 0 to 1 when it receives an alphanumeric command over the VME bus mailbox port. It
changes from 1 to 0 when it receives a <CTRL-Z> over the serial port.

PMAC 2 Software Reference

PMAC On-Line Command Specification 199

 Bits 12-14 (For Internal use)

Tenth character returned:

 Bit 11 Fixed Buffer Full: This bit is 1 when no fixed motion (PROG) or PLC
buffers are open, or when one is open but there are less than I18 words available. It is 0
when one of these buffers is open and there are more than I18 words available.

 Bits 8-10 (Internal use)

Eleventh and twelfth characters returned:

 Bits 0-7 (Reserved for future use)

Example ??? ; Ask PMAC for global status words
003000400000 ; PMAC returns the global status words
........................... ; 1st word bit 13 (Any checksum error) is true;
........................... ; 1st word bit 12 (PROM checksum error) is true;
........................... ; 2nd word bit 23 (for internal use) is true;
 ; All other bits are false

See Also On-line commands ?, ??, <CTRL-G>
Memory registers X:$0003, Y:$0003.

@
Function Report currently addressed card on serial daisy-chain

Scope Global

Syntax @

Remarks This command causes the addressed PMAC on a serial daisy-chain to report its number to the
host. If all cards are addressed, card @0 will return an @ character.

I1 must be set to 2 or 3 for this command to be accepted. Otherwise, ERR003 is reported.

Example @ ;Ask PMAC chain which card is addressed
4 ;PMAC @4 reports that it is addressed

See Also Addressing Commands (Talking to PMAC)
Multiple-Card Applications (Synchronizing PMAC to External Events)
I-variable I1
On-line commands #, #{constant}, &, &{constant}, @{constant}
Jumpers E40-E43 (PMAC-PC, -Lite, -VME)
Switches SW1-1 to SW1-4 (PMAC-STD)

@{card}
Function Address a card on the serial daisy-chain.

Scope Global

Syntax @{card}
where:
• {card} is a hexadecimal digit (0 to 9, A to F), representing the number of the card on

the serial daisychain to be addressed; or the @ character, denoting that all cards are to be
addressed simultaneously.

Remarks This command makes the PMAC board specified by {card} the addressed board on the
serial daisychain. (the one on which subsequent commands will act). The addressing is
modal, so all further commands will affect this board until a different board is addressed. At

 PMAC 2 Software Reference

200 PMAC On-Line Command Specification

power-up/reset, Board @0 is addressed.
I1 must be set to 2 or 3 for this command to be accepted. Otherwise, ERR003 is reported.
To address all cards simultaneously, use the @@ command. Query commands (those
requiring a data response) will be rejected in this mode.

This command should be used only when multiple PMAC cards are connected on a single
serial cable. In this case, I-variable I1 should be set to 2 or 3 on all boards. A board’s card
number is selected by jumpers E40-E43 (PMAC-PC, -Lite, -VME) or switches SW1-1 to
SW1-4 (PMAC-STD).

Note:
While not required, it is best to give a <CR> after an @{card}
command before any other command, in order to give the formerly
addressed card time to “tri-state” its outputs so as not to interfere with
responses from the newly addressed card.

Example I1=2@0 ; This sequence can be used the first time talking to multiple cards
........................... on a chain to put them in the proper configuration
@0
#1J+.................. ; Jog motor 1 of Card 0.
@5
P20 ; Request the value of P20 on card @5
@@R ; All cards, addressed C.S. run active program

See Also Addressing Commands (Talking to PMAC)
Multiple-Card Applications (Synchronizing PMAC to External Events)
I-variable I2
On-line commands #, &, &{constant}, @
Jumpers E40-E43 (PMAC-PC, -Lite, -VME)
Switches SW1-1 to SW1-4 (PMAC-STD)

\
Function Do a program hold (permitting jogging while in hold mode)

Scope Coordinate-system specific

Syntax \

Remarks This command causes PMAC to do a program hold of the currently addressed coordinate
system in a manner that permits jogging of the motors in the coordinate system while in hold
mode, provided PMAC is in a segmented move (LINEAR or CIRCLE mode with I13>0). If
PMAC is in segmentation mode (I13=0, or other move mode), the \ command has the same
effect as the H command, bringing the motors to a stop in the same way, but not permitting
any moves while in feed hold mode.
The rate of deceleration to a stop in program hold mode, and from a stop on the subsequent R
command, is controlled by I-variable I52. This global I-variable controls the rate for all
coordinate systems.
Once halted in hold mode, program execution can be resumed with the R command. In the
meantime, the individual motors may be jogged way from this point, but they must all be
returned to this point using the J= command before program execution may be resumed. An
attempt to resume program execution from a different point will result in an error (ERR017
reported if I6 = 1 or 3). If resumption of this program from this point is not desired, the A
(abort) command should be issued before other programs are run.

PMAC 2 Software Reference

PMAC On-Line Command Specification 201

If PMAC is executing moves inside the special lookahead buffer when this command is
received (Option 6L firmware only), the rate of deceleration is the fastest that does not
exceed the Ix17 acceleration limit or any motor. In lookahead mode, reversal along the path
is also then possible with the < command.

Example &1B5R ; Command C.S. 1 to start PROG 5
\......................... ; Command feed hold of program
#1J+.................. ; Jog Motor 1 positive
J/ ; Stop jogging (examine part here)
J= ; Return to prejog position
R......................... ; Resume execution of PROG 5
\......................... ; Halt program execution
#2J-.................. ; Jog Motor 2 negative
J/ ; Stop jogging
R......................... ; Try to resume execution of PROG 5
<BELL>ERR017 ; PMAC reports error; not at position to resume
J= ; Return to prejog position
R ; Resume execution of PROG 5

See Also Stop Commands (Making Your Application Safe)
I-variables I6, I13, I52, Ix95
On-line commands R, J=, Q, A, /, H

A
Function Abort all programs and moves in the currently addressed coordinate system.
Scope Coordinate-system specific
Syntax A
Remarks This command causes all axes defined in the current coordinate system to begin immediately

to decelerate to a stop, aborting the currently running motion program (if any). It also brings
any disabled (killed) or open-loop motors (defined in the current coordinate system) to an
enabled zero-velocity closed-loop state.
If moving, each motor will decelerate its commanded profile at a rate defined by its own
motor I-variable Ix15. If there is significant following error when the A command is issued,
it may take a long time for the actual motion to stop. Although the command trajectory is
brought to a stop at a definite rate, the actual position will continue to catch up to the
commanded position for a longer time.
Note that a multi-axis system may not stay on its programmed path during this deceleration.

Note:
Abort commands are not meant to be recovered from gracefully. If
you wish to resume easily, us the H, Q, /, or \ command instead.

Motion program execution may resume (if a motion program was in fact aborted) by issuing
either an R or S command, but two factors must be considered. First, the starting positions
for calculating the next move will be the original end positions of the aborted move unless
the PMATCH command is issued or I14=1. Second, the move from the aborted position to the
next move end position may not be possible or desirable. The J= command may be used to
jog each motor in the coordinate system to the original end position of the aborted move,
provided I13 is 0 (no segmentation mode).

Example B1R ; Start Motion Program 1
A......................... ; Abort the program
#1J=#2J= ; Jog motors to original move-end position
R ; Resume program with next move

 PMAC 2 Software Reference

202 PMAC On-Line Command Specification

See Also Stop Commands (Making Your Application Safe)
Control-Panel Port STOP/ Input (Connecting PMAC to the Machine)
I-variables I13, I14, Ix15
On-line commands <CONTROL-A>, H, J/, K, Q
JPAN connector pin 10

ABS
Function Select absolute position mode for axes in addressed coordinate system.

Scope Coordinate-system specific

Syntax ABS
ABS ({axis}[,{axis}...])
where:
• {axis} is a letter (X, Y, Z, A, B, C, U, V, W) representing the axis to be specified, or

the character R to specify radial vector mode
Note:

No spaces are permitted in this command.
Remarks This command, without any arguments, causes all subsequent positions for all axes in the

coordinate system in motion commands to be treated as absolute positions (this is the default
condition). An ABS command with arguments causes the specified axes to be in absolute
mode, and all others to remain unchanged.
If R is specified as one of the ‘axes’, the I, J, and K terms of the circular move radius vector
specification will be specified in absolute form (i.e. as a vector from the origin, not from the
move start point). An ABS command without any arguments does not affect this vector
specification. The default radial vector specification is incremental.
If a motion program buffer is open when this command is sent to PMAC, the command will
be entered into the buffer for later execution.

Example ABS(X,Y) ; X & Y made absolute – other axes and radial vector left unchanged
ABS ; All axes made absolute – radial vector left unchanged
ABS(R) ; Radial vector made absolute – all axes left unchanged

See Also Circular Moves (Writing a Motion Program)
On-line command INC
Program commands ABS, INC

{axis}={constant}
Function Re-define the specified axis position.

Scope Coordinate-system specific

Syntax {axis}={constant}
where:
• {axis} is a letter from the set (X, Y, Z, U, V, W, A, B, C) specifying the axis whose

present position is to be re-named;
• {constant} is a floating-point value representing the new name value for the axis’

present position

Remarks This command re-defines the current axis position to be the value specified in
{constant}, in user units (as defined by the scale factor in the axis definition). It can be
used to relocate the origin of the coordinate system. This does not cause the specified axis to

PMAC 2 Software Reference

PMAC On-Line Command Specification 203

move; it simply assigns a new value to the position..

Internally, a position bias register is written to which creates this new position offset. PSET
is the equivalent motion program command.

Example X=0 ; Call axis X’s current position zero
Z=5000 ; Re-define axis Z’s position as 5000

See Also Axes, Coordinate Systems (Setting Up a Coordinate System)
On-line command Z
Program commands PSET, ADIS, IDIS.
B{constant}

B
Function Point the addressed coordinate system to a motion program.

Scope Coordinate-system specific

Syntax B{constant}
where:
• {constant} is a floating point value from 0.0 to 32767.99999 representing the

program and location to point the coordinate system to; with the integer part representing
the program number, and the fractional part multiplied by 100,000 representing the line
label (zero fractional part means the top of the program).

Remarks This command causes PMAC to set the program counter of the addressed coordinate system
to the specified motion program and location. It is usually used to set the program counter to
the Beginning of a motion program. The next R or S command will start execution at this
point.

If {constant} is an integer, the program counter will point to the beginning of the
program whose number matches {constant}. Fixed motion program buffers (PROG) can
have numbers from 1 to 32,767. The rotary motion program carries program number 0 for
the purpose of this command.

If {constant} is not an integer, the fractional part of the number represents the line label
(N or O) in the program to which to point. The fractional value multiplied by 100,000
determines the number of the line label to which to point (it fills the fraction to 5 decimal
places with zeros).

Note:
If a motion program buffer (including ROTARY) is open when this
command is sent to PMAC, the command is entered into the buffer for
later execution, to be interpreted as a B-axis move command.

Example B7 ;points to the top of PROG 7
B0 ;points to the top of the rotary buffer
B12.6 ;points to label N60000 of PROG 12
B3.025R ;points to label N2500 of PROG 3 and runs

See Also On-line commands DEFINE ROT,R, S
Program commands B{data}, N{constant}, O{constant}.

 PMAC 2 Software Reference

204 PMAC On-Line Command Specification

CHECKSUM
Function Report the firmware checksum value.

Scope Global

Syntax CHECKSUM
CHKS

Remarks This command causes PMAC to report the reference checksum value of the firmware
revision that it is using. The value is reported as a hexadecimal ASCII string. This value was
computed during the compilation of the firmware. It is mainly used for troubleshooting
purposes.

The comparative checksum value that PMAC is continually computing by scanning the
firmware in active memory is stored in X:$0794. As long as there is no checksum error, this
comparative value is continually changing as PMAC continues its calculations. However, if
during any pass of the checksum calculations, if the final comparative checksum value does
not agree with the reference value, the calculations stop, and the final erroneous value is held
in X:$0794.

Example CHECKSUM ; Request firmware reference checksum value
9FA263 ; PMAC returns hex value

See Also On-line commands DATE, VERSION

CLEAR
Function Erase currently opened buffer.

Scope Global (Coordinate-system specific for rotary motion program buffers)

Syntax CLEAR
CLR

Remarks This command empties the currently opened program, PLC, rotary, etc. buffer Typically, as
you create a buffer file in your host computer, you will start with the OPEN {buffer} and
CLEAR commands (even though these lines are technically not part of the buffer), and follow
with your actual contents. This will allow you to easily edit buffers from your host and
repeatedly download the buffers, erasing the old buffer’s contents in the process.

Example OPEN PROG 1 . ; Open motion program buffer 1
CLEAR ; Clear out this buffer
F1000 ; Program really starts here!
X2500 ;...and ends on this line!
CLOSE ; This closes the program buffer
OPEN PLC 3 CLEAR CLOSE ; This erases PLC 3

See Also Program Buffers (Talking to PMAC)
On-line commands OPEN, CLOSE, DELETE.

PMAC 2 Software Reference

PMAC On-Line Command Specification 205

CLEARFAULT
Function Clear Geo PMAC fault display

Scope Global

Syntax CLEARFAULT
CLRF

Remarks This command clears the seven-segment fault display on the Geo PMAC controller/amplifier
package. After this command is issued, the fault display will show a “0”. However, if the
fault-causing condition is still present, the fault display will immediately show that fault
number again.

CLOSE
Function Close the currently opened buffer.

Scope Global

Syntax CLOSE
CLS

Remarks

This closes the currently OPENed buffer. This should be used immediate after the entry of a
motion, PLC, rotary, etc. buffer. If the buffer is left open, subsequent statements that are
intended as on-line commands (e.g. P1=0) will get entered into the buffer instead. It is good
practice to have CLOSE at the beginning and end of any file to be downloaded to PMAC.

When PMAC receives a CLOSE command, it automatically appends a RETURN statement to
the end of the open program buffer.

If any PROGRAM or PLC in PMAC is improperly structured (e.g. no ENDIF or ENDWHILE
to match an IF or WHILE), PMAC will report an ERR003 at the CLOSE command for any
buffer until the problem is fixed.

Example CLOSE ; This makes sure all buffers are closed
OPEN PROG 1 . ; Open motion program buffer 1
CLEAR ; Clear out this buffer
F1000 ; Program actually starts here!...
X2500 ;...and ends on this line!
CLOSE ; This closes the program buffer
LIST PROG 1 . ; Request listing of closed program
F1000 ; PMAC starts listing
X2500
RETURN ; This was appended by the CLOSE command

See Also Program Buffers (Talking to PMAC)
On-line commands OPEN, CLEAR, <CTRL-L>, <CTRL-U>

{constant}
Function Assign value to variable P0, or to table entry.
Scope Global
Syntax {constant}

where:
• {constant} is a floating point value

 PMAC 2 Software Reference

206 PMAC On-Line Command Specification

Remarks This command is the equivalent of P0={constant}. That is, a value entered by itself on a
command line will be assigned to P-variable P0. This allows simple operator entry of
numeric values through a dumb terminal interface. Where the value goes is hidden from the
operator; the PMAC user program must take P0 and use it as appropriate.

Note:
If a special table on PMAC (e.g. STIMULUS, COMP) has been defined
but not filled, a constant value will be entered into this table, not into
P0.

Example In a motion program:
P0=-1 ; Set P0 to an “illegal” value
SEND”Enter number of parts in run:”
........................... ; Prompt operator at dumb terminal
........................... ; Operator simply needs to type in number
WHILE (P0<1) WAIT ; Hold until get legal response
P1=0.................. ; Initialize part counter
WHILE (P0<P1) ; Loop once per part
 P1=P1+1
 ...

See Also On-line commands OPEN COMP, OPEN STIMULUS, P{constant}={expression}

DATE
Function Report PROM firmware revision date.

Scope Global

Syntax DATE
DAT

Remarks This command causes PMAC to report the revision date of the PROM firmware revision it is
using. The date is reported in the American style: mm/dd/yy (month/day/year).

Example DATE ;Ask PMAC for firmware revision date
07/22/92 ;PMAC responds with July 22, 1992

See Also On-line command VERSION, TYPE

DEFINE BLCOMP
Function Define backlash compensation table

Scope Motor specific

Syntax DEFINE BLCOMP {entries},{count length}
DEF BLCOMP {entries},{count length}
where:
• {entries} is a positive integer constant representing the number of values in the table;
• {count length} is a positive integer representing the span of the table in encoder

counts of the motor.
Remarks This command establishes a backlash compensation table for the addressed motor. The next

{entries} constants sent to PMAC will be placed into this table. The last item on the
command line {count length} specifies the span of the backlash table in encoder counts
of the motor. In use, if the motor position goes outside of the range 0 to count-length, the
position is rolled over to within this range before the compensation is computed. The spacing
between entries in the table is {count length} divided by {entries}.

PMAC 2 Software Reference

PMAC On-Line Command Specification 207

On succeeding lines will be given the actual entries of the table as constants separated by
spaces and or carriage return characters. The units of these entries are 1/16 count, and the
entries must be integer values. The first entry is the correction at one spacing from the motor
zero position (as determined by the most recent home search move or power-up/reset), the
second entry is the correction two spacings away, and so on. The correction from the table at
motor zero position is zero by definition.

The correction is the amount subtracted (added in the negative direction) from the nominal
commanded position when the motor is moving in the negative direction to get the corrected
position. The correction from the backlash table is added to the Ix86 constant backlash
parameter before adjusting the motor position. Corrections from any leadscrew
compensation tables that have this motor as the target motor are always active in both
directions.

The last entry in the table represents the correction at {count length} distance from the
motor’s zero position. Since the table has the capability to roll over, this entry also represents
the correction at the motor’s zero position. For this reason, the last entry should virtually
always be set to zero.

Note:
PMAC will reject this command, reporting an ERR003 if I6=1 or 3, if
any BLCOMP buffer exists for a lower numbered motor, or if any
TBUF, ROTARY, or GATHER buffer exists. Any of these buffers
must be deleted first. BLCOMP buffers must be defined from high-
numbered motor to low-numbered motor, and deleted from low-
numbered motor to high-numbered motor.

I51 must be set to 1 to enable the table.
See Also Backlash Compensation (Setting Up a Motor)

Leadscrew Compensation (Setting Up a Motor)
I-variables I99, Ix85, Ix86
On-line commands DEFINE COMP, DELETE BLCOMP

DEFINE COMP (one-dimensional)
Function Define Leadscrew Compensation Table

Scope Motor specific

Syntax DEFINE COMP {entries}, [#{source}[D], [#{target},]] {count
length}
where:
• {entries} is a positive integer constant representing the number of numbers in the

table;
• {source} (optional) is a constant from 1 to 8 representing the motor whose position

controls which entries in the table are used for the active correction; if none is specified,
PMAC assumes the source is the addressed motor; if a D is specified after the source
motor number, the desired position of the motor is used to calculate the correction;
otherwise the actual position is used;

• {target} (optional) is a constant from 1 to 8 representing the motor that receives the

 PMAC 2 Software Reference

208 PMAC On-Line Command Specification

correction; if none is specified, PMAC assumes the target is the addressed motor;
• {count length} is a positive integer representing the span of the table in

encoder counts of the source motor.

Remarks This command establishes a leadscrew (position) compensation table assigned to the
addressed motor. The next {entries} constants sent to PMAC will be placed into this
table. Once defined, the tables are enabled and disabled with the variable I51.

The table “belongs” to the currently addressed motor, and unless otherwise specified in the
command line, it will use the addressed motor both for source position data and as the target
for its corrections. Each motor can only have one table that “belongs” to it (for a total of 8
tables in one PMAC), but it can act as a source or a target for multiple motors.

Note:
PMAC will reject this command, reporting an ERR003 if I6=1 or 3, if
any COMP buffer exists for a lower numbered motor, or if any
TCOMP, BLCOMP, TBUF, ROTARY, or GATHER buffer exists.
Any of these buffers must be deleted first. COMP buffers must be
defined from high-numbered motor to low-numbered motor, and
deleted from low-numbered motor to high-numbered motor.

It is possible to directly specify a source motor (with #{source}), or source and target
motors (with #{source},#{target}), in this command. Either or both of them may be
different from the motor to which the table belongs. (In other words, just because a table
belongs to a motor does not necessarily mean that it affects or is affected by that motor’s
position.)

The table can operate as a function of either the desired (commanded) or actual position of
the source motor. If a D is entered immediately after the source motor number (which must
be explicitly declared here), the table operates as a function of the desired position of the
source motor; if no D is entered, the table operates as a function of the actual position of the
source motor.

The last item on the command line, {count length}, specifies the span of the
compensation table in encoder counts of the source motor. In use, if the source motor
position goes outside of the range 0 to count-length, the source position is “rolled over” to
within this range before the correction is computed. The spacing between entries in the table
is {count length} divided by {entries}.

On succeeding lines will be given the actual entries of the table. The units of these entries
are 1/16 count, and the entries must be integer values. The first entry is the correction at one
spacing from the motor zero position (as determined by the most recent home search move or
power-up/reset), the second entry is the correction two spacings away, and so on. The
correction is the amount added to the nominal position to get the corrected position. The
correction at the zero position is zero by definition.

The last entry in the table represents the correction at {count length} distance from the
source motor’s zero position. Since the table has the capability to roll over, this entry also
represents the correction at the source motor’s zero position. For this reason, the last entry
should virtually always be set to zero.

Example #1 DEFINE COMP 4,2000 ; Create table for motor 1

PMAC 2 Software Reference

PMAC On-Line Command Specification 209

ERR003 ; PMAC rejects this command
DELETE GATHER ; Clear other buffers to allow loading
DELETE ROTARY
#8DEFINE COMP 500,20000 ; Uses motor 8 actual position as source and
 ; motor 8 as target, ; 500 entries, spacing
 ; of 40 counts
#7DEFINE COMP 256,#3D,32768 ; Belongs to motor 7, uses motor 3 desired
 ; position as source, motor 7 as target, 256
 ; entries, spacing of 128 counts
#6 DEFINE COMP 400,#5,#4,40000 ; Belongs to motor 6, uses #5 as source, #4 as
 ; target, 400 entries, spacing of 100 counts
#5 DEFINE COMP 200,#1D,#1,30000 ; “Belongs” to motor 5, uses #1 desired position
 ; as source and target, 200 entries, spacing of
 ; 150 count
I51=1 ; Enable compensation tables

See Also Leadscrew compensation (Setting Up a Motor)
I-variable I51
On-line commands {constant}, LIST COMP, LIST COMP DEF, DELETE COMP,
DELETE GATHER, DELETE ROTARY, SIZE

DEFINE COMP (two-dimensional)
Function Define two-dimensional leadscrew compensation table.
Scope Motor specific
Syntax DEFINE COMP {Rows}.{Columns}, #{RowMotor}[D],

 [#{ColumnMotor}[D], [#{TargetMotor}]],
 {RowLength},{ColumnLength}
DEF COMP...
where:
• {Rows} is a positive integer constant representing the number of rows in the table,

where each row represents a fixed location of the second (column) source motor;
• {Columns} is a positive integer constant representing the number of columns in the

table, where each column represents a fixed location of the first (row) source motor;
• {RowMotor} is an integer constant from 1 to 8 representing the number of the first

source motor; defaults to addressed motor; if a D is specified after the source motor
number, the desired position of the motor is used to calculate the correction; otherwise
the actual position is used;

• {ColumnMotor} is an integer constant from 1 to 8 representing the number of the
second source motor; if a D is specified after the source motor number, the desired
position of the motor is used to calculate the correction; otherwise the actual position is
used;

• {TargetMotor} is an integer constant from 1 to 8 representing the number of the
target motor; defaults to addressed motor;

• {RowSpan} is the span of the table, in counts, along the first (row) source motor’s
travel;

• {ColumnSpan} is the span of the table, in counts, along the second (column) source
motor’s travel.

 PMAC 2 Software Reference

210 PMAC On-Line Command Specification

Remarks This command establishes a two-dimensional position compensation table assigned to the
addressed motor. The next (Rows+1)*(Columns+1)-1 constants sent to PMAC will be
placed into this table. This type of table is usually used to correct a motor position (X, Y, or
Z-axis) as a function of the planar position of two motors (e.g. X and Y axes). Once defined,
the tables are enabled and disabled with the variable I51.
The table belongs to the currently addressed motor, and unless otherwise specified in the
command line, it will use the addressed motor both as the first-motor source position data and
as the target for its corrections. Each motor can only have one table that belongs to it (for a
total of eight tables in one PMAC), but it can act as a source and/or a target for multiple
tables.

Note:
PMAC will reject this command, reporting an ERR003 if I6=1 or 3, if
any COMP buffer exists for a lower numbered motor, or if any
TCOMP, BLCOMP, TBUF, ROTARY, or GATHER buffer exists.
Any of these buffers must be deleted first. COMP buffers must be
defined from high-numbered motor to low-numbered motor, and
deleted from low-numbered motor to high-numbered motor.

The first source motor must be specified in the command line with #{RowMotor}. The
second source motor may be specified in the command line with #{ColumnMotor}; if it is
not specified, PMAC assumes that the second source motor is the currently addressed motor.

The target motor may be specified with #{TargetMotor}; if it is not specified, PMAC
assumes that the target motor is the currently addressed motor.
In other words, if only one motor is specified in the command line, it is the first (row) source
motor, and the second (column) source and target motors default to the addressed motor. If
two motors are specified in the command line, the first one specified is the first (row) source
motor, the second is the second (column) source motor, and the target motor defaults to the
addressed motor. If three motors are specified, the first is the first (row) source motor, the
second is the second (column) source motor, and the third is the target motor. None of these
motors is required to be the addressed motor.
It is strongly recommended that you explicitly specify both source motors and the target
motor in this command, to prevent possible confusion.
The table can operate as a function of either the desired (commanded) or actual position of
the source motors. If a D is entered immediately after the source motor number (which must
be explicitly declared here), the table operates as a function of the desired position of the
source motor; if no D is entered, the table operates as a function of the actual position of the
source motor. If the target motor is also one of the source motors, it is recommended that
desired position be used, especially in high-gain systems, to prevent interaction with the
servo dynamics.
The last two items on the command line, {RowSpan} and {ColumnSpan}, specify the
span of the compensation table for the two source motors, row and column respectively,
expressed in encoder counts of those motors. In use, if the source motor position goes
outside of the range 0 to {Span}, the source position is “rolled over” to within this range
along this axis before the correction is computed.
The count spacing between columns in the table is {RowSpan} divided by {Columns}.
The count spacing between rows in the table is {ColumnSpan} divided by {Rows}. Note
carefully the interaction between the row parameters and the column parameters.
On succeeding command lines will be given the actual correction entries of the table, given

PMAC 2 Software Reference

PMAC On-Line Command Specification 211

as integer numerical constants in text form. The units of these entries are 1/16 count, and the
entries must be integer values. The first entry is the correction at one column spacing from
the zero position of the RowMotor, and the zero position of the ColumnMotor. The
second entry is the correction at two column spacings from the zero position of the
RowMotor, and the zero position of the ColumnMotor, and so on. Entry number
Columns is the correction at RowSpan counts of the RowMotor, and at the zero position
of the ColumnMotor (this entry should be zero if you wish to use the table along the edge,
to match the implied zero correction at the origin). These entries should be considered as
constituting “Row 0” of the table.
The next entry (entry Columns+1, the first entry of Row 1) is the correction at the zero
position of the RowMotor, and one row spacing of the ColumnMotor. The following
entry is the correction at one column spacing of the RowMotor and one row spacing of the
ColumnMotor. The entry after this is the correction at two column spacing of the
RowMotor and one row spacings of the ColumnMotor., and so on. The last entry of Row
1 (entry 2*Columns+1) is the correction at one row spacing of the RowMotor, and
RowSpan counts of the ColumnMotor.
Subsequent rows are added in this fashion, with the corrections of the entries for Row n being
at n row spacings from the zero position of the ColumnMotor. The last row (row Rows)
contains corrections at ColumnSpan counts of the ColumnMotor.

The size of the table is limited only by available data buffer space in PMAC’s memory.

The following chart shows the order of entries into a 2D table with r rows and c columns,
covering a span along the row motor of RowSpan, and along the column motor of ColSpan:

 Column Motor
Position v

Col 0

Col 1

Col 2

(Col j)

Col c

Row Motor
Position >

 0 RowSpan
c

2*RowSpan
c

 RowSpan

Row 0 0 [0] E1 E2 … Ec
Row 1 ColSpan

r
Ec+1 Ec+2 Ec+3 … E2c+1

Row 2 2*ColSpan
r

E2c+2 E2c+3 E2c+4 … E3c+2

(Row i) … … … (Eic+I+j) …
Row r ColSpan Erc+r Erc+r+1 Erc+r+2 Erc+r+c

There are several important details to note in the entry of a 2D table:
• The number of rows and number of columns is separated by a period, not a comma.
• The correction to the target motor at the zero position of both source motors is zero by

definition. This is an implied entry at the beginning of the table (shown by [0] in the
above chart); it should not be explicitly entered.

• Consecutive entries in the table are in the same row (except at row’s end) separated by
one column spacing of the position of the first source (row) motor.

• Both Row 0 and Row r must be entered into the table, so effectively you are entering
(r+1) rows. If there is any possibility that you may go beyond an edge of the table,
matching entries of Row 0 and Row r should have the same value to prevent a
discontinuity in the correction. Row r in the table may simply be an added row beyond
your real range of concern used just to prevent possible discontinuities at the edges of
your real range of concern.

• Both Column 0 and Column c must be entered into the table, so effectively you are

 PMAC 2 Software Reference

212 PMAC On-Line Command Specification

entering (c+1) columns. If there is any possibility that you may go beyond an edge of the
table, matching entries of Column 0 and Column c should have the same value to prevent
a discontinuity in the correction. Column c in the table may simply be an added column
beyond your real range of concern used just to prevent possible discontinuities at the
edges of your real range of concern.

• Because the outside rows and outside columns must match each other to prevent edge
discontinuities, the three explicitly entered corner corrections must be zero to match the
implicit zero correction at the first corner of the table.

Example #1 DEFINE COMP 40.30,#1,#2,#3,300000,400000
........................... ; Create table belonging to Motor 1
ERR007 ; PMAC rejects this command
DELETE GATHER ; Clear other buffers to allow loading
&1 DELETE ROTARY
&2 DELETE ROTARY
#2 DELETE COMP
#3 DELETE COMP
#4 DEFINE COMP 30.40,#1,#2,#3,400000,300000
........................... ; Create same table, now belonging to Motor 4;
........................... ; #1 & #2 are sources, #3 is target;
........................... ; 30 rows x 40 columns, spacing of 10,000 counts
(1270 entries)..... ; (30+1)*(40+1)-1 entries of constants
#3 DEFINE COMP 25.20,#2,#3,#1,200000,250000
........................... ; Create table belonging to Motor 3;
........................... ; #2 and #3 are sources, #1 is target;
........................... ; 25 rows x 20 columns, spacing of 10,000 counts
(545 entries)....... ;(25+1)*(20+1)-1 entries of constants
#2 DEFINE COMP 10.10,#1,#4,10000,20000
........................... ; Create table belonging to Motor 2; #1 and #4 are
........................... ; sources, #2 (default) is target; 10 rows x10 columns,
........................... ; spacing of 1000 cts between columns; pacing of
........................... ; 2000 cts between rows
(120 entries)....... ; (10+1)*(10+1)-1 entries of constants
#1 DEFINE COMP 12.10,#4,1280,1200
........................... ; Create table belonging to Motor 1, #4 and #1 (default)
........................... ; are sources, #1 (default) is target 12 rows x 10 columns
........................... ; spacing of 128 cts between columns spacing of 100 cts
........................... ; between rows
(142 entries)....... ; (12+1)*(10+1)-1 entries of constants
I51=1 Enable compensation tables

See Also Leadscrew compensation (Setting Up a Motor)
I-variable I51
On-line commands {constant}, LIST COMP, LIST COMP DEF, DELETE COMP,
DELETE GATHER, DELETE ROTARY, SIZE

DEFINE GATHER
Function Create a data gathering buffer.
Scope Global
Syntax DEFINE GATHER [{constant}]

DEF GAT [{constant}]
where:
• {constant} is a positive integer representing the number of words of memory to be

reserved for the buffer

PMAC 2 Software Reference

PMAC On-Line Command Specification 213

Remarks This command reserves space in PMAC’s memory or in DPRAM depending upon the setting
of I45 for the data gathering buffer and prepares it for collecting data at the beginning of the
buffer. If a data gathering buffer already exists, its contents are not erased but the Data
Gather Buffer Storage address (Y:$0F20) is reinitialized to the Data Gather Buffer Start
address (X:$0F20) and the LIST GATHER command will no longer function. Data
collection will again start at the beginning of the buffer when the command GATHER is
issued.
If Data Gathering is in progress (an ENDGATHER command has not been issued and the
gather buffer has not been filled up) PMAC will report an error on receipt of this command.
The optional {constant} specifies the number of long words to be reserved for the data
gathering buffer, leaving the remainder of PMAC’s memory available for other buffers such
as motion and PLC programs. If {constant} is not specified, all of PMAC’s unused
buffer memory is reserved for data gathering. Until this buffer is deleted (with the DELETE
GATHER command), no new motion or PLC programs may be entered into PMAC.

Note:
If I45 = 2 or 3 the {size} requested in the DEFINE GATHER
{size} command refers to a DPRAM long word (32-bits). If the
{size} is smaller than required to hold an even multiple of the
requested data, the actual data storage will go beyond the requested
{size} to the next higher multiple of memory words required to
hold the data. For example, if you are gathering one 24-bit value and
one 48-bit value you will need 3 DPRAM long words of memory. If
the {size} you specify is 4000 words (not a multiple of 3), the
actual storage size will be 4002 words (the next higher multiple of 3).

The number of long words of unused buffer memory can be found by issuing the SIZE
command.

Example DEFINE GATHER
DEFINE GATHER 1000

See Also I-variables I19-I45
On-line commands GATHER, DELETE GATHER, <CTRL-G>, SIZE

DEFINE LOOKAHEAD {Option 6L firmware only}
Function Create lookahead buffer

Scope Coordinate-system specific

Syntax DEFINE LOOKAHEAD {constant},{constant}
DEF LOOK {constant},{constant}
where:
• the first {constant} is a positive integer representing the number of move segments

that can be stored in the buffer;
• the second {constant} is a positive integer representing the number of synchronous

 PMAC 2 Software Reference

214 PMAC On-Line Command Specification

M-variable assignments that can be stored in the buffer

Remarks This command establishes a lookahead buffer for the addressed coordinate system. It
reserves memory to buffer both motion equations and “synchronous M-variable” output
commands for the lookahead function.

PMAC can only have one lookahead buffer at a time. The coordinate system that is
addressed when the lookahead buffer is defined is the only coordinate system that can
execute the special lookahead function.

Segment Buffer Size: The first constant value in the command determines the number of
motion segments that can be stored in the lookahead buffer. Each motion segment takes I13
milliseconds at the motion program speeds and acceleration times (the velocity and
acceleration limits may extend these times).

However, it is the variable I1020 for the coordinate system that determines how many motion
segments the coordinate system will actually look ahead in operation.

The lookahead buffer should be sized large enough to store all of the lookahead segments
calculated, which means that this constant value must be greater than or equal to I1020. If
backup capability is desired, the buffer must be sized to be large enough to contain the
desired lookahead distance plus the desired backup distance.

The method for calculating the number of segments that must be stored ahead is explained in
the I1020 specification and in the PMAC User’s Guide section on Lookahead. The
fundamental equation is:

13I*2
1*

x17Ix
16Ixmax*

3
41020I

=

If backup capability is desired, the buffer must be able to store an additional number of
segments for the entire distance to be covered in reversal. This number of segments can be
calculated as:

() ()
())segsec/m(SegTime*sec/unitsmaxV

secsec/m1000*unitsBackupDisttsBackSegmen =

The total number of segments to reserve for the buffer is simply the sum of the forward and
back segments you wish to be able to hold:

tsBackSegmen1020IntsTotalSegme +=

Memory Requirements: For each segment PMAC is told to reserve space for in the lookahead
buffer, PMAC will reserve (2x+4) 48-bit words of memory from the main buffer memory
space, where x is the number of motors in the coordinate system at the time that the buffer is
defined. For example, if there are 5 motors in the coordinate system, a command to reserve
space for 50 segments will reserve 50*(2*5 + 4) = 700 words of memory.

Once a lookahead buffer has been defined for a coordinate system, motors cannot be added
to, or removed from, the coordinate system without upsetting the structure of the lookahead
buffer. Attempting to do this will result in a “run-time” error on the next lookahead move.

If it is desired to add a motor to the coordinate system, or remove one, the lookahead buffer
must first be erased with the DELETE LOOKAHEAD command, then re-defined after the
change to the coordinate system has been made.

Output Buffer Size: The second constant value in the command determines the number of

PMAC 2 Software Reference

PMAC On-Line Command Specification 215

synchronous M-variable assignments that can be stored in the lookahead buffer. Because
these are evaluated at lookahead time, but not actually implemented until move execution
time, they must be buffered. This section of the buffer must be large enough to store all of
the assignments that could be made in the lookahead distance. Synchronous M-variable
assignments are not made during backup, so there is no need to reserve memory to store
assignments for the backup distance as well as the lookahead distance.

Memory Requirements: For each synchronous M-variable assignment PMAC is told to
reserve space for in the lookahead buffer, PMAC will reserve two 48-bit words of memory.

There are no performance penalties for making the lookahead buffer larger than required, but
this does limit the amount of PMAC memory free for other features.

A lookahead buffer is never retained through a power-down or board reset, so this command
must be issued after every power-up/reset if the lookahead function is to be used.

To erase a lookahead buffer and free up the memory for other use, issue a DELETE
LOOKAHEAD command, or reset the card.

PMAC will reject the DEFINE LOOKAHEAD command, reporting an ERR003 if I6 = 1 or 3,
if any lookahead buffer exists, or if a GATHER buffer exists. Any existing lookahead buffers
and gather buffers must be deleted before a lookahead buffer can be defined.

DEFINE ROTARY
Function Define a rotary motion program buffer

Scope Coordinate-system specific

Syntax DEFINE ROTARY{constant}
DEF ROT{constant}
where:
• {constant} is a positive integer representing the number of long words of memory to

be reserved for the buffer

Remarks This command causes PMAC to create a rotary motion program buffer for the addressed
coordinate system, allocating the specified number of long words of memory. Rotary buffers
permit the downloading of program lines during the execution of the program.

The buffer should be large enough to allow it to hold safely the number of lines you
anticipate downloading to PMAC ahead of the executing point. Each long word of memory
can hold one sub-block of a motion program (i.e. X1000 Y1000 is considered as two sub-
blocks). The allocated memory for this coordinate system’s rotary buffer remains resident
until the buffer is deleted with DELETE ROT.

Note:
PMAC will reject this command, reporting an ERR003 if I6=1 or 3, if
any ROTARY buffer exists for a lower numbered coordinate system,
or if a GATHER buffer exists. Any of these buffers must be deleted
first. ROTARY buffers must be defined from high-numbered
coordinate system to low-numbered coordinate system and deleted
from low-numbered coordinate system to high-numbered coordinate
system.

Example DELETE GATHER ; Ensure open memory

 PMAC 2 Software Reference

216 PMAC On-Line Command Specification

&2DEFINE ROT 100 ; Create buffer for C.S. 2
&1DEFINE ROT 100 ; Create buffer for C.S. 1
&1B0 &2B0...... ; Point to these buffers
OPEN ROT ; Open these buffers for entry
 ; enter program lines here

See Also Rotary Program Buffers (Writing a Motion Program)
On-line commands OPEN ROTARY, DELETE ROTARY, DELETE GATHER

PMAC 2 Software Reference

PMAC On-Line Command Specification 217

DEFINE TBUF
Function Create a buffer for axis transformation matrices.
Scope Global
Syntax DEFINE TBUF {constant}

DEF TBUF {constant}
where:
• {constant} is a positive integer representing the number of transformation matrices to

create
Remarks This command reserves space in PMAC’s memory for one or more axis transformation

matrices. These matrices can be used for real-time translation, rotation, scaling, and
mirroring of the X, Y, and Z axes of any coordinate system. A coordinate system selects
which matrix to use with the TSELn command, where n is an integer from 1 to the number of
matrices created here.

Note:
PMAC will reject this command, reporting an ERR003 if I6=1 or 3, if
any ROTARYor GATHER buffer exists. Any of these buffers must
be deleted first.

The number of long words of unused buffer memory can be found by issuing the SIZE
command. Each defined matrix takes 21 words of memory.

Example DELETE GATHER
DEF TBUF 1
DEFINE TBUF 8

See Also Axis Transformation Matrices (Writing a Motion Program)
On-line commands DELETE TBUF, DELETE GATHER, SIZE.
Program commands TSEL, ADIS, AROT, IDIS, IROT, TINIT

DEFINE TCOMP
Function Define torque compensation table
Scope Motor specific
Syntax DEFINE TCOMP {entries},{count length}

DEF TCOMP {entries},{count length}
where:
• {entries} is a positive integer constant representing the number of values in the table;
• {count length} is a positive integer representing the span of the table in encoder

counts of the motor.
Remarks This command establishes a torque compensation table for the addressed motor. The next

{entries} constants sent to PMAC will be placed into this table. The last item on the
command line {count length} specifies the span of the torque compensation table in
encoder counts of the motor. In use, if the motor position goes outside of the range 0 to
count-length, the position is “rolled over” to within this range before the compensation is
computed. The spacing between entries in the table is {count length} divided by
{entries}.
On succeeding lines will be given the actual entries of the table as constants separated by
spaces and or carriage return characters. The entries are signed 24-bit integer values, with a
range of –8,388,608 to +8,388,607. The full range of these entries corresponds to the full
range of the 16-bit torque output of the servo loop, -32,768, to +32,767.

 PMAC 2 Software Reference

218 PMAC On-Line Command Specification

Therefore, an entry in the torque compensation table is numerically 256 times bigger than the
corresponding servo-loop torque output.
The first entry is the correction at one spacing from the motor zero position (as determined by
the most recent home search move or power-up/reset), the second entry is the correction two
spacings away, and so on. PMAC computes corrections for positions between the table
entries by a first-order interpolation between adjacent entries. The correction from the table
at motor zero position is zero by definition.
The correction is the magnitude added to PMAC’s servo loop output at that position. If
PMAC’s command is positive, a positive value from the table will increase the magnitude of
the output; a negative value will decrease the magnitude of the output. If PMAC’s command
is negative, a positive value from the table will decrease the magnitude of the output in the
negative direction; a negative value will increase the magnitude of the output.
The last entry in the table represents the correction at {count length} distance from the
motor’s zero position. Since the table has the capability to roll over, this entry also represents
the correction at the motor’s zero position. For this reason, the last entry should virtually
always be set to zero.

Note:
PMAC will reject this command, reporting an ERR003 if I6=1 or 3, if
any TCOMP buffer exists for a lower numbered motor, or if any
BLCOMP, TBUF, ROTARY, or GATHER buffer exists. Any of
these buffers must be deleted first. TCOMP buffers must be defined
from high-numbered motor to low-numbered motor, and deleted from
low-numbered motor to high-numbered motor.

I51 must be set to 1 to enable the table.

See Also Torque Compensation (Setting Up a Motor)
I-variables I51
On-line command DELETE TCOMP

DEFINE UBUFFER
Function Create a buffer for user variable use.

Scope Global

Syntax DEFINE UBUFFER {constant}
DEF UBUF {constant}
where:
• {constant} is a positive integer representing the number of 48-bit words of PMAC

memory to reserve for this purpose

Remarks This command reserves space in PMAC’s memory for the user’s discretionary use. This
memory space will be untouched by any PMAC automatic functions. User access to this
buffer is through M-variables, or possibly through on-line W (write) and R (read) commands.

The buffer starts at PMAC memory address $9FFF and continues back toward the beginning
of memory ($0000) for the number of long (48-bit) words specified by {constant}. This
memory space can be subdivided any way the user sees fit. On PMACs with battery backup,
the values in the buffer at power-down will still be there at power-up. On PMACs with flash
backup, the values in the buffer at the last SAVE command will be copied from the flash
memory into the buffer at power-up or reset.

PMAC 2 Software Reference

PMAC On-Line Command Specification 219

All other buffers except for fixed motion programs (PROG) and PLC programs must be
deleted before PMAC will accept this command. There can be no rotary motion program,
leadscrew compensation table, transformation matrix, data gathering or stimulus buffers in
PMAC memory (any buffer created with a DEFINE command) for this command to be
accepted. It is usually best to reinitialize the card with a $$$*** command before sending
the DEFINE UBUFFER command.
The address of the end of unreserved memory is held in register X:$0F3F. This register must
hold the address $A000, signifying no defined buffers, in order for PMAC to be able to create
a user buffer. Immediately after the user buffer has successfully been defined, this register
will hold the address of the start of the buffer (the end of the user buffer is always at $9FFF).
However, after other buffers have been defined, the end of unreserved memory will not
match the beginning of the user buffer.
To free up this memory for other uses, the DEFINE UBUFFER 0 command should be used
(there is no DELETE UBUFFER command). It may be more convenient simply to re-
initialize the board with a $$$*** command.

Example RHX:$0F3F ; Look for end of unreserved memory
008A3D ; Reply indicates some reserved
$$$*** ; Re-initialize card to clear memory
RHX:$0F3F ; Check end of unreserved memory
00A000 ; Reply indicates none reserved
DEFINE UBUFFER 256 ; Reserve memory for buffer
RHX:$0F3F ; Check for beginning of buffer
009F00 ; Reply confirms 256 words reserved
M1000->D:$9F00 ; Define M-variable to first word
M1010->Y:$9F80,12,1 ; Define M- variable to a middle word
M1023->X:$9FFF,24,S ; Define M- variable to last word

See Also User Buffer, M-Variables (Computational Features)
On-line commands $$$***, R[H]{address}, W{address}

DELETE BLCOMP
Function Erase backlash compensation table

Scope Motor specific

Syntax DELETE BLCOMP
DEL BLCOMP

Remarks This command causes PMAC to erase the compensation table for the addressed motor,
freeing that memory for other use.

Note:
PMAC will reject this command, reporting an ERR003 if I6=1 or 3, if
any BLCOMP buffer exists for a lower numbered motor, or if any
TBUF, ROTARY, or GATHER buffer exists. Any of these buffers
must be DELETEd first. BLCOMP buffers must be DEFINEd from
high-numbered motor to low-numbered motor, and DELETEd from
low-numbered motor to high-numbered motor.

Example #2 DEL BLCOMP ; Erase table belonging to Motor 2
ERR003 ; PMAC rejects this command
#1 DEL BLCOMP ; Erase table belonging to Motor 1
#2 DEL BLCOMP ; Erase table belonging to Motor 2

 PMAC 2 Software Reference

220 PMAC On-Line Command Specification

See Also Backlash Compensation (Setting Up a Motor)
I-variables I99, Ix85, Ix86
On-line command DEFINE BLCOMP

DELETE COMP
Function Erase leadscrew compensation table

Scope Motor specific

Syntax DELETE COMP
DEL COMP

Remarks This command causes PMAC to erase the compensation table belonging to the addressed
motor, freeing that memory for other use.

Note:
PMAC will reject this command, reporting an ERR003 if I6=1 or 3, if
any COMP buffer exists for a lower numbered motor, or if any
TCOMP, BLCOMP, TBUF, ROTARY, or GATHER buffer exists.
Any of these buffers must be deleted first. COMP buffers must be
defined from high-numbered motor to low-numbered motor, and
deleted from low-numbered motor to high-numbered motor.

Remember that a compensation table belonging to a motor does not necessarily affect that
motor or is not necessarily affected by that motor. The command LIST COMP DEF will
tell which motors it affects and is affected by.

Example #2DEL COMP ... ; Erase table belonging to Motor 2
ERR003 ; PMAC rejects this command
#1 DELETE COMP ; Erase table belonging to Motor 1
#2 DELETE COMP ; Erase table belonging to Motor 2

See Also Leadscrew compensation (Setting Up a Motor)
I-variable I51
On-line commands {constant}, LIST COMP, LIST COMP DEF, DEFINE COMP

DELETE GATHER
Function Erase the data gather buffer.

Scope Global

Syntax DELETE GATHER
DEL GAT

Remarks This command causes the data gathering buffer to be erased. The memory that was reserved
is now de-allocated and is available for other buffers (motion programs, PLC programs,
compensation tables, etc.). If data gathering is in progress (an ENDGATHER command has
not been issued and the gather buffer has not been filled up) PMAC will report an error on
receipt of this command.

PMAC’s Executive Program automatically inserts this command at the top of a file when it
uploads a buffer from PMAC into its editor, so the next download will not be hampered by an
existing gather buffer. It is strongly recommended that you use this command as well when
you create a program file in the editor (see Examples, below).

PMAC 2 Software Reference

PMAC On-Line Command Specification 221

Note:
When the executive program’s data gathering function operates, it
automatically reserves the entire open buffer space for gathered data.
When this has happened, no additional programs or program lines may
be entered into PMAC’s buffer space until the DELETE GATHER
command has freed this memory.

Example CLOSE ; Make sure no buffers are open
DELETE GATHER ; Free memory
OPEN PROG 50 ; Open new buffer for entry
CLEAR ; Erase contents of buffer
... ; Enter new contents here

See Also Buffered Commands (Talking to PMAC)
On-line commands GATHER, DEFINE GATHER, SIZE

DELETE LOOKAHEAD {Option 6L firmware only}
Function Erase lookahead buffer

Scope Coordinate-system specific

Syntax: DELETE LOOKAHEAD
DEL LOOK

Remarks This command erases the lookahead buffer for the addressed coordinate system, freeing the
memory for other uses. It also permits a motor to be added to, or removed from, the
coordinate system, which cannot be done while there is a defined lookahead buffer for the
coordinate system.
PMAC will reject the DELETE LOOKAHEAD command, reporting an ERR003 if I6 = 1 or 3,
if a data gathering buffer exists. An existing data gathering buffer must be erased with a
DELETE GATHER command before the lookahead buffer may be deleted.

DELETE PLCC
Function Erase specified compiled PLC program

Scope Global

Syntax DELETE PLCC {constant}
DEL PLCC {constant}
where:
• {constant} is an integer from 0 to 31, representing the program number

Remarks This command causes PMAC to erase the specified compiled PLC program. Remember that
because all of the compiled PLC programs must be downloaded to PMAC together, the only
way to restore this PLC is to download the entire set of compiled PLCs.
Only one PLCC program can be deleted in one command. Ranges and lists of PLCC
program numbers are not permitted in this command.
To perform the same function for an uncompiled PLC program, the command sequence
would be OPEN PLC n CLEAR CLOSE.

Example DELETE PLCC 5 ; Erase compiled PLC program 5
DEL PLCC 0 ; Erase compiled PLC program 0

See Also Compiled PLCs (Writing a PLC Program)
I-variable I5
On-line commands DISABLE PLCC, ENABLE PLCC, CLEAR

 PMAC 2 Software Reference

222 PMAC On-Line Command Specification

DELETE ROTARY
Function Delete rotary motion program buffer of addressed coordinate system

Scope Coordinate-system specific

Syntax DELETE ROTARY
DEL ROT

Remarks This command causes PMAC to erase the rotary buffer for the currently addressed coordinate
system and frees the memory that had been allocated for it.

Note:
PMAC will reject this command, reporting an ERR003 if I6=1 or 3, if
the ROTARY buffer for this coordinate system is open or executing,
or if any ROTARY buffer exists for a lower numbered coordinate
system, or if a GATHER buffer exists. Any of these buffers must be
deleted first. ROTARY buffers must be defined from high-numbered
coordinate system to low-numbered coordinate system, and deleted
from low-numbered motor to high-numbered motor.

Example &2 DELETE ROTARY ; Try to erase C.S. 2’s rotary buffer
ERR003 ; PMAC rejects this; C.S. 1 still has a rotary
&1 DELETE ROTARY ; Erase C.S. 1’s rotary buffer
&2 DELETE ROTARY ; Erase C.S. 2’s rotary buffer; OK now

See Also Rotary Program Buffers (Writing a Motion Program)
On-line commands DEFINE ROTARY, OPEN ROTARY.

DELETE TBUF
Function Delete buffer for axis transformation matrices.

Scope Global

Syntax DELETE TBUF
DEL TBUF

Remarks This command frees up the space in PMAC’s memory that was used for axis transformation
matrices. These matrices can be used for real-time translation, rotation, scaling, and
mirroring of the X, Y, and Z axes of any coordinate system.

PMAC will reject this command, reporting an ERR007 if I6=1 or 3, if any ROTARYor
GATHER buffer exists. Any of these buffers must be DELETEd first.

Example DEL TBUF
DELETE TBUF

See Also Axis Transformation Matrices (Writing a Motion Program)
On-line commands DEFINE TBUF
Program commands TSEL, ADIS, AROT, IDIS, IROT, TINIT

PMAC 2 Software Reference

PMAC On-Line Command Specification 223

DELETE TCOMP
Function Erase torque compensation table

Scope Motor specific

Syntax DELETE TCOMP
DEL TCOMP

Remarks This command causes PMAC to erase the torque compensation table for the addressed motor,
freeing that memory for other use.

PMAC will reject this command, reporting an ERR003 if I6=1 or 3, if any TCOMP buffer
exists for a lower numbered motor, or if any BLCOMP, TBUF, ROTARY, or GATHER
buffer exists. Any of these buffers must be deleted first. TCOMP buffers must be defined
from high-numbered motor to low-numbered motor, and deleted from low-numbered motor
to high-numbered motor.

Example #2 DEL TCOMP ; Erase table belonging to Motor 2
ERR003 ; PMAC rejects this command
#1 DEL TCOMP ; Erase table belonging to Motor 1
#2 DEL TCOMP ; Erase table belonging to Motor 2

See Also Torque Compensation (Setting Up a Motor)
I-variables I51
On-line command DEFINE TCOMP

DELETE TRACE
Function Formerly: Erase the motion program trace buffer.

Scope Global

Syntax DELETE TRACE
DEL TRAC

Remarks The TRACE buffer feature on PMAC has been removed. DELETE TRACE is still a valid
command and will not cause an error when sent to PMAC, but it causes no operation to be
performed.

Example CLOSE ; Make sure no buffers are open
DELETE GATHER DELETE TRACE ; Free memory
OPEN PLC 17 . ; Open new buffer for entry
CLEAR ; Erase contents of buffer
... ; Enter new contents here

See Also On-line commands DELETE GATHER.

DISABLE PLC
Function Pause execution of specified PLC program(s).

Scope Global

Syntax DISABLE PLC {constant}[,{constant}...]
DIS PLC {constant}[,{constant}...]
DISABLE PLC {constant}[..{constant}]
DIS PLC {constant}[..{constant}]
where:
• {constant} is an integer from 0 to 31, representing the program number

 PMAC 2 Software Reference

224 PMAC On-Line Command Specification

Remarks This command causes PMAC to disable (stop executing) the specified uncompiled PLC
program or programs. Execution can subsequently be resumed at the top of the program with
the ENABLE PLC command. If it is desired to restart execution at the stopped point,
execution should be stopped with the PAUSE PLC command, and restarted with the
RESUME PLC command
The on-line DISABLE PLC command can only suspend execution of a PLC program at the
end of a scan, which is either the end of the program, or after an ENDWHILE statement in the
program.
PLC programs are specified by number, and may be specified in a command singularly, in a
list (separated by commas), or in a range of consecutively numbered programs. PLC
programs can be re-enabled by using the ENABLE PLC command.
If a motion or PLC program buffer is open when this command is sent to PMAC, the
command will be entered into that buffer for later execution.

Example DISABLE PLC 1
DIS PLC 5
DIS PLC 3,4,7
DISABLE PLC 0..31

See Also I-variable I5
On-line commands ENABLE PLC, OPEN PLC, PAUSE PLC, RESUME PLC, LIST PLC,
<CONTROL-D>.
Program commands DISABLE PLC, ENABLE PLC, PAUSE PLC, RESUME PLC

DISABLE PLCC
Function Disable compiled PLC program(s).

Scope Global

Syntax DISABLE PLCC {constant}[,{constant}]
DIS PLCC {constant}[,{constant}]
DISABLE PLCC {constant}..{constant}
DIS PLCC {constant}..{constant}
where:
• {constant} is an integer from 0 to 31, representing the compiled PLC program

number
Remarks This command causes PMAC to disable (stop executing) the specified compiled PLC

program or programs. Compiled PLC programs are specified by number, and may be
specified in a command singularly, in a list (separated by commas), or in a range of
consecutively numbered programs. PLC programs can be re-enabled by using the ENABLE
PLCC command.
If a motion or PLC program buffer is open when this command is sent to PMAC, the
command will be entered into that buffer for later execution.

Example DISABLE PLCC 1
DIS PLCC 5
DIS PLCC 3,4,7
DISABLE PLCC 0..31

See Also I-variable I5
On-line commands DISABLE PLC, ENABLE PLC, ENABLE PLCC, OPEN PLC,
<CONTROL-D>.
Program commands DISABLE PLC, DISABLE PLCC, ENABLE PLC, ENABLE PLCC

PMAC 2 Software Reference

PMAC On-Line Command Specification 225

EAVERSION
Function Report full specification of firmware version

Scope Global

Syntax EAVERSION
EAVER

Remarks This command causes PMAC to report the full version of the firmware version that it is
using. It always returns an 8-digit response, with the following meanings to the digits.

Digit # Meaning Settings
1 PMAC Type 0 = PMAC(1)

1 = PMAC2
2 = Ultralite PMAC
3 = PMAC2-VME
4 = Ultralite PMAC2-VME

2 Memory backup type 0 = Battery backup
1 = AMD-style flash backup
2 = Intel-style flash backup

3 Options 0 = Standard
1 = ESA
2 = Lookahead
3 = ESA + Lookahead

4 Test version 0 = Released
1 = 1st test version
2 = 2nd test version, etc.

5 Revision suffix 0 = First released version of
revision number
1 = A version
2 = B version, etc.

6 – 8 Released version
number

3-digit representation without
decimal point (e.g. 116 for 1.16)

Example EAVERSION
01007116 ; PMAC(1), AMD-flash backup,
 ; Standard firmware, released,
 ; G revision of 1.16
EAVER
41138116 ; Ultralite PMAC2-VME, AMD-flash,
 ; ESA firmware, 3rd test version,
 ; H revision of 1.16

See Also On-line commands DATE, TYPE, VERSION

ENABLE PLC
Function Enable specified PLC program(s).

Scope Global

Syntax ENABLE PLC {constant}[,{constant}...]
ENA PLC {constant}[,{constant}...]
ENABLE PLC {constant}[..{constant}]
ENA PLC {constant}[..{constant}]
where:

• {constant} is an integer from 0 to 31, representing the program number

 PMAC 2 Software Reference

226 PMAC On-Line Command Specification

Remarks This command causes PMAC to enable (start executing) the specified uncompiled PLC
program or programs at the top of the program. Execution of the PLC program may have
been stopped with the DISABLE PLC, PAUSE PLC, or OPEN PLC command.

PLC programs are specified by number, and may be used singularly in this command, in a list
(separated by commas), or in a range of consecutively numbered programs.
If a motion or PLC program buffer is open when this command is sent to PMAC, the
command will be entered into that buffer for later execution.

I-variable I5 must be in the proper state to allow the PLC program(s) specified in this
command to execute.

Note:
This command must be used to start operation of a PLC program after
it has been entered or edited, because the OPEN PLC command
automatically disables the program, and CLOSE does not re-enable it.

Example ENABLE PLC 1
ENA PLC 2,7
ENABLE PLC 3,21
ENABLE PLC 0..31

This example shows the sequence of commands to download a very simple PLC program and have it
enabled automatically on the download:

OPEN PLC 7 CLEAR
P1=P1+1
CLOSE
ENABLE PLC 7

See Also I-variable I5
On-line commands DISABLE PLC, OPEN PLC, PAUSE PLC, RESUME PLC, LIST
PLC, <CONTROL-D>.
Program commands DISABLE PLC, ENABLE PLC, PAUSE PLC, RESUME PLC

ENABLE PLCC
Function Enable specified compiled PLC program(s).

Scope Global

Syntax ENABLE PLCC {constant}[,{constant}]
ENA PLCC {constant}[,{constant}]
ENABLE PLCC {constant}..{constant}
ENA PLCC {constant}..{constant}
where:
• {constant} is an integer from 0 to 31, representing the program number

Remarks This command causes PMAC to enable (start executing) the specified compiled PLC
program or programs. Compiled PLC programs are specified by number, and may be used
singularly in this command, in a list (separated by commas), or in a range of consecutively
numbered programs.
If a motion or PLC program buffer is open when this command is sent to PMAC, the
command will be entered into that buffer for later execution.
I-variable I5 must be in the proper state to allow the compiled PLC program(s) specified in
this command to execute.

PMAC 2 Software Reference

PMAC On-Line Command Specification 227

Example ENABLE PLCC 1
ENA PLCC 2,7
ENABLE PLCC 3,21
ENABLE PLCC 0..31

See Also I-variable I5
On-line commands DISABLE PLC, DISABLE PLCC, ENABLE PLC, OPEN PLC,

<CONTROL-D>.
Program commands DISABLE PLC, DISABLE PLCC, ENABLE PLC, ENABLE PLCC

ENDGATHER
Function Stop data gathering.

Scope Global

Syntax ENDGATHER
ENDG

Remarks This command causes data gathering to cease. Data gathering may start up again (without
overwriting old data) with another GATHER command.
This command is usually used in conjunction with the data gathering and plotting functions
of the PMAC Executive Program.
If a motion or PLC program buffer is open when this command is sent to PMAC, the
command will be entered into that buffer for later execution.

Example GAT B1R ; Start gathering and run program 1
ENDG.................. Stop gathering – give this command when moves
........................... of interest are done
OPEN PROG2 CLEAR
X10
DWELL1000
CMD”GATHER” . ; Program issues start command here
X20 ; Move of interest
DWELL50
CMD”ENDG”...... ; Program issues stop command here
CLOSE

See Also Data Gathering Function (Analysis Features)
I-variables I19-I44
On-line commands DEFINE GATHER, GATHER, LIST GATHER, DELETE GATHER
Gathering and Plotting (PMAC Executive Program Manual)

F
Function Report motor following error
Scope Motor specific
Syntax F
Remarks This command causes PMAC to report the present motor following error (in counts, rounded

to the nearest tenth of a count) to the host. Following error is the difference between motor
desired and measured position at any instant. When the motor is open-loop (killed or
enabled), following error does not exist and PMAC reports a value of 0.

Example F......................... ; Ask for following error of addressed motor
12 ; PMAC responds
#3F ; Ask for following error of Motor 3
-6.7 ; PMAC responds

 PMAC 2 Software Reference

228 PMAC On-Line Command Specification

See Also Following Error (Servo Features)
I-variables Ix11, Ix12, Ix67
On-line commands <CTRL-F>, P, V
Suggested M-variable definitions Mx61, Mx62
Memory map registers D:$0028, D:$002C, etc.; D:$0840, etc.

FRAX
Function Specify the coordinate system’s feedrate axes.

Scope Coordinate-system specific

Syntax FRAX
FRAX({axis}[,{axis}...])
where:
• {axis} (optional) is a character (X, Y, Z, A, B, C, U, V, W) specifying which axis is to

be used in the vector feedrate calculations

Note:
No spaces are permitted in this command.

Remarks This command specifies which axes are to be involved in the vector-feedrate (velocity)
calculations for upcoming feedrate-specified (F) moves. PMAC calculates the time for these
moves as the vector distance (square root of the sum of the squares of the axis distances) of
all the feedrate axes divided by the feedrate. Any non-feedrate axes commanded on the same
line will complete in the same amount of time, moving at whatever speed is necessary to
cover the distance in that time.
Vector feedrate has obvious geometrical meaning only in a Cartesian system, for which it
results in constant tool speed regardless of direction, but it is possible to specify for non-
Cartesian systems, and for more than three axes.

Note:
If only non-feedrate axes are commanded to move in a feedrate-
specified move, PMAC will consider the axis or axes commanded to
be feedrate axes for that move. However, the units of these axes may
be completely different from those of the vector feedrate axes (e.g.
degrees instead of mm), so the speed may not be what is desired.

If a motion program buffer is open when this command is sent to PMAC, it will be entered
into the buffer for later execution.

For instance, in a Cartesian XYZ system, if you use FRAX(X,Y), all of your feedrate-
specified moves will be at the specified vector feedrate in the XY-plane, but not necessarily
in XYZ-space. If you use FRAX(X,Y,Z) or FRAX, your feedrate-specified moves will be at
the specified vector feedrate in XYZ-space. Default feedrate axes for a coordinate system are
X, Y, and Z.

Example FRAX.................. ; Make all axes feedrate axes
FRAX(X,Y)...... ; Make X and Y axes only the feedrate axes
FRAX(X,Y,Z) ; Make X, Y, and Z axes only the feedrate axes

See Also Feedrate-Specified Moves (Writing a Motion Program)
Program commands F{data}, FRAX.

PMAC 2 Software Reference

PMAC On-Line Command Specification 229

GATHER
Function Begin data gathering.

Scope Global

Syntax GATHER [TRIGGER]
GAT [TRIG]

Remarks This command causes data gathering to commence according to the configuration defined in
I-variables I19-I45. If TRIGGER is not used in the command, gathering will start on the next
servo cycle. If TRIGGER is used, gathering will start on the first servo cycle after machine
input MI2 goes true.

Gathering will proceed at the frequency set by I19 (in number of servo interrupt cycles). If
I19 is 0, only one set of data will be gathered per GATHER command. If PMAC is already
gathering data, GATHER will cause resynchronization of the gathering cycle to the next servo
cycle.

Gathering will continue until PMAC receives an ENDGATHER command, or until the buffer
created by the DEFINE GATHER command is full.

This command is usually used in conjunction with the data gathering and plotting functions
of the PMAC Executive Program.

If a motion or PLC program buffer is open when this command is sent to PMAC, the
command will be entered into that buffer for later execution.

Example GAT B1R Start gathering and run program 1
ENDG.................. Stop gathering – give this command when moves
........................... of interest are done
OPEN PROG2 CLEAR
X10
DWELL1000
CMD”GATHER” . Program issues start command here
X20 Move of interest
DWELL50
CMD”ENDG”...... Program issues stop command here
CLOSE

See Also Data Gathering Function (Analysis Features)
I-variables I19-I45
On-line commands DEFINE GATHER, GATHER, LIST GATHER, DELETE GATHER
Gathering and Plotting (PMAC Executive Program Manual)

H
Function Perform a feedhold

Scope Coordinate-system specific

Syntax H

Remarks This causes the currently addressed coordinate system to suspend execution of the program
starting immediately by bringing its time base value to zero, decelerating along its path at a
rate defined by the coordinate system I-variable Ix95. Technically the program is still
executing after an H command, but at zero speed. This means that the motors defined in the
coordinate system cannot be moved while performing the feed hold.

 PMAC 2 Software Reference

230 PMAC On-Line Command Specification

To do a hold of the currently addressed coordinate system in a manner that permits jogging of
the motors in the coordinate system while in feed hold mode, refer to the \ “program hold”
command.
The H command is very similar in effect to a %0 command, except that deceleration is
controlled by Ix95, not Ix94, and execution can be resumed with an R or an S command,
instead of a %100 command. In addition, H works under external time base, whereas a %0
command does not.

Full speed execution along the path will commence again on an R or S command. The ramp
up to full speed will also take place at a rate determined by Ix95 (full time-base value, either
internally or externally set). Once the full speed is reached, Ix94 determines any time-base
changes.

See Also Stopping Commands (Making Your Application Safe)
Control-Panel Port HOLD/ Input (Connecting PMAC to the Machine)
Time-Base Control (Synchronizing PMAC to External Events)
I-variables I52, Ix93, Ix94, Ix95
On-line commands <CTRL-O>, %, %{constant}, A, K, \, Q
JPAN Connector Pin 12

HOME
Function Start Homing Search Move
Scope Motor specific
Syntax HOME

HM
Remarks This command causes the addressed motor to perform a homing search routine. The

characteristics of the homing search move are controlled by motor I-variables Ix03 and Ix19-
Ix26, plus encoder I-variables 2 and 3 for that motor’s position encoder.
The on-line home command simply starts the homing search routine. PMAC provides no
automatic indication that the search has completed (although the In-Position interrupt could
be used for this purpose) or whether the move completed successfully. Polling, or a
combination of polling and interrupts, is generally used to determine completion and success.
By contrast, when a homing search move is given in a motion program (e.g. HOME1,2), the
motion program will keep track of completion by itself as part of its sequencing algorithms.
If there is an axis offset in the axis-definition statement for the motor, and/or following error
in the motor servo loop, the reported position at the end of the homing search move will be
equal to the axis offset minus the following error, not to zero.

Example HOME.................. ; Start homing search on the addressed motor
#1HM.................. ; Start homing search on Motor 1
#3HM#4HM ; Start homing search on Motors 3 and 4

See Also Control Panel Port HOME/ Input (Connecting PMAC to the Machine)
Homing Moves (Basic Motor Moves)
I-variables Ix03, Ix19-Ix26, Encoder I-Variables 2 & 3
On-line command HOMEZ
Program command HOME{constant}, HOMEZ{constant}
JPAN Connector Pin 11

PMAC 2 Software Reference

PMAC On-Line Command Specification 231

HOMEZ
Function Do a Zero-Move Homing

Scope Motor specific

Syntax HOMEZ
HMZ

Remarks This command causes the addressed motor to perform a zero-move homing search. Instead
of jogging until it finds a pre-defined trigger, and calling its position at the trigger the home
position, with this command, the motor calls wherever it is (commanded position) at the time
of the command the home position.
If there is an axis offset in the axis-definition statement for the motor, and/or following error
in the motor servo loop, the reported position at the end of the homing operation will be equal
to the axis offset minus the following error, not to zero.

Example ; On-line command examples

HOMEZ ; Do zero-move homing search on the addressed motor
#1HMZ ; Do zero-move homing search on Motor 1
#3HMZ#4HMZ ... ; Do zero-move homing search on Motors 3 and 4
........................... ; Buffered motion program examples
HOMEZ1
HOMEZ2,3
........................... ; On-line commands issued from PLC program
IF (P1=1)...... ;
 CMD”#5HOMEZ” ; Program issues on-line command
 P1=0 ; So command is not repeatedly issued
ENDIF

See Also Homing Moves (Basic Motor Moves)
On-line command HOME
Program command HOME{constant}, HOMEZ{constant}

I{constant}
Function Report the current I-variable value(s).
Scope Global
Syntax I{constant}[..{constant}]

where:
• {constant} is an integer from 0 to 1023 representing the number of the I-variable; the

optional second{constant} must be at least as great as the first {constant} – it
represents the number of the end of the range;

Remarks This command causes PMAC to report the current value of the specified I-variable or range
of I-variables.
When is 0 or 2, only the value of the I-variable itself is returned (e.g. 10000). When I9 is 1
or 3, the entire variable value assignment statement (e.g. I130=10000) is returned by
PMAC.
When I9 is 0 or 1, the values of “address” I-variables are reported in decimal form. When I9
is 2 or 3, the values of these variables are reported in hexadecimal form.

 PMAC 2 Software Reference

232 PMAC On-Line Command Specification

Note:
If a motion program buffer (including a rotary buffer) is open,
I{constant} will be entered into that buffer for later execution, to
be interpreted as a full-circle move command with a vector to the
center along the X-axis (see Circular Moves in the Writing a Motion
Program section).

Example I5 ; Request the value of I5
2......................... ; PMAC responds
I130..135...... ; Request the value of I130 through I135
60000 ; PMAC responds with 6 lines
5000
5000
50000
1
20000
To see the effect of I9 on the form of the response, observe the following:
I9=0 I125
49152 ; Short form, decimal
I9=1 I125
I125=49152 ... ; Long form, decimal
I9=2 I125
$C000 ; Short form, hexadecimal
I9=3 I125
I125=$C000 ; Long form, hexadecimal

See Also Initialization (I) Variables (Computational Features)
I-Variable Specifications
I-variable I9
On-line commands I{constant}={expression}, M{constant}, P{constant},
Q{constant}
Program commands {axis}{data}{vector}{data}, I{data}

I{constant}={expression}
Function Assign a value to an I-variable.

Scope Global

Syntax I{constant}[..{constant}]={expression}
where:
• {constant} is an integer from 0 to 1023 representing the number of the I-variable;
• the optional second{constant} must be at least as great as the first {constant} – it

represents the number of the end of the range;
• {expression} contains the value to be given to the specified I-variable(s)

Remarks This command assigns the value on the right side of the equals sign to the specified I-variable
or range of I-variables.
If a motion or PLC program buffer is open when this command is sent to PMAC, the
command will be entered into the buffer for later execution.

Example I5=2
I130=1.25*I130
I22..44=0
I102=$C003
I104=I103

PMAC 2 Software Reference

PMAC On-Line Command Specification 233

See Also Initialization (I) Variables (Computational Features)
I-Variable Specifications
On-line commands I{constant}, M{constant}={expression},
P{constant}={expression}, Q{constant}={expression}

I{constant}=*
Function Assign factory default value to an I-variable.

Scope Global

Syntax I{constant}[..{constant}]=*
where:
• {constant} is an integer from 0 to 1023 representing the number of the I-variable;
• the optional second{constant} must be at least as great as the first {constant} – it

represents the number of the end of the range.

Remarks This command sets the specified I-variable or range of I-variables to the factor default value.
Each I-variable has its own factory default; these are shown in the I-Variable Specification
section.

Example I13=*
I100..199=*

See Also Initialization (I) Variables (Computational Features)
I-Variable Specifications – Default Values
On-line commands I{constant}, I{constant}={expression}

INC
Function Specify Incremental Move Mode

Scope Coordinate-system specific

Syntax INC
INC({axis}[,{axis}...])
where:
• {axis} is a letter (X, Y, Z, A, B, C, U, V, W) representing the axis to be specified, or

the character R to specify radial vector mode
Note:

No spaces are permitted in this command.

Remarks The INC command without arguments causes all subsequent positions for all axes in position
motion commands to be treated as incremental distances. An INC statement with arguments
causes the specified axes to be in incremental mode, and all others stay the way they were
before. The default axis specification is absolute.

If ‘R’ is specified as one of the ‘axes’, the I, J, and K terms of the circular move radius vector
specification will be specified in incremental form (i.e. as a vector from the move start point,
not from the origin). An INC command without any arguments does not affect this vector
specification. The default vector specification is incremental.

If a motion program buffer is open when this command is sent to PMAC, it will be entered
into the buffer as a program statement.

Example INC(A,B,C) . ; A, B, & C axes made incremental – other axes and rad vector left as is
INC ; All axes made incremental – radius vector left as is
INC(R) ; Radius vector made incremental – all axes left as is

 PMAC 2 Software Reference

234 PMAC On-Line Command Specification

See Also Circular Moves (Writing a Motion Program)
On-line command ABS
Program commands ABS, INC

J!
Function Adjust motor commanded position to nearest integer count

Scope Motor specific

Syntax J!

Remarks This command causes the addressed motor, if the desired velocity is zero, to adjust its
commanded position to the nearest integer count value. It can be valuable to stop dithering if
the motor is stopped with its commanded position at a fractional value, and integral gain is
causing oscillation about the commanded position.

Example OPEN PLC 7 CLEAR
IF (M50=1) . ; Condition to start branch
 CMD”#1J/” ; Tell motor to stop
 WHILE (M133=0) ; Wait for desired velocity to reach zero
 ENDWHILE
 CMD”#1J!” ; Adjust command position to integer value
 M50=0 . ; To keep from repeated execution
ENDIF

See Also On-line commands J/, J={constant}

J+
Function Jog Positive

Scope Motor specific

Syntax J+

Remarks This command causes the addressed motor to jog in the positive direction indefinitely.
Jogging acceleration and velocity are determined by the values of Ix19-Ix22 in force at the
time of this command.

PMAC will reject this command if the motor is in a coordinate system that is currently
running a motion program (reporting ERR001 if I6 is 1 or 3).

Example J+ ; Jog addressed motor positive
#7J+.................. ; Jog Motor 7 positive
#2J+#3J+ ; Jog Motors 2 and 3 positive

See Also Control Panel Port JOG+/ Input (Connecting PMAC to the Machine)
JPAN Connector Pin 6
Jogging Moves (Basic Motor Moves)
I-variables Ix19-Ix22
On-line commands J-, J/, J=, J={constant}, J:{constant}, J^{constant}

PMAC 2 Software Reference

PMAC On-Line Command Specification 235

J-
Function Jog Negative

Scope Motor specific

Syntax J-

Remarks This command causes the addressed motor to jog in the negative direction indefinitely.
Jogging acceleration and velocity are determined by the values of Ix19-Ix22 in force at the
time of this command.

PMAC will reject this command if the motor is in a coordinate system that is currently
running a motion program (reporting ERR001 if I6 is 1 or 3).

Example J- ; Jog addressed motor negative
#5J-.................. ; Jog Motor 5 negative
#3J-#4J- ; Jog Motors 3 and 4 negative

See Also Control Panel Port JOG-/ Input (Connecting PMAC to the Machine)
JPAN Connector Pin 4
Jogging Moves (Basic Motor Moves)
I-variables Ix19-Ix22
On-line commands J+, J/, J=, J={constant}, J:{constant}, J^{constant}

J/
Function Jog Stop

Scope Motor specific

Syntax J/

Remarks This command causes the addressed motor to stop jogging. It also restores position control if
the motor’s servo loop has been opened (enabled or killed), with the new commanded
position set equal to the actual position at the time of the J/ command. Jogging deceleration
is determined by the values of Ix19-Ix21 in force at the time of this command.

PMAC will reject this command if the motor is in a coordinate system that is currently
running a motion program (reporting ERR001 if I6 is 1 or 3).

Example #1J+.................. ; Jog Motor 1 positive
J/ ; Stop jogging Motor 1
O5 ; Open-loop output of 5% on Motor 1
O0 ; Open loop output of 0%
J/ ; Restore closed-loop control
K......................... ; Kill output
J/ ; Restore closed-loop control

See Also Control Panel Port JOG+/, JOG-/ Inputs (Connecting PMAC to the Machine)
JPAN Connector Pin 4, 6
Jogging Moves (Basic Motor Moves)
I-variables Ix19-Ix22
On-line commands <CTRL-A>, A, J+, J-, J=, J={constant}, J:{constant},
J^{constant}, K, O{constant}

 PMAC 2 Software Reference

236 PMAC On-Line Command Specification

J:{constant}
Function Jog Relative to Commanded Position
Scope Motor specific
Syntax J:{constant}

where:
• {constant} is a floating point value specifying the distance to jog, in counts.

Remarks This command causes a motor to jog the distance specified by {constant} relative to the
present commanded position. Jogging acceleration and velocity are determined by the values of
Ix19-Ix22 in force at the time of this command. Compare to J^{constant}, which is a jog
relative to the present actual position. A variable incremental jog command can be executed with
the J:* command. PMAC will reject this command if the motor is in a coordinate system that is
currently running a motion program (reporting ERR001 if I6 is 1 or 3).

Example #1HM.................. ; Do homing search move on Motor 1
J:2000 ; Jog a distance of 2000 counts (to 2000 counts)
J:2000 ; Jog a distance of 2000 counts (to 4000 counts)

See Also Jogging Moves (Basic Motor Moves)
I-variables Ix19-Ix22
On-line commands J+, J-, J/, J=, J={constant}, J^{constant}

J:*
Function Jog to specified variable distance from present commanded position

Scope Motor specific

Syntax J:*

Remarks This command causes the addressed motor to jog the distance specified in the motor’s
variable jog position/distance register relative to the present commanded position. Jogging
acceleration and velocity are determined by the values of Ix19-Ix22 in force at the time of
this command. Compare to J^* , which is a jog relative to the present actual position.
The variable jog position/distance register is a floating-point register with units of counts. It
is best accessed with a floating-point M-variable. The register is located at PMAC address
L:$082B for motor 1, L:$08EB for motor 2, etc. (suggested M-variable Mx72) The usual
procedure is to write the destination position to this register by assigning a value to the M-
variable, then issuing the J:* command.
PMAC will reject this command if the motor is in a coordinate system that is currently
running a motion program (reporting ERR001 if I6 is 1 or 3).

Example M172->L:$082B ; Define #1 variable jog position/distance reg.
#1HMZ ; Declare present position to be zero
M172=3000...... ; Assign distance value to register
#1J:* ; Jog Motor 1 this distance; end cmd. pos. will be 3000
#1J:* ; Jog Motor 1 this distance; end cmd. pos. will be 6000
M172=P1*SIN(P2) ; Assign new distance value to register
#1J:* ; Jog Motor 1 this distance
#1J= ; Return to prejog target position

See Also Jogging Moves (Basic Motor Moves)
I-variables Ix19-Ix22
Memory map registers L:$082B, L:$08EB, etc.
Suggested M-variable definitions M172, M272, etc.
On-line commands J=, J={constant}, J=*, J^*

PMAC 2 Software Reference

PMAC On-Line Command Specification 237

J=
Function Jog to Prejog Position

Scope Motor specific

Syntax J=

Remarks This command causes the addressed motor to jog to the last pre-jog and pre-handwheel-move
position (the most recent programmed position). Jogging acceleration and velocity are
determined by the values of Ix19-Ix22 in force at the time of this command.

The register containing this position information for the motor is called the target position
register (D:$080B for Motor 1, D:$08CB for Motor 2, etc.). Suggested M-variable
definitions M163, M263, etc. can be used in programs to give access to these registers.

If the / or \ stop command has been used to suspend program execution, and one or more
motors jogged away from the stop position, the J= command must be used to return the
motor(s) back to the stop position before program execution can be resumed.

The J= command can also be useful if a program has been aborted in the middle of a move,
because it will move the motor to the programmed move end position (provided I13=0 so
PMAC is not in segmentation mode), so the program may be resumed properly from that
point.

PMAC will reject this command if the motor is in a coordinate system that is currently
running a motion program (reporting ERR001 if I6 is 1 or 3).

Example &1Q ; Stop motion program at end of move
#1J+.................. ; Jog Motor 1 away from this position
J/ ; Stop jogging
J= ; Jog back to position where program quit
R......................... ; Resume motion program

&1A ; Stop motion program in middle of move
#1J=#2J=#3J= ; Move all motors to original move end position
R ; Resume motion program

See Also Control Panel Port PREJ/ Input (Connecting PMAC to the Machine)
JPAN Connector Pin 7
Jogging Moves (Basic Motor Moves)
I-variables Ix19-Ix22
On-line commands J+, J-, J/, J={constant}, J:{constant}, J^{constant}

J={constant}
Function Jog to specified position

Scope Motor specific

Syntax J={constant}
where:
• {constant} is a floating point value specifying the location to which to jog, in encoder

counts.

Remarks This command causes the addressed motor to jog to the position specified by {constant}.
Jogging acceleration and velocity are determined by the values of Ix19-Ix22 in force at the
time of this command.

 PMAC 2 Software Reference

238 PMAC On-Line Command Specification

A variable jog-to-position can be executed with the J=* command.

PMAC will reject this command if the motor is in a coordinate system that is currently
running a motion program (reporting ERR001 if I6 is 1 or 3).

Example J=0 ; Jog addressed motor to position 0
#4J=5000 ; Jog Motor 4 to 5000 counts
#8J=-32000 ; Jog Motor 8 to -32000 counts

See Also Jogging Moves (Basic Motor Moves)
I-variables Ix19-Ix22
On-line commands J+, J-, J/, J=, J:{constant}, J^{constant}, J=*, J:*, J^*

J=*
Function Jog to specified variable position

Scope Motor specific

Syntax J=*

Remarks This command causes the addressed motor to jog to the position specified in the motor’s
variable jog position/distance register. Jogging acceleration and velocity are determined by
the values of Ix19-Ix22 in force at the time of this command.

The variable jog position/distance register is a floating-point register with units of counts. It
is best accessed with a floating-point M-variable. The register is located at PMAC address
L:$082B for motor 1, L:$08EB for motor 2, etc. (suggested M-variable Mx72). The usual
procedure is to write the destination position to this register by assigning a value to the M-
variable, then issuing the J=* command.

Virtually the same result can be obtained by writing to the motor target position register and
issuing the J= command. However, using the J=* command permits you to return to the
real target position afterwards without having to restore the target position register. Also, the
J=* command uses a register whose value is scaled in counts, not fractions of a count.

PMAC will reject this command if the motor is in a coordinate system that is currently
running a motion program (reporting ERR001 if I6 is 1 or 3).

Example M172->L:$082B ; Define #1 variable jog position/distance reg.

M172=3000...... ; Assign position value to register
#1J=* ; Jog Motor 1 to this position
M172=P1*SIN(P2) ; Assign new position value to register
#1J=* ; Jog Motor 1 to this position
#1J= ; Return to prejog target position

See Also Jogging Moves (Basic Motor Moves)
I-variables Ix19-Ix22
Memory map registers L:$082B, L:$08EB, etc.
Suggested M-variable definitions M172, M272, etc.
On-line commands J=, J={constant}, J:*, J^*

PMAC 2 Software Reference

PMAC On-Line Command Specification 239

J=={constant}
Function Jog to specified motor position and make that position the “pre-jog” position

Scope Motor specific

Syntax J=={constant}
where:
• {constant} is a floating point value specifying the location to which to jog, in encoder

counts.
Remarks This command causes the addressed motor to jog the position specified by {constant}. It

also makes this position the pre-jog position, so it will be the destination of subsequent J=
commands. Jogging acceleration and velocity are determined by the values of Ix19-Ix22 in
force at the time of this command.
PMAC will reject this command if the motor is in a coordinate system that is currently
running a motion program (reporting ERR001 if I6 is 1 or 3).

Example #1J==10000 . ; Jog Motor 1 to 10000 counts and make that the pre-jog
........................... ; position.
J+ ; Jog indefinitely in the positive direction
J= ; Return to 10000 counts

See Also Jogging Moves (Basic Motor Moves)
I-variables Ix19-Ix22
On-line commands J=, J={constant}, J=*, J^*

J^{constant}
Function Jog Relative to Actual Position

Scope Motor specific

Syntax J^{constant}
where:
• {constant} is a floating point value specifying the distance to jog, in counts.

Remarks This causes a motor to jog the distance specified by {constant} relative to the present
actual position. Jogging acceleration and velocity are determined by the values of Ix19-Ix22
in force at the time of this command. Compare to J:{constant}, which is a jog relative
to the present commanded position.

Usually the J:{constant} command is more useful, because its destination is not
dependent on the following error at the instant of the command. The J^0 command can be
useful for “swallowing” any existing following error.
A variable incremental jog can be executed with the J^* command.
PMAC will reject this command if the motor is in a coordinate system that is currently
running a motion program (reporting ERR001 if I6 is 1 or 3).

Example #1HM.................. ; Do homing search move on Motor 1
J^2000 ; Jog a distance of 2000 counts from actual position
........................... ; If actual was -5 cts, new command pos is 1995 cts
J^2000 ; Jog a distance of 2000 counts from actual position
 ; If actual was 1992 cts, new cmd pos is 3992 cts

See Also Jogging Moves (Basic Motor Moves)
I-variables Ix19-Ix22

 PMAC 2 Software Reference

240 PMAC On-Line Command Specification

On-line commands J+, J-, J/, J=, J={constant}, J:{constant}, J=*, J:*, J^*

J^*
Function Jog to specified variable distance from present actual position
Scope Motor specific
Syntax J^*
Remarks This command causes the addressed motor to jog the distance specified in the motor’s

variable jog position/distance register relative to the present actual position. Jogging
acceleration and velocity are determined by the values of Ix19-Ix22 in force at the time of
this command. Compare to J:* , which is a jog relative to the present commanded position.
The variable jog position/distance register is a floating-point register with units of counts. It
is best accessed with a floating-point M-variable. The register is located at PMAC address
L:$082B for motor 1, L:$08EB for motor 2, etc. (suggested M-variable Mx72).The usual
procedure is to write the destination position to this register by assigning a value to the M-
variable, then issuing the J^* command.
PMAC will reject this command if the motor is in a coordinate system that is currently
running a motion program (reporting ERR001 if I6 is 1 or 3).

Example M172->L:$082B ; Define #1 variable jog position/distance reg.
#1HMZ ; Declare present position to be zero
M172=3000...... ; Assign distance value to register
#1J^* ; Jog Motor 1 this distance; if following error at
........................... ; command was 3, end cmd. pos. will be 2997
#1J^* ; Jog Motor 1 this distance; if following error at
........................... ; command was 2, end cmd. pos. will be 5995
M172=P1*SIN(P2) ; Assign new distance value to register
#1J^* ; Jog Motor 1 this distance
#1J= ; Return to prejog target position

See Also Jogging Moves (Basic Motor Moves)
I-variables Ix19-Ix22
Memory map registers L:$082B, L:$08EB, etc.
Suggested M-variable definitions M172, M272, etc.
On-line commands J=, J={constant}, J=*, J^*

{jog command}^{constant}
Function Jog until trigger
Scope Motor specific
Syntax J=^{constant}

J={constant}^{constant}
J:{constant}^{constant}
J^{constant}^{constant}
J=*^{constant}
J:*^{constant}
J^*^{constant}
where:
• {constant} after the ^ is a floating point value specifying the distance from the trigger

to which to jog after the trigger is found, in encoder counts

PMAC 2 Software Reference

PMAC On-Line Command Specification 241

Remarks This command format permits a jog-until-trigger function. When the ^{constant}
structure is added to any definite jog command, the jog move can be interrupted by a pre-
defined trigger condition, and the motor will move to a point relative to the trigger position as
specified by the final value in the command.

The indefinite jog commands J+ and J- cannot be turned into jog-until-trigger moves.

Jog-until-trigger moves are very similar to homing search moves, except they have a definite
end position in the absence of a trigger, and they do not change the motor zero position. In
the absence of a trigger, the move will simply stop at the pre-defined position.

The trigger condition for a jog-until-trigger move can be either an input flag, or a warning
following error condition for the motor. If bit 17 of Ix03 is 0 (the default), the trigger is a
transition of an input flag and/or encoder index channel from the set defined for the motor by
Ix25. Encoder/flag variables 2 and 3 (e.g. I912 and I913) define which edges of which input
signals create the trigger.

If bit 17 of Ix03 is 1, the trigger is the warning following error status bit of the motor
becoming true. Ix12 for the motor sets the error threshold for this condition.

The trigger position can either be the hardware-captured position, or a software-read position.
If bit 16 of Ix03 is 0 (the default), the encoder position latched by the trigger in PMAC’s
DSPGATE hardware is used as the trigger position. This is the most accurate option because
it uses the position at the moment of the trigger, but it can only be used with incremental
encoder feedback brought in on the same channel number as the triggering flag set. This
option cannot be used for other types of feedback, or for triggering on following error.

If bit 16 of Ix03 is 1, PMAC reads the present sensor position after it sees the trigger. This
can be used with any type of feedback and either trigger condition, but can be less accurate
than the hardware capture because of software delays.

Jogging acceleration and velocity are determined by the values of Ix19-Ix22 in force at the
time of this command.

PMAC will reject this command if the motor is in a coordinate system that is currently
running a motion program (reporting ERR001 if I6 is 1 or 3).

Example #1J=^1000 .. ; Jog to pre-jog position in the absence of a trigger, but if trigger
........................... ; is found, jog to +1000 counts from trigger.
#2J:5000^-100 ; Jog 5000 counts in the positive direction in the absence of a
........................... ; trigger, but if trigger is found, jog to -100 counts from
........................... ; trigger position.
#3J=20000^0 . ; Jog to 20000 counts in the absence of a trigger, but if
 ; trigger is found, return to trigger position.

See Also Jogging Moves (Basic Motor Moves)
I-variables Ix03, Ix19-Ix22, Ix25, Encoder/Flag I-variables 2 and 3
On-line commands J=, J={constant}, J:{constant}, J^{constant},
..........................J=*, J:*, J^*
Program commands {axis}{data}^{data}

 PMAC 2 Software Reference

242 PMAC On-Line Command Specification

K
Function Kill motor output

Scope Motor specific

Syntax K

Remarks This command causes PMAC to kill the outputs for the addressed motor. The servo loop is
disabled, the DAC outputs are set to zero (Ix29 and/or Ix79 offsets are still in effect), and the
AENA output for the motor is taken to the disable state (polarity is determined by E17).

Closed-loop control of this motor can be resumed with a J command. The A command will
re-establish closed-loop control for all motors in the addressed coordinate system, and the
<CTRL-A> command will do so for all motors on PMAC.

The action on a K command is equivalent to what PMAC does automatically to the motor on
an amplifier fault or a fatal following error fault.

PMAC will reject this command if the motor is in a coordinate system that is currently
running a motion program (reporting ERR001 if I6 is 1 or 3). The program must be stopped
first, usually with an A command. However, the global <CTRL-K> command will kill all
motors immediately, regardless of whether any are running motion programs.

