
From SVC to CVC4
15 Years of Decision Procedures

SAT/SMT Summer School

Clark Barrett

New York University

13 Jun 2011

From SVC to CVC4

Outline

1 From SVC to CVC4
SVC
CVC
CVC Lite
CVC3
CVC4

2 Verification of Low-Level Code
Satisfiability Modulo Theories
Processing Packets
Memory Models
Example

Clark Barrett (New York University) From SVC to CVC4 13 Jun 2011 2 / 45

From SVC to CVC4 SVC

SVC

Motivation for a Validity Checker

Processor Verification via Symbolic Simulation

Prove that Abstract Specification Machine matches Implementation

Burch-Dill Commuting Diagram

Check equality of two big formulas

Clark Barrett (New York University) From SVC to CVC4 13 Jun 2011 3 / 45

From SVC to CVC4 SVC

Burch-Dill Commuting Diagram

Fi

Fs

qi Fi qi()

qiAbs() =
?

Abs Abs

Clark Barrett (New York University) From SVC to CVC4 13 Jun 2011 4 / 45

From SVC to CVC4 SVC

SVC

SVC

Stanford Validity Checker [Barrett, Dill, & Levitt ’96]

Authors: Clark Barrett, Jeremy Levitt, Aaron Stump, Robert Jones,
David Dill

First source release: 1998

Innovations

Theory reasoning based loosely on Shostak’s method [Shostak ’84,
Levitt ’98]

Powerful rewriter/simplifier

Helpful built-in support for backtracking data structures

Novel decision procedures (e.g. bit-vectors, arrays, records)

Modular theory solver design

Clark Barrett (New York University) From SVC to CVC4 13 Jun 2011 5 / 45

From SVC to CVC4 SVC

SVC

Applications

Processor Verification [Levitt & Olukotun ’97]

Specification Checking [Park et al. ’98]

Theorem prover assistance [Heilmann ’99]

Headaches

Shostak’s method - too complicated and restrictive

Equational solvers required to respect restrictive total order

Boolean reasoning too primitive

Software architecture - too entangled

Clark Barrett (New York University) From SVC to CVC4 13 Jun 2011 6 / 45

From SVC to CVC4 CVC

CVC

CVC

Cooperating Validity Checker [Stump, Barrett, & Dill ’02]

Authors: Aaron Stump, Clark Barrett, David Dill, Sergey Berezin,
Vijay Ganesh

First release: 2002

Innovations

Use of SAT solver (Chaff) for Boolean reasoning [Barrett, Dill, &
Stump ’02]

Theory combination framework based on Nelson-Oppen with features
of Shostak [Barrett ’03]

Proof production [Stump, Barrett, & Dill ’02]

Clark Barrett (New York University) From SVC to CVC4 13 Jun 2011 7 / 45

From SVC to CVC4 CVC

CVC

Applications

Predicate Abstraction [Das & Dill ’02]

Software Verification (BLAST tool) [Henzinger et al. ’03]

Compiler Validation [Barrett, Goldberg, & Zuck ’03]

Headaches

Software architecture - too entangled

Clark Barrett (New York University) From SVC to CVC4 13 Jun 2011 8 / 45

From SVC to CVC4 CVC Lite

CVC Lite

CVC Lite

CVC Lite [Barrett & Berezin ’04]

Authors: Clark Barrett, Sergey Berezin, David Dill, Vijay Ganesh

Additional Contributors: Cristian Cadar, Jake Donham, Yeting Ge,
Deepak Goyal, Ying Hu, Sean McLaughlin, Mehul Trivedi, Michael
Veksler, Daniel Wichs, Mark Zavislak, Jim Zhuang

First release: 2004

Innovations

Theorem-based computation

Handling of partial functions via TCC’s [Berezin et al. ’04]

Mixed integer-real arithmetic (plus some non-linear reasoning)

Quantifiers

Predicate sub-typing

Clark Barrett (New York University) From SVC to CVC4 13 Jun 2011 9 / 45

From SVC to CVC4 CVC Lite

CVC Lite

Applications

Translation validation for compilers [Goldberg, Zuck, & Barrett ’04]

Trusted theorem prover assistance [McLaughlin, Barrett, & Ge ’05]

Hardware equivalence checking at Calypto Systems

Headaches

Performance

Software architecture - too entangled

Clark Barrett (New York University) From SVC to CVC4 13 Jun 2011 10 / 45

From SVC to CVC4 CVC3

CVC3

CVC3

CVC3 [Barrett & Tinelli ’07]

