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Not always
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Component behaves differently when isolated
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In isolation vs in a network

glnG

IPTG
lacI

LacI-rep
NRI-act

glnKp

(Atkinson et al, Cell 2003)

LOAD

The oscillating behavior 
is affected by load 

Component behaves differently when isolated
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In isolation vs in a network

Z

Pz

Transcriptional component

K

Z

z

K

Isolated

Connected

Transcriptional component

The dynamic of the 
upstream system 
slows down 
according to ODE 
model.

Component behaves differently when isolated
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Stochastic modeling

Biological networks exhibit stochastic behavior and
fluctuations → inherently stochastic systems.

Stochastic models are valid even for very low molecule
numbers.

→ to have a complete and general characterization of
retroactivity, we need to perform stochastic analysis.
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Outline

Introducing stochastic model of interconnected
transcriptional component: Master equation

Stationary analysis
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Transcriptional System

Z

Pz

Upstream transcriptional component

Interconnected transcriptional components.

∅
k

GGGGGBFGGGGG

δ
Z, Z + P

kon
GGGGGGGBFGGGGGGG

koff
C.

Total amount of DNA is conserved, i.e., P + C = pT
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Deterministic retroactivity

Z

Pz

Upstream transcriptional component

Analyzing the effect of downstream system on
upstream: retroactivity.

A deterministic approach is performed which analyzes
the steady state as well as transient behavior of the
concentration of Z[Del Vecchio et. al.]
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Stochastic retroactivity

Z

Pz

Upstream transcriptional component

However

The deterministic approach requires the number of
molecules to be large.

The deterministic approach does not provide an insight
on how the load affects the intrinsic noise that is
present in the system.

→ Stochastic analysis.
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Stochastic modeling

∅
k

GGGGGBFGGGGG

δ
Z, Z + P

kon
GGGGGGGBFGGGGGGG

koff
C.

C, Z, and P : stochastic processes

What we are looking for:

Starting in state m0 = (c0, z0, p0) at time zero,

PC,Z,P(c, z, p; t,m0)

= P (M(t) = m = (c, z, p) | M(0) = m0)
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Master equation

A linear differential equation characterizes the evolution of
PC,Z,P(c, z, p; t,m0) over time:

d

dt
PC,Z,P(c, z, p; t,m0) = A(PC,Z,P(·, ·, ·; t,m0))

where A is a linear operator.

Probability distribution of a single molecule X with finite
number of molecules is

d

dt
PX(x; t) = A(PX(·; t)) (1)

or
d

dt
PX(·; t) = APX(·; t)

where PX(·; t) = [PX(0; t), PX(1; t), · · · , PX(xmax; t)] and
A is matrix.
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Master equation

d

dt
PC,Z,P(c, z, p; t,m0)

= Ω[k(t)PC,Z,P(c, z − 1, p; t,m0)

+ δ
(z + 1)

Ω
PC,Z,P(c, z + 1, p; t,m0)

+ kon
(z + 1)

Ω

(p+ 1)

Ω
PC,Z,P(c− 1, z + 1, p+ 1; t,m0)

+ koff
(c+ 1)

Ω
PC,Z,P(c+ 1, z − 1, p− 1; t,m0)

− (k + δ
z

Ω
+ kon

zp

Ω2
+ koff

c

Ω
)PC,Z,P(c, z, p; t,m0)].

Keep in mind:

C(t) + P(t) = pT = C(0) + P(0) = c0 + p0
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Master equation: Modified

ṖC,Z(c, z; t,m0)

= Ω[kPC,Z(c, z−1; t,m0) + δ
(z+1)

Ω
PC,Z(c, z+1; t,m0)

+ kon
(z + 1)

Ω

(pT − c+ 1)

Ω
PC,Z(c− 1, z + 1; t,m0)

+ koff
(c+ 1)

Ω
PC,Z(c+ 1, z − 1; t,m0)

−
(
k + δ

z

Ω
+ kon

z(pT − c)
Ω2

+ koff
c

Ω

)
PC,Z(c, z; t,m0)],

where

PC,Z(c, z; t,m0) = P (C(t) = c, Z(t) = z | C(0) = c0, Z(0) = z0).

.
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Stationary analysis

What would happen if we wait for a long time?