Example K......................... ; Kill the addressed motor
#1K ; Kill Motor 1
J/ ; Re-establish closed-loop control of Motor 1

See Also Amplifier Fault, Following Error Limits, Stop Commands (Making Your Application Safe)
I-variables Ix29, Ix79
On-line commands <CTRL-A>, <CTRL-K>, A, Q, H, J/
Jumpers E17, E17A-E17H

LEARN
Function Learn present commanded position

Scope Coordinate-system specific

Syntax LEARN[({axis}[,{axis}...]]
LRN[({axis}[,{axis}...]]

Note:
No spaces are permitted in this command.

Remarks This command causes PMAC to add a line to the end of the open motion program buffer
containing axis position commands equal to the current commanded positions for some or all
of the motors defined in the addressed coordinate system. In this way, PMAC can “learn” a
sequence of points to be repeated by subsequent execution of the motion program.

PMAC effectively performs a PMATCH function, reading motor commanded positions and
inverting the axis definition equations to compute axis positions.

If axis names are specified in the LEARN command, only position commands for those axes
are used in the line added to the motion program. If no axis names are specified in the learn
command, position commands for all nine possible axis names are used in the line added to
the motion program. The position command for an axis with no motor attached (“phantom”
axis) will be zero.

PMAC 2 Software Reference

PMAC On-Line Command Specification 243

Note:

If a motor is closed loop, the learned position will differ from the
actual position by the amount of the position following error because
commanded position is used. If a motor is open-loop or killed, PMAC
automatically sets motor commanded position equal to motor actual
position, so the LEARN function can be used regardless of the state of
the motor.

Example &1 ; Address coordinate system 1
#1->10000X . ; Define motor 1 in C.S. 1
#2->10000Y ... ; Define motor 2 in C.S. 1
OPEN PROG 1 CLEAR ; Prepare program buffer for entry
F10 TA200 TS50 ; Enter required non-move commands
{Move motors to a position, e.g. #1 to 13450 commanded, #2 to 29317 commanded}
LEARN(X,Y) ... ; Tell PMAC to learn these positions
X1.345 Y2.9317 ; This is the line that PMAC adds to PROG 1
{move motors to new position, e.g. #1 to 16752 cmd., #2 to 34726 cmd}
LEARN ; Tell PMAC to learn positions
A0 B0 C0 U0 V0 W0 X1.6752 Y3.4726 Z0
 ; PMAC adds positions for all axes to PROG 1

See Also Learning a Motion Program (Writing a Motion Program)
On-line command PMATCH

LIST
Function List the contents of the currently opened buffer

Scope Global

Syntax LIST

Remarks This command causes PMAC to report the contents of the currently opened buffer (PLC,
PROG, or ROT) to the host. If no buffer is open, PMAC will report an error (ERR003 if I6=1
or 3). Note that what is reported will not include any OPEN, CLEAR, or CLOSE statements
(since these are not program commands).

You can list an unopened buffer by specifying the buffer name in the list command (e.g.
LIST PROG 1). See further LIST commands, below.

Example OPEN PROG 1 ; Open buffer for entry
LIST ; Request listing of open buffer
LINEAR ; PMAC reports contents of open buffer
F10
X20 Y20
X0 Y0
RETURN
CLOSE ; Close buffer
LIST ; Request listing of open buffer
<BELL>ERR003 ; PMAC reports error because no open buffer

See Also On-line commands OPEN, CLOSE, LIST PLC, LIST PROGRAM

 PMAC 2 Software Reference

244 PMAC On-Line Command Specification

LIST BLCOMP
Function List contents of addressed motor’s backlash compensation table

Scope Motor specific

Syntax LIST BLCOMP

Remarks This command causes PMAC to report to the host the contents of the backlash compensation
table belonging to the addressed motor. The values are reported in decimal ASCII form,
multiple values to a line, with individual values separated by spaces.

The LIST BLCOMP DEF command should be used to report the header information for this
table.

If there is no table for the addressed motor, PMAC will reject the command (reporting
ERR003 if I6=1 or 3).

Example LIST BLCOMP . ; Request contents of backlash comp table
9 17 -3 6 35 87 65 24 18 -9 -16 -34 ; PMAC responds
-7 12 -3 -8 32 44 16 0 -20 -5 0 ; Continued response

See Also Backlash Compensation Tables (Setting Up a Motor)
On-line commands DEFINE BLCOMP, DELETE BLCOMP, LIST BLCOMP DEF

LIST BLCOMP DEF
Function List definition of addressed motor’s backlash compensation table

Scope Motor specific

Syntax LIST BLCOMP DEF

Remarks This command causes PMAC to report to the host the definition of the backlash
compensation table that belongs to the addressed motor. The definition reported consists of
the two items established in the DEFINE BLCOMP command that set up the motor:

1. The number of entries in the table;
2. The span of the table in counts of the motor.

If there is no table for the addressed motor, PMAC will reject the command (reporting
ERR003 if I6=1 or 3).

Example LIST BLCOMP DEF ; Request def of addressed motor backlash comp table
100,100000 . ; PMAC responds; 100 entries in table,
........................... ; span is 100,000 counts

See Also Backlash Compensation Tables (Setting Up a Motor)
On-line commands DEFINE BLCOMP, DELETE BLCOMP, LIST BLCOMP

LIST COMP
Function List contents of addressed motor’s compensation table

Scope Motor specific

Syntax LIST COMP

Remarks This command causes PMAC to report to the host the contents of the compensation table
belonging to the addressed motor. The values are reported in decimal ASCII form, multiple
values to a line, with individual values separated by spaces.

PMAC 2 Software Reference

PMAC On-Line Command Specification 245

The LIST COMP DEF command should be used to report the header information for this
table.

If there is no table for the addressed motor, PMAC will reject the command (reporting
ERR003 if I6=1 or 3).

The compensation table “belonging” to this motor may not affect this motor’s position or be
affected by it

Example LIST COMP...... ; Request contents of compensation table
9 17 -3 6 35 87 65 24 18 -9 -16 -34 ; PMAC responds
-7 12 -3 -8 32 44 16 0 -20 -5 0 ; Continued response

See Also Leadscrew Compensation Tables (Setting Up a Motor)
On-line commands DEFINE COMP, DELETE COMP, LIST COMP DEF

LIST COMP DEF
Function List definition of addressed motor’s compensation table

Scope Motor specific

Syntax LIST COMP DEF

Remarks This command causes PMAC to report to the host the definition of the compensation table
that belongs to the addressed motor. The definition reported consists of the four items
established in the DEFINE COMP command that set up the motor (even if some of those
items were not specified explicitly):

1. The number of entries in the table (number of rows and number of columns for a two-
dimensional table)

2. The number of the motor whose position provides the source data for the table (both
source motors for a two-dimensional table)

3. The number of the motor whose position is modified by the table
4. The span of the table in counts of the source motor (in both dimensions for a two-

dimensional table)

Note:
If there is no table for the addressed motor, PMAC will reject the
command (reporting ERR003 if I6=1 or 3).

Note:
The compensation table “belonging” to this motor may not affect this
motor’s position or be affected by it

Example LIST COMP DEF ; Request definition of compensation table
100,#2,#2,100000 ; PMAC responds; 100 entries in table,
........................... ; Motor 2 is source and target, span is 100,000
........................... ; counts
#3 LIST COMP DEF ; Request def of comp table belonging to Motor 3
10,20,#4,#5,#6,50000,100000 ; PMAC responds
........................... ; A 2D 10x20 table, span of 50Kx100K counts
 ; #4 & #5 as source, #6 as target

See Also Leadscrew Compensation Tables (Setting Up a Motor)
On-line commands DEFINE COMP, DELETE COMP, LIST COMP

 PMAC 2 Software Reference

246 PMAC On-Line Command Specification

LIST GATHER
Function Report contents of the data gathering buffer.

Scope Global

Syntax LIST GATHER [{start}] [,{length}]
LIS GAT [{start}] [,{length}]
where:
• The optional {start} parameter is an integer constant specifying the distance from the

start of the buffer (in words of memory) to begin the listing (0 is the default);
• The optional {length} parameter (after a comma) is an integer constant specifying the

number of words of the buffer to be sent to the host (to the end of the buffer is the
default)

Remarks This command causes PMAC to report the contents of the data-gathering buffer to the host.
The data is reported as 48-bit long words in hexadecimal format (12 characters per word)
separated by spaces, 16 long words per line.

If neither {start} nor {length} is specified, the entire contents of the buffer will be
reported. If {start} is specified, the reporting will begin {start} words from the
beginning of the buffer. If {length} is specified, the reporting will continue for
{length} words from the starting point.

Example LIST GATHER . ; reports the whole buffer
LIST GATHER 256 ; skips the first 256 long words
LIST GATHER 0,32 ; reports the first 32 words
LIST GATHER ,32 ; does the same as above
LIST GATHER 64,128 ; skips the first 64 words, reports the next 128

See Also Data Gathering Function (Analysis Features)
I-variables I19, I20, I21-I44.
On-line commands GATHER, ENDGATHER, DEFINE GATHER
Gathering and Plotting (PMAC Executive Program Manual)

LIST LINK
Function List Linking Addresses of Internal PMAC Routines

Scope Global

Syntax LIST LINK

Remarks This command causes PMAC to list the addresses of the internal routines that the PLC cross-
compiler needs to properly compile and link its programs.

This command is used automatically by the PLC cross-compiler in the Executive program.

For the standalone DOS cross-compiler, the ASCII characters of PMAC’s response to this
command must be contained in a file named LISTLINK.TXT in the same directory and
subdirectory as the cross-compiler. Each separate version of PMAC’s firmware potentially
has different addresses for these routines, so a new LISTLINK.TXT file must be created any
time the PMAC firmware is updated, even for a minor change such as from V1.15A to
V1.15B.

Example LIST LINK...... ; Request linking addresses
004532 004A97 005619 005F21 0062FE 0063A4 ; PMAC responds

See Also Compiled PLCs (Writing a PLC Program)

PMAC 2 Software Reference

PMAC On-Line Command Specification 247

LIST PC
Function List Program at Program Counter

Scope Coordinate-system specific

Syntax LIST PC[,[{constant}]]
where:
• {constant} is a positive integer representing the number of words in the program to

be listed

Remarks This command causes PMAC to list the program line(s) that it is (are) about to calculate in
the addressed coordinate system, with the first line preceded by the program number and
each line preceded by the address offset. LIST PC just lists the next line to be calculated.
LIST PC, lists from the next line to be calculated to the end of the program. LIST
PC,{constant} lists the specified address range size starting at the next line to be
calculated. To see the current line of execution, use the LIST PE command.

Because PMAC calculates ahead in a continuous sequence of moves, the LIST PC
(Program Calculation) command will in general return a program line further down in the
program than LIST PE will.

If the coordinate system is not pointing to any motion program, PMAC will return an error
(ERR003 if I6=1 or 3). Initially the pointing must be done with the B{constant}
command.

Example LIST PC ; List next line to be calculated
P1:22:X10Y20 ; PMAC responds
LIST PC,4...... ; List next four words of program to be calculated
P1:22:X10Y20 ; PMAC responds
24:X15Y30
LIST PC, ; List rest of program
P1:22:X10Y20 ; PMAC responds
24:X15Y30
26:M1=0
28:RETURN

See Also On-line commands B{constant}, LIST, PC, LIST PE, PE

LIST PE
Function List Program at Program Execution

Scope Coordinate-system specific

Syntax LIST PE[,[{constant}]]
where:
• {constant} is a positive integer representing the number of words in the program to

be listed

Remarks This command causes PMAC to list the program line(s) starting with the line containing the
move that it is currently executing in the addressed coordinate system, with the first line
preceded by the program number, and each line preceded by the address offset.

 PMAC 2 Software Reference

248 PMAC On-Line Command Specification

Because PMAC calculates ahead in a continuous sequence of moves, the LIST PC
(Program Calculation) command will in general return a program line further down in the
program than LIST PE will.

LIST PE returns only the currently executing line. LIST PE, returns from the currently
executing line to the end of the program. LIST PE,{constant} returns the specified
number of words in the program, starting at the currently executing line.
If the coordinate system is not pointing to any motion program, PMAC will return an error
(ERR003 if I6=1 or 3). Initially the pointing must be done with the B{constant}
command.

Example LIST PE ; List presently executing line
P5:35:X5Y30 . ; PMAC responds
LIST PE,4...... ; List four program words, starting with executing line
P5:35:X5Y30 . ; PMAC responds
37:X12Y32
LIST PE, ; List rest of program, starting with executing line
P5:35:X5Y30 . ; PMAC responds
37:X12Y32
39:X0 Y10
41:RETURN

See Also On-line commands B{constant}, LIST, LIST PC, PC, PE

LIST PLC
Function List the contents of the specified PLC program.
Scope Global
Syntax LIST PLC{constant} [,[{start}]] [,[{length}]]

where:
• {constant} is an integer from 0 to 31 representing the number of the PLC program
• the optional {start} parameter is an integer constant specifying the distance from the

start of the buffer (in words of memory) to begin the listing (the execution point is the
default);

• the optional {length} parameter (after a comma) is an integer constant specifying the
number of words of the buffer to be sent to the host (to the end of the buffer is the
default)

Remarks This command causes PMAC to report the contents of the specified uncompiled PLC
program buffer to the host. The contents are reported in ASCII text form. If I9 is 0 or 2, the
contents are reported in short form (e.g. ENDW). If I9 is 1 or 3, the contents are reported in
long form (e.g. ENDWHILE).
If neither {start} nor {length} is specified, the entire contents of the buffer will be
reported. If {start} is specified, the reporting will begin {start} words from the
beginning of the buffer. If {length} is specified, the reporting will continue for
{length} words from the starting point.
If the first comma is present, but no start point is specified, the listing will start from the next
line to be executed in the PLC program. Because PMAC can only execute this command
between PLC scans, this line will be the first to execute in the next scan. If the second
comma is present, but no length is specified, the listing will continue to the end of the

PMAC 2 Software Reference

PMAC On-Line Command Specification 249

program.
If either {start}, {length}, or both, or just the comma, is included in the command, the
listing of the program will include the buffer address offsets with each line.
PLCs 0-15 can be protected by password. If the PLC is protected by password, and the
proper password has not been given, PMAC will reject this command (reporting an ERR002
if I6=1 or 3).

Example LIST PLC 5
P1=0
WHILE (P1<1000)
P1=P1+1
ENDWHILE
RETURN
LIST PLC 5,0
0:P1=0
1:WHILE(P1<1000)
3:P1=P1+1
6:ENDWHILE
7:RETURN
LIST PLC 5,,1
1:WHILE(P1<1000)
LIST PLC 5,,
1:WHILE(P1<1000)
3:P1=P1+1
6:ENDWHILE
7:RETURN

See Also PLC Program Features
I-variables I3, I4, I9
On-line commands LIST, LIST PROG, PASSWORD={string}
Program Command Specification

LIST PROGRAM
Function List the contents of the specified motion program.

Scope Global

Syntax LIST PROGRAM {constant} [,[{start}]] [,[{length}]]
LIST PROG {constant} [,[{start}]] [,[{length}]]
where:
• {constant} is an integer from 1 to 32767 specifying the number of the motion

program
• the optional {start} parameter is an integer constant specifying the distance from the

start of the buffer (in words of memory) to begin the listing (0 is the default);
• the optional {length} parameter (after a comma) is an integer constant specifying the

number of words of the buffer to be sent to the host (to the end of the buffer is the
default)

Remarks This command causes PMAC to report the contents of the specified fixed motion program
buffer (PROG) to the host. The contents are reported in ASCII text form. If I9 is 0 or 2, the
contents are reported in short form (e.g. LIN). If I9 is 1 or 3, the contents are reported in
long form (e.g. LINEAR).

If neither {start} nor {length} is specified, the entire contents of the buffer will be
reported. If {start} is specified, the reporting will begin {start} words from the

 PMAC 2 Software Reference

250 PMAC On-Line Command Specification

beginning of the buffer. If {length} is specified, the reporting will continue for
{length} words from the starting point.

If either {start}, {length}, or both, or just the comma, is included in the command, the
listing of the program will include the buffer address offsets with each line. Having a listing
with these offsets can be useful in conjunction with later use of the PC (Program-Counter)
and LIST PC commands.

If the motion program requested by this command does not exist in PMAC, PMAC will reject
this command (reporting an ERR003 if I6=1 or 3).

PROGs 1000-32767 can be protected by password. If the PROG is protected by password,
and the proper password has not been given, PMAC will reject this command (reporting an
ERR002 if I6=1 or 3).

Example LIST PROG 9 ; Request listing of all of motion program 9
LINEAR ; PMAC responds
F10
X10Y10
X0Y0
RETURN

LIST PROG 9, ; Request listing of program w/ address offsets
0:LINEAR
1:F10
2:X10Y10 ... ; Note that a 2-axis command takes 2 addresses
4:X0Y0
6:RETURN

LIST PROG 9,4 ; Request listing starting at address 4
4:X0Y0
6:RETURN

LIST PROG 9,2,4 ; Request listing starting at 2, 4 words long
2:X10Y10
4:X0Y0

LIST PROG 9,,2 ; Request listing starting at top, 2 words long
0:LINEAR
1:F10

See Also Writing a Motion Program
I-variables I3, I4, I9
On-line commands LIST, PC, LIST PC., PASSWORD={string}.
Program Command Specification

LIST ROTARY
Function List contents of addressed coordinate system’s rotary program buffer

Scope Coordinate-system specific

Syntax LIST ROTARY [{start}] [,{length}]
LIST ROT [{start}] [,{length}]
where:
• the optional {start} parameter is an integer constant specifying the distance from the

start of the buffer (in words of memory) to begin the listing (0 is the default);
• the optional {length} parameter (after a comma) is an integer constant specifying the

number of words of the buffer to be sent to the host (to the end of the buffer is the

PMAC 2 Software Reference

PMAC On-Line Command Specification 251

default)

Remarks This command causes PMAC to report the contents of the rotary motion program buffer for
the addressed coordinate system to the host. The contents are reported in ASCII text form. If
I9 is 0 or 2, the contents are reported in short form (e.g. LIN). If I9 is 1 or 3, the contents are
reported in long form (e.g. LINEAR).
If neither {start} nor {length} is specified, the entire contents of the buffer will be
reported. If {start} is specified, the reporting will begin {start} words from the
beginning of the buffer. If {length} is specified, the reporting will continue for
{length} words from the starting point.
If either {start}, {length}, or both, or just the comma, is included in the command, the
listing of the program will include the buffer address offsets with each line. Having a listing
with these offsets can be useful in conjunction with later use of the PC (Program-Counter)
and LIST PC commands.
If the loading of the rotary buffer has caused the buffer to “wrap around” and re-use the
beginning of the buffer, the listing will start relative to this new top of the buffer (even if
there are previously loaded, and still unexecuted, lines at the bottom of the buffer).

See Also Writing a Motion Program
I-variables I3, I4, I9
On-line commands LIST, PC, LIST PE,
Program Command Specification

LIST TCOMP
Function List contents of addressed motor’s torque compensation table

Scope Motor specific

Syntax LIST TCOMP

Remarks This command causes PMAC to report to the host the contents of the torque compensation
table belonging to the addressed motor. The values are reported in decimal ASCII form,
multiple values to a line, with individual values separated by spaces.
The LIST TCOMP DEF command should be used to report the header information for this
table.
If there is no table for the addressed motor, PMAC will reject the command (reporting
ERR003 if I6=1 or 3).

Example LIST TCOMP ... ; Request contents of backlash comp table
9 17 -3 6 35 87 65 24 18 -9 -16 -34 ; PMAC responds
-7 12 -3 -8 32 44 16 0 -20 -5 0 ; Continued response

See Also Backlash Compensation Tables (Setting Up a Motor)
On-line commands DEFINE TCOMP, DELETE TCOMP, LIST TCOMP DEF

LIST TCOMP DEF
Function List definition of addressed motor’s torque compensation table

Scope Motor specific

Syntax LIST TCOMP DEF

Remarks This command causes PMAC to report to the host the definition of the backlash
compensation table that belongs to the addressed motor. The definition reported consists of
the two items established in the DEFINE TCOMP command that set up the motor:

 PMAC 2 Software Reference

252 PMAC On-Line Command Specification

1. The number of entries in the table;
2. The span of the table in counts of the motor.

If there is no table for the addressed motor, PMAC will reject the command (reporting
ERR003 if I6=1 or 3).

Example LIST TCOMP DEF ; Request def of addressed motor backlash comp table
100,100000 . ; Turbo PMAC responds; 100 entries in table,
 ; span is 100,000 counts

See Also Backlash Compensation Tables (Setting Up a Motor)
On-line commands DEFINE TCOMP, DELETE TCOMP, LIST TCOMP

M{constant}
Function Report the current M-variable value(s).

Scope Global

Syntax M{constant}[..{constant}]
where:
• {constant} is an integer from 0 to 1023 representing the number of the M-variable;
• the optional second {constant} must be at least as great as the first {constant} – it

represents the number of the end of the range;
Remarks This command causes PMAC to report the current value of the specified M-variable or range

of M-variables. It does not cause PMAC to report the definition (address) of the M-
variable(s); that is done with the M{constant}-> command.

Note:
If a motion program buffer (including a rotary buffer) is open when
this command is sent to PMAC it will be entered into the buffer for
later execution, to be interpreted as an M-code subroutine call.

Example M0 ; Host asks for value
3548976 ; PMAC’s response
M165
5.75
M1..3
1
0
1

See Also M-Variables (Computational Features)
On-line commands M{constant}={expression}, M{constant}->
Program commands M{constant}, M{constant}={expression}

M{constant}={expression}
Function Assign value to M-variable(s).

Scope Global

Syntax M{constant}[..{constant}]={expression}
where:
• {constant} is an integer from 0 to 1023 representing the number of the M-variable;
• the optional second{constant} must be at least as great as the first {constant} – it

represents the number of the end of the range;
• {expression} contains the value to be given to the specified M-variable(s)

PMAC 2 Software Reference

PMAC On-Line Command Specification 253

Remarks This command assigns the value on the right side of the equals sign to the specified M-
variable(s). It does not assign a definition (address) to the M-variable(s); that is done with
the M{constant}->{definition command.
If a motion or PLC program buffer is open when this command is sent to PMAC, it will be
entered into the buffer for later execution.

Example M1=1
M9=M9 & $20
M102=-16384
M1..8=0

See Also M-Variables (Computational Features)
On-line commands M{constant}, M{constant}->{definition}
Program commands M{constant}, M{constant}={expression}

M{constant}->
Function Report current M-variable definition(s)

Scope Global

Syntax M{constant}[..{constant}]->
where:
• {constant} is an integer from 0 to 1023 representing the number of the M-variable;
• the optional second {constant} must be at least as great as the first {constant} – it

represents the number of the end of the range;

Note:
No spaces are permitted between the M-variable name and the
“arrow” double character in this command.

Remarks This command causes PMAC to report the definition (address) of the specified M-variable or
range of M-variables. It does not cause PMAC to report the value of the M-variable{s); that
is done with the M{constant} command.

When I9 is 0 or 2, only the definition itself (e.g. Y:$FFC2,0) is returned. When I9 is 1or 3,
the entire definition statement (e.g. M11->Y:$FFC2,0) is returned.

Example M1->.................. ; Host requests definition
Y:$FFC2,8...... ; PMAC’s response
M101..103->
X:$C001,24,S
Y:$C003,8,16,S
X:$C003,24,S

See Also M-Variables (Computational Features)
On-line commands M{constant}, M{constant}->{definition},
M{constant}={expression}
Program command M{constant}={expression}

M{constant} ->*
Function Self-Referenced M-Variable Definition

Scope Global

Syntax M{constant}[..{constant}]->*
where:
• {constant} is an integer from 0 to 1023 representing the number of the M-variable;

 PMAC 2 Software Reference

254 PMAC On-Line Command Specification

• the optional second{constant} must be at least as great as the first {constant} – it
represents the number of the end of the range;

Note:
Spaces are not permitted between the M-variable name and the arrow
double character in this command.

Remarks This command causes PMAC to reference the specified M-variable or range of M-variables
to its own definition word. If you just wish to use an M-variable as a flag, status bit, counter,
or other simple variable, there is no need to find an open area of memory, because it is
possible to use some of the definition space to hold the value. Simply define this form of the
M-variable and you can use this M-variable much as you would a P-variable, except it only
takes integer values in the range -1,048,576 to +1,048,575 (-220 to +220-1).

When the definition is made, the value is automatically set to 0.

This command is also useful to “erase” an existing M-variable definition.

Example M100->*
M20..39->*
M0..1023->* . ; This erases all existing M-variable definitions
........................... ; It is a good idea to use this before loading new ones

See Also M-Variables (Computational Features)
On-line commands M{constant}, M{constant}->,
M{constant}->{definition}, M{constant}={expression}
Program command M{constant}={expression}

M{constant}->D:{address}
Function Long Fixed-Point M-Variable Definition

Scope Global

Syntax M{constant}[..{constant}]->D[:]{address}
where:
• {constant} is an integer from 0 to 1023 representing the number of the M-variable;
• the optional second {constant} must be at least as great as the first {constant} – it

represents the number of the end of the range;
• {address} is an integer constant from 0 to 65,535 ($0 to $FFFF if specified in hex).

Note:
No spaces are permitted between the M-variable name and the arrow
double character in this command.

Remarks This command causes PMAC to define the specified M-variable or range of M-variables to a
48-bit double word (both X and Y memory; X more significant) at the specified location in
PMAC’s address space. The data is interpreted as a fixed-point signed (two’s complement)
integer.

The definition consists of the letter D, an optional colon (:), and the word address.

Memory locations for which this format is useful are labeled with D: in the memory map.

Example M161->D:$0028 ; Motor 1 desired position register specified in hex

PMAC 2 Software Reference

PMAC On-Line Command Specification 255

M161->D40 ; Motor 1 desired position register specified in decimal
M162->D$2C ; Motor 1 actual position register specified in hex

See Also M-Variables (Computational Features)
On-line commands M{constant}, M{constant}->,
M{constant}={expression}
Program command M{constant}={expression}

M{constant}->DP:{address}
Function Dual-Ported RAM Fixed-Point M-Variable Definition

Scope Global

Syntax M{constant}[..{constant}]->DP[:]{address}
where:
• {constant} is an integer from 0 to 1023 representing the number of the M-variable;
• the optional second{constant} must be at least as great as the first {constant} – it

represents the number of the end of the range;
• {address} is an integer constant from 0 to 65,535 ($0 to $FFFF if specified in hex).

Note:
Spaces are not permitted between the M-variable name and the arrow
double character in this command.

Remarks This command causes PMAC to define the specified M-variable or range of M-variables to
point to 32 bits of data in the low 16 bits of both X and Y memory at the specified location in
PMAC’s address space. The data is interpreted as a fixed-point signed (two’s complement)
integer.

The definition consists of the letters DP, an optional colon (:), and the word address.

This format is only useful for dual-ported RAM locations $D000 to $DFFF (Option 2 is
required). With this format, the host can read or write to the corresponding location with a
standard 32-bit integer data format. The data in the X word is the most significant word,
which means on the host side the most significant word is in the higher of two consecutive
addresses (standard Intel format).

Example M150->DP:$D200
M250->DP$D201

See Also M-Variables (Computational Features)
Dual-Ported RAM (Writing a Host Communications Program)
On-line commands M{constant}, M{constant}->,
..........M{constant}->F:{address}, M{constant}={expression}

Program command M{constant}={expression}

M{constant}->F:{address}
Function Dual-Ported RAM Floating-Point M-Variable Definition

Scope Global

Syntax M{constant}[..{constant}]->F[:]{address}
where:
• {constant} is an integer from 0 to 1023 representing the number of the M-variable;

 PMAC 2 Software Reference

256 PMAC On-Line Command Specification

• the optional second{constant} must be at least as great as the first {constant} – it
represents the number of the end of the range;

• {address} is an integer constant from 0 to 65,535 ($0 to $FFFF if specified in hex).

Note:
No spaces are permitted between the M-variable name and the arrow
double character in this command.

Remarks This command causes PMAC to define the specified M-variable or range of M-variables to
point to 32 bits of data in the low 16 bits of both X and Y memory at the specified location in
PMAC’s address space. The data is interpreted as a floating-point value with the IEEE
single-precision (32-bit) format.
The definition consists of the letter F, an optional colon (:), and the word address.
This format is only useful for dual-ported RAM locations $D000 to $DFFF (Option 2
required). With this format, the host can read or write to the corresponding location with the
standard IEEE 32-bit floating-point data format.
The IEEE 32-bit floating point format has the sign bit in bit 31 (MSB); the biased exponent
in bits 30 to 23 (the exponent is this value minus 127), and the fraction in bits 22 to 0 (there is
an implied 1 added to the fraction in the mantissa). The words are arranged in the standard
Intel format.

Example M155->F:$D401
M255->F$D402

See Also M-Variables (Computational Features)
Dual-Ported RAM (Writing a Host Communications Program)
On-line commands M{constant}, M{constant}->,
..........M{constant}->DP:{address}, M{constant}={expression}

Program command M{constant}={expression}

M{constant}->L:{address}
Function Long Word Floating-Point M-Variable Definition

Scope Scope

Syntax M{constant}[..{constant}]->L[:]{address}
where:
• {constant} is an integer from 0 to 1023 representing the number of the M-variable;
• the optional second{constant} must be at least as great as the first {constant} – it

represents the number of the end of the range;
• {address} is an integer constant from 0 to 65,535 ($0 to $FFFF if specified in hex).

Note:
No spaces are permitted between the M-variable name and the arrow
double character in this command.

Remarks This command causes PMAC to define the specified M-variable or range of M-variables to
point to a long word (48 bits) of data – both X and Y memory – at the specified location in
PMAC’s address space. The data is interpreted as a floating-point value with PMAC’s own
48-bit floating-point format.
The definition consists of the letter L, an optional colon (:), and the word address.
Memory locations for which this format is useful are labeled with ‘L:’ in the memory map.

PMAC 2 Software Reference

PMAC On-Line Command Specification 257

Example M165->L:$081F
M265->L$0820
M265->L2080

See Also M-Variables (Computational Features)
On-line commands M{constant}, M{constant}->,
..........M{constant}->D:{address}, M{constant}={expression}

Program command M{constant}={expression}

M{constant}->TWB:{multiplex address}
Function Binary Thumbwheel-Multiplexer Definition

Scope Global

Syntax M{constant}[..{constant}]->TWB[:]{multiplex
address},{offset},{size},{format}
where:
• {constant} is an integer from 0 to 1023 representing the number of the M-variable;
• the optional second{constant} must be at least as great as the first {constant} – it

represents the number of the end of the range;
• {multiplex address} is an integer constant in the range 0 to 255, representing the

byte address in the multiplexing scheme on the thumbwheel port of the least significant
bit to be used in the M-variable(s);

• {offset} is an integer constant from 0 to 7, representing which bit of this byte is the
least significant bit to be used in the M-variable;

• {size} is an integer constant from 1 to 32, representing the number of consecutive bits
to be used in the M-variable(s);

• {format} (optional) is either U for unsigned, or S for signed (two’s complement). If
no format is specified, U (unsigned) is assumed

Note:
No spaces are permitted between the M-variable name and the
“arrow” double character in this command.

Remarks This command causes PMAC to define the specified M-variable or range of M-variables to a
consecutive of input bits multiplexed on the thumbwheel port with Accessory 18 or
compatible hardware.

Example M0->TWB:0,0,1
M1->TWB:0,1,1
M10->TWB:3,4,4,U
M745->TWB:4,0,16,S
M872->TWB:0,4,1

See Also M-Variables (Computational Features)
On-line commands M{constant}, M{constant}->,
..........M{constant}->TWD:{address}

Thumbwheel Multiplexer Board (ACC-18) Manual

M{constant}->TWD:{address}
Function BCD Thumbwheel-Multiplexer M-Variable Definition

 PMAC 2 Software Reference

258 PMAC On-Line Command Specification

Scope Global

Syntax M{constant}[..{constant}]->TWD[:]{multiplex
address},{offset},{size}[.{dp}],{format}
where:
• {constant} is an integer from 0 to 1023 representing the number of the M-variable;
• the optional second {constant} must be at least as great as the first {constant} – it

represents the number of the end of the range;
• {multiplex address} is an integer constant in the range 0 to 255, representing the

address in the multiplexing scheme on the thumbwheel port of the most significant digit
(lowest address) to be used in the M-variable(s);

• {offset} is 0 or 4, representing whether the most significant digit is in the low nibble
(left digit of pair) or high nibble (right digit of pair) of the pair of digits at {multiplex
address}, respectively;

• {size} is an integer constant from 1 to 12, representing the number of digits to be used
in the M-variable(s);

• {dp} (optional) is an integer constant from 0 to 8, representing the number of these
digits to be interpreted as being to the right of the decimal point;

• {format} (optional) is either U for unsigned, or S for signed. If it is signed, the least
significant bit of the most significant digit is taken as the sign bit (the rest of the most
significant digit is ignored). If no format is specified, U (unsigned) is assumed.

Note:
No spaces are permitted between the M-variable name and the arrow
double character in this command.

Remarks This command causes PMAC to define the specified M-variable or range of M-variables to
point to a set of binary-coded-decimal digits multiplexed on the thumbwheel port with
Accessory 18 or compatible hardware.

Thumbwheel-multiplexer M-variables are read-only, floating-point variables. Once defined,
they are to be used in expressions, and queried. Each time one is used in an expression, the
proper addresses on the multiplexer board(s) are read.

Example M100->TWD:4,0,8.3,U means the most significant digit is at multiplex address 4, low
nibble (left digit); there are 8 digits, 3 of which are fractional; and it is always interpreted as a
positive value. This corresponds to eight thumbwheel digits along the bottom row of the
lowest-addressed thumbwheel board, with the decimal point 3 digits in from the right.

M99->TWD:0,0,1,U means that a single digit is used, at multiplex address 0, low nibble
(left digit). This corresponds to the upper left thumbwheel on the lowest-addressed
thumbwheel board.

See Also M-Variables (Computational Features)
On-line commands M{constant}, M{constant}->,
M{constant}->TWB:{address}
Thumbwheel Multiplexer Board (ACC-18) Manual

M{constant}->TWR:{address},{offset}
Function Resolver Thumbwheel-Multiplexer M-Variable Definition

Scope Global

PMAC 2 Software Reference

PMAC On-Line Command Specification 259

Syntax M{constant}[..{constant}]->TWR[:]{multiplex address}, {offset}
where:
• {constant} is an integer from 0 to 1023 representing the number of the M-variable;
• the optional second {constant} must be at least as great as the first {constant} – it

represents the number of the end of the range;
• {multiplex address} is an integer constant, divisible by 2, in the range 0 to 254,

representing the address in the multiplexing scheme of the ACC-8D Option 7 resolver-to-
digital converter board on the thumbwheel multiplexer port, as determined by the DIP
switch settings on the board

• {offset} is an integer constant from 0 to 7, representing the location of the device at
the specified multiplexer address, as determined by in the buffer on the ACC-8D Option
7 and the actual pins to which the device was wired.

Note:
No spaces are permitted between the M-variable name and the arrow
double character in this command

Remarks This command causes PMAC to define the specified M-variable or range of M-variables to
point to a 12-bit word from a resolver-to-digital (R/D) converter or similar device serially
multiplexed on the “thumbwheel” port on an ACC-8D Option 7 or compatible board.
The address on the multiplex port specified here must match the address set by the DIP
switches on board the ACC-8D Opt-7. The ACC-8D Opt-7 manual contains a table listing all
of the possibilities.
One of the DIP switches on the ACC-8D Opt-7 board determines whether the R/D converters
on board have offset values of 0 to 3 or 4 to 7. The {offset} specifier must match this
DIP switch setting and the number of the R/D device on the board.
This is a read-only M-variable format. Use of this variable in an on-line query command or a
program statement will cause PMAC to clock in 12 bits of unsigned data (range 0 to 4095)
from the specified device through the multiplexer port.

Note:
It is not necessary to use an M-variable to access an R/D converter for
actual servo or phasing feedback purposes. I-variables (Ix10, Ix81,
I8x, I9x) are used for that purpose. However, even if this is your only
use of the R/D converter, it is usually desirable to assign M-variables
to the R/D converters for set-up and diagnostic purposes.

Example M100->TWR:0,0
M99->TWR:4,5

M{constant}->TWS:{address}
Function Serial Thumbwheel-Multiplexer M-Variable Definition

Scope Global

Syntax M{constant}[..{constant}]->TWS[:]{multiplex address}
where:
• {constant} is an integer from 0 to 1023 representing the number of the M-variable;
• the optional second{constant} must be at least as great as the first {constant} – it

represents the number of the end of the range;
• {multiplex address} is an integer constant, divisible by 4, in the range 0 to 124,

representing the address in the multiplexing scheme of the first of four bytes in the 32-bit

 PMAC 2 Software Reference

260 PMAC On-Line Command Specification

input or output word. Adding 1 to the {multiplex address} designates it as a
read-only variable and adding 2 designates it as a write-only variable.

Note:
No spaces are permitted between the M-variable name and the arrow
double character in this command.

Remarks This command causes PMAC to define the specified M-variable or range of M-variables to
point to a 32-bit word of input or output serially multiplexed on the “thumbwheel” port on an
Accessory 34x board.

Note:
The individual bits of the thumbwheel port on an Accessory 34x board
can not be directly assigned to an M-variable. Only 32-bit words
(ports) of input or output can be accessed.

The address on the multiplex port specified here must match the address set by the DIP
switch on board the ACC-34x. The ACC-34x manual contains a table listing all of the
possibilities.

The entire word must either be all input or all output. On power-up/reset, all ACC-34x words
are software-configured as inputs (if the hardware is configured for outputs, all outputs will
be OFF – pulled up to the supply voltage). Any subsequent write operation to an I/O word
on the port with one of these M-variables automatically makes the entire word an output
word, with individual bits ON or OFF, as determined by the value written to the word.

Any subsequent read operation of a word that has been set up for output configures, or tries
to configure, the entire word into an input word, which turns any hardware outputs OFF.
Therefore, it is important that the following rules be observed when working with these M-
variables:

Never use this M-variable form to write to a word that is set up for inputs.
Never use this M-variable form to read from a word that is set up for outputs.

Because both reads and writes are enabled when a TWS type M-variable is used to point
directly to the base address of an accessory 34x port (e.g. M300->TWS:40) their use is very
strongly discouraged. Reads and writes are enabled when the least significant and the next
least significant addresses bits are both zero (e.g. decimal 40 = 01000000 in binary).

In this situation, any accidental read of an output port (say via the Executive programs watch
window) will cause all the output transistors to be turned off (outputs pulled to the supply
voltage)! Alternatively, writing to an input port, will automatically reconfigure it to an output
port! It is therefore safer and more predictable when bits 0 & 1 of the M-variable definition
are intentionally used to disable either the read function or the write function. Setting one of
these bits gives the read-only or write-only form of the TWS M-variable.

An M-variable pointing to an input port is defined as read-only by setting the {multiplex
address} to a legal byte number (from column 2 of Table 1 of the Acc 34x manual) plus 1.
Any attempt to write to a TWS type M-variable defined in this manner (with bit zero of its
address set to 1) is automatically prevented by PMAC firmware. For an output port, the
{multiplex address} should be a legal byte number (from column 2 of Table 1 of the

PMAC 2 Software Reference

PMAC On-Line Command Specification 261

Acc 34x manual) plus 2. Any attempt to read a TWS type M-variable defined in this manner
(with bit one of its address set to 1) returns zero and the actual read is prevented by PMAC
firmware.

Because you can not directly access the individual bits of the “thumbwheel port on an
Accessory 34x board and because of the relatively long time it takes to clock the data in or
out of PMAC (A 32-bit Read or a 32-bit Write to an individual port takes approximately 64
microseconds of time in the PMAC’s background time slot) it is best to keep an “image” of
each M-variable of this type in internal memory. The image variable would preferably be a
32-bit or 48-bit fixed point M-variable, but it could also be a 48-bit floating point P or Q
variable.

The best procedure for using TWS M-variables in a program is as follows. The input word
(TWS M-variable) should be copied into its image variable at the beginning of a sequence of
operations. The operations can then be done on the image variable without requiring PMAC
to actually read or write to the I/O port for each operation. The output word is first
“assembled” into its image variable, and then copied to the actual output word once at the
end of a sequence of operations. This procedure will allow the most efficient and flexible use
of TWS M-variables.

This type of variable can only be used in background tasks (PLCs and PLCCs 1-31). They
cannot be used in foreground tasks (motion programs and PLC and PLCC 0).

Example To address Port B of board #1 as an output using M101, use the following definition. This
addressing format is not recommended because accidental reads of the port are not protected
against (Consider using the write-only format).
M100->TWS:4 ;Port B (BIO 0-31) of an ACC-34x with SW1 switches all on
 ;not assigned for write-only
To address Port B as above using the write-only addressing format, use the following
definition:
M100->TWS:6 ;Port B (BIO 0-31) of an ACC-34x with SW1 switches all ON
 ;assigned for write-only (6=4+2)

To address Port A of board #1 as an input using M99, use the following definition. This
addressing format is not recommended because accidental writing to the port is not protected
against (Consider using the read-only format).
M99->TWS:0 ;Port A (AIO 0-31) of an ACC-34x with SW1 switches all on
 ; not assigned for read-only

To address Port A as above using the read-only addressing format, use the following
definition:
M100->TWS:1 ;Port A (AIO 0-31) of an ACC-34x with SW1 switches all on
 ;assigned for read-only (1=0+1)

Yet another example: to address Port A of board #6 as an input using M300, we would use
the following definition:
M300->TWS:41 ;Port A (AIO 0-31) of an ACC-34x with SW1 switches
 ; ON, ON, OFF, ON, ON assigned for read-only (41=40+1)

See Also M-Variables (Computational Features)
On-line commands M{constant}, M{constant}->,
M{constant}->TWR:{address}
Serial I/O Multiplexer Board (ACC-34) Manual

 PMAC 2 Software Reference

262 PMAC On-Line Command Specification

M{constant}->X/Y:{address}
Function Short Word M-Variable Definition

Scope Global

Syntax M{constant}[..{constant}]->
 X[:]{address},{offset}[,{width}[,{format}]]
M{constant}[..{constant}]->
 Y[:]{address},{offset}[,{width}[,{format}]]
where:
• {constant} is an integer from 0 to 1023 representing the number of the M-variable;
• the optional second{constant} must be at least as great as the first {constant} – it

represents the number of the end of the range;
• {address} is an integer constant from 0 to 65,535 ($0 to $FFFF if specified in hex);
• {offset} is an integer constant from 0 to 23, representing the starting (least

significant) bit of the word to be used in the M-variable(s), or 24 to specify the use of all
24 bits;

• {width} (optional) is an integer constant from the set {1, 4, 8, 12, 16, 20, 24},
representing the number of bits from the word to be used in the M-variable(s); if
{width} is not specifed, a value of 1 is assumed;

• {format} (optional) is a letter from the set [U, S, D, C], specifying how PMAC is to
interpret this value: (U=Unsigned integer, S=Signed integer, D=Binary-coded Decimal,
C=Complementary binary-coded decimal); if {format} is not specified, U is assumed.

Note:
No spaces are permitted between the M-variable name and the arrow
double character in this command.

Remarks This command causes PMAC to define the specified M-variable or range of M-variables to
point to a location in one of the two halves (X or Y) of PMAC’s data memory. In this form,
the variable can have a width of 1 to 24 bits and can be decoded several different ways, so the
bit offset, bit width, and decoding format must be specified (the bit width and decoding
format do have defaults.

The definition consists of the letter X or Y, an optional colon (:), the word address, the
starting bit number (offset), an optional bit width number, and an option format-specifying
letter.

Legal values for bit width and bit offset are inter-related. The table below shows the possible
values of {width}, and the corresponding legal values of {offset} for each setting of
{width}.

 {width} {offset}
 1 0 – 23
 4 0,4,8,12,16,20
 8 0,4,8,12,16
 12 0,4,8,12
 16 0,4,8
 20 0,4

PMAC 2 Software Reference

PMAC On-Line Command Specification 263

 24 0
The format is irrelevant for 1-bit M-variables, and should not be included for them. If no
format is specified, ‘U’ is assumed.

Example ; Machine Output 1
M1->Y:$FFC2,8,1 ; 1-bit (full spec.)
M1->Y$FFC2,8 ; 1-bit (short spec.)

; Encoder 1 Capture/Compare Register
M103->X:$C003,0,24,U ; 24-bit (full spec.)
M103->X$C003,24 ; 24-bit (short spec.)

; DAC 1 Output Register
M102->Y:$C003,8,16,S ; 16-bit value
M102->Y49155,8,16,S ; same, decimal address

See Also M-Variables (Computational Features)
On-line commands M{constant}, M{constant}->,
M{constant}->D:{address}, M{constant}={expression}
Program command M{constant}={expression}

MACROAUX
Function Report or write MACRO auxiliary parameter value

Scope Global

Syntax MACROAUX{NodeNum}{ParamNum}[={constant}]
MX{NodeNum}{ParamNum}[={constant}]
where:
• {NodeNum} is an integer constant from 0 to 15 specifying the slave number of the node
• {ParamNum} is an integer constant from 0 to 65535 specifying the auxiliary parameter

number for this node (2 to 254 required for a write operation)
• {constant} is an integer constant from -32768 to +32767 representing the value to be

written to the specified parameter

Remarks This command permits PMAC to read or write auxiliary register values from slave nodes
across the MACRO ring. The command must specify the node number of the slave node, the
auxiliary parameter number at this node, and if a write command, the value to write into the
register.
If used as a read command (no ‘={constant}’ in the command), PMAC will report the
value of the specified parameter back to the host as ASCII text, just as if the value of one of
its own parameters had been requested.

Only one auxiliary access (read or write) of a single node can be done on one command line.
In order to access the auxiliary registers of a MACRO node n, bit n of I1000 must be set to 1.
If the slave node returns an error message or the slave node does not respond within 32 servo
cycles, PMAC will report ERR008. Bit 5 of global status register X:$0003 is set to report
such a MACRO auxiliary communications error. Register X:$0798 holds the error value. It
is set to $010000 for a timeout error, or $xxxxFE if the slave node reports an error, where
xxxx is the 16-bit error code reported by the slave node.

Example MACROAUX1,24=2000 ; Set Node 1 Parameter 24 to 2000
MACROAUX1,24 ; Request value of Node 1 Parameter 24

 PMAC 2 Software Reference

264 PMAC On-Line Command Specification

2000 ; PMAC reports value

See Also On-line commands MACROAUXREAD, MACROAUXWRITE
PLC Program commands MACROAUXREAD, MACROAUXWRITE

MACROAUXREAD
Function Read MACRO auxiliary parameter value

Scope Global

Syntax MACROAUXREAD{NodeNum}{ParamNum}{Variable}
MXR{NodeNum}{ParamNum}{Variable}
where:
• {NodeNum} is an integer constant from 0 to 15 specifying the slave number of the node
• {ParamNum} is an integer constant from 0 to 65535 specifying the auxiliary parameter

number for this node
• {Variable} is the name of the PMAC variable (I, P, Q, or M) into which the

parameter value is to be copied

Remarks This command permits PMAC to read auxiliary register values from slave nodes across the
MACRO ring. The command must specify the node number of the slave node, the auxiliary
parameter number at this node, and the name of the PMAC variable to receive the value.
Only one auxiliary access (read or write) of a single node can be done on one command line.
In order to access the auxiliary registers of a MACRO node n, bit n of I1000 must be set to 1.
If the slave node returns an error message or the slave node does not respond within 32 servo
cycles, PMAC will report ERR008. Bit 5 of global status register X:$0003 is set to report
such a MACRO auxiliary communications error. Register X:$0798 holds the error value. It
is set to $010000 for a timeout error, or $xxxxFE if the slave node reports an error, where
xxxx is the 16-bit error code reported by the slave node.

Example MACROAUXREAD1,24,P1 ; Read Node 1 Parameter 24 into P1
MXR5,128,M100 ; Read Node 5 Parameter 128 into M100

See Also On-line commands MACROAUX, MACROAUXWRITE
PLC Program commands MACROAUXREAD, MACROAUXWRITE

PMAC 2 Software Reference

PMAC On-Line Command Specification 265

MACROAUXWRITE
Function Write MACRO auxiliary parameter value

Scope Global

Syntax MACROAUXWRITE{NodeNum}{ParamNum}{Variable}
MXW{NodeNum}{ParamNum}{Variable}
where:
• {NodeNum} is an integer constant from 0 to 15 specifying the slave number of the node
• {ParamNum} is an integer constant from 2 to 253 specifying the auxiliary parameter

number for this node
• {Variable} is the name of the PMAC variable (I, P, Q, or M) from which the

parameter value is to be copied

Remarks This command permits PMAC to write auxiliary register values to slave nodes across the
MACRO ring. The command must specify the node number of the slave node, the auxiliary
parameter number at this node, and the name of the PMAC variable from which the value
comes.
Only one auxiliary access (read or write) of a single node can be done on one command line.
In order to access the auxiliary registers of a MACRO node n, bit n of I1000 must be set to 1.
If the slave node returns an error message or the slave node does not respond within 32 servo
cycles, PMAC will report ERR008. Bit 5 of global status register X:$0003 is set to report
such a MACRO auxiliary communications error. Register X:$0798 holds the error value. It
is set to $010000 for a timeout error, or $xxxxFE if the slave node reports an error, where
xxxx is the 16-bit error code reported by the slave node.

Example MACROAUXWRITE1,24,P1 ; Write value of P1 to Node 1 Parameter 24
MXW5,128,M100 ; Write value of M100 to Node 5 Parameter 128

See Also On-line commands MACROAUX, MACROAUXREAD
PLC Program commands MACROAUXREAD, MACROAUXWRITE

MACROSLV{command} {node#}
Function Send command to Type 1 MACRO slave

Scope Global

Syntax MACROSLAVE{command}{node #}
MS{command}{node #}
where:
• {command} is one of the following text strings:

• $$$ normal station reset
• $$$*** station reset and re-initialize
• CLRF station fault clear
• CONFIG report station configuration value
• DATE report station firmware date
• SAVE save station setup
• VER report station firmware version
• {node #} is a constant in the range 0 to 15 representing the number of the node

on the PMAC matching the slave node to be accessed

 PMAC 2 Software Reference

266 PMAC On-Line Command Specification

Remarks This command causes PMAC to issue the specified command to a MACRO slave station
using the Type 1 auxiliary master-to-slave protocol. If {node #} is set to 15, the action
automatically applies to all slave stations commanded from the PMAC.
The MS CONFIG command allows the user to set and report a user-specified configuration
value. This provides any easy way for the user to see if the MACRO station has already been
configured to the user’s specifications. The factory default configuration value is 0. It is
recommended that after the user finishes the software configuration of the station, a special
number be given to the configuration value with the
MS CONFIG{node #}={constant} command. This number will be saved to the non-
volatile memory with the MS SAVE command.
Subsequently, when the system is powered up, the station can be polled with the MS
CONFIG {node #} command. If the expected value is returned, the station can be
assumed to have the proper software setup. If the expected value is not returned (for
instance, when a replacement station has just been installed) then the setup will have to be
transmitted to the station.
In order for the PMAC to be able to execute this command, the following conditions must be
true:
• The PMAC must be set up as a master or the synchronizing ring master (I995= $xx90 or

$xx30);
• The node 15 auxiliary register copy function must be disabled (I1000 bit 15 = 0);
• Node 15 must not be used for any other function.
If the slave node returns an error message or it does not respond within I1003 servo cycles,
PMAC will report ERR008. Bit 5 of global status register X:$0003 is set to report such a
MACRO auxiliary communications error. Register X:$0798 holds the error value. It is set to
$010000 for a timeout error, or $xxxxFE if the slave node reports an error, where xxxx is the
16-bit error code reported by the slave node.

Example MS $$$0 ; Resets MACRO station which has active node 0
MS $$$***4 ; Reinitializes MACRO station which has active node 4
MS CLRF8 ; Clears fault on Node 8 of MACRO station
MS CONFIG12 ; Causes MACRO station to report its configuration #
37 ; PMAC reports MACRO station configuration # to host
MS CONFIG12=37 ; Sets MACRO station configuration number
MS DATE 0 ; Causes MACRO station to report its firmware date
08/12/1999 ; PMAC reports MACRO station firmware date to host
MS SAVE 4 ; Causes MACRO station to save setup variables
MS VER 8 ; Causes MACRO station to report its firmware version
1.104 ; PMAC reports MACRO station firmware version to host

MACROSLV{node#},{slave variable}
Function Report Type 1 MACRO auxiliary parameter value
Scope Global
Syntax MACROSLAVE{node #},{slave variable}

MS{node #},{slave variable}
where:
• {node #} is a constant in the range 0 to 15 representing the number of the node on the

PMAC matching the slave node to be accessed
• {slave variable} is the name of the variable on the slave station whose value is to

be reported

PMAC 2 Software Reference

PMAC On-Line Command Specification 267

Remarks This command causes PMAC to query the MACRO slave station at the specified node
number using the MACRO Type 1 master-to-slave auxiliary protocol, and report back the
value of the specified slave station variable to the host computer.
In order for the PMAC to be able to execute this command, the following conditions must be
true:
• The PMAC must be set up as a master or the synchronizing ring master (I995= $xx90 or

$xx30);
• The node 15 auxiliary register copy function must be disabled (I1000 bit 15 = 0);
• Node 15 must not be used for any other function.
If the slave node returns an error message or it does not respond within I1003 servo cycles,
PMAC will report ERR008. Bit 5 of global status register X:$0003 is set to report such a
MACRO auxiliary communications error. Register X:$0798 holds the error value. It is set to
$010000 for a timeout error, or $xxxxFE if the slave node reports an error, where xxxx is the
16-bit error code reported by the slave node.

Example MS0,MI910 ; Causes slave to report value of Node 0 variable MI910
7 ; PMAC reports this value back to host
MS1,MI997 ; Causes slave to report value global variable MI997
 ; PMAC reports this value back to host

MACROSLV{node#},{slave variable}={constant}
Function Set Type 1 MACRO auxiliary parameter value

Scope Global

Syntax MACROSLAVE{node #},{slave variable}={constant}
MS{node #},{slave variable}={constant}
where:
• {node #} is a constant in the range 0 to 15 representing the number of the node on the

PMAC matching the slave node to be accessed
• {slave variable} is the name of the MI-variable or C-command on the slave

station whose value is to be set;
• {constant} is a number representing the value to be written to the specified MI-

variable

Remarks This command causes PMAC to write the specified constant value to the variable of the
MACRO slave station at the specified node number using the MACRO Type 1 master-to-
slave auxiliary protocol.

In order for the PMAC to be able to execute this command, the following conditions must be
true:
• The PMAC must be set up as a master or the synchronizing ring master (I995= $xx90 or

$xx30);
• The node 15 auxiliary register copy function must be disabled (I1000 bit 15 = 0);
• Node 15 must not be used for any other function.

If the slave node returns an error message or it does not respond within I1003 servo cycles,
PMAC will report ERR008. Bit 5 of global status register X:$0003 is set to report such a
MACRO auxiliary communications error. Register X:$0798 holds the error value. It is set to
$010000 for a timeout error, or $xxxxFE if the slave node reports an error, where xxxx is the
16-bit error code reported by the slave node.

 PMAC 2 Software Reference

268 PMAC On-Line Command Specification

Example MS0,MI910=7 ; Causes slave to set value of Node 0 variable MI910 to 7
MS1,MI997=6528 ; Causes slave to set value global variable MI997 to 6528
MS8,C2=0 ; Causes slave at node 8 to reset

MACROSLVREAD
Function Read (copy) Type 1 MACRO auxiliary parameter value

Scope Global

Syntax MACROSLVREAD{node #},{slave variable},{PMAC variable}
MSR{node #},{slave variable},{PMAC variable}
where:
• {node #} is a constant in the range 0 to 15 representing the number of the node on the

PMAC matching the slave node to be accessed
• {slave variable} is the name of the variable on the slave station whose value is to

be reported
• {PMAC variable} is the name of the variable on the PMAC into which the value of

the slave station variable is to be copied

Remarks This command causes PMAC to copy the value of the specified variable of the MACRO
slave station matching the specified node number on the PMAC to the specified PMAC
variable, using the MACRO Type 1 master-to-slave auxiliary protocol.

The variable on the PMAC can be any of the I, P, Q, or M-variable on the card.

If this command is issued to the PMAC while a PLC buffer is open, it will be stored in the
buffer as a PLC command, not executed as an on-line command.

In order for the PMAC to be able to execute this command, the following conditions must be
true:
• The PMAC must be set up as a master or the synchronizing ring master (I995= $xx90 or

$xx30);
• The node 15 auxiliary register copy function must be disabled (I1000 bit 15 = 0);
• Node 15 must not be used for any other function.

If the slave node returns an error message or it does not respond within I1003 servo cycles,
PMAC will report ERR008. Bit 5 of global status register X:$0003 is set to report such a
MACRO auxiliary communications error. Register X:$0798 holds the error value. It is set to
$010000 for a timeout error, or $xxxxFE if the slave node reports an error, where xxxx is the
16-bit error code reported by the slave node.

Example MSR0,MI910,P1 ; Copies value of slave Node 0 variable MI910 into PMAC variable P1
MSR1,MI997,M10 ; Copies value of slave Node 1 variable MI997 into PMAC variable M10

MACROSLVWRITE
Function Write (copy) Type 1 MACRO auxiliary parameter value

Scope Global

Syntax MACROSLVWRITE{node #},{slave variable},{PMAC variable}
MSW{node #},{slave variable},{PMAC variable}
where:
• {node #} is a constant in the range 0 to 15 representing the number of the node on the

PMAC matching the slave node to be accessed
• {slave variable} is the name of the MI-variable or C-command on the slave

station whose value is to be set;

PMAC 2 Software Reference

PMAC On-Line Command Specification 269

• {PMAC variable} is the name of the variable on the PMAC from which the value of
the slave station variable is to be copied

Remarks This command causes PMAC to copy the value of the specified variable on PMAC to the
specified variable of the MACRO slave station matching the specified node number on the
PMAC, using the MACRO Type 1 master-to-slave auxiliary protocol.

The variable on the PMAC can be any of the I, P, Q, or M-variables on the card.

If this command is issued to the PMAC while a PLC buffer is open, it will be stored in the
buffer as a PLC command, not executed as an on-line command.

In order for the PMAC to be able to execute this command, the following conditions must be
true:
• The PMAC must be set up as a master or the synchronizing ring master (I995= $xx90 or

$xx30);
• The node 15 auxiliary register copy function must be disabled (I1000 bit 15 = 0);
• Node 15 must not be used for any other function.

If the slave node returns an error message or it does not respond within I1003 servo cycles,
PMAC will report ERR008. Bit 5 of global status register X:$0003 is set to report such a
MACRO auxiliary communications error. Register X:$0798 holds the error value. It is set to
$010000 for a timeout error, or $xxxxFE if the slave node reports an error, where xxxx is the
16-bit error code reported by the slave node.

Example MSW0,MI910,P35 ; Copies value of PMAC P35 into MACRO station node 0 variable MI910
MSW4,C4,P0 ; Causes MACRO station with active node 4 to execute Command #4,

; saving its setup variable values to non-volatile memory (P0 is a dummy
 ; variable here)

MFLUSH
Function Clear pending synchronous M-variable assignments

Scope Coordinate-system specific

Syntax MFLUSH

Remarks This command permits the user to clear synchronous M-variable assignment commands that
have been put on the stack for intended execution with a subsequent move (without executing
the commands). As an on-line command, it is useful for making sure pending outputs are not
executed after a program has been stopped.

Example / ; Stop execution of a program
MFLUSH ; Clear M-variable stack
B1R ; Start another program; formerly pending M-variables will not execute

See Also Program commands M{constant}=={expression},
M{constant}&={expression},
M{constant}|={expression},
M{constant}^={expression}

 PMAC 2 Software Reference

270 PMAC On-Line Command Specification

O{constant}
Function Open loop output

Scope Motor specific

Syntax O{constant}
where:
• {constant} is a floating-point value representing the magnitude of the output as a

percentage of Ix69 for the motor, with a range of +/-100

Remarks This command causes PMAC to put the motor in open-loop mode and force an output of the
specified magnitude, expressed as a percentage of the maximum output parameter for the
motor (Ix69). This command is commonly used for set-up and diagnostic purposes (for
instance, a positive O command must cause position to count in the positive direction, or
closed-loop control cannot be established), but it can also be used in actual applications.

If the motor is not PMAC-commutated, this command will create a DC output voltage on the
single DAC for the motor. If the motor is commutated by PMAC, the commutation
algorithm is still active, and the specified magnitude of output is apportioned between the
two DAC outputs for the motor according to the instantaneous commutation phase angle.

If the value specified is outside the range +/-100, the output will saturate at +/-100% of Ix69.

Closed-loop control for the motor can be re-established with the J command. It is a good
idea to stop the motor first with an O0 command if it has been moving in open-loop mode.

To do a variable O-command, define an M-variable to the filter result register (X:$003A,
etc.), command an O0 to the motor to put it in open-loop mode, then assign a variable value
to the M-variable. This technique will even work on PMAC-commutated motors.

PMAC will reject this command if the motor is in a coordinate system that is currently
running a motion program (reporting ERR001 if I6 is 1 or 3).

Example O50 ; Open-loop output 50% of Ix69 for addressed motor
#2O33.333...... ; Open-loop output 1/3 of Ix69 for Motor 2
O0 ; Open-loop output of zero magnitude
J/ ; Re-establish closed-loop control

See Also On-line commands J/, K
Memory-map registers X:$003A, X:$0076, etc.
Suggested M-variable definitions Mx71.

OPEN BINARY ROTARY
Function Open rotary buffer for entry of binary commands only

Scope Global

Syntax OPEN BINARY ROTARY
OPEN BIN ROT

Remarks This command causes PMAC to open all existing rotary motion program buffers (created
with the DEFINE ROTARY command) for entry of binary-format program commands
through the dual-ported RAM only. Subsequent binary-format program commands valid for
rotary motion programs that are sent to the appropriate dedicated binary buffer in the
DPRAM are copied into the internal rotary program buffer for the appropriate coordinate
system.

PMAC 2 Software Reference

PMAC On-Line Command Specification 271

This effect of this command differs from that of the OPEN ROTARY command. After the
OPEN ROTARY command, ASCII text commands that can be buffered motion program
commands are entered into the internal rotary program buffer, as well as binary-format
commands (if I57=1). After the OPEN BINARY ROTARY command, no ASCII text
commands can be entered into the internal rotary buffers. If a text command can be
interpreted as an on-line command, it is executed immediately. If it cannot be interpreted as
an on-line command, it is rejected with an error.
No other program buffers (PLC, fixed or rotary motion) may be open when the command is
sent (PMAC will report ERR007 if I6=1 or 3). It is a good idea always to precede an OPEN
command with a CLOSE command to make sure no other buffers have been left open.
When the rotary buffers are open for binary entry only, bit 6 of Y:$0003 (a new status bit –
part of the 11th digit reported in response to the ??? global status query command) is set to 1.
However, bits 19 and 18 of this word (part of the 8th digit reported) – Motion Buffer Open
and Rotary Buffer Open – are left at 0 to keep ASCII commands out of this buffer.
The binary rotary buffers can be closed for entry with the CLOSE command.

See Also I-variable I57
On-line commands CLOSE, OPEN ROTARY, ???

OPEN PLC
Function Open a PLC program buffer for entry

Scope Global

Syntax OPEN PLC {constant}
where:
• {constant} is an integer from 0 to 31 representing the PLC program to be opened

Remarks This command causes PMAC to open the specified PLC program buffer for entry and
editing. This permits subsequent program lines that are valid for a PLC to be entered into
this buffer. When entry of the program is finished, the CLOSE command should be used to
prevent further lines from being put in the buffer.
No other program buffers (PLC, fixed or rotary motion) may be open when this command is
sent (PMAC will report ERR007 if I6=1 or 3). It is a good idea always to precede an OPEN
command with a CLOSE command to make sure no other buffers have been left open.
PLCs 0-15 can be protected by password. If the PLC is protected by password, and the
proper password has not been given, PMAC will reject this command (reporting an ERR002
if I6=1 or 3).
Opening a PLC program buffer automatically disables that PLC program. Other PLC
programs and motion programs will keep executing. Closing the PLC program buffer after
entry does not re-enable the program. To re-enable the program, the ENABLE PLC
command must be used, or PMAC must be reset (with a saved value of I5 permitting this
PLC program to execute).

Example CLOSE ; Make sure other buffers are closed
DELETE GATHER ; Make sure memory is free
OPEN PLC 7 ... ; Open buffer for entry, disabling program
CLEAR ; Erase existing contents
IF (M11=1) ... ; Enter new version of program...
 ...
CLOSE ; Close buffer at end of program
ENABLE PLC 7 ; Re-enable program

 PMAC 2 Software Reference

272 PMAC On-Line Command Specification

See Also PLC Program Features
I-variable I5
On-line commands CLOSE, DELETE GATHER, ENABLE PLC

OPEN PROGRAM
Function Open a fixed motion program buffer for entry

Scope Global

Syntax OPEN PROGRAM {constant}
OPEN PROG {constant}
where:
• {constant} is an integer from 1 to 32767 representing the motion program to be

opened.

Remarks This command causes PMAC to open the specified fixed (non-rotary) motion program buffer
for entry or editing. Subsequent program commands valid for motion programs will be
entered into this buffer. When entry of the program is finished, the CLOSE command should
be used to prevent further lines from being put in the buffer.
No other program buffers (PLC, fixed or rotary motion) may be open when this command is
sent (PMAC will report ERR007 if I6=1 or 3). It is a good idea always to precede an OPEN
command with a CLOSE command to make sure no other buffers have been left open.
No motion programs may be running in any coordinate system when this command is sent
(PMAC will report ERR001 if I6=1 or 3). As long as a fixed motion program buffer is open,
no motion program may be run in any coordinate system (PMAC will report ERR015 if I6=1
or 3).
PROGs 1000-32767 can be protected by password. If the PROG is protected by password,
and the proper password has not been given, PMAC will reject this command (reporting an
ERR002 if I6=1 or 3).
After any fixed motion program buffer has been opened, each coordinate system must be
commanded to point to a motion program with the B{constant command before it can run
a motion command (otherwise PMAC will report ERR015 if I6=1 or 3)

Example CLOSE ; Make sure other buffers are closed
DELETE GATHER DELETE TRACE ; Make sure memory is free
OPEN PROG 255 ; Open buffer for entry, disabling program
CLEAR ; Erase existing contents
X10 Y20 F5 ... ; Enter new version of program...
 ...
CLOSE ; Close buffer at end of program
&1B255R ; Point to this program and run it

See Also Writing a Motion Program
On-line commands CLEAR, CLOSE, DELETE GATHER, DELETE TRACE
Program Command Specification

PMAC 2 Software Reference

PMAC On-Line Command Specification 273

OPEN ROTARY
Function Open all existing rotary motion program buffers for entry
Scope Global
Syntax OPEN ROTARY

OPEN ROT
Remarks This command causes PMAC to open all existing rotary motion program buffers (created

with the DEFINE ROTARY command) for entry. Subsequent program commands valid for
rotary motion programs are entered into the rotary program buffer of the coordinate system
addressed at the time of that command. (Branching and looping commands should not be
used in a rotary program buffer.)
No other program buffers (PLC, fixed or rotary motion) may be open when this command is
sent (PMAC will report ERR007 if I6=1 or 3). It is a good idea always to precede an OPEN
command with a CLOSE command to make sure no other buffers have been left open.
The <CTRL-U> command performs the same function as OPEN ROTARY.

Note:

The B0 command that points the coordinate system to the rotary
buffer cannot be given while the rotary buffers are open, because
PMAC will interpret the command as a B-axis move command.

Example &2 DEFINE ROT 100 ; Create C.S. 2 rotary buffer
&1 DEFINE ROT 100 ; Create C.S. 1 rotary buffer
&1 B0 &2 B0 . ; Point both C.S.s to rotary buffers
OPEN ROT ; Open buffers for entry
&1 X10 Y10 F5 ; Write to C.S. 1’s buffer
&2 X30 Y30 F10 ; Write to C.S. 2’s buffer
&1R &2R ; Start executing both buffers

See Also Rotary Motion Programs (Writing a Motion Program)
On-line commands <CTRL-L>, <CTRL-U>, CLOSE, DEFINE ROT, B{constant}, R

P
Function Report motor position
Scope Motor specific
Syntax P
Remarks This command causes PMAC to report the present actual position for the addressed motor to

the host, scaled in counts, rounded to the nearest tenth of a count.
PMAC reports the value of the actual position register plus the position bias register plus the
compensation correction register, and if bit 16 of Ix05 is 1 (handwheel offset mode), minus
the master position register.

Example P......................... ; Request the position of the addressed motor
1995.................. ; PMAC responds
#1P ; Request position of Motor 1
-0.5.................. ; PMAC responds
#2P#4P ; Request positions of Motors 2 and 4
9998.................. ; PMAC responds with Motor 2 position first
10002 ; PMAC responds with Motor 4 position next

 PMAC 2 Software Reference

274 PMAC On-Line Command Specification

See Also On-line commands <CTRL-P>, F, V
Suggested M-variable definitions Mx62, Mx64, Mx67, Mx69
Memory map registers D:$002B, D:$0813, D:$002D, D:$0046, etc.

P{constant}
Function Report the current P-variable value(s).
Scope Global
Syntax P{constant}[..{constant}]

where:
• {constant} is an integer from 0 to 1023 representing the number of the P-variable;
• the optional second{constant} must be at least as great as the first {constant} – it

represents the number of the end of the range;
Remarks This command causes PMAC to report the current value of the specified P-variable or range

of P-variables.

Example P1 ; Host asks for value
25 ; PMAC responds
P1005
3.444444444
P100..102
17.5
-373
0.0005

See Also P-Variables (Computational Features)
On-line commands I{constant}, M{constant}, Q{constant},
P{constant}={expression}

P{constant}={expression}
Function Assign a value to a P-variable.

Scope Global

Syntax P{constant}[..{constant}]={expression}
where:
• {constant} is an integer from 0 to 1023 representing the number of the P-variable;
• the optional second{constant} must be at least as great as the first {constant} – it

represents the number of the end of the range;
• {expression} contains the value to be given to the specified P-variable(s)

Remarks This command causes PMAC to set the specified P-variable or range of P-variables equal to
the value on the right side of the equals sign.

Example P1=1
P75=P32+P10
P100..199=0
P10=$2000
P832=SIN(3.14159*Q10)

See Also P-Variables (Computational Features)
On-line commands I{constant}={expression}, M{constant}={expression},
Q{constant}={expression}, P{constant}
Program command P{constant}={expression}

PMAC 2 Software Reference

PMAC On-Line Command Specification 275

PASSWORD={string}
Function Enter/Set Program Password

Scope Global

Syntax PASSWORD={string}
where:
• {string} is a series of non-control ASCII characters (values from 32 decimal to 255

decimal). The password string is case sensitive.

Remarks This command permits the user to enter the card’s password, or once entered properly, to
change it. Without a properly entered password, PMAC will not open or list the contents of
any motion program numbered 1000 or greater, or of PLC programs 0-15. If asked to do so,
it will return an error (ERR002 reported if I6 is set to 1 or 3).

The default password is the null password (which means no password is needed to list the
programs). This is how the card is shipped from the factory, and after a $$$*** re-
initialization command. When there is a null password, you are automatically considered to
have entered the correct password on power-up/reset.

If you have entered the correct password (which is always the case for the null password),
PMAC interprets the PASSWORD={string} command as changing the password, and you
can change it to anything you want. When the password is changed, it has automatically
been matched and the host computer has access to the protected programs.

Note:
The password does not require quote marks. If you use quote marks
when you enter the password string for the first time, you must use
them every time you match this password string.

If you have not yet entered the correct password since the latest power-up/reset, PMAC
interprets the PASSWORD={string} command as an attempt to match the existing
password. If the command matches the existing password correctly, PMAC accepts it as a
valid command, and the host computer has access to the protected programs until the PMAC
is reset or has its power cycled. If the command does not match the existing password
correctly, PMAC returns an error (reporting ERR002 if I6=1 or 3), and the host computer
does not have access to the protected programs. The host computer is free to attempt to
match the existing password.

There is no way to read the current password. If the password is forgotten and access to the
protected programs is required, the card must be re-initialized with the $$$*** command,
which clears all program buffers as well as the password. Then the programs must be
reloaded, and a new password entered.

Example {Starting from power-up/reset with a null password}
LIST PLC 1 ; Request listing of protected program
P1=P1+1 ; PMAC responds because there is no password
RETURN
PASSWORD=Bush ; This sets the password to “Bush”
LIST PLC 1 ; Request listing of protected program
P1=P1+1 ; PMAC responds because password has been
RETURN ; matched by changing it.
$$$; Reset the card
LIST PLC 1 ; Request listing of protected program
ERR002 ; PMAC rejects because password not entered

 PMAC 2 Software Reference

276 PMAC On-Line Command Specification

PASSWORD=Reagan ; Attempt to enter password
ERR002 ; PMAC rejects as incorrect password
PASSWORD=BUSH ; Attempt to enter password
ERR002 ; PMAC rejects as incorrect (wrong case)
PASSWORD=Bush ; Attempt to enter password
 ; PMAC accepts as correct password
LIST PLC 1 ; Request listing of protected program
P1=P1+1 ; PMAC responds because password matched
RETURN
PASSWORD=Clinton ; This changes password to “Clinton”
LIST PLC 1 ; Request listing of protected program
P1=P1+1 ; PMAC responds because password has been
RETURN ; matched by changing it.
$$$; Reset the card
PASSWORD=Clinton ; Attempt to enter password
 ; PMAC accepts as correct password
LIST PLC 1 ; Request listing of protected program
P1=P1+1 ; PMAC responds because password matched
RETURN

See Also On-line commands LIST, LIST PC, LIST PE, OPEN

PAUSE PLC
Function Pause specified PLC program(s).

Scope Global

Syntax PAUSE PLC {constant}[,{constant}...]
PAU PLC {constant}[,{constant}...]
PAUSE PLC {constant}[..{constant}]
PAU PLC {constant}[..{constant}]
where:
• {constant} is an integer from 0 to 31, representing the program number

Remarks This command causes PMAC to stop execution of the specified uncompiled PLC program or
programs, with the capability to restart execution at this point (not necessarily at the top) with
a RESUME PLC command. Execution can also be restarted at the top of the program with the
ENABLE PLC command.
The on-line PAUSE PLC command can only suspend execution of a PLC program either at
the end of a scan, which is the end of the program, or at an ENDWHILE statement in the
program.
PLC programs are specified by number, and may be specified in a command singularly, in a
list (separated by commas), or in a range of consecutively numbered programs.
If a motion or PLC program buffer is open when this command is sent to PMAC, the
command will be entered into that buffer for later execution.

Example PAUSE PLC 1
PAU PLC 5
PAU PLC 3,4,7
PAUSE PLC 0..31

See Also I-variable I5
On-line commands DISABLE PLC, ENABLE PLC, OPEN PLC, RESUME PLC, LIST
PLC, <CONTROL-D>.
Program commands DISABLE PLC, ENABLE PLC, PAUSE PLC, RESUME PLC

PMAC 2 Software Reference

PMAC On-Line Command Specification 277

PC
Function Report Program Counter

Scope Coordinate-system specific

Syntax PC

Remarks This command causes PMAC to report the motion program number and address offset of the
line in that program that it will next calculate (in the addressed coordinate system). It will
also report the program number and address offset of any lines it must RETURN to if it is
inside a GOSUB or CALL jump (up to 15 deep).
The number reported after the colon is not a line number; as an address offset, it is the
number of words of memory from the top of the program. The LIST PROGRAM command,
when used with comma delimiters, shows the program or section of the program with address
offsets for each line. The LIST PC command can show lines of the program with address
offsets from the point of calculation.
Because PMAC calculates ahead in a continuous sequence of moves, the PC (Program
Calculation) command will in general return a program line further down in the program than
PE will.
If the coordinate system is not pointing to any motion program, PMAC will return an error
(ERR003 if I6=1 or 3). Initially the pointing must be done with the B{constant}
command.

Example PC
P1:0.................. ; Ready to execute at the top of PROG 1
PC
P76:22 ; Ready to execute at 22nd word of PROG 76
LIST PC
P76:22:X10Y20 ; Program line at 22nd word of PROG 76
PC
P1001:35>P3.12 ; Execution will return to PROG 3, address 12

See Also On-line commands B{constant}, LIST, LIST PC, LIST PE, LIST PROGRAM, PE

PE
Function Report Program Execution Pointer
Scope Coordinate-system specific
Syntax PE
Remarks This command causes PMAC to report the motion program number and address offset of the

currently executing programmed move in the addressed coordinate system. This is similar to
the PC command, which reports the program number and address offset of the next move to
be calculated. Since PMAC is calculating ahead in a continuous sequence of moves, PC will
in general report a move line several moves ahead of PE.

If the coordinate system is not pointing to any motion program, PMAC will return an error
(ERR003 if I6=1 or 3). Initially the pointing must be done with the B{constant}
command.

Example PE
P1:2
PE
P1:5

See Also On-line commands B{constant}, LIST, LIST PC, LIST PE, PC

 PMAC 2 Software Reference

278 PMAC On-Line Command Specification

PMATCH
Function Re-match Axis Positions to Motor Positions
Scope Coordinate-system specific
Syntax PMATCH
Remarks This command causes PMAC to recalculate the axis starting positions for the coordinate

system to match the current motor commanded positions (by inverting the axis definition
statement equations and solving for the axis position).
Normally this does not need to be done. However, if a motor move function, such as a jog
move, an open-loop move, or a stop on abort or limit, was done since the last axis move or
home, PMAC will not automatically know that the axis position has changed. If an axis
move is then attempted without the use of the PMATCH command, PMAC will use the wrong
axis starting point in its calculations.
Also, with an absolute sensor, a PMATCH command should be executed before the first
programmed move, so the starting axis position matches the (non-zero) motor position.
If the PMATCH function is not performed, PMAC will use the last axis destination position as
the starting point for its upcoming axis move calculations, which is not necessarily the same
position as the current commanded motor positions.
The PMATCH function can be executed from within a motion program using CMD”PMATCH”
with DWELLs both before and after. This is useful if the coordinate system setup changes in
the middle of the program (e.g. new axis brought in, or following mode changed).
If more than one motor is defined to a given axis (as in a gantry system), the commanded
position of the lower-numbered motor is used in the PMAC calculations.

Note:
If I14 is set to 1, the PMATCH function will be executed automatically
every time program execution is started. Most users will want to use
I14=1 so they do not have to worry about when this needs to be done.

Example #1J+.................. ; Jog motor 1
#1J/.................. ; Stop jogging
PMATCH ; Match axis position to current motor position
B200R ; Execute program 200
OPEN PROG 10 CLEAR
...
CMD”&1#4->100C” ; Bring C-axis into coordinate system
DWELL100
CMD”PMATCH” . ; Issue PMATCH so C-axis has proper start position
DWELL100
C90

See Also Further Position Processing (Setting Up a Motor)
Axes, Coordinate Systems (Setting Up a Coordinate System)
I-variables I14, Ix06

PMAC 2 Software Reference

PMAC On-Line Command Specification 279

PR
Function Report Rotary Program Remaining
Scope Coordinate-system specific
Syntax PR
Remarks This command causes PMAC to report the number of program lines that have been entered in

the rotary buffer for the addressed coordinate system but have not yet been executed
(program remaining). This command can be useful for finding out if it is time to send new
lines to the buffer. The value returned is accurate only if the rotary program buffer is open.

Example B0 ; Point to rotary buffer
OPEN ROT ; Open rotary buffer
X10F10 ; Enter 1st line
X20 ; Enter 2nd line
X30 ; Enter 3rd line
X40 ; Enter 4th line
PR ; Ask for program remaining
4......................... ; PMAC responds that 4 lines remain
R......................... ; Start running the program
PR ; Ask for program remaining
2......................... ; PMAC responds two 2 lines remain

See Also Rotary Program Buffers (Writing a Motion Program)
BREQ interrupt (Using Interrupts – Writing a Host Communications Program)
I-variables I16, I17

Q
Function Quit Program at End of Move

Scope Coordinate-system specific

Syntax Q

Remarks This causes the currently addressed coordinate system to cease execution of the program at
the end of the currently executing move or the next move if that has already been calculated.
The program counter is set to the next line in the program, so execution may be resumed at
that point with an R or S command.

Compare this to the similar / command, which always stops at the end of the currently
executing move..

Example B10R.................. ; Point to beginning of PROG 10 and run
Q......................... ; Quit execution
R......................... ; Resume execution
Q......................... ; Quit execution again
S ; Resume execution for a single move

See Also Stopping Commands (Making Your Application Safe)
Control-Panel Port STEP/ Input (Connecting PMAC to the Machine)
JPAN Connector Pin 9
On-line commands <CTRL-Q>, A, H, K, /, \

 PMAC 2 Software Reference

280 PMAC On-Line Command Specification

Q{constant}
Function Report Q-Variable Value

Scope Coordinate-system specific

Syntax Q{constant}[..{constant}]
where:
• {constant} is an integer from 0 to 1023 representing the number of the Q-variable;
• the optional second{constant} must be at least as great as the first {constant} – it

represents the number of the end of the range;

Remarks This command causes PMAC to report back the present value of the specified Q-variable or
range of Q-variables for the addressed coordinate system.

Example Q10
35
Q255
-3.4578
Q101..103
0
98.5
-0.333333333

See Also Q-Variables (Computational Features)
On-line commands I{constant}, M{constant}, P{constant},
Q{constant}={expression}

Q{constant}={expression}
Function Q-Variable Value Assignment
Scope Coordinate-system specific
Syntax Q{constant}[..{constant}]={expression}

where:
• {constant} is an integer from 0 to 1023 representing the number of the Q-variable;
• the optional second{constant} must be at least as great as the first {constant} – it

represents the number of the end of the range;
• {expression} contains the value to be given to the specified Q-variable(s)

Remarks This command causes PMAC to assign the value of the expression to the specified Q-variable
or range of Q-variables for the addressed coordinate system.

If a motion program buffer is open when this command is sent to PMAC it is entered into the
buffer for later execution.

Example Q100=2.5
Q1..10=0

See Also Q-Variables (Computational Features)
On-line commands I{constant}={expression}, M{constant}={expression},
P{constant}={expression}, Q{constant}
Program command Q{constant}={expression}

PMAC 2 Software Reference

PMAC On-Line Command Specification 281

R
Function Run Motion Program

Scope Coordinate-system specific

Syntax R

Remarks This command causes the addressed PMAC coordinate system to start continuous execution
of the motion program addressed by the coordinate system’s program counter from the
location of the program counter. Alternately, it will restore operation after a ‘\’ or ‘H’
command has been issued (even if a program was or is not running). Addressing of the
program counter is done initially using the B{constant command.
The coordinate system must be in a proper condition in order for PMAC to accept this
command. Otherwise, PMAC will reject this command with an error; if I6 is 1 or 3, it will
report the error number. The following conditions can cause PMAC to reject this command
(also listed are the remedies):
• Both limits set for a motor in coordinate system (ERR010); clear limits
• Another move in progress (ERR011); stop move (e.g. with J)
• Open-loop motor in coordinate system (ERR012); close loop with J or A
• Unactivated motor in coordinate system (ERR013); change Ix00remove motor from

coordinate system
• No motors in the coordinate system (ERR014); put at least 1 motor in C.S.
• Fixed motion program buffer open (ERR015); close buffer and point to program
• No program pointed to (ERR015); point to program with B command
• Program structured improperly (ERR016); correct program structure
• Motor(s) not at same position as stopped with / or \ command (ERR017); move back to

stopped position with J=
Example &1B1R ; C.S.1 point to PROG 1 and run

&2B200.06...... ; C.S.2 point to N6000 of PROG 200 and run
Q......................... ; Quit this program
R......................... ; Resume running from point where stopped
H......................... ; Do a feed hold on this program
R ; Resume running from point where stopped

See Also Control Panel Port START/ Input (Connecting PMAC to the Machine)
Running a Motion Program (Writing a Motion Program)
I-variable I6
On-line commands <CTRL-R>, A, H, Q, S
JPAN Connector Pin 8

R[H]{address}
Function Report the contents of a specified memory address[es]

Scope Global

Syntax R[H]{address} [,{constant}]
where:
• {address} consists of a letter X, Y, or L; an option colon (:); and an integer value from

0 to 65535 (in hex, $0000 to $FFFF); specifying the starting PMAC memory or I/O
address to be read;

 PMAC 2 Software Reference

282 PMAC On-Line Command Specification

• {constant} (optional) is an integer from 1 to 16 specifying the number of consecutive
memory addresses to be read; if this is not specified, PMAC assumes a value of 1

Remarks This command causes PMAC to report the contents of the specified memory word address or
range of addresses to the host (it is essentially a PEEK command). The command can
specify either short (24-bit) word(s) in PMAC’s X-memory, short (24-bit) word(s) in
PMAC’s Y-memory, or long (48-bit) words covering both X and Y memory (X-word more
significant). This choice is controlled by the use of the X, Y, or L address prefix in the
command, respectively.
If the letter H is used after the R in the command, PMAC reports back the register contents in
unsigned hexadecimal form, with 6 digits for a short word, and 12 digits for a long word. If
the letter H is not used, PMAC reports the register contents in signed decimal form.

Example RHX:49152...... ; Request contents of X-register 49152 ($C000) in hex
8F4017 ; PMAC responds in unsigned hex (note no ‘$’)
RHX:$C000...... ; Request contents of X-reg $C000 (49152) in hex
8F4017 ; PMAC responds in unsigned hex
RX:49152 ; Request contents of same register in decimal
-7389161 ; PMAC responds in signed decimal
RX:$C000 ; Request contents of same register in decimal
-7389161 ; PMAC responds in signed decimal
RX0 ; Request contents of servo cycle counter in decimal
2953211 ; PMAC responds in signed decimal
RL$0028 ; Request contents of #1 cmd. pos. reg in decimal
3072000 ; PMAC responds (=1000 counts)
RHY1824,12 ... ; Request set-up words of the conversion table
00C000 00C004 00C008 00C00C 00C010 00C014 00C018
00C01C 400723 0000295 000000 000000 ; PMAC responds in hex

See Also PMAC Memory Mapping (Computational Features)
On-line command W{address}
Memory and I/O Map Description.

RESUME PLC
Function Resume execution of specified PLC program(s).

Scope Global

Syntax RESUME PLC {constant}[,{constant}...]
RES PLC {constant}[,{constant}...]
RESUME PLC {constant}[..{constant}]
RES PLC {constant}[..{constant}]
where:
• {constant} is an integer from 0 to 31, representing the program number

Remarks This command causes PMAC to resume execution of the specified uncompiled PLC program
or programs at the point where execution was suspended with the PAUSE PLC command.
This can be either at the top of the program, or at a point inside the program.

PMAC 2 Software Reference

PMAC On-Line Command Specification 283

The RESUME PLC command cannot be used to restart execution of a PLC program that has
been stopped with a DISABLE PLC command. However, after a PLC has been stopped
with a DISABLE PLC command, if a PAUSE PLC command is then given for that PLC,
then a RESUME PLC command can be given to start operation at the point at which it has
been stopped.

Note that RESUME PLC 0..31 will restart all PLCs that have been paused, but not any
that have been disabled.

The line of the PLC at which execution will be resumed can be read with the LIST PLC,,1
command.

PLC programs are specified by number, and may be used singularly in this command, in a list
(separated by commas), or in a range of consecutively numbered programs.
If a motion or PLC program buffer is open when this command is sent to PMAC, the
command will be entered into that buffer for later execution.

I-variable I5 must be in the proper state to allow the PLC program(s) specified in this
command to execute.

Example RESUME PLC 1
RES PLC 2,7
RESUME PLC 3,21
RESUME PLC 0..31
{Note: If the RESUME command refers to multiple PLCs, only those PLCs that have been stopped with
the PAUSE command will be resumed.}

See Also I-variable I5
On-line commands DISABLE PLC, ENABLE PLC, OPEN PLC, PAUSE PLC, LIST
PLC, <CONTROL-D>.
Program commands DISABLE PLC, ENABLE PLC, PAUSE PLC, RESUME PLC

S
Function Execute One Move (Step) of Motion Program

Scope Coordinate-system specific

Syntax S

Remarks This command causes the addressed PMAC coordinate system to start single-step execution
of the motion program addressed by the coordinate system’s program counter from the
location of the program counter. Addressing of the program counter is done initially using
the B{constant command.

At the default I53 value of zero, a Step command causes program execution through the next
move or DWELL command in the program, even if this takes multiple program lines.

When I53 is set to 1, a Step command causes program execution of only a single program
line, even if there is no move or DWELL command on that line. If there is more than one
DWELL or DELAY command on a program line, a single Step command will only execute one
of the DWELL or DELAY commands.

Regardless of the setting of I53, if program execution on a Step command encounters a
BLOCKSTART statement in the program, execution will continue until a BLOCKSTOP
statement is encountered.

 PMAC 2 Software Reference

284 PMAC On-Line Command Specification

If the coordinate system is already executing a motion program when this command is sent,
the command puts the program in single-step mode, so execution will stop at the end of the
latest calculated move. In this case, its action is the equivalent of the Q command.

The coordinate system must be in a proper condition in order for PMAC to accept this
command. Otherwise, PMAC will reject this command with an error; if I6 is 1 or 3, it will
report the error number. The same conditions that cause PMAC to reject an R command will
cause it to reject an S command; refer to those conditions under the R command
specification.

Example &3B20S ; C.S.3 point to beginning of PROG 20 and step
P1 ; Ask for value of P1
1......................... ; PMAC responds
S......................... ; Do next step in program
P1 ; Ask for value of P1 again
-3472563 ; PMAC responds –probable problem

See Also Control Panel Port STEP/ Input (Connecting PMAC to the Machine)
Running a Motion Program (Writing a Motion Program)
I-variable I6, I53
On-line commands <CTRL-S>, A, H, Q, R, /, \
Program commands {axis}{data}, BLOCKSTART, BLOCKSTOP, DWELL, DELAY

SAVE
Function Copy setup parameters to non-volatile memory.
Scope Global
Syntax SAVE
Remarks This command causes PMAC to copy setup information from active memory to non-volatile

memory, so this information can be retained through power-down or reset. Its exact
operation depends on the type of PMAC used.
For the “standard” PMACs with battery-backed RAM, only the basic setup information is
stored with the SAVE command: I-variables, encoder conversion table entries, and
VME/DPRAM address entries. This information is copied back from flash to active memory
during a normal power-up/reset operation. User programs, buffers, and definitions are
simply held in RAM by the battery backup; there is no need to save these.
For the option PMACs with flash-backed RAM, all user setup information, including
programs, buffers, and definitions, is copied to flash memory with the SAVE command. This
information is copied back from flash to active memory during a normal power-up/reset
operation. This means that anything changed in PMAC’s active memory that is not saved to
flash memory will be lost in a power-on/reset cycle.
The SAVE operation can be inhibited by changing jumper E50 from its default state. If the
SAVE command is issued with jumper E50 not in its default state, PMAC will report an error.
The retrieval of information from non-volatile memory on power-up/reset can be inhibited by
changing jumper E51 from its default state.

PMAC 2 Software Reference

PMAC On-Line Command Specification 285

Note:
PMAC does not provide the acknowledging handshake character to
the SAVE command until it has finished the saving operation, a
significant fraction of a second later on PMACs with battery backup
and about 5 to 10 seconds on PMACs with flash backup. The host
program should be prepared to wait much longer for this character
than is necessary on most commands. For this reason, it is usually not
a good idea to include the SAVE command as part of a “dump”
download of a large file.

During execution of the SAVE command, PMAC will execute no other background tasks,
including user PLCs and automatic safety checks, such as following error and overtravel
limits. Particularly on boards with the flash backup where saving takes many seconds, you
must make sure the system is not depending on these tasks for safety when the SAVE
command is issued.

Example I130=60000 ... ; Set Motor 1 proportional gain
SAVE.................. ; Save to non-volatile memory
I130=80000 ... ; Set new value
$$$; Reset card
I130.................. ; Request value of I130
60000 ; PMAC responds with saved value

See Also On-line commands $$$, $$$***
Jumpers E50 and E51.

SETPHASE
Function Set motor commutation phase-position registers

Scope Global

Syntax SETPHASE{constant}[,{constant}...]
SETPHASE{constant}..{constant}
[,{constant}..{constant}...]
where:
• {constant} is an integer from 1 to 8 representing a motor number

Remarks This command causes PMAC to force the commutation phase-position register for the
specified motor or motor’s to the value of the Ix75 phase-position offset parameter.

The main use of this command is to correct the phase position value at a known position
(usually the motor home position) after an approximate phasing search or phasing read (e.g.
from Hall commutation sensors). The approximate referencing is sufficient to move to a
known position, but not necessarily to get peak performance from the motor.