Authors: Clark Barrett, Cesare Tinelli, Chris Conway, Morgan Deters,
Alexander Fuchs, Yeting Ge, George Hagen, Mina Jeong, Dejan
Jovanović, Tim King

First release: 2007

Innovations

Enhanced MiniSat Boolean core with proof capability

New decision procedures (bit-vectors, data types, quantifiers)

Improved support for non-linear arithmetic

Extensive support for SMT-LIB and format translation

Clark Barrett (New York University) From SVC to CVC4 13 Jun 2011 11 / 45

From SVC to CVC4 CVC3

CVC3

Applications

Deductive program verification with Why [Filliâtre & Marché ’07]

Symbolic analysis of software at IBM [Chandra, Fink, & Sridharan ’09]

Static analysis of C programs [Conway & Barrett ’10]

Many more...

Headaches

Performance

Incompleteness due to non-stably-infinite theories

Software architecture - too entangled

Clark Barrett (New York University) From SVC to CVC4 13 Jun 2011 12 / 45

From SVC to CVC4 CVC4

CVC4

CVC4

CVC4 [Barrett et al. ’11]

Designers and Authors: Kshitij Bansal, Clark Barrett, Christopher
Conway, Morgan Deters, Liana Hadarean, Tim King, Dejan
Jovanović, Andrew Reynolds, Cesare Tinelli

First release: 2011

Innovations

New efficient expression package

Decentralized and more powerful theory combination techniques
(polite theories, care functions) [Jovanović & Barrett ’10]

New state-of-the-art theory implementations (uninterpreted functions,
real arithmetic, arrays, bit-vectors)

Performance-neutral proof production

Designed to be easily parallelizable
Clark Barrett (New York University) From SVC to CVC4 13 Jun 2011 13 / 45

From SVC to CVC4 CVC4

CVC4

Applications

BMC of Hybrid Systems [King & Barrett ’11]

More to come...

Headaches

Trying to keep the software architecture from becoming too entangled

Clark Barrett (New York University) From SVC to CVC4 13 Jun 2011 14 / 45

From SVC to CVC4 CVC4

CVC4

Applications

BMC of Hybrid Systems [King & Barrett ’11]

More to come...

Headaches

Trying to keep the software architecture from becoming too entangled

A Sneak Peek at CVC4

CVC4 vs CVC3 (time and memory)

CVC4 vs other solvers (time and memory)

Clark Barrett (New York University) From SVC to CVC4 13 Jun 2011 14 / 45

From SVC to CVC4 CVC4

CVC4 vs CVC3 (time)

 0.1

 1

 10

 100

 0.1 1 10 100

c
v
c
4

cvc3

Clark Barrett (New York University) From SVC to CVC4 13 Jun 2011 15 / 45

From SVC to CVC4 CVC4

CVC4 vs CVC3 (memory)

 1

 10

 100

 1000

 1 10 100 1000

c
v
c
4

cvc3

Clark Barrett (New York University) From SVC to CVC4 13 Jun 2011 16 / 45

From SVC to CVC4 CVC4

Cumulative Time Cactus Plot

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1000 1200 1400 1600 1800 2000

c
u

m
u

la
ti
v
e

 t
im

e

problems

cvc4
z3

cvc3
opensmt

Clark Barrett (New York University) From SVC to CVC4 13 Jun 2011 17 / 45

From SVC to CVC4 CVC4

Cumulative Memory Cactus Plot

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

c
u

m
u

la
ti
v
e

 m
e

m
o

ry

problems

cvc4
z3

cvc3
opensmt

Clark Barrett (New York University) From SVC to CVC4 13 Jun 2011 18 / 45

Verification of Low-Level Code

Outline

1 From SVC to CVC4
SVC
CVC
CVC Lite
CVC3
CVC4

2 Verification of Low-Level Code
Satisfiability Modulo Theories
Processing Packets
Memory Models
Example

Clark Barrett (New York University) From SVC to CVC4 13 Jun 2011 19 / 45

Verification of Low-Level Code Satisfiability Modulo Theories

Satisfiability Modulo Theories

For a theory T , the T -satisfiability problem consists of deciding whether
there exists a model A and variable assignment α such that
(A, α) |= T ∪ ϕ for a given formula ϕ.

Clark Barrett (New York University) From SVC to CVC4 13 Jun 2011 20 / 45

Verification of Low-Level Code Satisfiability Modulo Theories

Theories of Inductive Data Types

An inductive data type (IDT) defines one or more constructors, and
possibly also selectors and testers.