P ((C(t), Z(t)) = (c, z))→ πC,Z(c, z) as t→∞

πC,Z(c, z) is the unique stationary distribution of (C,Z),
which is the product of stationary distribution of the random
process Z, πZ(z), and stationary distribution of the random
process C, πC(c), i.e.,

πC,Z(c, z) = πC(c)πZ(z).
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Stationary analysis

πC,Z(c, z) = πC(c)πZ(z).

C has binomial stationary distribution as follows

πC(c) =
pT !

c!(pT − c)!(kdkz)c
(1 +

1

kdkz
)−pT ,

kd :=
koff
kon

, kz :=
δ

k
,

(2)

Z has Poisson stationary distribution given by

πZ(z) =
Ωz
z

z!
e−Ωz , Ωz :=

Ω

kz
. (3)
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Implication of the stationary analysis

At steady state, the downstream and upstream systems are
statistically independent.

Namely, Z(∞) and C(∞) are independent random variables.

E(Z) = Ωz =
k

δ
Ω

V ar(Z) = Ωz

.

Z

Pz

Upstream transcriptional component
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Singular perturbation analysis

We want to characterize the transient behavior of mean and
variance of Z.

Define Y := C + Z.

PC,Y (c, y; t,m0) := P (C(t) = c, Y (t) = y | C(0) = c0, Y (0) = y0)

.

Z

Pz

Upstream transcriptional component

∅
k

GGGGGBFGGGGG

δ
Z, Z + P

kon
GGGGGGGBFGGGGGGG

koff
C.
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Singular perturbation analysis

Defining ε := δ
koff

, kd :=
koff
kon

, k̄on := δ
kd

, and k̄off := δ,

the Master equation can be written in the following form:

ṖC,Y (c, y; t,m0) = Ω[kPC,Y (c, y − 1; t,m0)

+ δ
(y − c+ 1)

Ω
PC,Y (c, y + 1; t,m0)

+
1

ε
k̄on

(y − c+ 1)

Ω

(pT − c+ 1)

Ω
PC,Y (c− 1, y; t,m0)

+
1

ε
k̄off

(c+ 1)

Ω
PC,Y (c+ 1, y; t,m0)

−
(
k + δ

y − c
Ω

+
1

ε
k̄on

(y − c)(pT − c)
Ω2

+
1

ε
k̄off

c

Ω

)
PC,Y (c, y; t,m0)].

(4)

22



Stochastic Analysis
of Retroactivity in
Transcriptional

Networks through
Singular

Perturbation

Ghaemi, Del
Vecchio

Introduction

Stochastic
modeling

Stationary analysis

Singular
perturbation
analysis

Analysis of
Transient Behavior

Conclusion

Singular perturbation analysis

Equivalently:

d

dt
PC,Y (c, y; t,m0) = (A+

1

ε
B)(PC,Y (·, ·; t,m0)) (5)
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Singular perturbation analysis

Slowly varying Prob. Dist PY (y; t)∑
y

(
d

dt
PC,Y (c, y; t,m0) = (A)(PC,Y (·, ·; t,m0))

)
.

Define P sY (y; t) as the solution of the following forward
equation:

Ṗ sY (y; t) = Ω[kP sY (y − 1; t)

+ δ
(y + 1− Es(C|Y = y + 1))

Ω
P sY (y + 1; t)

− (k + δ
y − Es(C|Y = y)

Ω
)P sY (y; t)],

with initial distribution P sY (y; 0) = PY (y; 0).
Es(C|Y = y): conditional expectation at stationary
distribution.
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Singular perturbation analysis
Fast varying Prob. Dist∑

y

(
d

dt
PC,Y (c, y; t,m0) = (

1

ε
B)(PC,Y (·, ·; t,m0))

)
.

Let P fC,Y (c, y; τ) denote the solution to the following forward
equation

d

dt
P fC,Y (c, y; t)

= Ω[k̄on
(y−c+1)

Ω

(pT−c+1)

Ω
P fC,Y (c−1, y; t)

+ k̄off
(c+1)

Ω
P fC,Y (c+1, y; t)

− (k̄on
(y−c)(pT−c)

Ω2
+ k̄off

c

Ω
)P fC,Y (c, y; t)].

with initial distribution
P fC,Y (c, y; 0) = PC,Y (c, y; 0)− P sY (y; 0)πC|Y (c|y).
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Singular perturbation analysis

P eC,Y (c, y; t, ε) := P sY (y; t)πC|Y (c|y) + P fC,Y (c, y;
t

ε
)

approximates
PC,Y (c, y; t)

of order of O(ε) over [0, T ] for any T .