Example SETPHASE1
SETPHASE1,3,5
SETPHASE1..4
SETPHASE1..3,5..7

See Also Power-On Phasing Search (Setting Up PMAC Commutation)
I-variables Ix75, Ix81
Program Command SETPHASE

 PMAC 2 Software Reference

286 PMAC On-Line Command Specification

SIZE
Function Report the amount of unused buffer memory in PMAC.

Scope Global

Syntax SIZE

Remarks This command causes PMAC to report to the host the amount of unused long words of
memory available for buffers. If no program buffer (motion, PLC or rotary buffer) is open,
this value is reported as a positive number. If a buffer is currently open, the value is reported
as a negative number.

Example DEFINE GATHER ; Reserve all remaining memory for gathering
SIZE.................. ; Ask for amount of open memory
0......................... ; PMAC reports none available
DELETE GATHER ; Free up memory from gathering buffer
SIZE.................. ; Ask for amount of open memory
41301 ; PMAC reports number of words available
OPEN PROG 10 ; Open a motion program buffer
SIZE.................. ; Ask for amount of open memory
-41302 ; The negative sign shows a buffer is open

See Also I-Variable I18
On-line commands DELETE GATHER, DELETE TRACE

TYPE
Function Report type of PMAC
Scope Global
Syntax TYPE
Remarks This command causes PMAC to return a string reporting the configuration of the card. It will

report the configuration as a text string in the format:
{PMAC type},{Bus type},{Backup type},{Servo Type},{Ladder type},{Clock Multiplier}
where
{PMAC type}:
PMAC1 First generation PMAC (including PMAC”1.5”)
PMAC2 Second generation PMAC
PMACUL Ultra-lite (MACRO only PMAC2)
{Bus type}:
ISA IBM-PC ISA bus
VME VME bus
STD STD bus
ISA/VME PMAC1 firmware can support both busses

{Backup type}:
BATTERY Battery-backed RAM
FLASH AMD-style flash-backed RAM
I-FLASH Intel-style flash-backed RAM

{Servo type}:
PID Standard PID servo algorithm
ESA Option 6 Extended servo algorithm
{Ladder type}

PMAC 2 Software Reference

PMAC On-Line Command Specification 287

{blank} no ladder-logic diagram support
LDs Ladder-logic diagram support
{Clock multiplier}:
CLK Xn where n is the multiplication of crystal frequency to CPU frequency

Example TYPE
PMAC1, ISA/VME, BATTERY, PID, CLK X1
TYPE
PMAC2, ISA, FLASH, ESA, CLK X3
TYPE
PMACUL, VME, FLASH, PID, LDs, CLK X2

See Also On-line commands VERSION, DATE

UNDEFINE
Function Erase Coordinate System Definition

Scope Coordinate-system specific

Syntax UNDEFINE
UNDEF

Remarks This command causes PMAC to erase all of the axis definition statements in the addressed
coordinate system. It does not affect the axis definition statements in any other coordinate
systems. It can be useful to use before making new axis definitions.

To erase the axis definition statement of a single motor only, use the #{constant}->0
command; to erase all the axis definition statements in every coordinate system, use the
UNDEFINE ALL command.

Example &1 ; Address C.S.1
#1->.................. ; Ask for axis definition of Motor 1
10000X ; PMAC responds
#2->.................. ; Ask for axis definition of Motor 2
10000Y ; PMAC responds
UNDEFINE ; Erase axis definitions
&2 ; Address C.S.2
#1->10000X ... ; Redefine Motor 1 as X-axis in C.S.2
#2->10000Y ; Redefine Motor 2 as Y-axis in C.S.2

See Also Axes, Coordinate Systems (Setting Up a Coordinate System)
On-line commands #{constant}->, #{constant}->0, UNDEFINE ALL

UNDEFINE ALL
Function Erase coordinate definitions in all coordinate systems

Scope Global

Syntax UNDEFINE ALL
UNDEF ALL

Remarks This command causes all of the axis definition statements in all coordinate systems to be
cleared. It is a useful way of starting over on a reload of PMAC’s coordinate system
definitions.

Example &1#1-> ; Request axis definition of Motor 1 in C.S. 1
1000X ; PMAC responds
&2#5-> ; Request axis definition of Motor 5 in C.S. 2

 PMAC 2 Software Reference

288 PMAC On-Line Command Specification

1000X ; PMAC responds
UNDEFINE ALL ; Erase all axis definitions
&1#1-> ; Request axis definition of Motor 1 in C.S. 1
0......................... ; PMAC responds that there is no definition
&2#5-> ; Request axis definition of Motor 5 in C.S. 2
0 ; PMAC responds that there is no definition

See Also Axes, Coordinate Systems (Setting Up a Coordinate System)
On-line commands #{constant}->0, #{constant}->, UNDEFINE.

V
Function Report motor velocity
Scope Motor specific
Syntax V
Remarks This command causes PMAC to report the present actual motor velocity to the host, scaled in

counts/servo cycle, rounded to the nearest tenth. It is reporting the contents of the motor
actual velocity register (divided by [Ix09*32]).
To convert this reported value to counts/msec, multiply by 8,388,608*(Ix60+1) and divide by
I10. It can be further converted to engineering units with additional scaling constants.

Note:
The velocity values reported here are obtained by subtracting positions
of consecutive servo cycles. As such, they can be very noisy. For
purposes of display, it is probably better to use averaged velocity
values held in registers Y:$082A, Y:$08EA, etc., accessed with M-
variables

Example V......................... ; Request actual velocity of addressed motor
21.9.................. ; PMAC responds with 21.9 cts/cycle
........................... ; (*8,388,608/3,713,707 = 49.5 cts/msec)
#6V ; Request velocity of Motor 6
-4.2.................. ; PMAC responds
#5V#2V ; Request velocities of Motors 5 and 2
0......................... ; PMAC responds with Motor 5 first
7.6 ; PMAC responds with Motor 2 second

See Also I-variables I10, Ix09, Ix60
On-line commands <CTRL-V>, F, P
Memory map registers X:$0033, X:$006F, etc., X:$082A, X:$08EA, etc.
Suggested M-variable definitions Mx66

VERSION
Function Report PROM firmware version number

Scope Global

Syntax VERSION
VER

Remarks This command causes PMAC to report the firmware version it is using.

When a flash-memory PMAC is in “bootstrap mode” (powering up with E51 ON), PMAC
will report the version of the bootstrap firmware, not the operational firmware. Otherwise, it
will report the operational firmware version. To change from bootstrap mode to normal
operational mode, use the <CTRL-R> command.

PMAC 2 Software Reference

PMAC On-Line Command Specification 289

Example VERSION ; Ask PMAC for firmware version
1.12D ; PMAC responds

See Also Resetting PMAC (Talking to PMAC)
On-line command DATE, TYPE

W{address}
Function Write value(s) to a specified address(es).

Scope Global

Syntax W{address,{constant} [,{constant}...]
where:
• {address} consists of a letter X, Y, or L; an option colon (:); and an integer value from

0 to 65535 (in hex, $0000 to $FFFF); specifying the starting PMAC memory or I/O
address to be read;

• {constant} is an integer, specified in decimal or hexadecimal, specifying the value to
be written to the specified address;

• further {constants} specify integer values to be written into subsequent consecutive
higher addresses

Remarks This command causes PMAC to write the specified {constant} value to the specified
memory word address, or if a series of {constant} values is specified, to write them to
consecutive memory locations starting at the specified address (it is essentially a memory
POKE command). The command can specify either short (24-bit) word(s) in PMAC’s X-
memory, short (24-bit) word(s) in PMAC’s Y-memory, or long (48-bit) words covering both
X and Y memory (X-word more significant). This choice is controlled by the use of the X, Y,
or L address prefix in the command, respectively.

Example WY:$C002,4194304 ; This should put 5V on DAC2 (provided I200=0 so servo
 ; does not overwrite)
WY$720,$00C000,$00C004,$00C008,$00C00C
 ; This writes the first four entries to the encoder
 ; conversion table

See Also On-line command R[H]{address}
Memory and I/O Map.

Z
Function Make commanded axis positions zero.

Scope Coordinate-system specific

Syntax Z

Remarks This command causes PMAC to re-label the current commanded axis positions for all axes in
the coordinate system as zero. It does not cause any movement; it merely re-names the
current position.

This command is simply a short way of executing {axis}=0 for all axes in the coordinate
system. PSET X0 Y0 (etc.) is the equivalent motion program command.

This does not set the motor position registers to zero; it changes motor position bias registers
to reflect the new offset between motor zero positions and axis zero positions. However, the
motor reported positions will reflect the new bias, and report positions of zero (+/- the
following error)

 PMAC 2 Software Reference

290 PMAC On-Line Command Specification

Example <CTRL-P> ... ; Ask for reported motor positions
2001 5002 3000 0 0 0 0 0 ; PMAC reports positions
Z......................... ; Zero axis positions
<CTRL-P> ; Ask for reported motor positions again
1 2 -1 0 0 0 0 0 ; PMAC responds

See Also On-line commands {axis}={constant}
Memory map registers D:$0813, D:$08D3, etc.
Suggested M-variable definitions Mx64.

PMAC 2 Software Reference

PMAC On-Line Command Specification 291

 PMAC 2 Software Reference

292 PMAC Program Command Specification

PMAC PROGRAM COMMAND SPECIFICATION
{axis}{data}[{axis}{data}...]
Function Position-Only Move Specification

Type Motion program (PROG and ROT)

Syntax {axis}{data}[{axis}{data}...]
where:
• {axis} is the character specifying which axis (X, Y, Z, A, B, C, U, V, W).
• {data} is a constant (no parentheses) or an expression (in parentheses) representing

the end position or distance.
• [{axis}{data}...] is the optional specification of simultaneous movement for

more axes.

Remarks This is the basic PMAC move specification statement. It consists of one or more
groupings of an axis label and its associated value. The value for an axis is scaled (units
determined by the axis definition statement). It represents a position if the axis is in
absolute (ABS) mode, or a distance if the axis is in incremental (INC) mode. The order
in which the axes are specified does not matter.

This command tells the axes where to move; it does not tell them how to move there.
(Other program commands and parameters define how. These must be set up ahead of
time.)

The type of motion a given command causes is dependent on the mode of motion and the
state of the system at the beginning of the move.

Example X1000
X(P1+P2)
Y(Q100+500) Z35 C(P100)
X1000 Y1000
A(P1) B(P2) C(P3)
X(Q1*SIN(Q2/Q3)) U500

See Also Axis Definition Statements (Setting Up a Coordinate System)
Motion program commands LINEAR, CIRCLEn, RAPID, SPLINE1, PVT
Motion program commands TA, TS, TM, F, ABS, INC
I-variables Ix87, Ix88, Ix89, Ix90

{axis}{data}:{data} [{axis}{data}:{data}...]
Function Position and Velocity Move Specification

Type Motion program (PROG and ROT)

Syntax {axis}{data}:{data} [{axis}{data}:{data}...]
where:
• {axis} is the character specifying which axis (X, Y, Z, A, B, C, U, V, W);
• {data} is a constant (no parentheses) or an expression (in parentheses) representing

the end position or distance;
• :{data} represents the ending velocity
• [{axis}{data}:{data}...] is the optional specification of simultaneous

movement for more axes.

PMAC 2 Software Reference

PMAC Program Command Specification 293

Remarks In the case of PVT (position, velocity, time) motion mode, both the ending position and
velocity are specified for each segment of each axis. The command consists of one or
more groupings of axes labels with two data items separated by a colon character.

The first data item for each axis is the scaled ending position or distance (depending on
whether the axis is in absolute [ABS or incremental [INC] mode. Position scaling is
determined by the axis definition statement). The second data item (after the colon) is the
ending velocity.

The velocity units are the scaled position units as established by the axis definition
statements divided by the time units as set by Ix90 for Coordinate System x. The
velocity here is a signed quantity, not just a magnitude. See the examples in the PVT
mode description of the Writing a Motion Program section.

The time for the segment is the argument for the most recently executed PVT or TA
command, rounded to the nearest millisecond.

In PVT mode, if no velocity is given for the segment, PMAC assumes an ending velocity
of zero for the segment.

Example X1000:50
Y500:-32 Z737.2:68.93
A(P1+P2):(P3) B(SIN(Q1)):0

See Also PVT Mode Moves (Writing a Motion Program)
Axis Definition Statements (Setting Up a Coordinate System)
I-variables Ix87, Ix90
Motion program commands PVT, TA

{axis}{data}^{data}[{axis}{data}^{data}...]
Function Move Until Trigger

Type Motion program

Syntax

Remarks

{axis}{data}^{data}[{axis}{data}^{data}...]
where:
• {axis} is the character specifying which axis (X, Y, Z, A, B, C, U, V, W).
• the first {data} is a constant (no parentheses) or expression (in parentheses)

representing the end position or distance in the absence of a trigger.
• the second {data} (after the ^ arrow) is a constant (no parentheses) or expression

(in parentheses) representing the distance from the trigger position.
• [{axis}{data}^{data}...] is the optional specification of simultaneous

movement for more axes.

In the RAPID move mode, this move specification permits a move-until-trigger function.
The first part of the move description for an axis (before the ^ sign) specifies where to
move in the absence of a trigger. It is a position if the axis is in absolute mode; it is a
distance if the axis is in incremental mode. In both cases the units are the scaled axis
user units. If no trigger is found before this destination is reached, the move is a standard
RAPID move.

 PMAC 2 Software Reference

294 PMAC Program Command Specification

 The second part of the move description for an axis (after the ^ sign) specifies the
distance from the trigger position to end the post-trigger move if a trigger is found. The
distance is expressed in the scaled axis user units.

Each motor assigned to an axis specified in the command, executes a separate move-
until-trigger. All the assigned motors will start together, but each can have its own
trigger condition. If a common trigger is required, the trigger signal must be wired into
all motor interfaces. Each motor can finish at a separate time. The next line in the
program will not start to execute until all motors have finished their moves. No blending
into the next move is possible.

The trigger for a motor can be either a hardware input trigger (if bit 17 of Ix03 is 0), or
the motor warning following error status bit (if bit 17 of Ix03) is 1. Bit 16 of Ix03 should
also be set to 1 in this case. If a hardware input trigger is used, Encoder/Flag I-variables
2 and 3 (e.g. I902 and I903) for the flag channel specified by Ix25 determine which
edge(s) of which flag(s) cause the trigger. If the warning following error bit is used for
torque-limited triggering, then Ix12 sets the size of the warning following error.

The speed of the move, both before the trigger and after, is set by Ix22 if I50=0 or by
Ix16 if I50=1. The acceleration is set by Ix19 to Ix21.

On the same line, some axes may be specified for normal untriggered RAPID moves that
will execute simultaneously.

If the move ends for a motor without a trigger being found, the “trigger move” status bit
(bit 7 of the second motor status word returned on a ? command) is left set after the end
of the move. If the trigger has been found, this bit is cleared to 0 at the end of the move.

Example X1000^0
X10^-0.01 Y5.43^0.05
A(P1)^(P2) B10^200 C(P3)^0 X10

See Also Move-Until-Trigger (Writing a Motion Program)
Torque-Limited Triggering (Setting Up a Motor)
RAPID-mode moves (Writing a Motion Program)

{axis}{data} [{axis}{data}...] {vector}{data} [{vector}{data}...]
Function Circular Arc Move Specification

Type Motion program (PROG and ROT)

Syntax {axis}{data} [{axis}{data}...] {vector}{data}
[{vector}{data}...]
where:
• {axis} is a character specifying which axis (X, Y, Z, A, B, C, U, V, W).
• {data} is a constant (no parentheses) or an expression (in parentheses) representing

the end position or distance.
• [{axis}{data}...] is the optional specification of simultaneous movement for

more axes.
• {vector} is a character (I, J, or K) specifying a vector component (parallel to the

X, Y, or Z axis, respectively) to the center of the arc; or the character R specifying
the magnitude of the vector.

• {data} specifies the magnitude of the vector component.
• [{vector}{data}...] is the optional specification of more vector components.

PMAC 2 Software Reference

PMAC Program Command Specification 295

Remarks For a blended circular mode move, both the move endpoint and the vector to the arc
center are specified. The endpoint is specified just as in a LINEAR mode move, either
by position (referenced to the coordinate system origin), or distance (referenced to the
starting position).
The center of the arc for a circular move must also be specified in the move command.
This is usually done by defining the vector to the center. This vector can either be
referenced to the starting point of the move (incremental radial vector mode – the default,
or if an INC (R) command has been given), or it can be referenced to the coordinate
system origin (absolute radial vector mode – if an ABS (R) command has been given).
Alternatively, just the magnitude of the vector to the center can be specified with
R{data} on the command line. If this is the case, PMAC will calculate the location of
the center itself. If the value specified by {data} is positive, PMAC will compute the
short arc path to the destination (<= 180o); if it is negative, PMAC will compute the long
arc path (>= 180o). It is not possible to specify a full circle in one command with the R
vector specifier.
The plane for the circular arc must have been defined by the NORMAL command (the
default – NORMAL K-1 – defines the XY plane). This command can only define planes
in XYZ-space, which means that only the X, Y, and Z axes can be used for circular
interpolation. Other axes specified in the same move command will be interpolated
linearly to finish in the same time.
The direction of the arc to the destination point – clockwise or counterclockwise – is
controlled by whether the card is in CIRCLE1 (clockwise) or CIRCLE2
(counterclockwise) mode. The sense of clockwise in the plane is determined by the
direction of the NORMAL vector to the plane.
If the destination point is a different distance from the center point than is the starting
point, the radius is changed smoothly through the course of the move, creating a spiral.
This is useful in compensating for any roundoff errors in the specifications. However, if
the distance from either the starting point or the destination point to the center point is
zero, an error condition will be generated and the program will stop.
If the vector from the starting point to the center point does not lie in the circular
interpolation plane, the projection of that vector into the plane is used. If the destination
point does not lie in the same circular interpolation plane as the starting point, a helical
move is done to the destination point.
If the destination point (or its projection into the circular interpolation plane containing
the starting point) is the same as the starting point, a full 360o arc is made in the specified
direction (provided that IJK vector specification is used). In this case, only the vector
needs to be specified in the move command, because for any axis whose destination is
not specified, the destination point is automatically taken to be the same as the starting
point.
If no vector, and no radial magnitude is specified in the move command, a linear move
will be done to the destination point, even if the program is in circular mode.

Note:
PMAC performs arc moves by segmenting the arc and performing the
best cubic fit on each segment. I-variable I13 determines the time for
each segment. I13 must be set greater than zero to put PMAC into this
segmentation mode in order for arc moves to be done. If I13 is set to
zero, circular arc moves will be done in linear fashion.

 PMAC 2 Software Reference

296 PMAC Program Command Specification

Example X5000 Y3000 I1000 J1000
X(P101) Z(P102) I(P201) K(P202)
X10 I5
X10 Y20 C5 I5 J5
Y5 Z3 R2
J10 ; Specifies a full circle of 10 unit radius

See Also Circular Moves (Writing a Motion Program)
I-variables I13, Ix87, Ix88, Ix89, Ix90
Program commands NORMAL, ABS, INC, CIRCLE1, CIRCLE2, TA, TS, TM, F

A{data}
Function A-Axis Move
Type Motion program (PROG or ROT)
Syntax A{data}

where:
• {data} is a floating-point constant or expression representing the position or

distance in user units for the U-axis.
Remarks This command causes a move of the A-axis. See {axis}{data} descriptions above.

Example A10
A(P23)
A25 B10 Z35
A(20*SIN(Q5))

See Also Program commands {axis}{data}, B, C, U, V, W, X, Y, Z, CALL, READ

ABS
Function Absolute Move Mode

Type Motion program (PROG and ROT)

Syntax ABS [({axis}[,{axis}...])]
where:
• {axis} is a character (X,Y,Z,A,B,C,U,V,W) representing the axis to be specified,

or the character R to specify radial vector mode.
Note:

No spaces are permitted in this command.
Remarks The ABS command without arguments causes all subsequent positions in motion

commands for all axes in the coordinate system running the motion program to be treated
as absolute positions. This is known as absolute mode, and it is the power-on default
condition.
An ABS statement with arguments causes the specified axes in the coordinate system
running the program to be in absolute mode, and all others remain the same.
If R is specified as one of the ‘axes’, the I, J, and K terms of the circular move radius
vector specification will be specified in absolute form (i.e., as a vector from the origin,
not from the move start point). An ABS command without any arguments does not affect
this vector specification. The default radial vector specification is incremental.
If no motion program buffer is open when this command is sent to PMAC, it will be
executed as an on-line coordinate system command.

Example ABS(X,Y)
ABS
ABS(V)
ABS(R)

PMAC 2 Software Reference

PMAC Program Command Specification 297

See Also Circular Moves (Writing a Motion Program)
On-line commands ABS, INC.
Program commands {axis}{data}, {axis}{data}{vector}{data}, INC.

ADDRESS
Function Motor/Coordinate System Modal Addressing

Type PLC programs 1 to 31 only

Syntax ADDRESS [#{constant}][&{constant}]
ADR [#{constant}][&{constant}]
where:
• {constant} is an integer constant from 1 to 8 representing the motor (#) number

or the coordinate system (&) number to be addressed.
Remarks This statement, when executed, sets the motor and/or coordinate system that will be

addressed by this particular PLC program when it commands motor- or coordinate-
system-specific commands with no addressing in those commands. The addressed
coordinate system also controls which set of Q-variables is accessed, even for ATAN2
functions which automatically use Q0.
This command does not affect host addressing, the addressing of other PLC programs, or
the selection of the control panel inputs. The addressing stays in effect until another
ADDRESS statement supersedes it. Default addressing at power-on/reset is #1 and &1.
In motion programs, there is no modal addressing for COMMAND statements; each
COMMAND statement must contain the motor or coordinate-system specifier within its
quotation marks. A motion program automatically operates on the Q-variables of the
coordinate system executing the program.

Example ADDRESS &4
ADR #2
ADDRESS &2#2
ADR#1 ; Modally address Motor 1
CMD”J+” ; This will start Motor 1 jogging
CMD”#2J+” ; This will start Motor 2 jogging
CMD”J/” ; This will stop Motor 1

See Also Addressing Modes (Talking To PMAC)
Q-Variables (Program Computational Features)
Program commands COMMAND, Q{constant}={expression}

ADIS{constant}
Function Absolute displacement of X, Y, and Z axes

Type Motion program (PROG and ROT)

Syntax ADIS{constant}
where:
• {constant} is an integer constant representing the number of the first of three

consecutive Q-variables to be used in the displacement vector.
Remarks This command loads the currently selected (with TSEL) transformation matrix for the

coordinate system with offset values contained in the three Q-variables starting with the
specified one. This has the effect of renaming the current commanded X, Y, and Z axis
positions (from the latest programmed move) to the values of these variables
(X=Q{data}, Y=Q({data}+1), Z=Q({data}+2)).This command does not cause any
movement of any axes; it simply renames the present positions.

 PMAC 2 Software Reference

298 PMAC Program Command Specification

This command is almost equivalent to a PSET X(Q{data}) Y(Q({data}+1))
Z(Q({data}+2)) command, except that ADIS does not force a stop between moves
as PSET does.

Example Q20=7.5
Q21=12.5
Q22=25
ADIS 20 ; This makes the current X position 7.5, Y 12.5, Z25

See Also Axis Matrix Transformations (Writing a Motion Program)
On-line command DEFINE TBUF
Program commands TSEL, AROT, IDIS, IROT, TINIT

AND ({condition})
Function Conditional AND

Type PLC program only

Syntax AND ({condition})
where:
• {condition} is a simple or compound condition

Remarks This statement forms part of an extended compound IF or WHILE condition to be
evaluated in a PLC program. It must immediately follow an IF, WHILE, AND, or OR
statement This AND is a Boolean operator logically combining the full conditions on its
line and the program line immediately above. It takes lower precedence than AND or OR
operators within a compound condition on a single line (the parentheses cause those to be
executed first), but it takes higher precedence than an OR operator that starts a line.

In motion programs, there can be compound conditions within one program line, but not
across multiple program lines, so this statement is not permitted in motion programs.

Note:
This logical AND command, which acts on condition should not be
confused with the bit-by-bit & (ampersand) operator that acts on values.

Example IF (M11=1) ; This branch will start a motion program running
AND (M12=1) ; on a cycle where inputs M11 and M12 are 1 and
AND (M21=0) ; M21 is still zero. Note that M21 is immediately
CMD”R” ; set to one so the run command will not be given
M21=1 ; again in the next cycle.
ENDIF

See Also Writing a PLC Program
Conditions (Program Computational Features)
Program Commands IF, WHILE, OR

AROT{constant}
Function Absolute rotation/scaling of X, Y, and Z axes

Type Motion program (PROG and ROT)

Syntax AROT{constant}
where:
• {constant} is an integer representing the number of the first of nine consecutive

Q-variables to be used in the rotation/scaling matrix.

PMAC 2 Software Reference

PMAC Program Command Specification 299

Remarks This command loads the currently selected (with TSEL) transformation matrix for the
coordinate system with rotation/scaling values contained in the nine Q-variables starting
with the specified one. This has the effect of renaming the current commanded X, Y, and
Z axis positions (from the latest programmed move) by multiplying the XYZ vector by
this matrix.

The rotation and scaling is done relative to the “base” XYZ coordinate system, defined
by the axis definition statements. The math performed is:

[Xrot Yrot Zrot]T = [Rot Matrix] [Xbase Ybase Zbase]T

This command does not cause any movement of any axes. It simply renames the present
positions.

Note:
When using this command to scale the coordinate system, use the I, J, K
vector specification for circle commands. Do not use the radius center
specification. The radius does not get scaled.

Example Create a 3x3 matrix to rotate the XY plane by 30 degrees about the origin
Q40=COS(30) Q41=SIN(30) Q42=0
Q43=-SIN(30) Q44=COS(30) Q45=0
Q46=0 Q47=0 Q48=1
AROT 40 ; Implement the change
Create a 3x3 matrix to scale the XYZ space by a factor of 3
Q50=3 Q51=0 Q52=0
Q53=0 Q54=3 Q55=0
Q56=0 Q57=0 Q58=3
AROT 50 ; Implement the change

See Also Axis Matrix Transformations (Writing a Motion Program)
On-line command DEFINE TBUF
Program commands TSEL, ADIS, IDIS, IROT, TINIT

B{data}
Function B-Axis Move

Type Motion program (PROG and ROT)

Syntax B{data}
where:
• {data} is a floating-point constant or expression representing the position or

distance in user units for the U-axis.
Remarks This command causes a move of the B-axis. (See {axis}{data} description, above.)
See Also Program commands {axis}{data}, A, C, U, V, W, X, Y, Z, CALL,

READ

BLOCKSTART
Function Mark Start of Stepping Block

Type Motion program (PROG and ROT)

Syntax BLOCKSTART
BSTART

 PMAC 2 Software Reference

300 PMAC Program Command Specification

Remarks This statement allows for multiple moves to be done on a single step command.
Execution on a step command will proceed until the next BLOCKSTOP statement in the
program (without BLOCKSTART, only a single servo command is executed on a step
command). Also, if Ix92=1 (move blending disabled), all moves between BLOCKSTART
and BLOCKSTOP will be blended together. This does not affect how a program is
executed from a run command if Ix92=0.

This structure is particularly useful for executing a single sequence of PVT mode moves,
because the individual segments do not end at zero velocity, making normal stepping
very difficult.

Example For the program segment:
BLOCKSTART
INC
X10:100
X20:100
X20:100
X10:0
BLOCKSTOP

All four move segments will be executed on a single S command.

See Also I-variable Ix92
On-line commands <CONTROL-S>, R, S.
Program commands BLOCKSTOP, STOP

BLOCKSTOP
Function Mark End of Stepping Block

Type Motion program (PROG and ROT)

Syntax BLOCKSTOP
BSTOP

Remarks This statement marks the end of the block of statements, begun with a BLOCKSTART, to
be done on a single ‘step’ command, or to be blended together even if Ix92=1 (move
blending disabled). This does not affect how a program is executed from a ‘run’
command if Ix92=1.

Example See example under BLOCKSTART above.

See Also I-variable Ix92
On-line commands <CONTROL-S>, R, S
Program commands BLOCKSTART, STOP

C{data}
Function C-Axis Move

Type Motion program (PROG and ROT)

Syntax C{data}
where:
• {data} is a floating-point constant or expression representing the position or

distance in user units for the U-axis.

Remarks This command causes a move of the C-axis. (See {axis}{data} description above.)

See Also Program commands {axis}{data}, A, B, U, V, W, X, Y, Z, CALL, READ

PMAC 2 Software Reference

PMAC Program Command Specification 301

CALL
Function Jump to Subprogram With Return

Type Motion program (PROG and ROT)

Syntax CALL{data} [{letter}{data}...]
where:
• the first {data} is a floating-point constant or expression from 1.00000 to

32767.99999, with the integer part representing the motion program number to be
called, and the fractional part representing the line label (N or O) within the program
to be called (the line label number is equal to the fractional part multiplied by
100,000; every motion program has an implicit N0 at the top).

• {letter} is any letter of the English alphabet, except N or O, representing the
variable into which the value following it will be placed (Q101 to Q126 for A to Z
respectively).

• following {data} is a floating-point constant or expression representing the value
to be put into the variable.

Remarks This command allows the program to execute a subprogram and then return execution to
the next line in the program. A subprogram is entered into PMAC the same as a
program, and is labeled as PROGn (so one program can call another as a subprogram).
The number n of the PROG heading is the one to which the value after CALL refers:
CALL7 would execute PROG7 and return.
The value immediately following CALL can take fractional values. If there is no
fractional component, the called program starts at the beginning. If there is a fractional
component, the called program is entered at a line label specified by the fractional
component (if this label does not exist, PMAC will generate an error and stop execution).
PMAC works with five fractional digits to specify the line label; if fewer are used, it
automatically fills out the rest with zeros. For instance, CALL 35.1 is interpreted as
CALL 35.10000, which causes a jump to label N10000 of program 35. CALL
47.123 causes a jump to label N12300 of program 47.
If letters and data (e.g. X1000) follow the CALL{data}, these can be arguments to be
passed to the subprogram. If arguments are to be passed, the first line executed in the
subroutine should be a READ statement. This statement will take the values associated
with the specified letters and place them in the appropriate Q-variable. For instance, the
data following A is placed in variable Q101 for the coordinate system executing the
program; that following B is placed in Q102; and so on, until the data following Z is
placed in Q126. The subprogram can then use these variables.
If the subprogram calls another subprogram with arguments, the same Q-variables are
used. Refer to READ for more details.
If there is no READ statement in the subroutine, or if not all the letter values in the CALL
line are read (the READ statement stops as soon as it sees a letter in the calling line that is
not in its list of letters to read), the remaining letter commands are executed upon return
from the subroutine. For example, G01 X10 Y10 is equivalent to a CALL 1000.01
X10 Y10. To implement the normal function for G01 (linear move mode), there would
be the following subroutine in PROG 1000:
 N1000 LINEAR RETURN

 PMAC 2 Software Reference

302 PMAC Program Command Specification

Upon the return, X10 Y10 would be executed as a move according to the move mode in
force, which is LINEAR.

If the specified program and/or line label do not exist, the CALL command is ignored,
and the program continues as if it were not there. No error is generated.

Example CALL500 ; to Prog 500 at the top (N0)
CALL500.1 ; to Prog 500 label N10000
CALL500.12 ; to Prog 500 label N12000
CALL500.123 ; to Prog 500 label N12300
CALL500.1234 ; to Prog 500 label N12340
CALL500.12345 ; to Prog 500 label N12345
CALL700 D10 E20 ; to Prog 700 passing D and E

See Also On-line command B{constant}
Program commands GOTO, GOSUB, READ, RETURN, G{data}, M{data}, T{data},
D{data}, N{constant}, O{constant}, PRELUDE

CC0
Function Turn Off Cutter Radius Compensation

Type Motion program (PROG and ROT)

Syntax CC0

Remarks This turns off the cutter radius compensation mode, reducing it gradually through the
next move. This is equivalent to the G40 command of the machine-tool standard RS-274
language.

Example CCR0.5 ; 1/2 unit cutter radius
CC1 ; Cutter compensation on to the left
X10 Y10 ; Compensation introduced during this move
X10 Y20
X20 Y20
X20 Y10
X10 Y10
CC0 ; Cutter compensation off
X0 Y0 ; Compensation eliminated during this move
OPEN PROG 1000 ; G-Code Subprogram
 ...
N40000 CC0 RETURN ; To implement G40 directly in PMAC

See Also Cutter (Tool) Radius Compensation
Program commands CC1, CC2, CCR{data}

CC1
Function Turn On Cutter Radius Compensation Left

Type Motion program (PROG and ROT)

Syntax CC1

Remarks This turns on the cutter radius compensation mode, introducing the compensation
gradually through the next move. The cutter is offset to the left of the programmed tool
path, looking in the direction of cutter movement. The plane of the compensation is
determined by the NORMAL command. This is equivalent to the G41Error!
Bookmark not defined. command of the machine-tool standard RS-274

PMAC 2 Software Reference

PMAC Program Command Specification 303

language.

Example CCR0.25 ; 1/4 unit cutter radius
CC1 ; Cutter compensation on to the left
X10 Y10 ; Compensation introduced during this move
X10 Y20
X20 Y20
X20 Y10
X10 Y10
CC0 ; Cutter compensation off
X0 Y0 ; Compensation eliminated during this move
OPEN PROG 1000 ; G-Code Subprogram
 ...
N41000 CC1 RETURN ; To implement G41 directly in PMAC

See Also Cutter (Tool) Radius Compensation
Program commands CC2, CC0, CCR{data}, NORMAL

CC2
Function Turn On Cutter Radius Compensation Right
Type Motion program (PROG and ROT)
Syntax CC2
Remarks This turns on the cutter radius compensation mode, introducing the compensation

gradually through the next move. The cutter is offset to the right of the programmed tool
path, looking in the direction of cutter movement. The plane of the compensation is
determined by the NORMAL command. This is equivalent to the G42 command of the
machine-tool standard RS-274 language.

Example CCR1.5 ; 1-1/2 unit cutter radius
CC2 ; Cutter compensation on to the right
X10 Y10 ; Compensation introduced during this move
X10 Y20
X20 Y20
X20 Y10
X10 Y10
CC0 ; Cutter compensation off
X0 Y0 ; Compensation eliminated during this move
OPEN PROG 1000 ; G-Code Subprogram
 ...

N42000 CC2 RETURN ; To implement G42 directly in PMAC
See Also Tool Radius Compensation

Program commands CC1, CC0, CCR, NORMAL

CCR{data}
Function Set Cutter Compensation Radius
Type Motion program (PROG and ROT)
Syntax CCR{data}

where:
• {data} represents the cutter compensation radius to be used, in user length units.

Remarks This sets the radius for cutter compensation (when on) in user units, as defined by the
axis definition statements for the X, Y, and Z axes for the coordinate system. This
function is often part of the D tool data used in the machine-tool standard RS-274 (G)

 PMAC 2 Software Reference

304 PMAC Program Command Specification

code.
See Also Program commands CC1, CC2, CC0, D{data}, NORMAL

CIRCLE1
Function Set Blended Clockwise Circular Move Mode

Type Motion program (PROG and ROT)

Syntax CIRCLE1
CIR1

Remarks This command puts the program into clockwise circular move mode. The plane for the
circular interpolation is defined by the most recent NORMAL command, which has also
defined the sense of clockwise and counterclockwise in the plane.

The program is taken out of this circular move mode by another move mode command:
the other CIRCLE mode, LINEAR, PVT, RAPID, etc. Any circular move command
must have either an R or an IJK vector specification. Otherwise it will be performed as a
linear move even when in CIRCLE mode.

Note:
PMAC must be in move segmentation mode (I13>0) in order to perform
circular interpolation. If I13=0 (no move segmentation), the moves will
be linearly interpolated.

Example LINEAR ; Linear interpolation mode
X10Y10 F2 ; Linear move
CIRCLE1 ; Clockwise circular interpolation mode
X20 Y20 I10 ; Arc of 10-unit radius
X25 Y15 J-5 ; Arc of 5-unit radius
LINEAR ; Go back to linear mode
X25 Y5 ; Linear move

See Also Circular Moves (Writing a Motion Program)
I-variable I13
Program commands NORMAL, CIRCLE2, LINEAR, PVT, RAPID, SPLINE1,
{axis}{data}{vector}{data}

CIRCLE2
Function Set Blended Counterclockwise Circular Move Mode
Type Motion program (PROG and ROT)
Syntax CIRCLE2

CIR2
Remarks The CIRCLE2 command puts the program into counterclockwise circular move mode.

The plane for the circular interpolation is defined by the most recent NORMAL command,
which has also defined the sense of clockwise and counterclockwise in the plane.

The program is taken out of this circular move mode by another move mode command:
the other CIRCLE mode, LINEAR, PVT, RAPID, etc. Any circular move command
must have either an R or an IJK vector specification. Otherwise it will be performed as a
linear move even when in CIRCLE mode.

Note:
PMAC must be in move segmentation mode (I13>0) in order to perform
circular interpolation. If I13=0 (no move segmentation), the moves will

PMAC 2 Software Reference

PMAC Program Command Specification 305

be linearly interpolated.

Example

LINEAR ; Linear interpolation mode
X10Y0 F2 ; Linear move
CIRCLE2 ; Counterclockwise circular interpolation mode
X20 Y10 J10 ; Arc of 10-unit radius
X15 Y15 I-5 ; Arc of 5-unit radius
CIRCLE1 ; Clockwise circle mode
X5 Y25 J10 ; Arc move of 10-unit radius

See Also Circular Moves (Writing a Motion Program)
I-variable I13
Program commands NORMAL, CIRCLE1, LINEAR, PVT, RAPID, SPLINE1,
{axis}{data}{vector}{data}

COMMAND "{command}"
Function Program Command Issuance

Type Motion program (PROG and ROT); PLC program

Syntax COMMAND "{command}"
CMD "{command}"

Remarks This statement causes the program to issue a command to PMAC as if it came from the
host (except for addressing modes). If there is a motor- or coordinate-system-specifier
(#n or &n) within the quoted string, a motor- or coordinate-system-specific command
will be directed to that motor or coordinate system. If there is no specifier, a motor- or
coordinate-system-specific command will be directed to the first motor or coordinate
system. Any specifier within a COMMAND statement is not modal; it does not affect the
host addressing specifications or the modal addressing of any program, including its own.
If I62=0, PMAC automatically issues a carriage-return <CR> character at the end of any
data response to the command. If I62=1, PMAC does not issue a <CR> character at the
end of the data response; a SEND^M must be used to issue a <CR> in this case.
Each PLC program has its own addressing mode for both motors and coordinate systems,
independent of each other and independent of the host addressing modes. These are
controlled by the PLC program ADDRESS command. This modal addressing affects
commands issued from within a PLC program that do not have motor or coordinate-
system specifiers. At power-up/reset, all PLC programs are addressing Motor 1 and
C.S.1.
There is no modal ADDRESS command in motion programs. Any motor-specific or
coordinate-system-specific command issued from within a motion program without a
specifier is automatically addressed to Motor 1 or C.S.1, respectively.
Commands issued from within a program are placed in the command queue, to be parsed
and acted upon at the appropriate time by PMAC’s command interpreter, which operates
in background, between other background tasks. If issued from a motion program, the
command will not be interpreted before the next move or dwell command in the motion
program is calculated. If issued from a PLC program, the command will not be
interpreted before the end of the current scan of the PLC. This delay can make the action
appear to execute out of sequence.
Because of the queuing of commands and the fact that command interpretation is a lower
priority than command issuing, it is possible to overflow the queue. If there is no room

 PMAC 2 Software Reference

306 PMAC Program Command Specification

for a new command, program execution is temporarily halted until the new command can
be placed on the queue.

Also, commands that generate a response to the host (including errors if I6 is not equal to
2) potentially can fill up the response queue if there is no host or the host is not prepared
to read the responses. This will temporarily halt program execution until the response
queue is emptied. In standalone applications, it is a good idea to set I1 to 1, disabling the
serial handshake, so any responses can be sent out the serial port (the default response
port) at any time, even if there is no host to receive it.

In a PLC program, it is a good idea to have at least one of the conditions that caused the
command issuance to occur set false immediately. This will prevent the same command
from being issued again on succeeding scans of the PLC, overflowing the command
and/or response queues.

Typically in a motion program, the time between moves prevents this overflow unless
there are a lot of commands and the moves take a very short time.

PMAC will not issue an acknowledging character (<ACK> or <LF>) to a valid command
issued from a program. It will issue a <BELL> character for an invalid command issued
from a program unless I6 is set to 2. It is a good idea to have I6 not set to 2 in early
development so you will know when PMAC has rejected such a command. Setting I6 to
2 in the actual application can prevent program hang up from a full response queue, or
from disturbing the normal host communications protocol.

If PMAC variable I64 is set to 1, any response sent to the host as a result of an internal
COMMAND statement is preceded by a <CTRL-B> character, making it easier for the host
computer to tell that this is an unsolicited response.

Many otherwise valid commands will be rejected when issued from a motion program.
For instance, you cannot jog any motor in the coordinate system executing the program,
because all these motors are considered to be running in the program, even if the program
is not requesting a move of the motors at that time.

When issuing commands from a program, be sure to include all the necessary syntax
(motor and/or coordinate system specifiers) in the command statement or use the
ADDRESS command. For example, use CMD"#4HM" and CMD"&1A" instead of
CMD"HM" and CMD"A". Otherwise, motor and coordinate system commands will be
sent to the most recently addressed motor and coordinate system.

Example COMMAND"#1J+"
CMD"#4HM"
CMD"&1B5R"
CMD"P1"
47.5
ADDRESS#3
COMMAND"J-"
IF(M40=1 AND M41=1)
 CMD"&4R"
 M41=0
ENDIF

See Also Addressing Modes, On-Line Commands (Talking To PMAC)
I-variables I1, I3, I6.
Program commands ADDRESS, COMMAND^{letter}
Writing A PLC Program

PMAC 2 Software Reference

PMAC Program Command Specification 307

COMMAND^{letter}
Function Program Control-Character Command Issuance

Type Motion program (PROG or ROT), PLC program

Syntax COMMAND^{letter}
CMD^{letter}
where:
• {letter} is a letter character from A to Z (upper or lowercase) representing the

corresponding control character.

Remarks This statement causes the motion program to issue a control-character command as if it
came from the host. All control-character commands are global, so there are no
addressing concerns.

Warning:
Do not put the up-arrow character and the letter in quotes (do not use
COMMAND"^A") or PMAC will attempt to issue a command with the
two non-control characters ^ and A for this example, instead of the
control character.

Commands issued from within a program are placed in the command queue, to be parsed
and acted upon at the appropriate time by PMAC’s command interpreter, which operates
in background, between other background tasks. If issued from a motion program, the
command will not be interpreted before the next move or dwell command in the motion
program is calculated. If issued from a PLC program, the command will not be
interpreted before the end of the current scan of the PLC. This delay can make the action
appear to execute out of sequence.

Because of the queuing of commands and the fact that command interpretation is a lower
priority than command issuing, it is possible to overflow the queue. If there is no room
for a new command, program execution is temporarily halted until the new command can
be placed on the queue.

Also, commands that generate a response to the host (including errors if I6 is not equal to
2) can fill up the response queue if there is no host or the host is not prepared to read the
responses. This will temporarily halt program execution until the response queue is
emptied. In standalone applications, it is a good idea to set I1 to 1, disabling the serial
handshake, so any responses can be sent out the serial port (the default response port) at
any time, even if there is no host to receive it.

In a PLC program, it is a good idea to have at least one of the conditions that caused the
command issuance to occur set false immediately. This will prevent the same command
from being issued again on succeeding scans of the PLC, overflowing the command
and/or response queues. Typically in a motion program, the time between moves
prevents this overflow unless there are a lot of commands and the moves take a very
short time.
PMAC will not issue an acknowledging character (<ACK> or <LF>) to a valid command
issued from a program. It will issue a <BELL> character for an invalid command issued
from a program unless I6 is set to 2. It is a good idea to have I6 not set to 2 in early
development so you will know when PMAC has rejected such a command. Setting I6 to
2 in the actual application can prevent program hangup from a full response queue, or

 PMAC 2 Software Reference

308 PMAC Program Command Specification

from disturbing the normal host communications protocol.

If PMAC variable I64 is set to 1, any response sent to the host as a result of an internal
COMMAND statement is preceded by a <CTRL-B> character, making it easier for the host
computer to tell that this is an unsolicited response.

Example CMD^D would disable all PLC programs (equivalent to issuing a <CONTROL-D> from the host).
CMD^K would kill (disable) all motors on PMAC.
CMD^A would stop all programs and moves on PMAC, also closing any loops that were open.

See Also I-variables I1, I6
On-line commands <CONTROL-A> to <CONTROL-Z>
Program command COMMAND”{command}”

D{data}
Function Tool Data (D-Code)
Type Motion program
Syntax D{data}

where:
• {data} is a floating-point constant or expression in the range 0.000 to 999.999,

specifying the program number and the line label to jump to
Remarks PMAC interprets this statement as a CALL 10n3.({data’}*1000) command,

where n is the hundreds’ digit of {data}, and {data’} is the value of {data}
without the hundred’s digit (modulo 100 in mathematical terms). That is, this statement
causes a jump (with return) to motion program 10n3, and the specified line label.
(Programs 10n3 are usually used to implement the tool data operations as the system
designer sees fit.) The value of {data’} can be from 0.0 to 99.999, corresponding to
line labels N0 to N99999.
If the specified program and/or line label do not exist, the D command is ignored, and the
program continues as if it were not there. No error is generated.
This structure permits the implementation of customizable D-code routines for machine-
tool style applications by the writing of subroutines in motion programs 10n3.
Arguments can be passed to these subroutines by following the D-code with one or more
sets of {letter}{data}, as in CALL and READ statements.
Most users will have D-codes only in the range 0-99, which permits the use of PROG
1003 only, and allows {data’} to equal {data} for direct specification of the line
label.

Example D01 jumps to N1000 of PROG 1003
D12 jumps to N12000 of PROG 1003
D115 jumps to N15000 of PROG 1013

See Also Program commands CALL{data}, G{data}, M{data}, T{data}, RETURN

DELAY{data}
Function Delay for Specified Time

Type Motion program

Syntax DELAY{data}
DLY{data}
where:
• {data} is a floating-point constant or expression, specifying the delay time in

PMAC 2 Software Reference

PMAC Program Command Specification 309

milliseconds.

Remarks This command causes PMAC to keep the command positions of all axes in the
coordinate system constant (no movement) for the time specified in {data}.
There are three differences between DELAY and DWELL. First, if DELAY comes after a
blended move, the TA deceleration time from the move occurs within the DELAY time,
not before it. Second, the actual time for DELAY does varies with a changing time base
(current %value, from whatever source), whereas DWELL always uses the fixed time base
(%100). Third, PMAC precomputes upcoming moves (and the lines preceding them)
during a DELAY, but it does not do so during a DWELL.
A DELAY command is equivalent to a zero-distance move of the time specified in
milliseconds. As for a move, if the specified DELAY time is less than the acceleration
time currently in force (TA or 2*TS), the delay will be for the acceleration time, not the
specified DELAY time.

Example DELAY750
DELAY(Q1+100)

See Also Time-Base Control (Synchronizing PMAC to External Events)
I-variables I10, Ix87, Ix88
On-line command %{constant}
Program commands DWELL, TA, TS

DISABLE PLC
Function Disable PLC Program(s)

Type Motion program (PROG or ROT), PLC program

Syntax DISABLE PLC {constant}[,{constant}...]
DIS PLC {constant}[,{constant}...]
DISABLE PLC {constant}[..{constant}]
DIS PLC {constant}[..{constant}]
where:
• {constant} is an integer from 0 to 31, representing the program number.

Remarks This command causes PMAC to disable (stop executing) the specified uncompiled PLC
program or programs. Execution can subsequently be resumed at the top of the program
with the ENABLE PLC command. If it is desired to restart execution at the stopped
point, execution should be stopped with the PAUSE PLC command, and restarted with
the RESUME PLC command.
Execution of a PLC program can only be disabled at the end of a scan, which is either the
end of the program, or after executing an ENDWHILE statement in the program. (A PLC
program can be paused in the middle of a scan, however.)
PLC programs are specified by number, and may be specified in a command singularly,
in a list (separated by commas), or in a range of consecutively numbered programs.
If no buffer is open when this command is sent to PMAC, it will be executed
immediately as an on-line command.

Example DISABLE PLC 1
DISABLE PLC 4,5
DISABLE PLC 7..20
DIS PLC 3,8,11
DIS PLC 0..31

 PMAC 2 Software Reference

310 PMAC Program Command Specification

See Also

I-variable I5
On-line commands ENABLE PLC, DISABLE PLC, ENABLE PLCC, DISABLE
PLCC, <CONTROL-D>
Program command ENABLE PLC, DISABLE PLCC, ENABLE PLCC

DISABLE PLCC {constant}[,{constant}...]
Function Disable Compiled PLC Programs

Type Motion program (PROG or ROT), PLC program (uncompiled or compiled), except for
PLC0 and PLCC0

Syntax DISABLE PLCC {constant}[,{constant}...]
DISABLE PLCC {constant}[..{constant}]
DIS PLCC {constant}[,{constant}...]
DIS PLCC {constant}[..{constant}]
where:
• {constant} is an integer from 0 to 31 representing the compiled PLC number

Remarks
Warning:

This command should not be used in a foreground PLC either
uncompiled PLC 0 or compiled PLCC 0 as its operation cannot be
guaranteed in these programs.

This command disables the operation of the specified compiled PLC (PLCC) programs.
The programs are specified by number, and can be used singly, in a list separated by
commas, or in a continuous range.
I-variable I5 is a separate master control of PLC program operation. Think of the two
bits of I5 as two master circuit breakers for a house, and the individual PLC and PLCC
enable/disable bits as separate light switches within the house. Both the master breaker
and the switch must be on for the PLC to operate. The breakers and the switches can be
operated independently without affecting the setting of the others.

Example DISABLE PLCC 1
DISABLE PLCC 4,5
DISABLE PLCC 7..20
DIS PLCC 3,8,11
DIS PLC 0..31

See Also I-variable I5
On-line commands ENABLE PLC, DISABLE PLC, ENABLE PLCC, DISABLE
PLCC, <CONTROL-D>
Program command ENABLE PLC, DISABLE PLC, ENABLE PLCC

DISPLAY [{constant}] "{message}"
Function Display Text to Display Port
Type Motion program (PROG and ROT), PLC program
Syntax DISPLAY [{constant}] "{message}"

DISP [{constant}] "{message}"
where:
• {constant} is an integer value between 0 and 79 specifying the starting character

number on the display; if no value is specified, 0 is used.

PMAC 2 Software Reference

PMAC Program Command Specification 311

• {message} is the ASCII text string to be displayed.

Remarks This command causes PMAC to send the string contained in {message} to the display
port (J1 connector) for the liquid-crystal or vacuum-fluorescent display (Accessory 12 or
equivalent).
The optional constant value specifies the starting point for the string on the display. It has
a range of 0 to 79, where 0 is upper left, 39 is upper right, 40 is lower left, and 79 is
lower right.

Example DISPLAY 10"Hello World"
DISP "VALUE OF P1 IS"
DISP 15, 8.3, P1

See Also Display Port (Connecting PMAC to the Machine);
Accessory 12 (Basic Specifications)
Program commands DISPLAY {variable}, SEND"{message}"

DISPLAY ... {variable}
Function Formatted Display of Variable Value

Type Motion program (PROG and ROT), PLC program

Syntax DISPLAY {constant}, {constant}.{constant}, {variable}
DISP {constant}, {constant}.{constant}, {variable}
where:
• the first {constant} is an integer from 0 to 79 representing the starting location

(character number) on the display.
• the second {constant} is an integer from 2 to 16 representing the total number of

characters to be used to display the value (integer digits, decimal point, and fractional
digits).

• the third {constant} is an integer from 0 to 9 (and at least two less than the
second {constant}) representing the number of fractional digits to be displayed.

• {variable} is the name of the variable to be displayed.

Remarks This command causes PMAC to send a formatted string containing the value of the
specified variable to the display port. The value of any I, P, Q, or M variable may be
displayed with this command.

The first constant value specifies the starting point for the string on the display. It has a
range of 0 to 79, where 0 is upper left, 39 is upper right, 40 is lower left, and 79 is lower
right. The second constant specifies the number of characters to be used in displaying
the value. It has a range of 2 to 16. The third constant specifies the number of places to
the right of the decimal point. It has a range of 0 to 9, and must be at least 2 less than the
number of characters. The last thing specified in the statement is the name of the
variable – I, P, Q, or M.

Example DISPLAY 0, 8.0, P50
DISPLAY 24, 2.0, M1
DISPLAY 40, 12.4, Q100

See Also Display Port (Connecting PMAC to the Machine);
Accessory 12 (Basic Specifications)
Program commands DISPLAY"{message}", COMMAND"{command}"

 PMAC 2 Software Reference

312 PMAC Program Command Specification

DWELL
Function Dwell for Specified Time

Type Motion program (PROG and ROT)

Syntax DWELL{data}
DWE{data}
where:
• {data} is a non-negative floating point constant or expression representing the

dwell time in milliseconds.

Remarks This command causes the card to keep the commanded positions of all axes in the
coordinate system constant for the time specified in {data}.

There are three differences between DWELL and the similar DELAY command. First, if
the previous servo command was a blended move, there will be a TA time deceleration to
a stop before the dwell time starts. Second, DWELL is not sensitive to a varying time
base – it always operates in ‘real time’ (as defined by I10). Third, PMAC does not pre-
compute upcoming moves (and the program lines before them during the DWELL; it waits
until after it is done to start further calculations, which it performs in the time specified
by I11 or I12.

Use of any DWELL command, even a DWELL0, while in external time base will cause a
loss of synchronicity with the master signal.

Example DWELL250
DWELL(P1+P2)
DWE0

See Also Dwell and Delay (Writing a Motion Program)
I-variables I10, I11, I12.
Program command DELAY

ELSE
Function Start False Condition Branch

Type Motion program (PROG only), PLC program

Syntax ELSE (Motion or PLC Program)
ELSE {action} (Motion Program only)

Remarks Warning:
With nested IF branches, be careful to match the ELSE statements to the
proper IF statement. In a motion program, it is possible to have a
single-line IF statement (IF({condition}) {action}). An
ELSE statement on the next program line is automatically matched to
this IF statement. Put a non-ELSE statement in between to make the
next ELSE statement match a previous IF statement.

This statement must be matched with an IF statement (ELSE requires a preceding IF,
but IF does not require a following ELSE). It follows the statements executed upon a
true IF condition. It is followed by the statements to be executed upon a false IF

PMAC 2 Software Reference

PMAC Program Command Specification 313

condition.

ELSE lines can take two forms (only the first of which is valid in a PLC program):
With no statement following on that line, all subsequent statements down to the next
ENDIF statement will be executed provided that the preceding IF condition is false.
ELSE
 {statement}
 [{statement}
 ...]
ENDIF

With a statement or statements following on that line, the single statement will be
executed provided that the preceding IF condition is false. No ENDIF statement should
be used in this case.
ELSE {statement} [{statement}...]

Note:
This single-line ELSE branch form is valid only in motion programs. If
this is tried in a PLC program, PMAC will put the statements on the next
program line and expect an ENDIF to close the branch. The logic will
not be as expected.

Example This first example has multi-line true and false branches. It could be used in either a motion
program or a PLC program:
IF (M11=1)
 P1=17
 P2=13
ELSE
 P1=13
 P2=17
ENDIF

This second example has a multi-line true branch, and a single-line false branch. This structure
could only be used in a motion program:
IF (M11=0)
 X(P1)
 DWELL 1000
ELSE DWELL 500

This example has a single-line true branch, and a multi-line false branch. This structure could
only be used in a motion program:
IF (SIN(P1)>0.5) Y(1000*SIN(P1))
ELSE
 P1=P1+5
 Y(1100*SIN(P1))
ENDIF

This example has single-line true and false branches. This structure could only be used in a
motion program:
IF (P1 !< 5) X10
ELSE X-10

See Also Program commands IF, ENDIF.

 PMAC 2 Software Reference

314 PMAC Program Command Specification

ENABLE PLC
Function Enable PLC Buffer(s)
Type Motion program (PROG and ROT), PLC program
Syntax ENABLE PLC {constant}[,{constant}...]

ENA PLC {constant}[,{constant}...]
ENABLE PLC {constant}[..{constant}]
ENA PLC {constant}[..{constant}]
where:
• {constant} is an integer from 0 to 31 representing the program number.

Remarks This command causes PMAC to enable (start executing) the specified uncompiled PLC
program or programs at the top of the program. Execution of the PLC program may have
been stopped with the DISABLE PLC, PAUSE PLC, or OPEN PLC command.
PLC programs are specified by number, and may be used singularly in this command, in
a list (separated by commas), or in a range of consecutively numbered programs.
If no buffer is open when this command is sent to PMAC, it will be executed
immediately as an on-line command.

Example ENABLE PLC 0
ENABLE PLC 1,2,5
ENABLE PLC 1..16
ENA PLC 7

See Also I-variable I5
On-line commands ENABLE PLC, DISABLE PLC, <CONTROL-D>
Program command DISABLE PLC

ENABLE PLCC
Function Enable Compiled PLC Program(s)

Type Motion program (PROG and ROT), PLC program (uncompiled and compiled)

Syntax ENABLE PLCC {constant}[,{constant}...]
ENABLE PLCC {constant}[..{constant}]
ENA PLCC {constant}[,{constant}...]
ENA PLCC {constant}[..{constant}]
where:
• {constant} is an integer from 0 to 31 representing the compiled PLC number.

Remarks This command enables the operation of the specified compiled PLC (PLCC) buffers,
provided I5 is set properly to allow their operation. The programs are specified by
number, and can be used singly, in a list separated by commas, or in a continuous range.

I-variable I5 is a separate master control of PLC program operation. Think of the two
bits of I5 as two master circuit breakers for a house, and the individual PLC and PLCC
enable/disable bits as separate light switches within the house. Both the master breaker
and the switch must be on for the PLC to operate. The breakers and the switches can be
operated independently without affecting the setting of the others.

Example ENABLE PLCC 0
ENABLE PLCC 1,2,5
ENABLE PLCC 1..16
ENA PLCC 7

PMAC 2 Software Reference

PMAC Program Command Specification 315

See Also I-variable I5
On-line commands ENABLE PLC, DISABLE PLC, ENABLE PLCC, DISABLE
PLCC, <CONTROL-D>
Program command ENABLE PLC, DISABLE PLC, DISABLE PLCC

ENDIF
Function Mark End of Conditional Block

Type Motion program (PROG only), PLC program

Syntax ENDIF
ENDI

Remarks This statement marks the end of a conditional block of statements begun by an IF
statement. It can close out the “true” branch, following the IF statement, in which case
there is no false branch, or it can close out the “false” branch, following the ELSE
statement.

When nesting conditions, it is important to match this ENDIF with the proper IF or
ELSE statement. In a PLC program, every IF or IF/ELSE pair must take an ENDIF,
so the ENDIF always matches the most recent IF statement that does not already have a
matching ENDIF. In a motion program an IF or ELSE statement with action on the
same line does not require an ENDIF, so the ENDIF would be matched with a previous
IF statement.

Example IF (P1>0)
 X1000
ENDIF
IF (P5=7)
 X1000
ELSE
 X2000
ENDIF

See Also Logical Structures (Writing a Motion Program)
Conditional Statements (Writing a PLC Program)
Program commands IF, ELSE

ENDWHILE
Function Mark End of Conditional Loop

Type Motion program (PROG only), PLC program

Syntax ENDWHILE
ENDW

Remarks This statement marks the end of a conditional loop of statements begun by a WHILE
statement. WHILE loops can be nested, so an ENDWHILE statement matches the most
recent WHILE statement not already matched by a previous ENDWHILE statement.

In a motion program a WHILE statement with an action on the same line does not require
a matching ENDWHILE.

In the execution of a PLC program, when an ENDWHILE statement is encountered, that
scan of the PLC is ended, and PMAC goes onto other tasks (communications, other

 PMAC 2 Software Reference

316 PMAC Program Command Specification

PLCs). The next scan of this PLC will start at the matching WHILE statement.

In the execution of a motion program, if PMAC finds two jumps backward (toward the
top) in the program while looking for the next move command, PMAC will pause
execution of the program and not try to blend the moves together. It will go on to other
tasks and resume execution of the motion program on a later scan. Two statements can
cause such a jump back: ENDWHILE and GOTO (RETURN does not count).

The pertinent result is that PMAC will not blend moves when it hits two ENDWHILE
statements (or the same ENDWHILE twice) between execution of move commands.

Example WHILE (Q10<10)
 Q10=Q10+1
ENDWHILE

See Also Program commands WHILE, ENDIF

F{data}
Function Set Move Feedrate (Velocity)

Type Motion program (PROG and ROT)

Syntax F{data}
where:
• {data} is a positive floating-point constant or expression representing the vector

velocity in user length units per user time units.

Remarks This statement sets the commanded velocity for upcoming LINEAR and CIRCLE mode
blended moves. It will be ignored in other types of moves (SPLINE, PVT, and RAPID).
It overrides any previous TM or F statement, and is overridden by any following TM or F
statement.

The units of velocity specified in an F command are scaled position units (as set by the
axis definition statements) per time unit (defined by “Feedrate Time Unit” I-variable for
the coordinate system: Ix90).

The velocity specified here is the vector velocity of all of the feedrate axes of the
coordinate system. That is, the move time is calculated as the vector distance of the
feedrate axes (square root of the sum of the squares of the individual axes), divided by
the feedrate value specified here. The minimum effective feedrate value will provide a
move time of 223 msec. The maximum effective feedrate value will provide a move time
of 1 msec. Any non-feedrate axes commanded to move on the same move-command line
will move at the speed necessary to finish in this same amount of time.

Note:
If the vector distance of a feedrate-specified move is so short that the
computed move time (vector distance divided by feedrate) would be less
than the acceleration time currently in force (TA or 2*TS), the move will
take the full acceleration time instead, and the axes will move more
slowly than specified by the F command.

Axes are designated as feedrate axes with the FRAX command. If no FRAX command is
used, the default feedrate axes are the X, Y, and Z axes. Any axis involved in circular
interpolation is automatically a feedrate axis, regardless of whether it was specified in the
latest FRAX command. In multi-axis systems, feedrate specification of moves is really
only useful for systems with Cartesian geometries, for which these moves give a constant

PMAC 2 Software Reference

PMAC Program Command Specification 317

velocity in the plane or in 3D space, regardless of movement direction.

Note:
If only non-feedrate axes are commanded to move in a feedrate-specified
move, PMAC will compute the vector distance (and the move time as
zero) and will attempt to do the move in the acceleration time (TA or
2*TS).

Example F100
F31.25
F(Q10)
F(SIN(P8*P9))

See Also I-variables Ix87, Ix88, Ix89, Ix90
On-line commands #{constant}->{axis definition}, FRAX
Program commands FRAX, LINEAR, CIRCLE, TM, TA, TS

FRAX
Function Specify Feedrate Axes

Type Motion program (PROG and ROT)

Syntax FRAX [({axis}[,{axis}...])]
where:
• {axis} is a character (X, Y, Z, A, B, C, U, V, W) specifying which axis is to be

used in the vector feedrate calculations.

Note:
No spaces are permitted in this command.

Remarks This command specifies which axes are to be involved in the vector-feedrate (velocity)
calculations for upcoming feedrate-specified (F) moves. PMAC calculates the time for
these moves as the vector distance (square root of the sum of the squares of the axis
distances) of all the feedrate axes divided by the feedrate. Any non-feedrate axes
commanded on the same line will complete in the same amount of time, moving at
whatever speed is necessary to cover the distance in that time.

Vector feedrate has obvious geometrical meaning only in a Cartesian system, for which it
results in constant tool speed regardless of direction, but it is possible to specify for non-
Cartesian systems, and for more than three axes.

Note:
If only non-feedrate axes are commanded to move in a feedrate-specified
move, PMAC will compute the vector distance (and the move time as
zero) and will attempt to do the move in the acceleration time (TA or
2*TS).

The FRAX command without arguments causes all axes in the coordinate system to be
feedrate axes in subsequent move commands. The FRAX command with arguments
causes the specified axes to be feedrate axes, and all axes not specified to be non-feedrate
axes, in subsequent move commands.

If no motion program buffer is open when this command is sent to PMAC, it will be
executed as an on-line coordinate system command.

Example For a three-axes cartesian system scaled in millimeters:
FRAX(X,Y)

 PMAC 2 Software Reference

318 PMAC Program Command Specification

INC
X30 Y40 Z10 F100

Vector distance is SQRT(302 + 402) = 50 mm. At a speed of 100 mm/sec, move time (unblended)
is 0.5 sec. X-axis speed is 30/0.5 = 60 mm/sec; Y-axis speed is 40/0.5 = 80 mm/sec; Z-axis speed
is 10/0.5 = 20 mm/sec.
Z20

Vector distance is SQRT(02 +02) = 0 mm. Move time (unblended) is 0.0 sec, so Z-axis speed is
limited only by acceleration parameters.
FRAX(X,Y,Z)
INC
X-30 Y-40 Z120 F65

Vector distance is SQRT(-302 + -402 +1202) = 130 mm. Move time is 130/65 = 2.0 sec. X-axis
speed is 30/2.0 = 15 mm/sec; Y-axis speed is 40/2.0 = 20 mm/sec; Z-axis speed is 120/2.0 = 60
mm/sec.

See Also I-variables Ix87, Ix88, Ix89, Ix90
On-line command FRAX
Program commands F, LINEAR, CIRCLE, {axis}{data}.

G{data}
Function Preparatory Code (G-Code)

Type Motion program

Syntax G{data}
where:
• {data} is a floating-point constant or expression in the range 0.000 to 999.999,

specifying the program number and the line label to jump to
Remarks PMAC interprets this statement as a CALL 10n0.({data’}*1000) command,

where n is the hundreds’ digit of {data}, and {data’} is the value of {data}
without the hundred’s digit (modulo 100 in mathematical terms). That is, this statement
causes a jump (with return) to motion program 10n0, and the specified line label.
(Programs 10n0 are usually used to implement the preparatory codes as the system
designer sees fit.) The value of {data’} can be from 0.0 to 99.999, corresponding to
line labels N0 to N99999.
If the specified program and/or line label do not exist, the G command is ignored, and the
program continues as if it were not there. No error is generated.
This structure permits the implementation of customizable G-code routines for machine-
tool style applications by the writing of subroutines in motion programs 10n0.
Arguments can be passed to these subroutines by following the G-code with one or more
sets of {letter}{data}, as in CALL and READ statements.
Most users will have G-codes only in the range 0-99, which permits the use of PROG
1000 only, and allows {data’} to equal {data} for direct specification of the line
label.

Example G01 jumps to N1000 of PROG 1000
G12 jumps to N12000 of PROG 1000
G115 jumps to N15000 of PROG 1010

See Also Program commands CALL{data}, D{data}, M{data}, T{data}, RETURN

PMAC 2 Software Reference

PMAC Program Command Specification 319

GOSUB
Function Unconditional Jump With Return

Type Motion program (PROG only)

Syntax GOSUB{data}
where:
• {data} is a constant or expression representing the line label to jump to.
• {letter} (optional) is any letter character except N or O.

Remarks This command causes the motion program execution to jump to the line label (N or O) of
the same motion program specified in {data}, with a jump back to the commands
immediately following the GOSUB upon encountering the next RETURN command.
If {data} is a constant, the path to the subroutine will have been linked before program
run time, so the jump is very quick. If {data} is a variable expression, it must be
evaluated at run time, and the appropriate label then searched for.

The search starts downward in the program to the end, then continues (if necessary) from
the top of the program down.

A variable GOSUB command permits the equivalent structure to the CASE statement
found in many high-level languages.

If the specified line label is not found, the GOSUB command will be ignored, and the
program will continue as if the command had not occurred.

The CALL command is similar, except that it can jump to another motion program.

Example GOSUB300 jumps to N300 of this program, to jump back on RETURN.
GOSUB8743 jumps to N8743 of this program, to jump back on RETURN.
GOSUB(P17) jumps to the line label of this program whose number matches the current
value of P17, to jump back on RETURN.

See Also Writing a Motion Program
Program commands CALL, GOTO, N, O, RETURN

GOTO
Function Unconditional Jump Without Return

Type Motion program (PROG only)

Syntax GOTO{data}
where:
• {data} is an integer constant or expression with a value from 0 to 99,999.

Remarks This command causes the motion program execution to jump to the line label (N or O)
specified in {data} with no jump back.

If {data} is a constant, the path to the label will have been linked before program run
time, so the jump is very quick. If {data} is a variable expression, it must be evaluated
at run time, and the appropriate label then searched for. The search starts downward in
the program to the end, then continues (if necessary) from the top of the program down.

A variable GOTO command permits the equivalent structure to the CASE statement found
in many high-level languages. (See Example, below.)

 PMAC 2 Software Reference

320 PMAC Program Command Specification

If the specified line label is not found, the program will stop, and the coordinate system’s
Run-Time-Error bit will be set.

Note:
Modern philosophies of the proper structuring of computer code strongly
discourage the use of GOTO, because of its tendency to make code
undecipherable.

Example GOTO750
GOTO35000
GOTO1
GOTO(50+P1)
N51 P10=50*SIN(P11)
GOTO60
N52 P10=50*COS(P11)
GOTO60
N53 P10=50*TAN(P11)
N60 X(P10)

See Also Writing a Motion Program;
Program commands CALL, GOSUB, N, O.

HOME
Function Programmed Homing

Type Motion program

Syntax HOME {constant} [,{constant}...]
HOME {constant}..{constant} [,{constant}..{constant}...]
HM {constant} [,{constant}...]
HM {constant}..{constant} [,{constant}..{constant}...]
where:
• {constant} is an integer from one to eight representing a motor number.

Remarks This causes the specified motors to go through their homing search cycles. The motors
must be specified directly by number, not the matching axis letters. Also specify which
motors are to be homed. All motors specified in a single HOME command (e.g.,
HOME1,2) will start their homing cycles simultaneously. To home some motors
sequentially, specify them in consecutive commands (e.g., HOME1 HOME2), even if on
the same line.

Any previous moves will come to a stop before the home moves start. No other program
statement will be executed until all specified motors have finished homing. Homing
direction, speed, acceleration, etc., are determined by motor I-variables. If a motor is
specified that is not in the coordinate system running the program, the command or
portion of the command will be ignored, but an error will not be generated.

The speed of the home search move is determined by Ix23. If Ix23=0 then the
programmed home command for that axis is ignored.

PMAC 2 Software Reference

PMAC Program Command Specification 321

Note:
Unlike an on-line homing command, the motor numbers in a program
homing command are specified after the word HOME itself, not before.
In addition, an on-line homing command simply starts the homing search
– it does not give any indication when the search is complete; but a
program homing command automatically recognizes the end of the
search, and then continues on in the program. A PLC program can only
issue an on-line home command.

Example HOME1 ;These are motion program commands
HM1,2,3
HOME1..3,5..7
HM1..8

#1HOME ;These are on-line commands
#1HM,#2HM,#3HM

See Also Homing-Search Moves (Basic Motor Moves)
On-line motor commands HOME, HOMEZ
Program command HOMEZ

HOMEZ
Function Programmed Zero-Move Homing

Type Motion program

Syntax HOMEZ {constant} [,{constant}...]
HOMEZ {constant}..{constant} [,{constant}..{constant}...]
HMZ {constant} [,{constant}...]
HMZ {constant}..{constant} [,{constant}..{constant}...]
where:
• {constant} is an integer from one to eight representing a motor number.

Remarks This commands causes the specified motors to go through pseudo-homing search cycles.
In this operation, the present commanded position of the motor is made the zero position
for the motor and the new commanded position for the motor.
If there is a following error and/or an axis definition offset at the time of the HOMEZ
command, the reported position after the command will be equal to the negative of the
following error plus the axis definition offset.
The motors must be specified directly by number, not the matching axis letters. Specify
which motors are to be homed. All motors specified in a single HOMEZ command (e.g.
HOMEZ1,2) will home simultaneously.

Note:
Unlike an on-line homing command, the motor numbers in a program
homing command are specified after the word HOMEZ itself, not before.

Example HOMEZ1 ;These are motion program commands
HMZ1,2,3
HOMEZ1..3,5..7
HMZ1..8

#1HOMEZ ;These are on-line commands
#1HMZ,#2HMZ,#3HMZ

 PMAC 2 Software Reference

322 PMAC Program Command Specification

See Also Homing-Search Moves (Basic Motor Moves)
On-line motor command HOME, HOMEZ
Program command HOME

I{data}
Function I-Vector Specification for Circular Moves or Normal Vectors

Type Motion program (PROG or ROT)

Syntax I{data}
where:
• {data} is a floating-point constant or expression representing the magnitude of the

I-component of the vector in scaled user axis units.

Remarks In circular moves, this specifies the component of the vector to the arc center that is
parallel to the X-axis. The starting point of the vector is either the move start point (for
INC (R) mode – default) or the XYZ-origin (for ABS (R) mode).

In a NORMAL command, this specifies the component of the normal vector to the plane of
circular interpolation and tool radius compensation that is parallel to the X-axis.

Example X10 Y20 I5 J5
X(2*P1) I(P1)
I33.333 specifies a full circle whose center is 33.333 units in the positive

 X-direction from the start and end point
NORMAL I-1 specifies a vector normal to the YZ plane

See Also Circular Interpolation, Tool Radius Compensation (Writing a Motion Program)
On-line command I{constant}
Program Commands {axis}{data}{vector}{data}, ABS, INC, NORMAL, J, K,
I{constant}={expression}

I{constant}={expression}
Function Set I-Variable Value

Type Motion program (PROG and ROT), PLC Program

Syntax I{constant}={expression}
where:
• {constant} is an integer value from 0 to 1023 representing the I-variable number.
• {expression) represents the value to be assigned to the specified I-variable.

Remarks This command sets the value of the specified I-variable to that of the expression on the
right side of the equals sign. The assignment is done as the line is processed, which in a
motion program is usually one or two moves ahead of the move actually executing at the
time (because of the need to calculate ahead in the program).

Note:
If the assignment of the I-variable value should be synchronous with the
beginning of the next move in the program, assign an M-variable to the
register of the I-variable, and use a synchronous M-variable assignment
statement (M{constant}=={expression}).

Example I130=30000
I902=1
I131=P131+1000

PMAC 2 Software Reference

PMAC Program Command Specification 323

See Also How PMAC Executes a Motion Program (Writing a Motion Program)
On-line command I{constant}={expression}
Program commands M{constant}={expression),
P{constant}={expression}, Q{constant}={expression},
M{constant}=={expression}

IDIS{constant}
Function Incremental displacement of X, Y, and Z axes

Type Motion program (PROG and ROT)

Syntax IDIS{constant
where:
• {constant} is an integer representing the number of the first of three consecutive

Q-variables to be used in the displacement vector.
Remarks This command adds to the offset values of the currently selected (with TSEL)

transformation matrix for the coordinate system the values contained in the three Q-
variables starting with the specified one.
This has the effect of renaming the current commanded X, Y, and Z axis positions (from
the latest programmed move) by adding the values of these variables
(Xnew=Xold+Q{constant}, Ynew=Yold+Q({constant}+1),
Znew=Zold+Q({constant}+2)). This command does not cause any movement of any
axes. It simply renames the present positions.
This command is similar to a PSET command, except that IDIS is incremental and does
not force a stop between moves, as PSET does.

Example X0 Y0 Z0
Q20=7.5
Q21=12.5
Q22=20
IDIS 20 ; This makes the current position X7.5, Y12.5, Z20
IDIS 20 ; This makes the current position X15 Y25 Z40

See Also Axis Matrix Transformations (Writing a Motion Program)
On-line command DEFINE TBUF
Program commands TSEL, ADIS, AROT, IROT, TINIT

IF ({condition})
Function Conditional branch

Type Motion and PLC program

Syntax IF ({condition}) (Valid in fixed motion (PROG) or PLC program only)
IF ({condition}) {action} [{action}...] (Valid in rotary or fixed
motion program only)
where:
• {condition} consists of one or more sets of {expression} {comparator}

{expression}, joined by logical operators AND or OR.
• {action} is a program command.

Remarks This command allows conditional branching in the program.

With an action statement or statements following on that line, it will execute those
statements provided the condition is true (this syntax is valid in motion programs only).

 PMAC 2 Software Reference

324 PMAC Program Command Specification

If the condition is false, it will not execute those statements.

It will only execute any statements on a false condition if the line immediately following
begins with ELSE. If the next line does not begin with ELSE, there is an implied ENDIF
at the end of the line. When there is an ELSE statement on the motion-program line
immediately following an IF statement with actions on the same line, that ELSE
statement is automatically matched to this IF statement, not to any preceding IF
statements under which this IF statement may be nested.

With no statement following on that line, if the condition is true, PMAC will execute all
subsequent statements on following lines down to the next ENDIF or ELSE statement
(this syntax is valid in motion and PLC programs). If the condition is false, it will skip to
the ENDIF or ELSE statement and continue execution there.

In a rotary motion program, only the single-line version of the IF statement is permitted.
No ELSE or ENDIF statements are allowed.

In a PLC program, compound conditions can be extended onto multiple program lines
with subsequent AND and OR statements.

There is no limit on nesting of IF conditions and WHILE loops (other than total buffer
size) in fixed motion and PLC programs. No nesting is allowed in rotary motion
programs.

Example IF (P1>10) M1=1 ; OK in PROG & ROT, not in PLC
IF (M11=0 AND M12!=0) M2=1 M3=1 ; OK in PROG & ROT, not in PLC
 ; OK in PROG only, not ROT or PLC
IF (M1=0) P1=P1-1
ELSE P1=P1+1 ; OK in PROG only, not ROT or PLC

IF (M11=0)
 P1=1000*SIN(P5)
 X(P1)
ENDIF

 ; OK in PLCs, not PROG or ROT
IF (P1<0 OR P2!<0)
AND (P50=1)
 P10=0
ELSE

P10=1
ENDIF

See Also Conditions (Program Computational Features)
Program commands ELSE, ENDIF, WHILE, AND, OR

INC
Function Incremental Move Mode

Type Motion program

Syntax INC [({axis}[,{axis}...])]
where:
• {axis} is a letter specifying a motion axis (X, Y, Z, A, B, C, U, V, W), or the letter

R specifying the arc center radial vector.
Note

No spaces are permitted in this command.

PMAC 2 Software Reference

PMAC Program Command Specification 325

Remarks The INC command without arguments causes all subsequent command positions in
motion commands for all axes in the coordinate system running the motion program to be
treated as incremental distances from the latest command point. This is known as
incremental mode, as opposed to the default absolute mode.

An INC statement with arguments causes the specified axes to be in incremental mode,
and all others stay the way they were before.

If R is specified as one of the axes, the I, J, and K terms of the circular move radius
vector specification will be specified in incremental form (i.e. as a vector from the move
start point, not from the origin). An INC command without any arguments does not
affect this vector specification. The default radial vector specification is incremental.

If no motion program buffer is open when this command is sent to PMAC, it will be
executed as an on-line coordinate system command.

Example INC(A,B,C)
INC
INC(U)
INC(R)

See Also Circular Moves (Writing a Motion Program)
On-line commands ABS, INC
Program commands {axis}{data}, {axis}{data}{vector}{data}, ABS.

IROT{constant}
Function Incremental rotation/scaling of X, Y, and Z axes

Type Motion program (PROG and ROT)

Syntax IROT{constant}
where:
• {constant} is an integer representing the number of the first of nine consecutive

Q-variables to be used in the rotation/scaling matrix

Remarks This command multiplies the currently selected (with TSEL) transformation matrix for
the coordinate system by the rotation/scaling values contained in the nine Q-variables
starting with the specified one. This has the effect of renaming the current commanded
X, Y, and Z axis positions (from the latest programmed move) by multiplying the
existing rotation/scaling matrix by the matrix containing these Q-variables, adding angles
of rotation and multiplying scale factors.

The rotation and scaling is done relative to the latest rotation and scaling of the XYZ
coordinate system, defined by the most recent AROT or IROT commands. The math
performed is:
 [New Rot Matrix] = [Old Rot Matrix] [Incremental Rot Matrix]
 [Xrot Yrot Zrot]T = [New Rot Matrix] [Xbase Ybase Zbase]T

This command does not cause movement of any axes. It simply renames the present
positions.

Note:
When using this command to scale the coordinate system, do not use the
radius center specification for circle commands. The radius does not get
scaled. Use the I, J, K vector specification instead.

 PMAC 2 Software Reference

326 PMAC Program Command Specification

Example Create a 3x3 matrix to rotate the XY plane by 30 degrees about the origin
Q40=COS(30) Q41=SIN(30) Q42=0
Q43=-SIN(30) Q44=COS(30) Q45=0
Q46=0 Q47=0 Q48=1
IROT 40 ; Implement the change, rotating 30 degrees from current
IROT 40 ; This rotates a further 30 degrees
Create a 3x3 matrix to scale the XYZ space by a factor of 3
Q50=3 Q51=0 Q52=0
Q53=0 Q54=3 Q55=0
Q56=0 Q57=0 Q58=3
IROT 50 ; Implement the change, scaling up by a factor of 3
IROT 50 ; Scale up by a further factor of 3 (total of 9x)

See Also Axis Matrix Transformations (Writing a Motion Program)
On-line command DEFINE TBUF
Program commands TSEL, ADIS, IDIS, AROT, TINIT

J{data}
Function J-Vector Specification for Circular Moves

Type Motion program (PROG and ROT)

Syntax J{data}
where:
• {data} is a floating-point constant or expression representing the magnitude of the

J-component of the vector in scaled user axis units.
Remarks In circular moves, this specifies the component of the vector to the arc center that is

parallel to the Y-axis. The starting point of the vector is either the move start point (for
INC (R) mode – default) or the XYZ-origin (for ABS (R) mode).
In a NORMAL command, this specifies the component of the normal vector to the plane of
circular interpolation and tool radius compensation that is parallel to the Y-axis.

Example X10 Y20 I5 J5
Y(2*P1) J(P1)
J33.333 specifies a full circle whose center is 33.333 units in the
 positive Y-direction from the start and end point
NORMAL J-1 specifies a vector normal to the ZX plane

See Also Circular Interpolation, Tool Radius Compensation (Writing a Motion Program)
Motion Program Commands {axis}{data}{vector}{data}, ABS, INC,
NORMAL, I, K.

K{data}
Function K-Vector Specification for Circular Moves

Type Motion program (PROG and ROT)

Syntax K{data}
where:
• {data} is a floating-point constant or expression representing the magnitude of the

K-component of the vector in scaled user axis units.

Remarks In circular moves, this specifies the component of the vector to the arc center that is
parallel to the Z-axis. The starting point of the vector is either the move start point (for
INC (R) mode – default) or the XYZ-origin (for ABS (R) mode).

PMAC 2 Software Reference

PMAC Program Command Specification 327

In a NORMAL command, this specifies the component of the normal vector to the plane of
circular interpolation and tool radius compensation that is parallel to the Y-axis.

Example X10 Z20 I5 K5
Z(2*P1) K(P1)
K33.333 specifies a full circle whose center is 33.333 units in the
 positive Z-direction from the start and end point
NORMAL K-1 specifies a vector normal to the XY plane

See Also Circular Interpolation, Tool Radius Compensation (Writing a Motion Program)
Motion Program Commands {axis}{data}{vector}{data}, ABS, INC,
NORMAL, I, J.

LINEAR
Function Blended Linear Interpolation Move Mode
Type Motion program (PROG and ROT)
Syntax LINEAR

LIN
Remarks The LINEAR command puts the program in blended linear move mode (this is the

default condition on power-up/reset). Subsequent move commands in the program will
be processed according to the rules of this mode. On each axis, the card attempts to
reach a constant velocity that is determined by the most recent feedrate (F) or move time
(TM) command.
The LINEAR command takes the program out of any of the other move modes
(CIRCLE, PVT, RAPID, SPLINE). A command for any of these other move modes
takes the program out of LINEAR mode.

Example LINEAR ABS
CIRCLE1 X10 Y20 I5
LINEAR X10 Y0
OPEN PROG 1000 CLEAR
N1000 LINEAR RETURN

See Also Linear Blended Moves (Writing a Motion Program);
I-variables Ix87, Ix88, Ix89, Ix90;
Program commands CIRCLE, PVT, RAPID, SPLINE, TA, TS, TM, F,
{axis}{data}.

M{constant}={expression}
Function Set M-Variable Value
Type Motion program (PROG and ROT)
Syntax M{constant}={expression}

where:
• {constant} is an integer constant from 0 to 1023 representing the number of the

M-variable.
• {expression} is a mathematical expression representing the value to be assigned

to this M-variable.
Remarks This command sets the value of the specified M-variable to that of the expression on the

right side of the equals sign.

 PMAC 2 Software Reference

328 PMAC Program Command Specification

Note:
In a motion program, the assignment is done as the line is processed, not
necessarily in order with the actual execution of the move commands on
either side of it. If it is in the middle of a continuous move sequence, the
assignment occurs one or two moves ahead of its apparent place in the
program (because of the need to calculate ahead in the program).

If the actual assignment of the value to the variable should be synchronous with the
beginning of the next move, use the synchronous M-variable assignment command
M{constant}=={expression instead.

Example M1=1
M102=$00FF
M161=P161*I108*32
M20=M20 & $0F

See Also How PMAC Executes a Motion Program, Synchronous Variable Assignment (Writing a
Motion Program)
Program Commands I{constant}=, P{constant}=, Q{constant}=,
M{constant}==.

M{constant}=={expression}
Function Synchronous M-Variable Value Assignment
Type Motion program (PROG and ROT)
Syntax M{constant}=={expression}

where:
• {constant} is an integer constant from 0 to 1023 representing the number of the

M-variable.
• {expression} is a mathematical expression representing the value to be assigned

to this M-variable.
Remarks This command allows the value of an M-variable to be set synchronously with the start of

the next move or dwell. This is especially useful with M-variables assigned to outputs,
so the output changes synchronously with beginning or end of the move. Non-
synchronous calculations (with the single =) are fully executed ahead of time during
previous moves.

Note:
This command may not be used with any of the thumbwheel-multiplexer
forms of M-variables (TWB, TWD, TWR, TWS).

In this form, the expression on the right side is evaluated just as for a non-synchronous
assignment, but the resulting value is not assigned to the specified M-variable until the
start of the actual execution of the following motion command.

Note:
Remember that if this M-variable is used in further expressions before
the next move in the program is started, the value assigned in this
statement will not be received.

Example X10
M1==1 ; Set Output 1 at start of actual blending to next move.
X20
M60==P1+P2

PMAC 2 Software Reference

PMAC Program Command Specification 329

See Also How PMAC Executes a Motion Program, Synchronous Variable Assignment (Writing a
Motion Program)
Program Commands I{constant}=, P{constant}=, Q{constant}=,
M{constant}=.

M{constant}&={expression}
Function M-Variable And-Equals Assignment

Type Motion program (PROG and ROT)

Syntax M{constant}&={expression}
where:
• {constant} is an integer constant from 0 to 1023 representing the number of the

M-variable.
• {expression} is a mathematical expression representing the value to be

‘ANDed’ with this M-variable.

Remarks This command is equivalent to M{constant}=M{constant}&{expression},
except that the bit-by-bit AND and the assignment of the resulting value to the M-
variable do not happen until the start of the actual execution of the following motion
command. The expression itself is evaluated when the program line is encountered, as in
a non-synchronous statement.

Note:
This command may not be used with any of the thumbwheel-multiplexer
forms of M-variables (TWB, TWD, TWR, or TWS), or with any of the
double-word forms (L, D, or F).

Remember that if you use this M-variable in further expressions before
the next move in the program is started, you will not get the value
assigned in this statement.

Example M20&=$FE ; Mask out LSB of byte M20
M346&=2 ; Clear all bits except bit 1

See Also How PMAC Executes a Motion Program, Synchronous Variable Assignment (Writing a
Motion Program)
Program Commands M{constant}=, M{constant}==, M{constant}|=,
M{constant}^=

M{constant}|={expression}
Function M Variable Or-Equals Assignment

Type Motion program (PROG and ROT)

Syntax M{constant}|={expression}
where:
• {constant} is an integer constant from 0 to 1023 representing the number of the

M-variable;
• {expression} is a mathematical expression representing the value to be ‘ORed’

with this M-variable.
Remarks This form is equivalent to M{constant}=M{constant}|{expression}, except

that the bit-by-bit OR and the assignment of the resulting value to the M-variable do not
happen until the start of the following servo command. The expression itself is evaluated
when the program line is encountered, as in a non-synchronous statement.

 PMAC 2 Software Reference

330 PMAC Program Command Specification

Note:
This command may not be used with any of the thumbwheel-multiplexer
forms of M-variables (TWB, TWD, TWR, or TWS), or with any of the
double-word forms (L, D, or F).
Remember that if you use this M-variable in further expressions before
the next move in the program is started, you will not get the value
assigned in this statement.

Example M20|=$01 ; Set low bit of byte M20, leave other bits
M875|=$FF00 ; Set high byte, leaving low byte as is

See Also How PMAC Executes a Motion Program, Synchronous Variable Assignment (Writing a
Motion Program)
Program Commands M{constant}=, M{constant}==, M{constant}&=,
M{constant}^=

M{constant}^={expression}
Function M-Variable ‘XOR-Equals’ Assignment

Type Motion program (PROG and ROT)

Syntax M{data}^={expression}
where:
• {constant} is an integer constant from 0 to 1023 representing the number of the

M-variable.
• {expression} is a mathematical expression representing the value to be ‘XORed’

with this M-variable.

Remarks This form is equivalent to M{constant}=M{constant}^{expression}, except
that the bit-by-bit XOR and the assignment of the resulting value to the M-variable do
not happen until the start of the following servo command. The expression itself is
evaluated when the program line is encountered, as in a non-synchronous statement.

Note:
This command may not be used with any of the thumbwheel-multiplexer
forms of M-variables (TWB, TWD, TWR, or TWS), or with any of the
double-word forms (L, D, or F).
Remember that if you use this M-variable in further expressions before
the next move in the program is started, you will not get the value
assigned in this statement.

Example M20^=$FF ; Toggle all bits of byte M20
M99^=$80 ; Toggle bit 7 of M99, leaving other bits as is

See Also How PMAC Executes a Motion Program, Synchronous Variable Assignment (Writing a
Motion Program)
Program Commands M{constant}=, M{constant}==, M{constant}&=,
M{constant}|=

PMAC 2 Software Reference

PMAC Program Command Specification 331

M{data}
Function Machine Code (M-Code)

Type Motion program

Syntax M{data}
where:
• {data} is a floating-point constant or expression in the range 0.000 to 999.999,

specifying the program number and the line label to jump to.

Remarks PMAC interprets this statement as a CALL 10n1.({data’}*1000) command,
where n is the hundreds’ digit of {data}, and {data’} is the value of {data}
without the hundred’s digit (modulo 100 in mathematical terms). That is, this statement
causes a jump (with return) to motion program 10n1, and the specified line label.
(Programs 10n1 are usually used to implement the machine codes as the system designer
sees fit.) The value of {data’} can be from 0.0 to 99.999, corresponding to line labels
N0 to N99999.

If the specified program and/or line label do not exist, the M command is ignored, and the
program continues as if it were not there. No error is generated.
This structure permits the implementation of customizable M-code routines for machine-
tool style applications by the writing of subroutines in motion programs 10n1.
Arguments can be passed to these subroutines by following the M-code with one or more
sets of {letter}{data}, as in CALL and READ statements.
Typically, M-codes will be only in the range 0-99, which permits the use of PROG 1001
only, and allows {data’} to equal {data} for direct specification of the line label.

Example M01 jumps to N1000 of PROG 1001
M12 jumps to N12000 of PROG 1001
M115 jumps to N15000 of PROG 1011

See Also Program commands CALL{data}, D{data}, M{data}, T{data}, RETURN

MACROAUXREAD
Function Read MACRO auxiliary parameter value

Type Background PLC (no motion program, PLC0, or compiled PLC)

Syntax MACROAUXREAD{NodeNum}{ParamNum}{Variable}
MXR{NodeNum}{ParamNum}{Variable}
where:
• {NodeNum} is an integer constant from 0 to 15 specifying the slave number of the

node.
• {ParamNum} is an integer constant from 0 to 65535 specifying the auxiliary

parameter number for this node.
• {Variable} is the name of the PMAC variable (I, P, Q, or M) into which the

parameter value is to be copied.

Remarks This command permits PMAC to read auxiliary register values from slave nodes across
the MACRO ring. The command must specify the node number of the slave node, the
auxiliary parameter number at this node, and the name of the PMAC variable to receive
the value.
Only one auxiliary access (read or write) of a single node can be done on one command
line.