Example: list of int

Constructors: cons : (int, list) → list, null : list

Selectors: car : list → int, cdr : list → list

Testers: is cons, is null

The first order theory of a inductive data type associates a function
symbol with each constructor and selector and a predicate symbol with
each tester.

Example: ∀ x : list. (x = null ∨ ∃ y : int, z : list. x = cons(y , z))

Clark Barrett (New York University) From SVC to CVC4 13 Jun 2011 21 / 45

Verification of Low-Level Code Satisfiability Modulo Theories

Theories of Inductive Data Types

An inductive data type (IDT) defines one or more constructors, and
possibly also selectors and testers.

Example: list of int

Constructors: cons : (int, list) → list, null : list

Selectors: car : list → int, cdr : list → list

Testers: is cons, is null

The first order theory of a inductive data type associates a function
symbol with each constructor and selector and a predicate symbol with
each tester.

Example: ∀ x : list. (x = null ∨ ∃ y : int, z : list. x = cons(y , z))

For IDTs with a single constructor, a conjunction of literals is decidable in
polynomial time [Oppen ’80].

Clark Barrett (New York University) From SVC to CVC4 13 Jun 2011 21 / 45

Verification of Low-Level Code Satisfiability Modulo Theories

Theories of Inductive Data Types

An inductive data type (IDT) defines one or more constructors, and
possibly also selectors and testers.

Example: list of int

Constructors: cons : (int, list) → list, null : list

Selectors: car : list → int, cdr : list → list

Testers: is cons, is null

The first order theory of a inductive data type associates a function
symbol with each constructor and selector and a predicate symbol with
each tester.

Example: ∀ x : list. (x = null ∨ ∃ y : int, z : list. x = cons(y , z))

For more general IDTs, the problem is NP complete, but reasonbly
efficient algorithms exist in practice [Barrett et al. ’07].

Clark Barrett (New York University) From SVC to CVC4 13 Jun 2011 21 / 45

Verification of Low-Level Code Processing Packets

Processing Packets

1 0000010 00000001 00000010 1 0000001 00000011 00000000

cons

cons

tag,count data cdr

tag,count data cdr

nil

Network packets are highly structured

but usually processed with low-level bit-twiddling code

wh i l e ((n = *p++) & 0x80) {

p += n & 0x7f;

}

Clark Barrett (New York University) From SVC to CVC4 13 Jun 2011 22 / 45

Verification of Low-Level Code Processing Packets

Processing Packets

1 0000010 00000001 00000010 1 0000001 00000011 00000000

cons

cons

tag,count data cdr

tag,count data cdr

nil

Network packets are highly structured
but usually processed with low-level bit-twiddling code

wh i l e ((n = *p++) & 0x80) {

p += n & 0x7f;

}

Clark Barrett (New York University) From SVC to CVC4 13 Jun 2011 22 / 45

Verification of Low-Level Code Processing Packets

Processing Packets

One solution: packet-processing DSLs
(e.g., binpac, Melange, Morpheus, Prolac)

type List =

cons {

tag:1 = 0b1,

count: 7,

data: u_char[count],

cdr: List

}

| nil {

tag:8 = 0x00

}

High level

Type safe

Slower than C

Need to rewrite existing code

Clark Barrett (New York University) From SVC to CVC4 13 Jun 2011 23 / 45

Verification of Low-Level Code Processing Packets

Processing Packets

One solution: packet-processing DSLs
(e.g., binpac, Melange, Morpheus, Prolac)

type List =

cons {

tag:1 = 0b1,

count: 7,

data: u_char[count],

cdr: List

}

| nil {

tag:8 = 0x00

}

High level

Type safe

Slower than C

Need to rewrite existing code

Clark Barrett (New York University) From SVC to CVC4 13 Jun 2011 23 / 45

Verification of Low-Level Code Processing Packets

Processing Packets

One solution: packet-processing DSLs
(e.g., binpac, Melange, Morpheus, Prolac)

type List =

cons {

tag:1 = 0b1,

count: 7,

data: u_char[count],

cdr: List

}

| nil {

tag:8 = 0x00

}

High level

Type safe

Slower than C

Need to rewrite existing code

Clark Barrett (New York University) From SVC to CVC4 13 Jun 2011 23 / 45

Verification of Low-Level Code Processing Packets

Packet Types as Specification

Instead of synthesizing a performant implementation,
let’s use packet types as the basis of a specification

wh i l e ((n = *p++) & 0x80) {

assert(isCons(prev(p)));

p += n & 0x7f;

assert(p == cdr(prev(p)));

}

We can use bit-precise reasoning to prove that the code satisfies the
assertions using Cascade.