Moreover, there exists κ > 0 and α > 0 such that
‖P fC,Y (·, ·; τ)‖1 < κe−ατ .
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Analyzing the reduced Master equation

Now we have reduced Master equation to analyze the
transient behavior of system:

Ṗ sY (y; t) = Ω[kP sY (y − 1; t)

+ δ
(y + 1− Es(C|Y = y + 1))

Ω
P sY (y + 1; t)

− (k + δ
y − Es(C|Y = y)

Ω
)P sY (y; t)],

We need to characterize Es(C|Y = y)
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Analyzing the reduced Master equation

Es(C|Y = y) can be written as follows

Es(C|Y = y) =

min y,pT∑
c=0

cπC|Y (c|y)

=

∑min(pT ,Ω)
c=0

c
c!(pT−c)!(Ωkd)c(y−c)!∑min(pT ,Ω)

c=0
1

c!(pT−c)!(Ωkd)c(y−c)!

.

(6)

Hard to characterize in this form
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Analyzing the reduced Master equation

Es(C|Y = y) =
[pT − Es(C|Y = y − 1)]y

pT + kdΩ− Es(C|Y = y − 1)

=: Υ(Es(C|Y = y − 1), y),

with Es(C|Y = 0) = 0.
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Analyzing the reduced Master equation

f̂ that is the fixed point of the map Υ at y, i.e.,
f̂(y) = Υ(f̂(y), y), is a good approximation of
Es(C|Y = y). with some algebraic manipulation:

f̂(y) =
y + pT + kdΩ−

√
(y + pT + kdΩ)2 − 4ypT

2
≈ Es(C|Y = y).
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Analyzing the reduced Master equation

Assuming that kd is sufficiently large compared to pT
Ω and y

Ω ,
which is often a reasonable assumption, we have

f̂(y) =
2ypT

y + pT + kdΩ +
√

(y + pT + kdΩ)2 − 4ypT

≈ pT
pT + kdΩ

y.

(7)
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Analyzing the reduced Master equation: E(Y )

Defining β := kdΩ
kdΩ+pT

,

Es(C|Y = y) ≈ (1− β)y. (8)

with

Ṗ sY (y; t) = Ω[kP sY (y − 1; t)

+ δ
(y + 1− Es(C|Y = y + 1))

Ω
P sY (y + 1; t)

− (k + δ
y − Es(C|Y = y)

Ω
)P sY (y; t)],

we have
d

dt
Es(Y ; t) = −δβEs(Y ; t) + kΩ. (9)

with β < 1. For isolated system we have β = 1.

32



Stochastic Analysis
of Retroactivity in
Transcriptional

Networks through
Singular

Perturbation

Ghaemi, Del
Vecchio

Introduction

Stochastic
modeling

Stationary analysis

Singular
perturbation
analysis

Analysis of
Transient Behavior

Conclusion

Analyzing the reduced Master equation: E(Y )

Defining β := kdΩ
kdΩ+pT

,

Es(C|Y = y) ≈ (1− β)y. (8)

with
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Analyzing the reduced Master equation: V ar(Y )

d

dt
Es(Y 2; t) = Es(2Y (kΩ− δβY ); t) + Es(δβY + kΩ; t)

− 2δβEs(Y 2; t) + (2kΩ + δβ)Es(Y ; t) + kΩ.

(10)

Es(Y 2; t) with time constant 1
2δβ , → time constant of the

variance.
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Analyzing the reduced Master equation:
E(Z), V ar(Z)

Es(Z2; t) ≈ β2Es(Y 2; t) + β(1− β)Es(Y ; t). (11)

and
Es(Z; t) ≈ βEs(Y ; t) (12)

→ the dynamics of E(Z) and V ar(Z) slows down when
interconnected with downstream component.
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Conclusion
we studied the stochastic effects of retroactivity in a
transcriptional module connected to downstream systems:

We developed singular perturbation analysis for the
Master equation.

We provided a reduced Master equation describing the
slow processes and demonstrated that the solution of
the original Master equation fast approaches a neighbor
of the solution of the reduced Master equation.

We mathematically analyzed how retroactivity impacts
both transient and stationary behavior of the system

We observed that the upstream system and the
downstream one are statistically independent at the
steady state.

The interconnection slows down the dynamics of both
the expectation and the variance of the output of the
upstream transcriptional module.
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