 PMAC 2 Software Reference

332 PMAC Program Command Specification

In order to access the auxiliary registers of a MACRO node n, bit n of I1000 must be set
to 1.
If the slave node returns an error message or the slave node does not respond within 32
servo cycles, PMAC will note an error condition. Bit 5 of global status register X:$0003
is set to report such a MACRO auxiliary communications error. Register X:$0798 holds
the error value. It is set to $010000 for a timeout error, or $xxxxFE if the slave node
reports an error, where xxxx is the 16-bit error code reported by the slave node.

Example MACROAUXREAD1,24,P1 ; Read Node 1 Parameter 24 into P1
MXR5,128,M100 ; Read Node 5 Parameter 128 into M100

See Also On-line commands MACROAUX, MACROAUXREAD, MACROAUXWRITE
Program commands MACROAUXWRITE

MACROAUXWRITE
Function Write MACRO auxiliary parameter value
Type Background PLC (no motion program, PLC0, or compiled PLC)
Syntax MACROAUXWRITE{NodeNum}{ParamNum}{Variable}

MXW{NodeNum}{ParamNum}{Variable}
where:
• {NodeNum} is an integer constant from 0 to 15 specifying the slave number of the

node.
• {ParamNum} is an integer constant from 2 to 253 specifying the auxiliary

parameter number for this node.
• {Variable} is the name of the PMAC variable (I, P, Q, or M) from which the

parameter value is to be copied.

Remarks This command permits PMAC to write auxiliary register values to slave nodes across the
MACRO ring. The command must specify the node number of the slave node, the
auxiliary parameter number at this node, and the name of the PMAC variable from which
the value comes.
Only one auxiliary access (read or write) of a single node can be done on one command
line.
In order to access the auxiliary registers of a MACRO node n, bit n of I1000 must be set
to 1.
If the slave node returns an error message or the slave node does not respond within 32
servo cycles, PMAC will note an error condition. Bit 5 of global status register X:$0003
is set to report such a MACRO auxiliary communications error. Register X:$0798 holds
the error value. It is set to $010000 for a timeout error, or $xxxxFE if the slave node
reports an error, where xxxx is the 16-bit error code reported by the slave node.

Example MACROAUXWRITE1,24,P1 ; Write value of P1 to Node 1 Parameter 24
MXW5,128,M100 ; Write value of M100 to Node 5 Parameter 128

See Also On-line commands MACROAUX, MACROAUXREAD, MACROAUXWRITE
Program commands MACROAUXREAD

PMAC 2 Software Reference

PMAC Program Command Specification 333

MACROSLVREAD
Function Read (copy) Type 1 MACRO auxiliary parameter value

Type Uncompiled PLC 1 – 31 only

Syntax MACROSLVREAD{node #},{slave variable},{PMAC variable}
MSR{node #},{slave variable},{PMAC variable}
where:
• {node #} is a constant in the range 0 to 15 representing the number of the node on

the PMAC matching the slave node to be accessed.
• {slave variable} is the name of the variable on the slave station whose value

is to be reported.
• {PMAC variable} is the name of the variable on the PMAC into which the value

of the slave station variable is to be copied.

Remarks This command causes PMAC to copy the value of the specified variable of the MACRO
slave station matching the specified node number on the PMAC to the specified PMAC
variable, using the MACRO Type 1 master-to-slave auxiliary protocol.
The variable on the PMAC can be any of the I, P, Q, or M-variable on the card.
In order for the PMAC to be able to execute this command, the following conditions
must be true:
• The PMAC must be set up as a master or the synchronizing ring master (I995=

$xx90 or $xx30).
• The node 15 auxiliary register copy function must be disabled (I1000 bit 15 = 0).
• Node 15 must not be used for any other function.

If the slave node returns an error message or it does not respond within I1003 servo
cycles, PMAC will report ERR008. Bit 5 of global status register X:$0003 is set to
report such a MACRO auxiliary communications error. Register X:$0798 holds the error
value. It is set to $010000 for a timeout error, or $xxxxFE if the slave node reports an
error, where xxxx is the 16-bit error code reported by the slave node.
If this command is issued to a PMAC when no buffer is open, it will be executed as an
on-line command.

Example MSR0,MI910,P1 ; Copies value of slave Node 0 variable MI910 into PMAC variable P1
MSR1,MI997,M10 ; Copies value of slave Node 1 variable MI997 into PMAC variable M10

MACROSLVWRITE
Function Write (copy) Type 1 MACRO auxiliary parameter value

Type Uncompiled PLC 1 – 31 only

Syntax MACROSLVWRITE{node #},{slave variable},{PMAC variable}
MSW{node #},{slave variable},{PMAC variable}
where:
• {node #} is a constant in the range 0 to 15 representing the number of the node on

the PMAC matching the slave node to be accessed.
• {slave variable} is the name of the MI-variable or C-command on the slave

station whose value is to be set.
• {PMAC variable} is the name of the variable on the PMAC from which the

value of the slave station variable is to be copied.

 PMAC 2 Software Reference

334 PMAC Program Command Specification

Remarks This command causes PMAC to copy the value of the specified variable on PMAC to the
specified variable of the MACRO slave station matching the specified node number on
the PMAC, using the MACRO Type 1 master-to-slave auxiliary protocol.

The variable on the PMAC can be any of the I, P, Q, or M-variables on the card.

In order for the PMAC to be able to execute this command, the following conditions
must be true:
• The PMAC must be set up as a master or the synchronizing ring master (I995=

$xx90 or $xx30).
• The node 15 auxiliary register copy function must be disabled (I1000 bit 15 = 0).
• Node 15 must not be used for any other function.

If the slave node returns an error message or it does not respond within I1003 servo
cycles, PMAC will report ERR008. Bit 5 of global status register X:$0003 is set to
report such a MACRO auxiliary communications error. Register X:$0798 holds the error
value. It is set to $010000 for a timeout error, or $xxxxFE if the slave node reports an
error, where xxxx is the 16-bit error code reported by the slave node.

If this command is issued to a PMAC when no buffer is open, it will be executed as an
on-line command.

Example MSW0,MI910,P35 ; Copies value of PMAC P35 into MACRO station
 ; node 0 variable MI910

MSW4,C4,P0 ; Causes MACRO station with active node 4 to execute
 ; Command #4, saving its setup variable values to

 ; non-volatile memory (P0 is a dummy variable here)

N{constant}
Function Program Line Label

Type Motion program (PROG and ROT)

Syntax N{constant}
where:
• {constant} is an integer from 0 to 262,143 (218-1).

Remarks This is a label for a line in the program that allows the flow of execution to jump to that
line with a GOTO, GOSUB, CALL, G, M, T, or D statement or a B command.

A line only needs a label in order to jump to that line. Line labels do not have to be in
any sort of numerical order. The label must be at the beginning of a line. Remember that
each location label takes up space in PMAC memory.

Note:
There is always an implied N0 at the beginning of every motion
program. Putting an explicit N0 at the beginning may be useful for
people reading the program.

Example N1
N65537 X1000

See Also Subroutines and Subprograms (Writing a Motion Program)
On-line command B{constant}
Program commands O{constant}, GOTO, GOSUB, CALL, G, M, T, D.

PMAC 2 Software Reference

PMAC Program Command Specification 335

NORMAL
Function Define Normal Vector to Plane of Circular Interpolation and Cutter Radius Compensation
Type Motion program (PROG and ROT)
Syntax NORMAL {vector}{data} [{vector}{data}...]

NRM {vector}{data} [{vector}{data}...]
where:
• {vector} is one of the letters I, J, and K, representing components of the total vector

parallel to the X, Y, and Z axes, respectively.
• {data} is a constant or expression representing the magnitude of the particular vector

component.
Remarks This statement defines the orientation of the plane in XYZ-space in which circular

interpolation and cutter radius compensation will take place by setting the normal
(perpendicular) vector to that plane.
The vector components that can be specified are I (X-axis direction), J (Y-axis direction),
and K (Z-axis direction). The ratio of the component magnitudes determines the
orientation of the normal vector, and therefore, of the plane. The length of this vector does
not matter – it does not have to be a unit vector.
The direction sense of the vector does matter, because it defines the clockwise sense of an
arc move, and the sense of cutter-compensation offset. PMAC uses a right-hand rule; that
is, in a right-handed coordinate system (I x J = K), if your right thumb points in the
direction of the norma vector specified here, your right fingers will curl in the direction of
a clockwise arc in the circular plane, and in the direction of offset-right from direction of
movement in the compensation plane.

Example The standard settings to produce circles in the principal planes will therefore be:
NORMAL K-1 ; XY plane – equivalent to G17
NORMAL J-1 ; ZX plane – equivalent to G18
NORMAL I-1 ; YZ plane – equivalent to G19
By using more than one vector component, a circular plane skewed from the principal planes can be
defined:
NORMAL I0.866 J0.500
NORMAL J25 K-25
NORMAL J(-SIN(Q1)) K(-COS(Q1))
NORMAL I(P101) J(P201) K(301)

See Also Circular Blended Moves, Cutter Radius Compensation (Writing a Motion Program)
Cartesian Axes (Setting Up a Coordinate System)
Program Commands CIRCLE1, CIRCLE2, CC0, CC1, CC2

O{constant}
Function Alternate Line Label

Type Motion program (PROG and ROT)

Syntax O{constant}
where:
• {constant} is an integer from 0 to 262,143 (218-1).

Remarks This is an alternate form of label in the motion program. It allows the flow of execution
to jump to that line with a GOTO, GOSUB, CALL, G, M, T, or D statement or a B
command. PMAC will store and report this as an N{constant statement, but O labels
are legal to send to the program buffer. (N10 and O10 are identical labels to PMAC.)

 PMAC 2 Software Reference

336 PMAC Program Command Specification

A line only needs a label in order to jump to that line. Line labels do not have to be in
any sort of numerical order. The label must be at the beginning of a line. Remember that
each location label takes up space in PMAC memory.

Example O1
O65537 X1000

See Also Subroutines and Subprograms (Writing a Motion Program)
On-line command B{constant}
Program commands O{constant}, GOTO, GOSUB, CALL, G, M, T, D.

OR({condition})
Function Conditional OR

Type PLC program

Syntax OR ({condition})

Remarks This statement forms part of an extended compound condition to be evaluated in a PLC
program. It must immediately follow an IF, WHILE, AND, or OR statement. This OR is
a boolean operator logically combining the condition on its line with the condition on the
program line above.

It takes lower precedence than operators within a compound condition on a single line
(those within parentheses), and also lower precedence than an AND operator that starts a
line. (ORs operate on groups of ANDed conditions.)

In motion programs, there can be compound conditions within one program line, but not
across multiple program lines, so this statement is not permitted in motion programs.

Note:
This logical OR, which acts on conditions, should not be confused with
the bit-by-bit | (vertical bar) or-operator, which operates on values.

Example IF (M11=1) ; This branch increments P1 every cycle that
AND (M12=0) ; inputs M11 and M12 are different, and decrements
OR (M11=0) ; them every cycle that they are the same.
AND (M12=1)
 P1=P1+1
ELSE
 P1=P1-1
ENDIF

IF (M11=1 AND M12=0) ; This does the same as above
OR (M11=0 AND M12=1)
 P1=P1+1
ELSE
 P1=P1-1
ENDIF

See Also Conditions (Program Computational Features)
Writing a PLC Program
Program commands IF, WHILE, AND

PMAC 2 Software Reference

PMAC Program Command Specification 337

P{constant}={expression}
Function Set P-Variable Value

Type Motion program (PROG and ROT)

Syntax P{constant}={expression}
where:
• {constant} is an integer constant from 0 to 1023 representing the P-variable

number.
• {expression} represents the value to be assigned to this P-variable.

Remarks This command sets the value of the specified P-variable to that of the expression on the
right side of the equals sign. The assignment is done as the line is processed, which in a
motion program is usually one or two moves ahead of the move actually executing at the
time (because of the need to calculate ahead in the program).

Example P1=0
P746=P20+P40
P893=SIN(Q100)-0.5

See Also How PMAC Executes a Motion Program (Writing a Motion Program)
On-line command P{constant}={expression}
Program commands I{constant}={expression},
M{constant}={expression}, Q{constant}={expression}.

PAUSE PLC
Function Pause execution of PLC program(s)

Type Motion program (PROG or ROT), PLC program

Syntax PAUSE PLC {constant}[,{constant}...]
PAU PLC {constant}[,{constant}...]
PAUSE PLC {constant}[..{constant}]
PAU PLC {constant}[..{constant}]

Remarks This command causes PMAC to stop execution of the specified uncompiled PLC
program or programs, with the capability to restart execution at this point (not necessarily
at the top) with a RESUME PLC command. Execution can also be restarted at the top of
the program with the ENABLE PLC command.

If the PLC program is paused from within that PLC, execution is stopped immediately
after the PAUSE PLC command.

If the PLC program is paused while it is not in the middle of a scan, which is always the
case if it is paused from another background PLC, it will obviously be paused at the end
of a scan – after an ENDWHILE or after the last line.

If the PLC program is paused while it has been interrupted in the middle of a scan (for
example, from a motion program), its execution will resume after the interrupt and
continue until after it executes any of the following:
• Any ENABLE PLC, DISABLE PLC, PAUSE PLC, or RESUME PLC command
• An ENDWHILE command
• The last line of the program
Execution will be paused at this point.

 PMAC 2 Software Reference

338 PMAC Program Command Specification

PLC programs are specified by number, and may be specified in a command singularly,
in a list (separated by commas), or in a range of consecutively numbered programs.

If no buffer is open when this command is sent to PMAC, it will be executed
immediately as an on-line command.

Example PAUSE PLC 1
PAUSE PLC 4,5
PAUSE PLC 7..20
PAU PLC 3,8,11
PAU PLC 0..31

See Also I-variable I5
On-line commands ENABLE PLC, DISABLE PLC, <CONTROL-D>, PAUSE PLC,
RESUME PLC, LIST PLC
Program command ENABLE PLC, DISABLE PLC, RESUME PLC

PRELUDE
Function Specify automatic subroutine call function

Type Motion program

Syntax PRELUDE1{command}
PRELUDE0
where:
• {command} is a subprogram call from the set CALL{constant},

G{constant}, M{constant}, T{constant}, D{constant}.
Remarks The PRELUDE1 command permits automatic insertion of a subprogram call before each

subsequent motion command (e.g., X10Y10) or other letter-number command (e.g.,
L10) other than a line label in the motion program. The action taken is equivalent to
inserting the call into the program text before each subsequent motion command or letter-
number command.
The subprogram call to be performed can be specified in the PRELUDE1 command either
as a CALL command, or as a G, M, T, or D code. The value following the CALL or code
letter must be a constant. It cannot be a variable or expression. It does not have to be an
integer. If the routine called in the subprogram starts with a READ statement, the motion
or letter-number command itself can become arguments for the subprogram call. Any
motion command within a PRELUDE1 subroutine or subprogram call is executed directly
as a motion command, without an automatic subroutine call in front of it.
PMAC will only execute the PRELUDE1 function if the motion or letter-number
command is found at the beginning of a program line or immediately after the line label.
If another type of command occurs earlier on the program line, no PRELUDE1 function
will be executed before the motion or letter-number command. If the command is on a
line that is already in a subroutine or subprogram reached by a CALL or GOSUB
command, no PRELUDE1 function will be executed.
Each PRELUDE1 command supersedes the previous PRELUDE1 command. It is not
possible to nest automatic PRELUDE1 calls, but an automatic PRELUDE1 call can be
nested within explicit subroutine and subprogram calls.
PRELUDE0 disables any automatic subroutine call.

PMAC 2 Software Reference

PMAC Program Command Specification 339

Example PRELUDE1 CALL10 ; Insert a CALL10 before subsequent moves
X10 Y20 ; Implicit CALL10 before this move
X20 Y30 ; Implicit CALL10 before this move
...
OPEN PROG 10 CLEAR ; Subprogram
Z-1 ; Move down
DWELL 500 ; Hold position
Z1 ; Move up
RETURN
...
G71 X7 Y15 P5 ; G71 calls PROG 1000 N71000
X8 Y16 P5 ; With PRELUDE, G71 is implied (modal)
X9 Y15 P8 ; With PRELUDE, G71 is implied (modal)
G70 ; Stop modal canned cycles
...
OPEN PROG 1000
...
N70000 ; G70 subroutine
PRELUDE0 ; Stop PRELUDE calls
RETURN
N71000 ; G71 subroutine
PRELUDE1 G71.1 ; Make G71 modal by using PRELUDE
RETURN
N71100 ; G71.1 routine is what executes G71 modally
READ(X,Y,P) ; Read values associated with X, Y, and P
 {action based on parameters}
RETURN

See Also Subroutines and Subprograms (Writing a Motion Program)
Program commands CALL, GOSUB, READ, G, M, T, D

PSET
Function Redefine current axis positions (Position SET)

Type Motion program

Syntax PSET{axis}{data} [{axis}{data}...]
where:
• {axis} is the character specifying which axis (X, Y, Z, A, B, C, U, V, W).
• {data} is a constant or an expression representing the new value for this axis

position.

Remarks This command allows the user to re-define the value of an axis position in the middle of
the program. It is equivalent to the RS-274 G-Code G92. No move is made on any axis
as a result of this command – the value of the present commanded position for the axis is
merely set to the specified value.

Internally, this command changes the value of the position bias register for each motor
attached to an axis named in the command. This register holds the difference between
the axis zero point and the motor zero (home) point.

This command automatically forces a temporary pause in the motion of the axes; no
moves are blended “through” a PSET command. For more powerful and flexible offsets
that can be done on the fly (X, Y, and Z axes only), refer to the matrix manipulation
commands such as ADIS and IDIS.

 PMAC 2 Software Reference

340 PMAC Program Command Specification

Example X10Y20
PSET X0 Y0 ; Call this position (0,0)

N92000 READ(X,Y,Z) ; To implement G92 in PROG 1000
PSET X(Q124)Y(Q125)Z(Q126) ; Equivalent of G92 X..Y..Z.

See Also Axes (Setting Up a Coordinate System)
On-line command {axis}={constant}
Program commands ADIS, AROT, IDIS, IROT
Suggested M-variable definitions Mx64
Memory map registers D:$0813, D:$08D3, etc.

PVT{data}
Function Set Position-Velocity-Time mode

Type Motion program (PROG and ROT)

Syntax PVT{data}
 where:
• {data} is a positive constant or expression representing the time of a segment in

milliseconds (PMAC will round this value to the nearest integer in actual use).

Remarks This command puts the motion program into Position-Velocity-Time move mode, and
specifies the time for each segment of the move. In this mode, each move segment in the
program must specify the ending position and velocity for the axis. Taking the starting
position and velocity (from the previous segment), the ending position and velocity, and
the segment time, PMAC computes the unique cubic position profile (parabolic velocity
profile) to meet these constraints.

The segment time in a sequence of moves can be changed on the fly, either with another
PVT command, or with a TA command. TS, TM, and F settings are irrelevant in this
mode.

The PVT command takes the program out of any of the other move modes (LINEAR,
CIRCLE, SPLINE, RAPID), and any of the other move mode commands takes the
program out of PVT move mode.

Refer to the Writing a Motion Program section of this manual for more details.

Example INC ; incremental mode, specify moves by distance
PVT200 ; enter this mode – move time 200ms
X100:1500 ; cover 100 units ending at 1500 units/sec
X500:3000 ; cover 500 units ending at 3000 units/sec
X500:1500 ; cover 500 units ending at 1500 units/sec
X100:0 ; cover 100 units ending at 0 units/sec
PVT(P37)

See Also Position-Velocity-Time Mode Moves (Writing a Motion Program)
Program commands {axis}{data}:{data}..., TA, LINEAR, CIRCLEn, RAPID,
SPLINE1.

PMAC 2 Software Reference

PMAC Program Command Specification 341

Q{constant}={expression}
Function Set Q-Variable Value

Type Motion program (PROG and ROT); PLC program

Syntax Q{constant}={expression}
where:
• {constant} is an integer value from 0 to 1023 representing the Q-variable number
• {expression} represents the value to be assigned to the specified Q-variable.

Remarks This command sets the value of the specified Q-variable to that of the expression on the
right side of the equals sign. The assignment is done as the line is processed, which in a
motion program performing a continuous move sequence is usually one or two moves
ahead of the move actually executing at the time (because of the need to calculate ahead
in the program).

Because each coordinate system has its own set of Q-variables, it is important to know
which coordinate system’s Q-variable is affected by this command.

When executed from inside a motion program, this command affects the specified Q-
variable of the coordinate system running the motion program.

When executed from inside a PLC program, this command affects the specified Q-
variable of the coordinate system specified by the most recent ADDRESS command
executed inside that PLC program. If there has been no ADDRESS command executed
since power-on/reset, it affects the Q-variable of Coordinate System 1.

Example Q1=3
Q99=2.71828

Q124=P100+ATAN(Q120)

See Also Q-Variables (Program Computational Features)
On-line command Q{constant}={expression}
Program commands ADDRESS, I{constant}={expression},
M{constant}={expression}, P{constant}={expression}

R{data}
Function Set Circle Radius

Type Motion program (PROG or ROT)

Syntax R{data}
where:
• {data} is a constant or expression representing the radius of the arc move specified

in user length units.

Remarks This partial command defines the magnitude of the radius for the circular move specified
on that command line. It does not affect the moves on any other command lines.. (If
there is no R radius specification and no IJK vector specification on a move command
line, the move will be done linearly, even if the program is in CIRCLE mode.)

If the radius value specified in {data} is greater than zero, the circular move to the
specified end point will describe an arc of less than or equal to 180º with a radial length
of the specified value. If the radius value specified in {data} is less than zero, the
circular move to the specified end point will describe an arc of greater than or equal to
180° with a radial length equal to the absolute value of {data}.

 PMAC 2 Software Reference

342 PMAC Program Command Specification

Note:

If you use the AROT or IROT commands to scale the coordinate system,
do not use the radius center specification for circle commands. The
radius does not get scaled. Use the I, J, K vector specification instead.

If the distance from the start point to the end point is more than twice the
magnitude specified in {data}, there is no circular arc move possible.
If the distance is greater than twice {data} by an amount less than Ix96
(expressed in user length units), PMAC will execute a spiral to the end
point. If the distance is greater by more than Ix96, PMAC will stop the
program with a run-time error.

Example RAPID X0 Y0 ; Move to origin
CIRCLE1 ; Clockwise circle mode
X10 Y10 R10 ; Quarter circle to (10, 10)
X0 Y0 R-10 ; Three-quarters circle back to (0, 0)
X(P101) R(P101/2) ; Half circle to (P101, 0)

See Also Circular Blended Moves (Writing a Motion Program);
I-variables I13, Ix96
Program commands CIRCLE1, CIRCLE2, {axis}{data}{vector}{data}

RAPID
Function Set Rapid Traverse Mode

Type Motion program (PROG and ROT)

Syntax RAPID
RPD

Remarks This command puts the program into a mode in which all motors defined to the
commanded axes move to their destination points in jog-style moves. This mode is
intended to create the minimum-time move from one point to another. Successive moves
are not blended together in this mode, and the different motors do not necessarily all
reach their end points at the same time

The accelerations and decelerations in this mode are controlled by motor jog-acceleration
I-variables Ix19, Ix20, and Ix21. If global I-variable I50 is set to 0, the velocities in this
mode are controlled by the motor jog speed I-variables Ix22. If I50 is set to 1, they are
controlled by the motor maximum speed I-variables Ix16. Only the motor with the
greatest distance-to-speed ratio for the move actually moves at this speed. All other
motors are slowed from the specified speed to complete the move in approximately the
same time, so that the move is nearly linear.

The RAPID command takes the program out of any of the other move modes (LINEAR,
CIRCLE, PVT, SPLINE). Any of the other move-mode commands takes the program
out of RAPID mode.

Example RAPID X10 Y20 ; Move quickly to starting cut position
M1=1 ; Turn on cutter
LINEAR X12 Y25 F2 ; Start cutting moves
...
M1=0 ; Turn off cutter
RAPID X0 Y ; Move quickly back to home position

PMAC 2 Software Reference

PMAC Program Command Specification 343

See Also Rapid Mode Moves (Writing a Motion Program)
I-variables I50, Ix16, Ix19, Ix22
Program commands LINEAR, CIRCLE, PVT, SPLINE

READ
Function Read Arguments for Subroutine

Type Motion program (PROG only)

Syntax READ({letter},[{letter}...])
where:
• {letter} is any letter of the English alphabet, except N or O, representing the

letter on the calling program line whose following value is to be read into a variable.

Note:
No space is allowed between READ and the left parenthesis.

Remarks This statement allows a subprogram or subroutine to take arguments from the calling
routine. It looks at the remainder of the line calling this routine (CALL, G, M, T, D), takes
the values following the specified letters and puts them into particular Q-variables for the
coordinate system. For the Nth letter of the alphabet, the value is put in Q(100+N).
It scans the calling line until it sees a letter that is not in the list of letters to READ, or
until the end of the calling line. Each letter value successfully “read” into a Q-variable
causes a bit to be set in Q100, noting that it was read (bit N-1 for the Nth letter of the
alphabet). For any letter not successfully read in the most recent READ command, the
corresponding bit of Q100 is set to zero.
The Q-variable and flag bit of Q100 associated with each letter are shown in the
following table:

Letter Target
Variable

Q100
Bit

Bit Value
Decimal

Bit Value
Hex

A Q101 0 1 $01
B Q102 1 2 $02
C Q103 2 4 $04
D Q104 3 8 $08
E Q105 4 16 $10
F Q106 5 32 $20
G Q107 6 64 $40
H Q108 7 128 $80
I Q109 8 256 $100
J Q110 9 512 $200
K Q111 10 1,024 $400
L Q112 11 2,048 $800
M Q113 12 4,096 $1000
N* Q114* 13* 8,192* $2000*
O* Q115* 14* 16,384* $4000*
P Q116 15 32,768 $8000
Q Q117 16 65,536 $10000
R Q118 17 131,072 $20000
S Q119 18 262,144 $40000
T Q120 19 524,288 $80000
U Q121 20 1,048,57 $100000

 PMAC 2 Software Reference

344 PMAC Program Command Specification

V Q122 21 2,097,15 $200000
W Q123 22 4,194,304 $400000
X Q124 23 8,388,608 $800000
Y Q125 24 16,777,216 $1000000
Z Q126 25 33,554,432 $2000000

*Cannot be used

Any letter may be READ except N or O, which are reserved for line labels (and should
only be at the beginning of a line). If a letter value is read from the calling line, the
normal function of the letter (e.g., an axis move) is overridden, so that letter serves
merely to pass a parameter to the subroutine.

If there are remaining letter values on the calling line that are not read, those will be
executed according to their normal function after the return from the subroutine.
If the READ function encounters a letter in the calling line that is not in the list of letters
to be read, the reading action stops, even if there are other letters from the list still to be
read on the calling line. For example, if the calling line were CALL100 X10 Y20
Z30, and PROG 100 started with a READ(X,Z), the X-value would be read
successfully, but not the Z-value.

Example In standard machine tool code, a two-second DWELL would be commanded in the program as a
G04 X2000, for instance. In PMAC, a G04 is interpreted as a CALL to label N04000 of PROG
1000, so to implement this function properly, PROG 1000 would contain the following code:

N04000 READ(X)
DWELL (Q124)
RETURN

Also, in standard machine tool code, the value assigned to the current position of the axis may be
changed with the G92 code, followed by the letters and the new assigned values of any axes (e.g.
G92 X20 Y30). It is important only to assign new values to axes specified in this particular
G92 command, so the PMAC subroutine implementing G92 with the PSET command must check
to see if that particular axis is specified:
 N92000 READ(X,Y,Z)
 IF (Q100 & $800000 > 0) PSET X(Q124)
 IF (Q100 & $1000000 > 0) PSET Y(Q125)
 IF (Q100 & $2000000 > 0) PSET Z(Q126)
 RETURN

See Also Subroutines and Subprograms (Writing a Motion Program)
Program commands CALL, GOSUB, G, M, T, D

RESUME PLC
Function Resume execution of PLC programs(s)

Type Motion program (PROG and ROT), PLC program

Syntax RESUME PLC {constant}[,{constant}...]
RES PLC {constant}[,{constant}...]
RESUME PLC{constant}[..{constant}]
RES PLC {constant}[..{constant}]
where:
• {constant} is an integer from 0 to 31, representing the program number.

Remarks This command causes PMAC to resume execution of the specified uncompiled PLC
program or programs at the point where execution was suspended with the PAUSE PLC
command, which is not necessarily at the top of the program.

PMAC 2 Software Reference

PMAC Program Command Specification 345

The RESUME PLC command cannot be used to restart execution of a PLC program that
has been stopped with a DISABLE PLC command. However, after a PLC has been
stopped with a DISABLE PLC command, if a PAUSE PLC command is then given for
that PLC, then a RESUME PLC command can be given to start operation at the point at
which it has been stopped.
PLC programs are specified by number, and may be used singularly in this command, in
a list (separated by commas), or in a range of consecutively numbered programs.
If no buffer is open when this command is sent to PMAC, it will be executed
immediately as an on-line command.

Example RESUME PLC 0
RESUME PLC 1,2,5
RESUME PLC 1..16
RES PLC 7

See Also I-variable I5
On-line commands ENABLE PLC, DISABLE PLC, <CONTROL-D>, PAUSE PLC,
RESUME PLC
Program commands ENABLE PLC, DISABLE PLC, PAUSE PLC

RETURN
Function Return From Subroutine Jump/End Main Program

Type Motion program (PROG only)

Syntax RETURN
RET

Remarks The RETURN command tells the motion program to jump back to the routine that called
the execution of this routine. If this routine was started from an on-line command (Run),
program execution stops and the program pointer is reset to the top of this motion
program. Control is returned to the PMAC “operating system”.

If this routine was started from a GOSUB, CALL, G, M, T, or D command in a motion
program, program execution jumps back to the command immediately following the
calling command.

When the CLOSE command is sent to end the entry into a motion program buffer, PMAC
automatically appends a RETURN command to the end of that program. When the OPEN
command is sent to an existing motion program buffer, the final RETURN command is
automatically removed.

Example OPEN PROG 1 CLEAR
X20 F10
X0
CLOSE ; PMAC places a RETURN here
OPEN PROG 1000 CLEAR
N0 RAPID RETURN ; Execution jumps back after one-line routine
N1000 LINEAR RETURN ; Ditto
N2000 CIRCLE1 RETURN ; Ditto
...
CLOSE ; PMAC places a RETURN here

See Also Subroutines and Subprograms (Writing a Motion Program)
On-line commands OPEN, CLOSE
Program commands CALL, GOSUB, G, M, T, D

 PMAC 2 Software Reference

346 PMAC Program Command Specification

S{data}
Function Spindle data command

Type Motion program (PROG and ROT)

Syntax S{data}
where:
• {data} is a constant or expression representing the value to be passed to the storage

variable for later use.

Remarks This command causes the value in {data} to be loaded in variable Q127 for the
coordinate system executing the motion program. It takes no other action. It is intended
to pass spindle speed data in machine tool programs. The algorithms that actually control
the spindle would then use Q127 in their routines (e.g., to set jog speed, or voltage
output).

Note:
This command is distinct from S{data} information passed as part of a
subroutine call through a READ(S) command. In this form, the value is
placed in Q119 for the coordinate system.

Example S1800 ; This puts a value of 1800 in Q127
S(P1) ; This puts the value of P1 in Q127
G96 S50 ; Here the S-term is an argument in the G-code call
(PROG 1000) ; This is the subroutine that executes G96
N96000 READ(S) ; This puts a value of 50 in Q119

See Also Q-variables (Program Computational Features)
Implementing a Machine-Tool Style Program (Writing a Motion Program)
Motion program command READ
Example program SPINDLE.PMC

SEND
Function Cause PMAC to Send Message

Type Motion program (PROG and ROT); PLC program

Syntax SEND"{message}"
SENDS"{message}"
SENDP"{message}"

Remarks This command causes PMAC to send the specified message out of one of PMAC’s
communications ports. This is particularly useful in the debugging of applications. It
can also be used to prompt an operator, or to notify the host computer of certain
conditions.

If I62=0, PMAC automatically issues a carriage-return (<CR>) character at the end of the
message. If I62=1, PMAC does not issue a <CR> character at the end of the message. A
SEND^M must be used to issue a <CR> in this case.

PMAC 2 Software Reference

PMAC Program Command Specification 347

Note:
If there is no host on the port to which the message is sent, or the host is
not ready to read the message, the message is left in the queue. If several
messages back up in the queue this way, the program issuing the
messages will halt execution until the messages are read. This is a
common mistake when the SEND command is used outside of an Edge-
Triggered condition in a PLC program. See Writing A PLC Program in
Chapter 3 for more details.

On the serial port, it is possible to send messages to a non-existent host
by disabling the port handshaking with I1=1.

SEND transmits over the active communications response port, whether serial, parallel
host port (PC-Bus or STD-Bus), VME-Bus port, or ASCII DPRAM buffer.

SENDS always transmits over the serial port regardless of which port is the current active
response port.

SENDP always transmits over the parallel host port (PC-Bus or STD-Bus), regardless of
which port is the current active response port.

There is no SENDV command for the VME bus exclusively. The SEND command must
be used with the VME port as the active response port.

When PMAC powers up or resets, the active response port is the serial port. When any
command is received over a bus port, the active response port becomes the bus port.
PMAC must then receive a <CONTROL-Z> command to cause the response port to
revert back to the serial port.

Note:
If a program, particularly a PLC, sends messages immediately on power-
up/reset, it can confuse a host-computer program (such as the PMAC
Executive Program) that is trying to “find” PMAC by querying it and
looking for a particular response.

It is possible, particularly in PLC programs, to order the sending of messages faster than
the port can handle them. Usually this will happen if the same SEND command is
executed through every scan in the PLC. For this reason, it is good practice to have at
least one of the conditions that causes the SEND command to execute to be set false
immediately to prevent execution of this SEND command on subsequent scans of the
PLC.

Note:
To cause PMAC to send the value of a variable, use the COMMAND
statement instead, specifying the name of the variable in quotes (e.g.
CMD”P1”)

Example SEND"Motion Program Started"
SENDS"DONE"
SENDP"Spindle Command Given"

IF (M188=1) ; C.S.1 Warning Following Error Bit set?

 IF (P188=0) ; But not set last scan? (P188 follows M188)
 SEND"Excessive Following Error" ; Notify operator

 PMAC 2 Software Reference

348 PMAC Program Command Specification

 P188=1 ; To prevent repetition of message
 ENDIF
ELSE ; F.E. Bit not set
 P188=0 ; To prepare for next time
ENDIF

SEND"THE VALUE OF P7 IS:" ; PMAC to send the message string
CMD"P7" ; PMAC to return the value of P7

See Also I-variables I1, I62
Program commands COMMAND, DISPLAY, SEND^{letter}
Writing A PLC Program

SEND^{letter}
Function Cause PMAC to Send Control Character
Type Motion program (PROG and ROT); PLC program
Syntax SEND^{letter}

SENDS^{letter}
SENDP^{letter}
where:
• {letter} is one of the characters in the following set: @ABC...XYZ[\]^_.

Remarks This command causes PMAC to send the specified control character over one of the
communications ports. These can be used for printer and terminal control codes, or for
special communications to a host computer
Control characters have ASCII byte values of 0 to 31 ($1F). The specified {letter}
character determines which control character is sent when the statement is executed. The
byte value of the control character sent is 64 ($40) less than the byte value of
{letter}. The letters that can be used and their corresponding control characters are:

{letter} Letter Value Control Character Value
@ 64 NULL 0
A 65 <CTRL-A> 1
B 66 <CTRL-B> 2
C 67 <CTRL-C> 3
...
X 88 <CTRL-X> 24
Y 89 <CTRL-Y> 25
Z 90 <CTRL-Z> 26
[91 ESC 27
\ 92 28
] 93 29
^ 94 30
_ 95 31

Note: Do not put the up-arrow character and the letter in quotes (do not use
SEND”^A”) or PMAC will attempt to send the two non-control characters ^ and A
for this example, instead of the control character.

 SEND transmits over the active communications response port, whether serial, parallel
host port (PC-Bus or STD-Bus), or VME-Bus port.
SENDS always transmits over the serial port regardless of which port is the current active
response port.
SENDP always transmits over the parallel host port (PC-Bus or STD-Bus), regardless of
which port is the current active response port.

PMAC 2 Software Reference

PMAC Program Command Specification 349

There is no SENDV command for the VME bus exclusively. The SEND command must
be used with the VME port as the active response port.

When PMAC powers up or resets, the active response port is the serial port. When any
command is received over a bus port, the active response port becomes the bus port.
PMAC must then receive a <CONTROL-Z> command to cause the response port to
revert back to the serial port.

It is possible, particularly in PLC programs, to order the sending of messages faster than
the port can handle them. Usually this will happen if the same SEND command is
executed through every scan in the PLC. For this reason, it is good practice to have at
least one of the conditions that causes the SEND command to execute to be set false
immediately to prevent execution of this SEND command on subsequent scans of the
PLC.

See Also On-line command <CTRL-Z>
Program commands SEND”{message}”, COMMAND”{command}”,
COMMAND^{letter}

SETPHASE
Function Set motor commutation phase-position register(s)

Type Motion program, PLC program

Syntax SETPHASE{constant}[,{constant}...]
SETPHASE{constant}..{constant}
[,{constant}..{constant}...]
where:
• {constant} is an integer from one to eight representing a motor number.

Remarks This command causes PMAC to force the commutation phase-position register for the
specified motor or motor’s to the value of the Ix75 phase-position offset parameter.

The main use of this command is to correct the phase position value at a known position
(usually the motor home position) after an approximate phasing search or phasing read
(e.g. from Hall commutation sensors). The approximate referencing is sufficient to move
to a known position, but not necessarily to get peak performance from the motor.

This command forces a value into an “actual” (not “commanded”) position register, so it
is important that the actual position value be known with precision, either due to small
following error or quick reaction to an actual-position trigger.

In a motion program, this command executes immediately at program calculation
(lookahead) time, so for proper use in a motion program, it must be preceded by a
DWELL command and/or an in-position loop. If a motor specified in the statement is not
assigned to the coordinate system executing the program, the action will not be executed
for that motor (but no error will be reported).

Example Motion program:
HOME1..3
WHILE(M180=0) WAIT ; Wait for all in-position
SETPHASE1..3 ; Force phase values in
PLC program:
CMD"#4$" ; Rough phase search/read
WHILE(M440=0) ; Wait for motor in-position
ENDWHILE

 PMAC 2 Software Reference

350 PMAC Program Command Specification

CMD"#4HM" ; Homing searach move
WHILE(M440=0) ; Wait for motor in-position
ENDWHILE
SETPHASE4 ; Force phase value in

See Also Power-On Phasing Search (Setting Up PMAC Commutation)
I-variables Ix75, Ix81
On-Line Command SETPHASE

SPLINE1
Function Put program in uniform cubic spline motion mode

Type Motion program (PROG and ROT)

Syntax SPLINE1

Remarks This modal command puts the program in cubic spline mode. In SPLINE1 mode, each
programmed move takes TA time (Ix87 is default) – there is no feedrate specification
allowed. Each move on each axis is computed as a cubic position trajectory in which the
intermediate positions are relaxed somewhat so there are no velocity or acceleration
discontinuities in blending the moves together.

Before the first move in any series of consecutive moves, a starting move of TA time is
added to blend smoothly from a stop. After the last move in any series of consecutive
moves, an ending move of TA time is added to blend smoothly to a stop. If the TA time
is changed in the middle of a series of moves, there will be a stop generated, with an
extra TA1 move and an extra TA2 move added.
This command will take the program out of any of the other move modes (LINEAR,
CIRCLE, PVT, RAPID). The program will stay in this mode until another move mode
command is executed.

Example RAPID X10 Y10
SPLINE1 TA100
X20 Y15
X32 Y21
X43 Y26
X50 Y30
DWELL100
RAPID X0 Y0

See Also Cubic Spline Mode (Writing a Motion Program)
I-variable Ix87
Program commands LINEAR, CIRCLE, RAPID, PVT, SPLINE2, TA

SPLINE2
Function Put program in non-uniform cubic spline motion mode

Type Motion program (PROG and ROT)

Syntax SPLINE2

Remarks This modal command puts the program in non-uniform cubic spline mode. This mode is
virtually identical to the SPLINE1 uniform cubic spline mode described above, except
that the TA segment time can vary in a continuous spline. This makes SPLINE2 mode
more flexible than SPLINE1 mode, but it takes slightly more computation time.

Example RAPID X10 Y10
SPLINE2
X20 Y15 TA100

PMAC 2 Software Reference

PMAC Program Command Specification 351

X32 Y21 TA120
X43 Y26 TA87
X50 Y30 TA62
DWELL100
RAPID X0 Y0

See Also Cubic Spline Mode (Writing a Motion Program)
I-variable Ix87
Program commands LINEAR, CIRCLE, RAPID, PVT, SPLINE1, TA

STOP
Function Stop program execution
Type Motion program (PROG)
Syntax STOP
Remarks This command suspends program execution, whether started by run or step, keeping the

program counter pointing to the next line in the program, so that execution may be
resumed with a RUN or STEP command.

Example A10 B10
A20 B0
STOP
A0 B0

See Also On-line commands <CONTROL-Q>, Q, R, S
Program commands BLOCKSTART, BLOCKSTOP

T{data}
Function Tool Select Code (T-Code)
Type Motion program
Syntax T{data}

where
• {data} is a floating-point constant or expression in the range 0.000 to 999.999,

specifying the program number and the line label to jump to.
Remarks PMAC interprets this statement as a CALL 10n2.({data’}*1000) command, where

n is the hundreds’ digit of {data}, and {data’} is the value of {data} without the
hundred’s digit (modulo 100 in mathematical terms). That is, this statement causes a jump
(with return) to motion program 10n2, and the specified line label. (Programs 10n2 are
usually used to implement the machine codes as the system designer sees fit.) The value of
{data’} can be from 0.0 to 99.999, corresponding to line labels N0 to N99999.
If the specified program and/or line label do not exist, the T command is ignored, and the
program continues as if it were not there. No error is generated.
This structure permits the implementation of customizable T-code routines for machine-
tool style applications by the writing of subroutines in motion programs 10n2. Arguments
can be passed to these subroutines by following the T-code with one or more sets of
{letter}{data}, as in CALL and READ statements.
Most users will have T-codes only in the range 0-99, which permits the use of PROG 1002
only, and allows {data’} to equal {data} for direct specification of the line label.

Example T01 jumps to N1000 of PROG 1002
T12 jumps to N12000 of PROG 1002
T115 jumps to N15000 of PROG 1012

See Also Program commands CALL{data}, D{data}, M{data}, T{data}, RETURN

 PMAC 2 Software Reference

352 PMAC Program Command Specification

TA{data}
Function Set Acceleration Time

Type Motion program (PROG and ROT)

Syntax TA{data}
where:
• {data} is a constant or expression representing the acceleration time in

milliseconds
Remarks This statement specifies the commanded acceleration time between blended moves

(LINEAR and CIRCLE mode), and from and to a stop for these moves. In PVT and
SPLINE1 mode moves, which are generally continually accelerating and decelerating, it
specifies the actual move segment time. The units are milliseconds. PMAC will round
the specified value to the nearest integer number of milliseconds when executing this
command (no rounding is done in storing the value in the buffer).

Note:
Make sure the specified acceleration time (TA or 2*TS) is greater than
zero, even if you are planning to rely on the maximum acceleration rate
parameters (Ix17). A specified acceleration time of zero will cause a
divide-by-zero error. The minimum specified time should be TA1 TS0.

If the specified S-curve time (from TS, or Ix88) is greater than half the TA time, the time
used for the acceleration for blended moves will be twice the specified S-curve time.
The acceleration time is also the minimum time for a blended move. If the distance on a
feedrate-specified (F) move is so short that the calculated move time is less than the
acceleration time, or the time of a time-specified (TM) move is less than the acceleration
time, the move will be done in the acceleration time instead. This will slow down the
move. If TA controls the move time, it must be greater than the I13 time and the I8
period.

Note:
The acceleration time will be extended automatically when any motor in
the coordinate system is asked to exceed its maximum acceleration rate
(Ix17) for a programmed LINEAR mode move with I13=0 (no move
segmentation).

A move executed in a program before any TA statement will use the default acceleration
time specified by coordinate system I-variable Ix87.
In executing the TA command, PMAC rounds the specified value to the nearest integer
number of milliseconds (there is no rounding done when storing the command in the
buffer).

Example TA100
TA(P20)
TA(45.3+SQRT(Q10))

See Also Linear, Circular Blended Moves, Cubic Spline Moves, PVT Moves (Writing a Motion
Program)
I-variables Ix17, Ix87, Ix88
Program commands TS, TM, PVT.

PMAC 2 Software Reference

PMAC Program Command Specification 353

TINIT
Function Initialize selected transformation matrix
Type Motion program (PROG and ROT)
Syntax TINIT
Remarks This command initializes the currently selected (with TSEL) transformation matrix for

the coordinate system by setting it to the identity matrix. This makes the rotation angle
0, the scaling 1, and the displacement 0, so the XYZ points for the coordinate system are
as the axis definition statements created them. PMAC will still perform the matrix
calculations, even though they have no effect. TSEL0 should be used to stop the matrix
calculations
The matrix can subsequently be changed with the ADIS, IDIS, AROT, and IROT
commands.

Example TSEL 4 ; Select transformation matrix 4
TINIT ; Initialize it to the identity matrix
IROT 71 ; Do incremental rotation/scaling with Q71-Q79

See Also Axis Matrix Transformations (Writing a Motion Program)
On-line command DEFINE TBUF
Program commands TSEL, ADIS, IDIS, AROT, IROT

TM{data}
Function Set Move Time
Type Motion program
Syntax TM{data}

where:
• {data} is a floating-point constant or expression representing the move time in

milliseconds. The maximum effective TM value is 223 msec. The minimum effective
TM value is 1 msec.

Remarks This command establishes the time to be taken by subsequent LINEAR or CIRCLE mode
(blended) motions. It overrides any previous TM or F statement, and is overridden by any
subsequent TM or F statement. It is irrelevant in RAPID, SPLINE, and PVT move
modes, but the latest value will stay active through those modes for the next return to
blended moves.

The acceleration time is the minimum time for a blended move. If the specified move
time is shorter than the acceleration time, the move will be done in the acceleration time
instead. This will slow down the move. If TM controls the move time it must be greater
than the I13 time and the I8 period.

Note:
For LINEAR mode moves with I13=0 (no move segmentation), if the
commanded velocity (distance/TM) of any motor in the move exceeds its
maximum limit (Ix16), all motors in the coordinate system will be
slowed down in proportion so that no motor exceeds its limit.

Example TM30
TM47.635
TM(P1/3)

See Also Linear and Circular Blended Moves (Writing a Motion Program)
I-variable Ix16
Program commands F, TA, TS, LINEAR, CIRCLE

 PMAC 2 Software Reference

354 PMAC Program Command Specification

TS{data}
Function Set S-Curve Acceleration Time

Type Motion program (PROG and ROT)

Syntax TS{data}
where:
• {data} is a positive constant or expression representing the S-curve time in

milliseconds.

Remarks This command specifies the time, at both the beginning and end of the total acceleration
time, in LINEAR and CIRCLE mode blended moves that is spent in S-curve
acceleration.

If TS is zero, the acceleration is constant throughout the TA time and the velocity profile
is trapezoidal. If TS is greater than zero, the acceleration will start at zero and linearly
increase through TS time, then stay constant (for time TC) until TA-TS time, and
linearly decrease to zero at TA time (that is, TA=2TS+TC). If TS is equal to TA/2, the
entire acceleration will be spent in S-curve form (TS values greater than TA/2 override
the TA value. Total acceleration time will be 2TS.

Note:
For LINEAR mode moves with PMAC not in segmentation mode
(I13=0), if the rate of acceleration for any motor in the coordinate system
exceeds that motor’s maximum as specified by Ix17, the acceleration
time for all motors is increased so that no motor exceeds its maximum
acceleration rate.

TS does not affect RAPID, PVT, or SPLINE mode moves, but it stays valid for the next
return to blended moves.

Note:
Make sure the specified acceleration time (TA or 2*TS) is greater than
zero, even if planning to rely on the maximum acceleration rate
parameters (Ix17). A specified acceleration time of zero will cause a
divide-by-zero error. The minimum specified time should be TA1 TS0.

In executing the TS command, PMAC rounds the specified value to the nearest integer
number of milliseconds (there is no rounding done when storing the command in the
buffer).

A blended move executed in a program before any TS statement will use the default S-
curve time specified by coordinate system I-variable Ix88.

Example TS20
TS(Q17)

TS(39.32+P43)

See Also Linear and Circular Blended Moves (Writing a Motion Program)
I-variables I13, Ix17, Ix21, Ix87, Ix88
Program commands TA, TM, F, LINEAR, CIRCLE

PMAC 2 Software Reference

PMAC Program Command Specification 355

TSELECT{constant}
Function Select active transformation matrix for X, Y, and Z axes

Type Motion program (PROG and ROT)

Syntax TSELECT{constant}
where:
• {constant} is an integer representing the number of the matrix to be used.

Remarks This command selects the specified matrix for use as the active transformation matrix for
the X, Y, and Z axes of the coordinate system running the motion program. This matrix
can then be modified using the TINIT, ADIS, AROT, IDIS, and IROT commands to
perform translations, rotations, and scaling of the three axes. This matrix will be used
until another one is selected.
This matrix must already have been created with the on-line DEFINE TBUF command.
That command specifies the number of matrices to create, and it must have specified a
number at least as high as the number used in TSEL (you cannot select a matrix that has
not been created).
TSEL0 deselects all transformation matrices, saving calculation time.

Example DEFINE TBUF 5 ; Create five transformation matrices
OPEN PROG 10 CLEAR
...
TSEL 3 ; Select transformation matrix 3 (of 5)
TINIT ; Make matrix 3 the identity matrix

See Also Axis Matrix Transformations (Writing a Motion Program)
On-line command DEFINE TBUF
Program commands AROT, IROT, ADIS, IDIS, TINIT

U{data}
Function U-Axis Move

Type Motion program

Syntax U{data}
where:
• {data} is a floating point constant or expression representing the position or

distance in user units for the U-axis.

Remarks This command causes a move of the U-axis. (See {axis}{data} description, above.)

Example U10
U(P17+2.345)
X20 U20

U(COS(Q10)) V(SIN(Q10))
See Also Program commands {axis}{data}, A, B, C, V, W, X, Y, Z, CALL, READ

 PMAC 2 Software Reference

356 PMAC Program Command Specification

V{data}
Function V-Axis Move

Type Motion program (PROG and ROT)

Syntax V{data
where:
• {data} is a floating point constant or expression representing the position or

distance in user units for the V-axis.

Remarks This command causes a move of the V-axis. (See {axis}{data} description, above.)

Example V20
U56.5 V(P320)
Y10 V10
V(SQRT(Q20*Q20+Q21*Q21))

See Also Program commands {axis}{data}, A, B, C, U, W, X, Y, Z, CALL, READ

W{data}
Function W-Axis Move

Type Motion program

Syntax W{data}
where:
• {data} is a floating point constant or expression representing the position or

distance in user units for the W-axis.
Remarks This command causes a move of the W-axis. (See {axis}{data} description, above.)
Example W5

W(P10+33.5)
Z10 W10
W(ABS(Q22*Q22))

See Also Program commands {axis}{data}, A, B, C, U, V, X, Y, Z, CALL, READ

WAIT
Function Suspend program execution

Type Motion program (PROG and ROT)

Syntax WAIT
Remarks This command may be used on the same line as a WHILE condition to hold up execution

of the program until the condition goes false. When the condition goes false, program
execution resumes on the next line. Use of the WAIT statement allows indefinite pauses
without the need for repeated use of a servo command (e.g., DWELL or DELAY) to eat up
the time. However, it is impossible to predict how long the pause will be.
WAIT permits a faster resumption of the program upon the WHILE condition going false.
Also, the program timer is halted when WAITing, which allows the “In-position” bit to
go true (which can be used to trigger an action, or the next move).
Since PMAC executes a WHILE ({condition}) WAIT statement every Real Time
Interrupt until the condition goes false, it is essentially the same as a PLC0. This could
use excessive processor time and in severe cases trip the watchdog timer on PMACs that
simultaneously run several motion programs that use WAIT statements and or large PLC0
programs.

PMAC 2 Software Reference

PMAC Program Command Specification 357

For example, if the condition only needs to be checked every 20 msec and not every Real
Time Interrupt, you should consider using a DWELL command to regulate the execution
time of the WHILE loop.
WHILE ({condition})
 DWELL20
ENDW

Example WHILE (M11=0) WAIT ; Pause here until Machine Input 1 set
WHILE (M187=0) WAIT ; Pause here until all axes in-position
M1=1 ; Turn on Output 1 to activate punch

See Also I-variable Ix28
Program commands DWELL, DELAY, STOP

WHILE({condition})
Function Conditional looping

Type Motion program (PROG only); PLC program

Syntax WHILE ({condition})
WHILE ({condition}) {action}
where:
• {condition} consists of one or more sets of {expression} {comparator}

{expression}, joined by logical operators AND or OR.
• {action} is a program command.

Remarks This statement allows repeated execution of a statement or series of statements as long as
the condition is true. It is PMAC’s only looping construct. It can take two forms:
1. (Valid in motion program only) With a statement following on the same line, it will

repeatedly execute that statement as long as the condition is true. No ENDWHILE is
used to terminate the loop.

 WHILE ({condition}) {action}
2. (Valid in motion and PLC programs) With no statement following on the same line,

it will execute statements on subsequent lines down to the next ENDWHILE
statement.

 WHILE ({condition})
 {statement}
 [{statement}
 ...]
 ENDWHILE

If a WHILE loop in a motion program has no move, DWELL, or DELAY inside, PMAC
will attempt to execute the loop twice (while true) each real-time interrupt cycle (stopped
from more loops only by the “double-jump-back” rule), much like a PLC0. This can
starve the background tasks for time, possibly even tripping the watchdog timer. PMAC
will not attempt to blend moves through such an “empty” WHILE loop if it finds the loop
condition true twice or more.
In PLC programs, extended compound WHILE conditions can be formed on multiple
program lines through use of AND and OR commands on the program lines immediately
following the WHILE command itself (this structure is not available in motion programs).
Conditions in each program line can be either simple or compound. AND and OR
operations within a program line take precedence over AND and OR operations between
lines.

 PMAC 2 Software Reference

358 PMAC Program Command Specification

Example WHILE (P20=0)
 ...
ENDWHILE
WHILE (Q10<5 AND Q11>1)
 ...
ENDWHILE
WHILE (M11=0) WAIT ; sit until input goes true
INC
WHILE (M11=0 OR M12=0) X100 ; increment until 2 inputs true
To do the equivalent of a For/Next loop:
P1=0 ; Initialize loop counter
WHILE (P1<10) ; Loop until counter exceeds limit
 X1000 ; Perform action to be repeated
 P1=P1+1 ; Increment loop counter
ENDWHILE ; Loop back
To do a timed wait in a PLC program, use the servo cycle counter as timer
P90=16777216 ; Counter rollover value (2^24)
P91=M0 ; Store starting value of M0 (X:$0) counter
P92=0 ; Time elapsed so far
WHILE (P92<P93) ; Loop until past specified time
 P92=(M0-P91)%P90 ; Calculate time elapsed
 ; Modulo (%) operation to handle rollover
ENDWHILE ; Loop back
To do extended compound conditions in a PLC program
WHILE (M11=1 AND M12=1)
OR (M13=1 AND M14=1)
AND (P1>0)
 ...
ENDWHILE

See Also Program Logic (Writing a Motion Program, Writing a PLC Program)
How PMAC Executes a Motion Program (Writing a Motion Program)
Program commands AND, OR, IF, ELSE, ENDIF, ENDWHILE

X{data}
Function X-Axis Move
Type Motion program
Syntax X{data}

where:
• {data} is a floating point constant or expression representing the position or

distance in user units for the X-axis.
Remarks This command causes a move of the X-axis. (See {axis}{data} description above.)
Example X10

X15 Y20
X(P1) Y30
X(Q10*COS(Q1)) Y(Q10*SIN(Q1))
X3.76 Z2.92 I0.075 K3.42

See Also Program commands {axis}{data}, A, B, C, U, V, W, Y, Z, CALL, READ

PMAC 2 Software Reference

PMAC Program Command Specification 359

Y{data}
Function Y-Axis Move

Type Motion program

Syntax Y{data}
where:
• {data} is a floating point constant or expression representing the position or

distance in user units for the Y-axis.

Remarks This command causes a move of the Y-axis. (See {axis}{data} description above.)

Example Y50
Y(P100)
X35 Y75
Y-0.221 Z3.475
Y(ABS(P3+P4)) A(INT(P3-P4))

See Also Program commands {axis}{data}, A, B, C, U, V, W, X, Z, CALL, READ

Z{data}
Function Z-Axis Move

Type Motion program

Syntax Z{data}
where:
• {data} is a floating point constant or expression representing the position or

distance in user units for the W-axis.

Remarks This command causes a move of the Z-axis. (See {axis}{data} description above.)

Example Z20
Z(Q25)
X10 Y20 Z30
Z23.4 R10.5
Z(P301+2*P302/P303)

See Also Program commands {axis}{data}, A, B, C, U, V, W, X, Y, CALL, READ

 PMAC 2 Software Reference

360 PMAC Mathematical Features

PMAC MATHEMATICAL FEATURES
Mathematical Operators
+
Function Addition

Remarks The + sign implements the addition of the numerical values preceding and following it.

Multiplication, division, modulo (remainder), and bit-by-bit “and” operations have
higher priority than addition, subtraction, bit-by-bit “or”, and bit-by-bit “exclusive-or”
operations. Operations of the same priority are implemented from left to right.

The + sign may not be used as a “unary” operator to emphasize that the positive value
of the following variable or constant is to be used (e.g. P1=+P2). This syntax will be
rejected with an error.

-
Function Subtraction

Remarks The - sign implements the subtraction of the numerical value following it from the
numerical value preceding it. If there is no numerical value immediately preceding it,
it causes the negation of the numerical value following it (e.g. P1=-P2).

Multiplication, division, modulo (remainder), and bit-by-bit “and” operations have
higher priority than addition, subtraction, bit-by-bit “or”, and bit-by-bit “exclusive-or”
operations. Operations of the same priority are implemented from left to right.

*
Function Multiplication

Remarks The * sign implements the multiplication of the numerical values preceding and
following it.

Multiplication, division, modulo (remainder), and bit-by-bit “and” operations have
higher priority than addition, subtraction, bit-by-bit “or”, and bit-by-bit “exclusive-or”
operations. Operations of the same priority are implemented from left to right.

/
Function Division

Remarks The / sign implements the division of the numerical value preceding it by the numerical
value following it. Unless the division is executed in a compiled PLC on a line with
only L-variables and integers, the division operation is always a floating-point
calculation (even if integer values are used). The quotient is computed as a floating-
point value and used as such in subsequent calculations in the same expression; if it is
then stored to an integer, it is rounded at the time of storage.

If the division operation is performed as an integer operation in a compiled PLC (only
L-variables and integer constants on the line), the quotient is computed as an integer
(rounded to the nearest integer value) and used as such in subsequent calculations in
the same expression.

Multiplication, division, modulo (remainder), and bit-by-bit “and” operations have
higher priority than addition, subtraction, bit-by-bit “or”, and bit-by-bit “exclusive-or”
operations. Operations of the same priority are implemented from left to right.

PMAC 2 Software Reference

PMAC Mathematical Features 361

If the divisor is equal to 0, the result will saturate at +/-247 (+/-223 for an integer
division in a compiled PLC). No error will be reported, and the program will not stop.
It is the programmer’s responsibility to check for possible division-by-zero errors.

Example Command Result
P1=10*2/3 6.666666667
P1=10*(2/3) 6.666666667
M1=10*2/3 7
M1=10*(2/3) 7
L1=10*2/3 7
L1=10*(2/3) 10

L1 and M1 are integer variables; P1 is a floating-point variable
%
Function Modulo (remainder)

Remarks The % sign causes the calculation of the remainder due to the division of the numerical
value preceding it by the numerical value following it. Unless the division is executed
in a compiled PLC on a line with only L-variables and integers, the division operation
is always a floating-point calculation (even if integer values are used). The quotient is
computed as a floating-point value, then truncated to the next lowest (i.e., toward -∞)
integer so the remainder can be computed.

If the divisor “n” is a positive value, the modulo result is in the range {0 ≤ Result < n}.
If the divisor “n” is a negative value, the modulo result is in the range {–n ≤ Result <
n}.

Multiplication, division, modulo (remainder), and bit-by-bit “and” operations have
higher priority than addition, subtraction, bit-by-bit “or”, and bit-by-bit “exclusive-or”
operations. Operations of the same priority are implemented from left to right.

If the divisor is equal to 0, the division will saturate and the modulo result will be 0.
No error will be reported, and the program will not stop. It is the programmer’s
responsibility to check for possible division-by-zero errors.

Example Operation Result
11%4 3
-11%4 1
11%-4 3
-11%-4 -3
3%2.5 0.5
-3%2.5 2
3%-2.5 -2
-3%-2.5 2

 PMAC 2 Software Reference

362 PMAC Mathematical Features

&
Function Bit-by-bit "and"

Remarks The & sign implements the bit-by-bit logical “and” of the numerical value preceding it
and the numerical value following it. A given bit of the result is equal to 1 if the
matching bits of both operands are equal to 1. The operation is done both on integer
bits and fractional bits (if any).

Multiplication, division, modulo (remainder), and bit-by-bit “and” operations have
higher priority than addition, subtraction, bit-by-bit “or”, and bit-by-bit “exclusive-or”
operations. Operations of the same priority are implemented from left to right.

This bit-by-bit “and” operator that logically combines the bits of numerical values is
not to be confused with the AND command, which logically combines conditions.

Example Operation Result
3&1 1
3&2 2
3&3 3
3&4 0
3&-3 1

0.875&1.75 0.75
0.875&-1.75 0.25

|
Function Bit-by-bit "or"

Remarks The | sign implements the bit-by-bit logical “or” of the numerical value preceding it
and the numerical value following it. A given bit of the result is equal to 1 if the
matching bit of either operand is equal to 1. The operation is done both on integer bits
and fractional bits (if any).

Multiplication, division, modulo (remainder), and bit-by-bit “and” operations have
higher priority than addition, subtraction, bit-by-bit “or”, and bit-by-bit “exclusive-or”
operations. Operations of the same priority are implemented from left to right.

This bit-by-bit “or” operator that logically combines the bits of numerical values is not
to be confused with the OR command, which logically combines conditions.

Example Operation Result
4|3 7
3|2 3
3|3 3

$F0|$4 $F4
3|-3 -1

0.5|0.375 0.875
0.875|-1.75 -0.375

PMAC 2 Software Reference

PMAC Mathematical Features 363

^
Function "Bit-by-bit “exclusive or”

Remarks The ^ sign implements the bit-by-bit logical “exclusive or” (xor) of the numerical value
preceding it and the numerical value following it. A given bit of the result is equal to 1
if the matching bits of the two operands are different from each other. The operation is
done both on integer bits and fractional bits (if any).
Multiplication, division, modulo (remainder), and bit-by-bit “and” operations have
higher priority than addition, subtraction, bit-by-bit “or”, and bit-by-bit “exclusive-or”
operations. Operations of the same priority are implemented from left to right.

Example Operation Result
2^1 3
2^2 0
5^7 2

$AA^$55 $FF
3^-3 -2

0.5^0.875 0.375

Mathematical Functions
ABS
Function Absolute value

Syntax ABS({expression})

Domain All real numbers

Domain units User-determined

Range Non-negative real numbers

Range units User-determined

Remarks ABS implements the absolute-value, or magnitude function of the mathematical
expression contained inside the following parentheses.

Example P8=ABS(P7) ; Computes magnitude of P7
IF(Q200!=0) ; Divide by 0 check
 Q240=ABS(Q200)/Q200 ; Computes sign (-1 or 1) of Q200
ELSE
 Q240=0 ; Sign value is 0
ENDIF

 PMAC 2 Software Reference

364 PMAC Mathematical Features

ACOS
Function Trigonometric arc-cosine

Syntax ACOS({expression})

Domain -1.0 to +1.0

Domain units none

Range 0 to Pi radians (0 to 180 degrees)

Range units Radians/degrees

Remarks ACOS implements the inverse cosine, or arc-cosine function of the mathematical
expression contained inside the following parentheses.

This function returns values in degrees if I15 is set to the default value of 0; it returns
values in radians if I15 is set to 1.

If the argument inside the parentheses is outside of the legal domain of –1.0 to +1.0, an
arbitrary value will be returned. No error will be reported, and the program will not
stop. It is the programmer’s responsibility to check for possible domain errors.

Example P50=ACOS(P48/P49) ; Computes angle whose cos is P48/P49
C(ACOS(Q70/10)) ; Move C axis to specified angle

ASIN
Function Trigonometric arc-sine

Syntax ASIN({expression})

Domain -1.0 to +1.0

Domain units none

Range 0 to Pi radians (0 to 180 degrees)

Range units Radians/degrees

Remarks ASIN implements the inverse sine, or arc-sine function of the mathematical expression
contained inside the following parentheses.

This function returns values in degrees if I15 is set to the default value of 0; it returns
values in radians if I15 is set to 1.

If the argument inside the parentheses is outside of the legal domain of –1.0 to +1.0, an
arbitrary value will be returned. No error will be reported, and the program will not
stop. It is the programmer’s responsibility to check for possible domain errors.

Example P50=ASIN(P48/P49) ; Computes angle whose sin is P48/P49
C(ASIN(Q70/10)) ; Move C axis to specified angle

ATAN
Function Trigonometric arc-tangent

Syntax ATAN({expression})

Domain All real numbers

Domain units none

Range -Pi/2 to +Pi/2 radians (-90 to +90 degrees)

Range units Radians/degrees

PMAC 2 Software Reference

PMAC Mathematical Features 365

Remarks ATAN implements the standard inverse tangent, or arc-tangent function of the
mathematical expression contained inside the following parentheses. This standard
arc-tangent function returns values only in the +/-90-degree range; if a full +/-180-
degree range is desired, the ATAN2 function should be used instead.
This function returns values in degrees if I15 is set to the default value of 0; it returns
values in radians if I15 is set to 1.

Example P50=ATAN(P48/P49) ; Computes angle whose tan is P48/P49
C(ATAN(Q70/10)) ; Move C axis to specified angle

ATAN2
Function Two-argument trigonometric arc-tangent
Syntax ATAN2({expression})
Domain All real numbers in both arguments
Domain units none
Range -Pi to +Pi radians (-180 to +180 degrees)
Range units Radians/degrees
Remarks ATAN2 implements the expanded (two-argument) inverse tangent, or arc-tangent

function of the mathematical expression contained inside the following parentheses,
and the value of variable Q0 for the coordinate system used. (If this function is used
inside a PLC program, make sure the desired coordinate system has been selected with
the ADDRESS command.)
This expanded arc-tangent function returns values in the full +/-180-degree range; if
only the +/-90-degree range is desired, the standard ATAN function should be used
instead. The ATAN2 function makes use of the signs of both arguments, as well as the
ratio of their magnitudes, to extend the range to a full 360 degrees. The value in the
parentheses following ATAN2 is the “sine” argument; the value in Q0 is the “cosine”
argument.
This function returns values in degrees if I15 is set to the default value of 0; it returns
values in radians if I15 is set to 1.
If both arguments for the ATAN2 function are equal to exactly 0.0, an internal
division-by-zero error will result, and an arbitrary value will be returned. No error will
be reported, and the program will not stop. It is the programmer’s responsibility to
check for these possible domain errors.

Example Q30=-0.707 ; “Cosine” argument
Q31=-0.707 ; “Sine” argument
Q32=ATAN(Q31/Q30) ; Single-argument arctangent
Q32 ; Query resulting value
45 ; Returns value in +/-90 range
Q0=Q30 ; Prepare “cosine” for ATAN2
Q33=ATAN2(Q31) ; Two-argument arctangent
Q33 ; Query resulting value
-135 ; Note different result
Q0=M163-M161 ; X target – X present position
Q1=M263-M261 ; Y target – Y present position
IF (ABS(Q0)>0.001 OR ABS(Q1)>0.001) ; Div by 0 check
 Q2=ATAN2(Q1) ; Calculate directed angle
ENDIF

 PMAC 2 Software Reference

366 PMAC Mathematical Features

COS
Function Trigonometric cosine
Syntax COS({expression})
Domain All real numbers
Domain units Radians/degrees
Range -1.0 to +1.0
Range units none
Remarks COS implements the trigonometric cosine function of the mathematical expression

contained inside the following parentheses.
This function interprets its argument in degrees if I15 is set to the default value of 0; it
interprets its argument in radians if I15 is set to 1.

Example P60=COS(30) ; Computes cosine of 30
X(Q80*COS(Q81)) ; Move X axis to calculated value

EXP
Function Exponentiation (ex)

Syntax EXP({expression})

Domain All real numbers

Domain units User-determined

Range Positive real numbers

Range units User-determined

Remarks EXP implements the standard exponentiation function of the mathematical expression
contained inside the following parentheses, raising “e” to the power of this expression.

To implement the yx function, use ex ln(y) instead.

Example P20=EXP(P19) ; Raises e to the power of P19
P3=EXP(P2*LN(P1)) ; Raises P1 to the power of P2

INT
Function Truncation to integer

Syntax INT({expression})

Domain All real numbers

Domain units User-determined

Range All integers

Range units User-determined

Remarks INT implements the truncation to integer function of the mathematical expression
contained inside the following parentheses. The truncation is always done in the
negative direction.

Note that while the result is an integer number, it is still represented as a floating-point
value.

PMAC 2 Software Reference

PMAC Mathematical Features 367

Example P50=2.5 ;
P51=INT(P50) ; Take INT of positive value
P51 ; Query resulting value
2 ; Next lower integer value
P52=INT(-P50) ; Take INT of negative value
P52 ; Query resulting value
-3 ; Next lower integer value

LN
Function Natural logarithm

Syntax EXP({expression})

Domain Positive real numbers

Domain units User-determined

Range All real numbers

Range units User-determined

Remarks LN implements the natural logarithm (logarithm base “e”) function of the mathematical
expression contained inside the following parentheses.

To implement the logarithm using another base, divide the natural logarithm of the
value by the natural logarithm of the base (logyx = ln x / ln y). The natural logarithm
of 10 is equal to 2.302585.

If the argument inside the parentheses is outside of the legal domain of positive
numbers, a 0 value will be returned. No error will be reported, and the program will
not stop. It is the programmer’s responsibility to check for possible domain errors.

Example P19=LN(P20) ; Takes the natural log of P20
P6=LN(P5)/LN(10) ; Takes the log base 10 of P5

SIN
Function Trigonometric sine

Syntax SIN({expression})

Domain All real numbers

Domain units Radians/degrees

Range -1.0 to +1.0

Range units none

Remarks SIN implements the trigonometric sine function of the mathematical expression
contained inside the following parentheses.

This function interprets its argument in degrees if I15 is set to the default value of 0; it
interprets its argument in radians if I15 is set to 1.

Example P60=SIN(30) ; Computes cosine of 30
Y(Q80*SIN(Q81)) ; Move Y axis to calculated value

 PMAC 2 Software Reference

368 PMAC Mathematical Features

SQRT
Function Square root

Syntax SQRT({expression})

Domain Non-negative real numbers

Domain units User-determined

Range Non-negative real numbers

Range units User-determined

Remarks SQRT implements the positive square-root function of the mathematical expression
contained inside the following parentheses.

If the argument inside the parentheses is outside of the legal domain of non-negative
numbers, an arbitrary value will be returned. No error will be reported, and the
program will not stop. It is the programmer’s responsibility to check for possible
domain errors.

Example P19=SQRT(P20) ; Takes the square root of P20
P50=SQRT(P8*P8+P9*P9) ; Pythagorean theorem calculation

TAN
Function Trigonometric tangent

Syntax TAN({expression})

Domain All real numbers except +/-(2N-1)*90 degrees

Domain units Radians/degrees

Range All real numbers

Range units none

Remarks TAN implements the trigonometric tangent function of the mathematical expression
contained inside the following parentheses.

This function interprets its argument in degrees if I15 is set to the default value of 0; it
interprets its argument in radians if I15 is set to 1.

If the argument inside the parentheses approaches +/-(2N-1)*90 degrees (+/-90, 270,
450, etc.), the TAN function will “blow up” and a very large value will be returned. If
the argument inside the parentheses is exactly equal to one of these quantities, an
internal division-by-zero error will occur and the resulting value will saturate at +/-247.
No error will be reported, and the program will not stop. It is the programmer’s
responsibility to check for possible domain errors.

Example P60=TAN(30) ; Computes cosine of 30
Y(Q80*TAN(Q81)) ; Move Y axis to calculated value

PMAC 2 Software Reference

PMAC Mathematical Features 369

 PMAC 2 Software Reference

370 PMAC Saved Setup Registers

SAVED SETUP REGISTERS NOT REPRESENTED
BY I-VARIABLES
PMAC and PMAC2 controllers each have several setup registers that operate like I-variables, but are not
represented by I-variables. The values of these setup registers are stored in non-volatile memory with the
SAVE command, and they are restored to the active registers on a power-up/reset.

These setup registers fall in several categories: the PMAC2 analog “de-multiplexing” data table, the
encoder conversion table setup registers, the VME and DPRAM addressing setup registers, and some
PMAC2 Servo IC setup bits and registers. Each is detailed below.

Analog Data Table Setup Registers
PMAC2 controllers (and PMAC(1)-PCI controllers) are available with optional on-board analog-to-
digital converters. Option 12 provides 8 12-bit ADCs; Option 12A provides another set of 8 12-bit
ADCs. Only one of each set of 8 ADCs can be read at any time, so PMAC firmware provides a de-
multiplexing scheme that automatically breaks out each channel into a separate register, where it can be
read directly and transparently by software tasks, whether as servo-loop input or program use.

Note

In V1.17C and newer firmware, these 8 registers can be accessed as I70-I77.

X:$0708 – Y:$070F Analog Table Setup Lines
Range: $000000 - $FFFFFF
Units: none
Defaults: $0

PMAC2 firmware automatically selects and reads the channels of Option 12 and 12A A/D converters in a
round-robin fashion. This function is controlled by a data table in registers $0708 to $070F which
operates much like the encoder conversion table. The eight X registers contain the channel-select
information, and the eight Y registers contain the A/D results. Each X and Y word is split into two 12-bit
halves, where the lower 12 bits work with the first A/D converter set (Option 12), and the higher 12 bits
work with the second A/D converter set (Option 12A).

The data table looks like this:

PMAC2
Address

X Word
Upper 12 Bits

X Word
Lower 12 Bits

Y Word
Upper 12 Bits

Y Word
Lower 12 Bits

$0708 CONFIG_W2 CONFIG_W1 DATA_W2 DATA_W1
$0709 CONFIG_W2 CONFIG_W1 DATA_W2 DATA_W1
$070A CONFIG_W2 CONFIG_W1 DATA_W2 DATA_W1
$070B CONFIG_W2 CONFIG_W1 DATA_W2 DATA_W1
$070C CONFIG_W2 CONFIG_W1 DATA_W2 DATA_W1
$070D CONFIG_W2 CONFIG_W1 DATA_W2 DATA_W1
$070E CONFIG_W2 CONFIG_W1 DATA_W2 DATA_W1
$070F CONFIG_W2 CONFIG_W1 DATA_W2 DATA_W1

where:

 CONFIG_W2 is the selection word for the second A/D converter set (Option 12A)
 CONFIG_W1 is the selection word for the first A/D converter set (Option 12)
 DATA_W2 is the matching A/D data from the second A/D converter set (Option 12A)
 DATA_W1 is the matching A/D data from the first A/D converter set (Option 12)

A value of 0-7 in CONFIG_W1 tells PMAC2 to read channel ANAI00-07, respectively, as a 0 to+5V
input, resulting in an unsigned value.

PMAC 2 Software Reference

PMAC Saved Setup Registers 371

A value of 8-15 in CONFIG_W1 tells PMAC2 to read ANAI00-07, respectively, as a -2.5 to +2.5V input,
resulting in a signed value.

A value of 0-7 in CONFIG_W2 tells PMAC2 to read channel ANAI08-15, respectively, as a 0 to+5V
input, resulting in an unsigned value.

A value of 8-15 in CONFIG_W1 tells PMAC2 to read ANAI08-15, respectively, as a -2.5 to +2.5V input,
resulting in a signed value.

Each phase update (9 kHz default), PMAC2 increments through one line of the table. It copies the ADC
reading(s) selected in the previous cycle into RAM, then writes the next configuration words to the
ADC(s). Typically, this will be used to cycle through all 8 ADCs or pairs of ADCs. To cycle through all
8 pairs of ADCs in unsigned mode, the table should look like this:

PMAC
Address

X Word
Upper 12 Bits

X Word
Lower 12 Bits

Y Word
Upper 12 Bits

Y Word
Lower 12 Bits

$0708 0 0 ANAI08 ANAI00
$0709 1 1 ANAI09 ANAI01
$070A 2 2 ANAI10 ANAI02
$070B 3 3 ANAI11 ANAI03
$070C 4 4 ANAI12 ANAI04
$070D 5 5 ANAI13 ANAI05
$070E 6 6 ANAI14 ANAI06
$070F 7 7 ANAI15 ANAI07

Suggested M-variable definitions for the configuration words are:
M990->X:$0708,0,24,U ; 1st CONFIG_W1 and CONFIG_W2
M991->X:$0709,0,24,U ; 2nd CONFIG_W1 and CONFIG_W2
M992->X:$070A,0,24,U ; 3rd CONFIG_W1 and CONFIG_W2
M993->X:$070B,0,24,U ; 4th CONFIG_W1 and CONFIG_W2
M994->X:$070C,0,24,U ; 5th CONFIG_W1 and CONFIG_W2
M995->X:$070D,0,24,U ; 6th CONFIG_W1 and CONFIG_W2
M996->X:$070E,0,24,U ; 7th CONFIG_W1 and CONFIG_W2
M997->X:$070F,0,24,U ; 8th CONFIG_W1 and CONFIG_W2

If you wanted to set up all ADCs for a unipolar (unsigned) conversion, the following commands could be
issued
M990=$000000 ; Select ANAI00 and ANAI08 (if present) unipolar
M991=$001001 ; Select ANAI01 and ANAI09 (if present) unipolar
M992=$002002 ; Select ANAI02 and ANAI10 (if present) unipolar
M993=$003003 ; Select ANAI03 and ANAI11 (if present) unipolar
M994=$004004 ; Select ANAI04 and ANAI12 (if present) unipolar
M995=$005005 ; Select ANAI05 and ANAI13 (if present) unipolar
M996=$006006 ; Select ANAI06 and ANAI14 (if present) unipolar
M997=$007007 ; Select ANAI07 and ANAI15 (if present) unipolar

To set up the configuration words for bipolar analog inputs, the commands could look like this:
M990=$008008 ; Select ANAI00 and ANAI08 (if present) bipolar
M991=$009009 ; Select ANAI01 and ANAI09 (if present) bipolar
M992=$00A00A ; Select ANAI02 and ANAI10 (if present) bipolar
M993=$00B00B ; Select ANAI03 and ANAI08 (if present) bipolar
M994=$00C00C ; Select ANAI04 and ANAI08 (if present) bipolar
M995=$00D00D ; Select ANAI05 and ANAI08 (if present) bipolar
M996=$00E00E ; Select ANAI06 and ANAI08 (if present) bipolar
M997=$00F00F ; Select ANAI07 and ANAI08 (if present) bipolar

 PMAC 2 Software Reference

372 PMAC Saved Setup Registers

Once this setup has been made, PMAC2 will automatically cycle through the analog inputs, copying the
converted digital values into RAM. These image registers can then be read as if they were the actual A/D
converters. For user program use, the image registers would be accessed with M-variables. Suggested
definitions for unipolar (unsigned) values are:
M1000->Y:$0708,0,12,U ; ANAI00 image register; from J1 pin 1
M1001->Y:$0709,0,12,U ; ANAI01 image register; from J1 pin 2
M1002->Y:$070A,0,12,U ; ANAI02 image register; from J1 pin 3
M1003->Y:$070B,0,12,U ; ANAI03 image register; from J1 pin 4
M1004->Y:$070C,0,12,U ; ANAI04 image register; from J1 pin 5
M1005->Y:$070D,0,12,U ; ANAI05 image register; from J1 pin 6
M1006->Y:$070E,0,12,U ; ANAI06 image register; from J1 pin 7
M1007->Y:$070F,0,12,U ; ANAI07 image register; from J1 pin 8
M1008->Y:$0708,12,12,U ; ANAI08 image register; from J1 pin 9
M1009->Y:$0709,12,12,U ; ANAI09 image register; from J1 pin 10
M1010->Y:$070A,12,12,U ; ANAI10 image register; from J1 pin 11
M1011->Y:$070B,12,12,U ; ANAI11 image register; from J1 pin 12
M1012->Y:$070C,12,12,U ; ANAI12 image register; from J1 pin 13
M1013->Y:$070D,12,12,U ; ANAI13 image register; from J1 pin 14
M1014->Y:$070E,12,12,U ; ANAI14 image register; from J1 pin 15
M1015->Y:$070F,12,12,U ; ANAI15 image register; from J1 pin 16

For bipolar (signed), just change the U in each definition to S.

Encoder Conversion Table Setup Registers: Y:$0720 – Y:$073F
The encoder conversion table (ECT), which performs pre-processing of feedback and master position data
for servo-loop use, has 32 saved setup registers.

Y:$0720 – Y:$073F Conversion Table Setup Lines
Range: $000000 - $FFFFFF
Units: Modified PMAC Addresses
Defaults:

PMAC(1) Defaults
Reg. Setting Meaning Reg. Setting Meaning

Y:$0720 $00C000 1/T Extension of Encoder 1 Y:$0725 $00C014 1/T Extension of Encoder 6
Y:$0721 $00C004 1/T Extension of Encoder 2 Y:$0726 $00C018 1/T Extension of Encoder 7
Y:$0722 $00C008 1/T Extension of Encoder 3 Y:$0727 $00C01C 1/T Extension of Encoder 8
Y:$0723 $00C00C 1/T Extension of Encoder 4 Y:$0728 $400723 Time base from 1/T of Enc 4
Y:$0724 $00C010 1/T Extension of Encoder 5 Y:$0729 $000295 Time base scale factor

Y:$072A – Y:$073F = 0

PMAC2 Defaults
Reg. Setting Meaning Reg. Setting Meaning

Y:$0720 $00C000 1/T Extension of Encoder 1 Y:$0725 $00C028 1/T Extension of Encoder 6
Y:$0721 $00C008 1/T Extension of Encoder 2 Y:$0726 $00C030 1/T Extension of Encoder 7
Y:$0722 $00C010 1/T Extension of Encoder 3 Y:$0727 $00C038 1/T Extension of Encoder 8
Y:$0723 $00C018 1/T Extension of Encoder 4 Y:$0728 $00C090 1/T Extension of Handwheel 1
Y:$0724 $00C020 1/T Extension of Encoder 5 Y:$0729 $00C098 1/T Extension of Handwheel 2

Y:$072A – Y:$073F = 0

PMAC 2 Software Reference

PMAC Saved Setup Registers 373

Turbo PMAC2 Ultralite Defaults
I-Var. Setting Meaning I-Var. Setting Meaning

Y:$0720 $28C0A0 MACRO Node 0 Reg. 0
Unshifted Read

Y:$0728 $28C0B0 MACRO Node 8 Reg. 0
Unshifted Read

Y:$0721 $FFFFFF Use all 24 bits Y:$0729 $FFFFFF Use all 24 bits
Y:$0722 $28C0A4 MACRO Node 1 Reg. 0

Unshifted Read
Y:$072A $28C0B4 MACRO Node 9 Reg. 0

Unshifted Read
Y:$0723 $FFFFFF Use all 24 bits Y:$072B $FFFFFF Use all 24 bits
Y:$0724 $28C0A8 MACRO Node 4 Reg. 0

Unshifted Read
Y:$072C $28C0B8 MACRO Node 12 Reg. 0

Unshifted Read
Y:$0725 $FFFFFF Use all 24 bits Y:$072D $FFFFFF Use all 24 bits
Y:$0726 $28C0AC MACRO Node 5 Reg. 0

Unshifted Read
Y:$072E $28C0BC MACRO Node 13 Reg. 0

Unshifted Read
Y:$0727 $FFFFFF Use all 24 bits Y:$072F $FFFFFF Use all 24 bits

Y:$0730 – Y:$073F = 0

Y:$0720 to Y:$073F form the 32 setup lines of the PMAC’s Encoder Conversion Table (ECT). The main
purpose of the ECT is to provide a pre-processing of feedback and master data to prepare it for use by the
servo loop. It can also be used to execute certain simple calculations at the servo update frequency.

Each setup line occupies a fixed register in the PMAC’s memory map. The register addresses are
important, because the results of the ECT are accessed by address.

The ECT has two halves: setup and results. The setup half resides in PMAC’s Y-memory, and can be
accessed through these 32 setup registers. The result half resides in PMAC’s X-memory. Each of the 32
setup lines has a matching result X-register at the same numerical address. If the entry consists of more
than one line, the last line has the final result; any previous lines contain intermediate results.

Table Structure: The ECT consists of a series of entries, with each entry creating one processed
(converted) feedback value. An entry in the ECT can have 1, 2, or 3 lines, with each line containing a 24-
bit setup word in Y-memory, and a 24-bit result register in X-memory. Therefore, each entry contains 1,
2, or 3 of these 24-bit setup lines, each usually represented as a hexadecimal value with six digits. The
final result is always in the X-memory register matching the last setup line in the entry.

The variables that commonly contain the address of the last line of the entry are Ix03 Motor x Position-
Loop Feedback Address, Ix04 Motor x Velocity-Loop Feedback Address, Ix05 Motor x Master Position
Address and Ix93 Coordinate System x Time-Base Address.

Entry First Line: The first line’s setup register in each entry consists of a source address in the low 16
bits (bits 0 – 15, the last four hex digits), which contains the PMAC address of the raw data to be
processed, a digit (the second hex digit, bits 16 - 19) that specifies how the source data is to be shifted and
whether the result is to be summed with the result of the above entry, and a method value in the high 4
bits (first hex digit), which specifies how this data is to be processed. If the first line in the entry is
$000000, this signifies the end of the active table, regardless of what subsequent entries in the table
(higher addressed registers) contain.

Entry Additional Lines: Depending on the method, 1 or 2 additional lines may be required in the entry
to provide further instructions on processing.

The following table summarizes the content of entries in the Encoder Conversion Table:

 PMAC 2 Software Reference

374 PMAC Saved Setup Registers

Method
Digit

of
lines

Process Defined Second digit 1st Additional
Line

2nd Additional
Line

$0 1 1/T Extension of
Incremental

Encoder

$0 = normal conversion
$1 = summed with above

- -

$1 1 ACC-28 style A/D
converter (high 16
bits, no rollover)

$0 = normal, signed ADC
$1 = summed, signed ADC
$8 = normal, unsigned ADC

$9 = summed, unsigned ADC

- -

$2 2 Parallel Y-word
data, no filtering

$0 = normal conversion
$1 = summed with above
$8 = unshifted conversion
$9 = unshifted, summed

Bits Used Mask
Word

-

$3 3 Parallel Y-word
data, with filtering

$0 = normal conversion
$1 = summed with above
$8 = unshifted conversion
$9 = unshifted, summed

Bits Used Mask
Word

Max Change per
Cycle

$4 2 “Time Base”
scaled digital
differentiation

0 Time Base
Scale Factor

-

$5 2 Integrated ACC-
28 style A/D

converter

$0 = normal, signed ADC
$8 = normal, unsigned ADC

Input Bias -

$6 2 Parallel /X-word
data, no filtering

$0 = normal conversion
$1 = summed with above
$8 = unshifted conversion
$9 = unshifted, summed

Bits Used Mask
Word

-

$7 3 Parallel X-word
data, with filtering

$0 = normal conversion
$1 = summed with above
$8 = unshifted conversion
$9 = unshifted, summed

Bits Used Mask
Word

Max Change per
Cycle

$8 1 Parallel Extension
of Incremental

Encoder

$0 = signed data
$1 = unsigned data

- -

$9 2 Triggered Time
Base, frozen

0 Time Base
Scale Factor

-

$A 2 Triggered Time
Base, running

0 Time Base
Scale Factor

-

$B 2 Triggered Time
Base, armed

0 Time Base
Scale Factor

-

$C 1 Incremental
Encoder, no
extension

$0 = signed data
$1 = unsigned data

- -

$D 3/5 Exponential and
tracking filter of

parallel data

$0 = exponential filter
$8 = tracking filter

Max Change
per Cycle

Filter Gain
(Inverse Time

Constant)
$E - Resolver

conversion
(Geo PMAC only)

$0 = clockwise
$8 = counter-clockwise

- -

$F 2 High-Resolution
Interpolator

$0 = PMAC(1)-style ASIC
$8 = PMAC2-style ASIC

Address of 1st
A/D converter

-

$F 3/5 Hi-Res
Interpolator (Geo

PMAC only)

$0 = conversion
$8 = diagnostic

Address of 1st
A/D converter

sine/cosine bias

PMAC 2 Software Reference

PMAC Saved Setup Registers 375

Incremental Encoder Entries ($0, $8, $C): These three conversion table methods utilize the incremental
encoder registers in the Servo ICs. Each method provides a processed result with the units of (1/32) count
– the low 5 bits of the result are fractional data.

1/T Extension: With the $0 method, the fractional data is computed by dividing the Time Since Last
Count register by the Time Between Last 2 Counts register. This technique is known as 1/T extension,
and is the default and most commonly used method. It can be used with a digital incremental encoder
connected directly to the PMAC, either on PMAC(1) or PMAC2.

Parallel Extension: With the $8 method, the fractional data is computed by reading the five inputs at bits
19-2,3 either of the specified address (USERn, Wn, Vn, Un, and Tn flag inputs, respectively) in the case
of a PMAC2, or of the specified address plus 4 (CHC[n+1], HMFL[n+1], +LIM[n+1], -LIM[n+1],
FAULT[n+1]) in the case of a PMAC(1). This technique is known as parallel extension, and can be used
with an analog incremental encoder processed through an ACC-8D Opt 8 Analog Encoder Interpolator
board or its equivalent.

No Extension: In the $C method, the fractional data is always set to zero, which means there is no
extension of the incremental encoder count. This setting is used mainly to verify the effect of one of the
two extension methods. It is also recommended when feeding back the pulse-and-direction outputs for
stepper drives.

With any of these three conversion methods, the source address in the low 16 bits (bits 0 – 15) is that of
the starting register of the machine interface channel.

The first table below shows the entries for PMAC(1) encoder channels. The “m” in the first hex digit
(bits 20 – 23) represents the conversion method ($0, $8, or $C). The “x” in the second hex digit
represents a 0 (not summed) or 1 (summed with above entry).

Channel Entry Channel Entry Channel Entry Channel Entry
1 $mxC000 5 $mxC010 9 $mxC020 13 $mxC030
2 $mxC004 6 $mxC014 10 $mxC024 14 $mxC034
3 $mxC008 7 $mxC018 11 $mxC028 15 $mxC038
4 $mxC00C 8 $mxC01C 12 $mxC02C 16 $mxC03C

The next table below shows the entries for PMAC2 encoder channels. The “m” in the first hex digit (bits
20 – 23) represents the conversion method ($0, $8, or $C). The “x” in the second hex digit represents a 0
(not summed) or 1 (summed with above entry).

Channel Entry Channel Entry Channel Entry Channel Entry
1 $mxC000 5 $mxC020 9 $mxC040 13 $mxC060
2 $mxC008 6 $mxC028 10 $mxC048 14 $mxC068
3 $mxC010 7 $mxC030 11 $mxC050 15 $mxC070
4 $mxC018 8 $mxC038 12 $mxC058 16 $mxC078

ACC-28 Style A/D Entries ($1, $5): The “A/D” feedback entries read from the high 16 bits of the
specified address and shift the data right three bits so that the least significant bit of the processed result in
bit 5. Unlike the “parallel feedback” methods, this method will not “roll over” and extend the result.

The $1 method processes the information directly, essentially a copying with shift. The $5 integrates the
input value as it copies and shifts it. That is, it reads the input value, shifts it right three bits, adds the bias
term in the second line, and adds this value to the previous processed result.

If the bit 19 of the entry is ‘0’ (making the second hex digit $0), the 16-bit source value is treated as a
signed quantity; this should be used for the ACC-28A. If bit 19 of the entry is ‘1’ (making the second hex
digit $8), the 16-bit value is treated as an unsigned quantity; this should be used for the ACC-28B.

 PMAC 2 Software Reference

376 PMAC Saved Setup Registers

The first table shows the entry values that should be used for ACC-28 boards interfaced to PMAC(1)
Servo ICs. The “m” in the first hex digit refers to the method digit – $1 for un-integrated; $5 for
integrated. The “x” in the second digit is set to $0 for an ACC-28A signed A/D converter, or $8 for an
ACC-28B unsigned A/D converter.