Clark Barrett (New York University) From SVC to CVC4 13 Jun 2011 24 / 45

Verification of Low-Level Code Processing Packets

Cascade Verification Framework

Source code

Language Front-end

C

SPL

...

Control-flow
Graph

Analysis input

Analysis Algorithm

Deductive
proof rules

Path-based
assertion
checking

...

Expression Encoding

First-order
encoding

Array-based
memory
encoding

...

Prover Back-end

CVC3

JavaBDD

...

Clark Barrett (New York University) From SVC to CVC4 13 Jun 2011 25 / 45

Verification of Low-Level Code Processing Packets

Cascade/C

High-precision verification of program paths

Intended for use in a multi-stage analysis

Path is defined and assertions are injected using an XML control file

Clark Barrett (New York University) From SVC to CVC4 13 Jun 2011 26 / 45

Verification of Low-Level Code Processing Packets

Cascade/C

swap.c:

void swap(int*x, int*y) {

*x = *x + *y;

*y = *x - *y;

*x = *x - *y;

}

swap.ctrl:

<controlFile>

<sourceFile name="swap.c" id="1" />

<run>

<startPosition fileId="1" line="1" />

<endPosition fileId="1" line="5">

<assert><![CDATA[

orig(*x)==*y && orig(*y)==*x

]]></assert>

</endPosition>

</run>

</controlFile>

*x = *x + *y;

*y = *x - *y;

*x = *x - *y;

assert(orig(*x)==*y && orig(*y)==*x);

@
@
@
@
@
@
@R

�
�
�

��	

Clark Barrett (New York University) From SVC to CVC4 13 Jun 2011 27 / 45

Verification of Low-Level Code Processing Packets

Cvc3 Encoding

Encode verification conditions as SMT instances

Use Cvc3 SMT solver to decide validity

Cvc3 includes theories for:

Arrays
Uninterpreted functions
Bit vectors
Inductive datatypes

Connect the high-level assertions and the low-level code by
generating:

An inductive datatype
Functions mapping datatype values to arrays of bytes
Encode program semantics using bit vectors

Clark Barrett (New York University) From SVC to CVC4 13 Jun 2011 28 / 45

Verification of Low-Level Code Processing Packets

CVC3 Encoding

type List =

cons {

tag:1 = 0b1 ,

count: 7,

data: u_char[count],

cdr: List

}

| nil {

tag:8 = 0x00

}

Clark Barrett (New York University) From SVC to CVC4 13 Jun 2011 29 / 45

CVC3 Encoding

ptrType : BITVECTOR(N);
byteType : BITVECTOR(8);
memType : ARRAY ptrType OF byteType;

DATATYPE
List =

cons(tag: BITVECTOR(1),
len: BITVECTOR(7),
data: memType ,

cdr: List)

| nil(tag: BITVECTOR(8))

| undefined;

END;

toList : (memType , ptrType) -> List;

∀ m:memType , i:ptrType.

isNil(toList(m,i)) ⇐⇒ m[i] = 0;

∀ m: memType , i: ptrType.

isCons(toList(m,i)) ⇐⇒ m[i][7] = 1;

∀ m: memType , i: ptrType.

isCons(toList(m, i)) =⇒
cdr(toList(m,i)) = toList(m,i+len(toList(m,i))+1);

etc ...

Verification of Low-Level Code Processing Packets

Verification Condition Generation

n = *p++;

assume((n & 0x80) != 0);

assert(isCons(prev(p)));

becomes

m1 = m0[&n 7→ m0[m0[&p]]]

m2 = m1[&p 7→ m1[&p] + 1]

m2[&n] & 0x80 6= 0x00

isCons(toList(m2,m0[&p]))

Clark Barrett (New York University) From SVC to CVC4 13 Jun 2011 31 / 45

Verification of Low-Level Code Memory Models

Memory Models

“Flat” memory model

Memory is one big array:

m1 = m0[&n 7→ m0[m0[&p]]]

m2 = m1[&p 7→ m1[&p] + 1]

No “frame rule” is implied.

E.g., the following isn’t necessarily valid:

{ toList(q)==cdr(p) }

i++

{ toList(q)==cdr(p) }

We can’t rule out &i being reachable if toList is unrolled enough
times.