Channel Entry Channel Entry Channel Entry Channel Entry
1 $mxC006 5 $mxC016 9 $mxC026 13 mxC036
2 $mxC007 6 $mxC017 10 $mxC027 14 mxC037
3 $mxC00E 7 $mxC01E 11 $mxC02E 15 mxC03E
4 $mxC00F 8 $mxC01F 12 $mxC02F 16 mxC03F

The next table shows the entry values that should be used for ACC-28B boards interfaced to PMAC2
Servo ICs. . The “m” in the first hex digit refers to the method digit – $1 for un-integrated; $5 for
integrated.

Channel Entry Channel Entry Channel Entry Channel Entry
1A $m8C005 5A $m8C025 9A $m8C045 13A $m8C065
1B $m8C006 5B $m8C026 9B $m8C046 13B $m8C066
2A $m8C00D 6A $m8C02D 10A $m8C04D 14A $m8C06D
2B $m8C00E 6B $m8C02E 10B $m8C04E 14B $m8C06E
3A $m8C015 7A $m8C035 11A $m8C055 15A $m8C075
3B $m8C016 7B $m8C036 11B $m8C050 15B $m8C076
4A $m8C01D 8A $m8C03D 12A $m8C05D 16A $m8C07D
4B $m8C01E 8B $m8C03E 12B $m8C05E 16B $m8C07E

Integration Bias: The $5 integrated format requires a second line to specify the bias of the A/D converter.
This bias term is a signed quantity (even for an unsigned A/D converter), with units of 1/256 of the LSB
of the 16-bit A/D converter. This value is subtracted from the reading of the ADC before the integration
occurs.

For example, if there were an offset in a 16-bit ADC of +5 LSBs, this term would be set to 1280. If no
bias is desired, a zero value should be entered here. If the conversion is unsigned, the result after the bias
is not permitted to be less than zero. This term permits reasonable integration, even with an analog offset.

Parallel Feedback Entries ($2, $3, $6, $7) [Modified]: The “parallel feedback” entries read a word from
the address specified in the low 16 bits (bits 0 – 15) of the first line, either a whole word from the single
address specified, or three bytes from three consecutive Y-word addresses starting at the specified
address. The four methods in this class, specified by the first hex digit (bits 20 – 23) are:

• $2: Y-word parallel, no filtering (2-line entry)
• $3: Y-word parallel, with filtering (3-line entry)
• $6: X-word parallel, no filtering (2-line entry)
• $7: X-word parallel, with filtering (3-line entry)

The second hex digit (bits 16 – 19) contains four mode-control bits that govern how the conversion is
done. The four mode-control bits are:

• Bit 16 (digit value 1): Summing control (0 = no summing; 1 = sum with above result) for word-
wide reads only; byte-select bit 0 for byte-wide reads only (depending on bit 18)

• Bit 17 (digit value 2): Reserved for word-wide reads, byte-select bit 1 for byte-wide reads
• Bit 18 (digit value 4): Shift-right/byte-wide-read control (depending on bits 16 and 17)
• Bit 19 (digit value 8): Shift-left control (0 = normal 5-bit left shift; 1 = no or right shift)

These four bits provide multiple combinations for the second hex digit, shown in the following table:

PMAC 2 Software Reference

PMAC Saved Setup Registers 377

Second
Digit

Conversion Details Second
Digit

Conversion Details

$0 Word-wide source, shift result left 5
bits, no summing

$8 Word-wide source, no shift of result,
no summing

$1 Word-wide source, shift result left 5
bits, summed with above result

$9 Word-wide source, no shift of result,
summed with above result

$2 (Reserved)

$A (Reserved)

$3 (Reserved)

$B (Reserved)

$4 (Reserved) $C Word-wide source, shift result right 3
bits, no summing

$5 Byte-wide Y source (low byte), shift
result left 5 bits, no summing

$D Byte-wide Y source (low byte), no
shift of result, no summing

$6 Byte-wide Y source (middle byte),
shift result left 5 bits, no summing

$E Byte-wide Y source (middle byte), no
shift of result, no summing

$7 Byte-wide Y source (high byte), shift
result left 5 bits, no summing

$F Byte-wide Y source (high byte), no
shift of result, no summing

Shift control: With the “normal shift”, the LSB of the source register is shifted to bit 5 of the
result register, providing the standard 5 bits of (non-existent here) fractional position data. In this case,
PMAC software regards the LSB as one “count” of position. With the “3-bit right shift”, bit 8 of the
source register is shifted to bit 5 of the result register. This is appropriate for 16-bit data found in the high
16 bits of the source register, such as the old MACRO Type 0 feedback.

With “no shift”, the LSB of the source register ends up in bit 0 of the result register. This mode is used
for one of three reasons:

• The data already comes with 5 bits of fraction, as from a MACRO Station.

• The normal shift limits the maximum velocity too much (Vmax<218 LSBs per servo cycle)

• The normal shift limits the position range too much (Range<+247/Ix08/32 LSBs)

Unless this is done because the data already contains fractional information, the “unshifted” conversion
will mean that the motor position loop will consider 1 LSB of the source to be 1/32 of a count, instead of
1 count.

Word-Wide vs. Byte-Wide: Most types of position data read with the parallel conversion will be
present in a single data word of up to 24 bits. This is “word-wide” data, read with the control bit in bit 18
set to 0, or bit 18 set to 1 and bits 16 and 17 both set to 0.

However, on some interface boards, such as the ACC-14P, the bus interface is only byte wide, so position
data of more than 8 bits is read in bytes of consecutive registers. For this format, the control bit in bit 18
should be set to 1, and the combined value of bits 16 and 17 set to 1, 2, or 3.

If bits 16 and 17 set a combined value of 1, the low bytes (bits 0 – 7) of the selected registers are read. If
bits 16 and 17 set a combined value of 2, the middle bytes (bits 8 – 15) of the selected registers are read.
If bits 16 and 17 set a combined value of 3, the high bytes (bits 16 – 23) of the selected registers are read.

With the byte-wide read, right shifting of the result data is not supported, and summing of the result with
the previous result is not supported. Only Y-registers can be read in byte-wide format, so byte-wide reads
are supported only in methods $2 and $3, not $6 and $7.

In the byte-wide read, the low 16 bits (last 4 hex digits) of the first setup line specify the address of the
first of the three Y-registers to be read. The Y-registers at the next two higher-numbered addresses will

 PMAC 2 Software Reference

378 PMAC Saved Setup Registers

also be read. The selected bytes of these three registers are combined into a single 24-bit value, with the
selected byte of the first register forming the least significant byte of this value. The mask word of the
second setup line (see below) then operates on this combined value as if it had come from a single 24-bit
word.

Examples of this byte-wide conversion with the ACC-14P are shown below.

Mask Word: The second setup line is a 24-bit mask word that indicates which bits of the 24-bit word-wide
source register, or of the 24-bit value combined from 3 byte-wide reads, are to be used. Each bit that is to
be used takes a 1 in the mask word; each bit that is not to be used takes a 0 in the mask word. The mask
word is combined with the contents of the source register or combined value with a bit-by-bit AND
operation before the data is processed further. A correct mask word is necessary to ensure that all bits of
the source to be used are used, that no bits that are not to be used are used, and to handle rollover of the
source data properly.

For example, a mask word of $000FFF causes the low 12 bits of the source register to be used, $07FFFF
causes the low 19 bits to be used, and $FFFFFF causes all 24 bits to be used.

Maximum Change Word: If the method character for a parallel read is $3 or $7, specifying “filtered”
parallel read, there is a third setup line for the entry. This third line contains the maximum change in the
source data in a single cycle that will be reflected in the processed result, expressed in LSBs per servo
cycle. The filtering that this creates provides an important protection against noise and misreading of
data. This number is effectively a velocity value, and should be set slightly greater than the maximum
true velocity ever expected.

Common Parallel Data Sources: Any register can be read as a parallel data source, but the most common
sources are MACRO feedback registers, MLDT timer registers, ACC-14D/V latched input registers, and
ACC-14P byte-wide latched input registers. Each of these is covered below.

MACRO Feedback: When receiving position data over the MACRO ring with the “Type 1” protocol used
in Delta Tau and most other MACRO devices, the position feedback appears in the 24-bit Register 0 for
the “servo node”. Servo nodes are mapped into Y-registers in PMAC2, and the MACRO protocol has its
own error detection, so typically method $2 is used (Y-register, no filtering). This position data has
usually already been processed in the encoder conversion table of the remote MACRO Station and comes
back with five bits of fractional information, so it does not need to be shifted in the conversion table,
making the second digit $8.

MACRO Type 1 Position Feedback
Node 1st Setup

Line
Node 1st Setup

Line
Node 1st Setup

Line
Node 1st Setup

Line
0 $28C0A0 4 $28C0A8 8 $28C0B0 12 $28C0B8
1 $28C0A4 5 $28C0AC 9 $28C0B4 13 $28C0BC

Sometimes a MACRO I/O node is used to bring back additional position data. I/O nodes are mapped into
X-registers in PMAC2, so typically method $6 is used (X-register, no filtering). This position data also
has typically been processed in the remote MACRO Station, so the second digit is $8 for no shifting here.

MACRO I/O Node Register 0 as Alternate Position Feedback
Node 1st Setup

Line
Node 1st Setup

Line
Node 1st Setup

Line
Node 1st Setup

Line
2 $68C0A0 6 $68C0A8 10 $68C0B0 14 $68C0B8
3 $68C0A4 7 $68C0AC 11 $68C0B4 15 $68C0BC

MLDT Feedback: PMAC2 Servo ICs have the ability to interface directly to magnetostrictive linear
displacement transducers (MLDTs), outputting the excitation pulse, receiving the echo pulse, and

PMAC 2 Software Reference

PMAC Saved Setup Registers 379

measuring the time between the two. This time is directly proportional to the distance. For this feedback
the “time between last two counts” register is used like an absolute encoder. The following table shows
the first line of the parallel feedback entry for each channel’s timer register:

MLDT Timer Entries
Channel Entry Channel Entry Channel Entry Channel Entry

1 $30C000 5 $30C020 9 $30C040 13 $30C060
2 $30C008 6 $30C028 10 $30C048 14 $30C068
3 $30C010 7 $30C030 11 $30C050 15 $30C070
4 $30C018 8 $30C038 12 $30C058 16 $30C078

The second line in an MLDT entry should be $07FFFFF to specify the use of the low 19 bits.

The third line in an MLDT entry should contain a number slightly greater than the maximum velocity
ever expected, expressed as timer increments per servo cycle. An increment of the 120 MHz timer
represents about 0.024mm (0.0009 in) on a typical MLDT device. This value represents the maximum
change in position reading that will be passed through the conversion table in a single servo cycle, and it
provides an important protection against missing or spurious echo pulses.

Word-Wide Parallel Feedback: The ACC-14D and 14V boards are often used to connect parallel data
from an absolute encoder or interferometer. The following table shows the entry first lines for the
registers on these boards. The latched input registers on ACC-14D/V boards are mapped into Y-registers
and filtering is usually desired, so a $3 method digit is used. In most cases, the normal shift is applied,
making the second digit $0, but if the feedback has very high resolution, as can happen with an
interferometer, the second digit should be set to $8 to disable shifting.

ACC-14D/V Port Entries
ACC 14 # Port Entry ACC 14 # Port Entry

1 A $3xFFD0 4 A $3xFFE8
1 B $3xFFD1 4 B $3xFFE9
2 A $3xFFD8 5 A $3xFFF0
2 B $3xFFD9 5 B $3xFFF1
3 A $3xFFE0 6 A $3xFFF8
3 B $3xFFE1 6 B $3xFFF9

x = 0: normal shift; x = 8: no shift

Byte-Wide Parallel Feedback: The ACC-14P is a PCI-format board that can be used to connect parallel
data from an absolute encoder or interferometer. The following table shows the entry first lines for the
registers on these boards. The latched input registers on ACC-14D/V boards are mapped into Y-registers
and filtering is usually desired, so a $3 method digit is used.

The data is byte-wide, so bit 18 (value of 4 in the second digit) is set to 1. Ports A and B occupy the low
bytes of each word, so bits 16 and 17 get a combined value of 1, making the second hex digit $5. Ports C
and D occupy the middle bytes of each word, so bits 16 and 17 get a combined value of 2, making the
second hex digit $6. If no shifting of the result data is desired, bit 19 (value of 8 in this digit) is also set to
1, making the second hex digit $D or $E

Ports A and C on these boards start in the board’s base address; Ports B and D start in {Base+3}.

 PMAC 2 Software Reference

380 PMAC Saved Setup Registers

ACC-14P Port Entries
ACC 14 # Port Entry ACC 14 # Port Entry

1 A $35FFD0 4 A $35FFE8
1 B $35FFD3 4 B $35FFEB
1 C $36FFD0 4 C $36FFE8
1 D $36FFD3 4 D $36FFEB
2 A $35FFD8 5 A $35FFF0
2 B $35FFDB 5 B $35FFF3
2 C $36FFD8 5 C $36FFF0
2 D $36FFDB 5 D $36FFF3
3 A $35FFE0 6 A $35FFF8
3 B $35FFE3 6 B $35FFFB
3 C $36FFE0 6 C $36FFF8
3 D $36FFE3 6 D $36FFFB

Time-Base Entries ($4, $9, $A, $B): A time-base entry performs a scaled digital differentiation of the
value in the source register. It is most often used to perform “electronic cam” functions, slaving a motion
sequence to the frequency of a master encoder. There are two types of time-base entries: untriggered and
triggered. An untriggered time base does not provide a specific starting point in the master source data.
A triggered time base starts the differentiation upon receipt of a hardware trigger on the master encoder’s
channel, referenced to the position captured by that trigger. This can be used to create an absolute
synchronization between the master position and the slave trajectory.

Time-base entries are two-line entries. The first setup line contains the method digit and the address of
the source-data register. The second setup line contains the “time-base scale factor”. The first result line
contains the intermediate result value of the source data, saved for the next cycle to be able to compute
the differentiation. The second result line contains the final result, which is the differentiated value. Most
commonly this result is used as the time-base source for a coordinate system, so Ix93 for the coordinate
system points to this second line.

Untriggered Time Base ($4): In an untriggered time-base entry, the first setup line contains a “4” in the
method digit (bits 20 – 23) and the address of the source register in bits 0 – 15. The source register is
almost always the result register of an incremental encoder entry (e.g. 1/T) higher in the table (addresses
$0720 to $072D). For example, to use the result of the fourth line of the conversion table as a source, this
I-variable would be $400723.

The second setup line is the “time-base scale factor” which multiplies the differentiated source value.
The final result value equals 2 * Time-Base-Scale-Factor * (New Source Value - Old Source Value).
“New Source Value” and “Old Source Value” (stored from the previous servo cycle) are typically in units
of 1/32 of a count, the usual scaling of a 1/T encoder conversion result.

When this time base entry is used to calculate a frequency-based time base for a coordinate system, the
TBSF should be set to 217/Real-Time Input Frequency (131,072/RTIF), where the Real-Time Input
Frequency (RTIF) in counts per millisecond, is the frequency at which motion trajectories using this time
base will execute at the programmed speed or in the programmed time. The motion sequence to be slaved
to this frequency should be written assuming that the master is always generating this real-time input
frequency (so always moving at the “real-time speed”). The true speed of trajectories using this time
base will vary proportionately with the actual input frequency.

Example
The application requires the use of Encoder 4 on board a PMAC2 as an untriggered time-base master for
Coordinate System 1. The real-time input frequency is selected as 256 counts/msec. The conversion
table starts with 8 single-line entries in Y:$0720 – Y:$0727, with the 4th line (Y:$0723) doing a 1/T
conversion of Encoder 4.

PMAC 2 Software Reference

PMAC Saved Setup Registers 381

; Setup on-line commands
WY:$0723,$00C018 ; 1/T conversion of Encoder 4
WY:$0729,$400723 ; Unriggered time base from 1/T encoder
WY:$072A,512 ; TBSF=131072/256
I193=$072A ; C.S.1 use result for time base

Triggered Time Base ($9, $A, $B): A “triggered” time-base entry is like a regular untriggered time-base
entry, except that it is easy to freeze the time base, then start it exactly on receipt of a trigger that captures
the “starting” master position or time.

In a triggered time-base entry, the first setup line (I-variable) contains a 9, A, or B in the method digit
(bits 20 – 23), depending on its present state. It contains the address of the source register in bits 0 – 15.
The source register for triggered time base must be the starting (X) address for one of the machine
interface channels of a Servo IC.

The second setup line (I-variable) is the time-base scale factor which multiplies the differentiated source
value. The final result value (when running) equals 64 * Time-Base-Scale-Factor * (New Source Count -
Old Source Count). New Source Count and Old Source Count are the values of the addressed encoder
counter, in whole counts.

When this time-base entry is used to calculate a frequency-based time base for a coordinate system, the
TBSF should be set to 217/Real-Time Input Frequency (131,072/RTIF), where the Real-Time Input
Frequency (RTIF) in counts per millisecond, is the frequency at which motion trajectories using this time
base will execute at the programmed speed or in the programmed time. The motion sequence to be slaved
to this frequency should be written assuming that the master is always generating this real-time input
frequency (so always moving at the “real-time speed”). The true speed of trajectories using this time
base will vary proportionately with the actual input frequency.

A triggered time-base entry in Turbo PMAC automatically computes the 1/T count extension of the input
frequency itself before the differentiation. It computes this to 1/32 of a count.

In use, the method digit (comprising bits 20-23 of the first line) is changed as needed by setting of the I-
variable. Triggered time base has three states, frozen, armed, and running, all of which must be used to
utilize the triggering feature.

First, the method digit is set to $9 (e.g. WY:$0728,$90C00C, or M190=$9 with
M190->Y:$0728,20,4) before the calculations of the triggered move are started, to freeze the time
base (and therefore the motion) while the move calculations are done. This is typically done in the user’s
motion program. When this entry is in the frozen state, the table reads the channel’s captured position
register each servo cycle to ensure the triggering logic is reset for the next capture. The final result of the
entry is always 0 when frozen.

Note:
In a PMAC application with a fast CPU and a light computational load, it is
possible that the entry will not be in the “frozen” state during a servo interrupt, and
the table will not get a chance to reset the trigger logic. Therefore, it is advisable
to reset the triggering logic explicitly in the user program with a “dummy” read of
the channel’s captured position register, which is the X-register with an address 3
greater than the address specified in the entry (e.g. X:$C00B if the entry specifies
$C008). The suggested M-variable for the captured position register is Mxx03.

Next, the method digit is set to $B (e.g. WY:$0728,$B0C00C, or M190=$B with
M190->Y:$0728,20,4) after the calculations of the triggered move are finished, to arm the time base
for the trigger. This is typically done in a PLC program that simply looks to see if the entry is frozen and
changes it to the armed state. The final result of the entry is always 0 when armed.

 PMAC 2 Software Reference

382 PMAC Saved Setup Registers

In the armed state, the ECT checks every servo cycle for the channel’s trigger bit to be set. When the
ECT sees the trigger (the capture trigger for the machine interface channel as defined by Encoder I-
variable 2 and 3 for the channel used (e.g. I917 and I918 for a PMAC(1) channel 4 or I942 and I943 for a
PMAC2 channel 4), it automatically sets the method digit to $A for “running” time base. It uses the
position captured by the trigger as the starting position (“time zero”) for the running time base.

The following tables show the possible first-line entries for triggered time base (running mode):

Triggered Time-Base Entries for PMAC(1)-Style Servo ICs (Running State)
Channel Entry Channel Entry Channel Entry Channel Entry

1 $A0C000 5 $A0C010 9 $A0C020 13 $A0C030
2 $A0C004 6 $A0C014 10 $A0C024 14 $A0C034
3 $A0C008 7 $A0C018 11 $A0C028 15 $A0C038
4 $A0C00C 8 $A0C01C 12 $A0C02C 16 $A0C03C

Triggered Time-Base Entries for PMAC2-Style Servo ICs (Running State)

Channel Entry Channel Entry Channel Entry Channel Entry
1 $A0C000 5 $A0C020 9 $A0C040 13 $A0C060
2 $A0C008 6 $A0C028 10 $A0C048 14 $A0C068
3 $A0C010 7 $A0C030 11 $A0C050 15 $A0C070
4 $A0C018 8 $A0C038 12 $A0C058 16 $A0C078

Example
The application requires the use of Encoder 4 on board a Turbo PMAC2 as a triggered time base master
for coordinate system 1. It is to be triggered by the rising edge of its index channel. The real-time input
frequency is selected as 256 counts/msec. The conversion table starts with 8 single-line entries in
Y:$0720 – Y:$0727.
; Setup on-line command
WY:$0728,$A0C018 ; Triggered time base from PMAC2 channel 4
WY:$0729,512 ; TBSF=131072/256
I942=1 ; Channel 4 trigger on rising index
I193=$0729 ; C.S.1 use result for time base
M190->Y:$0728,20,4 ; Method digit of time base entry
M403->X:C01B,0,24,S ; Channel’s captured position register

; Motion program segment
DWELL 0 ; Stop any lookahead
M190=$9 ; Freeze the time base
P403=M403 ; Dummy read to ensure capture logic reset
X10 ; Calculate first move

; PLC program segment
IF (M190=$9) ; If frozen
 M190=$B ; Then arm
ENDIF

Low-Pass Filter Entries ($D): The $D entry is used to create one of two types of low-pass filters on a
word of input data to provide smoothing of noisy measurements. The two types of filter are distinguished
by bit 19 of the first setup line of the entry. If bit 19 is 0, making the second hex digit $0, the filter is a
simple exponential filter. If bit 19 is 1, making the second hex digit $8, the filter is a more sophisticated
tracking filter that includes an integrator to eliminate steady-state errors.

The simpler exponential filter, which is a three-line entry in the table, is suitable for the smoothing of
noisy master data used for electronic gearing (position following) or electronic cams (external time base).
However, it will produce lags even in the steady state (e.g. at constant velocity), so it is usually not
suitable for smoothing servo feedback data because of the delays it introduces.

PMAC 2 Software Reference

PMAC Saved Setup Registers 383

The more complex tracking filter, which is a five-line entry in the table, is suitable for smoothing either
master data or feedback data, because its integrator eliminates steady-state errors. Still, its filtering can
introduce delays in responding to dynamic changes (e.g. accelerations), so it needs to be set up carefully.
This software tracking filter is dynamically equivalent to the hardware tracking filters common in
resolver-to-digital converter ICs. It is commonly used to smooth the results of direct conversion of
sinusoidal encoders and resolvers.

Exponential Filter ($D0xxxx)

The equation of the exponential filter executed every servo cycle n is:

If [In(n) - In(n-1)] > Max_change, In(n) = In(n-1) + Max_change
If [In(n) - In(n-1)] < -Max_change, In(n) = In(n-1) - Max_change

Out(n) = Out(n-1) + (K/223)*[In(n)-Out(n-1)]

In, Out, and K are all signed 24-bit numbers (range -8,388,608 to 8,388,607). The difference [In(n)-
Out(n-1)] is truncated to 24 bits to handle rollover properly.

The time constant of the filter, in servo cycles, is (223/K)-1. The lower the value of K, the longer the time
constant.

No shifting action is performed. Any operations such as 1/T interpolation should have been done on the
data already, so the source register for this filter is typically the result register of the previous operation.

Method/Address Word: The first setup line of an exponential filter entry contains a ‘D’ in the first hex
digit (bits 20 – 23), a ‘0’ in the second hex digit, and the address of the source X-register in the third
through sixth hex digits (bits 0 – 15). If it is desired to execute an exponential filter on the contents of a
Y-register, the contents of the Y-register must first be copied to an X-register in the conversion table with
a “parallel” entry ($2) higher in the table. The source addresses for exponential filter entries are almost
always from the conversion table itself (X:$0720 – X:$073C). For example, to perform an exponential
filter on the result of the fourth line of the table, the first setup line of the filter entry would be $D00723.

Maximum Change Word: The second setup line of an exponential filter entry contains the value “max
change” that limits how much the entry can change in one servo cycle. The units of this entry are
whatever the units of the input register are, typically 1/32 of a count. For example, to limit the change in
one servo cycle to 64 counts with an input register in units of 1/32 count, this third line would be 64*32 =
2048.

Filter Gain Word: The third setup line of an exponential filter entry contains the filter gain value K,
which sets a filter time constant Tf of (223/K)-1 servo cycles. Therefore, the gain value K can be set as
223/(Tf+1). For example, to set a filter time constant of 7 servo cycles, the filter gain word would be
8,388,608/(7+1) = 1,048,576.

Result Word: The output value of the exponential filter is placed in the X register of the third line of the
conversion table entry. An operation that uses this value should address this third register; for example
Ix05 for position following, or the source address for a time-base conversion-table entry (to keep position
lock in time base, this filter must be executed before the time-base differentiation, not afterward).

Resolver Conversion Entries ($E) [Geo PMAC only]: The $E entry converts the sine and cosine
resolver feedback values processed through the Geo PMAC’s A/D converter (ADC) registers to a 14-bit
resolver angle value.

Method/Address Word: The first setup line of a resolver conversion entry contains $E in the first hex digit
and the Y-address of the first ADC register to be read in the low 16 bits (the third through sixth hex
digits). The next ADC register is read at the next higher Y-address. If bit 19 of the line is set to 0

 PMAC 2 Software Reference

384 PMAC Saved Setup Registers

(making the second hex digit $0) the conversion creates a “clockwise” rotation sense. If bit 19 of the line
is set to 1 (making the second hex digit $8), the conversion creates a “counter-clockwise” rotation sense.

The two base ADC addresses presently supported by the Geo PMAC for resolver conversion are Y:$FF00
for Channel 1 and Y:$FF20 for Channel 2. Therefore, the possible first-setup-line values are:

First Setup Line Conversion
$E0FF00 Channel 1 CW
$E8FF00 Channel 1 CCW
$E0FF20 Channel 2 CW
$E8FF20 Channel 2 CCW

Excitation Address Setup Word: The second setup line in a resolver conversion entry contains the address
of the excitation value register in the low 16 bits (the third through sixth hex digits), used to correlate the
excitation and the feedback values. The excitation register is presently at a fixed address of $FF5C in the
Geo PMAC, so this line should be $00FF5C.

Sine/Cosine Bias Setup Word: The third setup line in a resolver conversion entry contains bias-correction
terms for the sine and cosine ADC values. The high twelve bits (the first three hex digits) contain the
bias-correction term for the sine input; the low twelve bits (the last three hex digits) contain the bias-
correction term for the cosine input. Each 12-bit section should be treated as a signed 12-bit value (so if
the most significant of the 12 bits is a 1, the bias value is negative).

Each 12-bit bias-correction term should contain the value opposite that which the high 12 bits of the
matching A/D converter report when they should ideally report zero. In action, the bias term will be
added to the high 12 bits of the corresponding ADC reading before subsequent calculations are done.

For example, if the bias-correction word were set to $004FFA, the sine bias correction would be +4 LSBs
of a 12-bit ADC, and the cosine bias correction would be -6 LSBs ($FFA = -6) of a 12-bit ADC. In use, 4
12-bit LSBs would be added to the sine reading, and 6 12-bit LSBs would be subtracted from the cosine
reading each cycle before further processing.

In most cases, the bias-correction word will be determined automatically by an analog “diagnostic” entry
in the conversion table. The result of that diagnostic entry, containing both bias corrections, can simply
be copied into this setup word.

The resolver conversion can only be used if the Geo PMAC’s Feedback Option 1 for analog position
feedback is ordered.

Result Word: The output value of the resolver conversion is placed in the 24-bit X-register of the third
line of the conversion table entry. The values in bits 5 – 16 of the result word contain the high 12 bits of
the calculated arctangent of the bias-corrected sine and cosine values from the resolver. Because PMAC
software considers the value in bit 5 to be a “count” for its scaling purposes, this conversion returns
resolver position values of a 12-bit conversion (4096 “counts” per cycle of the resolver).

However, because the conversion uses dual 14-bit converters and the arctangent calculations compute
more than 12 bits, the result contains additional resolution in bits 0 – 4 that PMAC software considers to
have “fractional”, but still real, count resolution. If the electromagnetic noise levels are low, and the
signals use near the full scale of the ADCs, a repeatable 14-bit resolution (16,384 states per cycle of the
resolver) can be achieved.

Bits 17 – 23 of the result contain cycle data from software extension of the result to multiple resolver
cycles. If the result is then used for feedback or master data, it will be further extended in the motor
algorithms.

PMAC 2 Software Reference

PMAC Saved Setup Registers 385

This resolver conversion is a direct, and not a tracking, conversion. As such, it is more dynamically
responsive, but also more susceptible to measurement noise. If a more noise-immune result is desired, at
the cost of some dynamic responsiveness (but still no steady-state tracking errors), a digital tracking filter
can be implemented on this result with another conversion table entry (format $D8). The result of that
filter entry can then be used as the feedback or master data.

High-Resolution Interpolator Entries ($F): An ECT entry in which the first hex digit of the first line is
$F processes the result of a high-resolution interpolator for analog “sine-wave” encoders, such as the
ACC-51. This entry, when used with a high-resolution interpolator, produces a value with 4096 states per
line. The entry must read both an encoder channel for the whole number of lines of the encoder, and a
pair of A/D converters to determine the location within the line, mathematically combining the values to
produce a single position value.

Encoder Channel Address: The first line of the two-line entry contains $F in the first hex digit and the
base address of the encoder channel to be read in the low 16 bits (bits 0 to 15). If bit 19 of the line is set
to 0 (making the second hex digit $0), PMAC expects a PMAC(1)-style Servo IC on the interpolator, as
in the ACC-51P. If bit 19 is set to 1 (making the second hex digit $8), PMAC expects a PMAC2-style
Servo IC for the interpolator, as in the ACC-51S for the PMAC2A-PC/104.

The following table shows the possible entries when PMAC(1)-style Servo ICs are used, as in the ACC-
51P.

High-Res Interpolator Entry First Lines for ACC-51P
Channel Entry Channel Entry Channel Entry Channel Entry

9 $F0C020 11 $F0C028 13 $F0C030 15 $F0C038
10 $F0C024 12 $F0C02C 14 $F0C034 16 $F0C03C

The next table shows the possible entries for the ACC-51S, which uses the Servo ICs of the PMAC2A-
PC/104 main board and the ACC-1P Axis 5-8 board:

High-Res Interpolator Entry First Lines for ACC-51S
Channel Entry Channel Entry Channel Entry Channel Entry

1 $F8C000 3 $F8C010 5 $F8C020 7 $F8C030
2 $F8C008 4 $F8C018 6 $F8C028 8 $F8C038

A/D Converter Address: The second line of the entry contains $00 in the first two hex digits and the base
address of the first of two A/D converters to be read in the low 16 bits (bits 0 to 15, the last four hex
digits). The second A/D converter will be read at the next higher address. The following table shows the
possible entries when the ACC-51P is used:

High-Res Interpolator Entry Second Lines for ACC-51P
Channel Entry Channel Entry Channel Entry Channel Entry

9 $00C022 11 $00C02A 13 $00C032 15 $00C03A
10 $00C026 12 $00C02E 14 $00C036 16 $0FC03E

The next table shows the possible entries when the ACC-51S is used:

High-Res Interpolator Entry Second Lines for ACC-51S
Channel Entry Channel Entry Channel Entry Channel Entry

1 $00FFC0 3 $00FFC4 5 $00FFC8 7 $00FFCC
2 $00FFC2 4 $00FFC6 6 $00FFCA 8 $00FFCE

ResultWord: The output value of the high-resolution sinusoidal encoder conversion is placed in the 24-bit
X-register of the second line of the conversion table entry. Bit 0 of the result contains the LSB of the

 PMAC 2 Software Reference

386 PMAC Saved Setup Registers

conversion representing 1/4096 of a line of the encoder. Since PMAC software considers Bit 5 to be a
“count” for scaling purposes when used for servo feedback or master data, Bit 0 will be considered 1/32
of a count. This means that PMAC software will scale the data as 128 “software counts” per line of the
encoder.

High-Resolution Encoder Interpolation Entries ($F) [New 3-line or 5-line entry for Geo PMAC
only]: The $F entry in the Geo PMAC is used to process the feedback from sinusoidal incremental
encoders through the Geo PMAC’s high-resolution interpolation circuitry in one of two ways. The two
methods are distinguished by bit 19 of the first setup line of the entry. If bit 19 is 0, making the second
hex digit $0, it is a 3-line entry that simply produces a position result with 4096 states per line of the
encoder, suitable for direct use as feedback or master data. If bit 19 is 1, making the second hex digit $8,
it is a 5-line entry that produces several data results useful for setup and diagnostics of the feedback. Note
that this conversion type operates differently from the interpolation entries on other types of PMACs.

High-Resolution Interpolation Position Entry ($F0xxxx) [Geo PMAC only]

If bit 19 of the first setup line of a Geo PMAC interpolation entry is 0, to specify an entry that produces a
usable position result, this is a three-line entry (as opposed to two lines on other PMACs). The entry
combines whole-line information from the encoder counter whose address is specified in the first line
with fractional-line information from the arctangent of the A/D converters whose address is specified in
the second line. Note that the direction sense of both parts must agree. On power-up/reset, PMAC
checks the direction sense of the counter and matches the direction sense of the fractional information to
this. However, if the direction sense of the counter is then changed with the encoder-decode I-variable,
the new settings must be saved and the PMAC reset to restore proper direction mapping.

Method/Address Setup Word: The first setup line of the three-line entry contains $F in the first hex digit,
$0 in the second hex digit, and the base address of the encoder channel to be read in the low 16 bits (the
third through sixth hex digits). In the Geo PMAC, the first encoder channel is at address $C000 and the
second encoder channel is at address $C008, so the first setup line is set to $F0C000 or $F0C008.

A/D-Converter Address Setup Word: The second line of the entry contains $00 in the first two hex digits
and the address of the first of the two A/D converters in the low 16 bits (the last four hex digits). The
second A/D converter will be read at the next higher address. In the Geo PMAC, the first A/D converter
for Channel 1 is at address $FF00, and the first A/D converter for Channel 2 is at address $FF20, so the
second setup line is set to $00FF00 or $00FF20.

Sine/Cosine Bias Setup Word: The third setup line in a high-resolution sinusoidal-encoder conversion
entry contains bias-correction terms for the sine and cosine ADC values. The high twelve bits (the first
three hex digits) contain the bias-correction term for the sine input; the low twelve bits (the last three hex
digits) contain the bias-correction term for the cosine input. Each 12-bit section should be treated as a
signed 12-bit value (so if the most significant of the 12 bits is a 1, the bias value is negative).

Each 12-bit bias-correction term should contain the value opposite that which the high 12 bits of the
matching A/D converter report when they should ideally report zero. In action, the bias term will be
added to the high 12 bits of the corresponding ADC reading before subsequent calculations are done.

For example, if the bias-correction word were set to $004FFA, the sine bias correction would be +4 LSBs
of a 12-bit ADC, and the cosine bias correction would be -6 LSBs ($FFA = -6) of a 12-bit ADC. In use, 4
12-bit LSBs would be added to the sine reading, and 6 12-bit LSBs would be subtracted from the cosine
reading each cycle before further processing.

In most cases, the bias-correction word will be determined automatically by an analog “diagnostic” entry
in the conversion table. The result of that diagnostic entry, containing both bias corrections, can simply
be copied into this setup word.

PMAC 2 Software Reference

PMAC Saved Setup Registers 387

Result Word: The output value of the high-resolution sinusoidal-encoder conversion in the Geo PMAC is
placed in the 24-bit X-register of the third line of the conversion table entry. Bit 0 of the result contains
the LSB of the conversion, representing 1/4096 of a line of the encoder. Since PMAC software considers
the contents of Bit 5 to be a “count” for scaling purposes when used for servo feedback or master data, bit
0 will be considered 1/32 of a count. This means that PMAC software will scale the data as 128
“software counts” per line of the encoder.

High-Resolution Interpolation Diagnostic Entry ($Fxxxxx, bit 19 = 1) [Geo PMAC only]

If bit 19 of the first setup line of a Geo PMAC “interpolation” entry is 1, to specify an entry that produces
either vector magnitude or analog-input bias terms for the sine and cosine inputs of a sinusoidal encoder
or resolver, this is a five-line entry. These result values can be used to verify proper setup and interface of
the encoder or resolver and to optimize the accuracy of the conversion during initial setup, and/or to
check for loss of the encoder or resolver during the actual application. Bit 16 of the first setup line
determines whether the result produced is the sum of the squares of the two analog inputs (bit 16 = 0) or
the bias terms for the analog inputs (bit 16 = 1).

Method/Address Setup Word: The first setup line of the five-line entry contains $F in the first hex digit,
$8 in the second hex digit (bit 19 = 1) to produce a sum-of-squares result or $9 in the second digit (bit 19
= 1, bit 16 =1) to produce a bias correction term, and the address of the first of the two A/D converters in
the low 16 bits (the last four hex digits). The second A/D converter will be read at the next higher
address. In the Geo PMAC, the first A/D converter for Channel 1 is at address $FF00, and the first A/D
converter for Channel 2 is at address $FF20, so the first setup line is set to $F8FF00 or $F8FF20 to
produce a sum-of-squares result, or to $F9FF00 or $F9FF20 to produce a bias-correction result.

When set up to determine the bias term, if bit 17 is set to 0, making the second hex digit $9 (as the above
instructions say), the minimum and maximum values for the sine and cosine readings that are used to
determine the appropriate bias values are set to 0. As soon as the Geo PMAC starts accumulating
minimum and maximum values (the next servo cycle), it will set bit 17 to 1, making the second hex digit
to $B. If you want to start a new test, for example after a circuit adjustment, you must set bit 17 to 0
again by making the second hex digit $9.

Reserved Setup Word: The second setup line of this entry type is reserved for future use, and should be
left at 0.

Active Bias Correction Setup Word: The third setup line of the five-line entry contains the sine and cosine
bias terms that are used in the sum-of-squares calculations. Two signed 12-bit bias terms are combined in
a 24-bit word. The sine bias-correction term is in the high 12 bits (bits 12 – 23); the cosine bias-
correction term is in the low 12 bits (bits 0 – 11). These terms match the high 12 bits from the
corresponding A/D converters. This word does not necessarily match the bias “result” term derived from
using this entry to determine a suggested bias correction, or the bias correction used in the “feedback”
table entry for the encoder or resolver.

Reserved Setup Words: The fourth and fifth setup lines of this entry type are reserved for future use, and
should be left at 0.

Result Word (Sum of Squares): When bit 16 of the first setup line is 0, the final (fifth) result word
contains the sum of squares of the biased sine and cosine measurements for the most recent servo cycle.

Result = (SineADC + SineBias)2 + (Cosine ADC + CosineBias)2

The values SineADC and CosineADC are read from the A/D converters at the address specified in the first
setup line. The values SineBias and CosineBias are read from the third setup line.

To understand the scaling of the result word, it is best to think of all four of the values as being
normalized, that is, as having a valid range of -1.0 to +1.0. With small bias terms, the sum of squares

 PMAC 2 Software Reference

388 PMAC Saved Setup Registers

result would have a possible normalized value of 0.0 to +2.0. When read as an unsigned integer, this
register has a range of 0 to 16,777,215 ($FFFFFFF), corresponding to a normalized range of 0.0 to 2.0.

When the encoder and interpolator circuitry, or the resolver and excitation circuitry, are working properly,
the sum of squares should have a normalized value of +0.25 to +0.9999 (2,097,152 to 8,388,607, or
$200000 to $7FFFFF). If the resulting normalized value is greater than or equal to +1.0 (8,388,608, or
$800000), meaning that the most significant bit (bit 23) is set to 1, at any point in the cycle, this indicates
that saturation has occurred in at least one of the readings due to either too large a signal or a significant
bias. This should be corrected before using this sensor in actual operation.

If the result has a normalized value of less than +0.25 (2,097,152, or $200000), meaning that bits 23, 22,
and 21 are all 0, at low sensor frequencies, the signals are too small to get full resolution from the result,
and this should be corrected before using this sensor in actual operation. Many sinusoidal encoders do
have a reduction in signal magnitude of up to one-half at their highest frequencies, reducing the
magnitude of this square term by three-quarters, and this is acceptable.

It is possible to monitor this term in the actual application to check for loss of the encoder. If the inputs
are no longer driven externally, for example because the cable has come undone, the positive and negative
input pair to the ADC will pull to substantially the same voltage, and the output of the ADC will be a very
small number, resulting in a small magnitude of the sum of squares in at least part of the cycle. (If both
signals cease to be driven externally, the sum of squares will be small over the entire cycle). The high
four bits (bits 20 – 23) of the sum-of-squares result can be monitored, and if the four-bit value goes to 0, it
can be concluded that the encoder has been “lost”, and the motor should be “killed”.

Ideally, the magnitude of the sum-of-squares result should be constant throughout the sine/cosine cycle, at
least at constant frequency. If there is significant variation, this is an indication of signal imperfection. In
most cases, the most important imperfection is a DC bias on the sine and/or cosine signals. This entry can
be used in its alternate format to determine the optimal bias correction. Once that bias correction has
been determined (the result word in that format), it can be copied into the active correction setup word for
the diagnostic entry, and the entry put back into sum-of-squares mode, as an important verification that a
good bias correction has been determined.

A/D Bias Result Word: When bit 16 of the first setup line is 1, the final (fifth) result word contains the
suggested bias correction word containing the bias correction terms for the sine and cosine terms. This
24-bit value, containing two signed 12-bit correction terms, can be copied into the third setup word for the
interpolator diagnostic entry for confirmation of its effect, and to the third line of the interpolator
feedback entry, or the resolver feedback entry, for actual use. The sine bias-correction term is in the high
12 bits (bits 12 – 23); the cosine bias-correction term is in the low 12 bits (bits 0 – 11).

In this mode, the encoder should be moved for several seconds (motion by hand is OK) to ensure good
sampling of maximums and minimums of both waveforms and accurate bias-correction terms. It is
probably best to do this test with the amplifier disabled to prevent the possibility of noise distorting the
maximum and minimum readings.

PMAC 2 Software Reference

PMAC Saved Setup Registers 389

VME/DPRAM Addressing Setup Registers: X:$0783 – X:$078C
There are ten saved setup registers that configure the VME bus interface, including DPRAM. In ISA-bus
PMACs, two of these registers configure the optional DPRAM interface.

X:$0783 VME Address Modifier
Range: $00 - $FF
Units: None
Default: $39

X:$0783 controls which address modifier value PMAC will respond to when sent by the VME bus host.
X:$0783 takes one of three valid values in normal use, depending on the address bus width used:

• X:$0783 = $29: 16-bit addressing
• X:$0783 = $39: 24-bit addressing
• X:$0783 = $09: 32-bit addressing

X:$0783 is actually used at power-on/reset only, so to set or change the VME address modifier, change
the value of X:$0783, store this new value to non-volatile flash memory with the SAVE command, and
reset the card with the $$$ command. The active register into which the value of X:$0783 is copied at
power-on/reset is X:$E006 bits 0 – 7. It is permissible to write to this register directly (suggested M-
variable M90) to change the active setup without a SAVE and reset.

X:$0784 VME Address Modifier Don’t Care Bits
Range: $00 - $FF
Units: None
Default: $04

X:$0784 controls which bits of the X:$0783 VME address modifier are don’t care bits. X:$0784 is set to
$04 in all normal use, which permits both “non-privileged” and “supervisory” data access by the VME
host.

X:$0784 is actually used at power-on/reset only, so to set or change the VME address modifier “don’t
care” bits, change the value of X:$0784, store this new value to non-volatile flash memory with the SAVE
command, and reset the card with the $$$ command. The active register into which the value of
X:$0784 is copied at power-on/reset is X:$E007 bits 0 – 7. It is permissible to write to this register
directly (suggested M-variable M91) to change the active setup without a SAVE and reset.

X:$0785 VME Base Address Bits A31-A24
Range: $00 - $FF
Units: None
Default: $FF

X:$0785 controls bits A31 through A24 of the VME bus base address of PMAC, both for the mailbox
registers, and the dual-ported RAM. It is only used if 32-bit addressing has been selected with X:$0783
and X:$078C.

X:$0785 is actually used at power-on/reset only, so to set or change bits 16-23 of the VME bus base
address, change the value of X:$0785, store this new value to non-volatile flash memory with the SAVE
command, and reset the card with the $$$ command. The active register into which the value of
X:$0785 is copied at power-on/reset is X:$E008 bits 0 – 7. It is permissible to write to this register
directly (suggested M-variable M92) to change the active setup without a SAVE and reset.

 PMAC 2 Software Reference

390 PMAC Saved Setup Registers

X:$0786 VME Mailbox Base Address Bits A23-A16
 ISA DPRAM Base Address Bits A23-A16
Range: $00 - $FF
Units: None
Default: $7F (VME); $0D (ISA)

On VME bus systems, X:$0786 controls bits A23 through A16 of the VME bus base address of the
mailbox registers for PMAC. Bit 7 of X:$0786 corresponds to A23 of the base address, and bit 0 of
X:$0786 corresponds to A16. X:$0786 is only used on VME systems if 24-bit or 32-bit addressing has
been selected with X:$0783 and X:$078C.

On ISA bus systems (PC, PC Ultralite), X:$0786 controls bits A23 through A16 of the ISA bus base
address of the DPRAM. Bit 7 of X:$0786 corresponds to A23 of the base address, and bit 0 of X:$0786
corresponds to A16. A23 through A20 are only used on ISA bus systems if bit 2 of X:$0787 is set to 1,
enabling 24-bit addressing.

X:$0786 is actually used at power-on/reset only, so to set or change the base address, change the value of
X:$0786, store this new value to non-volatile flash memory with the SAVE command, and reset the card
with the $$$ command. The active register into which the value of X:$0786 is copied at power-on/reset
is X:$E009 bits 0 – 7. It is permissible to write to this register directly (suggested M-variable M93) to
change the active setup without a SAVE and reset.

X:$0787 VME Mailbox Base Address Bits A15-A08
 ISA DPRAM Base Address Bits A15-A14 & Control
Range: $00 - $FF
Units: None
Default: $A0 (VME); $45 (ISA)

On VME bus systems, X:$0787 controls bits A15 through A08 of the VME bus base address of the
mailbox registers of PMAC. Bit 7 of X:$0786 corresponds to A23 of the base address, and bit 0 of
X:$0786 corresponds to A16. X:$0787 is used whether 16-bit, 24-bit, or 32-bit addressing has been
selected with X:$0783 and X:$078C.

On ISA bus systems (PC and PC Ultralite), X:$0787 controls the enable state and addressing mode of the
DPRAM. If the DPRAM is to appear as a 16k block of memory on the ISA bus, it also sets bits A15 and
A14 of the ISA bus base address.

The first hex digit of X:$0787 contains bits 4 – 7. When the DPRAM is addressed as a 16k x 8 block of
memory on the ISA bus, bit 7 of X:$0787 corresponds to A15, and bit 6 of X:$0787 corresponds to A14.
Bits 5 and 4 must be set to 0.

The second hex digit of X:$0787 contains bits 0 – 3. These are individual control bits. Bits 0 and 2
control the addressing mode and block size. Bits 1 and 3 control the bank selection if the large DPRAM
is addressed as a small block of memory. These should always be set to 0 in a non-Turbo PMAC. The
commonly used settings of the second hex digit of X:$0787 are:

• 0: DPRAM not enabled
• 1: 20-bit addressing (below 1M), 16k x 8 address block
• 5: 24-bit addressing (above or below 1M), 16k x 8 address block

X:$0787 is actually used at power-on/reset only, so to set or change, and keep, these settings, change the
value of X:$0787, store this new value to non-volatile flash memory with the SAVE command, and reset
the card with the $$$ command. The active register into which the value of X:$0787 is copied at power-

PMAC 2 Software Reference

PMAC Saved Setup Registers 391

on/reset is X:$E00A bits 0 – 7. It is permissible to write to this register directly (suggested M-variable
M94) to change the active setup without a SAVE and reset.

X:$0788 VME Interrupt Level
Range: $01 - $07
Units: None
Default: $02

X:$0788 controls which interrupt level (1 to 7) PMAC will assert on the VME bus. Multiple boards on
the same VME bus may assert the same interrupt level if each one has a unique set of interrupt vectors as
set by X:$0789.

X:$0788 is actually used at power-on/reset only, so to set or change the VME interrupt level, change the
value of X:$0788, store this new value to non-volatile flash memory with the SAVE command, and reset
the card with the $$$ command. The active register into which the value of X:$0788 is copied at power-
on/reset is X:$E00B bits 0 – 7. It is permissible to write to this register directly (suggested M-variable
M95) to change the active setup without a SAVE and reset.

X:$0789 VME Interrupt Vector
Range: $00 - $FF
Units: None
Default: $A1

X:$0789 controls which interrupt vectors will be provided when PMAC asserts a VME bus interrupt. If
PMAC asserts the interrupt to signify that it has read a set of mailbox registers and is ready to accept
another set, the interrupt vector value will be equal to (X:$0789-1). If PMAC asserts the interrupt to
signify that it has written to a set of mailbox registers and is ready for the host computer to read these, the
interrupt vector value will be equal to X:$0789. If PMAC asserts the interrupt to signify that it has put a
line of text in the DPRAM ASCII response buffer and is ready for the host computer to read this, the
interrupt vector value will be equal to (X:$0789+1).

If there are multiple PMAC boards asserting the same interrupt level in the VME bus as set by X:$0788,
they each must assert a unique, non-overlapping set of interrupt vectors.

X:$0789 is actually used at power-on/reset only, so to set or change the VME interrupt vector, change the
value of X:$0789, store this new value to non-volatile flash memory with the SAVE command, and reset
the card with the $$$ command. The active register into which the value of X:$0789 is copied at power-
on/reset is X:$E00C bits 0 – 7.

It is permissible to write to this register directly (suggested M-variable M96) to change the active setup
without a SAVE and reset.

X:$078A VME DPRAM Base Address Bits A23-A20
Range: $00 - $FF
Units: None
Default: $00

X:$078A controls bits A23 through A20 of the VME bus base address of the dual-ported RAM of PMAC.
Bit 3 of X:$0786 corresponds to A20 of the base address, and bit 0 of X:$0786 corresponds to A16.
X:$078A is only used if 24-bit or 32-bit addressing has been selected with X:$0783 and X:$078C.

Bits A19 through A14 of the DPRAM VME base address must be set by the host computer after every
power-on/reset by writing a byte over the bus to the “page select” register in the PMAC’s VME mailbox
IC at the mailbox base address + $0121. This must be done even with the single-page 8k x 16 standard

 PMAC 2 Software Reference

392 PMAC Saved Setup Registers

DPRAM option. With the extended DPRAM option, the host computer must write to the page select
register every time a new page is accessed.

X:$078A is actually used at power-on/reset only, so to set or change bits 8 to 15 of the VME bus DPRAM
base address, change the value of X:$078A, store this new value to non-volatile flash memory with the
SAVE command, and reset the card with the $$$ command. The active register into which the value of
X:$078A is copied at power-on/reset is X:$E00D bits 0 – 7. It is permissible to write to this register
directly (suggested M-variable M97) to change the active setup without a SAVE and reset.

X:$078B VME DPRAM Enable
Range: $00 - $FF
Units: None
Default: $60

X:$078B controls whether VME access to the DPRAM IC on the PMAC is enabled or not. It should be
set to $60 if DPRAM is not present to disable access; it should be set to $E0 if DPRAM is present to
enable access.

X:$078B is actually used at power-on/reset only, so to set or change the DPRAM enabling, change the
value of X:$078B, store this new value to non-volatile flash memory with the SAVE command, and reset
the card with the $$$ command. The active register into which the value of X:$078B is copied at power-
on/reset is X:$E00E bits 0 – 7. It is permissible to write to this register directly (suggested M-variable
M98) to change the active setup without a SAVE and reset.

X:$078C VME Address Width Control
Range: $00 - $FF
Units: None
Default: $10

X:$078C controls the VME bus address width, with or without DPRAM. It should take one of six values
in normal use:

• X:$078C = $00: 32-bit addressing, no DPRAM
• X:$078C = $10: 24-bit addressing, no DPRAM
• X:$078C = $30: 16-bit addressing, no DPRAM
• X:$078C = $80: 32-bit addressing, with DPRAM
• X:$078C = $90: 24-bit addressing, with DPRAM
• X:$078C = $B0: 16-bit addressing, with DPRAM

X:$078C is actually used at power-on/reset only, so to set or change the VME bus address width, change
the value of X:$078C, store this new value to non-volatile flash memory with the SAVE command, and
reset the card with the $$$ command. The active register into which the value of X:$078C is copied at
power-on/reset is X:$E00F bits 0 – 7. It is permissible to write to this register directly (suggested M-
variable M99) to change the active setup without a SAVE and reset.

PMAC 2 Software Reference

PMAC Saved Setup Registers 393

PMAC2 Servo IC Setup Bits and Registers
A few setup bits and registers in PMAC2 Servo ICs are not assigned I-variables, but still can be set and
saved like I-variables.

X:$C005 etc. Bit 17 Encoder n Third-Channel Demux Control
{PMAC2 only}

Range: 0 .. 1
Units: none
Default: 0

Note

In V1.17 and newer firmware, this bit has been incorporated into I9n5.

Bit 17 of a hardware channel’s control word permits the “de-multiplexing” of the U, V, and W hall
commutation sensor bits from the index-channel input for the encoder in the style of the Yaskawa
incremental encoders. When bit 17 is set to 1, the U, V, W, and index (“Z”) states are broken out of the
third-channel (“C”) input according to the four possible AB-quadrature states as shown in the following
table:

A B C
1 1 Z
1 0 U
0 0 V
0 1 W

When bit 17 is set to 0, no de-multiplexing for the channel, and the U, V, W, and C input lines for the
channel each feed their own status bits.

The addresses for the control word of each channel are:

Channel Control
Word

Address

Channel Control
Word

Address

Channel Control
Word

Address

Channel Control
Word

Address
1 X:$C005 3 X:$C015 5 X:$C025 7 X:$C035
2 X:$C00D 4 X:$C01D 6 X:$C02D 8 X:$C03D

The U, V, and W states can be read in bits 22, 21, and 20, respectively, of the channel’s status word in the
Servo ASIC. The index channel state can be read in bit 14 of the channel’s status word; the state can be
used automatically in the capture logic for the channel.

Bit 3 of the channel’s status word is set to 1 until all four AB-quadrature states have been seen. The user
should not attempt to use the de-multiplexed UVW state for brushless motor phasing until this bit has
been cleared to 0.

X:$C005 etc. Bit 18 Encoder n Hardware 1/T Enable {PMAC2 only}
Range: 0 .. 1
Units: none
Default: 0

Note

In V1.17C and newer firmware, this bit can be accessed as I9n9.

 PMAC 2 Software Reference

394 PMAC Saved Setup Registers

Bit 18 of a hardware channel’s control word permits the enabling of a special hardware 1/T sub-count
estimation for the channel in the PMAC2 DSPGATE1 Servo ASIC. (This requires revision “D” or newer
of the DSPGATE1 IC, which started shipping in 2002.)

If bit 18 is set to 1, the ASIC will automatically compute 12 bits of timer-based estimated sub-count data
every SCLK encoder sample clock cycle (default 9.83 MHz). This sub-count position data is then
available to enhance the resolution of the hardware capture and compare functions.

When bit 18 is set to the default value of 0, the hardware 1/T functionality is disabled.

The addresses for the control word of each channel are:

Channel Control
Word

Address

Channel Control
Word

Address

Channel Control
Word

Address

Channel Control
Word

Address
1 X:$C005 3 X:$C015 5 X:$C025 7 X:$C035
2 X:$C00D 4 X:$C01D 6 X:$C02D 8 X:$C03D

When the hardware 1/T functionality is enabled by setting bit 18 to 1, the registers needed for the
traditional software 1/T in the encoder conversion table are no longer accessible. At these addresses (the
first two Y-registers for the channel in the ASIC) are instead four 12-bit sub-registers for sub-count
capture and compare data.

The hardware 1/T functionality is mainly intended for use with the ACC-51x high-resolution interpolator
boards for sinusoidal encoders. That board produces 10 bits of fractional count resolution for servo
feedback with its A/D converters, but that fractional data cannot be used for hardware capture or compare
functions between servo cycles.

X:$C014, X:$C034 Servo IC m ADC Strobe Word {PMAC2 only}
Range: $000000 - $FFFFFF
Units: Serial Data Stream (MSB first, starting on rising edge of phase clock)
Default: $FFFFFE

X:$C014 and X:$C034 control the ADC strobe signal for Servo IC machine interface channels 1 – 4 and
5 – 8, respectively. The 24-bit word set by these registers is shifted out serially on the ADC_STROB
lines, MSB first, one bit per ADC_CLK cycle starting on the rising edge of the phase clock.

In revisions “D” and newer of the DSPGATE1 Servo IC (beginning shipments in 2002), bit 0 (the LSB)
of X:$C014 and X:$C034 is a control bit that determines whether the Servo IC will expect “header”
information on the return data streams that precedes the numerical data from the ADCs. If bit 0 is 0, no
header information is expected, and the low output from this bit is held until the next rising edge of the
phase clock. This setting must be used on all earlier revisions of the DSPGATE1 Servo IC.

In revisions “D” and newer, if bit 0 of X:$C014 or X:$C034 is 1, up to 4 bits of header information can
be accepted on the returned serial data streams from the ADCs (as with the ADCs in Delta Tau’s Geo
power block amplifiers). These bits are “rolled over” and end up in bits 0 – 3 of the ADC register in the
Servo IC, and the numerical data ends up with its MSB in bit 23 of the ADC register. If fewer than 4
header bits are expected, the beginning of the strobe word should be delayed by setting the first bit(s) of
the register to 0. Specifically, if (4 – n) header bits are expected, the first n bits of the register should be
set to 0. In this setting, the ADC_STROB output is taken low and held low after bit 0 is shifted out.

The first bit that is a 1 creates a rising edge on the ADC_STROB output that is used typically as a start-
convert signal. Some A/D converters just need this rising edge for the conversion; others need the signal
to stay high all of the way through the conversion. Intermediate bits of the ADC_STROB output can be
used to transmit other information in some applications.

PMAC 2 Software Reference

PMAC Saved Setup Registers 395

The default value of $FFFFFE is suitable for use with Delta Tau Quad Amps, most third-party direct-
PWM amplifiers, and with ACC-28B A/D converters. A value of $3FFFFF is usually appropriate for
Delta Tau GEO power-block amplifiers. Refer to the specific amplifier manual for details. A valve of
$1FFFFF should be used for the Option 12 serial ADCs on PMAC2a-PC/104.

 PMAC 2 Software Reference

396 PMAC I/0 and Memory Map

PMAC I/O AND MEMORY MAP
This guide to PMAC’s memory and input and output registers is provided for user reference. The PMAC
architecture is very open, allowing the user to examine and use many internal registers for his own use.
Usually this is done through the use of M-variables, which point to locations in the memory-I/O space of
the PMAC processor. Once defined to point to the proper location, an M-variable can be treated as any
other variable for reading and writing.

Caution:

Certain registers that are under PMAC’s automatic control can cause problems if
the user writes to them directly – particularly those used in the servo calculations.

PMAC’s processor is the Motorola 56002 DSP. The 56002 has dual data buses, each 24 bits wide, so that
both operands in a calculation may be brought in simultaneously. Each bus has access to a 16-bit address
space (0000hex to FFFFhex) which provides 65,536 24-bit words. One bus and address space is called X,
and the other is called Y. Therefore, when specifying a single-word memory location, one must use X: or
Y: with the 16-bit address. PMAC’s input and output is mapped into the same address space with the
memory.

PMAC uses double-word memory for both extended fixed-point values and for floating-point values
(single words are always fixed point). In this memory map, the fixed-point double word locations are
specified by a D: (double), and the floating-point double-word locations are specified by an L: (long).
This matches the syntax of M-variable declarations for these registers. If an address is specified without
any prefix, it means that a special internal format is used to hold data in that word.

The user may specify PMAC addresses with either decimal or hexadecimal values; the hex values must be
preceded by a $ to be interpreted as hex. For example, Y:$FFC0 is the hexadecimal specification, and
Y:65472 is the decimal specification of the same word address.

M-variables are defined by providing the word address, the offset, the width, and the format (irrelevant
for bits). Refer to M-variables in the manual for details of the definition. Several M-variables were
defined at the factory to match to inputs and outputs. For instance, M11 thru M18 were assigned to
Machine Inputs 1 thru 8 (MI1-MI8), and M1 to M8 were assigned to Machine Outputs 1 thru 8 (MO1-
MO8). Example statements are as follows:

M11->Y:$FFC2,0,1 (Mach. In. 1: Offset 0, width 1)
M1->Y:$FFC2,8,1 (Mach. Out. 1: Offset 8, width 1)
M162->D:$002C (Motor #1 Actual Position: fixed pt.)
M163->L:$081F (C.S. 1 X-axis Position: floating pt.)

PMAC 2 Software Reference

PMAC I/0 and Memory Map 397

PMAC Memory Mapping

$0000
$00FF
$0100

$17FF
$1800

$BBFF
$BC00
$BFFF
$C000

$C03F
$D000

$DFFF
$E000

$F000

$FFFF

Internal DSP

Memory

DSP-Gate

Registers

Dual-Ported
RAM

VME bus

registers

I/O
Registers

External
Static
RAM

(Battery
Backed)

X-Memory Y-Memory
823 16 15 7 0 23 16 15 8 7 0

Fixed-Use Calculation Registers

User Buffer Storage Space

User-Written Servo Storage M-Variable Definitions

Mailbox RegistersVME Setup Registers

Global Servo Calculation Registers
In the listing below, the hexadecimal address is listed first, followed by the decimal address in
parentheses.

 Bits Global I-Variables
X:$0000 (0) Servo interrupt cycle counter (servo cycles)
Y:$0000 Servo count for next real time interrupt
X:$0001 (1)
 0,1 I5
 2 I2
 4,5 I9
 6,7 I3
 10,11 I4
 14,15 I6
 18,19 I1

 PMAC 2 Software Reference

398 PMAC I/0 and Memory Map

Y:$0001 Real time interrupt period minus one (I8)
X:$0002 (2) Data gathering counter (time)
Y:$0002 Data gathering period (I19)
X:$0003 (3) Global servo status bits
(First word returned on ??? command. See ??? in the On-Line Commands section)
 0 This Card Addressed Serially
 1 All Cards Addressed Serially
 2-3 (Reserved for future use)
 4 MACRO Ring Failure Error
 5 MACRO Auxiliary Communications Error
 6 TWS Variable Parity Error
 7-9 (For internal use)
 10 EAROM Error
 11 DPRAM Error
 12 PROM Checksum Error
 13 Any Memory Checksum Error
 14 Compensation On
 15 PMAC2 Servo-Channel ADC Autocopy Disabled
 16 (Reserved for future use)
 17 Prepared to gather on trigger
 18 Prepared to gather next servo
 19 Data gathering function on
 20 Servo Error
 21 Servo Active
 22 Real Time Interrupt Re-entry
 23 Real Time Interrupt Active
Y:$0003 Global status bits
(Second word returned on ??? command)
 0-7 (Reserved for future use)
 8-10 (Internal use)
 11 Fixed Buffer Full
 12-14 (Internal use)
 15 VME Communications Mode
 16 PLC Command
 17 PLC Buffer Open
 18 Rotary Buffer Open
 19 Motion Program Buffer Open
 20-21 (Internal use)
 22 Host communication mode
 23 (Internal use)
D:$0004-
$0007

 Temporary calculation registers

X:$0008 (8) Last real-time interrupt execution time (servo cycles)
Y:$0008 Longest real-time interrupt execution time (servo

cycles)
D:$0009-
$001E

 Temporary calculation registers

Y:$001F (31) Minimum watchdog timer value, last background cycle

PMAC 2 Software Reference

PMAC I/0 and Memory Map 399

Motor Calculation Registers: PMAC(1), PID Servo Algorithm
This section provides addresses for motor calculation registers for PMAC(1) boards with the standard
PID servo algorithm (without the Option 6 Extended Servo Algorithm).

The addresses given are for Motor #1. For the registers for another motor x, add (x-1)*$3C – (x-1)*60 –
to the appropriate motor #1 address. The address table shown every 16 addresses (every 10hex) gives the
matching addresses for motors 1-8 to make address calculations easier.

Example: Using the table, Motor 6’s actual position address is $014C + ($28-$20) = $0154. Using the
formula, it is (6-1)*$003C+$0028 = $0154.

Motor # 1 2 3 4 5 6 7 8
Hex [$0020] [$005C] [$0098] [$00D4] [$0110] [$014C] [$0188] [$01C4]

Decimal 32 92 152 212 272 332 392 452

D:$0020 (32) Time left in move (X-register units msec*2 at %100)
D:$0021 (33) Present desired jerk residual
D:$0022 (34) Present desired jerk (dA/dt)
D:$0023 (35) Present desired acceleration residual
D:$0024 (36) Present desired acceleration (X-register units 6/[Ix08*32] cts/msec2

at %100); Y is fractional
D:$0025 (37) Present desired velocity residual
D:$0026 (38) Present desired velocity (X-register units 3/[Ix08*32] cts/msec at

%100); Y is fractional
D:$0027 (39) Present desired position residual
D:$0028 (40) Present desired position (1/[Ix08*32] counts)
X:$0029 (41) Address of position feedback (Ix03)
Y:$0029 Position scaling factor (Ix08)
X:$002A (42) Address of master (handwheel) register (Ix05)
Y:$002A Previous actual position value
D:$002B (43) Present actual position (1/[Ix08*32] counts)
X:$002C (44) Master (handwheel) scale factor (Ix07)
Y:$002C Previous master (handwheel) position
D:$002D (45) Present master (handwheel) position (1/[Ix07*32]cts of the master or

1/[Ix08*32]cts of the slaved motor)
X:$002E (46) Feedpot (timebase) pointer
Y:$002E Servo cycle extension (Ix60)
D:$002F Previous net desired position (1/[Ix08*32] counts)

Motor # 1 2 3 4 5 6 7 8
Hex [$0030] [$006C] [$00A8] [$00E4] [$0120] [$015C] [$0198] [$01D4]

Decimal 48 108 168 228 288 348 408 468

X:$0030 (48) Velocity feedforward gain (Ix32)
Y:$0030 Previous desired velocity (1/[Ix08*32] cts/servo cycle)
X:$0031 (49) Address of “velocity” encoder (Ix04)
Y:$0031 Previous “velocity” position
X:$0032 (50) Acceleration feedforward gain (Ix35)
Y:$0032 “Velocity” scaling factor (Ix09)
X:$0033 (51) Actual velocity (1/[Ix09*32] cts/[Ix60+1]servo interrupts)
Y:$0033 Derivative gain (Ix31)

 PMAC 2 Software Reference

400 PMAC I/0 and Memory Map

X:$0034 (52) Deadband size (Ix65) (1/16 count)
Y:$0034 Position error limit (Ix67) (1/16 count)
X:$0035 (53) “Deadband gain” (Ix64)
Y:$0035 Integral gain (Ix33)
X:$0036 (54) Integrated error residual
Y:$0036 Integrated error limit (Ix63)
D:$0037 (55) Integrated error
X:$0038 (56) Proportional gain (Ix30)
Y:$0038 Filter output (DAC) limit (Ix69)
D:$0039 (Filter intermediate values)
X:$003A (58) Filter result (stored for next cycle)
X:$003B (59) Notch filter D2 gain (Ix39)
Y:$003B Notch filter N2 gain (Ix37)
X:$003C (60) Notch filter D1 gain (Ix38)
Y:$003C Notch filter N1 gain (Ix36)
X:$003D (61) Motor servo status bits

Bits
(First word returned on ? command. See Y:$0814 for second word.)
(Refer to ? description in on-line commands for detailed description of bits.)
 0-9 (Internal use)
 10 Home search in progress
 11 Block request
 12 Abort deceleration in progress
 13 Desired velocity 0
 14 Data block error
 15 Dwell in progress
 16 Integration mode (Ix34; 0 on always; 1 on when desired

velocity zero)
 17 Move timer active
 18 Open-loop mode
 19 Phased motor (Ix01)
 20 Handwheel enabled (Ix06)
 21 Positive end limit set (soft or hard [-LIM])
 22 Negative end limit set (soft or hard [+LIM])
 23 Motor activated (Ix00)
Y:$003D Phase address pointer (Ix83)
X:$003E (62) 0-7 Phase offset (Ix72)
 8-23 2nd phase bias (Ix79)
Y:$003E 0-7 # of commutation cycles per rev (Ix70)
 8-23 Filter output/1st phase bias (Ix29)
X:$003F (63) Magnetization current (Ix77)
Y:$003F Previous phase position

Motor # 1 2 3 4 5 6 7 8
Hex [$0040] [$007C] [$00B8] [$00F4] [$0130] [$016C] [$01A8] [$01E4]

Decimal 64 124 184 244 304 364 424 484

X:$0040 (64) Slip frequency
Y:$0040 (64) Counts per Ix70 commutation cycles (Ix71)
D:$0041 (65) Present phase position (X register units: counts*Ix70, range -Ix71/2 -

Ix71/2-1)

PMAC 2 Software Reference

PMAC I/0 and Memory Map 401

X:$0042 (66) Phase advance
Y:$0042 Phase advance gain (Ix76)
X:$0043 (67) Slip Gain (Ix78)
Y:$0043 Phased DAC amplitude
X:$0044 (68) Command output address (Ix02)
Y:$0044 Velocity Phase Advance Gain (Ix76)
X:$0045 (69) Filter command value
Y:$0045 Command (torque) internal offset
D:$0046 (70) Compensation correction (1/[Ix08*32] cts
D:$0047 (71) Following error (1/[Ix08*32] cts)
X:$0048 (72) Friction feedforward gain (Ix68)
$0049-$005B (Reserved for future use)
$005C-$0097 Motor #2 registers (as above) (92-151)
$0098-$00D3 Motor #3 registers (as above) (152-211)
$00D4-$010F Motor #4 registers (as above) (212-271)
$0110-$014B Motor #5 registers (as above) (272-331)
$014C-$0187 Motor #6 registers (as above) (332-391)
$0188-$01C3 Motor #7 registers (as above) (392-451)
$01C4-$01FF Motor #8 registers (as above) (452-511)

Motor Calculation Registers: PMAC(1), Extended Servo Algorithm
(ESA)
This section provides addresses for motor calculation registers for PMAC(1) boards with the Option 6
Extended Servo Algorithm.

(The addresses given are for Motor #1. For the registers for another motor x, add (x-1)*$3C – (x-1)*60 –
to the appropriate motor #1 address. The address table shown every 16 addresses (every 10hex) gives the
matching addresses for motors 1-8 to make address calculations easier.

Example: Using the table, Motor 6 actual position address is $014C + ($28-$20) = $0154. Using the
formula, it is (6-1)*$003C+$0028 = $0154

Motor # 1 2 3 4 5 6 7 8
Hex [$0020] [$005C] [$0098] [$00D4] [$0110] [$014C] [$0188] [$01C4]

Decimal 32 92 152 212 272 332 392 452

D:$0020 (32) Time left in move (X-register units msec*2 at %100)
D:$0021 (33) Present desired jerk residual
D:$0022 (34) Present desired jerk (dA/dt)
D:$0023 (35) Present desired acceleration residual
D:$0024 (36) Present desired acceleration (X-register units 6/[Ix08*32] cts/msec2

at %100); Y is fractional
D:$0025 (37) Present desired velocity residual
D:$0026 (38) Present desired velocity (X-register units 3/[Ix08*32] cts/msec at

%100); Y is fractional
D:$0027 (39) Present desired position residual
D:$0028 (40) Present desired position (1/[Ix08*32] counts)
X:$0029 (41) Address of position feedback (Ix03)
Y:$0029 Position scaling factor (Ix08)
X:$002A (42) Address of master (handwheel) register (Ix05)
Y:$002A Previous actual position value

 PMAC 2 Software Reference

402 PMAC I/0 and Memory Map

D:$002B (43) Present actual position (1/[Ix08*32] counts)
X:$002C (44) Master (handwheel) scale factor (Ix07)
Y:$002C Previous master (handwheel) position
D:$002D (45) Present master (handwheel) position (1/[Ix07*32]cts of the master or

1/[Ix08*32]cts of the slaved motor)
X:$002E (46) Feedpot (timebase) pointer
Y:$002E (46) Servo extension counter
X:$002F (47) ESA S0 gain (Ix30)
Y:$002F (47) Servo cycle extension (Ix60)

Motor # 1 2 3 4 5 6 7 8
Hex [$0030] [$006C] [$00A8] [$00E4] [$0120] [$015C] [$0198] [$01D4]

Decimal 48 108 168 228 288 348 408 468

X:$002E (46) Feedpot (timebase) pointer
D:$0030 (48) Compensation correction (1/[Ix08*32] cts)
D:$0031 (48) Following error (1/[Ix08*32] cts)
X:$0032 (50) ESA T0 gain (Ix40)
Y:$0032 ESA S1 gain (Ix31)
X:$0033 (51) ESA UT1 term
Y:$0033 ESA T1 gain (Ix41)
X:$0034 (52) ESA UT2 term
Y:$0034 ESA T2 gain (Ix42)
X:$0035 (53) ESA UT3 term
Y:$0035 ESA T3 gain (Ix43)
X:$0036 (54) ESA UT4 term
Y:$0036 ESA T4 gain (Ix44)
X:$0037 (55) ESA UR1 term
Y:$0037 ESA R1 gain (Ix36)
X:$0038 (56) ESA UR2 term
Y:$0038 ESA R2 gain (Ix37)
X:$0039 (57) ESA UR3 term
Y:$0039 ESA R3 gain (Ix38)
X:$003A (58) ESA UR4 term
Y:$003A ESA R4 gain (Ix39)
X:$003B (59) Address of “velocity” encoder (Ix04)
Y:$003B ESA TS gain (Ix45)
X:$003C (60) ESA F0 gain (Ix32)
Y:$003C Velocity scaling factor (Ix09)
X:$003D (61) Actual velocity (1/[Ix09*32] cts/[Ix60+1]servo interrupts)
Y:$003D Previous velocity-loop source position
D:$003E (62) Previous velocity-loop extended actual position
X:$003F (63) ESA F1 gain (Ix33)
Y:$003F ESA G0 gain (Ix56)

Motor # 1 2 3 4 5 6 7 8

Hex [$0040] [$007C] [$00B8] [$00F4] [$0130] [$016C] [$01A8] [$01E4]
Decimal 64 124 184 244 304 364 424 484

PMAC 2 Software Reference

PMAC I/0 and Memory Map 403

X:$0040 (64) ESA UG1 term
Y:$0040 ESA G1 gain (Ix57)
X:$0041 (65) ESA UG2 term
Y:$0041 ESA G2 gain (Ix58)
X:$0042 (66) ESA UD1 term
Y:$0042 ESA D1 gain (Ix54)
X:$0043 (67) ESA UD2 term
Y:$0043 ESA D2 gain (Ix55)
X:$0044 (68) ESA GS gain (Ix58)
Y:$0044 ESA H0 gain (Ix34)
D:$0045 (69) Previous net desired position
X:$0046 (70) ESA H1 gain (Ix35)
Y:$0046 ESA K0 gain (Ix49)
X:$0047 (71) ESA UK1 term
Y:$0047 ESA K1 gain (Ix50)
X:$0048 (72) ESA UK2 term
Y:$0048 ESA K2 gain (Ix51)
X:$0049 (73) ESA UK3 term
Y:$0049 ESA K3 gain (Ix52)
X:$004A (74) ESA UL1 term
Y:$004A ESA L1 gain (Ix46)
X:$004B (75) ESA UL2 term
Y:$004B ESA L2 gain (Ix47)
X:$004C (76) ESA UL3 term
Y:$004C ESA L3 gain (Ix48)
X:$004D (77) ESA KS gain (Ix53)
Y:$004D (Filter intermediate value)
X:$004E (78) Previous filter (DAC) output
Y:$004E Filter output (DAC) limit (Ix69)
X:$004F (79) Motor servo status bits
(First word returned on ? command. See Y:$0814 for second word.)
(Refer to ? description in on-line commands for detailed description of bits.)
 0-9 (Internal use)
 10 Home search in progress
 11 Block request
 12 Abort deceleration in progress
 13 Desired velocity 0
 14 Data block error
 15 Dwell in progress
 16 (Reserved for future use)
 17 Move timer active
 18 Open-loop mode
 19 Phased motor (Ix01)
 20 Handwheel enabled (Ix06)
 21 Positive end limit set (soft or hard [-LIM])
 22 Negative end limit set (soft or hard [+LIM])
 23 Motor activated (Ix00)
Y:$004F Phase address pointer (Ix83)

 PMAC 2 Software Reference

404 PMAC I/0 and Memory Map

Motor # 1 2 3 4 5 6 7 8
Hex [$0050] [$008C] [$00C8] [$0104] [$0140] [$017C] [$01B8] [$01F4]

Decimal 80 140 200 260 320 380 440 500

X:$0050 (80)
 0-7 Phase offset (Ix72)
 8-23 2nd phase bias (Ix79)
Y:$0050
 0-7 # of commutation cycles per rev (Ix70)
 8-23 Filter output/1st phase bias (Ix29)
X:$0051 (81) Magnetization current (Ix77)
Y:$0051 Previous phase position
X:$0052 (82) Slip frequency
Y:$0052 Counts per Ix70 commutation cycles (Ix71)
D:$0053 (83) Present phase position (X register units: counts*Ix70,

range -Ix71/2 - Ix71/2-1)
X:$0054 (84) Phase advance
Y:$0054 Phase advance gain (Ix76)
X:$0055 (85) Slip Gain (Ix78)
Y:$0055 Phased DAC amplitude
X:$0056 (86) Command output address (Ix02)
Y:$0056 Velocity Phase Advance Gain (Ix76)
X:$0057 (87) Servo command value
Y:$0057 Command internal offset
X:$0058 (88) Velocity node internal offset
$0059-$005B (Reserved for future use)
$005C-$0097 Motor #2 registers (as above) (92-151)
$0098-$00D3 Motor #3 registers (as above) (152-211)
$00D4-$010F Motor #4 registers (as above) (212-271)
$0110-$014B Motor #5 registers (as above) (272-331)
$014C-$0187 Motor #6 registers (as above) (332-391)
$0188-$01C3 Motor #7 registers (as above) (392-451)
$01C4-$01FF Motor #8 registers (as above) (452-511)

Motor Calculation Registers: PMAC2, PID Servo Algorithm
This section provides addresses for motor calculation registers for PMAC2 boards with the standard PID
servo algorithm (without the Option 6 Extended Servo Algorithm).

(The addresses given are for Motor #1. For the registers for another motor x, add (x-1)*$3C – (x-1)*60 –
to the appropriate motor #1 address.) The address table shown every 16 addresses (every 10hex) gives
the matching addresses for motors 1-8 to make address calculations easier.

Example: Using the table, Motor 6 actual position address is $014C + ($28-$20) = $0154. Using the
formula, it is (6-1)*$003C+$0028 = $0154.

Motor # 1 2 3 4 5 6 7 8
Hex [$0020] [$005C] [$0098] [$00D4] [$0110] [$014C] [$0188] [$01C4]

Decimal 32 92 152 212 272 332 392 452

D:$0020 (32) Time left in move (X-register units msec*2 at %100)
D:$0021 (33) Present desired jerk residual
D:$0022 (34) Present desired jerk (dA/dt)

PMAC 2 Software Reference

PMAC I/0 and Memory Map 405

D:$0023 (35) Present desired acceleration residual
D:$0024 (36) Present desired acceleration (X-register units

6/[Ix08*32] cts/msec2 at %100); Y is fractional
D:$0025 (37) Present desired velocity residual
D:$0026 (38) Present desired velocity (X-register units 3/[Ix08*32]

cts/msec at %100); Y is fractional
D:$0027 (39) Present desired position residual
D:$0028 (40) Present desired position (1/[Ix08*32] counts)
X:$0029 (41) Address of position feedback (Ix03)
Y:$0029 Position scaling factor (Ix08)
X:$002A (42) Address of master (handwheel) register (Ix05)
Y:$002A Previous actual position value
D:$002B (43) Present actual position (1/[Ix08*32] counts)
X:$002C (44) Master (handwheel) scale factor (Ix07)
Y:$002C Previous master (handwheel) position
D:$002D (45) Present master (handwheel) position (1/[Ix07*32]cts of

the master or 1/[Ix08*32]cts of the slaved motor)
X:$002E (46) Feedpot (timebase) pointer
Y:$002E Servo cycle extension (Ix60)
D:$002F Previous net desired position (1/[Ix08*32] counts)

Motor # 1 2 3 4 5 6 7 8
Hex [$0030] [$006C] [$00A8] [$00E4] [$0120] [$015C] [$0198] [$01D4]

Decimal 48 108 168 228 288 348 408 468

X:$0030 (48) Velocity feedforward gain (Ix32)
Y:$0030 Previous desired velocity
X:$0031 (49) Address of “velocity” encoder (Ix04)
Y:$0031 Previous “velocity” position
X:$0032 (50) Acceleration feedforward gain (Ix35)
Y:$0032 “Velocity” scaling factor (Ix09)
X:$0033 (51) Actual velocity (1/[Ix09*32] cts/[Ix60+1]servo

interrupts)
Y:$0033 Derivative gain (Ix31)
X:$0034 (52) Deadband size (Ix65) (1/16 count)
Y:$0034 Position error limit (Ix67) (1/16 count)
X:$0035 (53) “Deadband gain” (Ix64)
Y:$0035 Integral gain (Ix33)
X:$0036 (54) Integrated error residual
Y:$0036 Integrated error limit (Ix63)
D:$0037 (55) Integrated error
X:$0038 (56) Proportional gain (Ix30)
Y:$0038 Filter output (DAC) limit (Ix69)
D:$0039 (Filter intermediate values)
X:$003A (58) Filter result (stored for next cycle)
X:$003B (59) Notch filter D2 gain (Ix39)
Y:$003B Notch filter N2 gain (Ix37)
X:$003C (60) Notch filter D1 gain (Ix38)
Y:$003C Notch filter N1 gain (Ix36)
X:$003D (61) Motor servo status bits

 PMAC 2 Software Reference

406 PMAC I/0 and Memory Map

(First word returned on ? command. See Y:$0814 for second word.)
(Refer to ? description in on-line commands for detailed description of bits)
 0-9 (Internal use)
 10 Home search in progress
 11 Block request
 12 Abort deceleration in progress
 13 Desired velocity 0
 14 Data block error
 15 Dwell in progress
 16 Integration mode (Ix34; 0 on always; 1 on when desired

velocity zero)
 17 Move timer active
 18 Open-loop mode
 19 Phased motor (Ix01)
 20 Handwheel enabled (Ix06)
 21 Positive end limit set (soft or hard [PLIM])
 22 Negative end limit set (soft or hard [MLIM])
 23 Motor activated (Ix00)
Y:$003D Phase address pointer (Ix83)
X:$003E (62)
 0-7 Phase offset (Ix72)
 8-23 2nd phase bias (Ix79)
Y:$003E
 0-7 # of commutation cycles per rev (Ix70)
 8-23 Filter output/1st phase bias (Ix29)
X:$003F Counts per Ix70 commutation cycles (Ix71)
Y:$003F Previous phase position

Motor # 1 2 3 4 5 6 7 8
Hex [$0040] [$007C] [$00B8] [$00F4] [$0130] [$016C] [$01A8] [$01E4]

Decimal 64 124 184 244 304 364 424 484

D:$0040 (64) Present phase position (X-register units: counts*Ix70)
X:$0041 (65) ADC mask word (Ix84)
Y:$0041 ADC address (Ix82)
X:$0042 (66) Estimated rotor magnetization current
Y:$0042 Slip gain (Ix78)
X:$0043 (67) Commanded quadrature current (servo command)
Y:$0043 Commanded direct current (Ix77)
X:$0044 (68) Actual quadrature current
Y:$0044 Actual direct current
X:$0045 (69) Current-loop back path proportional gain (Ix76)
Y:$0045 Current-loop forward path proportional gain (Ix62)
X:$0046 (70) Quadrature current loop integrator output
Y:$0046 Direct current loop integrator output
X:$0047 (71) PWM scale factor (Ix66)
Y:$0047 Current-loop integral gain (Ix61)
X:$0048 (72) Command output address (Ix02)
Y:$0048 Friction feedforward gain (Ix68)
X:$0049 (73) (Quadrature) command value
Y:$0049 (Quadrature) command bias

PMAC 2 Software Reference

PMAC I/0 and Memory Map 407

D:$004A (74) Compensation correction (1/[Ix08*32] cts)
D:$004B (75) Following error (1/[Ix08*32] cts)
$004C-$005B (Reserved for future use)
$005C-$0097 Motor #2 registers (as above) (92-151)
$0098-$00D3 Motor #3 registers (as above) (152-211)
$00D4-$010F Motor #4 registers (as above) (212-271)
$0110-$014B Motor #5 registers (as above) (272-331)
$014C-$0187 Motor #6 registers (as above) (332-391)
$0188-$01C3 Motor #7 registers (as above) (392-451)
$01C4-$01FF Motor #8 registers (as above) (452-511)

Motor Calculation Registers: PMAC2, Extended Servo Algorithm
(ESA)
This section provides addresses for motor calculation registers for PMAC2 boards with the Option 6
Extended Servo Algorithm.

(The addresses given are for Motor #1. For the registers for another motor x, add (x-1)*$3C – (x-1)*60 –
to the appropriate motor #1 address.) The address table shown every 16 addresses (every 10hex) gives
the matching addresses for motors 1-8 to make address calculations easier.

Example: Using the table, Motor 6 actual position address is $014C + ($28-$20) = $0154. Using the
formula, it is (6-1)*$003C+$0028 = $0154.

Motor # 1 2 3 4 5 6 7 8
Hex [$0020] [$005C] [$0098] [$00D4] [$0110] [$014C] [$0188] [$01C4]

Decimal 32 92 152 212 272 332 392 452

D:$0020 (32) Time left in move (X-register units msec*2 at %100)
D:$0021 (33) Present desired jerk residual
D:$0022 (34) Present desired jerk (dA/dt)
D:$0023 (35) Present desired acceleration residual
D:$0024 (36) Present desired acceleration (X-register units 6/[Ix08*32] cts/msec2

at %100); Y is fractional
D:$0025 (37) Present desired velocity residual
D:$0026 (38) Present desired velocity (X-register units 3/[Ix08*32] cts/msec at

%100); Y is fractional
D:$0027 (39) Present desired position residual
D:$0028 (40) Present desired position (1/[Ix08*32] counts)
X:$0029 (41) Address of position feedback (Ix03)
Y:$0029 Position scaling factor (Ix08)
X:$002A (42) Address of master (handwheel) register (Ix05)
Y:$002A Previous actual position value
D:$002B (43) Present actual position (1/[Ix08*32] counts)
X:$002C (44) Master (handwheel) scale factor (Ix07)
Y:$002C Previous master (handwheel) position
D:$002D (45) Present master (handwheel) position (1/[Ix07*32]cts of the master or

1/[Ix08*32]cts of the slaved motor).
X:$002E (46) Feedpot (timebase) pointer
Y:$002E (46) Servo extension counter
X:$002F (47) ESA S0 gain (Ix30)
Y:$002F (47) Servo cycle extension (Ix60)

 PMAC 2 Software Reference

408 PMAC I/0 and Memory Map

Motor # 1 2 3 4 5 6 7 8
Hex [$0030] [$006C] [$00A8] [$00E4] [$0120] [$015C] [$0198] [$01D4]

Decimal 48 108 168 228 288 348 408 468

D:$0030 (48) Compensation correction (1/[Ix08*32] cts)
D:$0031 (48) Following error (1/[Ix08*32] cts)
X:$0032 (50) ESA T0 gain (Ix40)
Y:$0032 ESA S1 gain (Ix31)
X:$0033 (51) ESA UT1 term
Y:$0033 ESA T1 gain (Ix41)
X:$0034 (52) ESA UT2 term
Y:$0034 ESA T2 gain (Ix42)
X:$0035 (53) ESA UT3 term
Y:$0035 ESA T3 gain (Ix43)
X:$0036 (54) ESA UT4 term
Y:$0036 ESA T4 gain (Ix44)
X:$0037 (55) ESA UR1 term
Y:$0037 ESA R1 gain (Ix36)
X:$0038 (56) ESA UR2 term
Y:$0038 ESA R2 gain (Ix37)
X:$0039 (57) ESA UR3 term
Y:$0039 ESA R3 gain (Ix38)
X:$003A (58) ESA UR4 term
Y:$003A ESA R4 gain (Ix39)
X:$003B (59) Address of “velocity” encoder (Ix04)
Y:$003B ESA TS gain (Ix45)
X:$003C (60) ESA F0 gain (Ix32)
Y:$003C Velocity scaling factor (Ix09)
X:$003D (61) Actual velocity (1/[Ix09*32] cts/[Ix60+1]servo interrupts)
Y:$003D Previous velocity-loop source position
D:$003E (62) Previous velocity-loop extended actual position
X:$003F (63) ESA F1 gain (Ix33)
Y:$003F ESA G0 gain (Ix56)

Motor # 1 2 3 4 5 6 7 8
Hex [$0040] [$007C] [$00B8] [$00F4] [$0130] [$016C] [$01A8] [$01E4]

Decimal 64 124 184 244 304 364 424 484

X:$0040 (64) ESA UG1 term
Y:$0040 ESA G1 gain (Ix57)
X:$0041 (65) ESA UG2 term
Y:$0041 ESA G2 gain (Ix58)
X:$0042 (66) ESA UD1 term
Y:$0042 ESA D1 gain (Ix54)
X:$0043 (67) ESA UD2 term
Y:$0043 ESA D2 gain (Ix55)
X:$0044 (68) ESA GS gain (Ix58)
Y:$0044 ESA H0 gain (Ix34)
D:$0045 (69) Previous net desired position
X:$0046 (70) ESA H1 gain (Ix35)

PMAC 2 Software Reference

PMAC I/0 and Memory Map 409

Y:$0046 ESA K0 gain (Ix49)
X:$0047 (71) ESA UK1 term
Y:$0047 ESA K1 gain (Ix50)
X:$0048 (72) ESA UK2 term
Y:$0048 ESA K2 gain (Ix51)
X:$0049 (73) ESA UK3 term
Y:$0049 ESA K3 gain (Ix52)
X:$004A (74) ESA UL1 term
Y:$004A ESA L1 gain (Ix46)
X:$004B (75) ESA UL2 term
Y:$004B ESA L2 gain (Ix47)
X:$004C (76) ESA UL3 term
Y:$004C ESA L3 gain (Ix48)
X:$004D (77) ESA KS gain (Ix53)
Y:$004D (Filter intermediate value)
X:$004E (78) Previous filter (DAC) output
Y:$004E Filter output (DAC) limit (Ix69)
X:$004F (79) Motor servo status bits
(First word returned on ? command. See Y:$0814 for second word.)
(Refer to ? description in on-line commands for detailed description of bits)
 0-9 (Internal use)
 10 Home search in progress
 11 Block request
 12 Abort deceleration in progress
 13 Desired velocity 0
 14 Data block error
 15 Dwell in progress
 16 (Reserved for future use)
 17 Move timer active
 18 Open-loop mode
 19 Phased motor (Ix01)
 20 Handwheel enabled (Ix06)
 21 Positive end limit set (soft or hard [PLIM])
 22 Negative end limit set (soft or hard [MLIM])
 23 Motor activated (Ix00)
Y:$004F Phase address pointer (Ix83)

Motor # 1 2 3 4 5 6 7 8
Hex [$0050] [$008C] [$00C8] [$0104] [$0140] [$017C] [$01B8] [$01F4]

Decimal 80 140 200 260 320 380 440 500

X:$0050 (80) 0-7 Phase offset (Ix72)
 8-23 2nd phase bias (Ix79)
Y:$0050 0-7 # of commutation cycles per rev (Ix70)
 8-23 Filter output/1st phase bias (Ix29)
X:$0051 (81) Counts per Ix70 commutation cycles (Ix71)
Y:$0051 Previous phase position
D:$0052 (82) Present phase position (X-register units: counts*Ix70)
X:$0053 (83) ADC mask word (Ix84)
Y:$0053 ADC address (Ix82)
X:$0054 (84) Estimated rotor magnetization current

 PMAC 2 Software Reference

410 PMAC I/0 and Memory Map

Y:$0054 Slip gain (Ix78)
X:$0055 (85) Commanded quadrature current (servo command)
Y:$0055 Commanded direct current (Ix77)
X:$0056 (86) Actual quadrature current
Y:$0056 Actual direct current
X:$0057 (87) Current-loop back path proportional gain (Ix76)
Y:$0057 Current-loop forward path proportional gain (Ix62)
X:$0058 (88) Quadrature current loop integrator output
Y:$0058 Direct current loop integrator output
X:$0059 (89) PWM scale factor (Ix66)
Y:$0059 Current-loop integral gain (Ix61)
X:$005A (90) Command output address (Ix02)
Y:$005A Friction feedforward gain (Ix68)
X:$005B (91) (Quadrature) command value
Y:$005B (Quadrature) command bias
$005C-$0097 Motor #2 registers (as above) (92-151)
$0098-$00D3 Motor #3 registers (as above) (152-211)
$00D4-$010F Motor #4 registers (as above) (212-271)
$0110-$014B Motor #5 registers (as above) (272-331)
$014C-$0187 Motor #6 registers (as above) (332-391)
$0188-$01C3 Motor #7 registers (as above) (392-451)
$01C4-$01FF Motor #8 registers (as above) (452-511)

Buffers
X:$0400-$04FF Commutation sine table [223*SIN((address-

$400)*360°/256)]
(1024-1279)

X:$0600-$06FF Command character queue (512-767)
Y:$0600-$06FF Response character queue
X:$0700-$0701 User count-down timer registers (servo cycles) (1792-1793)
Y:$0700-$0701 User count-down timer registers (servo cycles)
X:$0708-$070F Auto-converted ACC-36 ADC registers 9-16 (1800-1807)
Y:$0708-$070F Auto-converted ACC-36 ADC registers 1-8

Encoder Conversion (Interpolation) Table
X:$0720-$073F Converted encoder and time base data (1824-1855)
Y:$0720-$073F Encoder conversion source and format

PMAC 2 Software Reference

PMAC I/0 and Memory Map 411

The format of the conversion table is:

Y:word Bits Conversion Format:
 16-23 $00 = 1/T interpolation of incremental encoder
 $10 = A/D register conversion
 $20 = Unfiltered parallel Y word source*
 $30 = Filtered parallel Y word source**
 $40 = Time base*
 $50 = Integrated A/D register conversion
 $60 = Unfiltered parallel X word source*
 $70 = Filtered parallel X word source**
 $80 = Parallel interp. of incremental
 $90 = Triggered time base; frozen*
 $A0 = Triggered time base; running*
 $B0 = Triggered time base; armed*
 $C0 = no interpolation of incremental encoder
 $D0 = Exponential filter**
 $F0 = High-res. Interpolation of sinusoidal encoder
 0-15 Address of source data
* Next Y word contains user-set constant for conversion (this is a double-entry conversion).
** Next two Y words contain user-set constants for conversion (this is a triple-entry
conversion).
X:word 0-4 Fractional bits of converted data
 5-23 Integer bits of converted data (if last entry in

conversion)
 Intermediate value if not last entry in conversion
Refer to the detailed description of the encoder conversion table under “Feedback
Features”.

 PMAC 2 Software Reference

412 PMAC I/0 and Memory Map

General Global Registers
$0770 - $077F Open memory; cleared to 0 on power-on/reset

(useful for 24-bit M-variables)
(1904-1919)

Y:$0780 - Y:$07D1 LCD Display character memory (1920-2001)
X:$0780 (1920) Dwell (fixed) feedpot (I10)
X:$0781 (1921) Jog-to-position move delay time (I12)
X:$0782 (1922) Programmed move delay time (I11)
X:$0783 - X:$078C VME address and vector values (See VME

Interface Document for details)
(1923 - 1932)

X:$0786 - X:$0787 PC Dual-ported RAM host address registers (See
Option 2 Manual for details)

(1926 - 1927)

X:$078D (1933) Move segmentation time (I13)
X:$078E (1934) Hold feedpot value (must be zero)
X:$078F (1935) Addressed motor/coordinate system word
 Bits
 0-2 Motor number minus 1 (#n-1)
 3-5 Coordinate system number minus 1 (&n-1)
X:$0790 (1936) Card software address
X:$0794 (1940) Running software checksum value (frozen if any error)
X:$07A1 (1953) # of MACRO ring errors since power-on/reset
X:$07B1 (1969) PROM (Firmware) Reference checksum value
X:$07B2 (1970) User Program Reference checksum value
X:$07B3 (1971) Defined buffer checksum value
X:$07B9 (1977) Data gathering source mask (I20)
X:$07BA - X:$07D1
(1978 - 2001)

 Data gathering source addresses (I21-I44)

Y:$07EF (2031) Watchdog timer minimum value since power-on/reset
$07F0 - $07FF
(2032 - 2047)

 Open registers (useful for creating 24-bit M-variables to
handle rollover of other 24-bit registers); on PMACs
without flash memory (no option CPU) these are stored
in battery-backed RAM

Motor and Coordinate System Status and Control Registers
The addresses given in this section are for Motor 1 and Coordinate System 1. Table headers for each set
of 16 registers give the starting addresses of the set for each Motor/C.S. For the register of another Motor
x or C.S. x, add (x-1)*$C0 or (x-1)*192 to the appropriate Motor 1 or C.S. 1 address.

Example: For the Motor 4 target position register, using the table compute $0A40 + ($080B-$0800) =
$0A4B. Using the formula, compute (4-1)*$C0 + $080B = $0A4B

Mot/CS 1 2 3 4 5 6 7 8
Hex [$0800] [$08C0] [$0980] [$0A40] [$0B00] [$0BC0] [$0C80] [$0D40]

Decimal 2048 2240 2432 2624 2816 3008 3200 3392

L:$0800 (2048) Motor #1 jog speed (Ix22) [floating point]
L:$0801 (2049) Motor #1 jog max. accel (Ix19) [float. pt.]
X:$0802 (2050) Motor #1 jog/home S-curve time (Ix21)
Y:$0802 Motor #1 jog/home accel time (Ix20)
X:$0803 (2051) Motor #1 flag pointer and mode (Ix25)
Y:$0803 Motor #1 fatal following error limit (Ix11)
L:$0804 (2052) Motor #1 limit/abort accel (Ix15) [flt. pt.]
X:$0805 (2053) Motor #1 in-position band (Ix28)

PMAC 2 Software Reference

PMAC I/0 and Memory Map 413

Y:$0805 Motor #1 soft following error (Ix12)
X:$0806 (2054) C.S. 1 present timebase (units of I10 {1/8,388,608 msec})
X:$0807 (2055) C.S. 1 desired timebase pointer (Ix93)
Y:$0807 C.S. 1 present timebase pointer
X:$0808 (2056) C.S. 1 host command timebase [100% when = I10]
Y:$0808 C.S. 1 present timebase slew rate
X:$0809 (2057) C.S. 1 feed-hold timebase slew rate (Ix95)
Y:$0809 C.S. 1 timebase slew rate (Ix94)
D:$080A (2058) Motor #1 target velocity
D:$080B (2059) Motor #1 target position (1/[Ix08*32] cts)

Mot/CS 1 2 3 4 5 6 7 8

Hex [$0810] [$08D0] [$0990] [$0A50] [$0B10] [$0BD0] [$0C90] [$0D50]
Decimal 2064 2256 2448 2640 2832 3024 3216 3408

X:$0810 (2064) C.S. 1 move S-curve time
Y:$0810 C.S. 1 move accel time
L:$0811 (2065) C.S. 1 move feedrate or time [flt. pt.]
L:$0812 (2066) C.S. 1 feedrate time units (Ix90) [flt. pt.]
D:$0813 (2067) Motor #1 position bias (1/[Ix08*32] cts)
X:$0814 (2068) Motor #1 home offset position (Ix26)
Y:$0814 Motor #1 status bits
(Second word returned on ? command. See X:$003D for first word.)
(Refer to ? specification in On-line Commands for detailed description of bit meanings.)
 Bits
 0 In-position true
 1 Warning following error limit exceeded
 2 Fatal following error limit exceeded
 3 Amplifier fault error
 4 Backlash direction flag
 5 I2T Amplifier fault error
 6 Integrated fatal following error
 7 Trigger move
 8 Phasing search error
 9 (Reserved for future use)
 10 Home complete
 11 Stopped on position limit
 12-13 (Reserved for future use)
 14 Amplifier enabled
 15-19 (Reserved for future use)
 20-22 Number of C.S. defined in (-1)
 23 Assigned to C.S.
X:$0815 (2069) Motor #1 phase finding torque and time (Ix73, Ix74)
Y:$0815 Motor #1 encoder home position offset (cts)
X:$0816 (2070) C.S. 1 default program # (Ix91)
X:$0817 (2071) C.S. 1 program execution address pointer
Y:$0817 C.S. 1 program execution status
(Second word returned on ?? command. See X:$0818 for first word.)
(Refer to ?? specification in On-Line Commands for detailed description of bit meanings.)
 Bits
 0 CIRCLE/SPLINE move mode
 1 CCW circular move direction

 PMAC 2 Software Reference

414 PMAC I/0 and Memory Map

 2 Cutter compensation on
 3 Cutter compensation left
 4 PVT/SPLINE move mode
 5 Segmented move stop request
 6 Segmented move acceleration in progress
 7 Segmented move in progress
 8 Pre Jog move flag
 9 Cutter compensation move buffered
 10 Cutter compensation move stop request
 11 Cutter compensation outside corner
 12 Dwell move buffered
 13 Synchronous M-variable one-shot
 14 End-of-block (/) stop in progress
 15 Delayed calculation flag
 16 Rotary buffer full
 17 In-position true (logical AND of motor bits)
 18 Warning following error (logical OR of motor bits)
 19 Fatal following error (logical OR of motor bits)
 20 Amplifier fault error (logical OR of motor bits)
 21 Circle radius error
 22 Run time error
 23 Program hold (\) in progress
X:$0818 (2072) Coordinate System 1 Status/Control Bits
(First word returned on ?? command. See Y:$0817 for first word.)
(Refer to ?? specification in On-Line Commands for detailed bit meanings.)
 0 Program running
 1 Single step mode
 2 Continuous motion mode
 3 Move-specified-by-time mode (not speed)
 4 Continuous motion request
 5 Radius vector incremental mode
 6 A-axis incremental mode
 7 A-axis used in feedrate calculations
 8 B-axis incremental mode
 9 B-axis used in feedrate calculations
 10 C-axis incremental mode
 11 C-axis used in feedrate calculations
 12 U-axis incremental mode
 13 U-axis used in feedrate calculations
 14 V-axis incremental mode
 15 V-axis used in feedrate calculations
 16 W-axis incremental mode
 17 W-axis used in feedrate calculations
 18 X-axis incremental mode
 19 X-axis used in feedrate calculations
 20 Y-axis incremental mode
 21 Y-axis used in feedrate calculations
 22 Z-axis incremental mode
 23 Z-axis used in feedrate calculations
Y:$0818 (2072) C.S. 1 Motor Definition word
The Motor Definition word is divided into 8 groups of 3 bits. Each bit group reports a motor’s
assignment as shown below.

PMAC 2 Software Reference

PMAC I/0 and Memory Map 415

 Bits
 0-2 Motor 1 assignment
 3-5 Motor 2 assignment
 6-8 Motor 3 assignment
 9-11 Motor 4 assignment
 12-14 Motor 5 assignment
 15-17 Motor 6 assignment
 18-20 Motor 7 assignment
 21-23 Motor 8 assignment
Where the motor’s assignment is determined by the value of its bit group (3 bits can have a
value from 0 to 7).
 Value
 0 Not Assigned
 1 Assigned to A-axis
 2 Assigned to B-axis
 3 Assigned to C-axis
 4 Assigned to UVW-axes
 5 Reserved
 6 Reserved
 7 Assigned to XYZ-axes
L:$0819 (2073) C.S. 1 A-Axis desired move position (f.p.)
L:$081A (2074) C.S. 1 B-Axis desired move position (f.p.)
L:$081B (2075) C.S. 1 C-Axis desired move position (f.p.)
L:$081C (2076) C.S. 1 U-Axis desired move position (f.p.)
L:$081D (2077) C.S. 1 V-Axis desired move position (f.p.)
L:$081E (2078) C.S. 1 W-Axis desired move position (f.p.)
L:$081F (2079) C.S. 1 X-Axis desired move position (f.p.)

Mot/CS 1 2 3 4 5 6 7 8
Hex [$0820] [$08E0] [$09A0] [$0A60] [$0B20] [$0BE0] [$0CA0] [$0D60]

Decimal 2080 2272 2462 2656 2848 3040 3232 3424

L:$0820 (2080) C.S. 1 Y-Axis desired move position (f.p.)
L:$0821 (2081) C.S. 1 Z-Axis desired move position (f.p.)
L:$0822 (2082) Motor #1 X/U/A/B/C-Axis coefficient (f.p.)
L:$0823 (2083) Motor #1 Y/V-Axis coefficient (f.p.)
L:$0824 (2084) Motor #1 Z/W-Axis coefficient (f.p.)
L:$0825 (2085) Motor #1 axis offset (f.p.)
Y:$082A (2090) Motor #1 filtered actual velocity (1/[Ix09*32] cts/servo

cycle)
L:$082B (2091) Motor #1 variable jog position/distance (for J=*, J^*,

J:*)
Y:$082E (2094) Motor #1 integrated current limit (Ix58)
L:$082F (2095) Motor #1 present integrated current value
 (X-register in units of Ix58; Y-register fraction)

Mot/CS 1 2 3 4 5 6 7 8
Hex [$0830] [$08F0] [$09B0] [$0A70] [$0B30] [$0BF0] [$0CB0] [$0D70]

Decimal 2096 2288 2480 2672 2864 3056 3248 3440

 PMAC 2 Software Reference

416 PMAC I/0 and Memory Map

L:$083E (2110) C.S. 1 cutter compensation radius
L:$083F (2111) C.S. 1 circle radius error limit (Ix96)

Mot/CS 1 2 3 4 5 6 7 8
Hex [$0840] [$0900] [$09C0] [$0A80] [$0B40] [$0C00] [$0CC0] [$0D80]

Decimal 2112 2304 2496 2688 2880 3072 3264 3456

D:$0840 (2112) Motor #1 following error (1/[Ix08*32] cts)
L:$0841 (2113) Motor #1 home speed (Ix23) [floating point]
D:$0842 (2114) Motor #1 positive software overtravel limit (Ix13)
D:$0843 (2115) Motor #1 negative software overtravel limit (Ix14)
D:$0844 (2116) Motor #1 position rollover range (Ix27)
X:$0845 (2117) Motor #1 backlash slew rate (Ix85)
Y:$0845 (2117) Motor #1 backlash deadband (from I99)
D:$0846 (2118) Motor #1 saved backlash position
X:$0847 (2119) Motor #1 backlash size (Ix86)
Y:$0847 (2119) Motor #1 present backlash

Mot/CS 1 2 3 4 5 6 7 8
Hex [$08B0] [$0970] [$0A30] [$0AF0] [$0BB0] [$0C70] [$0D30] [$0DF0]

Decimal 2224 2416 2608 2800 2992 3184 3376 3568

$08B0 - $08BF C.S. 1 subroutine stack (2224 - 2239)
$08C0 - $097F Motor/Coordinate System 2 Status and Control

Registers (equivalent to $0800 - $08BF above)
(2240 - 2431)

$0980 - $0A3F Motor/Coordinate System 3 Status and Control
Registers (equivalent to $0800 - $08BF above)

(2432 - 2623)

$0A40 - $0AFF Motor/Coordinate System 4 Status and Control
Registers (equivalent to $0800 - $08BF above)

(2624 - 2815)

$0B00 - $0BBF Motor/Coordinate System 5 Status and Control
Registers (equivalent to $0800 - $08BF above)

(2816 - 3007)

$0BC0 - $0C7F Motor/Coordinate System 6 Status and Control
Registers (equivalent to $0800 - $08BF above)

(3008 - 3199)

$0C80 - $0D3F Motor/Coordinate System 7 Status and Control
Registers (equivalent to $0800 - $08BF above)

(3200 - 3391)

$0D40 - $0DFF Motor/Coordinate System 8 Status and Control
Registers (equivalent to $0800 - $08BF above)

(3392 - 3583)

PMAC 2 Software Reference

PMAC I/0 and Memory Map 417

Buffer Management Registers
X:$0E00 (3584) 1st motion program number (low 16 bits) and

entry status (high 8 bits)

Y:$0E00 1st motion program buffer storage address
X:$0E01 - X:$0EFF 2nd to 256th program # and entry status (3585 - 3839)
Y:$0E01 - Y:$0EFF 2nd to 256th program buffer storage address
X:$0F00 (3840) PLC 0 execution address
Y:$0F00 PLC 0 buffer storage address
X:$0F01 - X:$0F1F PLC 1 - 31 execution address
Y:$0F01 - Y:$0F1F PLC 1 - 31 storage pointer (3841-3871)
 Bits
 0-15 PLC base address
 22 PLC disabled
X:$0F20 (3872) Data gather buffer start address
Y:$0F20 Data gather buffer storage address
(Option GL Lookahead Firmware Only):
X:$0F20 Lookahead buffer start address
Y:$0F20 Lookahead buffer storage address
(The addresses of the following buffer and table addresses are increased by 1.)
X:$0F21 - X:$0F28 Rotary buffer 1 - 8 start address (3873-3880)
Y:$0F21 - Y:$0F28 Rotary buffer 1 - 8 storage address
X:$0F29 (3881) Transformation matrix buffer start address
Y:$0F29 Transformation matrix buffer storage address
X:$0F2A - X:$0F31 Motor 1-8 backlash comp table start address (3882-3889)
Y:$0F2A - Y:$0F31 Motor 1-8 backlash comp table storage address
X:$0F32 - X:$0F39 Motor 1-8 torque comp table start address (3890-3897)
Y:$0F32 - Y:$0F39 Motor 1-8 torque comp table storage address
X:$0F3A - X:$0F41 Motor 1-8 leadscrew comp table start address (3898-3905)
Y:$0F3A - Y:$0F41 Motor 1-8 leadscrew comp table storage address
X:$0F42 Start address of user data buffer (UBUFFER)
L:$1000 (4096) Variable P0 (floating point)
L:$1001 - L:$13FF Variables P1 - P1023 (floating point) (4097 - 5119)
L:$1400 (5120) Variable Q0 (floating point)
L:$1401 - L:$17FF Variables Q1 - Q1023 (floating point) (5121 - 6143)
$1800 (6144) Start of buffer storage
$9FFF (40959) End of buffer storage
L:$A000 - L:$BBFF Option 16 Battery-backed parameter memory (40960 -

48127)

Note:
On boards with flash-backed main memory, registers from X/Y:$BC00 –
X/Y:$BFFF are located in the main flash-backed memory if no Option 16 battery-
backed memory is present. However, if Option 16 is present, these registers are
located instead in the battery-backed memory, and their contents will not be
retained through a power-down unless a good battery is present.

X:$BC00 (48128) User written servo storage
Y:$BC00 (48128) Variable M0 definition
Y:$BC01 - $BFFF Variable M1 - M1023 definitions (48129-49151)

 PMAC 2 Software Reference

418 PMAC I/0 and Memory Map

PMAC(1) DSPGATE Servo IC Registers
The registers in PMAC(1)’s “DSPGATE” Gate-Array ICs are mapped into the memory space of PMAC’s
processor. Each DSPGATE contains four consecutively numbered channels; there may be up to 4
DSPGATEs in a PMAC system, for up to 16 channels. Every PMAC contains the first DSPGATE, which
has channels 1 through 4. If Option 1 is ordered (not available on PMAC-Lite or Mini-PMAC), the
second DSPGATE is provided, which has channels 5 through 8. If an Accessory 24P/V or ACC-51P is
attached, the third DSPGATE is provided, which has channels 9 through 12. If Accessory 24P/V Option
1, or a second ACC-51P is attached as well, the fourth DSPGATE is provided, which has channels 13
through 16.

Enc # 1 2 3 4 5 6 7 8
Hex [$C000] [$C004] [$C008] [$C00C] [$C010] [$C014] [$C018] [$C01C]

Decimal 49152 49156 49160 49164 49168 49172 49176 49180
Enc # 9 10 11 12 13 14 15 16
Hex [$C020] [$C024] [$C028] [$C02C] [$C030] [$C034] [$C038] [$C03C]

Decimal 49184 49188 49192 49196 49200 49204 49208 49212

Y:$Cxxx Time between last two encoder counts (SCLK cycles)
X:$Cxxx Encoder Status/Control Bits (Bits 0-15: control; Bits

16-23: status – read-only)
 0-3 Decode control (Encoder I-Variable 0)
 4-7 Position capture control (Encoder I-Variable 2)
 8-9 Flag select control (Encoder I-Variable 3)
 10 Count write enable (when = 1, value written to compare

register is copied to counter)
 11 Compare equal flag latch control
 12 Compare-equal output enable
 13 EQU output invert enable
 14 AENAn output value
 15 Digital delay filter disable (Encoder I-Variable 1)
 16 Compare-equal flag
 17 Position-captured flag
 18 Count-error flag (latched to 1 on illegal count transition,

cleared to 0 on write to counter)
 19 Encoder C channel input value
 20 HMFLn input value
 21 -LIMn input value
 22 +LIMn input value
 23 FAULTn input value

Enc # 1 2 3 4 5 6 7 8
Hex [$C001] [$C005] [$C009] [$C00D] [$C011] [$C015] [$C019] [$C01D]

Decimal 49153 49157 49161 49165 49169 49173 49177 49181
Enc # 9 10 11 12 13 14 15 16
Hex [$C021] [$C025] [$C029] [$C02D] [$C031] [$C035] [$C039] [$C03D]

Decimal 49185 49189 49193 49197 49201 49205 49209 49213

Y:$Cxxx Time since last encoder count (SCLK cycles)
X:$Cxxx Encoder phase position (counts)

PMAC 2 Software Reference

PMAC I/0 and Memory Map 419

DAC # 2 4 6 8 10 12 14 16
Hex [$C002] [$C00A] [$C012] [$C01A] [$C022] [$C02A] [$C032] [$C03A]

Decimal 49154 49162 49170 49178 49186 49194 49202 49210

Y:$Cxxx DAC output value (high 16 bits)

ADC # 1 3 5 7 9 11 13 15
Hex [$C006] [$C00E] [$C016] [$C01E] [$C026] [$C02E] [$C036] [$C03E]

Decimal 49158 49166 49174 49182 49190 49198 49206 49214

Y:$Cxxx ADC input value (high 16 bits)

Enc # 1 2 3 4 5 6 7 8
Hex [$C002] [$C006] [$C00A] [$C00E] [$C012] [$C016] [$C01A] [$C01E]

Decimal 49154 49158 49162 49166 49170 49174 49178 49182
Enc # 9 10 11 12 13 14 15 16
Hex [$C022] [$C026] [$C02A] [$C02E] [$C032] [$C036] [$C03A] [$C03E]

Decimal 49186 49190 49194 49198 49202 49206 49210 49214

X:$Cxxx Encoder servo position (2*counts; LSB is direction)

DAC # 1 3 5 7 9 11 13 15
Hex [$C003] [$C00B] [$C013] [$C01B] [$C023] [$C02B] [$C033] [$C03B]

Decimal 49155 49163 49171 49179 49187 49195 49203 49211

Y:$Cxxx DAC output value (high 16 bits)

ADC # 2 4 6 8 10 12 14 16
Hex [$C007] [$C00F] [$C017] [$C01F] [$C027] [$C02F] [$C037] [$C03F]

Decimal 49159 49167 49175 49183 49191 49199 49207 49215

Y:$Cxxx ADC input value (high 16 bits)

Enc # 1 2 3 4 5 6 7 8
Hex [$C003] [$C007] [$C00B] [$C00F] [$C013] [$C017] [$C01B] [$C01F]

Decimal 49155 49159 49163 49167 49171 49175 49179 49183
Enc # 9 10 11 12 13 14 15 16
Hex [$C023] [$C027] [$C02B] [$C02F] [$C033] [$C037] [$C03B] [$C03F]

Decimal 49187 49191 49195 49199 49203 49207 49211 49215
X:$Cxxx Encoder Capture/Compare position (Capture register is read-only;

compare register is write-only.)
(When channel’s “count-write enable” control bit is set to 1,
values written to compare register are copied to active counter.)

 PMAC 2 Software Reference

420 PMAC I/0 and Memory Map

PMAC2 DSPGATE1 Servo IC Registers
Chan # 1 2 3 4 5 6 7 8

Hex [$C000] [$C008] [$C010] [$C018] [$C020] [$C028] [$C030] [$C038]
Decimal 49152 49160 49168 49176 49184 49192 49200 49208
Chan # 9 10 11 12 13 14 15 16

Hex [$C040] [$C048] [$C050] [$C058] [$C060] [$C068] [$C070] [$C078]
Decimal 49216 49224 49232 49240 49248 49256 49264 49272

Note:
• Channels 1-4, residing in the first DSPGATE1 IC, are present on all PMAC2

boards.
• Channels 5-8, residing in the second DSPGATE1 IC, are present on PMAC2

boards with Option 1.
• Channels 9-12, residing in the third DSPGATE1 IC, are present on PMAC2

systems with a 4-channel PMAC2 ACC-24x2 daughter board.
• Channels 13-16, residing in the fourth DSPGATE1 IC, are present on PMAC2

systems with an 8-channel ACC-24x2 daughter board.

Y:$Cxxx Channel n Time between last two encoder counts
(SCLK cycles)

 Bits
 0-22 Timer (units of SCLK cycles)
 23 Change-of-direction flag
Note: Alternate use if Channel Control Word bit 18 is set to 1 (Rev “D” or newer IC only):
Channel n Timer-Based Fractional Count Data (unsigned)
 0-11 Compare “B” fractional count (bit 11 = ½-count; bit 10

= ¼-count; etc.)
 12-23 Flag-captured fractional count (bit 23 = ½-count; bit 22

= ¼-count; etc.)
X:$Cxxx Channel n Status Word (all bits read-only except bits 7

& 8)
 0-2 Capture Hall Effect Device State
 3 Invalid demultiplex of C, U, V, & W
 4-6 Reserved for future use (reports as 0)
 7 Encoder Loss Error (latched at 1 if Tn=Un or Vn=Wn;

cleared to 0 by writing 0 to this bit)
 8 Encoder Count Error (latched at 1 on illegal encoder

transition; cleared to 0 by writing to this bit or resetting
counter)

 9 Position Compare (EQUn) output value
 10 Position-Captured-On-Gated-Index Flag (=0 on read of

captured position register, =1 on trigger capture)
 11 Position-Captured Flag (on any trigger) (=0 on read of

captured position register, =1 on trigger capture)
 12 Encoder Channel A (CHAn) Input Value
 13 Encoder Channel B (CHBn) Input Value
 14 Encoder Channel C (Index, CHCn) Input Value

(ungated)
 15 Amplifier Fault (FAULTn) Input Value
 16 Home Flag (HMFLn) Input Value
 17 Positive End Limit (PLIMn) Input Value

PMAC 2 Software Reference

PMAC I/0 and Memory Map 421

 18 Negative End Limit (MLIMn) Input Value
 19 User Flag (USERn) Input Value
 20 FlagWn Input Value
 21 FlagVn Input Value
 22 FlagUn Input Value
 23 FlagTn Input Value

Chan # 1 2 3 4 5 6 7 8
Hex [$C001] [$C009] [$C011] [$C019] [$C021] [$C029] [$C031] [$C039]

Decimal 49153 49161 49169 49177 49185 49193 49201 49209
Chan # 9 10 11 12 13 14 15 16

Hex [$C041] [$C049] [$C051] [$C059] [$C061] [$C069] [$C071] [$C079]
Decimal 49217 49225 49233 49241 49249 49257 49265 49273

Y:$Cxxx Channel n Time since last encoder count (SCLK cycles)
 Alternate use if Channel Control Word bit 18 set to 1

(Rev “D” or newer IC only):
Channel n Timer-Based Fractional Count Data
(unsigned)

 Bits
 0-11 Compare “A” fractional count (bit 11 = ½-count; bit 10

= ¼-count; etc.)
 12-23 Servo-captured fractional count (bit 23 = ½-count; bit

22 = ¼-count; etc.)
X:$Cxxx Channel n Encoder phase position (counts)

Chan # 1 2 3 4 5 6 7 8
Hex [$C002] [$C00A] [$C012] [$C01A] [$C022] [$C02A] [$C032] [$C03A]

Decimal 49154 49162 49170 49178 49186 49194 49202 49210
Chan # 9 10 11 12 13 14 15 16

Hex [$C042] [$C04A] [$C052] [$C05A] [$C062] [$C06A] [$C072] [$C07A]
Decimal 49218 49226 49234 49242 49250 49258 49266 49274

Y:$Cxxx Channel n Output A Command Value
 Bits
 8-23 PWM Command Value
 6-23 Serial DAC Command Value
 0-5 Not Used
X:$Cxxx Channel n Encoder Servo Position Capture Register
 0 Direction of last count (0=up, 1=down)
 1-23 Position counter (units of counts)

Chan # 1 2 3 4 5 6 7 8
Hex [$C003] [$C00B] [$C013] [$C01B] [$C023] [$C02B] [$C033] [$C03B]

Decimal 49155 49163 49171 49179 49187 49195 49203 49211
Chan # 9 10 11 12 13 14 15 16

Hex [$C043] [$C04B] [$C053] [$C05B] [$C063] [$C06B] [$C073] [$C07B]
Decimal 49219 49227 49235 49243 49251 49259 49267 49275

 PMAC 2 Software Reference

422 PMAC I/0 and Memory Map

Y:$Cxxx Channel n Output B Command Value
 Bits
 8-23 PWM Command Value
 6-23 Serial DAC Command Value
 0-5 Not used
X:$Cxxx Channel n Flag Position Capture Value; 24 bits, units of

counts

Chan # 1 2 3 4 5 6 7 8
Hex [$C004] [$C00C] [$C014] [$C01C] [$C024] [$C02C] [$C034] [$C03C]

Decimal 49156 49164 49172 49180 49188 49196 49204 49212
Chan # 9 10 11 12 13 14 15 16

Hex [$C044] [$C04C] [$C054] [$C05C] [$C064] [$C06C] [$C074] [$C07C]
Decimal 49220 49228 49236 49244 49252 49260 49268 49276

Y:$Cxxx Channel n Output C Command Value
 Bits
 8-23 PWM Command Value
 0-23 PFM Command Value
X:$Cxxx IC Global Control Word
Channel 1: X:$C004; Channel 5: X:$C024;
Channel 9: X:$C044; Channel 13: X:$C064:
Clock Control Word
(X:$C004 controls channels 1-4; X:$C024 controls channels 5-8.)
(X:$C044 controls channels 9-12; X:$C064 controls channels 13-16.)
 (X:$C004 bits 0-11 is I903; X:$C024 bits 0-11 is I907)
 0-2 SCLK Frequency Control n (f=39.3216MHz / 2n, n=0-

7)
 3-5 PFM Clock Frequency Control n (f=39.3216MHz / 2n,

n=0-7)
 6-8 DAC Clock Frequency Control n (f=39.3216MHz / 2n,

n=0-7)
 9-11 ADC Clock Frequency Control n (f=39.3216MHz / 2n,

n=0-7)
 12 Phase Clock Direction (0=output, 1=input) (This must

be 0 in X:$C004; 1 in X:$C024–if 2nd ASIC is used)
 13 Servo Clock Direction (0=output, 1=input) (This must

be 0 in X:$C004; 1 in X:$C024–if 2nd ASIC is used)
 14-15 Reserved for future use (report as zero) (X:$C004 bits

16-19 is I901)
 16-19 Phase Clock Frequency Control n (f=MAXPHASE /

[n+1], n=0-15) (value in X:$C024 not used) (X:$C004
bits 20-23 is I902)

 20-23 Servo Clock Frequency Control n (f=PHASE / [n+1],
n=0–15) (value in X:$C024 not used)

Channel 2: X:$C00C; Channel 6: X:$C02C;
Channel 10: X:$C04C; Channel 14: X:$C06C:
DAC Strobe Word, 24 bits
(X:$C00C controls channels 1-4 [I905]; X:$C02C controls channels 5-8 [I909].)
(X:$C04C controls channels 9-12; X:$C06C controls channels 13-16.)
(Shifted out MSB first one bit per DAC_CLK cycle, starting on rising edge of phase clock.)

PMAC 2 Software Reference

PMAC I/0 and Memory Map 423

Channel 3: X:$C014; Channel 7: X:$C034;
Channel 11: X:$C054; Channel 15: X:$C074:
ADC Strobe Word, 24 bits
(Shifted out MSB first one bit per ADC_CLK cycle, starting on rising edge of phase clock.)
Standard mode, bit 0 must be 0 to clear strobe for next cycle; first data bit clocked in ends
up in bit 23.
Alternate mode (Rev “D” and newer only), bit 0 set to 1 (strobe cleared automatically); first
four data bits clocked in “rolled over” to bits 3-0.
(X:$C014 controls channels 1-4; X:$C034 controls channels 5-8.)
(X:$C054 controls channels 9-12; X:$C074 controls channels 13-16.)
Channel 4: X:$C01C; Channel 8: X:$C03C;
Channel 12: X:$C01C; Channel 16: X:$C03C:
PWM, PFM, MaxPhase Control Word
(X:$C01C controls channels 1-4; X:$C03C controls channels 5-8.)
(X:$C05C controls channels 9-12; X:$C07C controls channels 13-16.)
(X:$C01C bits 0-7 is I904; X:$C03C bits 0-7 is I908.)
 0-7 PWM Dead Time (16*PWM CLK cycles) also PFM

pulse width (PFM CLK cycles) (X:$C01C bits 8-23 is
I900; X:$C03C bits 8-23 is I906.)

 8-23 PWM MaxCount Value PWM Frequency = 117.9648
MHz / [4*MaxCount + 6]
“MaxPhase” Frequency = 2*PWM Frequency
= 117.9648 MHz / [2*MaxCount + 3]

Chan # 1 2 3 4 5 6 7 8
Hex [$C005] [$C00D] [$C015] [$C01D] [$C025] [$C02D] [$C035] [$C03D]

Decimal 49157 49165 49173 49181 49189 49197 49205 49213
Chan # 9 10 11 12 13 14 15 16

Hex [$C045] [$C04D] [$C055] [$C05D] [$C065] [$C06D] [$C075] [$C07D]
Decimal 49221 49229 49237 49245 49253 49261 49269 49277

Y:$Cxxx Channel n ADC A Input Value
 Bits
 6-23 Serial ADC Value
 0-5 Not used (standard ADC strobe mode) ADC header

data (alternate ADC strobe mode, “D” rev and newer
only)

X:$Cxxx Channel n Control Word
 0-3 Encoder Decode Control (I9n0)

0000: Pulse and direction decode CW
0001: x1 quadrature decode CW
0010: x2 quadrature decode CW
0011: x4 quadrature decode CW
0100: Pulse and direction decode CCW
0101: x1 quadrature decode CCW
0110: x2 quadrature decode CCW
0111: x4 quadrature decode CCW
1000: Internal pulse and direction decode
1001: (Reserved for future use)
1010: (Reserved for future use)
1011: x6 “hall sensor” decode CW
1100: MLDT timer mode
1101: (Reserved for future use)
1110: (Reserved for future use)
1111: x6 “hall sensor” decode CCW

 PMAC 2 Software Reference

424 PMAC I/0 and Memory Map

(Bits 4-7: I9n2)
 4-5 Position Capture Control

00: Immediate capture
01: Use encoder index alone
10: Use capture flag alone
11: Use encoder index and capture flag

 6 Index Capture Invert Control (0=no inversion,
1=inversion)

 7 Flag Capture Invert Control (0=no inversion,
1=inversion)

 8-9 Capture Flag Select Control (I9n3)
00: Home Flag (HMFLn)
01: Positive End Limit (PLIMn)
10: Negative End Limit (MLIMn)
11: User Flag (USERn)

 10 Encoder Counter Reset Control (1=reset)
 11 Position Compare Initial State Write Enable
 12 Position Compare Initial State Value
 13 Position Compare Channel Select (I9n1)

(0= use this channel’s encoder; 1=use first encoder on
IC)

 14 AENAn output value
 15 Gated Index Select for Position Capture (I9n4)

(0=ungated index, 1=gated index)
 16 Invert AB for Gated Index (I9n5)

(0: Gated Signal=A&B&C; 1: Gated Signal=A/&B/&C)
 17 Yaskawa encoder index demultiplex enable (“B” rev

and newer only)
 18 Hardware fractional count estimation enable (I9n9)

(“D” rev and newer only)
(0: Normal encoder timer mode;
1: Hardware fractional count estimation [“D” rev and
newer only])

 19 Invert PFM Direction Control (0=no inversion,
1=invert) (I9n8)
(Bits 20-21: I9n7)

 20 Invert A & B Output Control (0=no inversion, 1=invert)
 21 Invert C Output Control (0=no inversion, 1=invert)

(Bits 22-23: I9n6)
 22 Output A & B Mode Select (0=PWM, 1=DAC)
 23 Output C Mode Select (0=PWM, 1=PFM)

Chan # 1 2 3 4 5 6 7 8
Hex [$C006] [$C00E] [$C016] [$C01E] [$C026] [$C02E] [$C036] [$C03E]

Decimal 49158 49166 49174 49182 49190 49198 49206 49214
Chan # 9 10 11 12 13 14 15 16

Hex [$C046] [$C04E] [$C056] [$C05E] [$C066] [$C06E] [$C076] [$C07E]
Decimal 49222 49230 49238 49246 49254 49262 49270 49278

Y:$Cxxx Channel n ADC B Input Value
 Bits
 6-23 Serial ADC Value
 0-5 Not used (standard ADC strobe mode) ADC header

data (alternate ADC strobe mode, “D” rev and newer

PMAC 2 Software Reference

PMAC I/0 and Memory Map 425

only)
X:$Cxxx Channel n Encoder Compare Auto-increment value (24

bits, units of counts)

Chan # 1 2 3 4 5 6 7 8
Hex [$C007] [$C00F] [$C017] [$C01F] [$C027] [$C02F] [$C037] [$C03F]

Decimal 49159 49167 49175 49183 49191 49199 49207 49215
Chan # 9 10 11 12 13 14 15 16

Hex [$C047] [$C04F] [$C057] [$C05F] [$C067] [$C06F] [$C077] [$C07F]
Decimal 49223 49231 49239 49247 49255 49263 49271 49279

Y:$Cxxx Channel n Encoder Compare A Value (24 bits, units of

counts)
X:$Cxxx Channel n Encoder Compare B Value (24 bits, units of

counts)

PMAC2 DSPGATE2 I/O and MACRO Registers
Y:$C080 JI/O Port Data Register (Input or output; when used as

general I/O; see Y:$C084)
 Bits
 0 I/O00 Data Value
 23 I/O23 Data Value
X:$C080 JI/O Port Data Direction Control Register (when used

as general I/O; see Y:$C084)
 0 I/O00 Direction Control
 23 I /O23 Direction Control (All bits: 0=Input; 1=Output)
Y:$C081 JI/O Port Data Register (Input or output; when used as

general I/O; see Y:$C085)
 0 I/O24 Data Value
 7 I/O31 Data Value
 8 I/O24 Latched Data Value
 15 I/O31 Latched Data Value
 16-23 Not used
X:$C081 JI/O Port Data Direction Control Register (when used

as general I/O; see Y:$C085)
 0 I/O24 Direction Control
 7 I/O31 Direction Control (All bits: 0=Input; 1=Output)
 8-23 Not used
Y:$C082 JTHW Port Data Register (Input or output; when used

as general I/O; see Y:$C086)
 0 DAT0 Data Value
 7 DAT7 Data Value
 8 SEL0 Data Value
 15 SEL7 Data Value
 16-23 Not used
X:$C082 JTHW Port Data Direction Control Register (when used

as general I/O; see Y:$C086)
 0 DAT0 Direction Control (Must be 0 to use standard

port accessories)
 7 DAT7 Direction Control (Must be 0 to use standard

port accessories)
 8 SEL0 Direction Control (Must be 1 to use standard port

accessories)

 PMAC 2 Software Reference

426 PMAC I/0 and Memory Map

 15 SEL7 Direction Control (Must be 1 to use standard port
accessories) (All bits: 0=Input; 1=Output)

 16-23 Not used
Y:$C083 JDISP, J??? Port Data Register
 0 DISP0 Data Value
 7 DISP7 Data Value
 8 CTRL0 Data Value
 11 CTRL3 Data Value
 12-23 Not used
X:$C083 JDISP, J??? Port Data Direction Control Register
 0 DISP0 Direction Control (Must be 1 for display to

function)
 7 DISP7 Direction Control (Must be 1 for display to

function)
 8 CTRL0 Direction Control (Must be 1 for ??? to

function)
 11 CTRL3 Direction Control (Must be 1 for ??? to

function) (All bits: 0=Input; 1=Output)
 12-23 Not used
Y:$C084 JI/O Port Data Type Control Register
 0 I/O00 Data Type Control (0=FlagW1*; 1=I/O00)
 1 I/O01 Data Type Control (0=FlagV1*; 1=I/O01)
 2 I/O02 Data Type Control (0=FlagU1*; 1=I/O02)
 3 I/O03 Data Type Control (0=FlagT1*; 1=I/O03)
 4 I/O04 Data Type Control (0=USER1*; 1=I/O04)
 5 I/O05 Data Type Control (0=MLIM1*; 1=I/O05)
 6 I/O06 Data Type Control (0=PLIM1*; 1=I/O06)
 7 I/O07 Data Type Control (0=HMFL1*; 1=I/O07)
 8 I/O08 Data Type Control (0=PWM_B_BOT1*;

1=I/O08)
 9 I/O09 Data Type Control (0=PWM_B_TOP1*;

1=I/O09)
 10 I/O10 Data Type Control (0=PWM_A_BOT1*;

1=I/O10)
 11 I/O11 Data Type Control (0=PWM_A_TOP1*;

1=I/O11)
 12 I/O12 Data Type Control (0=PWM_B_BOT2*;

1=I/O12)
 13 I/O13 Data Type Control (0=PWM_B_TOP2*;

1=I/O13)
 14 I/O14 Data Type Control (0=PWM_A_BOT2*;

1=I/O14)
 15 I/O15 Data Type Control (0=PWM_A_TOP2*;

1=I/O15)
 16 I/O16 Data Type Control (0=HMFL2*; 1=I/O16)
 17 I/O17 Data Type Control (0=PLIM2*; 1=I/O17)
 18 I/O18 Data Type Control (0=MLIM2*; 1=I/O18)
 19 I/O19 Data Type Control (0=USER2*; 1=I/O19)
 20 I/O20 Data Type Control (0=FlagT2*; 1=I/O20)
 21 I/O21 Data Type Control (0=FlagU2*; 1=I/O21)
 22 I/O22 Data Type Control (0=FlagV2*; 1=I/O22)
 23 I/O23 Data Type Control (0=FlagW2*; 1=I/O23) (All

bits: 0=dedicated hardware I/O; 1=general I/O) (All bits
must be 1 for JI/O Port to function as general I/O)

PMAC 2 Software Reference

PMAC I/0 and Memory Map 427

X:$C084 JI/O Port Data Inversion Control Register (when used
as general I/O; see Y:$C084)

 0 I/O00 Inversion Control
 23 I/O23 Inversion Control (All bits: 0=Non-inverting;

1=Inverting)
Y:$C085 JI/O Port Data Type Control Register
 0 I/O24 Data Type Control
 7 I/O31 Data Type Control (These bits are always 1; there

is no alternate mode for these lines)
 8-23 Not used
X:$C085 JI/O Port Data Inversion Control
 0 I/O24 Inversion Control
 7 I/O31 Inversion Control (All bits: 0=Non-inverting;

1=Inverting)
 8-23 Not used
Y:$C086 JTHW Port Data Type Control Register
 0 DAT0 Data Type Control (0=HWC1; 1 =DAT0)
 1 DAT1 Data Type Control (0=HWC2; 1 =DAT1)
 2 DAT2 Data Type Control (0=Fault1*; 1 =DAT2)
 3 DAT3 Data Type Control (0=Fault2*; 1 =DAT3)
 4 DAT4 Data Type Control (0=EQU1*; 1 =DAT4)
 5 DAT5 Data Type Control (0=EQU2*; 1 =DAT5)
 6 DAT6 Data Type Control (0=AENA1*; 1 =DAT6)
 7 DAT7 Data Type Control (0=AENA2*; 1 =DAT7)
 8 SEL0 Data Type Control (0=ADC_STROB*; 1=SEL0)
 9 SEL1 Data Type Control (0=ADC_CLK*; 1=SEL1)
 10 SEL2 Data Type Control (0=ADC_A1*; 1=SEL2)
 11 SEL3 Data Type Control (0=ADC_B1*; 1=SEL3)
 12 SEL4 Data Type Control (0=ADC_A2*; 1=SEL4)
 13 SEL5 Data Type Control (0=ADC_B2*; 1=SEL5)
 14 SEL6 Data Type Control (0=SCLK*; 1=SEL6)
 15 SEL7 Data Type Control (0=SCLK_DIR*; 1=SEL7)

(All bits: 0=dedicated hardware I/O; 1=general I/O)
(All bits must be 1 for JTHW Port to function as
general I/O or with multiplexed accessories)

 16-23 Not used
X:$C086 JTHW Port Data Inversion Control Register (when

used as general I/O; see Y:$C086)
 0 DAT0 Inversion Control
 7 DAT7 Inversion Control
 8 SEL0 Inversion Control
 15 SEL7 Inversion Control (All bits: 0=Non-inverting;

1=Inverting) (All bits must be 0 to use standard port
accessories)

 16-23 Not used
Y:$C087 JDISP, J??? Port Data Type Control Register
 0 DISP0 Data Type Control
 7 DISP7 Data Type Control
 8 CTRL0 Data Type Control
 11 CTRL3 Data Type Control (These bits are always 1;

there is no alternate mode for these pins)
 12-23 Not used
X:$C087 JDISP, J??? Port Data Inversion Control Register

 PMAC 2 Software Reference

428 PMAC I/0 and Memory Map

 0 DISP0 Inversion Control
 7 DISP7 Inversion Control
 8 CTRL0 Inversion Control
 11 CTRL3 Inversion Control (All bits: 0=Non-inverting;

1=Inverting) (All bits must be 0 to use standard port
accessories)

Y:$C088-$C08B Not used
X:$C088-$C08B Not used
Y:$C08C Pure binary conversion from gray code input on I/O00

to I/O23
X:$C08C Not used
Y:$C08D Gray-to-binary conversion bit-length control
 0-3 Bit length of less significant word portion (I/O00 -

I/Onn)
 4 =1 specifies 16-bit lower / 8-bit upper conversion
 5-23 Not used
X:$C08D Not used
Y:$C08E MACRO Node Enable Control (I996)
 0 Node 0 enable control
 15 Node 15 enable control (0=node disable; 1=node

enable)
 16-19 Sync packet slave node number control
 20-23 Master number control (Note: Bits 16-23 not present on

prototype PMAC2 boards with prototype
“DSPGATE2” ICs; production “DSPGATE2A” ICs
have full register)

X:$C08E Not used
Y:$C08F MACRO Ring Status and Control
 0 Data overrun error (cleared when read)
 1 Byte violation error (cleared when read)
 2 Packet parity error (cleared when read)
 3 Data underrun error (cleared when read)
 4 Master station enable
 5 Synchronizing master station enable
 6 Sync packet received (cleared when read)
 7 Sync packet phase lock enable
 8 Node 8 master address check disable
 9 Node 9 master address check disable
 10 Node 10 master address check disable
 11 Node 11 master address check disable
 12 Node 12 master address check disable
 13 Node 13 master address check disable
 14 Node 14 master address check disable
 15 Node 15 master address check disable

Note:
On prototype PMAC2 boards with prototype DSPGATE2 ICs, only bits 0, 1, 2 are
present; equivalent to bits 4, 1, and 2, respectively, of production boards with
DSPGATE2A ICs as listed above.

PMAC 2 Software Reference

PMAC I/0 and Memory Map 429

X:$C08F DSPGATE2 clock control register
 (Bits 0-11 comprise I993)
 0-2 Handwheel SCLK* Frequency Control n

(f=39.3216MHz / 2n, n=0-7)
 3-5 JHW/PD PFM Clock Frequency Control n

(f=39.3216MHz / 2n, n=0-7)
 6-8 Not used
 9-11 ADC Clock* Frequency Control n (f=39.3216MHz /

2n, n=0-7)
 12 Phase Clock Direction (0=output, 1=input. This must be

1)
 13 Servo Clock Direction (0=output, 1=input. This must be

1)
 14-15 Not used (report as zero)
 16-19 (I997 – normally used on PMAC2 UltraLite only) Phase

Clock* Frequency Control n (f=MAXPHASE* / [n+1],
n=0-15)

 20-23 (I998 – normally used on PMAC2 UltraLite only) Servo
Clock* Frequency Control n (f=PHASE* / [n+1], n=0-
15)

Chan # 1* 2*
Hex [$C090] [$C098]

Decimal 49296 49304

Y:$C09x Handwheel n Time between last two encoder counts
(SCLK cycles)

 Bits
X:$C09x Supplementary Channel n* (Handwheel n) Status Word
 0-2 Captured Hall Effect Device (UVW) State
 3-7 Not used (reports as zero)
 8 Encoder Count Error (0 on counter reset, 1 on illegal

transition)
 9 Position Compare (EQUn*) output value
 10 Position-Captured-On-Gated-Index Flag (=0 on read of

captured position register, =1 on trigger capture)
 11 Position-Captured Flag (on any trigger) (=0 on read of

captured position register, =1 on trigger capture)
 12 Handwheel 1 Channel A (HWAn) Input Value
 13 Handwheel 1 Channel B (HWBn) Input Value
 14 Handwheel 1 Channel C (Index, HWCn) Input Value

(ungated)
 15 Amplifier Fault (FAULTn*) Input Value
 16 Home Flag (HMFLn*) Input Value
 17 Positive End Limit (PLIMn*) Input Value
 18 Negative End Limit (MLIMn*) Input Value
 19 User Flag (USERn*) Input Value
 20 FlagWn* Input Value
 21 FlagVn* Input Value
 22 FlagUn* Input Value
 23 FlagTn* Input Value

 PMAC 2 Software Reference

430 PMAC I/0 and Memory Map

Chan # 1* 2*
Hex [$C091] [$C099]

Decimal 49297 49305

Y:$C09x Handwheel n Time Since Last Encoder Count (SCLK
cycles)

X:$C09x Handwheel n Phase Position Capture Register (counts)

Chan # 1* 2*
Hex [$C092] [$C09A]

Decimal 49298 49306

Y:$C09x Supplementary Channel n* Output A Command Value
 Bits
 8-23 PWM Command Value (appears on I/O10 & I/O11 if in

dedicated mode)
 0-5 Not Used
X:$C09x Handwheel n* Servo Position Capture Register
 0 Direction of last count (0=up, 1=down)
 1-23 Position counter (units of counts)

Chan # 1* 2*
Hex [$C093] [$C09B]

Decimal 49299 49307

Y:$C09x Supplementary Channel n* Output B Command Value
 Bits
 8-23 PWM Command Value (appears on I/O08 & I/O09 if in

dedicated mode)
 0-5 Not used
X:$C09x Handwheel n Flag Position Capture Value; 24 bits,

units of counts

Chan # 1* 2*
Hex [$C094] [$C09C]

Decimal 49300 49308

Y:$C09x Supplementary Channel n* Output C Command Value
 Bits
 8-23 PWM Command Value (appears on PUL1 & DIR1 if in

PWM mode)
 0-23 PFM Command Value (appears on PUL1 & DIR1 if in

PFM mode)
X:$C094 Supplementary ADC Strobe Word, 24 bits (Shifted out

MSB first one bit per DAC_CLK cycle, starting on
rising edge of phase clock; appears on SEL0 if in
dedicated mode.)

X:$C09C Supplementary PWM, PFM, MaxPhase* Control Word
 0-7 PWM* Dead Time (16*PWM* CLK cycles) also PFM*

pulse width (PFM* CLK cycles)
 8-23 PWM* Max Count Value PWM* Frequency =

117.96MHz / [2*(MaxCount+1)] “MaxPhase*”
Frequency = 2*PWM* Frequency

PMAC 2 Software Reference

PMAC I/0 and Memory Map 431

Chan # 1* 2*
Hex [$C095] [$C09D]

Decimal 49301 49309

Y:$C09x Supplementary Channel n* ADC A Input Value (uses
SEL2 in dedicated mode)

 Bits
 6-23 Serial ADC Value
 0-5 Not used
X:$C09x Supplementary Channel n* (Handwheel n) Control

Word
 0-1 Encoder Decode Control
 00: Pulse and direction decode
 01: x1 quadrature decode
 10: x2 quadrature decode
 11: x4 quadrature decode
 2-3 Direction & Timer Control
 00: Standard timer control, external signal source, no

inversion
 01: Standard timer control, external signal source,

invert direction
 10: Standard timer control, internal PFM source, no

inversion
 11: Alternate timer control, external signal source
 4-5 Position Capture Control
 00: Software capture (by setting bit 6)
 01: Use encoder index alone
 10: Use capture flag alone
 11: Use encoder index and capture flag
 6 Index Capture Invert Control (0=no inversion,

1=inversion)
 7 Flag Capture Invert Control (0=no inversion,

1=inversion)
 8-9 Capture Flag Select Control
 00: Home Flag (HMFLn*)
 01: Positive Limit (PLIMn*)
 10: Negative Limit (MLIMn*)
 11: User Flag (USERn*)
 10 Encoder Counter Reset Control (1=reset)
 11 Position Compare Initial State Write Enable
 12 Position Compare Initial State Value
 13 Position Compare Channel Select (0= use this channel’s

encoder; 1=use first encoder on IC)
 14 AENAn* output value
 15 Gated Index Select for Position Capture (0=ungated

index, 1=gated index)
 16 Invert AB for Gated Index (0: Gated Signal=A&B&C;

1: Gated Signal=A/&B/&C)
 17-18 Not used (report as 0)
 19 Invert PFM Direction Control (0=no inversion,

1=invert)
 20 Invert A & B Output Control (0=no inversion, 1=invert)
 21 Invert C Output Control (0=no inversion, 1=invert)

 PMAC 2 Software Reference

432 PMAC I/0 and Memory Map

 22 Not used (reports as 0)
 23 Output C Mode Select (0=PWM, 1=PFM)

Chan # 1* 2*
Hex [$C096] [$C09E]

Decimal 49302 49310

Y:$C09x Supplementary Channel n* ADC B Input Value (uses
SEL3 in dedicated mode)

 Bits
 6-23 Serial ADC Value
 0-5 Not used
X:$C09x Handwheel n Compare Auto-increment value (24 bits,

units of counts)

Chan # 1* 2*
Hex [$C097] [$C09F]

Decimal 49303 49311

Y:$C09x Handwheel n Compare A Value (24 bits, units of
counts)

X:$C09x Handwheel n Compare B Value (24 bits, units of
counts)

Y:$C0A0 MACRO Node 0 24-bit command (write) and feedback
(read) register

X:$C0A0 MACRO Node 2 24-bit command (write) and feedback
(read) register

Y:$C0A1 MACRO Node 0 1st 16-bit command (write) and
feedback (read) register (bits 8-23; bits 0-7 not used)

X:$C0A1 MACRO Node 2 1st 16-bit command (write) and
feedback (read) register (bits 8-23; bits 0-7 not used)

Y:$C0A2 MACRO Node 0 1st 16-bit command (write) and
feedback (read) register (bits 8-23; bits 0-7 not used)

X:$C0A2 MACRO Node 2 2nd 16-bit command (write) and
feedback (read) register (bits 8-23; bits 0-7 not used)

Y:$C0A3 MACRO Node 0 3rd 16-bit command (write) and
feedback (read) register (bits 8-23; bits 0-7 not used)

X:$C0A3 MACRO Node 2 3rd 16-bit command (write) and
feedback (read) register (bits 8-23; bits 0-7 not used)

Y:$C0A4 MACRO Node 1 24-bit command (write) and feedback
(read) register

X:$C0A4 MACRO Node 3 24-bit command (write) and feedback
(read) register

Y:$C0A5 MACRO Node 1 1st 16-bit command (write) and
feedback (read) register (bits 8-23; bits 0-7 not used)

X:$C0A5 MACRO Node 3 1st 16-bit command (write) and
feedback (read) register (bits 8-23; bits 0-7 not used)

Y:$C0A6 MACRO Node 1 1st 16-bit command (write) and
feedback (read) register (bits 8-23; bits 0-7 not used)

X:$C0A6 MACRO Node 3 2nd 16-bit command (write) and
feedback (read) register (bits 8-23; bits 0-7 not used)

Y:$C0A7 MACRO Node 1 3rd 16-bit command (write) and

PMAC 2 Software Reference

PMAC I/0 and Memory Map 433

feedback (read) register (bits 8-23; bits 0-7 not used)
X:$C0A7 MACRO Node 3 3rd 16-bit command (write) and

feedback (read) register (bits 8-23; bits 0-7 not used)
Y:$C0A8 MACRO Node 4 24-bit command (write) and feedback

(read) register
X:$C0A8 MACRO Node 4 24-bit command (write) and feedback

(read) register
Y:$C0A9 MACRO Node 6 1st 16-bit command (write) and

feedback (read) register (bits 8-23; bits 0-7 not used)
X:$C0A9 MACRO Node 6 1st 16-bit command (write) and

feedback (read) register (bits 8-23; bits 0-7 not used)
Y:$C0AA MACRO Node 4 1st 16-bit command (write) and

feedback (read) register (bits 8-23; bits 0-7 not used)
X:$C0AA MACRO Node 6 2nd 16-bit command (write) and

feedback (read) register (bits 8-23; bits 0-7 not used)
Y:$C0AB MACRO Node 4 3rd 16-bit command (write) and

feedback (read) register (bits 8-23; bits 0-7 not used)
X:$C0AB MACRO Node 6 3rd 16-bit command (write) and

feedback (read) register (bits 8-23; bits 0-7 not used)
Y:$C0AC MACRO Node 5 24-bit command (write) and feedback

(read) register
X:$C0AC MACRO Node 7 24-bit command (write) and feedback

(read) register
Y:$C0AD MACRO Node 5 1st 16-bit command (write) and

feedback (read) register (bits 8-23; bits 0-7 not used)
X:$C0AD MACRO Node 7 1st 16-bit command (write) and

feedback (read) register (bits 8-23; bits 0-7 not used)
Y:$C0AE MACRO Node 5 1st 16-bit command (write) and

feedback (read) register (bits 8-23; bits 0-7 not used)
X:$C0AE MACRO Node 7 2nd 16-bit command (write) and

feedback (read) register (bits 8-23; bits 0-7 not used)
Y:$C0AF MACRO Node 5 3rd 16-bit command (write) and

feedback (read) register (bits 8-23; bits 0-7 not used)
X:$C0AF MACRO Node 7 3rd 16-bit command (write) and

feedback (read) register (bits 8-23; bits 0-7 not used)
Y:$C0B0 MACRO Node 8 24-bit command (write) and feedback

(read) register
X:$C0B0 MACRO Node 10 24-bit command (write) and

feedback (read) register
Y:$C0B1 MACRO Node 8 1st 16-bit command (write) and

feedback (read) register (bits 8-23; bits 0-7 not used)
X:$C0B1 MACRO Node 10 1st 16-bit command (write) and

feedback (read) register (bits 8-23; bits 0-7 not used)
Y:$C0B2 MACRO Node 1 1st 16-bit command (write) and

feedback (read) register (bits 8-23; bits 0-7 not used)
X:$C0B2 MACRO Node 10 2nd 16-bit command (write) and

feedback (read) register (bits 8-23; bits 0-7 not used)
Y:$C0B3 MACRO Node 8 3rd 16-bit command (write) and

feedback (read) register (bits 8-23; bits 0-7 not used)
X:$C0B3 MACRO Node 10 3rd 16-bit command (write) and

feedback (read) register (bits 8-23; bits 0-7 not used)
Y:$C0B4 MACRO Node 9 24-bit command (write) and feedback

(read) register
X:$C0B4 MACRO Node 11 24-bit command (write) and

feedback (read) register
Y:$C0B5 MACRO Node 9 1st 16-bit command (write) and

 PMAC 2 Software Reference

434 PMAC I/0 and Memory Map

feedback (read) register (bits 8-23; bits 0-7 not used)
X:$C0B5 MACRO Node 11 1st 16-bit command (write) and

feedback (read) register (bits 8-23; bits 0-7 not used)
Y:$C0B6 MACRO Node 9 1st 16-bit command (write) and

feedback (read) register (bits 8-23; bits 0-7 not used)
X:$C0B6 MACRO Node 11 2nd 16-bit command (write) and

feedback (read) register (bits 8-23; bits 0-7 not used)
Y:$C0B7 MACRO Node 9 3rd 16-bit command (write) and

feedback (read) register (bits 8-23; bits 0-7 not used)
X:$C0B7 MACRO Node 11 3rd 16-bit command (write) and

feedback (read) register (bits 8-23; bits 0-7 not used)
Y:$C0B8 MACRO Node 12 24-bit command (write) and

feedback (read) register
X:$C0B8 MACRO Node 14 24-bit command (write) and

feedback (read) register
Y:$C0B9 MACRO Node 12 1st 16-bit command (write) and

feedback (read) register (bits 8-23; bits 0-7 not used)
X:$C0B9 MACRO Node 14 1st 16-bit command (write) and

feedback (read) register (bits 8-23; bits 0-7 not used)
Y:$C0BA MACRO Node 12 1st 16-bit command (write) and

feedback (read) register (bits 8-23; bits 0-7 not used)
X:$C0BA MACRO Node 14 2nd 16-bit command (write) and

feedback (read) register (bits 8-23; bits 0-7 not used)
Y:$C0BB MACRO Node 12 3rd 16-bit command (write) and

feedback (read) register (bits 8-23; bits 0-7 not used)
X:$C0BB MACRO Node 14 3rd 16-bit command (write) and

feedback (read) register (bits 8-23; bits 0-7 not used)
Y:$C0BC MACRO Node 13 24-bit command (write) and

feedback (read) register
X:$C0BC MACRO Node 15 24-bit command (write) and

feedback (read) register
Y:$C0BD MACRO Node 13 1st 16-bit command (write) and

feedback (read) register (bits 8-23; bits 0-7 not used)
X:$C0BD MACRO Node 15 1st 16-bit command (write) and

feedback (read) register (bits 8-23; bits 0-7 not used)
Y:$C0BE MACRO Node 13 1st 16-bit command (write) and

feedback (read) register (bits 8-23; bits 0-7 not used)
X:$C0BE MACRO Node 15 2nd 16-bit command (write) and

feedback (read) register (bits 8-23; bits 0-7 not used)
Y:$C0BF MACRO Node 13 3rd 16-bit command (write) and

feedback (read) register (bits 8-23; bits 0-7 not used)
X:$C0BF MACRO Node 15 3rd 16-bit command (write) and

feedback (read) register (bits 8-23; bits 0-7 not used)

PMAC 2 Software Reference

PMAC I/0 and Memory Map 435

Dual-Ported RAM (Option 2 Required)
Note:

Dual-ported RAM addresses are given both as absolute addresses on the PMAC
side (with a $ prefix) and as offsets from the base address on the host-computer
side (with a “0x” prefix). Detailed information on these functions is given in the
manual for the Option 2 DPRAM.

$D000 - $D23F Dedicated DPRAM functions

DPRAM Control Panel Registers
Address Description
0x0000

(Y:$D000)
Control Panel Motor/Coordinate System Enable Mask
(Set bit to enable; PMAC clears on taking action)

 Bit 0: Motor/Coordinate System # 1
 Bit 1: Motor/Coordinate System # 2
 Bit 2: Motor/Coordinate System # 3
 Bit 3: Motor/Coordinate System # 4
 Bit 4: Motor/Coordinate System # 5
 Bit 5: Motor/Coordinate System # 6
 Bit 6: Motor/Coordinate System # 7
 Bit 7: Motor/Coordinate System # 8
 Bits 8-15: Not Used

0x0002
(X:$D000)

Coordinate System Feed Pot Override Enable Mask
(Set bit to enable, clear bit to disable)

 Bit 0: Coordinate System # 1
 Bit 1: Coordinate System # 2
 Bit 2: Coordinate System # 3
 Bit 3: Coordinate System # 4
 Bit 4: Coordinate System # 5
 Bit 5: Coordinate System # 6
 Bit 6: Coordinate System # 7
 Bit 7: Coordinate System # 8
 Bits 8-15: Not Used

Control Panel Request Words
Motor/C.S. # 1 2 3 4 5 6 7 8
Host Address 0x0004 0x0008 0x000C 0x0010 0x0014 0x0018 0x001C 0x0020
PMAC Addr. Y:$D001 Y:$D002 Y:$D003 Y:$D004 Y:$D005 Y:$D006 Y:$D007 Y:$D008

 PMAC 2 Software Reference

436 PMAC I/0 and Memory Map

Bit Format of Request Words
Bit Request (1 = Action Requested; 0 = No Action Requested)
0-7 (Reserved for Delta Tau Future Use)
8 Jog-Minus (Motor Only) *
9 Jog-Plus (Motor Only) *

10 Pre-Jog (Motor Only)
11 Start (RUN) (Coord. Sys. Only)
12 Step (STEP/QUIT) (Coord. Sys. Only)
13 Stop (ABORT) (Coord. Sys. Only)
14 Home (Motor Only)
15 Feed Hold (HOLD) (Coord. Sys. Only)

* When both Jog-Minus and Jog-Plus are set, motor will stop

Control Panel Feedrate Override
Coord. Sys. # 1 2 3 4 5 6 7 8
Host Address 0x0006 0x000A 0x000E 0x0012 0x0016 0x001A 0x001E 0x0022
PMAC Addr. X:$D001 X:$D002 X:$D003 X:$D004 X:$D005 X:$D006 X:$D007 X:$D008

Servo Fixed Data Reporting Buffer
Global Registers for Servo Fixed Data Reporting Buffer

Address Description
(0x0024)
Y:$D009

Host Status to PMAC:
Bit 0 = 1 is Host-Busy, reading buffer; = 0 is not busy
Bits 1-15 (reserved for future use)

(0x0026)
X:$D009

PMAC Status to Host:
Bits 0-14 Servo Timer
Bit 15 = 1 is PMAC-Busy updating buffer; = 0 is not busy

(0x0028,A)
$D00A

Global Status Bits (from Y:$0003)
Low 24 Bits (First word returned on ??? command)

(0x002C,E)
$D00B

Global Status Bits (from X:$0003)
Low 24 bits (Second word returned on ??? command)

(0x0030-46)
$D00C-11

Spare Global Var.

Motor-Specific Registers for Servo Fixed Data Reporting Buffer
Motor # 1 2 3 4 5 6 7 8
Host Address 0x0048-

0x004E
0x0084-
0x008A

0x00C0-
0x00C6

0x00FC-
0x0102

0x0138-
0x013E

0x0174-
0x017A

0x01B0-
0x01B6

0x01EC-
0x01F2

PMAC Addr. $D012-
$D013

$D021-
$D022

$D030-
$D031

$D03F-
$D040

$D04E-
$D04F

$D05D-
$D05E

$D06C-
$D06D

$D07B-
$D07C

Source Addr $0028 $0064 $00A0 $00DC $0118 $0154 $0190 $01CC
Motor Commanded Position (64 bits; 1/(Ix08*32) counts)

Motor # 1 2 3 4 5 6 7 8
Host Address 0x0050-

0x0056
0x008C-
0x0092

0x00C8-
0x00CE

0x0104-
0x010A

0x0140-
0x0146

0x017C-
0x0182

0x01B8-
0x01BE

0x01F4-
0x01FA

PMAC Addr. $D014-
$D015

$D023-
$D024

$D032-
$D033

$D041-
$D042

$D050-
$D051

$D05F-
$D060

$D06E-
$D06F

$D07D-
$D07E

Source Addr $002B $0067 $00A3 $00DF $011B $0157 $0193 $01CF
Motor Actual Position (64 bits; 1/(Ix08*32) counts)

PMAC 2 Software Reference

PMAC I/0 and Memory Map 437

Motor # 1 2 3 4 5 6 7 8
Host Address 0x0058-

0x005E
0x0094-
0x009A

0x00D0-
0x00D6

0x010C-
0x0112

0x0148-
0x014E

0x0184-
0x018A

0x01C0-
0x01C6

0x01FC-
0x0202

PMAC Addr. $D016-
$D017

$D025-
$D026

$D034-
$D035

$D043-
$D044

$D052-
$D053

$D061-
$D062

$D070-
$D071

$D07F-
$D080

Source Addr. $002D $0069 $00A5 $00E1 $011D $0159 $0195 $01D1
Motor Master Position (64 bits; 1/(Ix07*32) counts of the master; 1/(Ix08*32) motor counts)

Motor # 1 2 3 4 5 6 7 8
Host Address 0x0060-

0x0066
0x009C-
0x00A2

0x00D8-
0x00DE

0x0114-
0x011A

0x0150-
0x0156

0x018C-
0x0192

0x01C8-
0x01CE

0x0204-
0x020A

PMAC Addr. $D018-
$D019

$D027-
$D028

$D036-
$D037

$D045-
$D046

$D054-
$D055

$D063-
$D064

$D072-
$D073

$D081-
$D082

Source Addr. $0046 $0082 $00BE $00FA $0136 $0172 $01AE $01EA
Motor Compensation Position (64 bits; 1/(Ix08*32) counts)

Motor # 1 2 3 4 5 6 7 8
Host Address 0x0068-

0x006A
0x00A4-
0x00A6

0x00E0-
0x00E2

0x011C-
0x011E

0x0158-
0x015A

0x0194-
0x0196

0x01D0-
0x01D2

0x020C-
0x020E

PMAC Addr. $D01A $D029 $D038 $D047 $D056 $D065 $D074 $D083
Source Addr. X:$003A X:$0076 X:$00B2 X:$00EE X:$012A X:$0166 X:$01A2 X:$01DE

Motor Previous DAC (32 bits; 1/256 DAC bits)

Motor/C.S. # 1 2 3 4 5 6 7 8
Host Address 0x006C-

0x006E
0x00A8-
0x00AA

0x00E4-
0x00E6

0x0120-
0x0122

0x015C-
0x015E

0x0198-
0x019A

0x01D4-
0x01D6

0x0210-
0x0212

PMAC Addr. $D01B $D02A $D039 $D048 $D057 $D066 $D075 $D084
Source Addr. X:$003D X:$0079 X:$00B5 X:$00F1 X:$012D X:$0169 X:$01A5 X:$01E1

Motor Servo Status (32 bits; low 24 bits used) 1st word returned on ? command

Motor # 1 2 3 4 5 6 7 8
Host Address 0x0070

0x0072
0x00AC-
0x00AE

0x00E8-
0x00EA

0x0124-
0x0126

0x0160-
0x0162

0x019C-
0x019E

0x01D8-
0x01DA

0x0214-
0x0216

PMAC Addr. $D01C $D02B $D03A $D049 $D058 $D067 $D076 $D085
Source Addr. X:$0033 X:$006F X:$00AB X:$00E7 X:$0123 X:$015F X:$019B X:$01D7

Motor Actual Velocity (1/(Ix09*32) counts per servo cycle)

Motor # 1 2 3 4 5 6 7 8
Host Address 0x0074-

0x0076
0x00B0-
0x00B2

0x00EC-
0x00EE

0x0128-
0x012A

0x0164-
0x0166

0x01A0-
0x01A2

0x01DC
0x01DE

0x0218-
0x021A

PMAC Addr. $D01D $D02C $D03B $D04A $D059 $D068 $D077 $D086
Source Addr. X:$0020 X:$005C X:$0098 X:$00D4 X:$0110 X:$014C X:$0188 X:$01C4

Time Left in Move Segment (2*msec)

Motor # 1 2 3 4 5 6 7 8
Host Address 0x0078-

0x007A
0x00B4-
0x00B6

0x00F0-
0x00F2

0x012C-
0x012E

0x0168-
0x016A

0x01A4-
0x01A6

0x01E0
0x01E2

0x021C-
0x021E

PMAC Addr. $D01E $D02D $D03C $D04B $D05A $D069 $D078 $D087
Source Addr. X:$0029 X:$0065 X:$00A1 X:$00DD X:$0119 X:$0155 X:$0191 X:$01CD

Handwheel Pointer

 PMAC 2 Software Reference

438 PMAC I/0 and Memory Map

Motor # 1 2 3 4 5 6 7 8
Host Address 0x007C-

0x0082
0x00B8-
0x00BE

0x00F4-
0x00FA

0x0130-
0x0136

0x016C-
0x0172

0x01A8-
0x01AE

0x01E4-
0x01EA

0x0220-
0x0226

PMAC Addr. $D01F-
$D020

$D02E-
$D02F

$D03D-
$D03E

$D04C-
$D04D

$D05B-
$D05C

$D06A-
$D06B

$D079-
$D07A

$D088-
$D089

Spare Registers

Background Fixed Data Reporting Buffer
Global Registers for Background Fixed Data Buffer:

Address Description
0x0228

(Y:$D08A)
Buffer Status to Host and PMAC
Bit 0: Data-Ready Flag
 =1 means PMAC done updating buffer
 =0 means host ready for another update from PMAC
Bits 1-15: (Reserved for future use)

0x022A
(X:$D08A)

PMAC Servo Timer: Updated at Data Ready Time (from X:$0000)

0x022C,E
($D08B)

Control Panel Hardware Port (from Y:$FFC0)

0x0230,2
($D08C)

Thumbwheel Hardware Port (from Y:$FFC1)

0x0234,6
($D08D)

Machine I/O (OPTO) Hardware Port (from Y:$FFC2)

0x0238-4A
($D08E-92)

Spare Global Variable.

Motor/Coordinate System Specific Registers for Background Fixed Data
Buffer

Motor/C.S. # 1 2 3 4 5 6 7 8
Host Address 0x024C-

0x0252
0x02C8-
0x02CE

0x0344-
0x034A

0x03C0-
0x03C6

0x043C-
0x0442

0x04B8-
0x04BE

0x0534-
0x053A

0x05B0-
0x05B6

PMAC Addr. $D093-
$D094

$D0B2-
$D0B3

$D0D1-
$D0D2

$D0F0-
$D0F1

$D10F-
$D110

$D12E-
$D12F

$D14D-
$D14E

$D16C-
$D16D

Source Addr. $080B $08CB $098B $0A4B $0B0B $0BCB $0C8B $0D4B
Motor Target Position (64 bits; 1/(Ix08*32) counts)

Motor/C.S. # 1 2 3 4 5 6 7 8
Host Address 0x0254-

0x025A
0x02D0-
0x02D6

0x034C-
0x0352

0x03C8-
0x03CE

0x0444-
0x044A

0x04C0-
0x04C6

0x053C-
0x0542

0x05B8-
0x05BE

PMAC Addr. $D095-
$D096

$D0B4-
$D0B5

$D0D3-
$D0D4

$D0F2-
$D0F3

$D111-
$D112

$D130-
$D131

$D14F-
$D150

$D16E-
$D16F

Source Addr. $0813 $08D3 $0993 $0A53 $0B13 $0BD3 $0C93 $0D53
Motor Position Bias (64 bits; 1/(Ix08*32) counts)

Motor/C.S. # 1 2 3 4 5 6 7 8
Host Address 0x025C-

0x025E
0x02D8-
0x02DA

0x0354-
0x0356

0x03D0-
0x03D2

0x044C-
0x044E

0x04C8-
0x04CA

0x0544-
0x0546

0x05C0
0x05C2

PMAC Addr. $D097 $D0B6 $D0D5 $D0F4 $D113 $D132 $D151 $D170
Source Addr. Y:$0814 Y:$08D4 Y:$0994 Y:$0A54 Y:$0B14 Y:$0BD4 Y:$0C94 Y:$0D54

Motor Status Word (32 bits; low 24 bits used) 2nd word returned on ? command

PMAC 2 Software Reference

PMAC I/0 and Memory Map 439

Motor/C.S. # 1 2 3 4 5 6 7 8
Host Address 0x0260-

0x0266
0x02DC-
0x02E2

0x0358-
0x035E

0x03D4-
0x03DA

0x0450-
0x0456

0x04CC-
0x04D2

0x0548-
0x054E

0x05C4-
0x05CA

PMAC Addr. $D098-
$D099

$D0B7-
$D0B8

$D0D6-
$D0D7

$D0F5-
$D0F6

$D114-
$D115

$D133-
$D134

$D152-
$D153

$D171-
$D172

Source Addr $0818 $08D8 $0998 $0A58 $0B18 $0BD8 $0C98 $0D58
Coordinate System Status/Definition Word (low 32 bits contains Motor Definition Word; high 32

bits contain 1st word returned on ?? command)

Motor/C.S. # 1 2 3 4 5 6 7 8
Host Address 0x0268-

0x026E
0x02E4-
0x02EA

0x0360-
0x0366

0x03DC-
0x03E2

0x0458-
0x045E

0x04D4-
0x04DA

0x0550-
0x0556

0x05CC-
0x05D2

PMAC Addr. $D09A-
$D09B

$D0B9-
$D0BA

$D0D8-
$D0D9

$D0F7-
$D0F8

$D116-
$D117

$D135-
$D136

$D154-
$D155

$D173-
$D174

Source A $0876 $0936 $09F6 $0AB6 $0B76 $0C36 $0CF6 $0DB6
Source B $0896 $0956 $0A16 $0AD6 $0B96 $0C56 $0D16 $0DD6
Source C $0819 $08D9 $0999 $0A59 $0B19 $0BD9 $0C99 $0D59

Coordinate System A-Axis Target Position (User Units) (* Note 1)

Motor/C.S. # 1 2 3 4 5 6 7 8
Host Address 0x0270-

0x0276
0x02EC-
0x02F2

0x0368-
0x036E

0x03E4-
0x03EA

0x0460-
0x0466

0x04DC-
0x04E2

0x0558-
0x055E

0x05D4-
0x05DA

PMAC Addr. $D09C-
$D09D

$D0BB-
$D0BC

$D0DA-
$D0DB

$D0F9-
$D0FA

$D118-
$D119

$D137-
$D138

$D156-
$D157

$D175-
$D176

Source A $0877 $0937 $09F7 $0AB7 $0B77 $0C37 $0CF7 $0DB7
Source B $0897 $0957 $0A17 $0AD7 $0B97 $0C57 $0D17 $0DD7
Source C $081A $08DA $099A $0A5A $0B1A $0BDA $0C9A $0D5A

Coordinate System B-Axis Target Position (User Units) (* Note 1)

Motor/C.S. # 1 2 3 4 5 6 7 8
Host Address 0x0278-

0x027E
0x02F4-
0x02FA

0x0370-
0x0376

0x03EC-
0x03F2

0x0468-
0x046E

0x04E4-
0x04EA

0x0560-
0x0566

0x05DC-
0x05E2

PMAC Addr. $D09E-
$D09F

$D0BD-
$D0BE

$D0DC-
$D0DD

$D0FB-
$D0FC

$D11A-
$D11B

$D139-
$D13A

$D158-
$D159

$D177-
$D178

Source A $0878 $0938 $09F8 $0AB8 $0B78 $0C38 $0CF8 $0DB8
Source B $0898 $0958 $0A18 $0AD8 $0B98 $0C58 $0D18 $0DD8
Source C $081B $08DB $099B $0A5B $0B1B $0BDB $0C9B $0D5B

Coordinate System C-Axis Target Position (User Units) (* Note 1)

Motor/C.S. # 1 2 3 4 5 6 7 8
Host Address 0x0280-

0x0286
0x02FC-
0x0302

0x0378-
0x037E

0x03F4-
0x03FA

0x0470-
0x0476

0x04EC-
0x04F2

0x0568-
0x056E

0x05E4-
0x05EA

PMAC Addr. $D0A0-
$D0A1

$D0BF-
$D0C0

$D0DE-
$D0DF

$D0FD-
$D0FE

$D11C-
$D11D

$D13B-
$D13C

$D15A-
$D15B

$D179-
$D17A

Source A $0879 $0939 $09F9 $0AB9 $0B79 $0C39 $0CF9 $0DB9
Source B $0899 $0959 $0A19 $0AD9 $0B99 $0C59 $0D19 $0DD9
Source C $081C $08DC $099C $0A5C $0B1C $0BDC $0C9C $0D5C

Coordinate System U-Axis Target Position (User Units) (* Note 1)

 PMAC 2 Software Reference

440 PMAC I/0 and Memory Map

Motor/C.S. # 1 2 3 4 5 6 7 8
Host Address 0x0288-

0x028E
0x0304-
0x030A

0x0380-
0x0386

0x03FC-
0x0402

0x0478-
0x047E

0x04F4-
0x04FA

0x0570-
0x0576

0x05EC-
0x05F2

PMAC Addr. $D0A2-
$D0A3

$D0C1-
$D0C2

$D0E0-
$D0E1

$D0FF-
$D100

$D11E-
$D11F

$D13D-
$D13E

$D15C-
$D15D

$D17B-
$D17C

Source A $087A $093A $09FA $0ABA $0B7A $0C3A $0CFA $0DBA
Source B $089A $095A $0A1A $0ADA $0B9A $0C5A $0D1A $0DDA
Source C $081D $08DD $099D $0A5D $0B1D $0BDD $0C9D $0D5D

Coordinate System V-Axis Target Position (User Units) (* Note 1)

Motor/C.S. # 1 2 3 4 5 6 7 8
Host Address 0x0290-

0x0296
0x030C-
0x0312

0x0388-
0x038E

0x0404-
0x040A

0x0480-
0x0486

0x04FC-
0x0502

0x0578-
0x057E

0x05F4-
0x05FA

PMAC Addr. $D0A4-
$D0A5

$D0C3-
$D0C4

$D0E2-
$D0E3

$D101-
$D102

$D120-
$D121

$D13F-
$D140

$D15E-
$D15F

$D17D-
$D17E

Source A $087B $093B $09FB $0ABB $0B7B $0C3B $0CFB $0DBB
Source B $089B $095B $0A1B $0ADB $0B9B $0C5B $0D1B $0DDB
Source C $081E $08DE $099E $0A5E $0B1E $0BDE $0C9E $0D5E

Coordinate System W-Axis Target Position (User Units) (* Note 1)

Motor/C.S. # 1 2 3 4 5 6 7 8
Host Address 0x0298-

0x029E
0x0314-
0x031A

0x0390-
0x0396

0x040C-
0x0412

0x0488-
0x048E

0x0504-
0x050A

0x0580-
0x0586

0x05FC-
0x0602

PMAC Addr. $D0A6-
$D0A7

$D0C5-
$D0C6

$D0E4-
$D0E5

$D103-
$D104

$D122-
$D123

$D141-
$D142

$D160-
$D161

$D17F-
$D180

Source A $087C $093C $09FC $0ABC $0B7C $0C3C $0CFC $0DBC
Source B $089C $095C $0A1C $0ADC $0B9C $0C5C $0D1C $0DDC
Source C $081F $08DF $099F $0A5F $0B1F $0BDF $0C9F $0D5F

Coordinate System X-Axis Target Position (User Units) (* Note 1)

Motor/C.S. # 1 2 3 4 5 6 7 8
Host Address 0x02A0-

0x02A6
0x031C-
0x0322

0x0398-
0x039E

0x0414-
0x041A

0x0490-
0x0496

0x050C-
0x0512

0x0588-
0x058E

0x0604-
0x060A

PMAC Addr. $D0A8-
$D0A9

$D0C7-
$D0C8

$D0E6-
$D0E7

$D105-
$D106

$D124-
$D125

$D143-
$D144

$D162-
$D163

$D181-
$D182

Source A $087D $093D $09FD $0ABD $0B7D $0C3D $0CFD $0DBD
Source B $089D $095D $0A1D $0ADD $0B9D $0C5D $0D1D $0DDD
Source C $0820 $08E0 $09A0 $0A60 $0B20 $0BE0 $0CA0 $0D60

Coordinate System Y-Axis Target Position (User Units) (* Note 1)

Motor/C.S. # 1 2 3 4 5 6 7 8
Host Address 0x02A8-

0x02AE
0x0324-
0x032A

0x03A0-
0x03A6

0x041C-
0x0422

0x0498-
0x049E

0x0514-
0x051A

0x0590-
0x0596

0x060C-
0x0612

PMAC Addr. $D0AA-
$D0AB

$D0C9-
$D0CA

$D0E8-
$D0E9

$D107-
$D108

$D126-
$D127

$D145-
$D146

$D164-
$D165

$D183-
$D184

Source A $087E $093E $09FE $0ABE $0B7E $0C3E $0CFE $0DBE
Source B $089E $095E $0A1E $0ADE $0B9E $0C5E $0D1E $0DDE
Source C $0821 $08E1 $09A1 $0A61 $0B21 $0BE1 $0CA1 $0D61

Coordinate System Z-Axis Target Position (User Units) (* Note 1)

PMAC 2 Software Reference

PMAC I/0 and Memory Map 441

Note 1:

The following is the logic used in the PMAC to determine which variable will be
put in this slot. It is controlled by bits of the coordinate system program execution
status word (PSTATUS):

 If (PSTATUS.7 == 1 && PSTATUS.5 == 0)
 Use Source A
 Else
If (PSTATUS.9 == 1)
 Use Source B
Else
 Use Source C
Endif
 Endif

PSTATUS.7 is the Segmented move flag (I13 != 0).
PSTATUS.5 is the Segmented move stop flag.
PSTATUS.9 is the Tool Compensation flag.

Motor/C.S. # 1 2 3 4 5 6 7 8
Host Address 0x02B0-

0x02B2
0x032C-
0x032E

0x03A8-
0x03AA

0x0424-
0x0426

0x04A0-
0x04A2

0x051C-
0x051E

0x0598-
0x059A

0x0614-
0x0616

PMAC Addr. $D0AC $D0CB $D0EA $D109 $D128 $D147 $D166 $D185
Source Addr. Y:$0817 Y:$08D7 Y:$0997 Y:$0A57 Y:$0B17 Y:$0BD7 Y:$0C97 Y:$0D57
Coordinate System Program Execution Status (32 bits; low 24 bits used) (Second word returned
on ?? command)

Motor/C.S. # 1 2 3 4 5 6 7 8
Host Address 0x02B4-

0x02B6
0x0330-
0x0332

0x03AC-
0x03AE

0x0428-
0x042A

0x04A4-
0x04A6

0x0520-
0x0522

0x059C-
0x059E

0x0618-
0x061A

PMAC Addr. $D0AD $D0CC $D0EB $D10A $D129 $D148 $D167 $D186
Source Addr. Y:$08AE Y:$096E Y:$0A2E Y$0AEE Y$0BAE Y:$0C6E Y:$0D2E Y$0DEE

Coordinate System Program Lines Remaining (32 bits) (Same value as PR command returns)

Motor/C.S. # 1 2 3 4 5 6 7 8
Host Address 0x02B8-

0x02BA
0x0334-
0x0336

0x03B0-
0x03B2

0x042C-
0x042E

0x04A8-
0x04AA

0x0524-
0x0526

0x05A0-
0x05A2

0x061C-
0x061E

PMAC Addr. $D0AE $D0CD $D0EC $D10B $D12A $D149 $D168 $D187
Source Addr. X:$0020 X:$005C X:$0098 X:$00D4 X:$0110 X:$014C X:$0188 X:$01C4
Coordinate System Time Remaining in move when I13 > 0 (2*msec)

Motor/C.S. # 1 2 3 4 5 6 7 8
Host Address 0x02BC-

0x02BE
0x0338-
0x033A

0x03B4-
0x03B6

0x0430-
0x0432

0x04AC-
0x04AE

0x0528-
0x052A

0x05A4-
0x05A6

0x0620-
0x0622

PMAC Addr. $D0AF $D0CE $D0ED $D10C $D12B $D14A $D169 $D188
Coordinate System Time Remaining in accel/decel when I13 > 0 (2*msec)

 PMAC 2 Software Reference

442 PMAC I/0 and Memory Map

Motor/C.S. # 1 2 3 4 5 6 7 8
Host Address 0x02C0-

0x02C2
0x033C-
0x033E

0x03B8-
0x03BA

0x0434-
0x0436

0x04B0-
0x04B2

0x052C-
0x052E

0x05A8-
0x05AA

0x0624-
0x0626

PMAC Addr. $D0B0 $D0CF $D0EE $D10D $D12C $D14B $D16A $D189
Coordinate System Program Execution Address Offset (Same value as PE command returns)

Motor/C.S. # 1 2 3 4 5 6 7 8
Host Address 0x02C4-

0x02C6
0x0340
0x0342

0x03BC-
0x03BE

0x0438-
0x043A

0x04B4-
0x04B6

0x0530-
0x0532

0x05AC-
0x05AE

0x0628-
0x062A

PMAC Addr. $D0B1 $D0D0 $D0EF $D10E $D12D $D14C $D16B $D18A
Source Addr. Y:$082A Y:$08EA Y$09AA Y$0A6A Y$0B2A Y$0BEA Y$0CAA Y$0D6

Motor Averaged Actual Velocity (1/[Ix09*32] counts per servo cycle)

Background Variable Transfer Buffers
PMAC to Host Transfer

Address Description
0x07E8

(Y:$D1FA)
PMAC to HOST (Bit 0 = 1 for single user mode) Data Ready.
PMAC done updating buffer - Host must clear for more data.

0x07EA
X:$D1FA

Servo Timer (Updated at Data Ready Time)

0x07EC
(Y:$D1FB)

Size of Address Buffer (measured in long integers of 32 bits each)

0x07EE
(X:$D1FB)

Start of Address Buffer (Ex. $D400; must be $D200 to $DFFD)

Variable Address Buffer Format (2x16-bit words)
X:Mem

Bits 15: Data Ready
(multi-user mode)

X:Mem
Bits 0 - 2:

Variable type to read

Y:Mem
Variable address

Dual Port
Data

Length
1 = PMAC data ready
0 = Host request data

0 = PMAC Var. Y:Mem. PMAC Address of Variable 32 bits

1 = PMAC data ready
0 = Host request data

1 = PMAC Var. Long PMAC Address of Variable 64 bits

1 = PMAC data ready
0 = Host request data

2 = PMAC Var. X:Mem. PMAC Address of Variable 32 bits

1 = PMAC data ready
0 = Host request data

4 = Special (Firmware 1.16)
PLCC Function Block

PLCC Function Block Number.
Y:$9FFF has the base address
of the function blocks.

64 bits

Background Variable Data Write Buffer -- Host to PMAC Transfer
Address Description

0x07E6
(Y:$D1F5)

HOST to PMAC Data Transferred. PMAC is updated when cleared.
Host must set for another update.

0x07E8
X:$D1F5

Starting address of data structure ($D240 - $DFFD).

PMAC 2 Software Reference

PMAC I/0 and Memory Map 443

Variable Address Buffer Format for each Data Structure (6x16-bit)
DPRAM
Address

X:Mem Y:Mem X:Mem
Bit Definitions

$D240 Bits 13 - 15: Special type PMAC address 0 = PLCC Function Block
1-7 = Reserved for future use

to
$DFFD

Bits 8 - 12: Offset PMAC address Offset = 0..23. -- This is the
starting offset for the read.

 Bits 3 - 7: Width PMAC address Width = 0, 1, 4, 8, 12, 16, 20 --
0 is a 24-bit width.

 Bits 0 - 2: Variable type
to write

PLCC Function Block
Number

0 = Y register
1 = L register
2 = X register
4 = Special Y register
6 = Special X register

 Upper 16-bits of data 1 Lower 16-bits of data 1 Data to send to PMAC
 Upper 16-bits of data 2 Lower 16-bits of data 2 Data to send to PMAC

Binary Rotary Motion Program Transfer Buffers
Buffer. # 1 2 3 4 5 6 7 8

Host Address 0x07DC 0x07F0 0x07FC 0x0808 0x0814 0x0820 0x082C 0x0838
PMAC Addr. Y:$D1F7 Y:$D1FC Y:$D1FF Y:$D202 Y:$D205 Y:$D208 Y:$D20B Y:$D20E

PMAC to Host Binary Rotary Buffer Status Word

Bit 15 = 1 represents error; PMAC stops processing commands
Bit 14 = 1 represents PMAC internal rotary buffer full (busy flag)

PMAC Index stops updating.
Bits 7 – 0 represent error code

Code = 1: Internal rotary buffer size = 0 or
DPRAM rotary buffer size =0

These flags are set and reset by the PMAC. The busy flag is set when the PMAC internal rotary buffer is
full. This, however, does not necessarily mean that the DPRAM binary rotary buffer is full (see rules).
The Busy flag is reset when the PMAC internal rotary buffer is not full or the DPRAM binary rotary
buffer is empty.