Detailed non-aliasing assumptions have to be added by hand

And they don’t help much

Clark Barrett (New York University) From SVC to CVC4 13 Jun 2011 32 / 45

Verification of Low-Level Code Memory Models

Memory Models

“Flat” memory model

Memory is one big array:

m1 = m0[&n 7→ m0[m0[&p]]]

m2 = m1[&p 7→ m1[&p] + 1]

No “frame rule” is implied.

E.g., the following isn’t necessarily valid:

{ toList(q)==cdr(p) }

i++

{ toList(q)==cdr(p) }

We can’t rule out &i being reachable if toList is unrolled enough
times.

Detailed non-aliasing assumptions have to be added by hand
And they don’t help much

Clark Barrett (New York University) From SVC to CVC4 13 Jun 2011 32 / 45

Verification of Low-Level Code Memory Models

Memory Models

Burstall model [Burstall ’72, Bornat ’00]

A separate memory array for each static type:

m′char = mchar [&n 7→ mchar [mchar∗[&p]]]

m′char∗ = mchar∗[&p 7→ mchar∗[&p] + 1]

Can’t handle safe dynamic casts
Can’t handle promiscuous pointer manipulation

Which is exactly what packet processing is

Clark Barrett (New York University) From SVC to CVC4 13 Jun 2011 33 / 45

Verification of Low-Level Code Memory Models

Memory Models

Burstall model [Burstall ’72, Bornat ’00]

A separate memory array for each static type:

m′char = mchar [&n 7→ mchar [mchar∗[&p]]]

m′char∗ = mchar∗[&p 7→ mchar∗[&p] + 1]

Can’t handle safe dynamic casts
Can’t handle promiscuous pointer manipulation
Which is exactly what packet processing is

Clark Barrett (New York University) From SVC to CVC4 13 Jun 2011 33 / 45

Verification of Low-Level Code Memory Models

Partitioning the Heap

An “in between” model, based on separation analysis
[Hubert & Marché ’07, Rakamaric & Hu ’09]

Memory is partitioned into disjoint regions.

Every pointer expression is associated with a region

p

n
*p

Each region can be represented by a separate “memory”

Clark Barrett (New York University) From SVC to CVC4 13 Jun 2011 34 / 45

Verification of Low-Level Code Memory Models

Partitioning the Heap

An “in between” model, based on separation analysis
[Hubert & Marché ’07, Rakamaric & Hu ’09]

Memory is partitioned into disjoint regions.

Every pointer expression is associated with a region

p

n
*p

R2

R1

R3

Each region can be represented by a separate “memory”

Clark Barrett (New York University) From SVC to CVC4 13 Jun 2011 34 / 45

Verification of Low-Level Code Memory Models

Partitioning the Heap

An “in between” model, based on separation analysis
[Hubert & Marché ’07, Rakamaric & Hu ’09]

Memory is partitioned into disjoint regions.

Every pointer expression is associated with a region

p

n
*p

R2

R1

R3

Each region can be represented by a separate “memory”

Clark Barrett (New York University) From SVC to CVC4 13 Jun 2011 34 / 45

Verification of Low-Level Code Memory Models

Partitioning the Heap

Flat:

m1 = m0[&n 7→ m0[m0[&p]]]

m2 = m1[&p 7→ m1[&p] + 1]

m2[&n] & 0x80 6= 0x00

isCons(toList(m2,m0(&p)))

Separation creates a “frame” around datatype values

Makes hard problems easy and easy problems trivial

The verification condition is sound if the partition is sound

Clark Barrett (New York University) From SVC to CVC4 13 Jun 2011 35 / 45

Verification of Low-Level Code Memory Models

Partitioning the Heap

Partitioned:

m′
n = mn[&n 7→ m*p[mp[&p]]]

m′
p = mp[&p 7→ mp[&p] + 1]

m′
n[&n] & 0x80 6= 0x00

isCons(toList(m*p,mp[&p]))

Separation creates a “frame” around datatype values

Makes hard problems easy and easy problems trivial

The verification condition is sound if the partition is sound

Clark Barrett (New York University) From SVC to CVC4 13 Jun 2011 35 / 45

Verification of Low-Level Code Memory Models

Partitioning the Heap

Partitioned:

m′
n = mn[&n 7→ m*p[mp[&p]]]

m′
p = mp[&p 7→ mp[&p] + 1]

m′
n[&n] & 0x80 6= 0x00

isCons(toList(m*p,mp[&p]))