Buffer. # 1 2 3 4 5 6 7 8
Host Address 0x07DE 0x07F2 0x07FE 0x080A 0x0816 0x0822 0x082EC 0x083A
PMAC Addr. X:$D1F7 X:$D1FC X:$D1FF X:$D202 X:$D205 X:$D208 X:$D20B X:$D20E

Coordinate System Number and Enable Control
• Bits 0-3 represent Coordinate System #
• Buffer enabled if 0 < (Bits 0-3 value) < 9
• Binary Rotary Buffers; Host to PMAC Transfer

Buffer. # 1 2 3 4 5 6 7 8
Host Address 0x07E0 0x07F4 0x0800 0x080C 0x0818 0x0824 0x0830 0x083C
PMAC Addr. Y:$D1F7 Y:$D1FD Y:$D200 Y:$D203 Y:$D206 Y:$D209 Y:$D20C Y:$D20F

Host Computer Binary Rotary Buffer Index

(In PMAC addresses from start of buffer; each increment is 32-bit word, 4 addresses on host side.)
Host computer updates after loading in program lines

 PMAC 2 Software Reference

444 PMAC I/0 and Memory Map

Buffer. # 1 2 3 4 5 6 7 8
Host Address 0x07E2 0x07F6 0x0802 0x080E 0x081A 0x0826 0x0832 0x083E
PMAC Addr. X:$D1F7 X:$D1FD X:$D200 X:$D203 X:$D206 X:$D209 X:$D20C X:$D20F

PMAC Binary Rotary Buffer Index

(In PMAC addresses from start of buffer; each increment is 32-bit word, 4 addresses on host side.)
PMAC updates after reading program lines

Buffer. # 1 2 3 4 5 6 7 8
Host Address 0x07E4 0x07F8 0x0804 0x0810 0x081C 0x0828 0x0834 0x0840
PMAC Addr. Y:$D1F8 Y:$D1FE Y:$D201 Y:$D204 Y:$D207 Y:$D20A Y:$D20D Y:$D210

Size of Binary Rotary Buffer

(In PMAC addresses; each increment is 32-bit word, 4 addresses on host side.)

Buffer. # 1 2 3 4 5 6 7 8
Host Address 0x07E6 0x07FA 0x0806 0x0812 0x081E 0x082A 0x0836 0x0832
PMAC Addr. X:$D1F8 X:$D1FE X:$D201 X:$D204 X:$D207 X:$D20A X:$D20D X:$D210

Binary Rotary Buffer PMAC Starting Address

(Address in PMAC’s memory map; e.g., $D600, must be >= $D240)

DPRAM Data Gathering Buffer
PMAC to Host Transfer (memory locations set by PMAC)

Address Description
0x080C

(Y:$D23F)
Data Gather Buffer Size.

0x080E
(X:$D23F)

PMAC Data Gather Buffer Storage Address. If I45 = 2 and the
buffer's end has been reached (this index is greater than or equal to
the size), the DEFINE GATHER command must be issued again to
allow gathering to restart.

0x0810
($D240)

Start of Data Gather Buffer (not changeable – if other variable-size
buffers are used, they must start after end of data gathering buffer.).

Variable-Size Buffers, Open-Use Space
$D240-$DFFF Variable-size buffers, open-use space

PMAC 2 Software Reference

PMAC I/0 and Memory Map 445

VME-Bus Registers (PMAC(1)-VME, PMAC2-VME, PMAC2-VME
Ultralite only)

$E000 - $EFFF Used for VME-bus functions (57344 - 61439)
Y:$E000 VME Mailbox Register 0 (Bits 0-7)
Y:$E001 VME Mailbox Register 1 (Bits 0-7)
Y:$E002 VME Mailbox Register 2 (Bits 0-7)
Y:$E003 VME Mailbox Register 3 (Bits 0-7)
Y:$E004 VME Mailbox Register 4 (Bits 0-7)
Y:$E005 VME Mailbox Register 5 (Bits 0-7)
Y:$E006 VME Mailbox Register 6 (Bits 0-7)
Y:$E007 VME Mailbox Register 7 (Bits 0-7)
Y:$E008 VME Mailbox Register 8 (Bits 0-7)
Y:$E009 VME Mailbox Register 9 (Bits 0-7)
Y:$E00A VME Mailbox Register A (Bits 0-7)
Y:$E00B VME Mailbox Register B (Bits 0-7)
Y:$E00C VME Mailbox Register C (Bits 0-7)
Y:$E00D VME Mailbox Register D (Bits 0-7)
Y:$E00E VME Mailbox Register E (Bits 0-7)
Y:$E00F VME Mailbox Register F (Bits 0-7)

PMAC2 I/O Control Registers
PCI/ISA Bus PMAC2 Versions (PMAC2-PCI, PMAC2-PC, PMAC2-Lite,
PMAC2-PC UltraLite):

X/Y:$E800 I/O Buffer IC Direction Control
 Bits
 0 OUT0: Buffer direction control for I/O00 to I/O07 on JIO
 1 OUT1: Buffer direction control for I/O08 to I/O15 on JIO
 2 OUT2: Buffer direction control for I/O16 to I/O23 on JIO
 3 OUT3: Buffer direction control for I/O24 to I/O31 on JIO
 4 OUT4: Buffer direction control for DAT0 to DAT7 on JTHW
 5 OUT5: Buffer direction control for SEL0 to SEL7 on JTHW
 6 OUT6: Buffer direction control for DISP0 to DISP7 on JDISP,

inverted as R/W- output on JDISP (pin 5)
 7 OUT7: Inverted as E output on JDISP
X/Y:$E801 Auxiliary I/O points
 0 OUT8: Inverted as RS output on JDISP
 1 XIN_1: Jumper E1 input (phase/servo clock direction control)
 2 XIN_2: Jumper E2 input (40/60 MHz control)
 3 XIN_3: Jumper E3 input (re-initialize on reset)
 4 XIN_4: Jumper E4 input
 5 XIN_5: Jumper E5 input
 6 XIN_6: Jumper E6 input
 7 XIN_7: Option 12 ADC convert status

 PMAC 2 Software Reference

446 PMAC I/0 and Memory Map

VME Bus PMAC2 Versions (PMAC2-VME, PMAC2-VME UltraLite):
X/Y:$E800 I/O Buffer IC Direction Control

 Bits
 0 OUT0: Buffer direction control for I/O00 to I/O07 on JIO
 1 OUT1: Buffer direction control for I/O08 to I/O15 on JIO
 2 OUT2: Buffer direction control for I/O16 to I/O23 on JIO
 3 OUT3: Buffer direction control for I/O24 to I/O31 on JIO

X/Y:$E801 I/O Buffer IC Direction Control
 0 OUT8: Inverted as RS output on JDISP
 1 XIN_1: Jumper E1 input; phase/servo clock direction status
 2 XIN_2: Jumper E2 input (40/60 MHz control)
 3 XIN_3: Jumper E3 input (re-initialize on reset)

X/Y:$E802 I/O Buffer IC Direction Control
 0 OUT4: Buffer direction control for DAT0 to DAT7 on JTHW
 1 OUT5: Buffer direction control for SEL0 to SEL7 on JTHW
 2 OUT6: Buffer direction control for DISP0 to DISP7 on JDISP,

inverted as R/W- output on JDISP (pin 5)
 3 OUT7: Inverted as E output on JDISP

X/Y:$E803 I/O Buffer IC Direction Control
 0 XIN_4: Jumper E4 input
 1 XIN_5: Jumper E5 input
 2 XIN_6: Jumper E6 input
 3 XIN_7: Option 12 ADC convert status

Inputs and Outputs (PMAC-PC, PMAC-PCI, PMAC-VME, PMAC-Lite,
PMAC-PCI Lite only)

 Bits
Y:$FFC0 0-7 Display & EAROM I/O (dedicated)

(65472) 8 Jog Minus Input (J2-4)
 9 Jog Plus Input (J2-6)
 10 Prejog Input (J2-7)
 11 Start (Run) Input (J2-8)
 12 Step/Quit Input (J2-9)
 13 Stop (Abort) Input (J2-10)
 14 Home Command Input (J2-11)
 15 Feed Hold Input (J2-12)
 16 Motor/CoordSys Select Inp. Bit 0 (J2-3)
 17 Motor/CoordSys Select Inp. Bit 1 (J2-5)
 18 Motor/CoordSys Select Inp. Bit 2 (J2-13)
 19 Motor/CoordSys Select Inp. Bit 3 (J2-14)
 20 E51 Jumper (Reinitialize on power-on)
 21 E50 Jumper: EAROM Write Enable
 22 E49 Jumper: Wait State Control
 23 E48 Jumper: Parity Control

Y:$FFC1 0 Thumbwheel Port Inp. Bit 0 (DAT0:J3-3)
(65473) 1 Thumbwheel Port Inp. Bit 1 (DAT1:J3-5)

 2 Thumbwheel Port Inp. Bit 2 (DAT2:J3-7)
 3 Thumbwheel Port Inp. Bit 3 (DAT3:J3-9)
 4 Thumbwheel Port Inp. Bit 4 (DAT4:J3-11)
 5 Thumbwheel Port Inp. Bit 5 (DAT5:J3-13)
 6 Thumbwheel Port Inp. Bit 6 (DAT6:J3-15)
 7 Thumbwheel Port Inp. Bit 7 (DAT7:J3-17)

PMAC 2 Software Reference

PMAC I/0 and Memory Map 447

 8 Thumbwheel Port Out. Bit 0 (SEL0:J3-4)
 9 Thumbwheel Port Out. Bit 1 (SEL1:J3-6)
 10 Thumbwheel Port Out. Bit 2 (SEL2:J3-8)
 11 Thumbwheel Port Out. Bit 3 (SEL3:J3-10)
 12 Thumbwheel Port Out. Bit 4 (SEL4:J3-12)
 13 Thumbwheel Port Out. Bit 5 (SEL5:J3-14)
 14 Thumbwheel Port Out. Bit 6 (SEL6:J3-16)
 15 Thumbwheel Port Out. Bit 7 (SEL7:J3-18)
 16 Jumper E40: Software Card Address Bit 0
 17 Jumper E41: Software Card Address Bit 1
 18 Jumper E42: Software Card Address Bit 2
 19 Jumper E43: Software Card Address Bit 3
 20 Jumper E44: Baud Rate Select Bit 0
 21 Jumper E45: Baud Rate Select Bit 1
 22 Jumper E46: Baud Rate Select Bit 2
 23 Jumper E47: Baud Rate Select Bit 3

Y:$FFC2 0 Machine Input 1 (MI1) (J5-15)
(65474) 1 Machine Input 2 (MI2) (J5-13)

 2 Machine Input 3 (MI3) (J5-11)
 3 Machine Input 4 (MI4) (J5-9)
 4 Machine Input 5 (MI5) (J5-7)
 5 Machine Input 6 (MI6) (J5-5)
 6 Machine Input 7 (MI7) (J5-3)
 7 Machine Input 8 (MI8) (J5-1)
 8 Machine Output 1 (MO1) (J5-31)
 9 Machine Output 2 (MO2) (J5-29)
 10 Machine Output 3 (MO3) (J5-27)
 11 Machine Output 4 (MO4) (J5-25)
 12 Machine Output 5 (MO5) (J5-23)
 13 Machine Output 6 (MO6) (J5-21)
 14 Machine Output 7 (MO7) (J5-19)
 15 Machine Output 8 (MO8) (J5-17)
 16 D_RS Line (dedicated use)
 17 Read/Write Line (dedicated use)
 18 EACLK (EAROM Clock – dedicated)
 19 ENA422 (Enable RS422 – dedicated)
 20 INPOS (In Position Status Line)
 21 BFUL (Buffer Full Status Line)
 22 EROR (Error Status Line)
 23 F1ER (Following Error Status Line)

 PMAC 2 Software Reference

448 PMAC I/0 and Memory Map

Inputs and Outputs (Mini-PMAC, Mini-PMAC-PCI Only)
Y:$FFC0 J1 (JDISP) Outputs

0 DB0 Display Data0 (J1-8)
1 DB1 Display Data1 (J1-7)
2 DB2 Display Data2 (J1-10)
3 DB3 Display Data3 (J1-9)
4 DB4 Display Data 4 (J1-12)
5 DB5 Display Data 5 (J1-11)
6 DB6 Display Data 6 (J1-14)
7 DB7 Display Data 7 (J1-13)

Y:$FFC1 J3 (JTHW) Inputs
0 DAT0 THW Data 0 (J3-3)
1 DAT1 THW Data 1 (J3-5)
2 DAT2 THW Data 2 (J3-7)
3 DAT3 THW Data 3 (J3-9)
4 DAT4 THW Data 4 (J3-11)
5 DAT5 THW Data 5 (J3-13)
6 DAT6 THW Data 6 (J3-15)
7 DAT7 THW Data 7 (J3-17)

Y:$FFC2 J3 (JTHW) Outputs
0 SEL0 THW Select 0 (J3-4)
1 SEL1 THW Select 1 (J3-6)
2 SEL2 THW Select 2 (J3-8)
3 SEL3 THW Select 3 (J3-10)
4 SEL4 THW Select 4 (J3-12)
5 SEL5 THW Select 5 (J3-14)
6 SEL6 THW Select 6 (J3 16)
7 SEL7 THW Select 7 (J3 18)

Y:$FFC3 J5 (JOPTO) Inputs
0 MI1 Machine Input 1 (J5-15)
1 MI2 Machine Input 2 (J5-13)
2 MI3 Machine Input 3 (J5-11)
3 MI4 Machine Input 4 (J5-9)
4 MI5 Machine Input 5 (J5-7)
5 MI6 Machine Input 6 (J5-5)
6 MI7 Machine Input 7 (J5-3)
7 MI8 Machine Input 8 (J5-1)

Y:$FFC4 J5 (JOPTO) Outputs
0 MO1 Machine Output 1 (J5-31)
1 MO2 Machine Output 2 (J5-29)
2 MO3 Machine Output 3 (J5-27)
3 MO4 Machine Output 4 (J5-25)
4 MO5 Machine Output 5 (J5-23)
5 MO6 Machine Output 6 (J5-21)
6 MO7 Machine Output 7 (J5-19)
7 MO8 Machine Output 8 (J5-17)

Y:$FFC5 Dedicated Use
0 ENA422 Serial Enable
1 RS Display Control
2 R/W Display Control
3 E Display Control
4 E44 Jumper E44
5 E45 Jumper E45
6 E46 Jumper E46

PMAC 2 Software Reference

PMAC I/0 and Memory Map 449

7 E47 Jumper E47
Y:$FFC6 Dedicated Use

0 E48 Jumper E48
1 E49 Jumper E49
2 E50 Jumper E50
3 E51 Jumper E51
4 PWR_GUD- Power Supply Detect
5 (Reserved for future use)
6 (Reserved for future use)
7 (Reserved for future use)

Inputs and Outputs (PMAC1.5-STD Only)
Y:$FFC0 CPU Board J1 (JDISP) Outputs

0 DB0 Display Data 0* (J1-8)
1 DB1 Display Data 1* (J1-7)
2 DB2 Display Data 2* (J1-10)
3 DB3 Display Data 3* (J1-9)
4 DB4 Display Data 4* (J1-12)
5 DB5 Display Data 5* (J1-11)
6 DB6 Display Data 6* (J1-14)
7 DB7 Display Data 7* (J1-13)

Y:$FFC1 CPU Board J3 (JTHW) Outputs
0 DAT0 THW Data 0 (J3-3)
1 DAT1 THW Data 1 (J3-5)
2 DAT2 THW Data 2 (J3-7)
3 DAT3 THW Data 3 (J3-9)
4 DAT4 THW Data 4 (J3-11)
5 DAT5 THW Data 5 (J3-13)
6 DAT6 THW Data 6 (J3-15)
7 DAT7 THW Data 7 (J3-17)

Y:$FFC2 CPU Board J3 (JTHW) Outputs
0 SEL0 THW Select 0 (J3-4)
1 SEL1 THW Select 1 (J3-6)
2 SEL2 THW Select 2 (J3-8)
3 SEL3 THW Select 3 (J3-10)
4 SEL4 THW Select 4 (J3-12)
5 SEL5 THW Select 5 (J3-14)
6 SEL6 THW Select 6 (J3 16)
7 SEL7 THW Select 7 (J3 18)

Y:$FFC3 CPU Board Setup Jumpers
0 E40 Jumper E40*
1 E41 Jumper E41*
2 E42 Jumper E42*
3 E43 Jumper E43*
4 E44 Jumper E44*
5 E45 Jumper E45*
6 E46 Jumper E46*
7 E47 Jumper E47*

Y:$FFC4 CPU Board Setup Jumpers and Interrupt Lines
0 E48 Jumper E48*
1 E49 Jumper E49*
2 E50 Jumper E50*
3 E51 Jumper E51*
4 IPOS In-Position Interrupt
5 BFUL Buffer-Full Interrupt

 PMAC 2 Software Reference

450 PMAC I/0 and Memory Map

6 EROR Fatal F.E. Interrupt
7 F1ER Warn. F.E. Interrupt

Y:$FFC5 CPU Board Display Control and Panel
Indicators

0 N.C. No connect
1 RS Read Strobe* (J1-3)
2 R/W Read/Write* (J1-6)
3 E Enable* (J1-5)
4 IPLD/ In-Position Indicator (J3-23)
5 BFLD/ Buffer-Full Indicator (J3-21)
6 ERLD/ Fatal F.E. Indicator
7 F1LD/ Warn. F.E. Indicator

Y:$FFC8 Axis Board 1 (E93A ON) JOPT port I/O
0 MOD00/ Machine I/O 0 (J5-22)
1 MOD01/ Machine I/O 1 (J5-20)
2 MOD02/ Machine I/O 2 (J5-18)
3 MOD03/ Machine I/O 3 (J5-16)
4 MOD04/ Machine I/O 4 (J5-14)
5 MOD05/ Machine I/O 5 (J5-12)
6 MOD06/ Machine I/O 6 (J5-10)
7 MOD07/ Machine I/O 7 (J5-8)

Y:$FFC9 Axis Board 1 (E93A ON) JOPT port I/O
0 MOD08/ Machine I/O 8 (J5-6)
1 MOD09/ Machine I/O 9 (J5-4)
2 MOD10/ Machine I/O 10 (J5 -2)
3 MOD11/ Machine I/O 11 (J5-25)
4 MOD12/ Machine I/O 12 (J5-23)
5 MOD13/ Machine I/O 13 (J5-21)
6 MOD14/ Machine I/O 14 (J5-19)
7 MOD15/ Machine I/O 15 (J5-17)

Y:$FFCA Axis Board 1 (E93A ON) JOPT port I/O
0 MOD16/ Machine I/O 16 (J5-15)
1 MOD17/ Machine I/O 17 (J5-13)
2 MOD18/ Machine I/O 18 (J5-11)
3 MOD19/ Machine I/O 19 (J5-9)
4 MOD20/ Machine I/O 20 (J5-7)
5 MOD21/ Machine I/O 21 (J5-5)
6 MOD22/ Machine I/O 22 (J5-3)
7 MOD23/ Machine I/O 23 (J5-1)

Y:$FFCB Axis Board 1 (E93A ON) JOPT2 port I/O
0 MOD24/ Machine I/O 24 (J6-1)
1 MOD25/ Machine I/O 25 (J6-2)
2 MOD26/ Machine I/O 26 (J6-3)
3 MOD27/ Machine I/O 27 (J6-4)
4 MOD28/ Machine I/O 28 (J6-5)
5 MOD29/ Machine I/O 29 (J6-6)
6 MOD30/ Machine I/O 30 (J6-7)
7 MOD31/ Machine I/O 31 (J6-8)

Y:$FFCC Axis Board 1 (E93A ON) JPAN port inputs
0 JOG-/ JOG IN - DIR.* (J2-4)
1 JOG+/ JOG IN + DIR.* (J2-6)
2 PREJ/ RET. TO PREJ* (J2-7)
3 STRT/ START PROG.* (J2-8)
4 STEP/ STEP PRGM* (J2-9)
5 STOP/ STOP PROG.* (J2-10)

PMAC 2 Software Reference

PMAC I/0 and Memory Map 451

6 HOME/ HOME SEARCH* (J2-11)
7 HOLD/ HOLD MOTION* (J2-12)

Y:$FFCD Axis Board 1 (E93A ON) JPAN port I/O
0 FPD0/ SEL BIT 0* (J2-3)
1 FPD1/ SEL BIT 1* (J2-5)
2 FPD2/ SEL BIT 2* (J2-13)
3 FPD3/ SEL BIT 3* (J2-14)
4 IPLD/ In Position* (J2-17)
5 BRLD/ Buffer Request* (J2-18)
6 ERLD/ Error Indicator* (J2-19)
7 F1LD/ WarnFollowing Err* (J2-23)

Y:$FFCF Axis Board 1 (E93A ON) Input/Output Control
(0=Output OK; 1=Input Only)

0 MOD00/-MOD07/ Control (Y:$FFC8)
1 MOD08/-MOD15/ Control (Y:$FFC9)
2 MOD16/-MOD23/ Control (Y:$FFCA)
3 MOD24/-MOD31/ Control (Y:$FFCB)
4 JPAN Switch Control (Y:$FFCC)
5 JPAN Selector/Indicator Control

(Y:$FFCD)

6 Reserved Control (do not use)
7 Reserved Control (do not use)

Y:$FFD0 Axis Board 2 (E93B ON) JOPT port I/O
0 MOD00/ Machine I/O 0 (J5-22)
1 MOD01/ Machine I/O 1 (J5-20)
2 MOD02/ Machine I/O 2 (J5-18)
3 MOD03/ Machine I/O 3 (J5-16)
4 MOD04/ Machine I/O 4 (J5-14)
5 MOD05/ Machine I/O 5 (J5-12)
6 MOD06/ Machine I/O 6 (J5-10)
7 MOD07/ Machine I/O 7 (J5-8)

Y:$FFD1 Axis Board 2 (E93B ON) JOPT port I/O
0 MOD08/ Machine I/O 8 (J5-6)
1 MOD09/ Machine I/O 9 (J5-4)
2 MOD10/ Machine I/O 10 (J5 -2)
3 MOD11/ Machine I/O 11 (J5-25)
4 MOD12/ Machine I/O 12 (J5-23)
5 MOD13/ Machine I/O 13 (J5-21)
6 MOD14/ Machine I/O 14 (J5-19)
7 MOD15/ Machine I/O 15 (J5-17)

Y:$FFD2 Axis Board 2 (E93B ON) JOPT port I/O
0 MOD16/ Machine I/O 16 (J5-15)
1 MOD17/ Machine I/O 17 (J5-13)
2 MOD18/ Machine I/O 18 (J5-11)
3 MOD19/ Machine I/O 19 (J5-9)
4 MOD20/ Machine I/O 20 (J5-7)
5 MOD21/ Machine I/O 21 (J5-5)
6 MOD22/ Machine I/O 22 (J5-3)
7 MOD23/ Machine I/O 23 (J5-1)

Y:$FFD3 Axis Board 2 (E93B ON) JOPT2 port I/O
0 MOD24/ Machine I/O 24 (J6-1)
1 MOD25/ Machine I/O 25 (J6-2)
2 MOD26/ Machine I/O 26 (J6-3)
3 MOD27/ Machine I/O 27 (J6-4)
4 MOD28/ Machine I/O 28 (J6-5)

 PMAC 2 Software Reference

452 PMAC I/0 and Memory Map

5 MOD29/ Machine I/O 29 (J6-6)
6 MOD30/ Machine I/O 30 (J6-7)
7 MOD31/ Machine I/O 31 (J6-8)

Y:$FFD4 Axis Board 2 (E93B ON) JPAN port inputs
(general purpose here)

0 JOG-/ (General Purpose) (J2-4)
1 JOG+/ (General Purpose) (J2-6)
2 PREJ/ (General Purpose) (J2-7)
3 STRT/ (General Purpose) (J2-8)
4 STEP/ (General Purpose) (J2-9)
5 STOP/ (General Purpose) (J2-10)
6 HOME/ (General Purpose) (J2-11)
7 HOLD/ (General Purpose) (J2-12)

Y:$FFD5 Axis Board 2 (E93B ON) JPAN port I/O
(general purpose here)

0 FPD0/ (General Purpose) (J2-3)
1 FPD1/ (General Purpose) (J2-5)
2 FPD2/ (General Purpose) (J2-13)
3 FPD3/ (General Purpose) (J2-14)
4 IPLD/ (General Purpose) (J2-17)
5 BRLD/ (General Purpose) (J2-18)
6 ERLD/ (General Purpose) (J2-19)
7 F1LD/ (General Purpose) (J2-23)

Y:$FFD7 Axis Board 2 (E93B ON) Input/Output Control
(0=Output OK; 1=Input Only)

0 MOD00/-MOD07/ Control (Y:$FFD0)
1 MOD08/-MOD15/ Control (Y:$FFD1)
2 MOD16/-MOD23/ Control (Y:$FFD2)
3 MOD24/-MOD31/ Control (Y:$FFD3)
4 JPAN Switch Control (Y:$FFD4)
5 JPAN Selector/Indicator Control

(Y:$FFD5)

6 Reserved Control (do not use)
7 Reserved Control (do not use)

Y:$FFD8 Axis Board 3 (E93C ON) JOPT port I/O
0 MOD00/ Machine I/O 0 (J5-22)
1 MOD01/ Machine I/O 1 (J5-20)
2 MOD02/ Machine I/O 2 (J5-18)
3 MOD03/ Machine I/O 3 (J5-16)
4 MOD04/ Machine I/O 4 (J5-14)
5 MOD05/ Machine I/O 5 (J5-12)
6 MOD06/ Machine I/O 6 (J5-10)
7 MOD07/ Machine I/O 7 (J5-8)

Y:$FFD9 Axis Board 3 (E93C ON) JOPT port I/O
0 MOD08/ Machine I/O 8 (J5-6)
1 MOD09/ Machine I/O 9 (J5-4)
2 MOD10/ Machine I/O 10 (J5 -2)
3 MOD11/ Machine I/O 11 (J5-25)
4 MOD12/ Machine I/O 12 (J5-23)
5 MOD13/ Machine I/O 13 (J5-21)
6 MOD14/ Machine I/O 14 (J5-19)
7 MOD15/ Machine I/O 15 (J5-17)

Y:$FFDA Axis Board 3 (E93C ON) JOPT port I/O
0 MOD16/ Machine I/O 16 (J5-15)
1 MOD17/ Machine I/O 17 (J5-13)

PMAC 2 Software Reference

PMAC I/0 and Memory Map 453

2 MOD18/ Machine I/O 18 (J5-11)
3 MOD19/ Machine I/O 19 (J5-9)
4 MOD20/ Machine I/O 20 (J5-7)
5 MOD21/ Machine I/O 21 (J5-5)
6 MOD22/ Machine I/O 22 (J5-3)
7 MOD23/ Machine I/O 23 (J5-1)

Y:$FFDB Axis Board 3 (E93C ON) JOPT2 port I/O
0 MOD24/ Machine I/O 24 (J6-1)
1 MOD25/ Machine I/O 25 (J6-2)
2 MOD26/ Machine I/O 26 (J6-3)
3 MOD27/ Machine I/O 27 (J6-4)
4 MOD28/ Machine I/O 28 (J6-5)
5 MOD29/ Machine I/O 29 (J6-6)
6 MOD30/ Machine I/O 30 (J6-7)
7 MOD31/ Machine I/O 31 (J6-8)

Y:$FFDC Axis Board 3 (E93C ON) JPAN port inputs
(general purpose here)

0 JOG-/ (General Purpose) (J2-4)
1 JOG+/ (General Purpose) (J2-6)
2 PREJ/ (General Purpose) (J2-7)
3 STRT/ (General Purpose) (J2-8)
4 STEP/ (General Purpose) (J2-9)
5 STOP/ (General Purpose) (J2-10)
6 HOME/ (General Purpose) (J2-11)
7 HOLD/ (General Purpose) (J2-12)

Y:$FFDD Axis Board 3 (E93C ON) JPAN port I/O
(general purpose here)

0 FPD0/ (General Purpose) (J2-3)
1 FPD1/ (General Purpose) (J2-5)
2 FPD2/ (General Purpose) (J2-13)
3 FPD3/ (General Purpose) (J2-14)
4 IPLD/ (General Purpose) (J2-17)
5 BRLD/ (General Purpose) (J2-18)
6 ERLD/ (General Purpose) (J2-19)
7 F1LD/ (General Purpose) (J2-23)

Y:$FFDF Axis Board 3 (E93C ON) Input/Output Control
(0=Output OK; 1=Input Only)

0 MOD00/-MOD07/ Control (Y:$FFD8)
1 MOD08/-MOD15/ Control (Y:$FFD9)
2 MOD16/-MOD23/ Control (Y:$FFDA)
3 MOD24/-MOD31/ Control (Y:$FFDB)
4 JPAN Switch Control (Y:$FFDC)
5 JPAN Selector/Indicator Control

(Y:$FFDD)

6 Reserved Control (do not use)
7 Reserved Control (do not use)

Y:$FFE0 Axis Board 4 (E93D ON) JOPT port I/O
0 MOD00/ Machine I/O 0 (J5 pin 22)
1 MOD01/ Machine I/O 1 (J5 pin 20)
2 MOD02/ Machine I/O 2 (J5 pin 18)
3 MOD03/ Machine I/O 3 (J5 pin 16)
4 MOD04/ Machine I/O 4 (J5 pin 14)
5 MOD05/ Machine I/O 5 (J5 pin 12)
6 MOD06/ Machine I/O 6 (J5 pin 10)
7 MOD07/ Machine I/O 7 (J5 pin 8)

 PMAC 2 Software Reference

454 PMAC I/0 and Memory Map

Y:$FFE1 Axis Board 4 (E93D ON) JOPT port I/O
0 MOD08/ Machine I/O 8 (J5-6)
1 MOD09/ Machine I/O 9 (J5-4)
2 MOD10/ Machine I/O 10 (J5 -2)
3 MOD11/ Machine I/O 11 (J5-25)
4 MOD12/ Machine I/O 12 (J5-23)
5 MOD13/ Machine I/O 13 (J5-21)
6 MOD14/ Machine I/O 14 (J5-19)
7 MOD15/ Machine I/O 15 (J5-17)

Y:$FFE2 Axis Board 4 (E93D ON) JOPT port I/O
0 MOD16/ Machine I/O 16 (J5-15)
1 MOD17/ Machine I/O 17 (J5-13)
2 MOD18/ Machine I/O 18 (J5-11)
3 MOD19/ Machine I/O 19 (J5-9)
4 MOD20/ Machine I/ O 20 (J5-7)
5 MOD21/ Machine I/O 21 (J5-5)
6 MOD22/ Machine I/O 22 (J5-3)
7 MOD23/ Machine I/O 23 (J5-1)

Y:$FFE3 Axis Board 4 (E93D ON) JOPT2 port I/O
0 MOD24/ Machine I/O 24 (J6-1)
1 MOD25/ Machine I/O 25 (J6-2)
2 MOD26/ Machine I/O 26 (J6-3)
3 MOD27/ Machine I/O 27 (J6-4)
4 MOD28/ Machine I/O 28 (J6-5)
5 MOD29/ Machine I/O 29 (J6-6)
6 MOD30/ Machine I/O 30 (J6-7)
7 MOD31/ Machine I/O 31 (J6-8)

Y:$FFE4 Axis Board 4 (E93D ON) JPAN port inputs
(general purpose here)

0 JOG-/ (General Purpose) (J2-4)
1 JOG+/ (General Purpose) (J2-6)
2 PREJ/ (General Purpose) (J2-7)
3 STRT/ (General Purpose) (J2-8)
4 STEP/ (General Purpose) (J2-9)
5 STOP/ (General Purpose) (J2-10)
6 HOME/ (General Purpose) (J2-11)
7 HOLD/ (General Purpose) (J2-12)

Y:$FFE5 Axis Board 4 (E93D ON) JPAN port I/O
(general purpose here)

0 FPD0/ (General Purpose) (J2-3)
1 FPD1/ (General Purpose) (J2-5)
2 FPD2/ (General Purpose) (J2-13)
3 FPD3/ (General Purpose) (J2-14)
4 IPLD/ (General Purpose) (J2-17)
5 BREQ/ (General Purpose) (J2-18)
6 ERLD/ (General Purpose) (J2-19)
7 F1LD/ (General Purpose) (J2-23)

Y:$FFE7 Axis Board 4 (E93D ON) Input/Output Control
(0=Output OK; 1=Input Only)
0 MOD00/-MOD07/ Control (Y:$FFE0)
1 MOD08/-MOD15/ Control (Y:$FFE1)
2 MOD16/-MOD23/ Control (Y:$FFE2)
3 MOD24/-MOD31/ Control (Y:$FFE3)
4 JPAN Switch Control (Y:$FFE4)
5 JPAN Selector/Indicator Control

PMAC 2 Software Reference

PMAC I/0 and Memory Map 455

(Y:$FFE5)
6 Reserved Control (do not use)
7 Reserved Control (do not use)

Note:
* All the I/O lines marked with an asterisk in the above table are used by PMAC’s
firmware for special functions. These lines should not be used for general-purpose
I/O.

PMAC2 Option 12/12A Analog-to-Digital Converters
Y:$FFC0 Option 12 Analog-to-Digital Converters (low 12 bits)

 Write operation: channel select (Channels 0-7) and
mode; Read operation: converted value of selected
channel.

 Option 12A Analog-to-Digital Converters (high 12 bits)
 Write operation: channel select (Channels 8-15) and

mode; Read operation: converted value of selected
channel.

PMAC(1)-PCI, PMAC(1)-PCI Lite Option 12/12A Analog-to-Digital
Converters

Y:$FFC8 Option 12 Analog-to-Digital Converters (low 12 bits)
 Write operation: channel select (Channels 0-7) and

mode; Read operation: converted value of selected
channel.

 Option 12A Analog-to-Digital Converters (high 12 bits)
 Write operation: channel select (Channels 8-15) and

mode; Read operation: converted value of selected
channel.

Expansion Port (JEXP) I/O
Y:$FFD0 (65488) 1st Accessory-14 Port A
Y:$FFD1 (65489) 1st Accessory-14 Port B
Y:$FFD2 (65490) 1st Accessory-14 Multimodule
Y:$FFD3 (65491) 1st Accessory-14 Control Word
Y:$FFD8 (65496) 2nd Accessory-14 Port A
Y:$FFD9 (65497) 2nd Accessory-14 Port B
Y:$FFDA (65498) 2nd Accessory-14 Multimodule
Y:$FFDB (65499) 2nd Accessory-14 Control Word
Y:$FFE0 (65504) 3rd Accessory-14 Port A
Y:$FFE1 (65505) 3rd Accessory-14 Port B
Y:$FFE2 (65506) 3rd Accessory-14 Multimodule
Y:$FFE3 (65507) 3rd Accessory-14 Control Word
Y:$FFE8 (65512) 4th Accessory-14 Port A
Y:$FFE9 (65513) 4th Accessory-14 Port B
Y:$FFEA (65514) 4th Accessory-14 Multimodule
Y:$FFEB (65515) 4th Accessory-14 Control Word
Y:$FFF0 (65520) 5th Accessory-14 Port A
Y:$FFF1 (65521) 5th Accessory-14 Port B
Y:$FFF2 (65522) 5th Accessory-14 Multimodule
Y:$FFF3 (65523) 5th Accessory-14 Control Word
Y:$FFF8 (65528) 6th Accessory-14 Port A

 PMAC 2 Software Reference

456 PMAC I/0 and Memory Map

Y:$FFF9 (65529) 6th Accessory-14 Port B
Y:$FFFA (65530) 6th Accessory-14 Multimodule
Y:$FFFB (65531) 6th Accessory-14 Control Word

PMAC 2 Software Reference

PMAC I/0 and Memory Map 457

 PMAC 2 Software Reference

458 PMAC(1) Suggested M-variable Definitions

PMAC(1) SUGGESTED M-VARIABLE DEFINITIONS
This file contains a suggested set of M-Variable definitions. These definitions can be very useful for
getting access to important I/O and registers. It is not required that you use these particular definitions.
Most example programs will use these definitions.

CLOSE ; To ensure commands are on-line
M0..1023->* ; To clear all existing definitions
M0->X:$0,0,24,U ; Servo cycle counter
; General Purpose inputs and outputs (PMAC-PC,-Lite,-VME)
M1->Y:$FFC2,8,1 ; Machine Output 1
M2->Y:$FFC2,9,1 ; Machine Output 2
M3->Y:$FFC2,10,1 ; Machine Output 3
M4->Y:$FFC2,11,1 ; Machine Output 4
M5->Y:$FFC2,12,1 ; Machine Output 5
M6->Y:$FFC2,13,1 ; Machine Output 6
M7->Y:$FFC2,14,1 ; Machine Output 7
M8->Y:$FFC2,15,1 ; Machine Output 8
M9->Y:$FFC2,8,8,U ; Machine Outputs 1-8 treated as byte
M11->Y:$FFC2,0,1 ; Machine Input 1
M12->Y:$FFC2,1,1 ; Machine Input 2
M13->Y:$FFC2,2,1 ; Machine Input 3
M14->Y:$FFC2,3,1 ; Machine Input 4
M15->Y:$FFC2,4,1 ; Machine Input 5
M16->Y:$FFC2,5,1 ; Machine Input 6
M17->Y:$FFC2,6,1 ; Machine Input 7
M18->Y:$FFC2,7,1 ; Machine Input 8
M19->Y:$FFC2,0,8,U ; Machine Inputs 1-8 treated as byte
; Control-Panel Port Input Bits (so can be used as general I/O if I2=1)
; (These definitions valid for PMAC-PC, -Lite, & -VME)
M20->Y:$FFC0,8,1 ; Jog Minus Input
M21->Y:$FFC0,9,1 ; Jog Plus Input
M22->Y:$FFC0,10,1 ; Prejog Input
M23->Y:$FFC0,11,1 ; Start (Run) Input
M24->Y:$FFC0,12,1 ; Step/Quit Input
M25->Y:$FFC0,13,1 ; Stop (Abort) Input
M26->Y:$FFC0,14,1 ; Home Command Input
M27->Y:$FFC0,15,1 ; Feed Hold Input
M28->Y:$FFC0,16,1 ; Motor/C.S. Select Input Bit 0
M29->Y:$FFC0,17,1 ; Motor/C.S. Select Input Bit 1
M30->Y:$FFC0,18,1 ; Motor/C.S. Select Input Bit 2
M31->Y:$FFC0,19,1 ; Motor/C.S. Select Input Bit 3
M32->Y:$FFC0,16,4,C ; Selected Motor/C.S. Number
; Thumbwheel Port Bits (So they can be used as general-purpose I/O)
; (These definitions valid for PMAC-PC, -Lite, & -VME)
M40->Y:$FFC1,8,1 ; SEL0 Output
M41->Y:$FFC1,9,1 ; SEL1 Output
M42->Y:$FFC1,10,1 ; SEL2 Output
M43->Y:$FFC1,11,1 ; SEL3 Output

PMAC 2 Software Reference

PMAC(1) Suggested M-variable Definitions 459

M44->Y:$FFC1,12,1 ; SEL4 Output
M45->Y:$FFC1,13,1 ; SEL5 Output
M46->Y:$FFC1,14,1 ; SEL6 Output
M47->Y:$FFC1,15,1 ; SEL7 Output
M48->Y:$FFC1,8,8,U ; SEL0-7 Outputs treated as a byte
M50->Y:$FFC1,0,1 ; DAT0 Input
M51->Y:$FFC1,1,1 ; DAT1 Input
M52->Y:$FFC1,2,1 ; DAT2 Input
M53->Y:$FFC1,3,1 ; DAT3 Input
M54->Y:$FFC1,4,1 ; DAT4 Input
M55->Y:$FFC1,5,1 ; DAT5 Input
M56->Y:$FFC1,6,1 ; DAT6 Input
M57->Y:$FFC1,7,1 ; DAT7 Input
M58->Y:$FFC1,0,8,U ; DAT0-7 Inputs treated as a byte
; Registers associated with Encoder/DAC1 (Usually Motor #1)
M101->X:$C001,0,24,S ; ENC1 24-bit counter position
M102->Y:$C003,8,16,S ; DAC1 16-bit analog output
M103->X:$C003,0,24,S ; ENC1 capture/compare position register
M104->X:$0720,0,24,S ; ENC1 interpolated position (1/32 ct)
M105->Y:$C006,8,16,S ; ADC1 16-bit analog input
M106->Y:$C000,0,24,U ; ENC1 time between counts (SCLK cycles)
M110->X:$C000,10,1 ; ENC1 count-write enable control
M111->X:$C000,11,1 ; EQU1 compare flag latch control
M112->X:$C000,12,1 ; EQU1 compare output enable
M113->X:$C000,13,1 ; EQU1 compare invert enable
M114->X:$C000,14,1 ; AENA1/DIR1 Output
M116->X:$C000,16,1 ; EQU1 compare flag
M117->X:$C000,17,1 ; ENC1 position-captured flag
M118->X:$C000,18,1 ; ENC1 Count-error flag
M119->X:$C000,19,1 ; ENC1 3rd channel input status
M120->X:$C000,20,1 ; HMFL1 input status
M121->X:$C000,21,1 ; -LIM1 input status
M122->X:$C000,22,1 ; +LIM1 input status
M123->X:$C000,23,1 ; FAULT1 input status
; Motor #1 Status Bits
M130->Y:$0814,11,1 ; #1 Stopped-on-position-limit bit
M131->X:$003D,21,1 ; #1 Positive-end-limit-set bit
M132->X:$003D,22,1 ; #1 Negative-end-limit-set bit
M133->X:$003D,13,1 ; #1 Desired-velocity-zero bit
M135->X:$003D,15,1 ; #1 Dwell-in-progress bit
M137->X:$003D,17,1 ; #1 Running-program bit
M138->X:$003D,18,1 ; #1 Open-loop-mode bit
M139->Y:$0814,14,1 ; #1 Amplifier-enabled status bit
M140->Y:$0814,0,1 ; #1 In-position bit
M141->Y:$0814,1,1 ; #1 Warning-following error bit
M142->Y:$0814,2,1 ; #1 Fatal-following-error bit
M143->Y:$0814,3,1 ; #1 Amplifier-fault-error bit

 PMAC 2 Software Reference

460 PMAC(1) Suggested M-variable Definitions

M145->Y:$0814,10,1 ; #1 Home-complete bit
; Motor #1 Move Registers
M161->D:$0028 ; #1 Commanded position (1/[Ix08*32] cts)
M162->D:$002B ; #1 Actual position (1/[Ix08*32] cts)
M163->D:$080B ; #1 Target (end) position (1/[Ix08*32] cts)
M164->D:$0813 ; #1 Position bias (1/[Ix08*32] cts)
M165->L:$081F ; &1 X-axis target position (engineering units)
M166->X:$0033,0,24,S ; #1 Actual velocity (1/[Ix09*32] cts/cyc)
M167->D:$002D ; #1 Present master ((handwheel) pos (1/[Ix07*32] cts
 ; of master or (1/[Ix08*32] cts of slaved motor)
M168->X:$0045,8,16,S ; #1 Filter Output (DAC bits)
M169->D:$0046 ; #1 Compensation correction
M170->D:$0041 ; #1 Present phase position; includes fraction in Y-register
M171->X:$0041,0,24,S ; #1 Present phase position (counts*Ix70)
M172->L:$082B ; #1 Variable jog position/distance (counts)
M173->Y:$0815,0,24,S ; #1 Encoder home capture offset (counts)
M174->Y:$082A,24,S ; #1 Averaged actual velocity (1/[Ix09*32] cts/cyc)
; Coordinate System &1 Status Bits
M180->X:$0818,0,1 ; &1 Program-running bit
M181->Y:$0817,21,1 ; &1 Circle-radius-error bit
M182->Y:$0817,22,1 ; &1 Run-time-error bit
M184->X:$0818,4,1 ; &1 Continuous motion request
M187->Y:$0817,17,1 ; &1 In-position bit (AND of motors)
M188->Y:$0817,18,1 ; &1 Warning-following-error bit (OR)
M189->Y:$0817,19,1 ; &1 Fatal-following-error bit (OR)
M190->Y:$0817,20,1 ; &1 Amp-fault-error bit (OR of motors)
; Motor #1 Axis Definition Registers
M191->L:$0822 ; #1 X/U/A/B/C-Axis scale factor (cts/unit)
M192->L:$0823 ; #1 Y/V-Axis scale factor (cts/unit)
M193->L:$0824 ; #1 Z/W-Axis scale factor (cts/unit)
M194->L:$0825 ; #1 Axis offset (cts)
; Coordinate System &1 Variables
M197->X:$0806,0,24,S ; &1 Host commanded time base (I10 units)
M198->X:$0808,0,24,S ; &1 Present time base (I10 units)
; Registers associated with Encoder/DAC2 (Usually Motor #2)
M201->X:$C005,0,24,S ; ENC2 24-bit counter position
M202->Y:$C002,8,16,S ; DAC2 16-bit analog output
M203->X:$C007,0,24,S ; ENC2 capture/compare position register
M204->X:$0721,0,24,S ; ENC2 interpolated position (1/32 ct)
M205->Y:$C007,8,16,S ; ADC2 16-bit analog input
M206->Y:$C004,0,24,U ; ENC2 time between counts (SCLK cycles)
M210->X:$C004,10,1 ; ENC2 count-write enable control
M211->X:$C004,11,1 ; EQU2 compare flag latch control
M212->X:$C004,12,1 ; EQU2 compare output enable
M213->X:$C004,13,1 ; EQU2 compare invert enable
M214->X:$C004,14,1 ; AENA2/DIR2 Output
M216->X:$C004,16,1 ; EQU2 compare flag
M217->X:$C004,17,1 ; ENC2 position-captured flag

PMAC 2 Software Reference

PMAC(1) Suggested M-variable Definitions 461

M218->X:$C004,18,1 ; ENC2 count-error flag
M219->X:$C004,19,1 ; ENC2 3rd channel input status
M220->X:$C004,20,1 ; HMFL2 input status
M221->X:$C004,21,1 ; -LIM2 input status
M222->X:$C004,22,1 ; +LIM2 input status
M223->X:$C004,23,1 ; FAULT2 input status
; Motor #2 Status Bits
M230->Y:$08D4,11,1 ; #2 Stopped-on-position-limit bit
M231->X:$0079,21,1 ; #2 Positive-end-limit-set bit
M232->X:$0079,22,1 ; #2 Negative-end-limit-set bit
M233->X:$0079,13,1 ; #2 Desired-velocity-zero bit
M235->X:$0079,15,1 ; #2 Dwell-in-progress bit
M237->X:$0079,17,1 ; #2 Running-program bit
M238->X:$0079,18,1 ; #2 Open-loop-mode bit
M239->Y:$08D4,14,1 ; #2 Amplifier-enabled status bit
M240->Y:$08D4,0,1 ; #2 In-position bit
M241->Y:$08D4,1,1 ; #2 Warning-following error bit
M242->Y:$08D4,2,1 ; #2 Fatal-following-error bit
M243->Y:$08D4,3,1 ; #2 Amplifier-fault-error bit
M245->Y:$08D4,10,1 ; #2 Home-complete bit
; Motor #2 Move Registers
M261->D:$0064 ; #2 Commanded position (1/[Ix08*32] cts)
M262->D:$0067 ; #2 Actual position (1/[Ix08*32] cts)
M263->D:$08CB ; #2 Target (end) position (1/[Ix08*32] cts)
M264->D:$08D3 ; #2 Position bias (1/[Ix08*32] cts)
M265->L:$0820 ; &1 Y-axis target position (engineering units)
M266->X:$006F,0,24,S ; #2 Actual velocity (1/[Ix09*32] cts/cyc)
M267->D:$0069 ; #2 Present master (handwheel) pos (1/[Ix07*32] cts
 ; of master or (1/[Ix08*32] cts of slaved motor)
M268->X:$0081,8,16,S ; #2 Filter Output (DAC bits)
M269->D:$0082 ; #2 Compensation correction
M270->D:$007D ; #2 Present phase position; includes fraction in Y-register
M271->X:$007D,0,24,S ; #2 Present phase position (counts*Ix70)
M272->L:$08EB ; #2 Variable jog position/distance (counts)
M273->Y:$08D5,0,24,S ; #2 Encoder home capture offset (counts)
M274->Y:$08EA,24,S ; #2 Averaged actual velocity (1/[Ix09*32] cts/cyc)

; Coordinate System &2 Status Bits
M280->X:$08D8,0,1 ; &2 Program-running bit
M281->Y:$08D7,21,1 ; &2 Circle-radius-error bit
M282->Y:$08D7,22,1 ; &2 Run-time-error bit
M284->X:$08D8,4,1 ; &2 Continuous motion request
M287->Y:$08D7,17,1 ; &2 In-position bit (AND of motors)
M288->Y:$08D7,18,1 ; &2 Warning-following-error bit (OR)
M289->Y:$08D7,19,1 ; &2 Fatal-following-error bit (OR)
M290->Y:$08D7,20,1 ; &2 Amp-fault-error bit (OR of motors)
; Motor #2 Axis Definition Registers
M291->L:$08E2 ; #2 X/U/A/B/C-Axis scale factor (cts/unit)

 PMAC 2 Software Reference

462 PMAC(1) Suggested M-variable Definitions

M292->L:$08E3 ; #2 Y/V-Axis scale factor (cts/unit)
M293->L:$08E4 ; #2 Z/W-Axis scale factor (cts/unit)
M294->L:$08E5 ; #2 Axis offset (cts)
; Coordinate System &2 Variables
M297->X:$08C6,0,24,S ; &2 Host commanded time base (I10 units)
M298->X:$08C8,0,24,S ; &2 Present time base (I10 units)
; Registers associated with Encoder/DAC3 (Usually Motor #3)
M301->X:$C009,0,24,S ; ENC3 24-bit counter position
M302->Y:$C00B,8,16,S ; DAC3 16-bit analog output
M303->X:$C00B,0,24,S ; ENC3 capture/compare position register
M304->X:$0722,0,24,S ; ENC3 interpolated position (1/32 ct)
M305->Y:$C00E,8,16,S ; ADC3 16-bit analog input
M306->Y:$C008,0,24,U ; ENC3 time between counts (SCLK cycles)
M310->X:$C008,10,1 ; ENC3 count-write enable control
M311->X:$C008,11,1 ; EQU3 compare flag latch control
M312->X:$C008,12,1 ; EQU3 compare output enable
M313->X:$C008,13,1 ; EQU3 compare invert enable
M314->X:$C008,14,1 ; AENA3/DIR3 Output
M316->X:$C008,16,1 ; EQU3 compare flag
M317->X:$C008,17,1 ; ENC3 position-captured flag
M318->X:$C008,18,1 ; ENC3 count-error flag
M319->X:$C008,19,1 ; ENC3 3rd channel input status
M320->X:$C008,20,1 ; HMFL3 input status
M321->X:$C008,21,1 ; -LIM3 input status
M322->X:$C008,22,1 ; +LIM3 input status
M323->X:$C008,23,1 ; FAULT3 input status
; Motor #3 Status Bits
M330->Y:$0994,11,1 ; #3 Stopped-on-position-limit bit
M331->X:$00B5,21,1 ; #3 Positive-end-limit-set bit
M332->X:$00B5,22,1 ; #3 Negative-end-limit-set bit
M333->X:$00B5,13,1 ; #3 Desired-velocity-zero bit
M335->X:$00B5,15,1 ; #3 Dwell-in-progress bit
M337->X:$00B5,17,1 ; #3 Running-program bit
M338->X:$00B5,18,1 ; #3 Open-loop-mode bit
M339->Y:$0994,14,1 ; #3 Amplifier-enabled status bit
M340->Y:$0994,0,1 ; #3 In-position bit
M341->Y:$0994,1,1 ; #3 Warning-following error bit
M342->Y:$0994,2,1 ; #3 Fatal-following-error bit
M343->Y:$0994,3,1 ; #3 Amplifier-fault-error bit
M345->Y:$0994,10,1 ; #3 Home-complete bit
; Motor #3 Move Registers
M361->D:$00A0 ; #3 Commanded position (1/[Ix08*32] cts)
M362->D:$00A3 ; #3 Actual position (1/[Ix08*32] cts)
M363->D:$098B ; #3 Target (end) position (1/[Ix08*32] cts)
M364->D:$0993 ; #3 Position bias (1/[Ix08*32] cts)
M365->L:$0821 ; &1 Z-axis target position (engineering units)
M366->X:$00AB,0,24,S ; #3 Actual velocity (1/[Ix09*32] cts/cyc)
M367->D:$00A5 ; #3 Present master (handwheel) pos (1/[Ix07*32] cts

PMAC 2 Software Reference

PMAC(1) Suggested M-variable Definitions 463

 ; of master or (1/[Ix08*32] cts of slaved motor)
M368->X:$00BD,8,16,S ; #3 Filter Output (DAC bits)
M369->D:$00BE ; #3 Compensation correction
M370->D:$00B9 ; #3 Present phase position; includes fraction in Y-register
M371->X:$00B9,0,24,S ; #3 Present phase position (counts*Ix70)
M372->L:$09AB ; #3 Variable jog position/distance (counts)
M373->Y:$0995,0,24,S ; #3 Encoder home capture offset (counts)
M374->Y:$09AA,24,S ; #3 Averaged actual velocity (1/[Ix09*32] cts/cyc)
; Coordinate System &3 Status Bits
M380->X:$0998,0,1 ; &3 Program-running bit
M381->Y:$0997,21,1 ; &3 Circle-radius-error bit
M382->Y:$0997,22,1 ; &3 Run-time-error bit
M384->X:$0998,4,1 ; &3 Continuous motion request
M387->Y:$0997,17,1 ; &3 In-position bit (AND of motors)
M388->Y:$0997,18,1 ; &3 Warning-following-error bit (OR)
M389->Y:$0997,19,1 ; &3 Fatal-following-error bit (OR)
M390->Y:$0997,20,1 ; &3 Amp-fault-error bit (OR of motors)
; Motor #3 Axis Definition Registers
M391->L:$09A2 ; #3 X/U/A/B/C-Axis scale factor (cts/unit)
M392->L:$09A3 ; #3 Y/V-Axis scale factor (cts/unit)
M393->L:$09A4 ; #3 Z/W-Axis scale factor (cts/unit)
M394->L:$09A5 ; #3 Axis offset (cts)
; Coordinate System &3 Variables
M397->X:$0986,0,24,S ; &3 Host commanded time base (I10 units)
M398->X:$0988,0,24,S ; &3 Present time base (I10 units)
; Registers associated with Encoder/DAC4 (Usually Motor #4)
M401->X:$C00D,0,24,S ; ENC4 24-bit counter position
M402->Y:$C00A,8,16,S ; DAC4 16-bit analog output
M403->X:$C00F,0,24,S ; ENC4 capture/compare position register
M404->X:$0723,0,24,S ; ENC4 interpolated position (1/32 ct)
M405->Y:$C00F,8,16,S ; ADC4 16-bit analog input
M406->Y:$C00C,0,24,U ; ENC4 time between counts (SCLK cycles)
M410->X:$C00C,10,1 ; ENC4 count-write enable control
M411->X:$C00C,11,1 ; EQU4 compare flag latch control
M412->X:$C00C,12,1 ; EQU4 compare output enable
M413->X:$C00C,13,1 ; EQU4 compare invert enable
M414->X:$C00C,14,1 ; AENA4/DIR4 Output
M416->X:$C00C,16,1 ; EQU4 compare flag
M417->X:$C00C,17,1 ; ENC4 position-captured flag
M418->X:$C00C,18,1 ; ENC4 count-error flag
M419->X:$C00C,19,1 ; ENC4 3rd channel input status
M420->X:$C00C,20,1 ; HMFL4 input status
M421->X:$C00C,21,1 ; -LIM4 input status
M422->X:$C00C,22,1 ; +LIM4 input status
M423->X:$C00C,23,1 ; FAULT4 input status
; Motor #4 Status Bits
M430->Y:$0A54,11,1 ; #4 Stopped-on-position-limit bit
M431->X:$00F1,21,1 ; #4 Positive-end-limit-set bit

 PMAC 2 Software Reference

464 PMAC(1) Suggested M-variable Definitions

M432->X:$00F1,22,1 ; #4 Negative-end-limit-set bit
M433->X:$00F1,13,1 ; #4 Desired-velocity-zero bit
M435->X:$00F1,15,1 ; #4 Dwell-in-progress bit
M437->X:$00F1,17,1 ; #4 Running-program bit
M438->X:$00F1,18,1 ; #4 Open-loop-mode bit
M439->Y:$0A54,14,1 ; #4 Amplifier-enabled status bit
M440->Y:$0A54,0,1 ; #4 In-position bit
M441->Y:$0A54,1,1 ; #4 Warning-following error bit
M442->Y:$0A54,2,1 ; #4 Fatal-following-error bit
M443->Y:$0A54,3,1 ; #4 Amplifier-fault-error bit
M445->Y:$0A54,10,1 ; #4 Home-complete bit
; Motor #4 Move Registers
M461->D:$00DC ; #4 Commanded position (1/[Ix08*32] cts)
M462->D:$00DF ; #4 Actual position (1/[Ix08*32] cts)
M463->D:$0A4B ; #4 Target (end) position (1/[Ix08*32] cts)
M464->D:$0A53 ; #4 Position bias (1/[Ix08*32] cts)
M465->L:$0819 ; &1 A-axis target position (engineering units)
M466->X:$00E7,0,24,S ; #4 Actual velocity (1/[Ix09*32] cts/cyc)
M467->D:$00E1 ; #4 Present master (handwheel) pos (1/[Ix07*32] cts
 ; of master or (1/[Ix08*32] cts of slaved motor)
M468->X:$00F9,8,16,S ; #4 Filter Output (DAC bits)
M469->D:$00FA ; #4 Compensation correction
M470->D:$00F5 ; #4 Present phase position; includes fraction in Y-register
M471->X:$00F5,0,24,S ; #4 Present phase position (counts*Ix70)
M472->L:$0A6B ; #4 Variable jog position/distance (counts)
M473->Y:$0A55,0,24,S ; #4 Encoder home capture offset (counts)
M474->Y:$0A6A,24,S ; #4 Averaged actual velocity (1/[Ix09*32] cts/cyc)
; Coordinate System &4 Status Bits
M480->X:$0A58,0,1 ; &4 Program-running bit
M481->Y:$0A57,21,1 ; &4 Circle-radius-error bit
M482->Y:$0A57,22,1 ; &4 Run-time-error bit
M484->X:$0A58,4,1 ; &4 Continuous motion request
M487->Y:$0A57,17,1 ; &4 In-position bit (AND of motors)
M488->Y:$0A57,18,1 ; &4 Warning-following-error bit (OR)
M489->Y:$0A57,19,1 ; &4 Fatal-following-error bit (OR)
M490->Y:$0A57,20,1 ; &4 Amp-fault-error bit (OR of motors)
; Motor #4 Axis Definition Registers
M491->L:$0A62 ; #4 X/U/A/B/C-Axis scale factor (cts/unit)
M492->L:$0A63 ; #4 Y/V-Axis scale factor (cts/unit)
M493->L:$0A64 ; #4 Z/W-Axis scale factor (cts/unit)
M494->L:$0A65 ; #4 Axis offset (cts)
; Coordinate System &4 Variables
M497->X:$0A46,0,24,S ; &4 Host commanded time base (I10 units)
M498->X:$0A48,0,24,S ; &4 Present time base (I10 units)
; Registers associated with Encoder/DAC5 (Usually Motor #5)
M501->X:$C011,0,24,S ; ENC5 24-bit counter position
M502->Y:$C013,8,16,S ; DAC5 16-bit analog output
M503->X:$C013,0,24,S ; ENC5 capture/compare position register

PMAC 2 Software Reference

PMAC(1) Suggested M-variable Definitions 465

M504->X:$0724,0,24,S ; ENC5 interpolated position (1/32 ct)
M505->Y:$C016,8,16,S ; ADC5 16-bit analog input
M506->Y:$C010,0,24,U ; ENC5 time between counts (SCLK cycles)
M510->X:$C010,10,1 ; ENC5 count-write enable control
M511->X:$C010,11,1 ; EQU5 compare flag latch control
M512->X:$C010,12,1 ; EQU5 compare output enable
M513->X:$C010,13,1 ; EQU5 compare invert enable
M514->X:$C010,14,1 ; AENA5/DIR5 Output
M516->X:$C010,16,1 ; EQU5 compare flag
M517->X:$C010,17,1 ; ENC5 position-captured flag
M518->X:$C010,18,1 ; ENC5 count-error flag
M519->X:$C010,19,1 ; ENC5 3rd channel input status
M520->X:$C010,20,1 ; HMFL5 input status
M521->X:$C010,21,1 ; -LIM5 input status
M522->X:$C010,22,1 ; +LIM5 input status
M523->X:$C010,23,1 ; FAULT5 input status
; Motor #5 Status Bits
M530->Y:$0B14,11,1 ; #5 Stopped-on-position-limit bit
M531->X:$012D,21,1 ; #5 Positive-end-limit-set bit
M532->X:$012D,22,1 ; #5 Negative-end-limit-set bit
M533->X:$012D,13,1 ; #5 Desired-velocity-zero bit
M535->X:$012D,15,1 ; #5 Dwell-in-progress bit
M537->X:$012D,17,1 ; #5 Running-program bit
M538->X:$012D,18,1 ; #5 Open-loop-mode bit
M539->Y:$0B14,14,1 ; #5 Amplifier-enabled status bit
M540->Y:$0B14,0,1 ; #5 In-position bit
M541->Y:$0B14,1,1 ; #5 Warning-following error bit
M542->Y:$0B14,2,1 ; #5 Fatal-following-error bit
M543->Y:$0B14,3,1 ; #5 Amplifier-fault-error bit
M545->Y:$0B14,10,1 ; #5 Home-complete bit
; Motor #5 Move Registers
M561->D:$0118 ; #5 Commanded position (1/[Ix08*32] cts)
M562->D:$011B ; #5 Actual position (1/[Ix08*32] cts)
M563->D:$0B0B ; #5 Target (end) position (1/[Ix08*32] cts)
M564->D:$0B13 ; #5 Position bias (1/[Ix08*32] cts)
M565->L:$081A ; &1 B-axis target position (engineering units)
M566->X:$0123,0,24,S ; #5 Actual velocity (1/[Ix09*32] cts/cyc)
M567->D:$011D ; #5 Present master (handwheel) pos (1/[Ix07*32] cts
 ; of master or (1/[Ix08*32] cts of slaved motor)
M568->X:$0135,8,16,S ; #5 Filter Output (DAC bits)
M569->D:$0136 ; #5 Compensation correction
M570->D:$0131 ; #5 Present phase position; includes fraction in Y-register
M571->X:$0131,0,24,S ; #5 Present phase position (counts*Ix70)
M572->L:$0B2B ; #5 Variable jog position/distance (counts)
M573->Y:$0B15,0,24,S ; #5 Encoder home capture offset (counts)
M574->Y:$0B2A,24,S ; #5 Averaged actual velocity (1/[Ix09*32] cts/cyc)
; Coordinate System &5 Status Bits
M580->X:$0B18,0,1 ; &5 Program-running bit

 PMAC 2 Software Reference

466 PMAC(1) Suggested M-variable Definitions

M581->Y:$0B17,21,1 ; &5 Circle-radius-error bit
M582->Y:$0B17,22,1 ; &5 Run-time-error bit
M584->X:$0B18,4,1 ; &5 Continuous motion request
M587->Y:$0B17,17,1 ; &5 In-position bit (AND of motors)
M588->Y:$0B17,18,1 ; &5 Warning-following-error bit (OR)
M589->Y:$0B17,19,1 ; &5 Fatal-following-error bit (OR)
M590->Y:$0B17,20,1 ; &5 Amp-fault-error bit (OR of motors)
; Motor #5 Axis Definition Registers
M591->L:$0B22 ; #5 X/U/A/B/C-Axis scale factor (cts/unit)
M592->L:$0B23 ; #5 Y/V-Axis scale factor (cts/unit)
M593->L:$0B24 ; #5 Z/W-Axis scale factor (cts/unit)
M594->L:$0B25 ; #5 Axis offset (cts)
; Coordinate System &5 Variables
M597->X:$0B06,0,24,S ; &5 Host commanded time base (I10 units)
M598->X:$0B08,0,24,S ; &5 Present time base (I10 units)
; Registers associated with Encoder/DAC6 (Usually Motor #6)
M601->X:$C015,0,24,S ; ENC6 24-bit counter position
M602->Y:$C012,8,16,S ; DAC6 16-bit analog output
M603->X:$C017,0,24,S ; ENC6 capture/compare position register
M604->X:$0725,0,24,S ; ENC6 interpolated position (1/32 ct)
M605->Y:$C017,8,16,S ; ADC6 16-bit analog input
M606->Y:$C014,0,24,U ; ENC6 time between counts (SCLK cycles)
M610->X:$C014,10,1 ; ENC6 count-write enable control
M611->X:$C014,11,1 ; EQU6 compare flag latch control
M612->X:$C014,12,1 ; EQU6 compare output enable
M613->X:$C014,13,1 ; EQU6 compare invert enable
M614->X:$C014,14,1 ; AENA6/DIR6 Output
M616->X:$C014,16,1 ; EQU6 compare flag
M617->X:$C014,17,1 ; ENC6 position-captured flag
M618->X:$C014,18,1 ; ENC6 count-error flag
M619->X:$C014,19,1 ; ENC6 3rd channel input status
M620->X:$C014,20,1 ; HMFL6 input status
M621->X:$C014,21,1 ; -LIM6 input status
M622->X:$C014,22,1 ; +LIM6 input status
M623->X:$C014,23,1 ; FAULT6 input status
; Motor #6 Status Bits
M630->Y:$0BD4,11,1 ; #6 Stopped-on-position-limit bit
M631->X:$0169,21,1 ; #6 Positive-end-limit-set bit
M632->X:$0169,22,1 ; #6 Negative-end-limit-set bit
M633->X:$0169,13,1 ; #6 Desired-velocity-zero bit
M635->X:$0169,15,1 ; #6 Dwell-in-progress bit
M637->X:$0169,17,1 ; #6 Running-program bit
M638->X:$0169,18,1 ; #6 Open-loop-mode bit
M639->Y:$0BD4,14,1 ; #6 Amplifier-enabled status bit
M640->Y:$0BD4,0,1 ; #6 In-position bit
M641->Y:$0BD4,1,1 ; #6 Warning-following error bit
M642->Y:$0BD4,2,1 ; #6 Fatal-following-error bit
M643->Y:$0BD4,3,1 ; #6 Amplifier-fault-error bit

PMAC 2 Software Reference

PMAC(1) Suggested M-variable Definitions 467

M645->Y:$0BD4,10,1 ; #6 Home-complete bit
; Motor #6 Move Registers
M661->D:$0154 ; #6 Commanded position (1/[Ix08*32] cts)
M662->D:$0157 ; #6 Actual position (1/[Ix08*32] cts)
M663->D:$0BCB ; #6 Target (end) position (1/[Ix08*32] cts)
M664->D:$0BD3 ; #6 Position bias (1/[Ix08*32] cts)
M665->L:$081B ; &1 C-axis target position (engineering units)
M666->X:$015F,0,24,S ; #6 Actual velocity (1/[Ix09*32] cts/cyc)
M667->D:$0159 ; #6 Present master (handwheel) pos (1/[Ix07*32] cts
 ; of master or (1/[Ix08*32] cts of slaved motor)
M668->X:$0171,8,16,S ; #6 Filter Output (DAC bits)
M669->D:$0172 ; #6 Compensation correction
M670->D:$016D ; #6 Present phase position; includes fraction in Y-register
M671->X:$016D,0,24,S ; #6 Present phase position (counts*Ix70)
M672->L:$0BEB ; #6 Variable jog position/distance (counts)
M673->Y:$0BD5,0,24,S ; #6 Encoder home capture offset (counts)
M674->Y:$0BEA,24,S ; #6 Averaged actual velocity (1/[Ix09*32] cts/cyc)
; Coordinate System &6 Status Bits
M680->X:$0BD8,0,1 ; &6 Program-running bit
M681->Y:$0BD7,21,1 ; &6 Circle-radius-error bit
M682->Y:$0BD7,22,1 ; &6 Run-time-error bit
M684->X:$0BD8,4,1 ; &6 Continuous motion request
M687->Y:$0BD7,17,1 ; &6 In-position bit (AND of motors)
M688->Y:$0BD7,18,1 ; &6 Warning-following-error bit (OR)
M689->Y:$0BD7,19,1 ; &6 Fatal-following-error bit (OR)
M690->Y:$0BD7,20,1 ; &6 Amp-fault-error bit (OR of motors)
; Motor #6 Axis Definition Registers
M691->L:$0BE2 ; #6 X/U/A/B/C-Axis scale factor (cts/unit)
M692->L:$0BE3 ; #6 Y/V-Axis scale factor (cts/unit)
M693->L:$0BE4 ; #6 Z/W-Axis scale factor (cts/unit)
M694->L:$0BE5 ; #6 Axis offset (cts)
; Coordinate System &6 Variables
M697->X:$0BC6,0,24,S ; &6 Host commanded time base (I10 units)
M698->X:$0BC8,0,24,S ; &6 Present time base (I10 units)
; Registers associated with Encoder/DAC7 (Usually Motor #7)
M701->X:$C019,0,24,S ; ENC7 24-bit counter position
M702->Y:$C01B,8,16,S ; DAC7 16-bit analog output
M703->X:$C01B,0,24,S ; ENC7 capture/compare position register
M704->X:$0726,0,24,S ; ENC7 interpolated position (1/32 ct)
M705->Y:$C01E,8,16,S ; ADC7 16-bit analog input
M706->Y:$C018,0,24,U ; ENC7 time between counts (SCLK cycles)
M710->X:$C018,10,1 ; ENC7 count-write enable control
M711->X:$C018,11,1 ; EQU7 compare flag latch control
M712->X:$C018,12,1 ; EQU7 compare output enable
M713->X:$C018,13,1 ; EQU7 compare invert enable
M714->X:$C018,14,1 ; AENA7/DIR7 Output
M716->X:$C018,16,1 ; EQU7 compare flag
M717->X:$C018,17,1 ; ENC7 position-captured flag

 PMAC 2 Software Reference

468 PMAC(1) Suggested M-variable Definitions

M718->X:$C018,18,1 ; ENC7 count-error flag
M719->X:$C018,19,1 ; ENC7 3rd channel input status
M720->X:$C018,20,1 ; HMFL7 input status
M721->X:$C018,21,1 ; -LIM7 input status
M722->X:$C018,22,1 ; +LIM7 input status
M723->X:$C018,23,1 ; FAULT7 input status
; Motor #7 Status Bits
M730->Y:$0C94,11,1 ; #7 Stopped-on-position-limit bit
M731->X:$01A5,21,1 ; #7 Positive-end-limit-set bit
M732->X:$01A5,22,1 ; #7 Negative-end-limit-set bit
M733->X:$01A5,13,1 ; #7 Desired-velocity-zero bit
M735->X:$01A5,15,1 ; #7 Dwell-in-progress bit
M737->X:$01A5,17,1 ; #7 Running-program bit
M738->X:$01A5,18,1 ; #7 Open-loop-mode bit
M739->Y:$0C94,14,1 ; #7 Amplifier-enabled status bit
M740->Y:$0C94,0,1 ; #7 In-position bit
M741->Y:$0C94,1,1 ; #7 Warning-following error bit
M742->Y:$0C94,2,1 ; #7 Fatal-following-error bit
M743->Y:$0C94,3,1 ; #7 Amplifier-fault-error bit
M745->Y:$0C94,10,1 ; #7 Home-complete bit
; Motor #7 Move Registers
M761->D:$0190 ; #7 Commanded position (1/[Ix08*32] cts)
M762->D:$0193 ; #7 Actual position (1/[Ix08*32] cts)
M763->D:$0C8B ; #7 Target (end) position (1/[Ix08*32] cts)
M764->D:$0C93 ; #7 Position bias (1/[Ix08*32] cts)
M765->L:$081C ; &1 U-axis target position (engineering units)
M766->X:$019B,0,24,S ; #7 Actual velocity (1/[Ix09*32] cts/cyc)
M767->D:$0195 ; #7 Present master (handwheel) pos (1/[Ix07*32] cts
 ; of master or (1/[Ix08*32] cts of slaved motor)
M768->X:$01AD,8,16,S ; #7 Filter Output (DAC bits)
M769->D:$01AE ; #7 Compensation correction
M770->D:$01A9 ; #7 Present phase position; includes fraction in Y-register
M771->X:$01A9,0,24,S ; #7 Present phase position (counts*Ix70)
M772->L:$0CAB ; #7 Variable jog position/distance (counts)
M773->Y:$0C95,0,24,S ; #7 Encoder home capture offset (counts)
M774->Y:$0CAA,24,S ; #7 Averaged actual velocity (1/[Ix09*32] cts/cyc)
; Coordinate System &7 Status Bits
M780->X:$0C98,0,1 ; &7 Program-running bit
M781->Y:$0C97,21,1 ; &7 Circle-radius-error bit
M782->Y:$0C97,22,1 ; &7 Run-time-error bit
M784->X:$0C98,4,1 ; &7Continuous motion request
M787->Y:$0C97,17,1 ; &7 In-position bit (AND of motors)
M788->Y:$0C97,18,1 ; &7 Warning-following-error bit (OR)
M789->Y:$0C97,19,1 ; &7 Fatal-following-error bit (OR)
M790->Y:$0C97,20,1 ; &7 Amp-fault-error bit (OR of motors)
; Motor #7 Axis Definition Registers
M791->L:$0CA2 ; #7 X/U/A/B/C-Axis scale factor (cts/unit)
M792->L:$0CA3 ; #7 Y/V-Axis scale factor (cts/unit)

PMAC 2 Software Reference

PMAC(1) Suggested M-variable Definitions 469

M793->L:$0CA4 ; #7 Z/W-Axis scale factor (cts/unit)
M794->L:$0CA5 ; #7 Axis offset (cts)
; Coordinate System &7 Variables
M797->X:$0C86,0,24,S ; &7 Host commanded time base (I10 units)
M798->X:$0C88,0,24,S ; &7 Present time base (I10 units)
; Registers associated with Encoder/DAC8 (Usually Motor #8)
M801->X:$C01D,0,24,S ; ENC8 24-bit counter position
M802->Y:$C01A,8,16,S ; DAC8 16-bit analog output
M803->X:$C01F,0,24,S ; ENC8 capture/compare position register
M804->X:$0727,0,24,S ; ENC8 interpolated position (1/32 ct)
M805->Y:$C01F,8,16,S ; ADC8 16-bit analog input
M806->Y:$C01C,0,24,U ; ENC8 time between counts (SCLK cycles)
M810->X:$C01C,10,1 ; ENC8 count-write enable control
M811->X:$C01C,11,1 ; EQU8 compare flag latch control
M812->X:$C01C,12,1 ; EQU8 compare output enable
M813->X:$C01C,13,1 ; EQU8 compare invert enable
M814->X:$C01C,14,1 ; AENA8/DIR8 Output
M816->X:$C01C,16,1 ; EQU8 compare flag
M817->X:$C01C,17,1 ; ENC8 position-captured flag
M818->X:$C01C,18,1 ; ENC8 count-error flag
M819->X:$C01C,19,1 ; ENC8 3rd channel input status
M820->X:$C01C,20,1 ; HMFL8 input status
M821->X:$C01C,21,1 ; -LIM8 input status
M822->X:$C01C,22,1 ; +LIM8 input status
M823->X:$C01C,23,1 ; FAULT8 input status
; Motor #8 Status Bits
M830->Y:$0D54,11,1 ; #8 Stopped-on-position-limit bit
M831->X:$01E1,21,1 ; #8 Positive-end-limit-set bit
M832->X:$01E1,22,1 ; #8 Negative-end-limit-set bit
M833->X:$01E1,13,1 ; #8 Desired-velocity-zero bit
M835->X:$01E1,15,1 ; #8 Dwell-in-progress bit
M837->X:$01E1,17,1 ; #8 Running-program bit
M838->X:$01E1,18,1 ; #8 Open-loop-mode bit
M839->Y:$0D54,14,1 ; #8 Amplifier-enabled status bit
M840->Y:$0D54,0,1 ; #8 In-position bit
M841->Y:$0D54,1,1 ; #8 Warning-following error bit
M842->Y:$0D54,2,1 ; #8 Fatal-following-error bit
M843->Y:$0D54,3,1 ; #8 Amplifier-fault-error bit
M845->Y:$0D54,10,1 ; #8 Home-complete bit
; Motor #8 Move Registers
M861->D:$01CC ; #8 Commanded position (1/[Ix08*32] cts)
M862->D:$01CF ; #8 Actual position (1/[Ix08*32] cts)
M863->D:$0D4B ; #8 Target (end) position (1/[Ix08*32] cts)
M864->D:$0D53 ; #8 Position bias (1/[Ix08*32] cts)
M865->L:$081D ; &1 V-axis target position (engineering units)
M866->X:$01D7,0,24,S ; #8 Actual velocity (1/[Ix09*32] cts/cyc)
M867->D:$01D1 ; #8 Present master (handwheel) pos (1/[Ix07*32] cts
 ; of master or (1/[Ix08*32] cts of slaved motor)

 PMAC 2 Software Reference

470 PMAC(1) Suggested M-variable Definitions

M868->X:$01E9,8,16,S ; #8 Filter Output (DAC bits)
M869->D:$01EA ; #8 Compensation correction
M870->D:$01E5 ; #8 Present phase position; includes fraction in Y-register
M871->X:$01E5,0,24,S ; #8 Present phase position (counts*Ix70)
M872->L:$0D6B ; #8 Variable jog position/distance (counts)
M873->Y:$0D55,0,24,S ; #8 Encoder home capture offset (counts)
M874->Y:$0D6A,24,S ; #8 Averaged actual velocity (1/[Ix09*32] cts/cyc)
; Coordinate System &8 Status Bits
M880->X:$0D58,0,1 ; &8 Program-running bit
M881->Y:$0D57,21,1 ; &8 Circle-radius-error bit
M882->Y:$0D57,22,1 ; &8 Run-time-error bit
M884->X:$0D58,4,1 ; &8 Continuous motion request
M887->Y:$0D57,17,1 ; &8 In-position bit (AND of motors)
M888->Y:$0D57,18,1 ; &8 Warning-following-error bit (OR)
M889->Y:$0D57,19,1 ; &8 Fatal-following-error bit (OR)
M890->Y:$0D57,20,1 ; &8 Amp-fault-error bit (OR of motors)
; Motor #8 Axis Definition Registers
M891->L:$0D62 ; #8 X/U/A/B/C-Axis scale factor (cts/unit)
M892->L:$0D63 ; #8 Y/V-Axis scale factor (cts/unit)
M893->L:$0D64 ; #8 Z/W-Axis scale factor (cts/unit)
M894->L:$0D65 ; #8 Axis offset (cts)
; Coordinate System &8 Variables
M897->X:$0D46,0,24,S ; &8 Host commanded time base (I10 units)
M898->X:$0D48,0,24,S ; &8 Present time base (I10 units)
; Accessory 14 I/O M-Variables (1st ACC-14)
M900->Y:$FFD0,0,1 ; MI/O0
M901->Y:$FFD0,1,1 ; MI/O1
M902->Y:$FFD0,2,1 ; MI/O2
M903->Y:$FFD0,3,1 ; MI/O3
M904->Y:$FFD0,4,1 ; MI/O4
M905->Y:$FFD0,5,1 ; MI/O5
M906->Y:$FFD0,6,1 ; MI/O6
M907->Y:$FFD0,7,1 ; MI/O7
M908->Y:$FFD0,8,1 ; MI/O8
M909->Y:$FFD0,9,1 ; MI/O9
M910->Y:$FFD0,10,1 ; MI/O10
M911->Y:$FFD0,11,1 ; MI/O11
M912->Y:$FFD0,12,1 ; MI/O12
M913->Y:$FFD0,13,1 ; MI/O13
M914->Y:$FFD0,14,1 ; MI/O14
M915->Y:$FFD0,15,1 ; MI/O15
M916->Y:$FFD0,16,1 ; MI/O16
M917->Y:$FFD0,17,1 ; MI/O17
M918->Y:$FFD0,18,1 ; MI/O18
M919->Y:$FFD0,19,1 ; MI/O19
M920->Y:$FFD0,20,1 ; MI/O20
M921->Y:$FFD0,21,1 ; MI/O21
M922->Y:$FFD0,22,1 ; MI/O22

PMAC 2 Software Reference

PMAC(1) Suggested M-variable Definitions 471

M923->Y:$FFD0,23,1 ; MI/O23
M924->Y:$FFD1,0,1 ; MI/O24
M925->Y:$FFD1,1,1 ; MI/O25
M926->Y:$FFD1,2,1 ; MI/O26
M927->Y:$FFD1,3,1 ; MI/O27
M928->Y:$FFD1,4,1 ; MI/O28
M929->Y:$FFD1,5,1 ; MI/O29
M930->Y:$FFD1,6,1 ; MI/O30
M931->Y:$FFD1,7,1 ; MI/O31
M932->Y:$FFD1,8,1 ; MI/O32
M933->Y:$FFD1,9,1 ; MI/O33
M934->Y:$FFD1,10,1 ; MI/O34
M935->Y:$FFD1,11,1 ; MI/O35
M936->Y:$FFD1,12,1 ; MI/O36
M937->Y:$FFD1,13,1 ; MI/O37
M938->Y:$FFD1,14,1 ; MI/O38
M939->Y:$FFD1,15,1 ; MI/O39
M940->Y:$FFD1,16,1 ; MI/O40
M941->Y:$FFD1,17,1 ; MI/O41
M942->Y:$FFD1,18,1 ; MI/O42
M943->Y:$FFD1,19,1 ; MI/O43
M944->Y:$FFD1,20,1 ; MI/O44
M945->Y:$FFD1,21,1 ; MI/O45
M946->Y:$FFD1,22,1 ; MI/O46
M947->Y:$FFD1,23,1 ; MI/O47

 PMAC 2 Software Reference

472 PMAC2 Suggested M-Variable Definitions

PMAC2 SUGGESTED M-VARIABLE DEFINITIONS
; This file contains suggested definitions for M-variables on the PMAC2. It is similar to the file for the
PMAC(1) family of boards, but there are significant differences in the input/output definitions, both for
servo registers and general-purpose I/O. Note that these are only suggestions; the user is free to make
whatever definitions are desired.