Separation creates a “frame” around datatype values

Makes hard problems easy and easy problems trivial

The verification condition is sound if the partition is sound

Clark Barrett (New York University) From SVC to CVC4 13 Jun 2011 35 / 45

Verification of Low-Level Code Example

“Real World” Example: Encoded Domain Name

type Dn =

label {

tag:2 = 0b00 ,

len:6 != 0b000000 ,

name:u_char[len],

rest:Dn

}

| indirect {

tag:2 = 0b11 ,

offset :14

}

| nullt {

tag:8 = 0x00

}

Clark Barrett (New York University) From SVC to CVC4 13 Jun 2011 36 / 45

#de f i n e NS_CMPRSFLAGS (0xc0)

i n t ns_name_skip(const u_char **ptrptr , const u_char *eom) {

{ allocated (*ptrptr , eom) }

const u_char *cp; u_int n;

cp = *ptrptr;

{ @invariant: cp <= eom =>

cp + sizeOfDn(cp) = init(cp) + sizeOfDn(init(cp)) }

wh i l e (cp < eom && (n = *cp++) != 0) {

sw i tch (n & NS_CMPRSFLGS) {

case 0: /* normal case , n == len */

{ isLabel(prev(cp)) }

cp += n;

{ rest(prev(cp)) = toDn(cp) }

cont inue ;
case NS_CMPRSFLGS: /* indirection */

{ isIndirect(prev(cp)) }

cp++; break ;
d e f a u l t : /* illegal type */

__set_errno (EMSGSIZE); r e t u r n (-1);

}

break ;
}

i f (cp > eom) { __set_errno (EMSGSIZE); r e t u r n (-1); }

{ cp = eom _ cp = init(cp) + sizeOfDn(init(cp)) }

*ptrptr = cp;

r e t u r n (0);

}

Verification of Low-Level Code Example

Experimental results

Verification times for ns name skip.

30 LOC, 4 assertions + a loop invariant

Time (seconds)
Name Lines Flat Part.

Init 5–12 0.34 0.03
Case 0 (1) 12-16 13.94 0.05
Case 0 (2) 12-28 33.42 0.06
Case 0 (3) 12-19 * 0.12

Case 0xc0 (1) 12–14, 20–21 6.14 0.04
Case 0xc0 (2) 12–14, 20–23, 30, 34 * 0.07

Term (1) 12, 30, 34 0.63 0.06
Term (2) 12, 30, 34 * 0.05

Clark Barrett (New York University) From SVC to CVC4 13 Jun 2011 38 / 45

Verification of Low-Level Code Example

Final Thoughts

15 years of checking formulas

SMT has come a long way in last 15 years

Dramatic advances in theory and practice

Explosion of application areas

Lessons

Balancing high-performance and software flexibility is a challenge

Modularity and solid theoretical foundations can help

But in a rapidly advancing area, may have to reimplement every few
years anyway

CVC4 is coming

Goals: open source, high-performance, full-featured SMT solver

Contributions and collaborations welcome after first release

Clark Barrett (New York University) From SVC to CVC4 13 Jun 2011 39 / 45

Verification of Low-Level Code Example

References

[Bar03] Clark W. Barrett. Checking Validity of Quantifier-Free Formulas in
Combinations of First-Order Theories. PhD thesis, Stanford University,
January 2003. Stanford, California

[BB04] Clark Barrett and Sergey Berezin. CVC Lite: A new implementation of the
cooperating validity checker. In Rajeev Alur and Doron A. Peled, editors,
Proceedings of the 16th International Conference on Computer Aided
Verification (CAV ’04), volume 3114 of Lecture Notes in Computer Science,
pages 515–518. Springer-Verlag, July 2004. Boston, Massachusetts

[BCD+11] Clark Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean, Dejan
Jovanović, Tim King, Andrew Reynolds, and Cesare Tinelli. Cvc4. In
Proceedings of the 23rd International Conference on Computer Aided
Verification (CAV ’11), Lecture Notes in Computer Science. Springer, July
2011. Snowbird, Utah, to appear

[BDL96] Clark W. Barrett, David L. Dill, and Jeremy R. Levitt. Validity checking for
combinations of theories with equality. In Mandayam Srivas and Albert
Camilleri, editors, Proceedings of the 1st International Conference on Formal
Methods In Computer-Aided Design (FMCAD ’96), volume 1166 of Lecture
Notes in Computer Science, pages 187–201. Springer-Verlag, November 1996.
Palo Alto, California

Clark Barrett (New York University) From SVC to CVC4 13 Jun 2011 40 / 45

Verification of Low-Level Code Example

References

[BDS02] Clark W. Barrett, David L. Dill, and Aaron Stump. Checking satisfiability of
first-order formulas by incremental translation to SAT. In Ed Brinksma and
Kim Guldstrand Larsen, editors, Proceedings of the 14th International
Conference on Computer Aided Verification (CAV ’02), volume 2404 of
Lecture Notes in Computer Science, pages 236–249. Springer-Verlag, July
2002. Copenhagen, Denmark

[BGZ03] Clark Barrett, Benjamin Goldberg, and Lenore Zuck. Run-time validation of
speculative optimizations using CVC. In Oleg Sokolsky and Mahesh
Viswanathan, editors, Proceedings of the 3rd International Workshop on
Run-time Verification (RV ’03), volume 89(2) of Electronic Notes in
Theoretical Computer Science, pages 89–107. Elsevier, October 2003.
Boulder, Colorado

[BST07] Clark Barrett, Igor Shikanian, and Cesare Tinelli. An abstract decision
procedure for a theory of inductive data types. Journal on Satisfiability,
Boolean Modeling and Computation, 3:21–46, 2007

[BT07] Clark Barrett and Cesare Tinelli. CVC3. In Werner Damm and Holger
Hermanns, editors, Proceedings of the 19th International Conference on
Computer Aided Verification (CAV ’07), volume 4590 of Lecture Notes in
Computer Science, pages 298–302. Springer-Verlag, July 2007. Berlin,
Germany

Clark Barrett (New York University) From SVC to CVC4 13 Jun 2011 41 / 45

Verification of Low-Level Code Example

References

[BBS+05] Sergey Berezin, Clark Barrett, Igor Shikanian, Marsha Chechik, Arie Gurfinkel,
and David L. Dill. A practical approach to partial functions in CVC Lite. In
Wolfgang Ahrendt, Peter Baumgartner, Hans de Nivelle, Silvio Ranise, and
Cesare Tinelli, editors, Selected Papers from the Workshops on Disproving and
the Second International Workshop on Pragmatics of Decision Procedures
(PDPAR ’04), volume 125(3) of Electronic Notes in Theoretical Computer
Science, pages 13–23. Elsevier, July 2005. Cork, Ireland

[Bor00] Richard Bornat. Proving pointer programs in hoare logic. In Roland Backhouse
and Jos Oliveira, editors, Mathematics of Program Construction, volume 1837
of Lecture Notes in Computer Science, pages 102–126. Springer Berlin /
Heidelberg, 2000

[Bur72] R. Burstall. Some techniques for proving correctness of programs which alter
data structures. Machine Intelligence, 1972

[CFS09] Satish Chandra, Stephen J. Fink, and Manu Sridharan. Snugglebug: a
powerful approach to weakest preconditions. In Proceedings of the 2009 ACM
SIGPLAN conference on Programming language design and implementation,
PLDI ’09, pages 363–374, New York, NY, USA, 2009. ACM

[CB10] Christopher L. Conway and Clark Barrett. Verifying low-level implementations
of high-level datatypes. In Tayssir Touili, Byron Cook, and Paul Jackson,
editors, Proceedings of the 22nd International Conference on Computer Aided
Verification (CAV ’10), volume 6174 of Lecture Notes in Computer Science,
pages 306–320. Springer, July 2010. Edinburgh, Scotland

Clark Barrett (New York University) From SVC to CVC4 13 Jun 2011 42 / 45

Verification of Low-Level Code Example

References

[DD02] Satyaki Das and David L. Dill. Counter-example based predicate discovery in
predicate abstraction. In Formal Methods in Computer-Aided Design.
Springer-Verlag, November 2002

[FM07] Jean-Christophe Filliâtre and Claude Marché. The why/krakatoa/caduceus
platform for deductive program verification. In Werner Damm and Holger
Hermanns, editors, Computer Aided Verification, volume 4590 of Lecture
Notes in Computer Science, pages 173–177. Springer Berlin / Heidelberg, 2007

[GZB05] Benjamin Goldberg, Lenore Zuck, and Clark Barrett. Into the loops: Practical
issues in translation validation for optimizing compilers. In J. Knoop, G.C.
Necula, and W. Zimmermann, editors, Proceedings of the 3rd International
Workshop on Compiler Optimization meets Compiler Verificaiton (COCV ’04),
volume 132(1) of Electronic Notes in Theoretical Computer Science, pages
53–71. Elsevier, May 2005. Barcelona, Spain

[Hei99] Søren T. Heilmann. Proof Support for Duration Calculus. PhD thesis,
Technical University of Denmark, 1999