; Clear existing definitions
CLOSE ; Make sure no buffer is open on PMAC2
M0..1023->* ; All M-variables are now self-referenced

; JI/O Port M-variables
M0->Y:$C080,0 ; I/O00 Data Line; J3 Pin 1
M1->Y:$C080,1 ; I/O01 Data Line; J3 Pin 2
M2->Y:$C080,2 ; I/O02 Data Line; J3 Pin 3
M3->Y:$C080,3 ; I/O03 Data Line; J3 Pin 4
M4->Y:$C080,4 ; I/O04 Data Line; J3 Pin 5
M5->Y:$C080,5 ; I/O05 Data Line; J3 Pin 6
M6->Y:$C080,6 ; I/O06 Data Line; J3 Pin 7
M7->Y:$C080,7 ; I/O07 Data Line; J3 Pin 8
M8->Y:$C080,8 ; I/O08 Data Line; J3 Pin 9
M9->Y:$C080,9 ; I/O09 Data Line; J3 Pin 10
M10->Y:$C080,10 ; I/O10 Data Line; J3 Pin 11
M11->Y:$C080,11 ; I/O11 Data Line; J3 Pin 12
M12->Y:$C080,12 ; I/O12 Data Line; J3 Pin 13
M13->Y:$C080,13 ; I/O13 Data Line; J3 Pin 14
M14->Y:$C080,14 ; I/O14 Data Line; J3 Pin 15
M15->Y:$C080,15 ; I/O15 Data Line; J3 Pin 16
M16->Y:$C080,16 ; I/O16 Data Line; J3 Pin 17
M17->Y:$C080,17 ; I/O17 Data Line; J3 Pin 18
M18->Y:$C080,18 ; I/O18 Data Line; J3 Pin 19
M19->Y:$C080,19 ; I/O19 Data Line; J3 Pin 20
M20->Y:$C080,20 ; I/O20 Data Line; J3 Pin 21
M21->Y:$C080,21 ; I/O21 Data Line; J3 Pin 22
M22->Y:$C080,22 ; I/O22 Data Line; J3 Pin 23
M23->Y:$C080,23 ; I/O23 Data Line; J3 Pin 24
M24->Y:$C081,0 ; I/O24 Data Line; J3 Pin 25
M25->Y:$C081,1 ; I/O25 Data Line; J3 Pin 26
M26->Y:$C081,2 ; I/O26 Data Line; J3 Pin 27
M27->Y:$C081,3 ; I/O27 Data Line; J3 Pin 28
M28->Y:$C081,4 ; I/O28 Data Line; J3 Pin 29
M29->Y:$C081,5 ; I/O29 Data Line; J3 Pin 30
M30->Y:$C081,6 ; I/O30 Data Line; J3 Pin 31
M31->Y:$C081,7 ; I/O31 Data Line; J3 Pin 32

M32->X:$C080,0,8 ; Direction control for I/O00 to I/O07
M33->Y:$E800,0 ; Buffer direction control for I/O00 to I/O07
M34->X:$C080,8,8 ; Direction control for I/O08 to I/O15
M35->Y:$E800,1 ; Buffer direction control for I/O08 to I/O15
M36->X:$C080,16,8 ; Direction control for I/O16 to I/O23

PMAC 2 Software Reference

PMAC2 Suggested M-Variable Definitions 473

M37->Y:$E800,2 ; Buffer direction control for I/O16 to I/O23
M38->X:$C081,0,8 ; Direction control for I/O24 to I/O31
M39->Y:$E800,3 ; Buffer direction control for I/O24 to I/O31

; JTHW Thumbwheel Multiplexer Port M-variables
M40->Y:$C082,8 ; SEL0 Line; J2 Pin 4
M41->Y:$C082,9 ; SEL1 Line; J2 Pin 6
M42->Y:$C082,10 ; SEL2 Line; J2 Pin 8
M43->Y:$C082,11 ; SEL3 Line; J2 Pin 10
M44->Y:$C082,12 ; SEL4 Line; J2 Pin 12
M45->Y:$C082,13 ; SEL5 Line; J2 Pin 14
M46->Y:$C082,14 ; SEL6 Line; J2 Pin 16
M47->Y:$C082,15 ; SEL7 Line; J2 Pin 18
M48->Y:$C082,8,8,U ; SEL0-7 Lines treated as a byte
M50->Y:$C082,0 ; DAT0 Line; J2 Pin 3
M51->Y:$C082,1 ; DAT1 Line; J2 Pin 5
M52->Y:$C082,2 ; DAT2 Line; J2 Pin 7
M53->Y:$C082,3 ; DAT3 Line; J2 Pin 9
M54->Y:$C082,4 ; DAT4 Line; J2 Pin 11
M55->Y:$C082,5 ; DAT5 Line; J2 Pin 13
M56->Y:$C082,6 ; DAT6 Line; J2 Pin 15
M57->Y:$C082,7 ; DAT7 Line; J2 Pin 17
M58->Y:$C082,0,8,U ; DAT0-7 Lines treated as a byte
M60->X:$C082,0,8 ; Direction control for DAT0 to DAT7
M61->Y:$E800,4 ; Buffer direction control for DAT0 to DAT7, PCbus
;M61->Y:$E802,0 ; Buffer direction control for DAT0 to DAT7, VMEbus
M62->X:$C080,8,8 ; Direction control for SEL0 to SEL7
M63->Y:$E800,5 ; Buffer direction control for SEL0 to SEL7, PCbus
;M63->Y:$E802,1 ; Buffer direction control for SEL0 to SEL7, VMEbus

; User timer registers -- count down once per servo cycle
M70->Y:$0700,0,24,S ; 24-bit countdown user timer
M71->X:$0700,0,24,S ; 24-bit countdown user timer
M72->Y:$0701,0,24,S ; 24-bit countdown user timer
M73->X:$0701,0,24,S ; 24-bit countdown user timer

; Servo cycle counter (read only) -- counts up once per servo cycle
M100->X:$0000,0,24,S ; 24-bit servo cycle counter

; Gate Array Registers for Channel 1
M101->X:$C001,0,24,S ; ENC1 24-bit counter position
M102->Y:$C002,8,16,S ; OUT1A command value; DAC or PWM
M103->X:$C003,0,24,S ; ENC1 captured position
M104->Y:$C003,8,16,S ; OUT1B command value; DAC or PWM
M105->X:$0710,8,16,S ; ADC1A input image value
M106->Y:$0710,8,16,S ; ADC1B input image value
M107->Y:$C004,8,16,S ; OUT1C command value; PFM or PWM
M108->Y:$C007,0,24,S ; ENC1 compare A position
M109->X:$C007,0,24,S ; ENC1 compare B position
M110->X:$C006,0,24,S ; ENC1 compare autoincrement value

 PMAC 2 Software Reference

474 PMAC2 Suggested M-Variable Definitions

M111->X:$C005,11 ; ENC1 compare initial state write enable
M112->X:$C005,12 ; ENC1 compare initial state
M114->X:$C005,14 ; AENA1 output status
M115->X:$C000,19 ; USER1 flag input status
M116->X:$C000,9 ; ENC1 compare output value
M117->X:$C000,11 ; ENC1 capture flag
M118->X:$C000,8 ; ENC1 count error flag
M119->X:$C000,14 ; CHC1 input status
M120->X:$C000,16 ; HMFL1 flag input status
M121->X:$C000,17 ; PLIM1 flag input status
M122->X:$C000,18 ; MLIM1 flag input status
M123->X:$C000,15 ; FAULT1 flag input status
M124->X:$C000,20 ; Channel 1 W flag input status
M125->X:$C000,21 ; Channel 1 V flag input status
M126->X:$C000,22 ; Channel 1 U flag input status
M127->X:$C000,23 ; Channel 1 T flag input status
M128->X:$C000,20,4 ; Channel 1 TUVW inputs as 4-bit value

; Motor #1 Status Bits
M130->Y:$0814,11,1 ; #1 Stopped-on-position-limit bit
M131->X:$003D,21,1 ; #1 Positive-end-limit-set bit
M132->X:$003D,22,1 ; #1 Negative-end-limit-set bit
M133->X:$003D,13,1 ; #1 Desired-velocity-zero bit
M135->X:$003D,15,1 ; #1 Dwell-in-progress bit
M137->X:$003D,17,1 ; #1 Running-program bit
M138->X:$003D,18,1 ; #1 Open-loop-mode bit
M139->Y:$0814,14,1 ; #1 Amplifier-enabled status bit
M140->Y:$0814,0,1 ; #1 In-position bit
M141->Y:$0814,1,1 ; #1 Warning-following error bit
M142->Y:$0814,2,1 ; #1 Fatal-following-error bit
M143->Y:$0814,3,1 ; #1 Amplifier-fault-error bit
M145->Y:$0814,10,1 ; #1 Home-complete bit

; Motor #1 Move Registers
M161->D:$0028 ; #1 Commanded position (1/[Ix08*32] cts)
M162->D:$002B ; #1 Actual position (1/[Ix08*32] cts)
M163->D:$080B ; #1 Target (end) position (1/[Ix08*32] cts)
M164->D:$0813 ; #1 Position bias (1/[Ix08*32] cts)
M165->L:$081F ; &1 X-axis target position (engineering units)
M166->X:$0033,0,24,S ; #1 Actual velocity (1/[Ix09*32] cts/cyc)
M167->D:$002D ; #1 Present master pos (1/[Ix07*32] cts)
M168->X:$0043,8,16,S ; #1 Filter Output (DAC bits)
M169->D:$004A ; #1 Compensation correction (1/[Ix08*32] cts)
M170->D:$0040 ; #1 Present phase position (including fraction)
M171->X:$0040,24,S ; #1 Present phase position (counts *Ix70)
M172->L:$082B ; #1 Variable jog position/distance (cts)
M173->Y:$0815,24,S ; #1 Encoder home capture position (cts)
M174->Y:$082A,24,S ; #1 Averaged actual velocity (1/[Ix09*32] cts/cyc)

PMAC 2 Software Reference

PMAC2 Suggested M-Variable Definitions 475

; Coordinate System &1 Status Bits
M180->X:$0818,0,1 ; &1 Program-running bit
M181->Y:$0817,21,1 ; &1 Circle-radius-error bit
M182->Y:$0817,22,1 ; &1 Run-time-error bit
M184->X:$0818,0,4 ; &1 Continuous motion request
M187->Y:$0817,17,1 ; &1 In-position bit (AND of motors)
M188->Y:$0817,18,1 ; &1 Warning-following-error bit (OR)
M189->Y:$0817,19,1 ; &1 Fatal-following-error bit (OR)
M190->Y:$0817,20,1 ; &1 Amp-fault-error bit (OR of motors)

; Motor #1 Axis Definition Registers
M191->L:$0822 ; #1 X/U/A/B/C-Axis scale factor (cts/unit)
M192->L:$0823 ; #1 Y/V-Axis scale factor (cts/unit)
M193->L:$0824 ; #1 Z/W-Axis scale factor (cts/unit)
M194->L:$0825 ; #1 Axis offset (cts)

; Coordinate System &1 Variables
M197->X:$0806,0,24,S ; &1 Host commanded time base (I10 units)
M198->X:$0808,0,24,S ; &1 Present time base (I10 units)

; Gate Array Registers for Channel 2
M201->X:$C009,0,24,S ; ENC2 24-bit counter position
M202->Y:$C00A,8,16,S ; OUT2A command value; DAC or PWM
M203->X:$C00B,0,24,S ; ENC2 captured position
M204->Y:$C00B,8,16,S ; OUT2B command value; DAC or PWM
M205->X:$0711,8,16,S ; ADC2A input image value
M206->Y:$0711,8,16,S ; ADC2B input image value
M207->Y:$C00C,8,16,S ; OUT2C command value; PFM or PWM
M208->Y:$C00F,0,24,S ; ENC2 compare A position
M209->X:$C00F,0,24,S ; ENC2 compare B position
M210->X:$C00E,0,24,S ; ENC2 compare autoincrement value
M211->X:$C00D,11 ; ENC2 compare initial state write enable
M212->X:$C00D,12 ; ENC2 compare initial state
M214->X:$C00D,14 ; AENA2 output status
M215->X:$C008,19 ; USER2 flag input status
M216->X:$C008,9 ; ENC2 compare output value
M217->X:$C008,11 ; ENC2 capture flag
M218->X:$C008,8 ; ENC2 count error flag
M219->X:$C008,14 ; CHC2 input status
M220->X:$C008,16 ; HMFL2 flag input status
M221->X:$C008,17 ; PLIM2 flag input status
M222->X:$C008,18 ; MLIM2 flag input status
M223->X:$C008,15 ; FAULT2 flag input status
M224->X:$C008,20 ; Channel 2 W flag input status
M225->X:$C008,21 ; Channel 2 V flag input status
M226->X:$C008,22 ; Channel 2 U flag input status
M227->X:$C008,23 ; Channel 2 T flag input status
M228->X:$C008,20,4 ; Channel 2 TUVW inputs as 4-bit value

 PMAC 2 Software Reference

476 PMAC2 Suggested M-Variable Definitions

; Motor #2 Status Bits
M230->Y:$08D4,11,1 ; #2 Stopped-on-position-limit bit
M231->X:$0079,21,1 ; #2 Positive-end-limit-set bit
M232->X:$0079,22,1 ; #2 Negative-end-limit-set bit
M233->X:$0079,13,1 ; #2 Desired-velocity-zero bit
M235->X:$0079,15,1 ; #2 Dwell-in-progress bit
M237->X:$0079,17,1 ; #2 Running-program bit
M238->X:$0079,18,1 ; #2 Open-loop-mode bit
M239->Y:$08D4,14,1 ; #2 Amplifier-enabled status bit
M240->Y:$08D4,0,1 ; #2 In-position bit
M241->Y:$08D4,1,1 ; #2 Warning-following error bit
M242->Y:$08D4,2,1 ; #2 Fatal-following-error bit
M243->Y:$08D4,3,1 ; #2 Amplifier-fault-error bit
M245->Y:$08D4,10,1 ; #2 Home-complete bit

; Motor #2 Move Registers
M261->D:$0064 ; #2 Commanded position (1/[Ix08*32] cts)
M262->D:$0067 ; #2 Actual position (1/[Ix08*32] cts)
M263->D:$08CB ; #2 Target (end) position (1/[Ix08*32] cts)
M264->D:$08D3 ; #2 Position bias (1/[Ix08*32] cts)
M265->L:$0820 ; &1 Y-axis target position (engineering units)
M266->X:$006F,0,24,S ; #2 Actual velocity (1/[Ix09*32] cts/cyc)
M267->D:$0069 ; #2 Present master pos (1/[Ix07*32] cts)
M268->X:$007F,8,16,S ; #2 Filter Output (DAC bits)
M269->D:$0086 ; #2 Compensation correction (1/[Ix08*32] cts)
M270->D:$007C ; #2 Present phase position (including fraction)
M271->X:$007C,24,S ; #2 Present phase position (counts *Ix70)
M272->L:$08EB ; #2 Variable jog position/distance (cts)
M273->Y:$08D5,24,S ; #2 Encoder home capture position (cts)
M274->Y:$08EA,24,S ; #2 Averaged actual velocity (1/[Ix09*32] cts/cyc)

; Coordinate System &2 Status Bits
M280->X:$08D8,0,1 ; &2 Program-running bit
M281->Y:$08D7,21,1 ; &2 Circle-radius-error bit
M282->Y:$08D7,22,1 ; &2 Run-time-error bit
M284->X:$08D8,0,4 ; &2 Continuous motion request
M287->Y:$08D7,17,1 ; &2 In-position bit (AND of motors)
M288->Y:$08D7,18,1 ; &2 Warning-following-error bit (OR)
M289->Y:$08D7,19,1 ; &2 Fatal-following-error bit (OR)
M290->Y:$08D7,20,1 ; &2 Amp-fault-error bit (OR of motors)

; Motor #2 Axis Definition Registers
M291->L:$08E2 ; #2 X/U/A/B/C-Axis scale factor (cts/unit)
M292->L:$08E3 ; #2 Y/V-Axis scale factor (cts/unit)
M293->L:$08E4 ; #2 Z/W-Axis scale factor (cts/unit)
M294->L:$08E5 ; #2 Axis offset (cts)

; Coordinate System &2 Variables
M297->X:$08C6,0,24,S ; &2 Host commanded time base (I10 units)
M298->X:$08C8,0,24,S ; &2 Present time base (I10 units)

PMAC 2 Software Reference

PMAC2 Suggested M-Variable Definitions 477

; Gate Array Registers for Channel 3
M301->X:$C011,0,24,S ; ENC3 24-bit counter position
M302->Y:$C012,8,16,S ; OUT3A command value; DAC or PWM
M303->X:$C013,0,24,S ; ENC3 captured position
M304->Y:$C013,8,16,S ; OUT3B command value; DAC or PWM
M305->X:$0712,8,16,S ; ADC3A input image value
M306->Y:$0712,8,16,S ; ADC3B input image value
M307->Y:$C014,8,16,S ; OUT3C command value; PFM or PWM
M308->Y:$C017,0,24,S ; ENC3 compare A position
M309->X:$C017,0,24,S ; ENC3 compare B position
M310->X:$C016,0,24,S ; ENC3 compare autoincrement value
M311->X:$C015,11 ; ENC3 compare initial state write enable
M312->X:$C015,12 ; ENC3 compare initial state
M314->X:$C015,14 ; AENA3 output status
M315->X:$C010,19 ; USER3 flag input status
M316->X:$C010,9 ; ENC3 compare output value
M317->X:$C010,11 ; ENC3 capture flag
M318->X:$C010,8 ; ENC3 count error flag
M319->X:$C010,14 ; CHC3 input status
M320->X:$C010,16 ; HMFL3 flag input status
M321->X:$C010,17 ; PLIM3 flag input status
M322->X:$C010,18 ; MLIM3 flag input status
M323->X:$C010,15 ; FAULT3 flag input status
M324->X:$C010,20 ; Channel 3 W flag input status
M325->X:$C010,21 ; Channel 3 V flag input status
M326->X:$C010,22 ; Channel 3 U flag input status
M327->X:$C010,23 ; Channel 3 T flag input status
M328->X:$C010,20,4 ; Channel 3 TUVW inputs as 4-bit value

; Motor #3 Status Bits
M330->Y:$0994,11,1 ; #3 Stopped-on-position-limit bit
M331->X:$00B5,21,1 ; #3 Positive-end-limit-set bit
M332->X:$00B5,22,1 ; #3 Negative-end-limit-set bit
M333->X:$00B5,13,1 ; #3 Desired-velocity-zero bit
M335->X:$00B5,15,1 ; #3 Dwell-in-progress bit
M337->X:$00B5,17,1 ; #3 Running-program bit
M338->X:$00B5,18,1 ; #3 Open-loop-mode bit
M339->Y:$0994,14,1 ; #3 Amplifier-enabled status bit
M340->Y:$0994,0,1 ; #3 In-position bit
M341->Y:$0994,1,1 ; #3 Warning-following error bit
M342->Y:$0994,2,1 ; #3 Fatal-following-error bit
M343->Y:$0994,3,1 ; #3 Amplifier-fault-error bit
M345->Y:$0994,10,1 ; #3 Home-complete bit

; Motor #3 Move Registers
M361->D:$00A0 ; #3 Commanded position (1/[Ix08*32] cts)
M362->D:$00A3 ; #3 Actual position (1/[Ix08*32] cts)
M363->D:$098B ; #3 Target (end) position (1/[Ix08*32] cts)
M364->D:$0993 ; #3 Position bias (1/[Ix08*32] cts)

 PMAC 2 Software Reference

478 PMAC2 Suggested M-Variable Definitions

M365->L:$0821 ; &1 Z-axis target position (engineering units)
M366->X:$00AB,0,24,S ; #3 Actual velocity (1/[Ix09*32] cts/cyc)
M367->D:$00A5 ; #3 Present master pos (1/[Ix07*32] cts)
M368->X:$00BB,8,16,S ; #3 Filter Output (DAC bits)
M369->X:$00C2 ; #3 Compensation correction (1/[Ix08*32] cts)
M370->D:$00B8 ; #3 Present phase position (including fraction)
M371->X:$00B8,24,S ; #3 Present phase position (counts*Ix70)
M372->L:$09AB ; #3 Variable jog position/distance (cts)
M373->Y:$0995,24,S ; #3 Encoder home capture position (cts)
M374->Y:$09AA,24,S ; #3 Averaged actual velocity (1/[Ix09*32] cts/cyc)

; Coordinate System &3 Status Bits
M380->X:$0998,0,1 ; &3 Program-running bit
M381->Y:$0997,21,1 ; &3 Circle-radius-error bit
M382->Y:$0997,22,1 ; &3 Run-time-error bit
M384->X:$0998,0,4 ; &3 Continuous motion request
M387->Y:$0997,17,1 ; &3 In-position bit (AND of motors)
M388->Y:$0997,18,1 ; &3 Warning-following-error bit (OR)
M389->Y:$0997,19,1 ; &3 Fatal-following-error bit (OR)
M390->Y:$0997,20,1 ; &3 Amp-fault-error bit (OR of motors)

; Motor #3 Axis Definition Registers
M391->L:$09A2 ; #3 X/U/A/B/C-Axis scale factor (cts/unit)
M392->L:$09A3 ; #3 Y/V-Axis scale factor (cts/unit)
M393->L:$09A4 ; #3 Z/W-Axis scale factor (cts/unit)
M394->L:$09A5 ; #3 Axis offset (cts)

; Coordinate System &3 Variables
M397->X:$0986,0,24,S ; &3 Host commanded time base (I10 units)
M398->X:$0988,0,24,S ; &3 Present time base (I10 units)

; Gate Array Registers for Channel 4
M401->X:$C019,0,24,S ; ENC4 24-bit counter position
M402->Y:$C01A,8,16,S ; OUT4A command value; DAC or PWM
M403->X:$C01B,0,24,S ; ENC4 captured position
M404->Y:$C01B,8,16,S ; OUT4B command value; DAC or PWM
M405->X:$0713,8,16,S ; ADC4A input image value
M406->Y:$0713,8,16,S ; ADC4B input image value
M407->Y:$C01C,8,16,S ; OUT4C command value; PFM or PWM
M408->Y:$C01F,0,24,S ; ENC4 compare A position
M409->X:$C01F,0,24,S ; ENC4 compare B position
M410->X:$C01E,0,24,S ; ENC4 compare autoincrement value
M411->X:$C01D,11 ; ENC4 compare initial state write enable
M412->X:$C01D,12 ; ENC4 compare initial state
M414->X:$C01D,14 ; AENA4 output status
M415->X:$C018,19 ; USER4 flag input status
M416->X:$C018,9 ; ENC4 compare output value
M417->X:$C018,11 ; ENC4 capture flag
M418->X:$C018,8 ; ENC4 count error flag
M419->X:$C018,14 ; HMFL4 flag input status

PMAC 2 Software Reference

PMAC2 Suggested M-Variable Definitions 479

M420->X:$C018,16 ; CHC4 input status
M421->X:$C018,17 ; PLIM4 flag input status
M422->X:$C018,18 ; MLIM4 flag input status
M423->X:$C018,15 ; FAULT4 flag input status
M424->X:$C018,20 ; Channel 4 W flag input status
M425->X:$C018,21 ; Channel 4 V flag input status
M426->X:$C018,22 ; Channel 4 U flag input status
M427->X:$C018,23 ; Channel 4 T flag input status
M428->X:$C018,20,4 ; Channel 4 TUVW inputs as 4-bit value

; Motor #4 Status Bits
M430->Y:$0A54,11,1 ; #4 Stopped-on-position-limit bit
M431->X:$00F1,21,1 ; #4 Positive-end-limit-set bit
M432->X:$00F1,22,1 ; #4 Negative-end-limit-set bit
M433->X:$00F1,13,1 ; #4 Desired-velocity-zero bit
M435->X:$00F1,15,1 ; #4 Dwell-in-progress bit
M437->X:$00F1,17,1 ; #4 Running-program bit
M438->X:$00F1,18,1 ; #4 Open-loop-mode bit
M439->Y:$0A54,14,1 ; #4 Amplifier-enabled status bit
M440->Y:$0A54,0,1 ; #4 In-position bit
M441->Y:$0A54,1,1 ; #4 Warning-following error bit
M442->Y:$0A54,2,1 ; #4 Fatal-following-error bit
M443->Y:$0A54,3,1 ; #4 Amplifier-fault-error bit
M445->Y:$0A54,10,1 ; #4 Home-complete bit

; Motor #4 Move Registers
M461->D:$00DC ; #4 Commanded position (1/[Ix08*32] cts)
M462->D:$00DF ; #4 Actual position (1/[Ix08*32] cts)
M463->D:$0A4B ; #4 Target (end) position (1/[Ix08*32] cts)
M464->D:$0A53 ; #4 Position bias (1/[Ix08*32] cts)
M465->L:$0819 ; &1 A-axis target position (engineering units)
M466->X:$00E7,0,24,S ; #4 Actual velocity (1/[Ix09*32] cts/cyc)
M467->D:$00E1 ; #4 Present master pos (1/[Ix07*32] cts)
M468->X:$00F7,8,16,S ; #4 Filter Output (DAC bits)
M469->D:$00FE ; #4 Compensation correction (1/[Ix08*32] cts)
M470->D:$00F4 ; #4 Present phase position (including fraction)
M471->X:$00F4,24,S ; #4 Present phase position (counts*Ix70)
M472->L:$0A6B ; #4 Variable jog position/distance (cts)
M473->Y:$0A55,24,S ; #4 Encoder home capture position (cts)
M474->Y:$0A6A,24,S ; #4 Averaged actual velocity (1/[Ix09*32] cts/cyc)

; Coordinate System &4 Status Bits
M480->X:$0A58,0,1 ; &4 Program-running bit
M481->Y:$0A57,21,1 ; &4 Circle-radius-error bit
M482->Y:$0A57,22,1 ; &4 Run-time-error bit
M484->X:$0A58,0,4 ; &4 Continuous motion request
M487->Y:$0A57,17,1 ; &4 In-position bit (AND of motors)
M488->Y:$0A57,18,1 ; &4 Warning-following-error bit (OR)
M489->Y:$0A57,19,1 ; &4 Fatal-following-error bit (OR)

 PMAC 2 Software Reference

480 PMAC2 Suggested M-Variable Definitions

M490->Y:$0A57,20,1 ; &4 Amp-fault-error bit (OR of motors)

; Motor #4 Axis Definition Registers
M491->L:$0A62 ; #4 X/U/A/B/C-Axis scale factor (cts/unit)
M492->L:$0A63 ; #4 Y/V-Axis scale factor (cts/unit)
M493->L:$0A64 ; #4 Z/W-Axis scale factor (cts/unit)
M494->L:$0A65 ; #4 Axis offset (cts)

; Coordinate System &4 Variables
M497->X:$0A46,0,24,S ; &4 Host commanded time base (I10 units)
M498->X:$0A48,0,24,S ; &4 Present time base (I10 units)

; Gate Array Registers for Channel 5
M501->X:$C021,0,24,S ; ENC5 24-bit counter position
M502->Y:$C022,8,16,S ; OUT5A command value; DAC or PWM
M503->X:$C023,0,24,S ; ENC5 captured position
M504->Y:$C023,8,16,S ; OUT5B command value; DAC or PWM
M505->X:$0714,8,16,S ; ADC5A input image value
M506->Y:$0714,8,16,S ; ADC5B input image value
M507->Y:$C024,8,16,S ; OUT5C command value; PFM or PWM
M508->Y:$C027,0,24,S ; ENC5 compare A position
M509->X:$C027,0,24,S ; ENC5 compare B position
M510->X:$C026,0,24,S ; ENC5 compare autoincrement value
M511->X:$C025,11 ; ENC5 compare initial state write enable
M512->X:$C025,12 ; ENC5 compare initial state
M514->X:$C025,14 ; AENA5 output status
M515->X:$C020,19 ; USER5 flag input status
M516->X:$C020,9 ; ENC5 compare output value
M517->X:$C020,11 ; ENC5 capture flag
M518->X:$C020,8 ; ENC5 count error flag
M519->X:$C020,14 ; CHC5 input status
M520->X:$C020,16 ; HMFL5 flag input status
M521->X:$C020,17 ; PLIM5 flag input status
M522->X:$C020,18 ; MLIM5 flag input status
M523->X:$C020,15 ; FAULT5 flag input status
M524->X:$C020,20 ; Channel 5 W flag input status
M525->X:$C020,21 ; Channel 5 V flag input status
M526->X:$C020,22 ; Channel 5 U flag input status
M527->X:$C020,23 ; Channel 5 T flag input status
M528->X:$C020,20,4 ; Channel 5 TUVW inputs as 4-bit value

; Motor #5 Status Bits
M530->Y:$0B14,11,1 ; #5 Stopped-on-position-limit bit
M531->X:$012D,21,1 ; #5 Positive-end-limit-set bit
M532->X:$012D,22,1 ; #5 Negative-end-limit-set bit
M533->X:$012D,13,1 ; #5 Desired-velocity-zero bit
M535->X:$012D,15,1 ; #5 Dwell-in-progress bit
M537->X:$012D,17,1 ; #5 Running-program bit
M538->X:$012D,18,1 ; #5 Open-loop-mode bit
M539->Y:$0B14,14,1 ; #5 Amplifier-enabled status bit

PMAC 2 Software Reference

PMAC2 Suggested M-Variable Definitions 481

M540->Y:$0B14,0,1 ; #5 In-position bit
M541->Y:$0B14,1,1 ; #5 Warning-following error bit
M542->Y:$0B14,2,1 ; #5 Fatal-following-error bit
M543->Y:$0B14,3,1 ; #5 Amplifier-fault-error bit
M545->Y:$0B14,10,1 ; #5 Home-complete bit

; Motor #5 Move Registers
M561->D:$0118 ; #5 Commanded position (1/[Ix08*32] cts)
M562->D:$011B ; #5 Actual position (1/[Ix08*32] cts)
M563->D:$0B0B ; #5 Target (end) position (1/[Ix08*32] cts)
M564->D:$0B13 ; #5 Position bias (1/[Ix08*32] cts)
M565->L:$081A ; &1 B-axis target position (engineering units)
M566->X:$0123,0,24,S ; #5 Actual velocity (1/[Ix09*32] cts/cyc)
M567->D:$011D ; #5 Present master pos (1/[Ix07*32] cts)
M568->X:$0133,8,16,S ; #5 Filter Output (DAC bits)
M569->D:$013A ; #5 Compensation correction (1/[Ix08*32] cts)
M570->D:$0130 ; #5 Present phase position (including fraction)
M571->X:$0130,24,S ; #5 Present phase position (counts*Ix70)
M572->L:$0B2B ; #5 Variable jog position/distance (cts)
M573->Y:$0B15,24,S ; #5 Encoder home capture position (cts)
M574->Y:$0B2A,24,S ; #5 Averaged actual velocity (1/[Ix09*32] cts/cyc)

; Coordinate System &5 Status Bits
M580->X:$0B18,0,1 ; &5 Program-running bit
M581->Y:$0B17,21,1 ; &5 Circle-radius-error bit
M582->Y:$0B17,22,1 ; &5 Run-time-error bit
M584->X:$0B18,0,4 ; &5 Continuous motion request
M587->Y:$0B17,17,1 ; &5 In-position bit (AND of motors)
M588->Y:$0B17,18,1 ; &5 Warning-following-error bit (OR)
M589->Y:$0B17,19,1 ; &5 Fatal-following-error bit (OR)
M590->Y:$0B17,20,1 ; &5 Amp-fault-error bit (OR of motors)

; Motor #5 Axis Definition Registers
M591->L:$0B22 ; #5 X/U/A/B/C-Axis scale factor (cts/unit)
M592->L:$0B23 ; #5 Y/V-Axis scale factor (cts/unit)
M593->L:$0B24 ; #5 Z/W-Axis scale factor (cts/unit)
M594->L:$0B25 ; #5 Axis offset (cts)

; Coordinate System &5 Variables
M597->X:$0B06,0,24,S ; &5 Host commanded time base (I10 units)
M598->X:$0B08,0,24,S ; &5 Present time base (I10 units)

; Gate Array Registers for Channel 6
M601->X:$C029,0,24,S ; ENC6 24-bit counter position
M602->Y:$C02A,8,16,S ; OUT6A command value; DAC or PWM
M603->X:$C02B,0,24,S ; ENC6 captured position
M604->Y:$C02B,8,16,S ; OUT6B command value; DAC or PWM
M605->X:$0715,8,16,S ; ADC6A input image value
M606->Y:$0715,8,16,S ; ADC6B input image value
M607->Y:$C02C,8,16,S ; OUT6C command value; PFM or PWM

 PMAC 2 Software Reference

482 PMAC2 Suggested M-Variable Definitions

M608->Y:$C02F,0,24,S ; ENC6 compare A position
M609->X:$C02F,0,24,S ; ENC6 compare B position
M610->X:$C02E,0,24,S ; ENC6 compare autoincrement value
M611->X:$C02D,11 ; ENC6 compare initial state write enable
M612->X:$C02D,12 ; ENC6 compare initial state
M614->X:$C02D,14 ; AENA6 output status
M615->X:$C028,19 ; USER6 flag input status
M616->X:$C028,9 ; ENC6 compare output value
M617->X:$C028,11 ; ENC6 capture flag
M618->X:$C028,8 ; ENC6 count error flag
M619->X:$C028,14 ; CHC6 input status
M620->X:$C028,16 ; HMFL6 flag input status
M621->X:$C028,17 ; PLIM6 flag input status
M622->X:$C028,18 ; MLIM6 flag input status
M623->X:$C028,15 ; FAULT6 flag input status
M624->X:$C028,20 ; Channel 6 W flag input status
M625->X:$C028,21 ; Channel 6 V flag input status
M626->X:$C028,22 ; Channel 6 U flag input status
M627->X:$C028,23 ; Channel 6 T flag input status
M628->X:$C028,20,4 ; Channel 6 TUVW inputs as 4-bit value

; Motor #6 Status Bits
M630->Y:$0BD4,11,1 ; #6 Stopped-on-position-limit bit
M631->X:$0169,21,1 ; #6 Positive-end-limit-set bit
M632->X:$0169,22,1 ; #6 Negative-end-limit-set bit
M633->X:$0169,13,1 ; #6 Desired-velocity-zero bit
M635->X:$0169,15,1 ; #6 Dwell-in-progress bit
M637->X:$0169,17,1 ; #6 Running-program bit
M638->X:$0169,18,1 ; #6 Open-loop-mode bit
M639->Y:$0BD4,14,1 ; #6 Amplifier-enabled status bit
M640->Y:$0BD4,0,1 ; #6 In-position bit
M641->Y:$0BD4,1,1 ; #6 Warning-following error bit
M642->Y:$0BD4,2,1 ; #6 Fatal-following-error bit
M643->Y:$0BD4,3,1 ; #6 Amplifier-fault-error bit
M645->Y:$0BD4,10,1 ; #6 Home-complete bit

; Motor #6 Move Registers
M661->D:$0154 ; #6 Commanded position (1/[Ix08*32] cts)
M662->D:$0157 ; #6 Actual position (1/[Ix08*32] cts)
M663->D:$0BCB ; #6 Target (end) position (1/[Ix08*32] cts)
M664->D:$0BD3 ; #6 Position bias (1/[Ix08*32] cts)
M665->L:$081B ; &1 C-axis target position (engineering units)
M666->X:$015F,0,24,S ; #6 Actual velocity (1/[Ix09*32] cts/cyc)
M667->D:$0159 ; #6 Present master pos (1/[Ix07*32] cts)
M668->X:$016F,8,16,S ; #6 Filter Output (DAC bits)
M669->D:$0176 ; #6 Compensation correction (1/[Ix08*32] cts)
M670->D:$016C ; #6 Present phase position (including fraction)
M671->X:$016C,24,S ; #6 Present phase position (counts*Ix70)

PMAC 2 Software Reference

PMAC2 Suggested M-Variable Definitions 483

M672->L:$0BEB ; #6 Variable jog position/distance (cts)
M673->Y:$0BD5,24,S ; #6 Encoder home capture position (cts)
M674->Y:$0BEA,24,S ; #6 Averaged actual velocity (1/[Ix09*32] cts/cyc)

; Coordinate System &6 Status Bits
M680->X:$0BD8,0,1 ; &6 Program-running bit
M681->Y:$0BD7,21,1 ; &6 Circle-radius-error bit
M682->Y:$0BD7,22,1 ; &6 Run-time-error bit
M684->X:$0BD8,0,4 ; &6 Continuous motion request
M687->Y:$0BD7,17,1 ; &6 In-position bit (AND of motors)
M688->Y:$0BD7,18,1 ; &6 Warning-following-error bit (OR)
M689->Y:$0BD7,19,1 ; &6 Fatal-following-error bit (OR)
M690->Y:$0BD7,20,1 ; &6 Amp-fault-error bit (OR of motors)

; Motor #6 Axis Definition Registers
M691->L:$0BE2 ; #6 X/U/A/B/C-Axis scale factor (cts/unit)
M692->L:$0BE3 ; #6 Y/V-Axis scale factor (cts/unit)
M693->L:$0BE4 ; #6 Z/W-Axis scale factor (cts/unit)
M694->L:$0BE5 ; #6 Axis offset (cts)

; Coordinate System &6 Variables
M697->X:$0BC6,0,24,S ; &6 Host commanded time base (I10 units)
M698->X:$0BC8,0,24,S ; &6 Present time base (I10 units)

; Gate Array Registers for Channel 7
M701->X:$C031,0,24,S ; ENC7 24-bit counter position
M702->Y:$C032,8,16,S ; OUT7A command value; DAC or PWM
M703->X:$C033,0,24,S ; ENC7 captured position
M704->Y:$C033,8,16,S ; OUT7B command value; DAC or PWM
M705->X:$0716,8,16,S ; ADC7A input image value
M706->Y:$0716,8,16,S ; ADC7B input image value
M707->Y:$C034,8,16,S ; OUT7C command value; PFM or PWM
M708->Y:$C037,0,24,S ; ENC7 compare A position
M709->X:$C037,0,24,S ; ENC7 compare B position
M710->X:$C036,0,24,S ; ENC7 compare autoincrement value
M711->X:$C035,11 ; ENC7 compare initial state write enable
M712->X:$C035,12 ; ENC7 compare initial state
M714->X:$C035,14 ; AENA7 output status
M715->X:$C030,19 ; CHC7 input status
M716->X:$C030,9 ; ENC7 compare output value
M717->X:$C030,11 ; ENC7 capture flag
M718->X:$C030,8 ; ENC7 count error flag
M719->X:$C030,14 ; CHC7 input status
M720->X:$C030,16 ; HMFL7 flag input status
M721->X:$C030,17 ; PLIM7 flag input status
M722->X:$C030,18 ; MLIM7 flag input status
M723->X:$C030,15 ; FAULT7 flag input status
M724->X:$C030,20 ; Channel 7 W flag input status
M725->X:$C030,21 ; Channel 7 V flag input status
M726->X:$C030,22 ; Channel 7 U flag input status

 PMAC 2 Software Reference

484 PMAC2 Suggested M-Variable Definitions

M727->X:$C030,23 ; Channel 7 T flag input status
M728->X:$C030,20,4 ; Channel 7 TUVW inputs as 4-bit value

; Motor #7 Status Bits
M730->Y:$0C94,11,1 ; #7 Stopped-on-position-limit bit
M731->X:$01A5,21,1 ; #7 Positive-end-limit-set bit
M732->X:$01A5,22,1 ; #7 Negative-end-limit-set bit
M733->X:$01A5,13,1 ; #7 Desired-velocity-zero bit
M735->X:$01A5,15,1 ; #7 Dwell-in-progress bit
M737->X:$01A5,17,1 ; #7 Running-program bit
M738->X:$01A5,18,1 ; #7 Open-loop-mode bit
M739->Y:$0C94,14,1 ; #7 Amplifier-enabled status bit
M740->Y:$0C94,0,1 ; #7 In-position bit
M741->Y:$0C94,1,1 ; #7 Warning-following error bit
M742->Y:$0C94,2,1 ; #7 Fatal-following-error bit
M743->Y:$0C94,3,1 ; #7 Amplifier-fault-error bit
M745->Y:$0C94,10,1 ; #7 Home-complete bit

; Motor #7 Move Registers
M761->D:$0190 ; #7 Commanded position (1/[Ix08*32] cts)
M762->D:$0193 ; #7 Actual position (1/[Ix08*32] cts)
M763->D:$0C8B ; #7 Target (end) position (1/[Ix08*32] cts)
M764->D:$0C93 ; #7 Position bias (1/[Ix08*32] cts)
M765->L:$081C ; &1 U-axis target position (engineering units)
M766->X:$019B,0,24,S ; #7 Actual velocity (1/[Ix09*32] cts/cyc)
M767->D:$0195 ; #7 Present master pos (1/[Ix07*32] cts)
M768->X:$01AB,8,16,S ; #7 Filter Output (DAC bits)
M769->D:$01B2 ; #7 Compensation correction (1/[Ix08*32] cts)
M770->D:$01A8 ; #7 Present phase position (including fraction)
M771->X:$01A8,24,S ; #7 Present phase position (counts*Ix70)
M772->L:$0CAB ; #7 Variable jog position/distance (cts)
M773->Y:$0C95,24,S ; #7 Encoder home capture position (cts)
M774->Y:$0CAA,24,S ; #7 Averaged actual velocity (1/[Ix09*32] cts/cyc)

; Coordinate System &7 Status Bits
M780->X:$0C98,0,1 ; &7 Program-running bit
M781->Y:$0C97,21,1 ; &7 Circle-radius-error bit
M782->Y:$0C97,22,1 ; &7 Run-time-error bit
M784->X:$0C98,0,4 ; &7 Continuous motion request
M787->Y:$0C97,17,1 ; &7 In-position bit (AND of motors)
M788->Y:$0C97,18,1 ; &7 Warning-following-error bit (OR)
M789->Y:$0C97,19,1 ; &7 Fatal-following-error bit (OR)
M790->Y:$0C97,20,1 ; &7 Amp-fault-error bit (OR of motors)

; Motor #7 Axis Definition Registers
M791->L:$0CA2 ; #7 X/U/A/B/C-Axis scale factor (cts/unit)
M792->L:$0CA3 ; #7 Y/V-Axis scale factor (cts/unit)
M793->L:$0CA4 ; #7 Z/W-Axis scale factor (cts/unit)
M794->L:$0CA5 ; #7 Axis offset (cts)

PMAC 2 Software Reference

PMAC2 Suggested M-Variable Definitions 485

; Coordinate System &7 Variables
M797->X:$0C86,0,24,S ; &7 Host commanded time base (I10 units)
M798->X:$0C88,0,24,S ; &7 Present time base (I10 units)

; Gate Array Registers for Channel 8
M801->X:$C039,0,24,S ; ENC8 24-bit counter position
M802->Y:$C03A,8,16,S ; OUT8A command value; DAC or PWM
M803->X:$C03B,0,24,S ; ENC8 captured position
M804->Y:$C03B,8,16,S ; OUT8B command value; DAC or PWM
M805->X:$0717,8,16,S ; ADC8A input image value
M806->Y:$0717,8,16,S ; ADC8B input image value
M807->Y:$C03C,8,16,S ; OUT8C command value; PFM or PWM
M808->Y:$C03F,0,24,S ; ENC8 compare A position
M809->X:$C03F,0,24,S ; ENC8 compare B position
M810->X:$C03E,0,24,S ; ENC8 compare autoincrement value
M811->X:$C03D,11 ; ENC8 compare initial state write enable
M812->X:$C03D,12 ; ENC8 compare initial state
M814->X:$C03D,14 ; AENA8 output status
M815->X:$C038,19 ; USER8 flag input status
M816->X:$C038,9 ; ENC8 compare output value
M817->X:$C038,11 ; ENC8 capture flag
M818->X:$C038,8 ; ENC8 count error flag
M819->X:$C038,14 ; CHC8 input status
M820->X:$C038,16 ; HMFL8 flag input status
M821->X:$C038,17 ; PLIM8 flag input status
M822->X:$C038,18 ; MLIM8 flag input status
M823->X:$C038,15 ; FAULT8 flag input status
M824->X:$C038,20 ; Channel 8 W flag input status
M825->X:$C038,21 ; Channel 8 V flag input status
M826->X:$C038,22 ; Channel 8 U flag input status
M827->X:$C038,23 ; Channel 8 T flag input status
M828->X:$C038,20,4 ; Channel 8 TUVW inputs as 4-bit value

; Motor #8 Status Bits
M830->Y:$0D54,11,1 ; #8 Stopped-on-position-limit bit
M831->X:$01E1,21,1 ; #8 Positive-end-limit-set bit
M832->X:$01E1,22,1 ; #8 Negative-end-limit-set bit
M833->X:$01E1,13,1 ; #8 Desired-velocity-zero bit
M835->X:$01E1,15,1 ; #8 Dwell-in-progress bit
M837->X:$01E1,17,1 ; #8 Running-program bit
M838->X:$01E1,18,1 ; #8 Open-loop-mode bit
M839->Y:$0D54,14,1 ; #8 Amplifier-enabled status bit
M840->Y:$0D54,0,1 ; #8 In-position bit
M841->Y:$0D54,1,1 ; #8 Warning-following error bit
M842->Y:$0D54,2,1 ; #8 Fatal-following-error bit
M843->Y:$0D54,3,1 ; #8 Amplifier-fault-error bit
M845->Y:$0D54,10,1 ; #8 Home-complete bit

 PMAC 2 Software Reference

486 PMAC2 Suggested M-Variable Definitions

; Motor #8 Move Registers
M861->D:$01CC ; #8 Commanded position (1/[Ix08*32] cts)
M862->D:$01CF ; #8 Actual position (1/[Ix08*32] cts)
M863->D:$0D4B ; #8 Target (end) position (1/[Ix08*32] cts)
M864->D:$0D53 ; #8 Position bias (1/[Ix08*32] cts)
M865->L:$081D ; &1 V-axis target position (engineering units)
M866->X:$01D7,0,24,S ; #8 Actual velocity (1/[Ix09*32] cts/cyc)
M867->D:$01D1 ; #8 Present master pos (1/[Ix07*32] cts)
M868->X:$01E7,8,16,S ; #8 Filter Output (DAC bits)
M869->D:$01EE ; #8 Compensation correction (1/[Ix08*32] cts)
M870->D:$01E4 ; #8 Present phase position (including fraction)
M871->X:$01E4,24,S ; #8 Present phase position (counts*Ix70)
M872->L:$0D6B ; #8 Variable jog position/distance (cts)
M873->Y:$0D55,24,S ; #8 Encoder home capture position (cts)
M874->Y:$0D6A,24,S ; #8 Averaged actual velocity (1/[Ix09*32] cts/cyc)

; Coordinate System &8 Status Bits
M880->X:$0D58,0,1 ; &8 Program-running bit
M881->Y:$0D57,21,1 ; &8 Circle-radius-error bit
M882->Y:$0D57,22,1 ; &8 Run-time-error bit
M884->X:$0D58,0,4 ; &8 Continuous motion request
M887->Y:$0D57,17,1 ; &8 In-position bit (AND of motors)
M888->Y:$0D57,18,1 ; &8 Warning-following-error bit (OR)
M889->Y:$0D57,19,1 ; &8 Fatal-following-error bit (OR)
M890->Y:$0D57,20,1 ; &8 Amp-fault-error bit (OR of motors)

; Motor #8 Axis Definition Registers
M891->L:$0D62 ; #8 X/U/A/B/C-Axis scale factor (cts/unit)
M892->L:$0D63 ; #8 Y/V-Axis scale factor (cts/unit)
M893->L:$0D64 ; #8 Z/W-Axis scale factor (cts/unit)
M894->L:$0D65 ; #8 Axis offset (cts)

; Coordinate System &8 Variables
M897->X:$0D46,0,24,S ; &8 Host commanded time base (I10 units)
M898->X:$0D48,0,24,S ; &8 Present time base (I10 units)

; Accessory 14 I/O M-Variables (1st ACC-14)
M900->Y:$FFD0,0,1 ; MI/O0
M901->Y:$FFD0,1,1 ; MI/O1
M902->Y:$FFD0,2,1 ; MI/O2
M903->Y:$FFD0,3,1 ; MI/O3
M904->Y:$FFD0,4,1 ; MI/O4
M905->Y:$FFD0,5,1 ; MI/O5
M906->Y:$FFD0,6,1 ; MI/O6
M907->Y:$FFD0,7,1 ; MI/O7
M908->Y:$FFD0,8,1 ; MI/O8
M909->Y:$FFD0,9,1 ; MI/O9
M910->Y:$FFD0,10,1 ; MI/O10
M911->Y:$FFD0,11,1 ; MI/O11
M912->Y:$FFD0,12,1 ; MI/O12

PMAC 2 Software Reference

PMAC2 Suggested M-Variable Definitions 487

M913->Y:$FFD0,13,1 ; MI/O13
M914->Y:$FFD0,14,1 ; MI/O14
M915->Y:$FFD0,15,1 ; MI/O15
M916->Y:$FFD0,16,1 ; MI/O16
M917->Y:$FFD0,17,1 ; MI/O17
M918->Y:$FFD0,18,1 ; MI/O18
M919->Y:$FFD0,19,1 ; MI/O19
M920->Y:$FFD0,20,1 ; MI/O20
M921->Y:$FFD0,21,1 ; MI/O21
M922->Y:$FFD0,22,1 ; MI/O22
M923->Y:$FFD0,23,1 ; MI/O23
M924->Y:$FFD1,0,1 ; MI/O24
M925->Y:$FFD1,1,1 ; MI/O25
M926->Y:$FFD1,2,1 ; MI/O26
M927->Y:$FFD1,3,1 ; MI/O27
M928->Y:$FFD1,4,1 ; MI/O28
M929->Y:$FFD1,5,1 ; MI/O29
M930->Y:$FFD1,6,1 ; MI/O30
M931->Y:$FFD1,7,1 ; MI/O31
M932->Y:$FFD1,8,1 ; MI/O32
M933->Y:$FFD1,9,1 ; MI/O33
M934->Y:$FFD1,10,1 ; MI/O34
M935->Y:$FFD1,11,1 ; MI/O35
M936->Y:$FFD1,12,1 ; MI/O36
M937->Y:$FFD1,13,1 ; MI/O37
M938->Y:$FFD1,14,1 ; MI/O38
M939->Y:$FFD1,15,1 ; MI/O39
M940->Y:$FFD1,16,1 ; MI/O40
M941->Y:$FFD1,17,1 ; MI/O41
M942->Y:$FFD1,18,1 ; MI/O42
M943->Y:$FFD1,19,1 ; MI/O43
M944->Y:$FFD1,20,1 ; MI/O44
M945->Y:$FFD1,21,1 ; MI/O45
M946->Y:$FFD1,22,1 ; MI/O46
M947->Y:$FFD1,23,1 ; MI/O47

; JANA Analog Input Port M-Variables
M990->X:$0708,0,24,U ; 1st CONFIG_W1 and CONFIG_W2
M991->X:$0709,0,24,U ; 2nd CONFIG_W1 and CONFIG_W2
M992->X:$070A,0,24,U ; 3rd CONFIG_W1 and CONFIG_W2
M993->X:$070B,0,24,U ; 4th CONFIG_W1 and CONFIG_W2
M994->X:$070C,0,24,U ; 5th CONFIG_W1 and CONFIG_W2
M995->X:$070D,0,24,U ; 6th CONFIG_W1 and CONFIG_W2
M996->X:$070E,0,24,U ; 7th CONFIG_W1 and CONFIG_W2
M997->X:$070F,0,24,U ; 8th CONFIG_W1 and CONFIG_W2
M1000->Y:$0708,0,12,{f} ; ANAI00 image register; from J1 pin 1
M1001->Y:$0709,0,12,{f} ; ANAI01 image register; from J1 pin 2
M1002->Y:$070A,0,12,{f} ; ANAI02 image register; from J1 pin 3

 PMAC 2 Software Reference

488 PMAC2 Suggested M-Variable Definitions

M1003->Y:$070B,0,12,{f} ; ANAI03 image register; from J1 pin 4
M1004->Y:$070C,0,12,{f} ; ANAI04 image register; from J1 pin 5
M1005->Y:$070D,0,12,{f} ; ANAI05 image register; from J1 pin 6
M1006->Y:$070E,0,12,{f} ; ANAI06 image register; from J1 pin 7
M1007->Y:$070F,0,12,{f} ; ANAI07 image register; from J1 pin 8
M1008->Y:$0708,12,12,{f} ; ANAI08 image register; from J1 pin 9
M1009->Y:$0709,12,12,{f} ; ANAI09 image register; from J1 pin 10
M1010->Y:$070A,12,12,{f} ; ANAI10 image register; from J1 pin 11
M1011->Y:$070B,12,12,{f} ; ANAI11 image register; from J1 pin 12
M1012->Y:$070C,12,12,{f} ; ANAI12 image register; from J1 pin 13
M1013->Y:$070D,12,12,{f} ; ANAI13 image register; from J1 pin 14
M1014->Y:$070E,12,12,{f} ; ANAI14 image register; from J1 pin 15
M1015->Y:$070F,12,12,{f} ; ANAI15 image register; from J1 pin 16

; where {f} should be a U if the channel is read as an unsigned quantity,
; or an S if the channel is read as a signed quantity.

PMAC 2 Software Reference

PMAC2 Suggested M-Variable Definitions 489

 PMAC 2 Software Reference

490 PMAC Firmware Updates

PMAC FIRMWARE UPDATES
To update to a new revision of firmware:

Battery-backed PMAC(1) boards
For a PMAC(1) controller with battery-backed main memory, the firmware is located in a PROM IC that
cannot be written to in the field. For these controllers, the existing PROM IC must be removed from its
socket on the board, and a new PROM IC installed in its place.

The PROM IC for each of these controllers is:

PMAC(1)-PC: CPU-board IC U5
PMAC(1)-VME: CPU-board IC U5
PMAC(1)-Lite: U5

Flash-backed PMAC(1), all PMAC2 boards
For a PMAC(1) board with flash backed memory or any PMAC2 board, the firmware is located in a flash-
memory IC that can be written to in the field. PMAC(1) controllers have firmware in flash memory if they
are ordered with Option 4A, or any Option 5x. PMAC1.5-Lite, Mini-PMAC(1), and PMAC1.5-STD
controllers always have firmware in flash memory.

For these controllers, the firmware can be updated by installing the “bootstrap” jumper before powering the
board up. When the board is powered up and communications is established with the board by the PMAC
Executive program, the program will notice that the board is in “bootstrap mode” and ask you if you want to
load new firmware. Just follow its directions from this point. Remember to remove the bootstrap jumper
before the next time you power up or reset the board.

The bootstrap jumper for each of these controllers is:
PMAC(1)-PC: CPU-board jumper E4, E7*
PMAC(1)-VME: CPU-board jumper E4, E7*
PMAC(1)-PCI: CPU-board jumper E4, E7*
PMAC1.5-Lite: E106 (connect pins 2 and 3)
Mini-PMAC(1): E51
PMAC1.5-STD: E51
PMAC2-PC: CPU-board jumper E4, E7*
PMAC2-VME: CPU-board jumper E4, E7*
PMAC2-PCI: CPU-board jumper E4, E7*
PMAC2-Lite: E0 (connect pins 2 and 3)
Mini-PMAC2: E0
PMAC2-PC Ultralite: E0
PMAC2-VME Ultralite: E3

*E4 on Universal CPU board (602705); E7 on “Flex” CPU board (603605)

PMAC 2 Software Reference

PMAC Firmware Updates 491

Update Summary: From V1.15 to V1.16 (July 1996)
Changes
1. With I99=0 backlash hysteresis is 0 counts, not 4 counts.
2. With I89=0 cutter comp outside corners only add arc if change in directed angle is greater than 90o;

formerly 1o.
3. Default changed from 10 to 0.
4. Default changed from 0 to 37137 (1 second slew by default).
5. Full circles executed on any arc command (with IJK center specification) smaller than 2-20 part of circle

(0.5 arc second); formerly 2-34 part of circle.
6. Boundary of cutter compensation lead-in and lead-out moves on inside corners changed slightly; now

offset directly from uncompensated destination point perpendicular to fully compensated move only.

Additions
Features
1. User-written phase commutation routines (Ix59).
2. “Stepper-motor” phasing search method for synchronous motors (Ix80).
3. Hall-Effect power-on phase read (Ix81).
4. Integrated current (I2T) limiting protection (Ix57, Ix58).
5. Integrated position error limiting protection (Ix63).
6. Programmable backlash hysteresis (I99).
7. Backlash compensation tables (DEFINE BLCOMP).
8. Torque compensation tables (DEFINE TCOMP).
9. MACRO ring support enhancements.
10. Teach/Learn functionality (LEARN).
11. Non-uniform spline mode (SPLINE2).
12. Variable jog commands (J=*, J:*, J^*).
13. Jog-until-trigger commands ({jog}^{constant}).
14. Program move-until-trigger commands ({axis}{data}^{data}).
15. “Torque-limiting” triggering (trigger on warning following error) (Ix03).
16. Extended G, M, T, and D code ranges.
17. Better control of outside corners with cutter compensation (I89).
18. PRELUDE functions in motion programs.
19. Ability to suppress carriage return after SEND and CMD responses (I62).
20. Unsigned A/D feedback ($18, $58 conversions).
21. Parallel feedback in high 16 bits ($2C, $3C, $6C, $7C conversions).
22. Support for ladder-logic compiler in special firmware version.

I-Variables
1. I55 -- DPRAM Background Variable Buffer Control (V1.15G).
2. I62 -- Internal Message Carriage Return Control.
3. I89 -- Cutter Comp Outside Angle Break Point.
4. I99 -- Backlash Hysteresis.
5. Ix02 -- Range extended: bit 19=1 specifies X-register output.
6. Ix25 -- Range extended: bit 18=1 specifies MACRO node for flags.
7. Ix30 -- Range extended: negative values can be used to invert output polarity.
8. Ix57 -- Continuous Current Limit for I2T current fault.

9. Ix58 -- Integrated Current Fault Level for I2T current fault.
10. Ix59 -- Range extended to 0-3; values of 2&3 enable user-written commutation.

 PMAC 2 Software Reference

492 PMAC Firmware Updates

11. Ix63 -- Range extended; negative values permit integrated following error fault.
12. Ix80 -- Range extended to support “stepper” power-on phasing search.
13. Ix81 -- Range extended to support hall-effect phase read.
14. Ix83 -- Range extended: bit 19=1 specifies Y-register feedback.
15. I1000 -- MACRO node auxiliary register enable.
16. I1001 -- MACRO Ring Check Time Period.
17. TWS-format M-variables -- Extended to add parity bits in backward-compatible format; bit 6 of

global status word X:$0003 is set to 1 if the most recent TWS read or write operation resulted in a
parity error.

Conversion Table Entries
1. $2C, $3C, $6C, $7C -- parallel feedback shifted right 3 bits (meant for feedback appearing in high

16 bits); supports rollover.
2. $18, $58 -- unsigned 16-bit A/D feedback, no rollover of source; to support ACC-28B.

On-Line Commands
1. DEFINE BLCOMP -- Establishes backlash table for addressed motor.
2. DEFINE TCOMP -- Establishes torque compensation table for addressed Motor.
3. DELETE BLCOMP -- Erases backlash table for addressed motor.
4. DELETE TCOMP -- Erases torque compensation table for addressed motor.
5. J=* -- Variable jog-to-position; destination in L:$082B, etc. (V1.15E).
6. J:* -- Variable incremental jog; distance in L:$082B, etc. (V1.15E).
7. J^* -- Variable incremental jog, distance in L:$082B, etc. (V1.15E).
8. J=={constant} -- Jog to specified position, make that “pre-jog” position.
9. {jog command}^{constant} -- Jog until trigger, final value specifies distance from trigger

position to stop.
10. LEARN -- Reads present commanded positions for all motors in coordinate system, converts to axis

positions, adds axis commands to open motion program.
11. MFLUSH -- Clears synchronous M-variable stack without executing.
12. LIST LDS -- PMAC reports addresses of special compiled PLC ladder-logic routines for cross-

compiler (special firmware required).
13. TYPE -- PMAC reports hardware and software configuration.

Motion Program Commands
1. {axis}{data}^{data} -- Move-until-trigger for RAPID mode moves.
2. SPLINE2 -- Puts program in non-uniform B-spline mode.
3. G, M, T, D codes -- Extended to support range of 0-999.99999; formerly 0-99.99999.
4. PRELUDE1{command} -- Adds {command} before subsequent move commands.
5. PRELUDE0 -- turns off prelude function.

DPRAM Structures
Second binary rotary program download buffer added (V1.15G).

PMAC 2 Software Reference

PMAC Firmware Updates 493

Refinements
1. Full circle moves always executed after starting position recalculated due to PMATCH or axis matrix

transformation (more tolerance between start and end positions permitted; see Changes, above).
2. DISPLAY of I-variables fixed.
3. Fast versions of PMAC can interface to ACC-8D Opt 9.
4. Fast versions of PMAC can interface to NC control panel and ACC-34C.
5. O-commands now saturate at +/-100% of Ix69.
6. I52 default set to 37137 for default 1 second stop on ‘\’ program hold command.
7. I11 default set to 0 so move sequences start as soon as calculations are finished.
8. Ix77, Ix86 reported as signed values.
9. RAPID declaration alone on a motion program line no longer causes zero-distance move taking 2*TA

time.
10. Ix10 absolute servo-position read copies axis definition offset into position bias register.
11. Maximum commanded speed increased by factor of 3 to 768M/Ix08 cts/sec (8M cts/sec at default Ix08

value).
12. Cutter comp lead-in move destination, lead-out move origin, changed slightly.
13. Ix30 now can take negative values, permitting output polarity reversal.
14. (PMAC2) ADC1A,B to ADC8A,B registers in DSPGATE1 copied into RAM registers $0710 - $0717

one pair per phase cycle for reliable servo & program access.
15. $$$*** command kills all motors before re-initialization.

Update Summary: From V1.16 to V1.16A (Sept 1996)
1. Corrected problems with PRELUDE subroutine calls
2. Serial port forces CTS true on power-up/reset except for cards numbered greater than 0 on serial

daisychain (I1 = 2 or 3)
3. Cutter compensation outside corner lead-in and lead-out moves always add an arc, regardless of the

setting of I89.
4. When Ix83 bit 19 is set to 1 to read Y-register as commutation feedback, register is read just as an X-

register would be (all 24 bits). This function is now enabled for PMAC(1).
5. For MACRO interface, if I1000=0, firmware no longer automatically reads I995 register, an action

which clears the MACRO error flags.

Update Summary: From V1.16A to V1.16B (Oct 1996)
Corrected STDbus interface problem

Update Summary: From V1.16B to V1.16C (Apr 1997)
1. Corrected problem with interrupt function for PMAC2 DPRAM ASCII buffer.
2. Corrected memory clear problem on $$$ software reset that could affect program and firmware

checksum verification, table-based math function operation.
3. Corrected cutter compensation lead-in/lead-out problem that occurred when lead-in move was collinear

with first compensated move, or lead-out move was collinear with last compensated move.
4. Corrected operation of buffered motion command HOMEZn for rotary axes.
5. Completed implementation of “Auto-Abort on Run-Time Error” function. Ix97 (existing but

undocumented variable) default set to 1 for automatic abort on run-time error (error usually from lack of
calculation time). Coordinate system “run-time-error” status bit left set after auto-abort.

6. Implemented 6 new DPRAM binary rotary buffers (8 total). This moves start of DPRAM data gathering
buffer from $D200 to $D240; pointers from $D1FF to $D23F.

7. Implemented MACRO “Type 1” protocol.
8. Corrected suspension of position loop integrator operation on DAC saturation when Ix34=0
9. Corrected timer reset of I2T function on $$$ reset.

 PMAC 2 Software Reference

494 PMAC Firmware Updates

10. Corrected rotary program buffer operation so that rollover of buffer does not count as “jump back” for
purposes of “double jump back” blending stop.

11. Corrected intermittent background MACRO Type 1 data read problem.
12. Improved efficiency of background MACRO Type 0 data read/write.
13. Corrected intermittent problem in resolver absolute read.
14. Corrected intermittent problem in MACRO Yaskawa absolute encoder read.
15. Corrected power-on loop closing (Ix80=1) problem on MACRO systems.
16. Corrected PRELUDE operation when full program line is subroutine call.
17. Changed default I-variables on Ultralite PMAC2s so default setup is for MACRO system.
18. PMAC2 I9n6 default value set to 0 so PWM outputs are the default -- for protection of direct PWM

amplifiers.
19. Corrected I2T operation for PMAC(1) and non-commutated PMAC2 systems.

Update Summary: From V1.16C to V1.16D (Nov 1997)
1. Added geared resolver power-up position thru MACRO in Ix10 (=$73xxxx).
2. Fixed timing of VME DPRAM ASCII interrupt; held off until last interrupt acknowledged
3. Fixed binary rotary buffer transfer for high-speed host computers
4. Added run-time error codes in X:$0799: 1=insufficient calculation time; 2=program counter before start

of program; 3=program counter past end of program; 4=unlinked conditional; 5=subroutine stack
overflow; 6=label not found

5. Added parallel power-up position thru MACRO in Ix10 (=$74xxxx).
6. Added Yaskawa abs. enc. power-up phase position thru MACRO in Ix81 (=$72xxxx)
7. Added resolver power-up phase position thru MACRO in Ix81 (=$73xxxx)
8. Added parallel data power-up phase position thru MACRO in Ix81 (=$74xxxx).
9. Repeated clearing on software reset of general-purpose outputs on PMAC(1)
10. Fixed sign extension of Ix10 read 24-bit parallel feedback when negative
11. Added Sanyo absolute encoder power-up position in Ix10 (=$32xxxx).
12. Delayed testing for amp fault after enable thru MACRO (flags transferred every 2 cycles).
13. Computed post-trigger axis target positions on move-until trigger.
14. Permitted MACRO Station I-variables to be called “MIx”, MACRO Station commands to be called

“MCx” to better distinguish from PMAC variables.
15. Standardized Mini-PMAC(1) firmware
16. Added ‘$’ to hex data returned from MACRO Station if I9=2 or 3, in reporting to host
17. Added more time to get power-up phase position from MACRO Station
18. Fixed direct microstepping operation on PMAC2.
19. Cleared MACRO output registers on reset to support new DSPGATE2B IC.
20. Fixed SIZE command response with buffer open
21. DELETE GATHER does not clear DPRAM gather pointers unless DPRAM gathering set
22. GATHER clears DPRAM gather index if DPRAM gathering set.
23. Made only Card 0 addressed at power-up/reset in daisychain mode (problem from V1.16A).
24. I51=1 does not automatically clear motor torque offsets each servo cycle.

PMAC 2 Software Reference

PMAC Firmware Updates 495

Update Summary: From V1.16D to V1.16F (June 1999)
{Note: V1.16E was never released}

1. Fixed listing of GOSUB{expression} – had listed as GOTO {expression} .
2. Permitted more flexibility in detecting MACRO communications errors in I1001 servo cycles by use of

new variables I1004 and I1005.
3. Made MACRO communications error checking more predictable by moving check from background to

real-time interrupt
4. Permitted Ix10 absolute power-on read outside of full board reset, using new $* command.
5. Ix80 bit 2 set to 1 disables Ix10 absolute power-on read during full board reset.
6. Motor “home complete” status bit cleared at beginning of Ix10 absolute power-on read, set to 1 on

completion of successful read.
7. On Mini-PMAC, permitted software-read jumpers to be changed and read properly on next reset,

without cycling power.
8. On Mini-PMAC, always bypass routine to read (non-existent) control panel port, regardless of value of

I2.
9. Permitted leadscrew compensation table to operate as function of net commanded position instead of

actual position if ‘D’ character declared after source motor in DEFINE COMP command (e.g. DEFINE
COMP 100, #1D, #1, 500000).

10. Fixed PMAC operation when accessing absolute position through MACRO nodes 8 and higher.
11. Refined interaction of overtravel limits with phasing search moves:

– Limits are checked at power-up/reset before phasing search algorithm, preventing immediate phasing
search if in limits.
– Limit status is monitored even when amplifier is disabled, permitting motor to be manually moved off
limits, then phased.
– If phasing search move ends up in limit, motor is killed and phasing search error bit is set.

12. Implemented DPRAM ASCII interrupt with CTRL0 line on PMAC2-PC Ultralite (requires ECO #1282
to be seen by PC).

13. Corrected 2D leadscrew compensation table so could be non-square dimension in counts and number of
entries.

14. Implemented encoder conversion table entry for high-resolution analog encoder. Format $F0. Two-line
entry. First line is $F0xxxx, where xxxx is the address of the encoder registers (e.g.$C020 on ACC-51).
Second line is $00yyyy, where yyyy is the first (lower) address of the A/D input pair (e.g. $C022 on
ACC-51)

15. Modified $50 encoder conversion table entry for integrated A/D conversions to mask out lower 8 bits
before integrating. Important for proper interface of CAN-drive system.

16. Motion program can now progress through non-motion and DWELL commands when % value is 0.
Permits viewing of calculated move end position even when %0 prevents interpolation from starting.

17. Added PAUSE PLC n and RESUME PLC n commands (on-line, motion program, and PLC program)
to allow suspension of PLC operation without having to restart at the top.

18. Enhanced LIST PLC n command to permit listing from point of pending execution.
19. Added I63 variable; when set to 1, PMAC echoes <CTRL-X> character back to host, so host knows

when communications buffers are clear.
20. Ix26 home offset parameter now also used on Ix10 absolute position read, subtracted from sensor

position to get motor position.
21. Permitted Type 1 MACRO auxiliary command to multiple MACRO Stations with MS15,

MIx={data} , for “anynode” MI-variables on the MACRO Stations.
22. Corrected location of buffer pointers in memory map (wrong in V1.16C and D)
23. Corrected operation of PRELUDE function for code and program numbers less than 8
24. Values of I53 and I62 are now stored in a SAVE command.

 PMAC 2 Software Reference

496 PMAC Firmware Updates

25. If vector distance of feedrate axes in a feedrate-specified move is 0, the programmed feedrate is used to
control the speed of the non-feedrate axes in the move. The axis with the longest distance is moved at
the programmed feedrate; other axes move with the same move time.

26. When in feed hold mode and no program running (also no motor jogging), a Run or Step command now
starts program in addition to clearing from feed hold mode.

27. Implemented Ix98 maximum feedrate value; F commands in program compared to this value; if greater
than Ix98, Ix98 is used instead.

28. Fixed operation of synchronous M-variable assignments when move times or acceleration times smaller
than I13 time.

29. Added I64 variable; when set to 1, PMAC leads unsolicited responses (from program SEND or CMD
statements) with <CTRL-B>. To support this feature from compiled PLCs, PCOMM32 version 2.21 or
newer (March 1999 or later) is required.

30. When I58 is set to 1 to enable DPRAM ASCII communications, PMAC no longer forces values for I3,
I4, and I6. DPRAM formatting unchanged, except that if I6=2 when I58=1, PMAC no longer reports
errors into DPRAM for illegal internal commands.

31. Run-time error always triggers abort, regardless of setting of Ix97.
32. Implemented variable full-circle threshold value with I90 to permit user to define minimum arc length.
33. Cutter compensation refinements:

- If cutter compensation is active and PMAC cannot find the next move in the compensation plane,
PMAC no longer removes the compensation at the end of the move; instead it ends the move at the
proper point to start an outside corner.
– If cutter compensation direction is changed with compensation active, offset to new direction occurs
at move boundary, not over the course of the next move (unless there is no intersection of compensated
paths, in which case the change still occurs over the next move).
– 180o reversal with arc(s) now treated as inside corner, not outside corner
– DELAY move timing while in compensation corrected.

34. PRELUDE operation refined so that <CR> always starts new subroutine call.
35. READ operation now stops on repeated character.

Update Summary: From V1.16F to V1.16G (Sept 1999)
1. Fixed operation of NORMAL commands for non-default settings
2. Fixed operation of DEFINE GATHER when gathering set up for dual-ported RAM (I45=2 or 3) so that

it reserves entire open space in DPRAM.
3. (Option 6L only) Fixed intermittent problem when re-starting operation in lookahead after feedhold.
4. (Option 6L only) Permitted jogging away from feedhold position in segmented LINEAR or CIRCLE

mode move, or SPLINE move.
5. MSDATE command to MACRO Station now returns 4-digit year value.
6. Added EAVERSION command to combine aspects of VERSION and TYPE command.

PMAC 2 Software Reference

PMAC Firmware Updates 497

Update Summary: From V1.16G to V1.16H (Sept 2000)
1. Fixed problem when issuing a CMD”PMATCH” from within a motion program.
2. Fixed floating-point underflow problem that could produce very large values.
3. Fixed operation of homing-search move if previous homing-search move was interrupted by a K (kill)

command.
4. Improved accuracy of high-resolution encoder interpolation calculations in conversion table.
5. Responses to CMD “{on-line command}” are no longer terminated with an <ACK> even when

I3=2.
6. Fixed scaling of parallel absolute position received through MACRO ring in response to $* command.
7. Fixed rare intermittent problem in response to MACROSLVREAD command.
8. Fixed intermittent problem in action of the CLOSE command.
9. Fixed operation of resolver-to-digital converter read through MACRO ring with $ command.
10. Fixed small issues with cutter radius compensation.
11. Fixed operation of leadscrew compensation tables in center one-eight-millionth section.
12. On PMAC2 boards jumpered for “external clock” with E1, gate array ICs are automatically set up to

input clocks.
13. If I2T feature is disabled by setting Ix57 to 0, I2T fault bit is automatically cleared.
14. J! command always forces command position to nearest full count, regardless of following error.
15. Fixed operation of single-line IF and WHILE statements in rotary buffer when there are no subsequent

lines in the buffer.
16. PMAC2 Ultralite no longer needs to enable motor with “O0” command before issuing “$” command to

phase motor.
17. Auto-detects flash IC type (AMD or SST) so common firmware can save to either type of IC.
18. Implemented alternate rollover mode for rotary axes A, B, and C. If Ix27 is set to a negative value, the

sign of the axis command destination value represents the direction to travel to the destination.
19. Implemented SETPHASE command (on-line, motion, PLC), which forces Ix75 value into phase position

register.
20. Implemented OPEN BINARY ROTARY command to permit simultaneous entry of binary buffered

commands and ASCII on-line commands.

Update Summary: From V1.16H to V1.17 (Oct 2001, FLEX CPU only)
1. Added support for Option 5xF “Flex” CPUs with DSP56300-family CPUs.
2. Variable I0 now specifies serial addressing card number (@n) for PMAC(1) boards with Flex CPU (as

well as for all PMAC2 boards).
3. New variable I46 sets CPU operational frequency for boards with Flex CPU. If I46=0, jumpers are used

for this
4. Variable I54 now specifies serial baud rate for PMAC(1) boards with Flex CPU and I46 > 0 (as well as

for all PMAC2 boards).
5. Fixed response to LIST COMP DEF command.
6. Firmware reference checksum value now included as part of firmware itself. It is no longer required to

re-initialize the card to compute the reference checksum.
7. New CHECKSUM on-line command causes PMAC to report the firmware reference checksum.

 PMAC 2 Software Reference

498 PMAC Firmware Updates

Update Summary: From V1.17 to V1.17A (Jan 2002, FLEX CPU only)
1. New variable I66 permits disabling of autocopy of servo-channel ADC registers to RAM each phase

cycle. This autocopying is no longer necessary for robust background reads of these registers, so
disabling saves time and permits proper interface of ACC-51P interpolator ADCs.

2. Permitted PMAC to accept comments after M-variable definition statements without returning an error.

Update Summary: From V1.17A to V1.17B (Sep 2002, FLEX CPU only)
1. Corrected interrupt-blocking for Flex CPUs, fixing problem in transition between LINEAR and SPLINE

modes
2. Refined timing on JTHW multiplexer port for use of ACC-34 boards with fastest Flex CPUs.
3. Added purge of host port during power-up/reset to ensure serial port comes up as the default response

port.
4. On Ultralite boards with Flex CPUs, force any additional (unused) MACRO CPUs to input clock signals

to prevent possible contention if these are installed.
5. Improved power-on dual-ported RAM detection test for new interface buses.

Update Summary: From V1.17B to V1.17C (Sept. 2005, FLEX CPU only)
1. Added support for new controller configurations Mini-PMAC-PCI and Geo PMAC integrated amplifier.
2. (Lookahead firmware only) Corrected problem in jogging motors during stop in lookahead where

motors could be de-activated.
3. Corrected minimum move size for rotary axis with Ix27 < 0.
4. Corrected position following function with Ix08 <0.
5. Corrected high-resolution interpolation (conversion method $F) with PMAC2-style ASIC.
6. Corrected handling of comment after M-variable definition on USB port.
7. Corrected auto-detection of SST-type flash IC.
8. Corrected data corruption problems on interrupt.
9. Corrected power-on DPRAM detection problem.
10. Made timing for I/O ports on PMAC(1) more robust with 160 MHz CPU (Opt 5EF).
11. Corrected operation of program homing search move after move-until-trigger that did not find trigger.
12. Embedded checksum into firmware file, so $$$*** command is not required after firmware download

to establish proper checksum match.
13. Added “do-nothing” variable I65 to give user easy way to confirm if application configuration has been

downloaded and saved, and/or to serialize controllers.
14. Assigned “hardware 1/T enable” control bit to new I-variable I9n9 for Channel n (PMAC2 only).
15. Assigned “third-channel demux enable” control bit to new second bit (bit 1) of existing I-variable I9n5

for Channel n (PMAC2 only).
16. Assigned ADC data table setup in X:$0708 – X:$070F to new I-variables I70 – I77, respectively.
17. Added support for byte-wide parallel data reads to support ACC-14P boards in encoder conversion table

methods $2 and $3.
18. Modified action of “MaxChange” filter in conversion table methods $3 and $7. If MaxChange is

exceeded, result is now changed by “LastChange”, not “MaxChange”, if previous cycle’s result was
good.

19. Added I-variables I1010 – I1012 to support resolver excitation (Geo PMAC only).
20. Added I-variable I1013 to support motor temperature check (Geo PMAC only).
21. Added I-variables I1015 – I1019 to support SSI absolute encoder interface (Geo PMAC only).
22. Added five-line tracking-filter variant of exponential-filter conversion method ($D) enabled by setting

bit 19 of first setup line to 1, permitting low-pass filter without steady-state error – suitable for
processing feedback data.

23. Added resolver conversion method ($E) to encoder conversion table (Geo PMAC only).
24. Added three-line interpolated sinusoidal encoder conversion method ($F) with sine/cosine bias word

(Geo PMAC only – this method is a two line entry without a bias word on other PMACs).

PMAC 2 Software Reference

PMAC Firmware Updates 499

25. Added five-line diagnostic method entry for highly interpolated sinusoidal encoders ($F) enabled by
setting bit 19 of first setup line to 1, to calculate sum-of-squares magnitude or sine/cosine bias word
(Geo PMAC only).

26. Added amplifier status/fault code for seven-segment display (Geo PMAC only), including
CLEARFAULT command to reset display.

27. Added support for hardware position capture with highly interpolated sinusoidal encoders and capture of
estimated sub-count position data in triggered moves with bits 18 and 19 of Ix03.

28. Removed obsolete LIST LDS, <CTRL-E> and <CTRL-W> on-line commands and I47 variable.
29. Corrected action of true deadband (Ix64=-16) with pulse-and-direction output to eliminate potential for

dithering.

	PMAC COMMAND AND VARIABLE SUMMARY
	Notes
	Definitions
	On-Line Commands
	On-line Global Commands
	Addressing Mode Commands
	Communications Control Characters
	General Global Commands
	Global Action Commands
	Global Status Commands
	Register Access Commands
	PLC Control Commands
	Global Variable Commands
	Buffer Control Commands
	MACRO Ring Commands

	On-line Coordinate System Commands
	Axis Definition Commands
	General Coordinate-System Commands
	Program Control Commands
	Coordinate-System Variable Commands
	Axis Attribute Commands
	Buffer Control Commands

	On-Line Motor Commands
	General Motor Commands
	Jogging Commands
	Reporting Commands
	Buffer Control Commands

	Motion Program Commands
	
	Move Commands
	Move Mode Commands
	Axis Attribute Commands
	Move Attribute Commands
	Variable Assignment Commands
	Program Logic Control
	Miscellaneous Commands

	PLC Program Commands
	Conditions
	Actions

	PMAC I-Variable Summary
	General Divisions
	Global I-Variables

	Motor I-Variables x = Motor Number (#x, x = 1 to 8}
	Motor Definition I-Variables
	Motor Safety I-Variables
	Motor Movement I-Variables
	Motor Servo Control I-Variables {Standard PID Algorithm}
	Motor Servo Control I-Variables {Option 6 Extended Servo Algorithm only}
	Motor Commutation I-Variables
	Further Motor I-Variables

	Coordinate System I-Variables
	PMAC(1) Servo Interface Setup I-Variables
	PMAC2 Servo Interface Setup I-Variables
	Global Hardware Setup I-Variables
	Channel n Hardware Setup I-Variables
	Ultra-Lite/Supplemental Channel Hardware Setup I-Variables

	MACRO Support I-Variables
	PMAC Error Code Summary
	PMAC Syntax Notes

	PMAC I-VARIABLE SPECIFICATION
	Global I-Variables
	I0Serial Addressing Card Number {PMAC(1) w/Flex CPU, PMAC2 only}
	I1Serial Port Mode
	I2Control Panel Disable
	I3I/O Handshake Control
	I4Communications Integrity Mode
	I5PLC Programs On/Off
	I6Error Reporting Mode
	I7In-Position Number of Cycles
	I8Real Time Interrupt Period
	I9Full/Abbreviated Program Listing Form
	I10Servo Interrupt Time
	I11Programmed Move Calculation Time
	I12Jog-to-Position Calculation Time
	I13Programmed Move Segmentation Time
	I14Auto Position Match on Run Enable
	I15Degree/Radian Control for User Trig Functions
	I16Rotary Buffer Request On Point
	I17Rotary Buffer Request Off Point
	I18Fixed Buffer Full Warning Point

	Data Gathering I-Variables
	I19Data Gathering Period (in Servo Cycles)
	I20Data Gathering Selection Mask
	I21Data Gathering Source 1 Address
	I22–I44 Data Gathering Source 2 thru 24 Addresse
	I45Data Gathering Buffer Location and Mode
	I46CPU Frequency Control {PMAC w/Flex CPU only}
	I47Address of Pointer for Control-W Command
	I48DPRAM Servo Data Enable
	I49DPRAM Background Data Enable
	I50Rapid Move Mode Control
	I51Compensation Table Enable
	I52\ Program Hold Slew Rate
	I53Program Step Mode Control
	I54Serial Baud Rate {PMAC(1) w/Flex CPU or PMAC2 only}
	I55DPRAM Background Variable Buffers Enable
	I56DPRAM ASCII Communications Interrupt Enable
	I57DPRAM Binary Rotary Buffer Enable
	I58DPRAM ASCII Communications Enable
	I59DPRAM Buffer Maximum Motor/C.S. Number
	I60Auto-Converted ADC Register Address {PMAC(1) only}
	I61Number of Auto-Converted ADC Registers {PMAC(1) only}
	I62Internal Message Carriage Return Control
	I63Control-X Echo Enable
	I64Internal Response Tag Enable
	I65 User-Configuration Variable
	I66Servo-Channel ADC Auto-Copy Disable {PMAC2 only}
	I67Modbus TCP Buffer Start Address
	I68Alternate TWS Input Format
	I69Modbus TCP Software Control Panel Start Address
	I70 – I77Analog Table Setup Lines
	I8xMotor x Third-Resolver Gear Ratio
	I89Cutter Comp Outside Corner Break Point
	I90Minimum Arc Angle
	I9xMotor x Second-Resolver Gear Ratio
	I99Backlash Hysteresis

	Motor x I-Variables
	Motor Definition I-Variables
	Ix00Motor x Activate
	Ix01Motor x PMAC-Commutation Enable
	Ix02Motor x Command Output Address
	Ix03Motor x Position Loop Feedback Address
	Ix04Motor x Velocity Loop Feedback Address
	Ix05Motor x Master (Handwheel) Position Address
	Ix06Motor x Master (Handwheel) Following Enable
	Ix07Motor x Master (Handwheel) Scale Factor
	Ix08Motor x Position Scale Factor
	Ix09Motor x Velocity Loop Scale Factor
	Ix10Motor x Power-Up Servo Position Address

	Motor Safety I-Variables
	Ix11Motor x Fatal (Shutdown) Following Error Limit
	Ix12Motor x Warning Following Error Limit
	Ix13Motor x Positive Software Position Limit
	Ix14Motor x Negative Software Position Limit
	Ix15Motor x Deceleration Rate on Position Limit or Abort
	Ix16Motor x Maximum Permitted Motor Program
	Ix17Motor x Maximum Permitted Motor Program Acceleration
	Ix19Motor x Maximum Permitted Motor Jog/Home Acceleration

	Motor Movement I-Variables
	Ix20Motor x Jog/Home Acceleration Time
	Ix21Motor x Jog/Home S-Curve Time
	Ix22Motor x Jog Speed
	Ix23Motor x Homing Speed and Direction
	Ix24(Reserved for Future Use)
	Ix25Motor x Limit/Home Flag
	Ix26Motor x Home Offset
	Ix27Motor x Position Rollover Range
	Ix28Motor x In-position Band
	Ix29Motor x Output/First Phase Offset

	Servo Control I-Variables
	Ix30 – Ix58Motor x Extended Servo Algorithm Gains
	Ix30Motor x PID Proportional Gain
	Ix31Motor x PID Derivative Gain
	Ix32Motor x PID Velocity Feedforward Gain
	Ix33Motor x PID Integral Gain
	Ix34Motor x PID Integration Mode
	Ix35Motor x PID Acceleration Feedforward Gain
	Ix36Motor x PID Notch Filter Coefficient N1
	Ix37Motor x PID Notch Filter Coefficient N2
	Ix38Motor x PID Notch Filter Coefficient D1
	Ix39Motor x PID Notch Filter Coefficient D2
	Ix40 - Ix56Motor x Extended Servo Algorithm I-Variables
	Ix40Motor x Net Desired Position Filter Gain{Option 6L Firmware Only}

	Motor Servo Loop Modifiers
	Ix57Motor x Continuous Current Limit
	Ix58Motor x Integrated Current Limit
	Ix59Motor x User-Written Servo/Phase Enable
	Ix60Motor x Servo Cycle Period Extension
	Ix61Motor x Current Loop Integral Gain {PMAC2 only}
	Ix62Motor x Current Loop Proportional Gain (Forward Path) {PMAC2 only}
	Ix63Motor x Integration Limit
	Ix64Motor x Deadband Gain Factor
	Ix65Motor x Deadband Size
	Ix66Motor x PWM Scale Factor {PMAC2 only}
	Ix67Motor x Linear Position Error Limit
	Ix68Motor x Friction Feedforward
	Ix69Motor x Output Command Limit

	Commutation I-Variables
	Ix70Motor x Number of Commutation Cycles (N)
	Ix71Motor x Encoder Counts per N Commutation Cycles
	Ix72Motor x Commutation Phase Angle
	Ix73Motor x Phase Finding Output Value
	Ix74Motor x Phase Finding Time
	Ix75Motor x Power-On Phase Position Offset
	Ix76Motor x Velocity Phase Advance Gain {PMAC(1) Only}
	Ix76Motor x Current-Loop Proportional Gain (Back Path) {PMAC2 only}
	Ix77Motor x Induction Motor Magnetization Current
	Ix78Motor x Induction Motor Slip Gain
	Ix79Motor x Second Phase Offset
	Ix80Motor x Power-Up Mode
	Ix81Motor x Power-Up Phase Position Address
	Ix82Current loop Feedback Address {PMAC2 only}
	Ix83Motor x Ongoing Phasing Position Address
	Ix84Current-Loop Feedback Mask Word {PMAC2 only}

	Further Motor I-Variables
	Ix85Motor x Backlash Take-up Rate
	Ix86Motor x Backlash Size

	Coordinate System x I-Variables
	
	Ix87Coordinate System x Default Program Acceleration Time
	Ix88Coordinate System x Default Program S-Curve Time
	Ix89Coordinate System x Default Program Feedrate/Move Time
	Ix90Coordinate System x Feedrate Time Units
	Ix91Coordinate System x Default Working Program Number
	Ix92Coordinate System x Move Blend Disable
	Ix93Coordinate System x Time Base Control Register Address
	Ix94Coordinate System x Time Base Slew Rate
	Ix95Coordinate System x Feed Hold Slew Rate
	Ix96Coordinate System x Circle Error Limit
	Ix97(Reserved for Future Use)
	Ix98Coordinate System x Maximum Feedrate
	Ix99(Reserved for Future Use)

	PMAC(1) Encoder/Flag Setup I-Variables
	
	I900, I905, ..., I975 Encoder n Decode Control “
	I901, I906, ..., I976 Encoder n Filter Disable “
	I902, I907, ..., I977 Encoder n Position Capture
	I903, I908, ..., I978 Encoder n Flag Select Control Encoder I-Variable 3 {PMAC(1) only}
	I904, I909, .., I979 – \(Reserved for Future Use

	PMAC2 Encoder/Flag/Output Setup I-Variables
	Global / Multi-Channel ASIC I-Variables
	I900MaxPhase and PWM 1-4 Frequency Control {PMAC2 only}
	I901Phase Clock Frequency Control {PMAC2 only}
	I902Servo Clock Frequency Control {PMAC2 only}
	I903Hardware Clock Control Channels 1-4 {PMAC2 only}
	I904PWM 1-4 Deadtime / PFM 1-4 Pulse Width Control {PMAC2 only}
	I905DAC 1-4 Strobe Word {PMAC2 only}
	I906 PWM 5-8 Frequency Control {PMAC2 only}
	I907Hardware Clock Control Channels 5-8 {PMAC2 only}
	I908PWM 5-8 Deadtime / PFM 5-8 Pulse Width Control {PMAC2 only}
	I909DAC 5-8 Strobe Word {PMAC2 only}

	Channel-Specific Gate Array I-Variables
	I9n0Encoder/Timer n Decode Control {PMAC2 only}
	I9n1Position Compare n Channel Select {PMAC2 only}
	I9n2Encoder n Capture Control {PMAC2 only}
	I9n3Capture n Flag Select Control {PMAC2 only}
	I9n4Encoder n Gated Index Select {PMAC2 only}
	I9n5Channel n Encoder Index Gate State/Demux Control {PMAC2 only}
	I9n6Output n Mode Select {PMAC2 only}
	I9n7Output n Invert Control {PMAC2 only}
	I9n8Output n PFM Direction Signal Invert Control {PMAC2 only}
	I9n9Channel n Hardware-1/T Control {PMAC2 only}

	PMAC2 DSPGATE2 I-Variables
	
	I990Handwheel 1 Decode Control {PMAC2 only}
	I991Handwheel 2 Decode Control {PMAC2 only}
	I992MaxPhase and PWM 1*-2* Frequency Control {PMAC2 only}
	I993Hardware Clock Control Channels 1*-2* {PMAC2 only}
	I994PWM 1*-2* Deadtime / PFM 1* Pulse Width Control {PMAC2 only}
	I995MACRO Ring Configuration/Status {PMAC2 only}
	I996MACRO Node Activate Control {PMAC2 only}
	I997Phase Clock Frequency Control {PMAC2 only}
	I998Servo Clock Frequency Control {PMAC2 only}
	I999(Reserved for Future Use)

	MACRO Software Setup I-Variables
	
	I1000MACRO Node Auxiliary Register Enable
	I1001MACRO Ring Check Period
	I1002MACRO Node Protocol Type Control
	I1003MACRO Type 1 Master/Slave Communications Timeout
	I1004MACRO Ring Error Shutdown Count
	I1005MACRO Ring Sync Packet Shutdown Count
	I1010Resolver Excitation Phase Offset {Geo PMAC only}
	I1011Resolver Excitation Gain{Geo PMAC only}
	I1012Resolver Excitation Frequency Divider {Geo PMAC only}
	I1013Motor Temperature Check Enable {Geo PMAC only}
	I1015SSI Clock Frequency Control{New, Geo PMAC only}
	I1016SSI Channel 1 Mode Control{Geo PMAC only}
	I1017SSI Channel 1 Word Length Control {Geo PMAC only}
	I1018SSI Channel 2 Mode Control{Geo PMAC only}
	I1019SSI Channel 2 Word Length Control {Geo PMAC only}
	I1020Lookahead Length{Option 6L firmware only}
	I1021Lookahead State Control {Option 6L Firmware Only}

	PMAC ON-LINE COMMAND SPECIFICATION
	
	<CONTROL-A>
	<CONTROL-B>
	<CONTROL-C>
	<CONTROL-D>
	<CONTROL-F>
	<CONTROL-G>
	<CONTROL-H>
	<CONTROL-I>
	<CONTROL-K>
	<CONTROL-L>
	<CONTROL-M>
	<CONTROL-N>
	<CONTROL-O>
	<CONTROL-P>
	<CONTROL-Q>
	<CONTROL-R>
	<CONTROL-S>
	<CONTROL-T>
	<CONTROL-U>
	<CONTROL-V>
	<CONTROL-X>
	<CONTROL-Y>
	<CONTROL-Z>
	#
	#{constant}
	#{constant}->
	#{constant}->0
	#{constant}->{axis definition}
	$
	$$$
	$$$***
	$*
	%
	%{constant}
	&{constant}
	&
	<{Option 6L firmware only}
	>{Option 6L firmware only}
	/
	?
	??
	???
	@
	@{card}
	
	A
	ABS
	{axis}={constant}
	B
	CHECKSUM
	CLEAR
	CLEARFAULT
	CLOSE
	{constant}
	DATE
	DEFINE BLCOMP
	DEFINE COMP (one-dimensional)
	DEFINE COMP (two-dimensional)
	DEFINE GATHER
	DEFINE LOOKAHEAD{Option 6L firmware only}
	DEFINE ROTARY
	DEFINE TBUF
	DEFINE TCOMP
	DEFINE UBUFFER
	DELETE BLCOMP
	DELETE COMP
	DELETE GATHER
	DELETE LOOKAHEAD{Option 6L firmware only}
	DELETE PLCC
	DELETE ROTARY
	DELETE TBUF
	DELETE TCOMP
	DELETE TRACE
	DISABLE PLC
	DISABLE PLCC
	EAVERSION
	ENABLE PLC
	ENABLE PLCC
	ENDGATHER
	F
	FRAX
	GATHER
	H
	HOME
	HOMEZ
	I{constant}
	I{constant}={expression}
	I{constant}=*
	INC
	J!
	J+
	J-
	J/
	J:{constant}
	J:*
	J=
	J={constant}
	J=*
	J=={constant}
	J^{constant}
	J^*
	{jog command}^{constant}
	K
	LEARN
	LIST
	LIST BLCOMP
	LIST BLCOMP DEF
	LIST COMP
	LIST COMP DEF
	LIST GATHER
	LIST LINK
	LIST PC
	LIST PE
	LIST PLC
	LIST PROGRAM
	LIST ROTARY
	LIST TCOMP
	LIST TCOMP DEF
	M{constant}
	M{constant}={expression}
	M{constant}->
	M{constant} ->*
	M{constant}->D:{address}
	M{constant}->DP:{address}
	M{constant}->F:{address}
	M{constant}->L:{address}
	M{constant}->TWB:{multiplex address}
	M{constant}->TWD:{address}
	M{constant}->TWR:{address},{offset}
	M{constant}->TWS:{address}
	M{constant}->X/Y:{address}
	MACROAUX
	MACROAUXREAD
	MACROAUXWRITE
	MACROSLV{command} {node#}
	MACROSLV{node#},{slave variable}
	MACROSLV{node#},{slave variable}={constant}
	MACROSLVREAD
	MACROSLVWRITE
	MFLUSH
	O{constant}
	OPEN BINARY ROTARY
	OPEN PLC
	OPEN PROGRAM
	OPEN ROTARY
	P
	P{constant}
	P{constant}={expression}
	PASSWORD={string}
	PAUSE PLC
	PC
	PE
	PMATCH
	PR
	Q
	Q{constant}
	Q{constant}={expression}
	R
	R[H]{address}
	RESUME PLC
	S
	SAVE
	SETPHASE
	SIZE
	TYPE
	UNDEFINE
	UNDEFINE ALL
	V
	VERSION
	W{address}
	Z

	PMAC PROGRAM COMMAND SPECIFICATION
	
	{axis}{data}[{axis}{data}...]
	{axis}{data}:{data} [{axis}{data}:{data}...]
	{axis}{data}^{data}[{axis}{data}^{data}...]
	{axis}{data} [{axis}{data}...] {vector}{data} [{vector}{data}...]
	A{data}
	ABS
	ADDRESS
	ADIS{constant}
	AND ({condition})
	AROT{constant}
	B{data}
	BLOCKSTART
	BLOCKSTOP
	C{data}
	CALL
	CC0
	CC1
	CC2
	CCR{data}
	CIRCLE1
	CIRCLE2
	COMMAND "{command}"
	COMMAND^{letter}
	D{data}
	DELAY{data}
	DISABLE PLC
	DISABLE PLCC {constant}[,{constant}...]
	DISPLAY [{constant}] "{message}"
	DISPLAY ... {variable}
	DWELL
	ELSE
	ENABLE PLC
	ENABLE PLCC
	ENDIF
	ENDWHILE
	F{data}
	FRAX
	G{data}
	GOSUB
	GOTO
	HOME
	HOMEZ
	I{data}
	I{constant}={expression}
	IDIS{constant}
	IF ({condition})
	INC
	IROT{constant}
	J{data}
	K{data}
	LINEAR
	M{constant}={expression}
	M{constant}=={expression}
	M{constant}&={expression}
	M{constant}|={expression}
	M{constant}^={expression}
	M{data}
	MACROAUXREAD
	MACROAUXWRITE
	MACROSLVREAD
	MACROSLVWRITE
	N{constant}
	NORMAL
	O{constant}
	OR({condition})
	P{constant}={expression}
	PAUSE PLC
	PRELUDE
	PSET
	PVT{data}
	Q{constant}={expression}
	R{data}
	RAPID
	READ
	RESUME PLC
	RETURN
	S{data}
	SEND
	SEND^{letter}
	SETPHASE
	SPLINE1
	SPLINE2
	STOP
	T{data}
	TA{data}
	TINIT
	TM{data}
	TS{data}
	TSELECT{constant}
	U{data}
	V{data}
	W{data}
	WAIT
	WHILE({condition})
	X{data}
	Y{data}
	Z{data}

	PMAC MATHEMATICAL FEATURES
	Mathematical Operators
	+
	-
	*
	/
	%
	&
	|
	^

	Mathematical Functions
	ABS
	ACOS
	ASIN
	ATAN
	ATAN2
	COS
	EXP
	INT
	LN

	SIN
	SQRT
	TAN

	SAVED SETUP REGISTERS NOT REPRESENTED �BY I-VARIABLES
	Analog Data Table Setup Registers
	
	X:$0708 – Y:$070FAnalog Table Setup Lines

	Encoder Conversion Table Setup Registers: Y:$0720
	Y:$0720 – Y:$073FConversion Table Setup Lines

	VME/DPRAM Addressing Setup Registers: X:$0783 – X
	X:$0783VME Address Modifier
	X:$0784VME Address Modifier Don’t Care Bits
	X:$0785VME Base Address Bits A31-A24
	X:$0786VME Mailbox Base Address Bits A23-A16�ISA DPRAM Base Address Bits A23-A16
	X:$0787VME Mailbox Base Address Bits A15-A08�ISA DPRAM Base Address Bits A15-A14 & Control
	X:$0788VME Interrupt Level
	X:$0789VME Interrupt Vector
	X:$078AVME DPRAM Base Address Bits A23-A20
	X:$078BVME DPRAM Enable
	X:$078CVME Address Width Control

	PMAC2 Servo IC Setup Bits and Registers
	X:$C005 etc. Bit 17Encoder n Third-Channel Demux Control�{PMAC2 only}
	X:$C005 etc. Bit 18Encoder n Hardware 1/T Enable {PMAC2 only}
	X:$C014, X:$C034Servo IC m ADC Strobe Word {PMAC2 only}

	PMAC I/O AND MEMORY MAP
	Global Servo Calculation Registers
	Motor Calculation Registers: PMAC(1), PID Servo Algorithm
	Motor Calculation Registers: PMAC(1), Extended Servo Algorithm (ESA)
	Motor Calculation Registers: PMAC2, PID Servo Algorithm
	Motor Calculation Registers: PMAC2, Extended Servo Algorithm (ESA)
	Buffers
	Encoder Conversion (Interpolation) Table
	General Global Registers
	Motor and Coordinate System Status and Control Registers
	Buffer Management Registers
	PMAC(1) DSPGATE Servo IC Registers
	PMAC2 DSPGATE1 Servo IC Registers
	PMAC2 DSPGATE2 I/O and MACRO Registers
	Dual-Ported RAM (Option 2 Required)
	DPRAM Control Panel Registers
	Control Panel Request Words
	Bit Format of Request Words
	Control Panel Feedrate Override
	Servo Fixed Data Reporting Buffer
	Motor-Specific Registers for Servo Fixed Data Reporting Buffer
	Background Fixed Data Reporting Buffer
	Motor/Coordinate System Specific Registers for Background Fixed Data Buffer

	Background Variable Transfer Buffers
	PMAC to Host Transfer
	Variable Address Buffer Format (2x16-bit words)
	Background Variable Data Write Buffer -- Host to PMAC Transfer
	Variable Address Buffer Format for each Data Structure (6x16-bit)
	Binary Rotary Motion Program Transfer Buffers
	DPRAM Data Gathering Buffer
	Variable-Size Buffers, Open-Use Space

	VME-Bus Registers (PMAC(1)-VME, PMAC2-VME, PMAC2-VME Ultralite only)
	PMAC2 I/O Control Registers
	PCI/ISA Bus PMAC2 Versions (PMAC2-PCI, PMAC2-PC, PMAC2-Lite, PMAC2-PC UltraLite):
	VME Bus PMAC2 Versions (PMAC2-VME, PMAC2-VME UltraLite):

	Inputs and Outputs (PMAC-PC, PMAC-PCI, PMAC-VME, PMAC-Lite, PMAC-PCI Lite only)
	Inputs and Outputs (Mini-PMAC, Mini-PMAC-PCI Only)
	Inputs and Outputs (PMAC1.5-STD Only)
	PMAC2 Option 12/12A Analog-to-Digital Converters
	PMAC(1)-PCI, PMAC(1)-PCI Lite Option 12/12A Analog-to-Digital Converters
	Expansion Port (JEXP) I/O

	PMAC(1) SUGGESTED M-VARIABLE DEFINITIONS
	PMAC2 SUGGESTED M-VARIABLE DEFINITIONS
	PMAC FIRMWARE UPDATES
	
	
	Battery-backed PMAC(1) boards
	Flash-backed PMAC(1), all PMAC2 boards

	Update Summary: From V1.15 to V1.16 (July 1996)
	Changes
	Additions
	I-Variables
	Conversion Table Entries
	On-Line Commands
	Motion Program Commands
	DPRAM Structures
	Refinements

	Update Summary: From V1.16 to V1.16A (Sept 1996)
	Update Summary: From V1.16A to V1.16B (Oct 1996)
	Update Summary: From V1.16B to V1.16C (Apr 1997)
	Update Summary: From V1.16C to V1.16D (Nov 1997)
	Update Summary: From V1.16D to V1.16F (June 1999)
	Update Summary: From V1.16F to V1.16G (Sept 1999)
	Update Summary: From V1.16G to V1.16H (Sept 2000)
	Update Summary: From V1.16H to V1.17 (Oct 2001, FLEX CPU only)
	Update Summary: From V1.17 to V1.17A (Jan 2002, FLEX CPU only)
	Update Summary: From V1.17A to V1.17B (Sep 2002, FLEX CPU only)
	Update Summary: From V1.17B to V1.17C (Sept. 2005, FLEX CPU only)