[HJMS03] Thomas Henzinger, Ranjit Jhala, Rupak Majumdar, and Grgoire Sutre.
Software verification with blast. In Thomas Ball and Sriram Rajamani, editors,
Model Checking Software, volume 2648 of Lecture Notes in Computer Science,
pages 624–624. Springer Berlin / Heidelberg, 2003

[HM07] T. Hubert and C. Marché. Separation analysis for deductive verification. In
Heap Analysis and Verification (HAV), pages 81–93, March 2007

Clark Barrett (New York University) From SVC to CVC4 13 Jun 2011 43 / 45

Verification of Low-Level Code Example

References

[JB10b] Dejan Jovanović and Clark Barrett. Sharing is caring. In Proceedings of the
8th International Workshop on Satisfiability Modulo Theories (SMT ’10), July
2010. Edinburgh, Scotland

[JB10a] Dejan Jovanović and Clark Barrett. Polite theories revisited. In Christian G.
Fermüller and Andrei Voronkov, editors, Proceedings of the 17th International
Conference on Logic for Programming, Artificial Intelligence, and Reasoning
(LPAR ’10), volume 6397 of Lecture Notes in Computer Science, pages
402–416. Springer, October 2010. Yogyakarta, Indonesia

[KB11] Tim King and Clark Barrett. Exploring and categorizing error spaces using bmc
and smt. In Proceedings of the 9th International Workshop on Satisfiability
Modulo Theories (SMT ’11), July 2011. Snowbird, Utah, to appear

[Lev99] J. Levitt. Formal Verification Techniques for Digital Systems. PhD thesis,
Stanford University, 1999

[JK97] Jeremy Levitt and Kunle Olukotun. Verifying Correct Pipeline Implentation for
Microprocessors. In International Conference on Computer Aided Design, San
Jose, CA, November 1997. IEEE Computer Society Press

[MBG06] Sean McLaughlin, Clark Barrett, and Yeting Ge. Cooperating theorem provers:
A case study combining HOL-Light and CVC Lite. In Alessandro Armando and
Alessandro Cimatti, editors, Proceedings of the 3rd Workshop on Pragmatics
of Decision Procedures in Automated Reasoning (PDPAR ’05), volume 144(2)
of Electronic Notes in Theoretical Computer Science, pages 43–51. Elsevier,
January 2006. Edinburgh, Scotland

Clark Barrett (New York University) From SVC to CVC4 13 Jun 2011 44 / 45

Verification of Low-Level Code Example

References

[Opp80] D. C. Oppen. Reasoning about recursively defined data structures. JACM,
27(3):403–411, July 1980

[PSH+98] David Y.W. Park, Jens U. Skakkebæk, Mats P.E. Heimdahl, Barbara J.
Czerny, and David L. Dill. Checking Properties of Safety Critical Specifications
Using Efficient Decision Procedures. In FMSP’98: Second Workshop on
Formal Methods in Software Practice, pages 34–43, March 1998

[RH09] Zvonimir Rakamarić and Alan Hu. A scalable memory model for low-level
code. In Neil Jones and Markus Mller-Olm, editors, Verification, Model
Checking, and Abstract Interpretation, volume 5403 of Lecture Notes in
Computer Science, pages 290–304. Springer Berlin / Heidelberg, 2009

[Sho84] R. Shostak. Deciding combinations of theories. Journal of the Association for
Computing Machinery, 31(1):1–12, 1984

[SBD02a] Aaron Stump, Clark W. Barrett, and David L. Dill. CVC: A cooperating
validity checker. In Ed Brinksma and Kim Guldstrand Larsen, editors,
Proceedings of the 14th International Conference on Computer Aided
Verification (CAV ’02), volume 2404 of Lecture Notes in Computer Science,
pages 500–504. Springer-Verlag, July 2002. Copenhagen, Denmark

[SBD02b] Aaron Stump, Clark W. Barrett, and David L. Dill. Producing proofs from an
arithmetic decision procedure in elliptical LF. In Frank Pfenning, editor,
Proceedings of the 3rd International Workshop on Logical Frameworks and
Meta-Languages (LFM ’02), volume 70(2) of Electronic Notes in Theoretical
Computer Science, pages 29–41. Elsevier, July 2002. Copenhagen, Denmark

Clark Barrett (New York University) From SVC to CVC4 13 Jun 2011 45 / 45

	From SVC to CVC4
	SVC
	CVC
	CVC Lite
	CVC3
	CVC4

	Verification of Low-Level Code
	Satisfiability Modulo Theories
	Processing Packets
	Memory Models
	Example

